29 research outputs found

    Peculiarities of Muscle-Tendon Mechanics and Energetics in Elite Athletes in Various Sports

    Get PDF
    The article presents results of the research on jumping strategies applied by elite athletes in various sport disciplines. Research hypothesis: to perform the same motor task athletes employ different ways of organizing the movement and different features of MTU functioning. The choice of a mechanism to enhance muscle contraction depends on sport discipline, in particular specific features of the sport movement. The study involved members of the Russian national teams in alpine skiing, bobsleighing, mogul skiing and ski jumping. The athletes performed drop jumps from the heights of 0.1, 0.3, and 0.5 m with no arm swing. Experimental data were obtained online from 24 cameras using the Qualisys motion capture system (400 frames per second) and the two force plates AMTI 6000. Data was processed using the OpenSim package. The authors calculated the amount of accumulation and utilization of elastic strain energy and assessed metabolic energy expenditures in MTU. The authors concluded that employment of different strategies of movement organization in drop jumps could be explained by the transfer of motor skills specific to the athlete’s sport discipline. The results of the study may help coaches develop individual training plans for athletes, in particular strength training exercises targeting specific muscle groups

    The effect of joint compliance within rigid whole-body computer simulations of impacts

    Get PDF
    In high impact human activities, much of the impact shock wave is dissipated through internal body structures, preventing excessive accelerations from reaching vital organs. Mechanisms responsible for this attenuation, including lower limb joint compression and spinal compression have been neglected in existing whole-body simulation models. Accelerometer data on one male subject during drop landings and drop jumps from four heights revealed that peak resultant acceleration tended to decrease with increasing height in the body. Power spectra contained two major components, corresponding to the active voluntary movement (2 Hz 14 Hz) and the impact shock wave (16 Hz 26 Hz). Transfer functions demonstrated progressive attenuation from the MTP joint towards the C6 vertebra within the 16 Hz 26 Hz component. This observed attenuation within the spine and lower-limb joint structures was considered within a rigid body, nine-segment planar torque-driven computer simulation model of drop jumping. Joints at the ankle, knee, hip, shoulder, and mid-trunk were modelled as non-linear spring-dampers. Wobbling masses were included at the shank, thigh, and trunk, with subject-specific biarticular torque generators for ankle plantar flexion, and knee and hip flexion and extension. The overall root mean square difference in kinetic and kinematic time-histories between the model and experimental drop jump performance was 3.7%, including ground reaction force root mean square differences of 5.1%. All viscoelastic displacements were within realistic bounds determined experimentally or from the literature. For an equivalent rigid model representative of traditional frictionless pin joint simulation models but with realistic wobbling mass and foot-ground compliance, the overall kinetic and kinematic difference was 11.0%, including ground reaction force root mean square differences of 12.1%. Thus, the incorporation of viscoelastic elements at key joints enables accurate replication of experimentally recorded ground reaction forces within realistic whole-body kinematics and removes the previous need for excessively compliant wobbling masses and/or foot-ground interfaces. This is also necessary in cases where shock wave transmission within the simulation model must be non-instantaneous

    Bioinspired template-based control of legged locomotion

    Get PDF
    cient and robust locomotion is a crucial condition for the more extensive use of legged robots in real world applications. In that respect, robots can learn from animals, if the principles underlying locomotion in biological legged systems can be transferred to their artificial counterparts. However, legged locomotion in biological systems is a complex and not fully understood problem. A great progress to simplify understanding locomotion dynamics and control was made by introducing simple models, coined ``templates'', able to represent the overall dynamics of animal (including human) gaits. One of the most recognized models is the spring-loaded inverted pendulum (SLIP) which consists of a point mass atop a massless spring. This model provides a good description of human gaits, such as walking, hopping and running. Despite its high level of abstraction, it supported and inspired the development of successful legged robots and was used as explicit targets for control, over the years. Inspired from template models explaining biological locomotory systems and Raibert's pioneering legged robots, locomotion can be realized by basic subfunctions: (i) stance leg function, (ii) leg swinging and (iii) balancing. Combinations of these three subfunctions can generate different gaits with diverse properties. Using the template models, we investigate how locomotor subfunctions contribute to stabilize different gaits (hopping, running and walking) in different conditions (e.g., speeds). We show that such basic analysis on human locomotion using conceptual models can result in developing new methods in design and control of legged systems like humanoid robots and assistive devices (exoskeletons, orthoses and prostheses). This thesis comprises research in different disciplines: biomechanics, robotics and control. These disciplines are required to do human experiments and data analysis, modeling of locomotory systems, and implementation on robots and an exoskeleton. We benefited from facilities and experiments performed in the Lauflabor locomotion laboratory. Modeling includes two categories: conceptual (template-based, e.g. SLIP) models and detailed models (with segmented legs, masses/inertias). Using the BioBiped series of robots (and the detailed BioBiped MBS models; MBS stands for Multi-Body-System), we have implemented newly-developed design and control methods related to the concept of locomotor subfunctions on either MBS models or on the robot directly. In addition, with involvement in BALANCE project (\url{http://balance-fp7.eu/}), we implemented balance-related control approaches on an exoskeleton to demonstrate their performance in human walking. The outcomes of this research includes developing new conceptual models of legged locomotion, analysis of human locomotion based on the newly developed models following the locomotor subfunction trilogy, developing methods to benefit from the models in design and control of robots and exoskeletons. The main contribution of this work is providing a novel approach for modular control of legged locomotion. With this approach we can identify the relation between different locomotor subfunctions e.g., between balance and stance (using stance force for tuning balance control) or balance and swing (two joint hip muscles can support the swing leg control relating it to the upper body posture) and implement the concept of modular control based on locomotor subfunctions with a limited exchange of sensory information on several hardware platforms (legged robots, exoskeleton)

    Fascia Thickness and Mechanical Demand at the Ankle Joint during Dance Jumps in Classically Trained Ballet Dancers

    Get PDF
    Ballet is an athletic activity that combines aesthetics and artistry with power and ­­­­­skill. One of the most athletic aspects of dance is observed during jumps. Many jumps in ballet involve takeoff from a single leg, but differ in propulsion direction. To assess differences in mechanical demand, two single leg jumps commonly trained in ballet were compared; a saut de chat (SDC) and a temp levé from a step (SLSJ). Fifteen female classically trained dancers with similar number of years of training (13.9 ± 5.0 years) were instrumented with lower body reflective markers and performed each jump three times on a force plate. The marker position data and ground reaction forces (GRF) were captured synchronously at 250 hz and 100 hz, respectively, using a Vicon motion capture system. Peak vertical GRF, average rate of force development (RFD), peak ankle moment and peak ankle power were measured and averaged across trials. Paired t-tests were used to determine differences between the SDC and the SLSJ. When compared to the SLSJ, the SDC displayed significantly higher peak vertical GRF (p = .003), RFD (p = .002), and peak ankle moment and power (p \u3c .001). Analysis of effect size for these differences revealed a large effect size for all variables (Cohen’s d \u3e .80). In conclusion, results of this study indicate the mechanical demand of different dance jumps is diverse, which has implications for performance enhancement, injury prevention, and rehabilitation

    Design and evaluation of a powered prosthetic foot with monoarticular and biarticular actuation

    Get PDF
    To overcome the limitations of passive prosthetic feet, powered prostheses have been developed, that can provide the range of motion and power of their human counterparts. These devices can equalize spatio-temporal gait parameters and improve the metabolic effort compared to passive prostheses, but asymmetries and compensatory motions between the healthy and impaired leg remain. Unlike their human counter part, existing powered prosthetic feet are fully monoarticular actuating only the prosthetic ankle joint, whereas in the biological counter part, ankle and knee joint are additionally coupled by the biarticular gastrocnemius muscle. The goal of this work is to investigate the benefits of a powered biarticular transtibial prosthesis comprising mono- and biarticular actuators similar to the human example. The contributions of the present work are as follows: A biarticular prosthesis prototype is methodically designed to match the capabilities of the monoarticular muscles at the human ankle joint as well as the biarticular gastrocnemius muscle during level walking. The prototype consists of an existing powered monoarticular prosthetic foot, which is extended with a knee orthoses and a stationary biarticular Bowden cable actuator. Both actuators are modeled as serial elastic actuators (SEA) and the identification of the model parameters is conducted. A model based torque control utilizing the measurements commonly available in SEAs, an impedance control law based on human ankle reference trajectories, and a high level control to enable steady walking in the lab are introduced. The proposed hardware setup and control structure can provide sagittal plane angles and torques similar to the mono- and biarticular muscles at the human ankle, with proper torque tracking performance and a freely adjustable allocation of torque between the monoarticular and biarticular actuator. The biarticular prosthesis is evaluated in the gait lab with three subjects with unilateral transtibial amputation utilizing a continuous sweep experimental protocol to investigate the metabolic effort and spatio-temporal gait parameters. All subjects show a tendency to reduced metabolic effort for medium activity of the artificial gastrocnemius, although noise level and time variation are large. In addition to the reduction in metabolic effort, the artificial gastrocnemius is able to influence spatio temporal gait parameters between the impaired and the intact side, but partially opposing effects are observed among the individual subjects. In conclusion, this thesis describes the implementation of an artificial gastrocnemius following the human example and the systematic investigation of metabolic effort and spatio-temporal gait parameters. It is shown that the addition of the artificial gastrocnemius to a monoarticular prosthesis can positively affect the investigated parameters. The meaningfulness of the results should be improved by increased clinical effort in future work

    Elastisch arbeitende Beine: Strategien und Bauprinzipien

    Get PDF
    In this thesis the mechanisms and advantages of spring-like leg operation were investigated. By examining the long jump the general dynamic was described using a hierarchy of simple models taking salient mechanical and muscle-physiological properties into account. In dieser Dissertation wurden die Mechanismen und Vorteile federartig arbeitender Beine untersucht. Am Beispiel des Weitsprunges wurde die grundlegende Dynamik in einer Hierarchie einfacher mechanischer und muskelphysiologischer Modelle beschrieben

    Advancing Musculoskeletal Robot Design for Dynamic and Energy-Efficient Bipedal Locomotion

    Get PDF
    Achieving bipedal robot locomotion performance that approaches human performance is a challenging research topic in the field of humanoid robotics, requiring interdisciplinary expertise from various disciplines, including neuroscience and biomechanics. Despite the remarkable results demonstrated by current humanoid robots---they can walk, stand, turn, climb stairs, carry a load, push a cart---the versatility, stability, and energy efficiency of humans have not yet been achieved. However, with robots entering our lives, whether in the workplace, in clinics, or in normal household environments, such improvements are increasingly important. The current state of research in bipedal robot locomotion reveals that several groups have continuously demonstrated enhanced locomotion performance of the developed robots. But each of these groups has taken a unilateral approach and placed the focus on only one aspect, in order to achieve enhanced movement abilities;---for instance, the motion control and postural stability or the mechanical design. The neural and mechanical systems in human and animal locomotion, however, are strongly coupled and should therefore not be treated separately. Human-inspired musculoskeletal design of bipedal robots offers great potential for enhanced dynamic and energy-efficient locomotion but also imposes major challenges for motion planning and control. In this thesis, we first present a detailed review of the problems related to achieving enhanced dynamic and energy-efficient bipedal locomotion, from various important perspectives, and examine the essential properties of the human locomotory apparatus. Subsequently, existing insights and approaches from biomechanics, to understand the neuromechanical motion apparatus, and from robotics, to develop more human-like robots that can move in our environment, are discussed in detail. These thorough investigations of the interrelated essential design decisions are used to develop a novel design for a musculoskeletal bipedal robot, BioBiped1, such that, in the long term, it is capable of realizing dynamic hopping, running, and walking motions. The BioBiped1 robot features a highly compliant tendon-driven actuation system that mimics key functionalities of the human lower limb system. In experiments, BioBiped1's locomotor function for the envisioned gaits is validated globally. It is shown that the robot is able to rebound passively, store and release energy, and actively push off from the ground. The proof of concept of BioBiped1's locomotor function, however, marks only the starting point for our investigations, since this novel design concept opens up a number of questions regarding the required design complexity for the envisioned motions and the appropriate motion generation and control concept. For this purpose, a simulator specifically designed for the requirements of musculoskeletally actuated robotic systems, including sufficiently realistic ground reaction forces, is developed. It relies on object-oriented design and is based on a numerical solver, without model switching, to enable the analysis of impact peak forces and the simulation of flight phases. The developed library also contains the models of the actuated and passive mono- and biarticular elastic tendons and a penalty-based compliant contact model with nonlinear damping, to incorporate the collision, friction, and stiction forces occurring during ground contact. Using these components, the full multibody system (MBS) dynamics model is developed. To ensure a sufficiently similar behavior of the simulated and the real musculoskeletal robot, various measurements and parameter identifications for sub-models are performed. Finally, it is shown that the simulation model behaves similarly to the real robot platform. The intelligent combination of actuated and passive mono- and biarticular tendons, imitating important human muscle groups, offers tremendous potential for improved locomotion performance but also requires a sophisticated concept for motion control of the robot. Therefore, a further contribution of this thesis is the development of a centralized, nonlinear model-based method for motion generation and control that utilizes the derived detailed dynamics models of the implemented actuators. The concept is used to realize both computer-generated hopping and human jogging motions. Additionally, the problem of appropriate motor-gear unit selection prior to the robot's construction is tackled, using this method. The thesis concludes with a number of simulation studies in which several leg actuation designs are examined for their optimality with regard to systematically selected performance criteria. Furthermore, earlier paradoxical biomechanical findings about biarticular muscles in running are presented and, for the first time, investigated by detailed simulation of the motion dynamics. Exploring the Lombard paradox, a novel reduced and energy-efficient locomotion model without knee extensor has been simulated successfully. The models and methods developed within this thesis, as well as the insights gained, are already being employed to develop future prototypes. In particular, the optimal dimensioning and setting of the actuators, including all mono- and biarticular muscle-tendon units, are based on the derived design guidelines and are extensively validated by means of the simulation models and the motion control method. These developments are expected to significantly enhance progress in the field of bipedal robot design and, in the long term, to drive improvements in rehabilitation for humans through an understanding of the neuromechanics underlying human walking and the application of this knowledge to the design of prosthetics

    Optimisation of performance in the triple jump using computer simulation

    Get PDF
    While experimental studies can provide information on what athletes are doing, they are not suited to determining what they should be doing in order to improve their performance. The aim of this study was to develop a realistic computer simulation model of triple jumping in order to investigate optimum technique. A 13-segment subject-specific torque-driven computer simulation model of triple jumping was developed, with wobbling masses within the shank, thigh, and torso. Torque generators were situated at each hip, shoulder, knee, ankle, and ball joint. Kinetic and kinematic data were collected from a triple jump using a force plate and a Vicon motion analysis system. Strength characteristics were measured using an isovelocity dynamometer from which torque-angle and torque-angular velocity relationships were calculated. Segmental inertia parameters were calculated from anthropometric measurements. Viscoelastic parameters were obtained by matching an angle-driven model to performance data for each phase, and a common set for the three contact phases was determined. The torque-driven model was matched to performance data for each phase individually by varying torque generator activation timings using a genetic algorithm. The matching produced a close agreement between simulation and performance, with differences of 3.8%, 2.7%, and 3.1% for the hop, step, and jump phases respectively. The model showed good correspondence with performance data, demonstrating sufficient complexity for subsequent optimisation of performance. Each phase was optimised for jump distance with penalties for excessive angular momentum at take-off. Optimisation of each phase produced an increase in jump distance from the matched simulations of 3.3%, 11.1%, and 8.2% for the hop, step, and jump respectively. The optimised technique showed a symmetrical shoulder flexion consistent with that employed by elite performers. The effects of increasing strength and neglecting angular momentum constraints were then investigated. Increasing strength was shown to improve performance, and angular momentum constraints were proven to be necessary in order to reproduce realistic performances
    corecore