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SUMMARY. In this thesis the mechanisms and advantages of spring-like leg operation were investigated. By
examining the long jump the general dynamic was described using a hierarchy of simple models taking salient
mechanical and muscle-physiological properties into account.

1 GLOBAL SYSTEM PROPERTIES AND THE TIME COURSE OF THE GROUND REACTION FORCE. The shape of the ground
reaction force in the long jump is characterised by two clearly separated peaks (Seyfarth et al., 1999). The first
passive peak takes about 30 − 40 ms. A comparison of models including distal masses (chapter II and V) and taking
muscle properties (stretch enhancement etc., chapter IV and V) into account revealed that this peak is largely
generated by deceleration of distal leg masses (soft and bony tissues) during heel strike. Contributions of muscle
forces were only minor. The lumped parameters belonging to the distal mass are the result of an adequate
description of the time course of the ground reaction force. Nonlinear visco-elastic coupling of distal masses to the
skeleton proved to be necessary and represented passive muscle properties, the properties of the heel pad and the
deformation of the foot and joints. The active peak (30 − 90 % of contact time) is characterised by a surprisingly
constant leg stiffness with variations of merely 7%. Constant leg stiffness is achieved by synchronous bending of
ankle and knee joint. At the joint level, during leg shortening an increase in force of the muscle-tendon complex and
during lengthening a decrease is required.

2 CONTRIBUTIONS OF MUSCLE PROPERTIES TO THE LEG OPERATION. The continuous increase in muscle force can be
attributed to an increase of activation level, the increased force due to muscle lengthening (force-length dependency)
and the consequent continuos loading of the tendon and aponeurosis in series. During unloading decrease in
ground reaction force was achieved by reducing muscle force due to increasing shortening velocity (force-velocity
relationship) and muscle shortening (force-length dependency). Thereby, the shortening serial elastic element
prolonged the phase of eccentric muscle operation and allowed the highest muscle forces to occur at about
midstance. Performance depends on the ability of eccentric force generation. The elastic behaviour of the system is
a result of fast loading of the muscle-tendon complex and is largely limited by muscle properties (force-length and
force-velocity curve). It does not require a sophisticated neural program. In the case of the four-segment model
elastic behaviour originated from internal properties and emerged during muscle activation optimised for maximum
jumping distances.

3 JUMPING PERFORMANCE AND TECHNIQUES. Taking internal system properties into account a quasi-elastic operation
is the optimal strategy for long jumping distances. The elastic behaviour is achieved by synchronous loading of knee
and ankle joint (chapter V). To achieve optimal jumping distance at given run-up speed a minimal leg stiffness had
to be exceeded. Similar results can be obtained by compensating a lower stiffness with a smaller angle of attack
(chapter II). The observed strategies (angle of attack and of take-off; Friedrichs et al., in prep.) can only be
understood by considering the included muscle properties (chapter IV and V). For such a system the optimal angle
of attack is independent of running speed.

4 ADJUSTMENT AND STABILITY OF A DYNAMICALLY LOADED THREE SEGMENTED LEG. Adding a third leg segment
(like a foot) to a leg consisting of shank and thigh reduces the torque requirements at joint level and the kinetic
energy associated with transverse leg segment movements. Simultaneously, it imposes the problems of kinematic
redundancy, potential instability and muscular coordination. Optimised leg operation with respect to jumping
performance (chapter V), leg stiffness or stability requires a homogeneous bending of both leg joints achieved by
rotational stiffnesses adapted to the outer segment lengths (foot and thigh length; chapter III). Nonlinear rotational
stiffness behaviour and biarticular structures are alternative (replaceable) strategies to fulfill a safe leg operation for
a wide range of initial joint configurations. A short foot with the option of heel contact is a powerful construction to
control almost stretched knee positions if elastic joint behaviour is present. By using more flexed ankle joints and an
adapted stiffness design the range of safe leg flexion can be extended.
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ZUSAMMENFASSUNG. In dieser Dissertation wurden die Mechanismen und Vorteile federartig arbeitender
Beine untersucht. Am Beispiel des Weitsprunges wurde die grundlegende Dynamik in einer Hierarchie einfacher
mechanischer und muskelphysiologischer Modelle beschrieben.

1 GLOBALE SYSTEMEIGENSCHAFTEN UND DER ZEITLICHE VERLAUF DER BODENREAKTIONSKRAFT. Der Verlauf der
Bodenreaktionskraft beim Weitsprung zeichnet sich durch zwei deutlich getrennte Kraftstöße aus (Seyfarth et al.,
1999). Der erste passive Kraftstoß dauert etwa 30 − 40 ms. Ein Vergleich der Modelle mit distalen Massen (Kapitel
II und V) bzw. mit Berücksichtigung von Muskeleigenschaften (Krafterhöhung bei Dehnung usw., Kapitel IV
und V) zeigte, daß dieser Kraftstoß maßgeblich durch die Abbremsung distaler Massen (weiche und harte Gewebe)
während des Fersenkontaktes hervorgerufen wird. Die Beiträge der Muskelkräfte waren lediglich von
untergeordneter Bedeutung. Die Parameter zur Beschreibung der distalen Masse sind das Ergebnis einer
angemessenen Beschreibung des Verlaufes der Bodenreaktionskraft. Hierbei war eine nichtlineare viskoelastische
Ankopplung der distalen Massen an das Skelett notwendig, welche die passiven Muskeleigenschaften,
Eigenschaften des Fersenpolsters sowie die Verformung des Fußes sowie der Gelenke widerspiegelte. Der aktive
Kraftstoß (30 − 90 % des Kontaktzeit) ist gekennzeichnet durch eine erstaunlich konstante Beinsteifigkeit mit
Schwankungen von lediglich 7%. Die konstante Steifigkeit wird erreicht durch eine synchrone Beugung von
Sprunggelenk und Knie. Auf muskulärer Ebene erfordert dies einen allmählichen Kraftanstieg im Muskel-Sehnen-
Komplex während der Beugung und einen Abfall der Kraft während der Streckung des Beines.

2 EINFLUß DER MUSKELEIGENSCHAFTEN AUF DIE ARBEITSWEISE DES BEINES. Der gleichmäßige Anstieg der
Muskelkraft kann zurückgeführt werden auf den Anstieg der Muskelaktivierung, den Anstieg in der Kraft-Längen-
Funktion sowie der resultierenden Belastung der seriell geschalteten Sehnen und Aponeurosen. Der Abfall der
Bodenreaktionskraft bei Streckung des Beines wurde erreicht durch eine verminderte Muskelkraft infolge
zunehmender Verkürzungsgeschwindigkeit (Kraft-Geschwindigkeits-Beziehung) sowie der Muskelverkürzung
(Kraft-Längen-Abhängigkeit). Dabei konnte die Phase der exzentrischen Muskelarbeit durch das sich verkürzende
seriell elastische Element verlängert werden, wodurch die größten Kräfte etwa zur halben Kontaktzeit auftreten
können. Die Sprungleistung ist entscheidend durch das exzentrische Kraftvermögen gekennzeichnet. Das elastische
Verhalten des Systems ist eine Folge der schnellen Belastung des Muskel-Sehnen-Komplexes und ist weitgehend
beschränkt durch Muskeleigenschaften (Kraft-Längen und Kraft-Geschwindigkeits-Funktion). Es erfordert kein
spezielles neuronales Programm. Im Falle des Viersegmentmodells ist das elastische Verhalten eine Folge interner
Eigenschaften und tritt bei sprungweitenoptimierter Muskelaktivierung auf.

3 SPRUNGWEITE UND SPRUNGTECHNIK. Unter Berücksichtigung der internen Systemeigenschaften ist die
quasielastische Arbeitsweise die optimale Strategie für große Sprungweiten. Das elastische Verhalten wurde durch
gleichmäßige Belastung von Knie und Sprunggelenk erreicht (Kapitel V). Um bei gegebener Anlaufgeschwindigkeit
die optimale Sprungweite zu erzielen, muß eine minimale Steifigkeit überschritten werden. Ähnliche Weiten
können erreicht werden durch Ausgleich einer geringeren Steifigkeit durch einen flacheren Anstellwinkel (Kapitel
II). Die beobachteten Strategien (Anstell- und Abflugwinkel; Friedrichs et al., in Vorbereitung.) können jedoch nur
unter Berücksichtigung von Muskeleigenschaften verstanden werden (Kapitel IV und V). Für solch ein System ist
der optimale Anstellwinkel unabhängig von der Anlaufgeschwindigkeit.

4 ABSTIMMUNG UND STABILITÄT EINES DYNAMISCH BELASTETEN DREISEGMENT-BEINES. Das Hinzufügen eines
dritten Beinsegmentes (wie dem Fuß) zu einem Bein bestehend aus Unter- und Oberschenkel verringert die
erforderlichen Drehmomente an den Gelenken sowie die kinetische Energie durch transversale Beinsegment-
Bewegungen. Gleichzeitig wirft es die Probleme der kinematischen Redundanz, potentieller Instabilitäten sowie der
Muskelsteuerung auf. Eine optimale Arbeitsweise des Beines unter dem Aspekt der Sprungleistung (Kapitel V),
einer hohen Beinsteifigkeit und Stabilität erfordert eine gleichmäßige Beugung der beiden Beingelenke, was durch
auf die äußeren Segmentlängen (Fuß- und Oberschenkellänge) angepaßte Drehsteifigkeiten erreicht wird
(Kapitel III). Nichtlineare Drehsteifigkeiten und zweigelenkige Strukturen sind alternative (austauschbare)
Strategien zur Gewährleistung einer sicheren Beinfunktion für einen weiten Bereich von kinematischen
Anfangsbedingungen. Ein kurzer Fuß mit der Möglichkeit des Fersenkontaktes ist eine leistungsfähige Konstruktion
zur Steuerung stark gestreckter Kniepositionen, wenn die Gelenke elastisch arbeiten. Durch eine stärkere Beugung
des Sprunggelenks und einem angepaßten Steifigkeitsdesign kann der Bereich der sicheren Beinflexion erweitert
werden.
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INTRODUCTION

I
In fast human or animal locomotion a surprisingly stereotype force pattern during the stance

phase is present. Forces rise gradually and achieve their peak values at about half the contact

time. The whole time series is characterised by an almost sinusoidal shape. Such a behaviour can

be described using a harmonically swinging system consisting of a mass supported by a simple

linear spring.

This was done several times in the last two decades, first starting with simple one-dimensional

models (Alexander, 1986; Özgüven and Berme, 1988) and later extending them to planar spring-

mass models (Blickhan, 1989; Mc Mahon and Cheng, 1990). These models were applied to

human hopping and running (Farley and González, 1996) and to animal running (Full and Tu,

1991) examining leg stiffnesses at different speeds (Mc Mahon and Cheng, 1990; Farley et al.,

1993) and environmental conditions (McMahon and Greene, 1979; Ferris and Farley, 1997).

Biological limbs are characterised by a high flexibility in terms of the degrees of freedom

(number of joints) and the number of muscles acting across a joint. This results in the motor

equivalence problem formulated by Bernstein (1967). The coordination of kinematically
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redundant manipulators and the problems due to motor redundancy are also well known in

robotics. In biology, a unique activation pattern is found for each particular motor task. But

which constraints give rise to unique activation pattern? Biophysical and anatomical constraints,

but even psychomotor and cultural factors (Hollerbach, 1990) may coin movement

characteristics.

A quasi-elastic operation of a biological limb requires a specific motor program at the muscular

level. From physiological studies it is known that muscles are able to work in an almost elastic

manner as well. In this case, a quasi-elastic operation at the joint level can be found which

corresponds to the total leg stiffness according to the geometrical arrangement of the limb

segments. But even spring-like muscle properties do not guarantee stable configurations of the

multi-segment system (Dornay et al., 1993). The mathematical relations between global leg

stiffness, joint stiffness and muscle stiffness were formulated by Mussa-Ivaldi et al. (1988). It is

possible to calculate the resulting leg stiffness assuming a given actuator compliance.

Unfortunately, this theory does not predict the stiffness of a particular joint or muscle and may

not solve the kinematic redundancy problem.

Limb stability is critically influenced by the geometrical arrangement of the muscles (mono- and

biarticular muscles, position-dependent moment arms). Monoarticular muscles control the force

amplitude whereas the biarticular muscles are well suited to control force direction

(Doorenbosch et al., 1994; Doorenbosch and van Ingen Schenau, 1995). Different muscle

activation patterns of mono- and biarticular muscles can be found while optimising the accuracy

of force control or position control (Smeets, 1994).

The Equilibrium point hypothesis introduced by Feldman (1966) was based on neuro-

physiological findings of spring-like muscle behaviour. It was postulated that equilibrium

positions can be adjusted by shifting the rest length of a muscle pair. Thereby, the muscle's

force-length relationships stabilise the linkage system at some joint angle. Although this theory

was successfully applied to arm movements (Flash, 1987; Shadmer et al., 1993) and to lower

limb movements (walking: Günther, 1997) there is no general theory yet to predict the local

stiffnesses and nominal positions to solve the kinematic redundancy problem (Gielen et al.,

1995).

In this thesis the mechanical and muscle-physiological origins of spring-like leg operation were

addressed. Therefore, a series of forward dynamic models was developed to identify the

importance of different structures on the leg behaviour in long jump. This type of movement was

chosen because a simple optimisation criterion exists. Furthermore, a spring-like leg operation

was observed experimentally for a variety of jumping styles. Finally, long jump is still a
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discipline which was less addressed in forward or inverse dynamic modelling compared to others

(running, vertical jump).

The ground reaction forces during the take-off phase of a long jump are characterised by a high

impact peak immediately after touch-down which takes up to 25% of the total vertical

momentum generated during ground contact. This effect can not be represented by a massless

spring. As masses distributed in the distal leg segments play an important role in the dynamics of

the long jump, the following questions were addressed in chapter II (spring-mass model):

1. How are distal masses represented in lumped parameter model of the long jump?

2. Which techniques result in an optimum jumping distance if the leg operates spring-like?

3. Which role do distal masses play on jumping technique and performance?

A mechanical circuit of at least two masses was necessary to describe the observed pattern of the

ground reaction force in sufficient detail. But still the question remained, how spring-like

behaviour might be produced within the leg.

In a first approach to this question the segmental alignment of the stance leg was examined.

Although a two-segment system (chapter IV) would already be sufficient to allow leg operation,

mostly more segments are present in nature. This led us to the following issues investigated in

chapter III (three-segmental spring-mass model):

1. How can a kinematically redundant three-segment system be controlled?

2. Which advantages compared to a two segment system can be taken?

3. Which concepts are useful to simplify the control of the leg?

The homogeneous loading of the leg joint required an adaptation of the torque control to the

segment length design. The human leg design proved to have an almost optimal range of safe leg

operation. Elastic joint operation is a smart strategy to handle kinematic redundancy and may

result in spring-like leg behaviour.

Unfortunately, there are no structures in the leg which are compliant enough to explain the

spring-like leg operation. Leg forces originate largely form muscles spanning the leg joints. The

muscle fibres are connected to the skeleton by relatively stiff tendons. Therefore, the dynamics

of the muscle-tendon complexes (MTC) was addressed in the following chapters IV and V.

This allowed to answer the following questions:

1. How does muscle design influence jumping performance?

2. Which jumping technique results in optimal jumping performance?

3. Which muscle stimulation results in optimum jumping distance?

4. How is spring-like behaviour is realised by the musculoskeletal system?
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While the first two questions were investigated using a model of a two segmental massless leg

with merely one knee extensor muscle the later questions required a more detailed representation

of the human body. Therefore, a four segment model based on Van Soest and Bobbert (1993)

was used to explore the dynamics of six major leg muscles for optimised jumping performance.

Here, again the contributions to the first passive peak (chapter II) and the mechanisms of joint

torque adjustment (chapter III) were identified and compared to the former findings.

The spring-like operation of the leg revealed to be a result of optimised muscle operation, muscle

properties and leg design. It was found, that synchronised joint action minimised energetic losses

and lead to a maximised leg stiffness. Several (partly parallel) mechanisms could be identified

which supported this favourable and homogeneous manner of leg loading.
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THE SPRING-MASS MODEL

II
In the present study three questions are addressed:
(1) To what extent can the active peak in long jump be described by a spring-mass model?
(2) Which effects are responsible for the first passive peak in the ground reaction force?
(3) How can the major dynamic mechanisms be embedded into a lumped parameter model?

Therefore, a mechanical model is proposed which quantitatively describes the dynamics of the centre of
mass (COM) during the take-off phase of the long jump. The model entails a minimal but necessary
number of components: a linear spring with the ability of lengthening to describe the active peak of the
force time curve and a distal mass coupled with nonlinear visco-elastic elements to describe the passive
peak. The influence of the positions and velocities of the supported body and the jumper’s leg as well as
of systemic parameters such as leg stiffness and mass distribution on the jumping distance were
investigated. Techniques for optimum operation are identified: (1) There is a minimum stiffness for
optimum performance. Further increase of the stiffness does not lead to longer jumps. (2) For any given
stiffness there is always an optimum angle of attack. (3) The same distance can be achieved by different
techniques. (4) The losses due to deceleration of the supporting leg do not result in reduced jumping
distance as this deceleration results in a higher vertical momentum. (5) Thus, increasing the touch-down
velocity of the jumper’s supporting leg increases jumping distance.

.

REPRESENTATION OF DISTAL MASSES
DYNAMICS AND TECHNIQUES OF THE LONG JUMP
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SYMBOLS

α angle of the leg to the x-axis
c, d constants in the nonlinear visco-elastic force

function
ε leg lengthening constant ε = r+ / (αE − α0)
FG ground reaction force (GRF)
g gravitational acceleration
k leg stiffness
kdyn generalised dynamic leg stiffness
! relaxed length of the leg (varies from r0 to rE)
λ positional relationship, λ = r2(t0) / r1(t0)
m total body mass
µ mass ratio µ = m2 / m1

ν exponent of the visco-elastic element
ω natural frequency ω2 = k / m
∆q displacement of swing mass m2 along r
r leg length (distance between the COM and the

ball of the foot)
r+ leg lengthening r+ = rE − r0

∆r leg shortening ∆r(t) = !(α) − r(t)
∆s tangential displacement of swing mass (m2)
v velocity
x horizontal coordinate
y vertical coordinate
∆y displacement in y

INDICES

0 refers to the instant of touch-down
1 refers to the proximal mass m1
2 refers to the distal swing mass m2
E refers to the instant of take-off
MAX refers to the instant of maximal leg shortening

q refers to the displacement of the swing mass m2
along r

r refers to the orientation of the leg
s tangential displacement of the swing mass m2

INTRODUCTION

Running and jumping are two types of fast saltatoric movements, characterised by a series of

alternating aerial and contact phases. The impact occurring during each contact phase serves to

negate the vertical momentum. The flight phase is determined by the initial velocity vector of the

centre of mass at take-off and the gravitational acceleration.

The function of the leg in repetitive ground contacts at a constant energy level like in hopping or

running is comparable to a spring as shown e.g. by Blickhan (1989), Alexander et al. (1986),

McMahon and Cheng (1990) and Farley et al. (1993). Modelling the leg as a spring is suited to

describe the landing if the body mass, the leg stiffness, and the initial conditions are known.

The spring-mass model is suitable to describe conservative systems. During the human long

jump energy is in fact largely conserved (Friedrichs et al., in prep.). Nevertheless, due to the high

running speed, the first so called passive impact immediately after touch-down strongly

influences the system dynamics. In the long jump this contribution accounts to about 25 percent

of the total momentum and can not be neglected.
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Alexander (1990) proposed a two-segment model with a Hill-type extensor to predict optimum

take-off techniques of the jumpers stance leg in high and long jumping. However, to cope with

observed jumping distances unrealistic muscle properties had to be chosen. Even a detailed

musculo-skeletal system with 17 segments including all important muscles (Hatze, 1981a) does

not describe the complete ground reaction force pattern in sufficient detail.

The understanding of body dynamics during landing or falling was significantly improved by the

concept of wobbling masses introduced by Gruber (Gruber, 1997; Gruber et. al. 1998). She

showed that the different responses of soft tissues and hard skeleton to impacts are essential for

predicting dynamical loads. In long jumping high impacts occur with forces up to ten times body

weight.

In this study, the approach to long jumping is to describe the mechanics of the centre of mass and

the mechanical function of the supporting leg using a 2D lumped parameter model with a

minimum number of mechanical components. The action of the leg is described by a spring, the

effect of soft tissues by the introduction of a visco-elastically coupled mass. Thereby, the

influence of either initial conditions such as running speed and angle of attack (measured by

video analysis) or model properties (like leg stiffness) on the jumping performance are

investigated. The quality of the mechanical approach is judged by comparing the experimental

force records with the results of the simulation.

METHODS

Experiments

In training competitions in 1995 and 1996, 30 long jumps (distance: [5.49 ± 0.86 SD] m) of 18

male and female sport students (m = [75.1 ± 5.13 SD] kg, body height: [1.81 ± 0.06 SD] m) were

filmed for later analysis with a VHS camera (50 half-frames per second). The vertical and

horizontal ground reaction forces were recorded with a 3D force plate (IAT, Leipzig). Kinematic

input parameters for the dynamic models were obtained by digitising the video sequences

(APAS, Ariel).
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c.g. trajectory

c.g.
�����
�����

�����

10 m

camera

forceplate

jumping distance

landing in
the c.g.-path

Fig. 1 Experimental set-up for the analysis of the last ground contact in long jumping. The body
configuration defined by the positions of the joint markers was used to calculate the c.g. trajectory
during the last ground contact and the flight phase. The jumping distance is estimated as the
intersection point of the elongated ballistic curve (dashed line) and the ground.

The concept of leg stiffness

The leg length r is defined as the distance of the COM to the ball of the foot as the rotational

centre of the system during the stance phase. The initial leg length r0 and the final leg length

rE are generally not identical. Therefore, the leg lengthening parameter r+ was introduced as

the difference between both leg lengths:

r+ = rE − r0. (1)

The actual length of the relaxed leg !(α) during the contact phase is then defined in a linear

approach by (Blickhan et al. 1995; Friedrichs et al., in prep.):

 !(α) = r0 + r+ ⋅ (α − α0) / (αE − α0)

 = r0 + ε ⋅ (α − α0) (2)

with ε constant, leg angle α at touch-down α0, at take-off αE,  initial leg length r0, change in r

by r+ during contact. Leg shortening ∆r(t) = !(α(t)) − r(t) is zero at the instances of touch-

down and take-off.

The force exerted by the leg is related by the stiffness to the shortening of the leg ∆r. The leg

stiffness is defined by the ratio of the ground reaction force to the leg shortening ∆r at

maximum knee flexion:

k = FG,MAX / ∆rMAX. (3)
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v0 vE

r0

∆r

rE = r0 + r+αE

r !(α)

Fig. 2 Different leg lengths at touch-down and take-off can be described by the leg lengthening r+.
The actual shortening of the leg is ∆r, !(α) denotes the length of the relaxed leg which increases
with α.

The instantaneous ratio in Eq. 3 was generalised as the dynamic leg stiffness:

kdyn (t) = FG(t) / ∆r(t). (4)

This definition is equal to Eq. 3 for the instant of maximum shortening of the leg and

corresponds to the understanding in the literature (Farley and González, 1996).

Numerical methods

The mechanical models were built using standard software packages for dynamic simulations

(ALASKA, Institut für Mechatronik; ADAMS, Mechanical Dynamics Inc.). Using given

initial conditions, the parameter set was estimated which fulfils the least square criterion

between measured and calculated ground reaction forces.

For further parameter studies the models were translated into the equations of motion using

the Lagrangian formalism, and solved by a numerical integration procedure using a 4th order

Runge-Kutta algorithm (IDL, Creaso). The influence of initial and model specific parameters
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on the jumping result were investigated by varying parameter values. The model parameters

were first adjusted visually and then calculated using a genetic optimisation algorithm.

MODEL DESCRIPTION AND VERIFICATION

A simple spring-mass system already predicts optimum strategies for the maximum jumping

distance. For quantitative descriptions leg lengthening and mass distributions must be taken

into account.

The leg as a linear spring

In a first approach to long jumping we a model will be considered in which the leg operates as

a spring. This gives basic insights into the influence of geometric parameters and the role of

leg stiffness.

It is typical that the ground reaction force during the take-off phase shows a passive and an

active peak (Fig. 3). The derived dynamic leg stiffness kdyn(t) has a first peak during the

passive phase followed by a relatively constant stiffness during the active phase up to the last

30 ms before the take-off.

Fig. 3 Experimental result for the ground reaction force Fg and the instantaneous leg stiffness
kdyn as a function of the time.
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Neglecting the passive peak, a simple spring-mass system (Fig. 4) can be used to describe the

functionality of the contacting leg during flexion under the assumption of energy

conservation. The equations of motion are (Blickhan, 1989):
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where ω is the natural frequency of the system with ω2 = k / m. The relaxed spring length !

corresponds to the initial leg length r0 which is in this first approach equal to final leg

length rE.

Fig. 4 (A) Schematic drawing showing the planar spring-mass model. The leg spring is defined by
the stiffness k. The angle α describes the orientation of the leg with respect to the ground. (B) The
model reflects a part of the measured ground reaction forces. The passive peak is missing and the
active peak is either to short or to high.

Since the vector of the landing velocity in long jumping has usually only a small vertical

component (|v0,Y| < 1 m/s), it is sufficient to consider the horizontal approach speed v0 = v0,X.

For a given speed the influence of the angle of attack α0 and the leg stiffness k on the jumping

distance can be studied (Fig. 5A).

There is an optimum in jumping distance for a proper angle of attack and the appropriate leg

stiffness. At a lower angle of attack the loss in horizontal velocity will prevail the influence of

a higher vertical velocity and the jumping distance decreases. A steeper angle leads to

overrunning with a smaller vertical impact. This is a general feature observed in all models.
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Fig. 5 Influence of angle of attack α0 and leg stiffness k on jumping distance xJUMP (A, D, G),
maximum leg shortening ∆rMAX (B, E, H), and maximum active force FMAX,r (C, F, I) predicted
using the simple spring-mass model (A, B, C), the spring-mass model with leg lengthening (D, E,
F), and the two-mass model for the long jump (G, H, I). The remaining parameters have been
chosen according to the mean values for the analysed jumps (m = 75 kg, r0 = 1.19 m, v0 = 8.2 m/s,
see tab. 1). The contour lines mark values of constant jumping distance xJUMP in meters (A, D, G),
maximum leg shortening ∆rMAX in meters (B, E, H), and maximum active forces FMAX,r in Newton
(C, F, I). The general dependencies are similar for the three models. The jumpers do not reach the
optimum because their inability to generate high forces at large leg deflections. The spring-mass
model with leg lengthening predicts longer jumps due to the absence of the passive peak (fig. 6).
++++ the predicted optimum for jumping distance,
×××× jumps according to their angle of attack and calculated leg stiffness with xJUMP < 5 m, and
□ jumps with xJUMP > 6 m.
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The influence of leg stiffness is comparable to that of the angle of attack: A stiffer leg leads to

faster repulsion and thus at a lower angle of attack to a loss in horizontal velocity and jumping

distance. In contrast, a softer leg can not produce the necessary vertical impact.

A high vertical impact requires a sufficiently high product of the mean vertical ground

reaction force and contact time. This is only possible if the leg stiffness achieves a certain

minimum value. With a higher stiffness and a corresponding optimal angle of attack (that is

steeper angles and shorter contact times) the jumping distance remains nearly constant and

even decreases slightly. The better the jump the closer the values come to the range where

almost maximum jumping distance can be achieved (Fig. 5A). These features have been

observed in all models.

Considering leg lengthening

The simple spring-mass model predicts a significantly shorter active peak than has been

measured (Fig. 4). Extending the model by considering lengthening of the relaxed length (i.e.,

leg length when leg force is zero) during ground contact improves the predictions (Eq. 2,

Blickhan et al. 1995). Leg lengthening results on average in a more compliant spring and thus

in longer contact times. Note that in order to obtain a similar change in momentum leg

lengthening calculated from the active peak force pattern must be less than the

cinematographic estimates as long as the passive peak and the corresponding momentum is

excluded in the model (Fig. 6B).

Fig. 6 (A) Ground reaction forces as predicted by the spring-mass model with leg lengthening.
(B) Force-leg length relationship of the jumping leg. The measured leg lengthening r+ can not be
reproduced with a spring-mass model with lacking passive peak when the active peak forces
should be correct.



20

Introduction of the leg lengthening shifts the range of close to optimum jumps to larger angles

of attack (Fig. 5D). The optimum itself becomes more pronounced and shifts to low stiffness.

In general very long jumps require higher active forces (Fig. 5F) and moderate leg shortenings

(Fig. 5E). Even elite jumpers are not able to produce the forces and leg compressions to

achieve the predicted range of close to optimum operation.

Mechanical model for the passive peak

The passive peak in jumping occurs directly after touch-down of the foot. The measured force

pattern can be described accurately when a representative mass is coupled with a nonlinear

viscosity to the rigid frame of the spring leg. This mass represents the rigid skeleton and its

deceleration during touch-down as well as the relative movement of the soft tissues (muscle

etc.) with respect to the rigid frame. The following dependency was used to describe the

coupling between soft and hard tissues in one direction (here ∆y):

F = − (c ⋅ sgn (∆y) + d ⋅ vy) ⋅ |∆y| ν (6)

where c and d  are constants, the exponent ν is about 2.5 − 4.5, and sgn describes the signum

function:







<∆−
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>∆

=∆
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0yfor0
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)y(sgn (7)

The selected visco-elastic coupling fulfils the following requirements:

1. due to the nonlinearity the ground reaction force increases gradually within the first

10 ms,

2. the first peak is symmetric with time, and

3. the active and passive peak are clearly separated.

Assembling with the spring-mass system

A one dimensional description of the vertical component of the ground reaction force during

the long jump can now be obtained by combining the linear spring-mass model with the

nonlinear visco-elastic system described above. The two force peaks are described by two

systems in parallel with different dynamics.
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A stack of two masses representing the body and the foot respectively (Alexander et al., 1986;

Özgüven and Berme, 1988) does not result in realistic dependencies. Nonlinear coupling is

necessary. Both masses are effective masses taking the vertical projection and the bending of

the leg into account.  Depending on the orientation of the leg segments the masses of the leg

and the body contribute. The mass of the foot is not sufficient to explain the transferred

momentum during the passive impact.

The leg mass can be separated into the masses of the rigid bones, the foot, and of the soft

tissues. If the coupling to the ground and the skeleton differs strongly, several damped force

oscillations would be present during touch-down. This is not the case during the long jump.

The experimental data can be described accurately with one distal mass and only one type of

coupling. In this final model m2 entails the foot, the skeleton and the wobbling masses

distributed all over the body especially in the stance leg. Descriptions with realistic masses are

only possible within a planar model.

The planar model for the long jump

By taking planar movements of two distributed masses into account the model is able to

describe the relationship between the horizontal and vertical force. Strategies of impact

generation or avoidance can now be investigated. By actively hitting the supporting leg onto

the board jumpers increase the passive peak and thereby vertical momentum and jumping

distance.

In a simple planar spring-mass model the ground reaction force points always in the direction

of the spring. During the actual long jump, however, significant deviations in the force

direction can be observed within the first 40 ms. These can be attributed to the movement of

the distal mass.

In the model the body mass (m1) is supposed to glide on a massless rod. The orientation of

this rod is defined by the position of the ball of the foot and the centre of the body mass.

Similar to the simple spring-mass model, the body is coupled to the ground via a linear spring,

representing the spring-like operation of the human leg (active peak). At a certain height, a

second mass is fixed to the rod by nonlinear visco-elastic elements (Fig. 7).
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Fig. 7 The planar model for the long jump (schematic drawing with geometric parameters).
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with the nonlinear visco-elastic force functions:
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The properties of the element's coupling in radial and tangential direction are assumed to be

the same (cq = cs = c, dq = ds = d, νq = νs = ν). In addition to the parameters describing the

mechanical properties of the simple spring-mass system (k, ε), the mass ratio µ = m2 / m1, the

positional ratio λ = r2(t0) / r1(t0), and the parameters describing the nonlinear visco-elastic

elements must be identified (Eq. 9a,b).

The simulations are calculated for given total mass, its touch-down velocity, given initial leg

length and angle of attack. All other parameters including the initial conditions for the distal
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mass are estimated fitting the time course of the horizontal and vertical component of the

ground reaction force (Fig. 8A, 8D and Tab. 1). Some of the parameters can be estimated

independently using the experimental data: ε can be obtained from cinematographic data, k

can be calculated by dividing the maximal force FMAX during the active peak by the maximum

leg shortening ∆rMAX.

Fig. 8 Comparison between experimental and model results: (A) Ground reaction forces (GRF) in
vertical Fy and horizontal Fx components as time series. (B) Tracings of the GRF in the
Fx-Fy plane. During heel strike (passive peak) the experimental GRF directs steeper than predicted
by the model. (C) The positions of body-mass and swing-mass in the model defines the resulting
c.g. (circles). Measured c.g.: crosses. (D) Force-leg length relationship of the jumping leg as
simulated by the two-mass model and experimental result.

Remaining systematic differences (Fig. 8B) occur, because the point of centre of pressure

shifts during the ground contact which is not realised in the presented model. The results are

fairly stable with respect to the position and size of the second mass. The effective distal mass
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can be considered to be fixed at about 25 percent of the leg length from the ground (Fig. 8C)

and amounts to approximately 27 percent of the body mass.

The parameters specifying the coupling to the skeleton are less sensitive as long as the basic

properties described above are fulfilled. Interestingly, the predictions for the initial velocity of

the distal mass are similar to the values obtained for the jumpers leg from video-graphic data

(Tab. 1). The deviation can be explained by the fact that the average velocity of the leg is

higher and less downward orientated than that of the foot.

Measured values for the leg stiffness come fairly close to the predicted optimum (Fig. 5G).

The difference in general dependencies of the active force (Fig. 5I) is due to an increasing

dominance of the passive peak for larger angles of attack at low leg stiffness.

symbol parameter model value
(mean ± SD)

experimental result
(mean ± SD)

units

k leg stiffness 14.6 ± 3.72 16.2 ± 3.80 kN/m
ε leg lengthening constant 3.36 ±1.44 3.07 ± 1.28 10-3 m/deg
λ positional relation 0.252 ± 0.049 no data available 1
µ mass relation 0.269 ± 0.064 no data available 1

log d2 non-linear spring-damper constant 7.45 ± 0.55 no data available 1
v2

(0) initial velocity of swing mass 5.31 ± 0.59 foot: 3.96 ± 1.40 m/s
αv2

(0) initial direction of v2 (downwards) 32.7 ± 4.4 foot: 30.05 ± 11.45 deg

Tab. 1 System properties and initial conditions. Means and standard deviations (SD) are given for
the experimental data of 30 trials and the corresponding numerical simulation.

DISCUSSION

The presented mechanical model describes with a minimal set of parameters the dynamics of

the long jump. As it is well known (e.g. Hay, 1993), the most influential factor for jumping

distance is the running speed. The model predicts also that a certain angle of attack of the leg

optimises jumping performance (Alexander, 1990). This optimum requires a relatively low

minimal stiffness of the leg.

The controlled musculo-skeleton unit with its connective tissues behaves similarly to a spring

with a certain stiffness. This stiffness and the leg shortening (Tab. 1) are not very different

from that necessary for running (leg stiffness about 12...15 kN/m, leg shortening in running

about 14 cm (Farley and Gonzaléz, 1996), in jumping: ca. 17 cm). To which extent this

stiffness can be contributed to intrinsic properties of the participating tissues will be discussed

in chapters IV and V.
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For sufficient high stiffness values many strategies with different angles of attack are possible

to achieve distances which come close (up to 95 percent) to the theoretical maximum. Indeed,

several techniques can result in the same jumping distance (Fig. 5). The proper strategy for an

athlete depends on his ability to generate stiffness. Differences in stiffness can be

compensated by changing the angle of attack of the leg.  The kinetic energy of the runner

dominates the energetics of the jump (Hay, 1993). To conserve this energy a quasi-elastic

strategy is essential for a good performance. The leg largely redirects the movement.

Leg lengthening at take-off is partly an active process. The runner places his leg with the knee

slightly bent and takes off with a completely straight leg. This process - facilitated by the

special geometry of the human leg - increases the distance over which acceleration takes

place. It also compensates partly for the losses which necessarily occur during landing

(passive peak).

It is impossible to avoid the impact during touch-down. Jumpers take, however, advantage of

the passive peak generated during the impact by actively hitting the jumping leg onto the

board. By this measure the passive peak, especially in the vertical component of the ground

reaction force, is increased. Despite the fact that the generation of this peak clearly absorbs

energy it enhances vertical momentum which is important to achieve long jumping distances.

Thus, the new model describes quantitatively the dynamics and mechanisms of the most

essential parts of the long jump and helps to understand jumping techniques. For individual

jumpers detailed diagnostics are possible about techniques or conditional shortcomings.

General significance

Many models have been proposed to describe human jumping. As jumping in a less extreme

form is part of standard locomotion, modelling of jumping is of general significance for

human locomotion. Most studies so far have either been descriptive (Hay, 1993; Lees 1994)

or alternatively were based on very detailed modelling.

But even extremely detailed models using all major muscles (Hatze, 1981a; Bobbert and Van

Soest, 1994) fall short in describing the general dynamics of the process. The major reason is

that the landing impact (contributing 25% of the total change in momentum) is not described

adequately. The activation dynamics of the musculature precludes active generation of this

peak, i.e. even if the musculature was activated and deactivated within 40 ms the muscle

could not follow.

Force enhancement due to stretching of the activated muscle (Alexander, 1990) may

contribute to  the passive peak. The quantitative contribution of muscle forces is treated in



26

chapters IV and V. A major cause of the impact is the deceleration of distal masses. These

masses consist of the skeleton and of soft tissues and are visco-elastically coupled to the

ground or to each other.

The comparison between results from the simulations and the experiments reveals that a large

fraction of these masses can be identified as muscle masses.  The type of coupling as

measured for the heel (Gruber, 1987) proves to be necessary for adequate description of the

time course of the event. The right damping is necessary to avoid injuries (stiff coupling) or

elastic ringing (compliant coupling) making control at least difficult.

The spring-like behaviour of the leg could be replaced by a suitably activated musculo-

skeletal system. Nevertheless, it is surprising to which extent the leg performs like a spring. It

might be a strategy to simplify control (Bobbert et al., 1996). The shortening of the leg

amounts to about 15 percent (∆rMAX/r0). A corresponding rotation of the knee results in

lengthening of the quadriceps-patella tendon complex by about 35 mm. For the high loads

observed the patellar tendon would be stretched by ca. 5 mm. The long aponeuroses of the

musculus quadriceps may stretch elastically by about 20 mm. In this case the elastic

properties of the passive tissues would largely determine the quasi-elastic operation of the leg

and thus its stiffness. At higher knee flexion the conservative operation of the knee can

probably not be kept up any longer due to the increasing demand of muscle force and the

properties of the connecting tissues. Therefore the limited properties of the human leg do not

allow to reach the theoretically possible maximum values. A higher take-off angle will be

accompanied by a smaller take-off velocity and thus a shorter jumping distance (chapter IV).
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THREE-SEGMENTAL SPRING-MASS MODEL

III
The spring-like behaviour of the leg is now implemented in a multiple segment chain. A simple three-
segment model is proposed to investigate the segmental alignment of the leg during repulsive tasks
like human running and jumping. The effective operation of the knee and ankle muscles is described
in terms of rotational springs.
Following issues were addressed in this study:
(1) How can the joint torques be controlled to result in a spring-like leg operation?
(2) How can rotational stiffnesses be adapted to leg segment geometry?
(3) To what extend can unequal segment lengths be of advantage?
It was found that:
(1) the three-segment leg tends to become unstable at a certain amount of bending,
(2) homogeneous bending requires to adapt rotational stiffnesses to the outer segment lengths,
(3) nonlinear joint torque–displacement behaviour extends the range of stable leg bending and may

result in an almost constant leg stiffness,
(4) biarticular structures (like human m. gastrocnemius) support homogeneous bending in both joints

if nominal angles are properly chosen,
(5) unequal segment lengths enable homogeneous bending when asymmetric nominal angles meet the

asymmetry in leg geometry, and
(6) a short foot is useful to enable control of almost stretched knee positions.
Furthermore, general leg design strategies for animals and robots are discussed with respect to the
range of safe leg operation.

TORQUE EQUILIBRIUM ⋅ STIFFNESS EQUILIBRIUM
SYMMETRICAL LOADING ⋅ ASYMMETRICAL LOADING
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SYMBOLS

α ratio RC / Rλ, stiffness equilibrium requires
α = 1

α∆ϕ angle of leg shortening in (ϕ12, ϕ23)-space,
α∆ϕ = arctan (R∆ϕ

−1)
cij rotational stiffness constant
COM centre of mass

j,id
#

vector pointing from centre of mass of segment i
to joint with segment j

∆λ translational working range from nominal to
bifurcation length ∆λ = λ0 − λB

∆ϕ, ∆ϕij angular working range from nominal to
bifurcation angle ∆ϕij = ϕ0

ij − ϕB
ij

∆ϕB, ∆λB loss in working range at λ2 = λ2,Crit(ν)
∆ϕCrit angular working range at λ2 = λ2,Crit(ν)
∆λCrit translational working range at λ2 = λ2,Crit(ν)

j,iF
#

intersegmental force at joint between segments i
and j acting on segment j

legF
#

leg force vector (ground reaction force),
components: Fleg,x, Fleg,y

g# vector of gravitational acceleration
γ angle between leg axis r

#  and middle segment 2!
#

h1, h3 distance of ankle/knee joint to leg axis,
)r,sin(h iii
#

!
#

!=
!1, !2, !3 segment lengths (foot, shank, thigh)

321 ,, !
#

!
#

!
#

vectors of the leg segments

!MAX maximum leg length !MAX = !1 + !2 + !3

λ1, λ2, λ3 relative segment length λi = !i / (!1+!2+!3)
λ0 nominal leg length corresponding to (ϕ0

12, ϕ0
23)

λB bifurcation leg length corresponding to
(ϕB

12, ϕB
23)

λ2,Crit for λ2 > λ2,Crit(ν) a type II-bifurcation
may appear

Λ2 substitution Λ2 = (1−λ2) / λ2
m body mass

j,iij M,M
#

torque acting on segment j at joint
between segments i and j, as vector

iω
# vector of rotational velocity of segment i
ν exponent of the torque characteristic
ϕ1, ϕ2, ϕ3 segment orientation with respect to the

ground
ϕij inner joint angle between segments i and

j (Fig. 1)
ϕ0, ϕ0

ij nominal joint angles
ϕ0,Crit critical nominal joint angle (symmetrical

loading)
ϕ0,Extr nominal angle corresponding to ϕB,Extr
ϕB, ϕB

ij joint angles of the bifurcation
ϕB,Extr extremes of ϕ0(ϕB) in ϕB fulfilling

dϕ0 / dϕB = 0
ϕij,Crit critical joint angle due to h = 0 lines
ϕleg leg orientation with respect to the ground
Q Q(ϕ12, ϕ23)-function,

Q = 0 represents torque equilibrium
r leg length
r
# leg vector: 321 !

#
!
#

!
## ++=r

RC stiffness ratio RC = c12 / c23

R∆ϕ ratio of joint flexions R∆ϕ = ∆ϕ12 / ∆ϕ23

Rλ outer segment length ratio
Rλ = !1 / !3 = λ1 / λ3

Θi, Θi moment of inertia of segment i, as tensor
x, y, z Cartesian coordinates

INTRODUCTION

Although some movement studies using the leg spring concept (Farley et al., 1996; Seyfarth

et al., 1999) can be found in the literature only little is known about the mechanisms and

benefits of such a manner of leg operation. The concept of spring-like operation of the total

leg can be extended to spring-like operation of joints for exercises as hopping, running, and

jumping (Farley and Morgenroth, 1999; Stefanyshyn and Nigg, 1998; Günther et al., in prep.).

Depending on the execution characteristics, exhaustion or external constraints changes in joint

kinetics and kinematics are found experimentally (e.g. Kovács et al., 1999; Farley et al., 1998;

Williams et al., 1991). Thereby elastic operation of joints may disappear for changed
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movement criteria, e.g. concerning foot placement (Kovács et al., 1999) or hopping height

(Farley and Morgenroth, 1999). An elastic operation of a joint was found to require a

significant distance to the acting ground reaction force (Farley et al., 1998). If more than one

joint fulfils this condition, the distribution of joint loading has to be realised. With respect of

multi-segment legs this evokes the kinematic redundancy problem, i.e. the same leg length

can be realised by different joint configurations. This problem was first addressed in

Bernstein's motor equivalence problem (Bernstein, 1967). Unfortunately, there is no generally

accepted theory yet which could explain the observed behaviour in biological limbs (review

in: Gielen et al., 1995).

The approaches found in the literature postulate different optimisation criteria which result in

corresponding movement patterns taking physiological, energetic or metabolic aspects into

account. Nevertheless, these constraints do not explain the unique motor pattern used by

biological systems for an intended movement. However, it is well accepted that biological

actuators are adapted to their mechanical environment and to different task-depending

requirements (Van Leeuwen, 1992). By their intrinsic properties muscles may stabilise joint

rotations to a certain extent (Wagner and Blickhan, 1999).

A key to solve the kinematic redundancy problem is the assumption of spring-like muscle

behaviour (Winters, 1995). However, the quasi-elastic muscle operation is not sufficient to

guarantee stable joint configurations (Dornay et al., 1993). To investigate the interplay

between elastically operating actuators, leg architecture and motor program a mechanical

model is required. A simple model recently introduced by Farley et al. (1998) represented

torque actuators as linear rotational springs at ankle, knee and hip joint within a four-segment

model. The observed leg force tracings, however, require nonlinear torque characteristics

according to experimental observations.

The aim of this study is to explore the requirements of elastically operating torque actuators

of a kinematically redundant segmented leg. Thereby the influence of the segment length

design and different kinematic conditions are taken into account. At least three leg segments

are necessary to address kinematic redundancy. The leg design will be judged by investigating

the possible kinematic responses to different loading situations. The stability and

predictability of the leg operation will be quantified by calculating the configurations of

inherent leg instability. This allows to derive criteria for leg length design, motor control

(torque adjustment) and kinematic programs. Thereby the effects of leg segmental masses and

inertias are neglected, as they are of minor importance in fast types of locomotion (Günther et

al., in prep.) if spring-like leg behaviour is present (running, jumping).
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METHODS

The three segment model

The planar model (Fig. 1) consists of the following parts: (1) a point mass m representing the

total body mass and (2) three massless leg segments (foot, shank and thigh; lengths !1, !2, !3),

linked by frictionless rotational joints. The point mass is attached at the top of the thigh (hip).

As there is only one point mass the equations of motion are:

gmFrm leg
##

""# += , (1)

where r
#  is the position of the point mass, legF

#
 is the force due to the operation of the leg

segments and g#  is the gravitational acceleration vector. As all segments are massless the force

legF
#

 acting on the point mass is equal to the external ground reaction force.

Torque equilibrium

To integrate the equations of motion (Eq. 1) the instantaneous leg force legF
#

 has to be calculated.

The torques at the hinge joints (ball M01, ankle M12, and knee M23) and the orientation of the leg

segments ),,( 321 !
#

!
#

!
#

must fulfill the following static torque equilibrium (all Mij direct in z; for

details see Appendices 1-3):

( )
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( ) 23zleg3

2312zleg2

1201zleg1
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(2a-c)

where r321
#

!
#

!
#

!
#

=++  . (2d)

These are five algebraic equations to estimate the following five unknowns: the leg force legF
#

(two components) and the segment angles ϕ1, ϕ2, ϕ3. Hereby constant segment lengths ii !!
#
= , a

given leg vector r#  and given torques Mij(ϕ1, ϕ2, ϕ3; t) were assumed.
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Fig. 1 Three-segment model with one point mass. Torques are applied at ball, ankle, and knee joint
(M01, M12, M23). Leg configuration is represented by the inner joint angles (ankle angle:
ϕ12 = ϕ2 + π − ϕ1, knee angle: ϕ23 = ϕ2 + π − ϕ3). The angle γ is defined as the difference between
middle segment and leg orientation: γ = ϕ2 − ϕleg (in this sketch γ is negative).

The segment angles ϕ1, ϕ2, ϕ3 may be substituted by the leg angle ϕleg and by two variables

representing the internal leg configuration (e.g. ϕ12, ϕ23 or h1, h3; Fig. 1). As the leg length rr
#

=

merely depends on the internal leg configuration we separate )(e),(rr legr2312 ϕ⋅ϕϕ=
##

 where re$

represents the unit vector uniquely determined by the leg orientation )r(leg
#

ϕ  and

)cos(2cos2cos2),(r 23123123321221
2
3

2
2

2
12312 ϕ−ϕ+ϕ−ϕ−++=ϕϕ !!!!!!!!! . (3)
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ϕ3
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After replacing Eq. 2d by Eq. 3 now four equations exist for following unknowns: two

components of the leg force legF
#

and two variables representing the internal leg configuration.

The internal configuration is a consequence of the chosen torque characteristics at the joints and

must fulfill Eq. 3. For torque characteristics only depending on the internal configuration

Mij(ϕ12,ϕ23) we can identify all configurations ϕ12,ϕ23 fulfilling the torque equilibrium (Eq. 2a-c)

denoted by Q(ϕ12,ϕ23) = 0. In this paper these solutions of Q(ϕ12,ϕ23) = 0 will be derived for a

simplified situation. After estimating the joint angles using Q(ϕ12,ϕ23) = 0 and Eq. 3 the leg

forces are simply given by two linearly independent equations of Eq. 2a-c.

Neglect of the external torque M01

To find a first solution of the torque equilibrium the torque at the ball of the foot is neglected:

M01 = 0. This results in leg forces legF
#

 always parallel to r#  as we can summarise Eq. 2a-c to

01zleg MFr =×
##

. For joint torques M12, M23 only depending on the internal configuration

(ϕ12, ϕ23; Fig. 1) the amount of the leg force does also not depend on the leg orientation ϕleg.

As Eq. 2b becomes the negative sum of Eq. 2a and 2c only two remaining torque equations must

be fulfilled:

23leg3

12leg1

MFh

MFh

=⋅

=⋅−
, (4a,b)

or eliminating Fleg: M12 h3 + M23 h1 = 0, (5)

where h1(ϕ12,ϕ23) and h3(ϕ12,ϕ23) are the distances of the joints to the line of action of the leg

force ( )r,sin(h iii
#

!
#

!=  ; in Fig. 1: h1 < 0 and h3 < 0). Eq. 5 determines the ratio of ankle to knee

torque M12 / M23 to be equal to −h1 / h3 as long as the foot contacts the ground at the ball with no

external torque (M01 = 0; no effects of heel or toe contact). In terms of the inner joint angles the

simplified torque equilibrium (Eq. 5) results in the requested Q function:

( ) 0sin
M

sin
MM

sin
M

),(Q 12
3

23
2312

2

2312
23

1

12
2312 =ϕ+ϕ−ϕ

−
+ϕ=ϕϕ

!!!
(6)
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The internal leg configuration characterised by Eqs. 3 and 6 requires to know the torques (see

below). The amount of leg force Fleg remains to be estimated using either Eq. 2a-c or Eq. 4a,b

resulting in:

)(sin2))2cos((cossincos2))2cos((cos

sin
M

)sin(
MM

sin
M

),(r

),(F

2312
2

2

31
2312123231222312231

12
3

23
2312

2

2312
23

1

12
2312

2312leg

ϕ−ϕ−ϕ−ϕ−ϕ+ϕϕ−ϕ−ϕ−ϕ









ϕ−ϕ−ϕ

+
+ϕ⋅ϕϕ

=ϕϕ

!

!!
!!!

!!!

(7)

where r(ϕ12,ϕ23) denotes the instantaneous leg length (Eq. 3).

Symmetrical loading: stiffness equilibrium

To investigate the influence of knee and ankle rotational stiffness, linear (ν = 1) or, more

generally, nonlinear (ν > 0, ν ≠ 1) rotational springs are introduced:

νϕ−ϕ= )(cM 12
0
121212 , (8a)

νϕ−ϕ−= )(cM 23
0
232323 , (8b)

where 0
12ϕ , 0

23ϕ  are the nominal angles of the rotational springs, ϕ12, ϕ23 are the joint angles (with

ϕij < ϕ0
ij), c12, c23 are the rotational stiffnesses and ν is the exponent of nonlinearity.

Such a joint torque characteristic is present in humans and several mammals during fast

locomotion. The nonlinearity may result from tendon properties and muscle-tendon dynamics

(chapter IV).

For the particular case of symmetrical loading with 0
12ϕ = 0

23ϕ  and ϕ12 = ϕ23 the torque

equilibrium (Eq. 5) results in

)sin(
)(c

)sin(
)(c

233

23
0
2323

121

12
0
1212

γ−ϕ
ϕ−ϕ=

γ−ϕ
ϕ−ϕ νν

!!
(9)

which requires:

3

23

1

12 cc
!!

= , (10)
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where γ(ϕ12,ϕ23) is the intersectional angle between 
#
!2 and r#  (see Fig. 1). Thus, if the ratio of

knee to ankle stiffness is equal to the ratio of the thigh to foot segment length a symmetrical

loading of the system is a solution of the torque equilibrium (Eqs. 5, 6). The stiffness equilibrium

(Eq. 10) does not depend on !2.

Introduction of normalised segment lengths and the stiffness ratio

As there is no influence of the total leg length, !MAX = !1 + !2 + !3, neither on the torque

equilibrium (Eqs. 5, 6) nor on the stiffness equilibrium (Eq. 10), we can substitute the actual

segment lengths by a normalised length λ i = !i / !MAX (Fig. 5). Furthermore, to fulfill a

symmetrical shortening, only the ratio of the rotational stiffnesses RC = c12 / c23 is crucial.

The stiffness equilibrium (Eq. 10) requires the ratio RC to be equal to the length ratio Rλ = λ1 / λ3,

or:

α = RC / Rλ = 1. (11)

Numerical investigation of the model

Two different approaches were applied to investigate the three segment model: (1) forward

dynamic modelling of the equations of motion (Eq. 1) and (2) mapping the solutions of the torque

equilibrium (Eqs. 5, 6) in terms of the possible leg configurations (ϕ12, ϕ23) with respect to (a) the

nominal angle setup (ϕ0
12, ϕ0

23 ), (b) the segment length design (λ2, Rλ = λ1 / λ3), (c) the stiffness

ratio RC, and (d) the torque design (exponent ν). To get an analytical understanding here the

second approach was chosen.

Additionally, the influence of nonconservative structures (e.g. heel strike, represented by

M01 ),( 11 ϕϕ " ), segment inertias and continuous changes of the nominal angles on the joint

kinematics may be considered.

RESULTS

The solutions of the torque equilibrium (Eq. 2) represent possible joint trajectories during loading

of the leg. These solutions allow us to identify critical joint configurations and limitations in the

accessibility of the configuration space. The general features of the model (nominal angle setup,

segment length design, stiffness ratio, torque characteristic) will be discussed in terms of the
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torque equilibrium for monoarticular torque generators neglecting external torques (i.e. at the ball

M01 = 0 in Eq. 2 which results in Eqs. 5, 6).

In order to enhance transparency we start with identical segment lengths (!1 = !2 = !3, i.e. all

λi = 1/3), a stiffness ratio RC = 1 fulfilling the stiffness equilibrium (Eq. 10) and linear torque

characteristics (ν = 1). For identical nominal angles 0
12ϕ = 0

23ϕ  this results in a symmetrical

solution (see methods). After exploring this symmetrical segment length design by changing the

nominal angles (part 1), different segment length designs, stiffness ratios and torque

characteristics will be introduced to explain their influences on the leg operation (part 2).

In parts 3 and 4 the segment length design is investigated more profoundly with respect to the

location of the h = 0 lines (part 3) and the location of bifurcations in symmetric (part 4.1) and

asymmetric loading (part 4.2). The appendix 4 supports the reader with all equations necessary to

calculate the location of bifurcations either analytically or numerically.

1 Equal segment length design (1:1:1) and different nominal angle configurations

In Fig. 2A the simple symmetrical condition λ1 = λ2 = λ3 = 1/3 and RC = 1 is considered. We start

with nominal angle configurations at a constant nominal leg length λ0 close to a symmetrical

condition 0
12ϕ  ≈ 0

23ϕ .

1.1 Constant relative nominal leg length λλλλ0( 0
12ϕ , 0

23ϕ )

Leg shortening may lead to multiple pathways: either bending in knee or ankle joint dominates

and the other joint will reverse movement direction. At a certain relative leg length λB the

solutions for exact symmetry ( 0
12ϕ = 0

23ϕ ) show a saddle point where three paths of further

shortening with Q = 0 (Eq. 6) become possible. From an energetic point of view, a further

symmetrical loading of the leg leads to the highest increase in stored elastic energy (i.e. the

highest increase in leg force) as compared to both of the nonsymmetrical paths. Therefore,

symmetrical loading can not be guaranteed if this bifurcation point is reached, i. e. a critical

amount of leg shortening ∆λ = λ0 − λB is exceeded. This relative amount of symmetrical

shortening till bifurcation ∆λ  is denoted as the working range.
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Fig.2 Solutions of the torque equilibrium (Eq. 6; Q = 0 denoted by thin black lines) in the
configuration space (ϕ12, ϕ23) with different leg designs and torque characteristics (see below)
fulfilling the stiffness equilibrium (Eq. 11: RC = Rλ) and nominal angles at a relative nominal leg
length λ0 = 0.94. The grey areas represent restrictions due to the oblique solution. Configurations with
a constant relative leg length λ(ϕ12, ϕ23) = const. are denoted by grey lines with embedded length
values (0.2-0.9). Configurations where joints are crossing the leg axis (h1 = 0 or h3 = 0) are denoted
schematically by bold dashed lines.
Leg designs: (A) equal segment lengths 1:1:1 (all λi = 1/3), (B, C, D) human-like leg design λ1:λ2:λ3 =
2:5:5. Torque characteristics: (A, B) linear rotational springs at ankle and knee joint, (C) quadratic
characteristic (ν = 2: Mij ∼  ∆ϕij

2), (D) linear rotational springs plus a biarticular spring (M13 = c13 ∆ϕ13,
c13 = 0.05 c23).

A
bifurcation

h3 = 0

bifurcation
h1 = 0

C
bifurcation

bifurcation

h3 = 0

h1 = 0

h1 = 0

h1 = 0

D

B
h3 = 0

h3 = 0

nominal angles nominal
angles

nominal
angles

nominal angles
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The configuration space beyond the oblique branch of the symmetrical solution proves to be

inaccessible for a given relative nominal leg length λ0 and a constant RC. In fact, symmetrical

loading of both springs is only possible within a limited range of leg shortening.

Leaving the symmetrical nominal angle configuration leads to solutions either above (ϕ0
12 < ϕ0

23)

or below (ϕ0
12 > ϕ0

23) the symmetrical solution with a constant RC. Therefore, the symmetrical

solution pointing to the bifurcation separates the configuration space into solutions above and

below the symmetrical axis (ϕ12 = ϕ23). Nevertheless, a conjugate solution branch exists for any

nominal setup in the configuration space beyond the oblique solution which is located on the

opposite side of the symmetrical axis (ϕ12 = ϕ23). However, this second branch is not directly

accessible starting at the nominal angle configuration (Fig. 2A). An adaptation of RC in

combination with moving the nominal angle configuration (part 4.1) results in a slightly

deformed symmetrical solution which may lead to a gain in working range. However, this

requires to consider the influence of leg design (Rλ) and the location of foci in the configuration

space (part 3).

1.2 Influence of the relative nominal leg length λλλλ0

Shifting of the relative nominal leg length λ0 on the symmetrical axis (ϕ0
12 = ϕ0

23) leads to a

corresponding shift of the bifurcation point λB without changing the general properties described

above. Assuming symmetrical loading a maximum working range ∆λ is found at a certain

relative nominal leg length λ0 (Fig. 5C, D). This dependency ∆λ(λ0) = λ0(λB) − λB can be

expressed analytically in terms of ϕ0(ϕB) (Appendix 4; Eq. A10, Fig. 5A) and is discussed in

part 4.1.

2 Human-like segment length design (2:5:5) and different torque characteristics

The influence of different torque characteristics and a human-like segment length design on the

solutions of the torque equilibrium (Eqs. 5, 6) is investigated in Fig. 2B-D. The stiffness ratio RC

equals the ratio of the outer segments Rλ = λ1 / λ3 = 2/5 (stiffness equilibrium: Eqs. 10, 11).

Again nominal angle configurations in the neighbourhood of the symmetrical nominal angle

setup (ϕ0
12 ≈ ϕ0

23) are considered.

The bifurcation is shifted to smaller leg lengths due to the changed segment lengths (Fig. 2B). In

contrast to an equal segment length design (Fig. 2A), almost homogeneous bending of the joint

adjacent to the smaller outer segment (here the ankle joint) becomes possible.
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Introducing a nonlinear torque characteristic (exponent ν = 2) shifts the bifurcation to smaller leg

lengths (Fig. 2C). The solutions of the torque equilibrium are quite homogeneous in the upper

part of the configuration space (ϕ0
12 < ϕ0

23). This holds true for a variety of nominal angle

configurations as long as the h3 = 0 line is not exceeded.

The effect of biarticular structures acting on knee and ankle joint is shown in Fig. 2D. A linear

spring between the outer segments (flexing knee and extending ankle joint) leads again to an

almost parallel alignment of solutions for a wide range of different nominal angles. In contrast to

Fig. 2C the location of the bifurcation point is not influenced.

3 Intersectional point of solutions (focus)

Certain points of the configuration space (ϕ12, ϕ23) are attracting solutions of the torque

equilibrium (Eqs. 5, 6) for different nominal angles ( 0
12ϕ  or 0

23ϕ , respectively), joint stiffness

ratios RC and exponents ν of the torque characteristic. Three different types of such foci are

present:

(1) all joints are either completely stretched or bent (joint angle = n ⋅180°, where n is an integer

number; fulfils Eq. 5 as h1 = h3 = 0),

(2) the total leg length is zero (only possible if every segment is smaller than the sum of both the

others; fulfils Eq. 2a-c as M01 = 0), or

(3) one joint lies on the line of action of the leg force and the respective joint angle is the nominal

angle (see Figs. 3C, D).

The latter type (3) originates from the fact that (a) both the perpendicular distance of the joint to

the force line of action (e.g. h1) and (b) the respective torque (i.e. M12) vanishes (Eq. 5). As (a) is

a purely geometrical condition and (b) only depends on the nominal angle of the joint crossing

the force line of action (e. g. ϕ0
12) there is no influence of neither the remaining nominal angle

(Fig. 3C, here ϕ0
23), the stiffness ratio RC (Fig. 3D) nor the exponent ν on the location of this

focus.
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Fig. 3 (A, B) Joint angle configurations where (A) the ankle joint (h1 = 0) and (B) the knee joint
(h3 = 0) coincides with the leg axis for different segment length designs (denoted by λ2 / λ3 and λ2 / λ1;
Eq. 12a,b). (C, D) For a given nominal ankle angle ϕ0

12 and arbitrary knee angles ϕ0
23 (C) or arbitrary

stiffness ratios RC (D) a focus at the h1 = 0 line (big star) occurs if h1 = 0 has an intersectional point
with ϕ12 = ϕ0

12. This holds true for different segment lengths λ1 or different exponents ν of the torque
characteristics as long as ϕ0

12 and λ2 / λ3 (not shown here) are kept constant. Note: There is no focus at
h3 = 0 in (D) as ϕ23 = ϕ0

23  has no intersection with h3 = 0.

The geometrical conditions for angle configurations where the ankle (h1 = 0) or the knee (h3 = 0)

joint is crossing the leg axis can be expressed as (Fig. 3A, B):

3223

23
12 /cos

sintan
λλ−ϕ

ϕ=ϕ  (for h1 = 0), (12a)

1212

12
23 /cos

sintan
λλ−ϕ

ϕ=ϕ  (for h3 = 0). (12b)

λ2 / λ3 = 

C D

RC = Rλ

RC = Rλ /2

RC = 2 Rλ

RC = Rλ /2

RC = Rλ

h1 = 0h1 = 0

h3 = 0h3 = 0
nominal

angles

nominal angle

= λ2 / λ1

A B
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The critical joint angle ϕij,Crit (corresponding to the smallest nominal angle for which a focus may

occur) results from these equations if the inner to outer segment length ratio is larger than one

(e.g. human shank to foot length ratio λ2 / λ1; Tab.1, Fig. 2B, C, D and Fig. 3B).

For a homogeneous distribution of the solutions a focus-free area is of advantage. Regarding an

equal segment length design (Fig. 2A) this can only be realised for nominal angles smaller than

90°. To allow higher nominal angles the ratio of the length of the inner segment λ2 to an outer

one (λ1 or λ3) should be clearly larger than one. This requires the discussion of leg design

(part 4). As stated before, it is sufficient to consider only one half of the configuration space (e.g.

ϕ12 < ϕ23) if adequate nominal angles (ϕ0
12 < ϕ0

23) are chosen. Then, foci in the conjugate

configuration space are not of importance for the system behaviour. For example, a human-like

segment length design (2:5:5, Figs. 2B−D) allows almost parallel solutions for ϕ12 < ϕ23 as long

as 0
23ϕ  smaller than ϕ23,Crit ≈ 156.4° (at least for ν = 1: Fig. 3C; Tab. 1).

λ2 / λ1 ϕ23,Crit ϕ12,Ref
1.0 90° 0°
1.25 126.9° 36.9°
1.5 138.2° 48.1°
2.0 150.0° 58.8°
2.5 156.4° 65.1°
3.0 160.5° 70.1°
10 174.3° 81.2°

Tab. 1 The minimum of the h3 = 0 line expressed as
ϕ23(ϕ12) is present for a critical knee angle ϕ23,Crit with a
corresponding reference angle ϕ12,Ref. Solutions may be
attracted by a focus at h3 = 0 if nominal angles ϕ0

23 are
larger than ϕ23,Crit (Fig. 3B, Fig. 11A).

4 Segment length design (λλλλ2, Rλλλλ = λλλλ1 / λλλλ3)

The segment length design, uniquely represented by two relative segment lengths, is illustrated in

Fig. 4A as a point within a triangular plane. One aspect of leg design was already discussed in the

previous part with respect to focus points. Here, a large ratio of λ2 / λ1 or λ2 / λ3 was of advantage

(Fig. 4B).

Now two further strategies of segment length design will be discussed: variations in the relative

length of the middle segment (λ2-design, Fig. 4C) and the ratio of the outer segment lengths (Rλ-

design, Fig. 4D). While the λ2-design determines the location of the bifurcations in symmetrical

loading, the Rλ-design influences the shape of the oblique branch of the symmetrical solution.

Taking asymmetric nominal angles into account, this may enhance the working range by suitable

RC adaptations.
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Fig. 4 (A) Segment length design is characterised by a triplet (λ1, λ2, λ3) with λ1 + λ2 + λ3 = 1, i.e. a
point within the triangle. Different strategies of leg design can be distinguished:
(B) To avoid the attraction of solutions by foci the nominal angle design is restricted by the location of
the h = 0 line in the chosen half of the configuration space (above or below the symmetrical axis ϕ12

= ϕ23; Fig. 3C).
(C) λ2 is locating the bifurcation point(s) in symmetrical loading.
(D) The Rλ-design (ratio λ1 / λ3) allows to take advantage of asymmetric leg loading by properly
adjusting the joint stiffness ratio RC.

To investigate the bifurcation behaviour of the leg in general both strategies (λ2, Rλ) are of

importance. Solutions in the neighbourhood of the bifurcation point show divergent paths during

leg shortening. Therefore, the locations of existing bifurcation points for different nominal angles

and stiffness ratios give a quantitative measure of the leg stability within the configuration space.

Although in symmetrical loading the solution directing to the bifurcation is the one and only

straight way of leg shortening allowing homogenous loading with respect to joint angles, the

existence of a bifurcation also constitutes a possible instability for leg loading.

Almost symmetrical leg loading for a shifted nominal angle configuration can be maintained by

an adapted RC value leading to a new bifurcation point. For asymmetric outer segment length

λ2

λ1λ3

0 0

0

(λ1, λ2, λ3)
λ1=λ3

1

1 1
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designs (Rλ  ≠ 1) a gain in working range may occur if the joint adjacent to the smaller outer

segment is  flexed more than the other one.

4.1 Bifurcation behaviour in symmetrical loading: λλλλ2 – design

The bifurcation angle ϕB for symmetrical loading ( 0ϕ = 0
12ϕ = 0

23ϕ  and RC = Rλ) shifts

correspondingly with the nominal angle ϕ0 (Fig. 5A, B).

The relationship between ϕ0 and ϕB can be expressed analytically as a function ϕ0(ϕB) (Appendix

4: Eq. A10) and has following properties:

(1) ϕ0(0) = 0, ϕ0(180°) = 180° and ϕ0 ≠ ϕB for 0 < ϕB < 180° and ν > 0,

(2) there is one pole in ϕ0(ϕB) if λ2 ≥ 1/2, and

(3) there are 0, 1, or 2 local extremes in 0 ≤ ϕB ≤ 180°.

The inverse function can not be given explicitly as there may exist several values of ϕB for a

given ϕ0 (Fig. 5A).

The ϕ0(ϕB)-dependency is uniquely determined by the relative length of middle segment λ2 and

the exponent of the torque characteristic ν, but not by Rλ (Fig. 10A). In general, there is always a

bifurcation within [0, 180°] as long as λ2 < 1/2 (type I-bifurcation). Increasing the nominal angle

ϕ0 there may arise additional solutions for ϕB (type II-bifurcation) for certain constellations of λ2

and ν (Fig. 5A, B and Fig. 8). Hereby λ2 must exceed a critical value λ2,Crit which merely depends

on the exponent ν (Tab. 2).

ν λ2,Crit(ν) ϕB,Crit(λ2,Crit,ν) ϕ0,Crit(ϕB,Crit)
0.5 0.483 36.7° 100.8°
1.0 0.464 54.7° 135.8°
1.5 0.442 71.6° 157.5°
2.0 0.414 90.0° 171.0°
2.5 0.380 114.1° 178.2°

Tab. 2 Critical relative length of the middle segment
λ2,Crit(ν) for given exponents of the torque
characteristics ν where for λ2 ≥ λ2,Crit a new type II-
bifurcation appears (Fig. 5A, B) if the nominal angle
ϕ0 exceeds a critical nominal angle ϕ0,Crit(λ2,ν) (here
denoted for λ2 = λ2,Crit). This critical nominal angle
ϕ0,Crit corresponds to the bifurcation angle ϕB,Crit

(denoted again for λ2 = λ2,Crit).
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Fig. 5 (A-D) Bifurcations in symmetrical loading. (A, B) For each nominal angle ϕ0 and a given
exponent ν of the torque characteristic the location of the possible bifurcation angle(s) ϕB depend
merely on λ2 and not on Rλ. If λ2 exceeds a critical threshold λ2,Crit(ν) (small circles) a sudden change
in ϕB occurs at a corresponding nominal angle ϕ0,Crit(λ2, ν). Then, new bifurcations appear for
ϕ0 > ϕ0,Crit which reduce the working range (small arrows). The local extremes in ϕ0(ϕB) determine the
existence of type I (lower extreme '+': BAcos Extr,B +=ϕ ) or type II (upper extreme 'x':

BAcos Extr,B −=ϕ ) bifurcations.

(C, D) Relative working range ∆λ = λ0(ϕ0) − λB(ϕB) for different λ2-designs depending on the relative
nominal leg length λ0 and ν (but not on Rλ). The highest advantage of nonlinear (quadratic) torque
design is found for λ2 = 0.3 − 0.5 and λ0 > 0.8.

In Fig. 5C, D the translational working range ∆λ = λ0(ϕ0) − λB(ϕB) is shown for different values

of λ2 and ν=1, 2. Two phenomena can be observed:

(1) A type I-bifurcation (present for λ2 < 1/2) results in a curved graph ∆λ(λ0).

(2) If a type II-bifurcation occurs, a sudden change in ∆λ appears for a critical λ0,Crit (e.g.

Fig. 7C) corresponding to ϕ0,Crit(λ2,ν) (e.g. Fig. 7A).

A B

C D

λλλλ2 = λλλλ2 =

λλλλ2 =λλλλ2 =

x

+ BA +

BA −

λλλλ0 λλλλ0
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extremes
in ϕ0(ϕB)

lower extreme exists
BAcos Extr,B +=ϕ

upper extreme exists
BAcos Extr,B −=ϕ

ϕ0,Extr

(deg)

ϕB,Extr

(deg)

Fig. 6 Regions in (λ2,ν)-space where according to Eq. A12 extremes in the ϕ0(ϕB) function occur with
corresponding nominal (A, B) and bifurcation (C, D) angles.
Solutions of cos ϕB,Extr = BA+  (A, C) and cos ϕB,Extr = BA−  (B, D) must be within [−1, 1]. Only
the existence of the upper extreme (compare Fig. 5 A, B) may lead to a sudden decrease in working
range if ϕ0 exceeds the ϕ0,Crit values shown in (B) with a corresponding ϕB,Crit shown in (D). For leg
lengthening (ϕ > ϕ0) a sudden decrease in working range occurs for all ϕ0 ≤ ϕ0,Extr shown in (A) at a
ϕB ≤ ϕB,Extr shown in (C) if λ2 > 1/(2−ν) (upper left corner; Fig. 8). This is not a standard situation for
human legs.

With increasing ν from 1 to 2 the working range is significantly enhanced. The risk of a type II-

bifurcation remains merely for highly extended nominal angles (higher than 171°, Tab. 2;

Fig. 5B).

The existence of a type II-bifurcation is associated with local extremes of the ϕ0(ϕB) function (in

Fig. 5A: 'x' and '+', Eq. A11). Then, the derivative of the ϕ0(ϕB) function with respect to ϕB must

vanish. This results in following solutions for ϕB,Extr (Eq. A12):

λ2

ν

λ2

ν

here
 type II-bifurcation

may occur

D

BA
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here
 type II-bifurcation

may occur

ϕϕϕϕ0,Crit

ϕϕϕϕB,Crit



André Seyfarth: Elastically operating legs – Strategies and Construction Principles

45

BAcos Extr,B ±=ϕ , (13)

where A and B are functions of λ2 and ν. A type II-bifurcation may emerge for a critical λ2,Crit(ν)

fulfilling B = 0 (Fig. 7A; Tab. 2). Additionally, the right side in Eq. 13 must be within [-1, 1]. In

general, a type II-bifurcation exists if the solution ϕB,Extr according to the upper extreme (negative

sign in Eq. 13; Fig. 6D) and the corresponding nominal angle ϕ0 (Fig. 6B) are within [0, 180°].

Fig. 7 Symmetrical loading. (A) Critical λ2,Crit(ν) where for ν < 3 a new type II-bifurcation occurs (small circles
correspond to Fig. 5A, B), (B) corresponding nominal angle ϕ0,Crit and bifurcation angle ϕB,Crit resulting in an angular
working range ∆ϕCrit for λ2 = λ2,Crit(ν), and (C) relative nominal leg length λ0,Crit(ϕ0,Crit), relative bifurcation length
λB,Crit(ϕB,Crit) and corresponding relative working range ∆λCrit = λ0,Crit − λB,Crit.
An increase in ν from 0 to 3 leads to smaller λ2,Crit (A) and higher ϕ0,Crit(λ2,Crit) (B). For a satisfactory working range
choosing the exponent ν is important. If a critical nominal angle ϕ0,Crit(ν) (Eqs. A10, A12) is exceeded a sudden
decrease in (angular or translational) working range occurs at λ2,Crit(ν) due to the inserted type II-bifurcation. This is
shown in (B, C) by ∆ϕB = ϕB,II − ϕB,I and ∆λB = λB,II − λB,I, respectively (I = type I-bifurcation, II = inserted type II-
bifurcation; a change in ϕ0 of 1.8° is considered between I and II).
(A) For ν > 3 the importance of λ2,Crit(ν) vanishes as the critical nominal angle leaves the considered interval [0,
180°]. For 3 < ν ≤ 4 no type II-bifurcations occur for λ2 above λ2,Crit (solid line; Fig. 6B, D).

B
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For ν > 3, the λ2,Crit(ν)-line (fulfilling B = 0; Fig. 7A) is not an indicator for the appearance of a

type II-bifurcation any more as there are no solutions for BAcos extr,B −=ϕ (Fig. 6B, D).

Within 1/ν < λ2 < 1/2 (dashed line in Fig. 7A) merely solutions for BAcos extr,B +=ϕ  with

associated ϕ0-values larger than 180° (Fig. 6A) are present. This results in not vanishing working

ranges ∆ϕ for ϕ0 = 180° (Fig. 8).

In Fig. 7B, C effects of an emerging type II bifurcation (for λ2 = λ2,Crit(ν)) on the angular (B) and

translational (C) working range are shown for 0 ≤ ν ≤ 3. To consider the inset of the type II-

bifurcation the corresponding critical nominal angles ϕ0,Crit (or lengths λ0,Crit; Tab. 2) were

depicted.

Fig. 8 Regions in (λ2, ν)-space of different bifurcation behaviour in symmetrical loading.
A type I-bifurcation is present for λ2 < 1/2 and any nominal angle ϕ0. The type II-bifurcation exists if
solutions for ϕB according to the upper extreme cos(ϕB,Extr) = BA −  (Eq. A12) and the corresponding
nominal angles ϕ0 are within [0, 180°].
With respect to the angular working range ∆ϕ(ϕ0) = ϕ0 − ϕB (represented by schematic sketches) the
following statements can be made: (1) For λ2 < 1/2 the working range is reduced for all nominal angles
ϕ0 due to type I-bifurcation. This leads to a curved graph in ∆ϕ(ϕ0). (2) For λ2 ≥ 1/2 the working range
∆ϕ is identical to ϕ0 as along as no type II-bifurcation appears. (3) In a region within
λ2,Crit(ν) < λ2 < 1/ν a sudden decrease in angular working range occurs if ϕ0 exceeds the critical
nominal angle ϕ0,Crit(λ2,ν) (Fig. 6B) which corresponds to a ϕB,Extr (Fig. 6D) with cos(ϕB,Extr) = BA −
according to Eq. A12.
For ν < 1 there is a lower extreme cos(ϕB,Extr) = BA+  with ϕB > ϕ0 (Fig. 6A, C) if λ2 exceeds the
dashed line λ2 = 1 / (2−ν). For ν > 3 the dashed λ2,Crit(ν)-line (fulfilling B = 0) has no importance any
more as there is no corresponding bifurcation angle ( BA+ < −1; Fig. 6C).

type I-bifurcation

no bifurcation
type II bifurcation

if ϕ0 > ϕ0,Crit

ϕ0

∆ϕ

type I
I&II

λ2=1/ν

λ2,Crit(ν)
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The working range ∆ϕCrit (or ∆λCrit, respectively) around such a critical nominal angle (or length)

changes dramatically if a nominal angle slightly above or below the critical ϕ0,Crit is chosen (a

change in ϕ0 of 1.8° is considered). The corresponding bifurcation angles and lengths are denoted

by the indices 'B,I' and 'B,II'. At ν = 1.75 there is a maximum loss of ∆λB = 0.25 in translational

working range ∆λ due to the appearance of the type-II bifurcation.

type I
bifurcation

maximum angular
working range

maximum translational
working range

max. working range
 at nominal angle
ϕ0,MAX (deg)

max. working range
∆ϕMAX  (deg) or

∆λMAX , respectively

Fig. 9 Maximum angular (A, C) and translational (B, D) working ranges for different leg designs λ2

and torque characteristics ν. With increasing ν the nominal angle ϕ0,MAX (A, B) and the corresponding
maximum working ranges ∆ϕMAX (C) or ∆λMAX (D) are shifted to higher values. Also an increase in λ2

leads to higher maximum working ranges (C, D) and for about ν > 1 to higher ϕ0,MAX (A, B) as well.
For maximum translational working range (D) slightly lower nominal angles (B) are necessary than for
maximum angular working range (A, C). For λ2 > λ2,Crit a type II-bifurcation is inserted if
ϕ0,MAX > ϕ0,Crit is fulfilled (black area). Due to the more flexed leg operation optimising the
translational rather than the angular working range, the disturbance by the type II-bifurcation is
reduced to a smaller area within the (λ2,ν)-space.

The possible existence of the two types of bifurcation within the (λ2,ν)-plane is summarised in

Fig. 8. The type I-bifurcation occurs for λ2 < 1/2 as a consequence of property (2) of ϕ0(ϕB) (see

above). Type II-bifurcations may exist (if ϕ0 > ϕ0,Crit) within an area bordered by the λ2,Crit(ν) and

λ2

ν

λ2

ν

AA BB

CC DD



48

the λ2 = 1/ν lines. Approaching the upper limit λ2 = 1/ν the bifurcation angle and the

corresponding nominal angle reach 180° (Fig. 6B, D). Only within a small area of 0 < ν < 3 and

λ2,Crit < λ2 < min(1/2, 1/ν) both bifurcation types (I&II) may occur.

In Fig. 9C, D the maximum angular and translational working range limited by the type I-

bifurcation (for 0 < λ2 < 1/2 and 0 < ν < 4) is shown. The corresponding nominal angles (Fig. 9A,

B) are slightly higher for optimising angular (Fig. 9C) than for optimising translational (Fig. 9D)

working range. A large working range can be achieved either by long middle segments (λ2 near

to 1/2) or high exponents of the torque characteristic ν.

The type II-bifurcation reduces the working range if the predicted nominal angle ϕ0,MAX (Fig. 9A,

B) exceeds the critical angle ϕ0,Crit shown in Fig. 6B. For a maximised translational working

range this region (black area in Fig. 9D) within the (λ2,ν)-space is clearly smaller than for

maximum angular working range (black area in Fig. 9C).

Fig. 10 Influence of (A) Rλ and (B) ν on the oblique branch crossing the symmetrical solution. (A) For
a given symmetrical nominal angle ϕ0 the location of the bifurcation ϕB remains the same as long as λ2

and ν are kept constant and the stiffness equilibrium (RC = Rλ; Eq. 11) is fulfilled. (B) The oblique
branch aligns with the symmetrical branch with increasing ν. Depending on the nominal angle (here
170°) a critical value of ν (here 1.7) must be exceeded to extend the working range significantly (see
Fig. 11A, B).

4.2 Bifurcation behaviour in asymmetric loading

So far, exact symmetry (ϕ12 = ϕ23) for the solutions of the torque equilibrium (Eqs. 5, 6) was

assumed requiring the stiffness equilibrium (RC = Rλ). These results revealed strategies and

possible problems of leg operation with symmetrical nominal configurations. The framework has

now to be extended to arbitrary nominal angle setups (ϕ0
12 ≠ ϕ0

23). The bifurcation(s) must be

Rλ = 0.8 nominal
angle

nominal
angle

0.6
1.0

0.4
0.2

1.7 21.5

2 1.5

ν = 1

1A B
1.7

focus

ν=1
λ2=1/3
RC=Rλ

λ1:λ2:λ3=2:5:5
RC=Rλ=0.4
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identified within the whole configuration space (ϕB
12, ϕB

23) with a corresponding stiffness ratio

RC. Three independent parameters must be taken into consideration: λ2, Rλ, ν.

A non-equal outer segment length design (Rλ ≠ 1) results in oblique branches of the symmetrical

solutions which are not mirrored at the symmetrical axis any more (Fig. 10A). This corresponds

to different shapes of the h1 = 0 and h3 = 0 lines (Fig. 3A, B; Eq. 12a,b). As a consequence, in one

half of the configuration space (e.g. ϕ12 < ϕ23) the oblique solution may detach from the adjacent

focus and align to the symmetrical branch (Fig. 2A, B).

This effect may extend the working range dramatically and is supported by high exponents of the

torque characteristic ν (Figs. 2C, 10B).

Starting at asymmetric nominal angles (ϕ0
12 ≠ ϕ0

23) quasi-symmetric solutions characterised by a

deformed shape of the solutions for Q = 0 and an adapted stiffness ratio RC still can be found.

Now the stiffness equilibrium is disturbed (RC ≠ Rλ) and the symmetrical axis (ϕ12 = ϕ23) is not a

common solution any more.

To estimate the advantages of an asymmetric outer segment length design the working range for

different nominal angle configurations is asked for. The conditions for a bifurcation (saddle point

regarding the solutions of a Q function in the configuration space) are Q(ϕ12,ϕ23) = 0 and

0),(Q 2312 =ϕϕ∇ ϕ#
$

 (Appendix 4). Using these three equations the bifurcation angles ϕB,12, ϕB,23

and the corresponding stiffness ratio RC can be solved for numerically.

In Fig. 11 the maximum translational working range ∆λ, the corresponding stiffness ratio RC and

the ratio of joint flexions

B
23

0
23

B
12

0
12R

ϕ−ϕ
ϕ−ϕ

=ϕ∆ (14)

are shown for different nominal angles (ϕ0
12, ϕ0

23), exponents ν = 1, 2 and a human-like leg

design (2:5:5). The working range on the symmetrical axis (ϕ0
12 = ϕ0

23) corresponds to the

findings in Fig. 5C, D fulfilling RC = 0.4 (stiffness equilibrium) and R∆ϕ = 1 (symmetrical

loading: α∆ϕ = 45°). Here, the working range is merely determined by λ2 and ν. Leaving the

symmetrical axis an increase in working range is observed in the upper half of the configuration

space (ϕ0
12 < ϕ0

23).

For ν = 1 the working range is dramatically reduced if ϕ0
23 exceeds ϕ23,Crit (Tab. 1). This is due to

the attraction of the focus at the h3 = 0 line (Fig. 3B,C). Increasing the exponent of the torque

characteristic ν from 1 to 2 extends the working range significantly (A, B). In both cases flexing

the ankle more than the knee is of advantage. The stiffness ratio RC must be adjusted according to



50

the difference in the nominal angles ϕ0
12 − ϕ0

23 (C, D). For ν = 2 the lines of constant RC

adjustment and constant ratio of joint flexions R∆ϕ align (D, F).

Asymmetric
loading (2:5:5) ν=1 ν=2

∆λ

RC

α∆ϕ  (deg)

ϕ∆
ϕ∆ =α

R
1arctan

Fig. 11 Asymmetric loading. Influence of the nominal angle configuration (ϕ0
12, ϕ0

23) on (A, B) the
maximum translational working range ∆λ, (C, D) the corresponding stiffness adjustment RC and (E, F)
the ratio of joint flexions R∆ϕ = (ϕ0

12−ϕB
12) / (ϕ0

23−ϕB
23) expressed as an angle α∆ϕ for a human-like

leg design (2:5:5).

A B

DC

ϕϕ2233,,CCrriitt

ϕ0
23 (deg)

ϕ0
12 (deg)

FE

ϕϕ2233,,CCrriitt

ϕϕ2233,,CCrriitt

ϕ0
23 (deg)

ϕ0
12 (deg)

ϕ0
23 (deg)

ϕ0
12 (deg)
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With higher values of ν also solutions near to the symmetrical loading show a high working

range (Fig. 11B). But still for ν = 2 the optimum in working range is observed beside the

symmetrical axis for ϕ0
12 ≈ 120°, ϕ0

23 ≈ 160° and RC ≈ 0.8. Here the critical knee angle ϕ23,Crit

can even be exceeded by ϕ0
23 due to the alignment of the oblique branch with the symmetrical

axis (Fig. 10B). An almost optimal working range can be achieved for a wide area of different

nominal angles (e.g. ∆λ > 0.6 for nominal knee angles higher than about 120° and nominal ankle

angles between 90° and 140°). For ϕ0
23 > ϕ23,Crit, the still present attraction of the h3 = 0 line

demands a sensitive RC adjustment which limits the area of nominal angles that guarantee a safe

operation of the leg.

For nominal angle configurations with a considerable working range a simple strategy regarding

the rotational stiffness adjustment is observed. The more flexed joint has to be stiffened with

respect to the other joint about proportional to the angular differences between both joints

(Fig. 11C, D). The stiffness adaptation compensating the asymmetry in nominal angles scales

with the exponent of the torque characteristic.

The effect of the predicted optimal RC-adjustment (Fig. 11C, D) on the joint kinematics is shown

in Fig. 11E, F. Here the direction of leg shortening α∆ϕ within the configuration space is denoted

by the ratio R∆ϕ of the differences in ankle and knee joint between nominal and bifurcation

position (Eq. 14).

This ratio can be expressed as an angle of leg shortening α∆ϕ = arctan (R∆ϕ
−1) with respect to the

ϕ0
12-axis. At the symmetrical axis an angle of 45° represents equal loading of both joints (i.e. the

bifurcation lies on the symmetrical axis as well).

For ν = 2 (Fig. 11F) and unequal nominal angles (ϕ0
12 ≠ ϕ0

23) the ratio R∆ϕ reduces the

asymmetry in joint angles (e.g. R∆ϕ > 45° for ϕ0
12 < ϕ0

23 and vice versa). For ν = 1 (Fig. 11E) a

completely different behaviour is present. For nominal angles near the symmetrical axis and

higher than about 100° the ratio of joint flexions R∆ϕ indicates an increased asymmetry in joint

angles at leg shortening. Only for clearly bent ankle joints (less than about 100°) a reduced

asymmetry in joint angles during leg shortening is indicated by angles α∆ϕ higher than 45°.
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DISCUSSION

The kinematic redundancy problem of a three-segmental leg (with foot, shank, and thigh) can be

successfully solved if quasi-elastic torque characteristics are present at the joints (ankle and

knee). The requirements to the joint torque characteristic and the leg geometry were identified.

General leg behaviour and leg design

Two different types of leg bending were found: (1) Quasi-symmetric loading where both joints

are flexed simultaneously (zigzag alignment) or (2) bow-like loading where both joints tend to

stay at the same side with respect to the leg axis.

The first type takes the most advantage of having a third leg segment and results in the highest

leg stiffness assuming given rotational stiffnesses. For all leg designs with a middle segment

(shank) length less than half of the total leg length (λ2 < 1/2) a transition (type I-bifurcation) from

the zigzag-mode (1) to bow-like loading (2) occurs at a certain amount of leg shortening. This

even holds if the rotational stiffnesses could be adjusted perfectly to the leg geometry.

Making the middle segment (shank) longer than both of the remaining segments (foot and thigh)

together results in avoidance of this unfavourable transition in most cases. But even then the

system may fall into bow-like loading (type II-bifurcation) for certain nominal angles (Fig. 6) and

exponents of the torque characteristics (Fig. 8). Moreover, a very long middle segment reduces

the capability of leg shortening due to geometrical constraints. This solution was not chosen by

nature. Middle segment lengths of less than half the total leg length are typical. Then, the range

of quasi-symmetric leg shortening (i. e. the working range) is always limited. To reach an

optimum angular or translational working range relative middle segment lengths higher than 0.4

and exponents of the torque characteristic larger than one are necessary (Fig. 9).

Significance for human legs

In a human leg the relative length of the middle segment (shank) is approximately λ2 = 0.42. This

is about the region where the inserted type II-bifurcation threatens to reduce the working range

dramatically for exponents ν between 1 and 2 (Fig. 7B, C). Increasing the exponent ν the type II-

bifurcation (Figs. 6B and 7A) occurs even at smaller middle segment lengths (for ν = 2:

λ2,Crit = 0.414; Tab. 2). Fortunately, here the critical nominal angle is shifted to almost stretched

angle positions (for ν = 2: ϕ0,Crit =171°; Tab. 2).

In fact, the human leg design seems to result in a maximum working range for exponents ν

between 1 and 2. Such exponents correspond to torque characteristics predicted for highly loaded
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muscle-tendon complexes in the human leg (Fig. 3A in chapter IV) and are mainly determined by

tendon stress-strain properties.

A longer middle segment (or a shorter foot, see below) would run the risk of a sudden loss in

working range for stretched nominal angles (type II-bifurcation). Shortening the middle segment

or exponents ν smaller then one would clearly reduce the working range (Fig. 9).

Advantages of operating asymmetrically

The ratio of the outer segment lengths Rλ had no influence on the working range as long as the

joints were working in parallel, i.e. the same inner joint angles were present at ankle and knee

joint. Such a symmetric operation of the leg was achieved by adapting the joint stiffnesses to the

length of the adjacent outer segments (stiffness equilibrium, Eqs. 10, 11) and choosing exactly

equal nominal angles.

Leaving the symmetrical axis within the configuration space, different outer segment lengths

(Rλ ≠ 1) were of advantage. For instance, a small foot (see below) extended the working range for

more stretched nominal knee angles. This was due to the location of the h3 = 0 line where the

knee was crossing the leg axis which is shifted to high knee angles (Fig. 3B) and allowed to

access almost the whole upper half-space of the configuration space (ϕ12 > ϕ23). Finally, the

attraction of the h = 0 lines was reduced using higher exponents ν of the torque equilibrium (e.g.

2; Fig. 10B).

In effect, an asymmetrically operating leg with one joint more flexed than the other was of

advantage if the outer segment length design was asymmetric. A homogeneous flexion of both

joints was then achieved by adapting the stiffness ratio RC to the chosen difference in nominal

angles (Fig. 11C,D). The nominal angle configurations predicted for maximum working range for

a human-like leg design agree with landing conditions in running and hopping (Farley et al.,

1998) if an exponent of the torque characteristic of 2 is chosen (Fig. 11B: ϕ0
12 ≈ 120°, ϕ0

23 ≈

160°).

Role of biarticular muscles

A homogeneous joint loading was also supported by biarticular structures in the leg. Different

moment arms of biarticular muscles crossing knee- and ankle joint could help to fulfill the

required stiffness ratio. An optimal ratio of the moment arms was found for maximum vertical

jumping performance (Fig. 2 in Bobbert and van Zandwijk, 1994). Position dependent moment

arms might adapt the ratio to different nominal positions.

As shown in Fig. 2D, only one such muscle (like m.gastrocnemius) was necessary to synchronise

ankle and knee flexion as only the upper half of the configuration space was of practical interest.
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Therefore, no biarticular muscle opposite to m.gastrocnemius has to be present in many mammals

and humans.

The role of the foot

The introduction of a third leg segment has two major advantages: It reduces the torques required

at the leg joints and minimises the energy due to segment rotation (Alexander, 1995).

The foot length design was critical with respect to the range of safe leg operation. Having a small

foot compared to the shank length enabled large knee extensions. A small foot compared to the

thigh required a reduced stiffness in the ankle joint with respect to the knee. This requires smaller

calf muscle cross sections compared to the knee extensors and fits to the generally observed leg

design with continuously decreasing masses of the more distal segments.

Nonetheless, very short feet increased the tendency to snap from the zigzag mode into the bow

mode due to the now almost two-segmental system. The effective length of the human foot may

vary between about 8 and 20 cm changing the point of support from heel to ball. This resulted in

a relative length of the middle segment near to the type II-bifurcation. Two mechanisms are

involved to avoid the potential instability:

1. Overextension of the ankle joint is prevented by an increase in effective foot length as the

centre of pressure is shifted to the tip of the foot. Then, the range of safe leg operation is

increased due to a decrease in effective length of the middle segment.

2. Overextension of the knee is avoided by an almost flat touch-down orientation of the foot and

the kinematic constraint due to the heel contact. Therefore, the stiffness of the contacting heel pad

must be high enough to avoid large deformations which in turn would allow knee overextension.

In effect deformations of about 1 cm are allowed due to the highly nonlinear force-displacement

characteristic of the human heel pad (Denoth, 1986).  This corresponds to a complete leg

extension starting at initial knee angles of about 165°.

Influence of segment masses

The presented model was not able to predict a first impact peak after touch-down (observed e.g.

in long jump) even by representing the heel pad by external torques (M01) and replacing the

torque characteristics by muscle tendon complexes (see chapters IV, V). This phenomenon

requires the representation of leg segment masses (Denoth, 1986). As shown by Gruber (Gruber

1987; Gruber et al., 1998) the proper representation of soft and rigid parts in the human leg is

necessary to estimate the internal loads and to predict the observed ground reaction forces. As the

leg masses must be decelerated after touch-down, the separation into soft and rigid subsystems

allows to realise small foot displacements by reducing the effective mass of the leg (Denoth,

1986). The main part of the leg consists of softly coupled masses (chapter II) which are
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decelerated delayed to the skeleton. After the impact, the forces predicted by the three-segment

model are in agreement with experimental observations for fast types of locomotion (running,

long jump).

The leg as a spring?

In this study an elastic joint operation was shown to result in relatively simple strategies for

successful leg operation. Nevertheless, there are no structures in the human leg which are

compliant enough to account for the observed joint behaviour. Taking the basic muscle properties

(force-length and force-velocity relationship, activation dynamics) into account the spring-like

behaviour of the leg resulted from muscle stimulation optimised for performance (chapter V).

This led to torque characteristics similar to the results from inverse dynamics (Stefanyshyn and

Nigg, 1998) and agrees with the assumptions made in this study.

The homogeneous loading of the leg joints enabled the contribution of all major leg muscles to

the performance (chapter V). This was achieved by a sensitive control of the leg muscles

resulting in stiffness ratios similar to the values predicted by the three-segmental model which

results in a high leg stiffness at quasi-symmetric leg operation.

The subtle interplay between rotational stiffnesses and the leg stiffness remains for further

investigation. Nevertheless, the linear spring characteristic observed in biological legs is clearly

superior to linear rotational springs and can be supported by nonlinear tendon properties with

exponents between 1.7 and 2 (chapter IV). Such exponents are sufficient for safe leg operation

and show the highest advantage in working range for prevented type II-bifurcations. Higher

exponents would lead to nonlinear leg stiffness behaviour and limit the range of joint action.

Further steps

The strategies developed in this study are suitable to be proved in mammalian and human

locomotion. The first attempts showed promising predictions of leg kinematics for running and

jumping. Hereby the forward dynamic modelling is useful to represent effects of heel strike (to

enable geometrical constraints as ground support) or changing nominal angles (to represent

energy changes as in drop jump or squat jumps). The later effect corresponds to the

neurophysiological understanding of movement control (Feldman, 1966).

Taking the three-segment model as a starting point further effects as

1) the influence of additional leg segments,

2) the influence of segment masses and inertias, or

3) the influence of dissipative joint operation (muscles, heel pad deformation)

can be taken into account.
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For (1) the torque equilibrium (Eq. 2a-c) must be extended by introducing equations representing

the additional segments (appendix A1-3). For (2) and (3) the joint variables must be integrated

using the differential equations which are replacing the corresponding algebraic equations in the

torque equilibrium. The influence of external torques (M01) and moments of inertia (e.g. Θ3) can

be estimated by considering peak values as a constant in the torque equilibrium.

APPENDICES

In the first three sections (1-3) the static torque equilibrium of the three segmental spring-mass

model (methods, Eq. 2) will be derived. We start with the equations of motion of an arbitrary

system of rigid segments (1), then neglecting the inertial properties of the three leg segments (2),

and reducing the supported body to a point mass (3).

In section (4) the conditions characterising the bifurcation point in the solutions of the torque

equilibrium (Eqs. 5, 6) within the configuration space will be derived. This allows to calculate the

working range of the system and results in optimal nominal configurations for different leg

designs.

APPENDIX 1: General dynamics of a chain of rigid segments

To derive the equations determining the static configuration of the three leg segments in the

sagittal plane we start with the equations of motion of n free rigid bodies (i = 1, 2, ... , n) in the

inertial system:

( ) ∑∑

∑
+×+=ωΘ

=

)i(j
i,ji,k

)i(k
k,iiii

)i(k
i,kii

.MFdr

Frm

####"#

#
""#

(A1a,b)

Here the index k(i) denotes the points of interaction with all forces i,kF
#

 working on body i (mass:

mi; moment of inertia tensor Θi), whereas ir""
#  is the acceleration vector of the centre of mass

(COM) and iω"
#  the rotational acceleration with respect to the inertial system. The force i,kF

#
 is

acting in a distance k,id
#

 from the COM. All additional torques (e.g. joint torques) are denoted by

i,jM
#

.

The dynamics of a chain of n rigid bodies connected by n−1 spherical joints additionally requires

the following constraint equations (i = 1, 2, ... , n−1):
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.drr

drdr

0,110

i,1i1i1i,ii
###

####

+=

+=+ +++ (A2a,b)

For instance, the vector 3,2d
#

 points from the COM of body 2 to the joint between the bodies

2 and 3, whereas 2,3d
#

 points from the COM of body 3 to the very same joint. Note that 0,1d
#

 (Eq.

A2b) is the distance between the COM of body 1 and the point of application of the ground

reaction force.

Let us consider a distal (lower) and a proximal (upper) joint for each body i (or segment i).

Taking the gravitational acceleration vector g#  into account Eq. A1 can be written as:

( ) ( ) .MMFdrFdr

gmFFrm

i,1ii,1ii,1i1i,iii,1i1i,iiii

ii,1ii,1iii

+−++−−

+−

++×++×+=ωΘ

++=
########"#

###
""#

(A3a,b)

Except for gravity, ground reaction force 1,0F
#

, and ground torque 1,0M
#

, all forces and torques are

internal. For instance, at the joint between the bodies 2 and 3, 2,3F
#

 and 2,3M
#

 are the constraint

force and the torque (produced by structures spanning the very same joint) acting on body 2. The

corresponding force 3,2F
#

 and torque 3,2M
#

are pointing in the opposite direction and are acting on

body 3, or generally:

.MM

FF

1i,ii,1i

1i,ii,1i

++

++

−=

−=
##

##

     (A4a,b)

APPENDIX 2: Segment dynamics neglecting inertial contributions (mi, ΘΘΘΘi) of the leg

The dynamic properties of a segment (body i) will be neglected by setting its mass mi and

moment of inertia Θi to zero. This is the case for all leg segments (i = 1, 2, 3). Furthermore, all

body weight is shifted to the uppermost segment (body 4). Later on even the moment of inertia of

this remaining mass will be neglected.

The assumption of a quasi-static operation of the leg in system (A3a) together with (A4a) leads to

(i = 1, 2, ... , n−1) :

i,1i1i,i1,0 FFF ++ −==
###

. (A5)
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For a massless leg (segments i = 1, 2, 3) supporting a mass (body 4) at the proximal end of the 3rd

leg segment and touching the ground at its distal end (segment 1) we can reduce the system (Eqs.

A3a,b) to a planar model (i = 1, 2, 3):

( )( )

( )( ) z4,3
z

1,03,4444

41,044

z1i,izi,1i
z

1,01i,i1i,i

MFdr

gmFrm

MMFdd

####
""

##
""#

#####

+×+=ϕΘ

+=

−=×− +−−+

(A6a-c)

where Θ4 is the principal moment of inertia of body 4 with respect to z. For each leg segment

(Eq. A6a) there remains only one equation determining the torque equilibrium. Additionally, we

have two equations (Eq. A6b) describing the translational acceleration and one equation (Eq.

A6c) representing the rotational acceleration of the supported body. Note that all torques are

pointing into the z-direction, perpendicular to the sagittal plane.

APPENDIX 3: Reduction to a point mass model (ΘΘΘΘ4=0)

In order to describe the total body centre of mass dynamics in terms of a point mass, the

supported segment has to be reduced to zero length ( 0dd 3,43,4 ==
#

) and zero moment of inertia

(Θ4=0). Consequently, there cannot be a torque acting on the supported mass ( 0MM
z4,334 ==

#
)

which leads to:
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( )
( )
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(A7a-e)

with 1i,i1i,ii dd −+ −=
##

!
#

, 1,0leg FF
##

= , m = m4, and 04 rrr
###

−= .  For simplicity, Mji denotes 
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last equation (Eq. A7e) follows directly from Eq. A2 by subsequently subtracting (Eq. A2a) with

i = 1, 2, 3 from (Eq. A2b). With given torques M01, M12, M23 as functions of the leg configuration

ϕ1, ϕ2, ϕ3 one can solve the system (Eqs. A7b-e) of five equations for the five unknowns ϕ1, ϕ2,

ϕ3, Fleg,x, Fleg,y at any point in time.
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For forward dynamic integration of equation (Eq. A7a), an initial configuration ϕ1, ϕ2, ϕ3 must

be chosen which fulfils the system (Eqs. A7b-e) in accordance to the torque characteristics

Mij(ϕ1, ϕ2, ϕ3). E.g. using rotational springs (Eq. 8a,b), this can easily be realised by setting the

initial angles to the nominal angles. Then by solving the system (Eqs. A7b-e) at each time step,

the acting force, and therefore, the body mass dynamics can be calculated.

APPENDIX 4: Conditions for the bifurcation point

In case of symmetrical nominal angle setup ϕ0 = 0
12ϕ = 0

23ϕ  the stiffness equilibrium (RC = Rλ)

leads to a symmetrical solution (ϕ12 = ϕ23) of the torque equilibrium (Eqs. 5, 6) which might be

crossed by an odd solution. The intersectional point between these solutions of Q(ϕ12, ϕ23) = 0 is

called a bifurcation point which is determined by the condition 0),(Q 2312 =ϕϕ∇ ϕ
#

$
. It represents a

saddle point of the Q-function within the configuration space. The components of the gradient

can be expressed for the three segment system as:
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In general a bifurcation can be found in an asymmetric nominal angle setup if RC is properly

adapted. Therefore, the solutions of 0),(Q 2312 =ϕϕ∇ ϕ
#

$
together with Q(ϕ12, ϕ23) = 0 do not merely

provide the bifurcation point ϕB,12, ϕB,23 but also the corresponding stiffness ratio RC.

For symmetrical loading (ϕ = ϕ12 = ϕ23 with ϕ0 = 0
12ϕ = 0

23ϕ  and RC = Rλ) the two equations for

the condition 0),(Q 2312 =ϕϕ∇ ϕ
#

$
(Eq. A8a,b) become linearly dependent and can therefore be

simplified to one equation. In the case of rotational springs at the joints (Eq. 8a,b) this leads to:

0)(cos)(sin 0
2
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0 =ϕ−ϕ⋅





λ
λ+λ−ϕ+ϕ−ϕ⋅ϕν ν−ν . (A9)

For ϕ ≠ ϕ0 this explicitly defines the nominal angle ϕ0 as a function of the bifurcation angle ϕB,

the relative length of the middle segment λ2 and the exponent of the torque characteristic ν:

B
B2

B
B0 cos

sin)( ϕ+
ϕ−Λ

ϕν=ϕϕ (A10)
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with Λ2 = (1−λ2) / λ2. This function implicitly defines all bifurcations ϕB that are present for a

given nominal angle ϕ0 (see Fig. 5 in results).

For λ2 < 1 / 2 there is always at least one bifurcation. For λ2 > λ2,Crit(ν) there may be additional

bifurcations (one or two) if ϕ0 is larger than the critical ϕ0(λ2,Crit(ν)). To identify the criteria for

multiple bifurcations we consider the local extremes of ϕ0(ϕB) which are given by

0coscos)2v( B
2

B2
2
2

B

0 =ϕ+ϕ−Λ+ν−Λ=
ϕ∂
ϕ∂ , (A11)

yielding the solutions:

2
4)4()2(

cos
2
22

Extr,B
ν+−ννΛ±ν−Λ

=ϕ . (A12)

Vanishing of the square root defines a condition for a critical λ2,Crit(ν) where additional

bifurcations within 0 ≤ ϕ ≤ π may appear (see Fig. 7):

4/1
11

1)(Crit,2

ν−
+

=νλ . (A13)

For λ2 ≥ λ2,Crit and λ2 < 1/ν (Fig. 8) an additional type II-bifurcation appears in the configuration

space if the nominal angle ϕ0 is greater than an angular threshold ϕ0,Crit(λ2, ν) (Fig. 6). This

critical angle results from ϕ0(ϕB) (Eq. A10) with cos ϕB,Extr = BA −  (Eq. A12; Figs. 5, 7).
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TWO-SEGMENT MODEL WITH ONE LEG MUSCLE

IV
Leg stiffness originates from elastically operating leg joints. The torques are actively generated by leg
muscles. At least one leg muscle must be introduced to investigate the interaction between muscle
dynamics and leg operation. The aims of this study were:
(1) To identify optimal jumping techniques taking muscle properties into account.
(2) To identify muscle properties influencing jumping performance.
(3) To estimate the maximal muscular contributions to the passive peak.
A two-segment model based on Alexander (1990) was used to investigate the action of knee extensor
muscles during long jumps. A more realistic representation of the muscle and tendon properties than
implemented previously was necessary to demonstrate the advantages of eccentric force enhancement and
non-linear tendon properties.
During the take-off phase of the long jump, highly stretched leg extensor muscles are able to generate the
required vertical momentum. Thereby, serially arranged elastic structures enlarge the period of muscle
lengthening and dissipative operation, resulting in an enhanced force generation of the muscle-tendon
complex. To obtain maximum performance, athletes run at maximum speed and have a net loss in
mechanical energy during the take-off phase. The positive work done by the concentrically operating
muscle is clearly smaller than the work done by the surrounding system on the muscle during the eccentric
phase.
Jumping performance was insensitive to changes in tendon compliance and muscle speed but was greatly
influenced by muscle strength and eccentric force enhancement. In agreement with a variety of
experimental jumping performances, the optimal jumping technique (angle of attack) was insensitive to
the approach speed and muscle properties (muscle mass, muscle fibre to tendon cross-sectional area,
relative length of fibres and tendon). The muscle properties restrict the predicted range of the angle of the
take-off velocity.

MUSCLE DESIGN AND TECHNIQUES OF THE LONG JUMP
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SYMBOLS

α leg angle
α0 angle of attack (leg angle at touch-down)
αopt optimal angle of attack resulting in maximum

predicted jumping distance
ACE physiological cross-sectional area of muscle

fibres
Af physiological cross-sectional area of muscle

belly (CE and PE)
APE physiological cross-sectional area of parallel

element
At physiological cross-sectional area of serial

tendon element (SE)
CE contractile element
c1...c4 constants in the stress-strain relationship of the

elastic elements (SE and PE)
d moment arm of the ground reaction force
ε strain

MAXε" maximum muscle fibre strain rate
εC critical strain dividing the non-linear and linear

behaviour of the tendon
ϕ knee angle
ϕ0 initial knee angle at touch-down
FCE muscle fibre force
FG ground reaction force
FG,EXP experimentally measured ground reaction force

from Seyfarth et al. (1999)
FG,MOD modelled ground reaction force
FMAX maximum isometric force of muscle fibres
FMTC muscle force
FECC maximum eccentric force of muscle fibres
FPE force of parallel elastic element
FSE force of serial elastic element
G constant in Hill-equation (Eq. A1)
g gravitational acceleration
! length of each leg segment

!f length of the muscle belly (CE and PE)
!LEG leg length, distance between point of

ground contact and hip
!MTC reference length of the muscle-tendon

complex
!opt optimum fibre length
!t length of serial tendon (SE)
m point mass at the hip
mMTC mass of muscle-tendon complex
MTC muscle-tendon complex
NECC eccentric force enhancement

(FECC / FMAX)
PE parallel elastic element
r moment arm of the patella tendon
ρMTC density of muscle-tendon complex
RA ratio of cross-sectional areas (Af / At) of

the muscle
R! relative fibre length (!f / !MTC)
SE serial elastic component
σ stress
σMAX maximum isometric stress of muscle

fibres
v0 approach velocity
v0,X, v0,Y horizontal and vertical coordinates of the

touch-down velocity
vCE muscle fibre lengthening velocity
vMAX maximum shortening velocity of muscle

fibres
VMTC volume of the muscle-tendon complex
vE,X, vE,Y horizontal and vertical coordinates of the

take-off velocity
x, y horizontal and vertical co-ordinates of

the point mass
xE, yE co-ordinates of the point mass at take-off
xJD jumping distance

INTRODUCTION

Fast saltatoric movements such as human running or jumping are characterised by alternating

flight and contact phases. The general dynamics of the body during ground contact

represented by the centre of mass trajectory is expressed by the pattern of the ground reaction

forces and determines the subsequent flight phase.

Several experimental investigations of the long jump can be found in the literature (e.g.

Luhtanen and Komi, 1979; Lees et al., 1994; Stefanyshyn and Nigg, 1998). The limiting
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factors for attaining greater jumping distances are the ability to increase running speed (Hay,

1993) and the ability to build up large muscle forces (Alexander, 1990). A causal

understanding of the contribution of different variables to jumping distance requires a

mechanical model of the dynamics during the final support phase before take-off. Obviously,

the long jump is a combination of a spring-like elastic operation of the leg and a hammer-like

landing shock (Witters et al., 1992). An inverse dynamics approach to the running long jump

(Stefanyshyn and Nigg, 1998) used only low run-up speeds, without special attention to

impact dynamics. A variety of forward dynamic mechanical models have been developed for

human jumps: a mass supported by a simple spring (Alexander et al., 1986; Blickhan, 1989), a

two-segment model with a muscle like-torque generator (Alexander, 1990), a four-segment

model with a number of muscle-like actuators (e.g. Pandy et al., 1990; Bobbert et al., 1996) or

even more detailed models with many more segments and actuators (Hatze, 1981a).

Our goal is to test with a series of models which components are important to describe the

dynamics and optimal techniques for the long jump. In a first step, a close fit between

measured ground reaction forces and the force predicted by a model was achieved (Seyfarth et

al., 1999). This model, an extension of the spring-mass model of Blickhan (1989), was used to

describe the spring-like operation of the supporting leg. It predicted an optimal angle of attack

of approximately 45 − 55° for a leg stiffness of approximately 20 kN/m and an approach

speed of 10 m/s. The optimal angle decreased for a higher approach speed and increased for a

higher leg stiffness, but was not much influenced by the representation of the distal mass. This

model, however, did not take muscle properties into account which, to an unknown extent,

contribute to the time course of the force and may shift optimum strategies.

To investigate the role of the muscles in the long jump, the simple model of Alexander (1990)

was taken as a starting point. Using a Hill-like torque generator and massless legs, his model

predicted the maximum possible approach speed for the long jump to result in an optimal

performance. The predicted optimal angle of attack for maximum jumping performance was

approximately 70 − 75°. To describe the first peak in the ground reaction force, the knee

extensor muscle was characterised by prestretch without eccentric force enhancement and an

extremely high isometric force (approximately 25kN). This resulted in an unrealistic sudden

rise in the ground reaction force. In contrast to experimental findings, the passive and active

peak were not separated by a local minimum.

In the present study, four questions were addressed: (1) To what extent is the spring-like

operation of the leg due to an interaction between leg geometry and muscle-tendon

properties? (2) To what extent can a highly activated knee extensor contribute to the first
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force peak? (3) What is the role of elastic components and eccentric force enhancement in

jumping performance? (4) How does jumping performance depend on muscle architecture?

To investigate these issues, a two-segment model was constructed with a Hill-type knee

extensor. The extensor muscle was characterised by eccentric force enhancement and

included nonlinear serial and parallel elastic components. Distal masses can easily mask the

contribution of the musculature under eccentric loading and were therefore neglected in our

model. Moreover, only a minor influence of a distal mass representation on the jumping

technique was found in our earlier long jump model (Seyfarth et al., 1999).

MATERIAL AND METHODS

Experiments

In an experimental analysis of 30 long jumps by 18 sport students, ground reaction forces and

kinematic data were recorded (Seyfarth et al., 1999). The jumping distance was measured as

the shortest distance between the take-off position of the foot tip and the landing pit.

Model of the supporting leg

The upper and lower leg were considered as a chain of two rigid segments, each of length !

and zero mass. Ground contact was assumed to occur at the distal end of the lower segment.

The mass of the jumper was represented as a point mass m at the hip. The distance between

the point of ground contact and the hip was the leg length !LEG. The leg angle α was defined

as the orientation of the leg !LEG relative to the horizontal plane (Fig. 1).

Representation of knee extensor muscles

To describe the operation of the stance leg, at least one knee extensor muscle must be

introduced (Fig. 1). The model of the muscle-tendon complex (MTC) consisted of three

elements: (1) the contractile element CE, described by a Hill-like force-velocity relationship

with an eccentric force enhancement (Appendix 1: Eqs. A1, A2); (2) a parallel elastic

component PE; and (3) a serial elastic component SE. Both elastic elements were

characterised by a nonlinear stress-strain relationship (Appendix 2: Eq. A4). Muscle belly

force FCE +FPE was equal to the serial tendon force FSE.

During the contact phase, the knee extensor muscle was assumed to be fully activated and had

a constant moment arm r at the knee joint. The resulting torque was in equilibrium with the

moment generated by the ground reaction force, FG, with the corresponding variable moment
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arm d (Fig. 1, Eq. A5). As distal masses and the foot were neglected, the orientation of the

force generated by the leg, i.e. the ground reaction force, was always identical to the leg

angle α.

Fig. 1 Two-segment model. Each leg segment is of length ! and zero mass. The supported body is
represented by a point mass m at the hip. One extensor muscle is acting at the knee joint with
constant moment arm r. Muscle force FMTC is equal to the serial tendon force FSE and the sum of
the forces produced by CE and PE (FCE+FPE). The leg orientation is described in terms of the leg
angle α and the knee angle ϕ. The leg length !LEG is the distance between the point of ground
contact and the hip. The distance d is the moment arm of the ground reaction force FG.

Initial conditions and model variables

The position of the point mass m at touch-down was described by the angle of attack α0 and

the knee angle ϕ0 (α0 approximately 60 − 65°, ϕ0 approximately 165 − 170°; Lees et al.,

1994). For elite long jumpers, the initial velocity v0 is approximately 10 − 11 m/s and has only

a small vertical component (less than 1m/s; Hay et al., 1986). For an average male athlete, a

body mass of 80 kg was assumed (Luhtanen and Komi, 1979).

The height of the centre of mass is approximately 1 m for an upright standing 1.8 m tall male

human (Alexander, 1990). A slightly longer leg (segment length ! = 0.6 m) was assumed

because (1) the centre of rotation during ground contact shifts form the heel to the ball of the

foot and (2) the leg (including the foot) is almost stretched at touch-down and take-off.

hip
m

!

r

knee

FPE

FSEd

FMTC

ϕ

!LEG

αααα

FCE

FG
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Muscle design

The MTC was represented by the CE and two elastic components SE and PE (Fig. 1). Its mass

mMTC was not included within the calculations of the dynamics. The reference length of the

MTC (!MTC) was approximately the length of the real leg segment (0.5 m). The muscle design

was described by (1) the ratio R! of the fibre length !f to the total MTC length !MTC :

R! = !f / !MTC  and (2) the ratio RA of the physiological cross-sectional area of the muscle

fibres Af to the serial tendon cross-sectional area At : RA = Af / At.

Assuming an average MTC density ρMTC of approximately 1100 kg/m3 (Spector et al., 1980;

Winters and Woo, 1990), the geometry of the fibres and tendons (cross-sectional areas and

lengths) could be expressed in terms of mMTC,  RA and R! (Eqs. A8 and A9, Appendix 4). The

cross-sectional area of the parallel element APE accounted for a small part (1%) of the muscle

fibre area Af, the remaining area belonged to the fibres themselves: ACE = 0.99 Af.

The maximum isometric force of the muscle fibres FMAX was defined assuming a muscle fibre

maximum isometric stress σMAX of 300 kPa (Alexander and Vernon, 1975; Close, 1972;

Eq. A3). The maximum shortening velocity vMAX is the product of the fibre length !f and the

maximum fibre strain rate MAXε"  and was assumed to be 14 !f ⋅s-1 (Spector et al., 1980).

In reality, the moment arm d of the ground reaction force is much shorter than described in a

two-segment model (Fig. 1). After the first 40 ms of the ground contact, the centre of pressure

shifts from the ankle joint to the ball of the foot. Therefore, to generate realistic values of the

ground reaction force an unrealistically high maximum isometric muscle force FMAX of

approximately 13 kN had to be assumed (see also Alexander, 1990).

Numerical procedure

The trajectory of the point mass, given by the leg force and the gravitational force, was

obtained by integrating the equations of motion (Eqs. A6 and A7) numerically with a constant

time step (0.01 ms). The calculation was terminated at the instant of take-off, i.e. when the

ground reaction force became zero. The resulting jumping distance was calculated assuming a

frictionless parabolic flight trajectory and landing at the intersection of the centre of mass

trajectory with the ground (Eq. A10).
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Parameter studies

The optimal angle of attack αopt leading to a maximum jumping distance was investigated

with respect to (1) the running speed at touch-down v0, (2) the total MTC mass mMTC, (3) the

ratio of muscle fibres to serial tendon cross-sectional areas RA, and (4) the relative fibre length

R!. During take-off phase, a maximum activation of the muscle was assumed because this

resulted in the longest jumps and agrees with experimental observations (Kyröläinen et al.,

1987).

RESULTS

Forces and work output by muscle and leg

Fig. 2A shows an example of predicted force patterns (modelled ground reaction force FG,MOD

and MTC force FMTC,MOD) due to a fully activated knee extensor muscle compared to a

measured ground reaction force FG,EXP of a 6.9 m jump at 9 m/s approach speed from Seyfarth

et al. (1999). This curve can be taken as an example for the other tracings. The simulated

jump resulted in a jumping distance of 6.3 m at an angle of the take-off velocity of

approximately 14° (measured angle: 21°).

No preactivation was assumed before the moment of touch-down. The general pattern of the

predicted dynamics agreed with the experimental result. In both cases, a sharp rise in ground

reaction force (first peak) was followed by a prolonged force at a lower level (second peak),

but the two peaks were not separated by a local minimum in the simulation. In Fig. 2A, the

measured force curve starts 10 ms earlier than the simulated curve because there was no

segment representing the foot in the model that would be decelerated first (Seyfarth et al.,

1999).

The predicted muscle force had achieved the maximum value by 15 ms after touch-down,

when the muscle fibres were at their maximum stretching velocity. The serial tendon had a

positive strain during the whole ground contact period (SE in Fig. 2B). It was stretched

rapidly immediately after touch-down, shortened very slightly during the next approximately

30 ms (plateau phase) and shortened continuously over the second half of ground contact. The

muscle fibres were shortening during the first few milliseconds and during the last 35 ms

before take-off (CE in Fig. 2B), when the muscle force was less than the maximum isometric

force FMAX (neglecting the force of the parallel elastic element). During most of the ground

contact period (approximately 10 − 80 ms), the muscle fibres were lengthening and therefore

absorbing energy.
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Fig. 2 Dynamics of the two-segment model.
(A) Predicted ground reaction force FG,MOD
compared with an experimental result FG,EXP
(taken from Seyfarth et al., 1999) and
predicted internal muscle force FMTC,MOD.
(B) Strain ε of contractile element (CE) and
serial tendon (SE) during ground contact.
Concentric contraction takes place only
within the first 10 ms and within the last 30
ms. Lengthening of the muscle-tendon
complex (MTC) is largely taken up by
tendon elongation (see below: R!).

Model variables (for definition see list of
symbols): m = 80 kg, ! = 0.6 m,
mMTC = 4 kg, !MTC = 0.5 m,  σMAX = 300 kPa,
RA = 100, R! = 16% (!f = 0.08 m); initial
variables: v0,X = 9 m/s, v0,Y = −0.4 m/s,
α0 = 60°, ϕ0 = 170°.

Due to a high ground reaction force (up to approximately 5 kN) during the first 20 ms of

ground contact, the leg showed a negative work loop (Fig. 3B). After maximum knee flexion,

the path of the force-length curve was almost linear (Fig. 3B) in contrast to the nonlinear

operation of the extensor muscle (MTC, Fig. 3A). The total energy lost (approximately 280 J,

i.e. 44 % of the total muscle work or 9 % of the initial kinetic energy) was absorbed by the

muscle fibres (Fig. 4).

The shape of the CE work loop was almost rectangular (Fig. 3A). Only 8 % of the energy

transferred to the CE was given back to the point mass during the concentric phase (Fig. 4). In

contrast, in the SE approximately 80 % of the stored energy was reusable as mechanical

energy. The remainder was absorbed by the CE.
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Fig. 3 Predicted work loops of (A) the
muscle-tendon complex (MTC)
including the contractile element (CE),
serial element (SE) and parallel element
(PE), and (B) the supporting leg
according to the situation in Fig. 2. Leg
shortening is defined as difference of
actual leg length !LEG to the leg length at
the instant of touch-down. (B) During
lengthening the leg shows almost linear
behaviour. The small circles represent
the transitions between shortening and
lengthening.

Fig. 4 Predicted power delivered by
muscle tendon complex (MTC) with the
contractile element (CE), serial element
(SE) and parallel element (PE). Power is
largely absorbed by the tendon (SE) and
the muscle fibres (CE) during the first
half of the step whereas only the tendon
delivers power during take-off.

Optimal jumping techniques

Approach speed and angle of attack. In Fig. 5, the influence of the angle of attack α0 and the

running speed v0 on the jumping distance, the percentage of mechanical energy of the point

mass at take-off relative to the instant of touch-down, and the angle of the take-off velocity is

shown. For high approach speeds (greater than 6 m/s), the optimal angle of attack

(approximately 65 − 70°) was insensitive to the approach speed (Fig. 5A). The change in
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mechanical energy during the take-off phase was approximately ± 5 % while using an optimal

angle of attack (Fig. 5B). For running speeds greater than 5 m/s optimal performance required

a net loss of energy. At lower approach velocities, the leg generated net positive work for

optimal performance. This required optimum angles of attack that were steeper than 70°

(Fig. 5B).

The angle of the velocity vector at take-off relative to the horizontal plane (take-off velocity

angle, Fig. 5C) increased for decreased angles of attack if the running speed was less than

8 m/s. At higher speeds, the angle of take-off velocity was insensitive to the angle of attack or

even decreased slightly for small angles of attack.

40 60 80
4

5

6

7

8

9

10

11

12

angle of attack (deg)

ap
pr

oa
ch

 sp
ee

d 
(m

/s
)

Jumping Distance (m)

3

4

5

6

7

8

2

A

40 60 80
4

5

6

7

8

9

10

11

12

angle of attack (deg)

ap
pr

oa
ch

 sp
ee

d 
(m

/s
)

Take off energy  
Touch down energy

60

70

70
80

80

80

90
90

90

10
0

10
0

10
0

B

40 60 80
4

5

6

7

8

9

10

11

12

angle of attack (deg)

ap
pr

oa
ch

 sp
ee

d 
(m

/s
)

Take-Off Angle (deg)

10

20

30
40

50

60
80

C(%) 
Fig. 5 Influence of the angle of attack at
touch-down α0 and the approach speed v0 on
(A) the jumping distance (contour lines, in m),
(B) the percentage of take-off to touch-down
mechanical energy (contour lines, in %), and
(C) the angle of the velocity vector at take-off
relative to the horizontal plane (contour lines,
in degree). The optimal angle of attack
(65 − 70°) for the long jump is insensitive to
the approach speed for velocities higher than
6m/s. The optimal jumping distance (A) is
achieved with a nearly complete energy
recovery (B). At high running speeds only flat
take-off velocity angles can be realised (C)
and flatter angles of attack do not lead
necessarily to steeper take-off angles. Model
variables are given in Fig. 2, in all studies the
vertical touch-down velocity was zero.

40 60 80
1

2

3

4

5

6

7

8

9

10

11

angle of attack (deg)

m
us

cl
e 

m
as

s m
M

TC
 (k

g)

Jumping Distance (m)
R

A
=100, R

l
=0.16

5

6

7

8

4

A

40 60 80
20

40

60

80

100

120

140

angle of attack (deg)

ra
tio

 m
us

cl
e 

fib
re

 to
 te

nd
on

 a
re

a 
R A

Jumping Distance (m)
m

MTC
=4 kg, R

l
=0.16

6.5

65.5
5

B

40 60 80

5

10

15

20

25

30

35

40

angle of attack (deg)

re
la

tiv
e 

fib
re

 le
ng

th
 R

l (%
)

Jumping Distance (m)
m

MTC
=4 kg, R

A
=100

8

7

6

5

4

C Fig. 6 Influence of the angle of attack at
touch-down α0 and (A) the total muscle mass
mMTC, (B) the ratio of fibre to tendon cross
sectional areas RA, and (C) the relative fibre
length R! on jumping distance (contour lines,
in m). Jumping distance depends strongly on
muscle mass (A) and much less on the
partitioning between elastic and contractile
tissues (B, C). The optimal angle of attack
(65 − 70°) is largely insensitive to the muscle
mass mMTC (A), slightly dependent on the ratio
of the cross-sectional areas RA (B), and the
relative fibre length R! (C). For longer fibres
(larger R!) the optimum for α0 becomes more
pronounced. Model and initial variables are
given in Fig. 2, in all studies the vertical
touch-down velocity was zero.



André Seyfarth: Elastically operating legs – Strategies and Construction Principles

71

The influence of the initial knee angle ϕ0. Compared to the situation in Fig. 2 (initial knee

angle 170°), a smaller knee angle ϕ0 led to a shorter jumping distance (for ϕ0 = 160° a

difference of −19 cm and for ϕ0 = 150° a difference of  −38 cm) and a decreased angle of

take-off velocity (for ϕ0 = 160° a difference of  −2° and for ϕ0 = 150° a difference of −4°).

Nevertheless, the percentage of the take-off to touch-down mechanical energy increased for

smaller knee angles ϕ0 (for ϕ0 = 160° a difference of +1.7 % and for ϕ0 = 150° a difference of

+3.2 %).

Optimal muscle design

Muscle design and angle of attack. The influence of the angle of attack and the total muscle

mass mMTC,  the ratio of muscle fibres to tendon cross-section area RA, and the relative fibre

length R! on the jumping distance is shown in Fig. 6.

Keeping the architectural variables (RA, R!) constant, the muscle mass determined the

maximum force exerted by the leg and had a strong influence on the jumping distance

(Fig. 6A). For masses higher than 4 kg, the optimal angle of attack (approximately 65°) was

fairly insensitive to changes in muscle mass. Note that the muscle mass is not part of the

accelerated mass, it simply represents the volume of the musculature.

For a realistic ratio of the fibre to tendon cross-sectional area of approximately 100 (Winters

and Woo, 1990; Pierrynowski, 1985) the optimal angle of attack was approximately 65 − 70°

(Fig. 6B). At high ratios (RA > 140) and angles of attack less than 65° slightly higher distances

can be achieved. The muscle can produce higher forces and the tendon becomes more

compliant. In contrast, for thick tendons (RA < 30) this optimum shifted to steeper angles

(more than 70°). However, the jumping performance was not influenced much by RA.

The influence of the length ratio R! proved to be more complex (Fig. 6C). Very short muscle

fibres (R!  = 1 %) led to unrealistically large jumping distances (for humans more than 9 m at

9 m/s approach speed) at realistic optimal angles of attack αopt of 60 − 65°. A relative fibre

length of approximately 5 % predicted the smallest αopt of approximately 60° and a jumping

distance of approximately 9 m. For longer fibres, αopt increased. For example, at R! = 15 % a

realistic jumping distance (6.7 m) with an αopt of 65 − 70° was calculated.

Compared to the situation in Fig. 2, the predicted jumping distance was quite insensitive to

changes in maximum shortening speed of the muscle fibres vmax (less than 1% change in

distance for twice or half the original speed). Halving or doubling of the tendon compliance
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led to a surprisingly small change in jumping distance (less than 3%) as well. Thus, jumping

distance is insensitive to muscle speed and the serial tendon compliance.

In contrast, changes of the total MTC mass mMTC (to 50 % or 200 %), of the maximum

isometric muscle fibres stress σMAX (to 50 % or 200 %), and of eccentric force enhancement

NECC (defined as the ratio between maximum eccentric force FECC to maximum isometric

force FMAX; from 1.8 to 1.4 or 2.2, respectively), led to a considerable change in jumping

distance (mMTC: −24 % or +25 %, σMAX : −22 % or +35 %, NECC: −8 % or +8 %). Thus,

jumping distance is sensitive to muscle strength and to eccentric force enhancement.

DISCUSSION

The model presented here predicted the angle of attack used in long jump to be insensitive to

running speed (> 6 m/s) and muscle design. The angles agreed with the experimental

observations of Seyfarth et al. (1999) within a range of approximately 5°. Furthermore, the

model gave a reasonable explanation of why long jumpers use relatively low angles of the

take-off velocity and of the extent to which they take advantage of energy losses in leg

muscle. Although the model was very simple, it provided insights into muscular dynamics at

high stretching velocities and the contribution of a fully activated knee extensor muscle to the

shape of the ground reaction force time series in running and jumping.

To what extent is the spring-like operation of the leg due to an interaction of leg geometry and

muscle-tendon properties? Due to relatively short muscle fibres (R! = 0.16) and high muscle

activation (shown experimentally by Kyröläinen et al., 1987) lengthening of the muscle-

tendon complex largely takes place within the serial tendon. Therefore, the MTC work loop

was strongly influenced by the J-shaped nonlinear stress-strain curve of the tendon (Fig. 3A).

The geometry function, given by the ratio of ground reaction force to MTC force, was high

for an almost stretched knee joint exactly at the instant where tendon stiffness was low (for

small deflections). Furthermore, during muscle shortening before take-off the maximum force

was decreasing continuously with increasing shortening velocity. This resulted in an almost

linear period of the work loop during unloading (Fig. 3B). The period of linear behaviour

could be extended by elastic components in other leg muscles with more compliant tendons

(e.g. the Achilles tendon) or by reducing the muscle activation just before the active peak as

observed experimentally (Kyröläinen et al., 1987) and it possibly simplifies the control of

jumps.
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In contrast to a spring-mass system with a constant leg stiffness (Seyfarth et al., 1999), a

realistic muscle automatically adapts its stiffness at different leg shortening velocities which

keeps the optimal jumping techniques robust (Fig. 7). Characterisation of this effect requires a

proper description of the muscle eccentric force enhancement together with suitable

compliance characteristics of the serial elastic tendon.

Taking the force-length relationship of the knee extensor into account (Fig. 7), the spring-like

behaviour of the leg would be slightly enhanced. Depending on the initial fibre length !f with

respect to the optimal fibre length !opt this leads to a slightly increased dependency of the

predicted optimal angle on running speed (!f = !opt / 1.4 in Fig. 7). Nevertheless, for maximum

performance the muscle was assumed to work at near the maximum (!f > !opt / 1.2) within the

force-length curve.

Fig. 7 Predicted optimal angle of attack for different
approach velocities using (+) a spring-mass model
(leg stiffness: 16 kN/m), (o) the present two-segment
model with one extensor muscle (see Fig. 5), and (×)
the same model extended by an extensor force-length
characteristic with !opt = 1.4 !f where !f is the muscle
fibre length and !opt  is the optimal fibre length.

To what extent can a highly activated knee extensor contribute to the first force peak? How

does jumping performance depend on muscle architecture? In our model, prestretch was

excluded because no antagonist was present. An antagonist muscle would reduce the net knee

torque. Assuming a maximum isometric force of the extensor muscle of 10 kN, a realistic

preactivation of 60 % did not reproduce the high force peak observed experimentally of

approximately 7 − 8 kN (see Fig. 2A). Only the unrealistic assumption of a completely

preactivated extensor without an antagonist produced an appropriate initial peak in amplitude.

The shape of this first force peak was characterised by a rapid rise followed by a steady
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decent similar to that described by Alexander (1990). However, the shape of the curve in

Alexander's (1990) model was not due to force enhancement by eccentric operation of the

muscle but was instead a direct consequence of the geometric conditions and an assumed

prestretch of the series elastic component (geometry function of the leg, see Eq. A5; Van

Ingen Schenau, 1989) which resulted in a rapid rise in ground reaction force (force increases

from zero to maximum within one time step).

So including realistic tendon properties and eccentric muscle load in a model are not

sufficient to describe the initial peak in force. To achieve this inclusion of a combination of

passive properties due to the distributed mass of the system (Seyfarth et al., 1999) and muscle

properties is necessary.

What is the role of elastic components and eccentric force enhancement in jumping

performance? Jumping performance was not much dependent on tendon compliance. At high

approach speeds high eccentric forces are an important feature that increase the vertical

momentum at the expense of mechanical energy loss. This requires stiff tendons to profit from

high stretching velocities immediately after touch-down. In contrast, low tendon stiffness

allows a higher amount of elastically stored energy and results in a prolonged period during

which the activated muscle fibres are stretched. As shown in vertical jumping (Zajac, 1993),

energy storage and muscle work output are compensating effects. Thinner tendons could

improve mechanical efficiency but prevent muscle fibres from making use of high eccentric

forces.

Fig. 8 Experimental analysis of variation in the
chosen angle of attack with jumping distance in 30
long jumps by 18 individuals.



André Seyfarth: Elastically operating legs – Strategies and Construction Principles

75

How does jumping performance depend on muscle architecture? Jumping distance was more

sensitive to changes in length ratio R! than to the ratio of tendon to muscle fibre cross-

sectional areas RA (Fig. 6). Good jumpers benefit from short muscle fibres and long tendons.

This is a well-known architectural feature of animals specialised on jumping (Alexander,

1988; Ettema, 1996). Nevertheless, the optimal angle of attack did not depend much on the

actual muscle design (Fig. 6). Exactly this observation was found in an experimental analysis

of long jumpers with a variety of abilities (Fig. 8).

Furthermore, the maximum muscle velocity vMAX did not play a crucial role in the

performance of the take-off phase because the muscle produces only very little positive work

(Fig. 4). Therefore, maximum performance has been observed for the shortest fibres.

Nevertheless, intrinsic muscle velocity vMAX could have a positive influence on running speed.

Shortcomings of the model and further directions

It was not possible to reproduce accurately the magnitude of the first force peak because no

distributed masses corresponding to those of the supporting leg were included in the present

model (Seyfarth et al., 1999). This results in shorter jumps (-9 %) and somewhat flatter angles

of the take-off velocity (-7°) than observed experimentally.

Furthermore, a foot is not included and thus the sequence of impacts generated by the contact

of the heel pad and the ball of the foot was not represented in our model (see Hatze, 1981a).

The lack of the foot also resulted in unrealistically high muscle forces and a shorter contact

time (Stefanyshyn and Nigg, 1998). Furthermore, plantar flexion, swing leg movement, and

arm lifting lead to a higher take-off position of the body centre of mass (Hay and Nohara,

1990; Seyfarth et al., 1999).

Our model can not simulate the details of prestretch because no antagonists are present and

the segments have zero mass. In reality, preactivation before touch-down is present

(Kyröläinen et al., 1987). This was compensated to some degree by introducing an

instantaneous rise in the activation state.

Very short muscle fibres require a specific muscle architecture (e.g. characterised by large

pennation angles) and reduce the range of muscle lengths over which high forces can be

produced (due to the force-length relationship). This was not included in our model.

The model could be improved by introducing other leg muscles. For example, the biarticular

gastrocnemius muscle couples knee extension to plantar flexion (Van Ingen Schenau, 1989)

and improves the utilisation of the work capacity of the extensor muscle. On the other hand,

through the simultaneous activation of other muscles not spanning the knee (e.g. hip extensors
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and plantar flexors) the net knee torque can be increased (Zajac, 1993). Inclusion of these

muscles and their influence of the operation of the knee extensors is investigated in chapter V.

To keep the tendon strain less than the critical value for rupture, a high stiffness of the serial

tendon had to be assumed. This meant that with a fully activated muscle spring-like sinusoidal

patterns of the ground reaction force were not possible. To represent the spring-like behaviour

during ground contact, additional elastic structures (deformation of the foot, Achilles tendon,

ligaments) should be introduced into the model. With regard to the spring-mass model

(Blickhan, 1989; Seyfarth et al., 1999) the leg can produce only a certain maximum force and

has therefore a limited ability to operate like a spring. Thus, accurate production of the limited

take-off velocity angle of human long jumps can only be achieved by taking the muscle

properties into account.

APPENDIX 1: The force-velocity relationship of the muscle fibres

For shortening (vCE ≤ 0):
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and for lengthening (vCE ≥ 0):
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where vCE is the muscle fibre lengthening velocity, FCE is the muscle fibre force, FMAX is the

maximum isometric force, vMAX is the maximum shortening velocity and G is a constant (here

G = 5) (Van Leeuwen, 1992; Otten, 1987). The muscle fibres maximum isometric stress σMAX

and cross-sectional area ACE determined the maximum isometric force FMAX:

 FMAX = σMAX ACE.       (A3)

APPENDIX 2: Stress-strain relationship of the elastic components:
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where σ is stress, c1-c4 are constants, ε is strain and εC is critical strain . The elastic

components behave nonlinearly until a certain specific critical strain ε ≤ εc and linearly for
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higher strains ε ≥ εC. The exponent c2 was 1.75, the tangent modulus of the linear part c3 was

1.5 GPa. The critical strain εC was 0.035 for the serial tendon and 0.1 for the parallel element

(Van Leeuwen, 1992 referring to measurements of Ker, 1981). The remaining variables c1 and

c4 are calculated from the given variables c2 and c3.

APPENDIX 3: The ground reaction force

The ground reaction force FG caused by the muscle-tendon complex force FMTC was given by:

FG = r FMTC / d, (A5)

where r was the moment arm of the knee extensor muscle and d was the moment arm of the

ground reaction force (Fig.1). During ground contact, the equations of motion of the point

mass m were:

,cos)m/F(x G α−="" (A6)

,gsin)m/F(y G −α="" (A7)

where g is the gravitational acceleration, α is the leg angle, and y,x """" are the horizontal and

vertical accelerations.

APPENDIX 4: Muscle design variables

The ratios RA = Af  / At and R! = !f  / !MTC where Af  and At are the physiological cross-sectional

areas of the muscle fibres and serial tendon, respectively, and !f  and !MTC are the lengths of

the fibres and MTC, respectively, were used to calculate the tendon cross-sectional area using

the total MTC mass mMTC, mean density ρMTC, and the total MTC length !MTC = !f + !t where !t

is tendon length:

( )ttffMTCMTCMTCMTC lAlAVm +ρ=ρ= ,     (A8)

where VMTC is the volume of the muscle-tendon complex. Note that the muscle pennation

angle was neglected in this approach. Introducing the design variables RA and R! we obtain:
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1
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At this stage the subscript f denotes the muscle belly including both the parallel element and

the muscle fibres themselves, whose lengths are identical. The parallel element takes up only

a small part of the cross-sectional area: APE = 0.01 ⋅ Af.

APPENDIX 5: Jumping distance.

Given the take-off variables (position xE, yE and velocity vE,X, vE,Y), from numerical

integration, the jumping distance xJD is:

( ) EEY,EY,E
X,E

JD xygvv
g

v
x +⋅++= 22 .    (A10)
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FOUR-SEGMENT MODEL WITH SIX LEG MUSCLES

V
In this study the origin of spring-like leg behaviour in long jump is addressed. Therefore, a forward
dynamic model of the human musculoskeletal system was used to study the interaction between
segment dynamics and muscle dynamics. The model consists of four rigid segments representing the
upper body (head, both arms, trunk and swing leg: HATL) and the stance leg (foot, shank and thigh)
and six major muscle-tendon complexes (MTCs) acting on the intersegmental hinge joints. Muscle
stimulation STIM(t) was optimised for maximum jumping distance whereas each muscle was allowed
to switch on only once.
This allowed us to investigate the following aspects:
(1) To what extend is spring-like operation supported by inherent MTC properties?
(2) How is spring-like operation supported by segmental arrangement during leg loading?
(3) Which effects are contributing to the passive force peak?
It was found that:
(1) Optimising jumping performance leads to spring-like leg behaviour.
(2) Thereby, synchronous and quasi-elastic ankle and knee joint loading occurred.
(3) Leg stiffness is an overall behaviour of the whole body and originates from a synchronised, quasi-

elastic muscle operation reducing intermuscular and interarticular energy losses.
(4) Highly activated MTCs show quasi-elastic behaviour at fast loading speeds due to intrinsic muscle

properties (force-length, force-velocity, activation dynamics) and loading of serial elements.
(5) During passive peak, elastic leg operation was superimposed by distal mass deceleration.

THE ORIGIN OF SPRING-LIKE LEG BEHAVIOUR
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SYMBOLS

AREL Hill parameter corresponding to G = 1 / AREL

BREL Hill parameter with vMAX = BREL / AREL ⋅ !CE,OPT
cij rotational stiffness at a joint connecting segments

i and j
COM centre of mass
dX, dY constants of the foot force-displacement

relationship
∆ϕij angular displacement with respect to a nominal

angle ϕ0,ij

∆! instantaneous amount of leg shortening
∆!(t) = !0 − !(t)

∆x, ∆y horizontal, vertical displacement of the ball of
the foot

MAXε tendon strain at maximum isometric force FMAX

FG ground reaction force
FMLS ground reaction force at maximum leg shortening
FMAX maximum isometric muscle force
FTD muscle force at touch down
FX, FY horizontal, vertical component of the ground

reaction force FG

ϕi orientation of segment i (1: foot, 2: shank, 3:
thigh, 4: HATL) with respect to the ground

ϕij inner joint angle between segments i and j
ϕ0,ij nominal joint angle
G curvature of the force-velocity curve
HATL upper body including head, both arms, trunk and

swing leg
JD jumping distance

kACT mean leg stiffness during active peak
kLEG instantaneous leg stiffness (FLEG / ∆!LEG)
! leg length (distance form the ball to the

centre of mass)
!0 rest length of the leg
!CE muscle fibre length
!CE,OPT optimal muscle fibre length
!SE,0 serial tendon slack length
NPREACT level of muscle preactivation

NPREACT = FTD / FMAX
Mij torque acting at the joint between segments

i and j
MLS maximum leg shortening
MTC muscle-tendon complex

Br# position of the ball of the foot Br# = (∆x,
∆y)

RC stiffness ratio c12 / c23
STIM(t) muscle stimulation, switches from 0 to 1 at

tSTART
STV variation in leg stiffness during active peak
tC contact time
tSTART if tSTART ≥ 0: time where STIM(t) switches

from 0 to 1
if tSTART < 0: level of muscle preactivation
NPREACT = -tSTART

vMAX maximum muscle fibre shortening velocity
vY vertical velocity of the ball of the foot

INTRODUCTION

In the literature many papers are found focussing on the 'leg stiffness' during different

activities and its adaptation to speed and environmental conditions (e.g. Mc Mahon and

Cheng, 1990; Farley et al., 1998). The leg may behave as a spring, but it is not a spring. The

tendons are not compliant enough to account for the joint excursions and consequently the

muscle fibres must lengthen and shorten during the stance phase. But these muscle fibres are

very complex elements which have among other properties a force-velocity relationship

which causes energy absorption. Moreover, there is a highly nonlinear geometry function

involved in the transfer from joint moments to 'leg force'.

This leads to the question: How can such a complex system display spring-like behaviour?

What is causing the increase in force during leg shortening and the decrease in leg force
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during lengthening? Is the spring-like behaviour caused by some ingenious control

mechanisms, or does it simply follow from the intrinsic properties of the system?

In order to study such questions for running with an optimal control model optimisation

criteria are needed. These are complex for this type of exercise. Fortunately, stiffness

behaviour similar to that found in running is found in the long jump, and there is a clear

optimisation goal: the longest jump. There is one drawback: the initial part of the stance phase

is dominated by the impact of the distal segments (chapter II), but with the model this can be

separated out and the 'active' behaviour of the leg itself can be investigated.

In this study the muscle stimulation histories for a forward dynamic model that represents the

salient properties of the real system were optimised using the jumping distance as

optimisation criterion. If it turns out that the optimal solution displays spring-like behaviour,

subsequently the origins of this behaviour can be identified.

METHODS

Experimental data.

To acquire initial conditions for simulations and to evaluate simulation results, kinematic data

(Fig. 1A) and ground reaction forces (Fig. 2B) obtained from 18 sport students performing

long jumps were used. These data were collected in a study described elsewhere (Friedrichs et

al., in prep.; Seyfarth et al., 1999). In total, 30 long jumps were analysed. Jumping distance

was defined as the shortest distance between the take-off position of the tip of the foot and the

rear end of the landing pit.

Planar model of the human body.

For simulations the two-dimensional forward dynamic model of the human musculo-skeletal

system shown in Fig. 1B was used. The model, which calculates the motion of body segments

corresponding to muscle stimulation input, was based on a model described in detail

elsewhere (Van Soest and Bobbert, 1993). It consisted of four rigid segments representing the

right foot, lower leg, upper leg (the right leg was used in the one-legged push-off) and a

HATL segment representing head, arms, trunk and left leg. These segments were

interconnected in hinge joints representing hip, knee and ankle joints. The orientation of the

segments (angles ϕi, i=1...4) defines the joint angles (ϕij). The contact between the ball of the

foot ( Br
# ) and ground was described by two nonlinear force functions:
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where ∆x and ∆y were the horizontal and vertical displacements of the ball of the foot, vY was

the vertical ball velocity divided by 1 m/s, dX and dY were constants (dX = 5⋅106
 N/m4 and

dY = 107
 N/m3) and 'sgn' denotes the signum function (chapter II). Heel contact was described

by fixation of the foot rotation (ϕ1 = const) resulting in a negative external moment at the ball

of the foot M01. If the ball torque became positive (M01 > 0) the unilateral constraint ( 01 =ϕ"" )

was cancelled (for notation see Fig. 1 in chapter III).

In the skeletal submodel, the following six major muscle-tendon complexes (MTCs)

contributing to extension of the lower extremity were embedded: hamstrings (HAM), gluteus

maximus (GLM), rectus femoris (RF), vasti (VAS), gastrocnemius (GAS) and soleus (SOL).

A Hill-type muscle model was used to represent each of these six MTCs. It consisted of a

contractile element (CE), a series elastic element (SE) and a parallel elastic element (PE), and

was also described in full detail elsewhere (Van Soest and Bobbert, 1993). Behaviour of SE

and PE was determined by a nonlinear force-length relationship. SE was characterised by a

slack length !SE,0 (Tab. 1) and a maximum strain εMAX = 0.04 corresponding to the maximum

isometric muscle force FMAX. Behaviour of CE was more complex: contraction velocity

depended on active state, CE length, and force, with force being directly related to the length

of SE. This length could be calculated at any instant from the state variables CE lengths and

joint angles, because the latter directly determine MTC lengths. Following Hatze (1981b) the

relationship between active state, representing the fraction of cross-bridges attached, and

muscle stimulation STIM was modelled as a first order process. STIM, ranging between 0

and 1, is a one-dimensional representation of the effects of recruitment and firing frequency of

α-motoneurons.

Because in this study only one-legged push-offs with the stance leg were investigated, a

decision had to be made concerning the behaviour of swing leg. It was decided to simply

create one rigid head-arms-trunk-leg segment (HATL), so that only the muscles of the stance

leg could be used for the push-off. To set parameter values of the HATL segment, the trunk

moment of inertia was scaled by taking the masses of the remaining body segments into

account. To meet the strength of long jumpers the maximum isometric force of the muscles of
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the right leg were set to 65% of the values used for two legs in vertical jumping (Tab.1 and

Fig. 1B; Van Soest and Bobbert, 1993).

MTC SOL GAS VAS RF GLM HAM
FMAX (N) 5200 2600 5850 1950 3250 2600
!CE,OPT (m) 0.055 0.055 0.093 0.081 0.2 0.104
!SE,0 (m) 0.2356 0.376 0.16 0.34 0.15 0.37

!CE,OPT / !SE,0 1 : 4.28 1 : 6.84 1 : 1.72 1 : 4.2 1 : 0.75 1 : 3.56

Tab. 1 Specific parameters of the six leg muscles (adapted from: Van Soest, 1992).

Optimisation of STIM(t)

For each of the conditions to be studied, a dynamic optimisation had to be formulated.

Dynamic optimisation of maximum height jumping was studied in its full complexity by

Pandy et al. (1990). Partly based on their results, the following restrictions were imposed on

STIM: First, STIM was allowed to take on either the initial value of zero or the maximal

value of 1.0. Second, STIM was allowed to switch to the maximum value just once, and

thereafter had to remain maximal until take-off. Under these restrictions, STIM(t) of each of

the six muscle groups of the push-off leg is described by a single parameter: the instant tSTART

at which it switches from initial value to its maximal value. Third, an initial level of

preactivation was allowed for touch-down. The preactivation level NPREACT was defined as the

ratio of the muscle's force at touch-down FTD to its maximum isometric force FMAX.

Preactivation was included into the optimisation of STIM(t) by interpreting negative STIM

inset times (tSTART < 0) as a positive level of preactivation at touch-down. The optimisation

problem is thus reduced to find the combination of six switching times that produces the

maximum jumping distance JD calculated as the distance between the ball position at take-off

and the intersection of the ballistic flight trajectory with the ground (details in chapter II

and IV).

Leg stiffness and joint stiffness

The leg length ! is given by the distance of the ball of the foot to the body centre of mass

(COM). The rest length of the leg !0 is defined by the leg length where leg force is zero. If the

leg length varies between touch-down and take-off an instantaneous representation of !0(t)

may be required to fulfill zero forces at both conditions (Seyfarth et al., 1999). The difference

of the actual leg length !(t) to the rest length !0(t) defines the leg shortening ∆! = !0 − !. This
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allows to define the instantaneous leg stiffness kLEG given by the ratio of the amount of the

ground reaction force FG to instantaneous amount of leg shortening ∆! (Seyfarth et al., 1999):

)t(
)t(F

)t(k G
LEG

!∆
= . (2)

This is a generalisation of the leg stiffness which fits to the leg stiffness at maximum leg

shortening kMLS = FMLS / ∆!MLS assuming that the highest active leg force occurs at maximum

leg shortening (e.g. McMahon and Cheng, 1990; Farley et al., 1993). A constant leg stiffness

kLEG(t) represents an ideal linear spring. In reality, increasing or decreasing stiffness time

series may occur (Fig. 3C) denoting higher force during either leg shortening or lengthening.

During active peak (0.3−0.9 tC), the constancy of the leg stiffness kLEG(ti) was characterised

by the stiffness variation STV given by

))t(k(mean
))t(k(SD

STV
iLEG

iLEG= , (3)

where discrete time steps ti were assumed (0.3 tC < ti < 0.9 tC). At joint level, the ratio of the

joint torque Mij to the corresponding joint angular displacement ∆ϕij = ϕ0
ij − ϕij defined the

instantaneous joint stiffness:
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ij
ij ϕ∆

= . (4)

Here again the nominal angle ϕ0
ij was given by the angular positions at touch-down and take-

off. Similar to the rest length of the leg !0, differences may also be present in the angular

configurations between touch-down and take-off. Therefore, an assumption had to be made.

The simplest approach is to postulate linear changes of the nominal positions with respect to

time (chapter II). Changes in nominal joint configurations were postulated the first time in

Feldman's equilibrium point hypothesis (1966). Thereby, the spring-like muscle operation was

reduced to two control parameters: a stiffness and a nominal position (reviews in Winters,

1995 and Gielen et al., 1995).

As joint torques do not necessarily vanish at touch-down or take-off infinite joint stiffnesses

may be present at this situations, e.g. if muscular preactivation is assumed. The ratio of ankle

to knee rotational stiffness defines the instantaneous stiffness ratio RC:
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The adjustment of the rotational stiffnesses to nominal configurations and the segment length

design is discussed in detail in chapter III.

Numerical procedure

The equations of motion of the four-segment system together with the additional equations

representing the internal muscle dynamics were integrated using a numerical variable order

Adams-Bashforth-Moulton solver (ode113 in Matlab, The Mathworks). The optimisation

algorithm (fmins in Matlab, The Mathworks) used the simplex search method of Lagarias et

al. (1997).

RESULTS

Experimental data

In the experiments distances between 3.78 and 6.90 m were observed. The contact times

varied between 120 and 176 ms. The leg kinematics during the take-off phase of a long jump

is shown in Fig. 1A. Hereby, the best jump was taken as an representative example of a long

jump for further investigation as the optimised performance is considered in the simulation

study.

Fig. 1 Kinematics of the take-off phase of a 6.9 m jump. (A) Experimental centre of mass position
(+) and segment orientation defined by ball, ankle, knee, hip and shoulder landmarks. (C) Output
of the simulation using a four-segment model (B) optimised for jumping distance.
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The stance leg touched down with a knee angle of approximately 160° and an angle of attack

(orientation of the leg with respect to the ground) of about 61 degree. During the ground

contact knee and ankle joints were bent by about 30° before they returned to the stretched

position at take-off. The centre of mass moved to a forward upper position with respect to the

trunk (Fig. 1A) mainly due to the arm and swing-leg movement (not shown in this figure).

The tracing of the ground reaction force corresponding to the selected jump in Fig. 1A is

shown in Fig. 2. A first high force peak (4000 − 8000 N) was observed within the first

30 − 40 ms followed by a prolonged second peak. The sinusoidal second force peak reached a

maximum of 2500 − 4500 N at about half contact time (chapter II, Friedrichs et al., in prep.).

The experimental tracing of the leg force-length relationship is shown in Fig. 3A. After the

first peak, a steady descend of the leg force with increasing leg length was found. The leg

length increased by about 12.6% from touch-down to take-off. The instantaneous leg stiffness

kLEG(t) (Fig. 3B, C) showed a maximum during passive peak which was 3 to 8 times higher

than the leg stiffness during active peak (kACT = 16.6 ± 3.0 kN/m). The instantaneous leg

stiffness varied by STV = 6.6 ± 3.7% during this time (0.3 − 0.9 tC).

Fig. 2 Simulated and experimental ground
reaction forces of a 6.9 m jump
corresponding to Fig. 1. In the model
muscle stimulation was optimised for
maximum jumping distance. Predicted
jumping distance: 5.72 m.

Optimal long jump predicted by the model

In the optimal solution all muscles were either already switched on at touch-down (SOL,

VAS, GLM, RF) or completely dropped out during the whole stance phase (GAS and HAM).

The maximum level of preactivation NPREACT was observed in VAS (32%) and SOL (23%),

followed by GLM (12.5%) and RF (7.1%). The remaining biarticular muscles (GAS and
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HAM) did not contribute to the vertical momentum generation. Using the muscular

configuration shown in Fig. 1B and Tab. 1a jumping distance of 5.72 m was predicted.

The predicted segment kinematics (Fig. 1C) was similar to the experimental findings. During

the optimisation process ankle and knee joint kinematics became almost synchronised with a

similar range of flexion (knee: 25°; ankle: 30°). The orientation of the HATL segment aligned

with the leg axis.

The pattern of the predicted ground reaction force was similar to the experimental findings

(Fig. 2). During the passive peak a precise description of the ground reaction force was

achieved. The active force peak had an almost sinusoidal shape with a maximum somewhat

earlier than measured. The contact time was about 115 ms and therefore about 17% shorter

than in the experiment.

    

Fig. 3 (A) Leg force-leg length behaviour and (B) time series of the dynamic leg stiffness kLEG(t)
predicted by the model (kACT = 17.8 kN/m, STV = 15.4%) compared to a measured tracing
(experiment: kACT = 16.4 kN/m, STV = 2.8%) and (C) measured for 30 jumps of 18 athletes with a
large variety of achieved distances (3.8 to 6.9 m). During active peak (0.3−0.9 tC) an almost
constant leg stiffnesses was observed (kACT = 16.6 ± 3.7 kN/m, STV = 6.0 ± 3.4 %). The high
stiffness values during the last milliseconds (C) are an artefact due to the gradual decrease of the
experimental force tracings (Fig. 2).

C

BA
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The predicted leg force-length relationship was characterised by a limited ability of leg

lengthening during the take-off (Fig. 3A). During the active phase a decrease in leg stiffness

was present (Fig. 3B). During the active phase (0.3 − 0.9 tC), the variation in leg stiffness

(STV) took 15.4 % of the mean stiffness kACT = 17.8 kN/m. This was clearly more than

observed experimentally (about 6.6 ± 3.7 %). An almost linear decrease in leg stiffness was

found during the active phase (Fig. 3B).

Fig. 4 Muscular contributions to the
predicted vertical component of the
ground reaction force FY. The force was
recalculated by inverse dynamics using
the predicted joint kinematics ϕi(t)
(Fig. 1) assuming either M01 = 0 and

0rB =""#  ('muscle') or M12 = M23 = M34 =0
('no muscle').
Muscles (represented in M12, M23, M34)
were mainly responsible for the shape of
the active peak. The passive peak was
largely due to distal mass deceleration
(external torque at ball M01 and foot
deceleration Br""

# ).

Muscular contributions to the first peak

In Fig. 4 the vertical component of the ground reaction force was calculated for given joint

kinematics (Fig. 1C). Two different contributions to the centre of mass acceleration were

separated: (1) the role of muscles represented by the joint torques M12, M23 and M34, and (2)

the influence of the body deceleration due to the foot contact represented by the external

torque M01 and the ball acceleration Br""# . The ground reaction force was recalculated by

neglecting either one or the other contributions (zero joint torques or zero external torque and

no foot acceleration). This resulted in a clearly separated active peak due to muscle activity

and a passive peak due to external forces. The passive force peak was largely (about 80%) due

to ball torque M01 which corresponded to the heel pad deformation. In case (2), a negative

force contribution was calculated at the beginning for the ground contact due to the inertial

contributions (re-actio) corresponding to the muscle torques (actio). As the muscle torques

were neglected, only the reaction remained resulting in pulling forces at the ground.
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Dynamics of the muscle-tendon complexes (MTC)

The time series of the leg muscle forces contributing to the long jump (SOL, VAS, RF, GLM)

is shown in Fig. 5. The monoarticular SOL and VAS produced their maximum forces at about

half the contact time. RF had broad maximum of 2.6 kN (1.33 FMAX) at 60 ms after touch-

down.

Fig. 5 Predicted muscle force of SOL,
VAS, RF and GLM during stance phase.
SOL and VAS muscles were
characterised by an almost sinusoidal
force pattern.

Fig. 6 Displacement of (A) SOL, (B) VAS, (C) RF and (D) GLM serial elastic (SE) and contractile elements
(CE) during stance phase with respect to the tendon slack length LSE,0 and the optimal fibre length LCE,OPT.
(A−C) In SOL, VAS and RF extension of the muscle fibres was delayed by about 20 − 30 ms. About 20 − 40 ms
after maximum SE stretch (open circles) the CE reached the maximum displacement (filled circles). (D) In GLM
muscle fibres (CE) were shortening during the whole contact phase.
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CE

CE
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CE
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The force shape of GLM was characterised by an early peak of about 1800 N (0.55 FMAX) at

35 ms after touch-down followed by a steady descend. The highest forces were produced by

SOL and VAS (almost 7000 N, 1.3 and 1.2 FMAX). During the optimisation process these

muscles became more and more synchronised and showed finally an almost identical

sinusoidal force pattern.

Within the MTC's of SOL, VAS and RF the stretch occurred first in the serial elements (SE)

with maximum displacements of about 0.4 − 1 cm (Fig. 6). The contractile elements (CE)

followed the stretch with a delay of 20 − 40 ms and reach their maximum elongations (about

1.5 − 2 cm) in the second half of the stance phase. In all four muscles, muscle fibres were

operating below the optimal fibre length !CE,OPT, i.e. at the ascending branch of the force-

length relationship. The GLM was merely shortening during the whole ground contact.

Fig. 7 Sensitivity of the predicted muscle (VAS) force pattern to (A) optimum fibre length !CE,OPT,
(B) width of the force-length relationship, (C) muscle activation q(t), (D) eccentric force
enhancement NECC, (E) curvature G of the force-velocity function and (F) the maximum
shortening velocity vMAX. Hereby, the predicted fibre length !CE(t) and activation q(t) time sees of
the optimised jump were used. The increase in muscle force and the instant of peak muscle force
were mainly influenced by !CE,OPT, width, q(t) and NECC (A−D). The shape of force descent was
sensitive to G and vMAX (E−F).
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Sensitivity of muscle force to muscle properties (Fig. 7)

The predicted sinusoidal force pattern of the monoarticular SOL and VAS was a consequence

of the chosen muscles parameters (for details: Van Soest and Bobbert, 1993; Van Soest 1992).

To analyse the influence of the different muscle parameters on the predicted muscle force

time series the forces of the VAS were recalculated using the tracings of the muscle fibre

length !CE(t) and of the activation state q(t) obtained in the optimal solution.

The force build-up was mainly influenced by the force-length relationship (!CE,OPT and

width), activation dynamics q(t) and eccentric force enhancement NECC (Fig. 7A-D).

Within the force-length relationship larger optimal fibre lengths !CE,OPT and smaller width

values may result in a steeper slope. Within the force time series (Fig. 7A: !CE,OPT = 10.3cm;

Fig. 7B: width = 0.28) this could synchronise the force peak with the maximum joint

flexion. In both cases a considerable loss in muscle force is observed. Working at the

maximum of the force-length curve (smaller !CE,OPT or larger width value) increased the

forces during leg shortening and midstance but had only little influence on muscle force

during leg lengthening. The increasing activation level (q = 0.31 for t=0) till midstance (q ≈ 1)

supported the continuos force increase during joint flexion. The level of eccentric force

enhancement NECC (i.e. the ratio of maximum eccentric to maximum isometric force) had a

strong influence of the shape of the muscle force during leg shortening and midstance.

Obviously, the shape of the eccentric part of the force-velocity curve supported the almost

sinusoidal form and the magnitude of the muscle force during this period. The first 20 ms no

influence of NECC was found as the fibres were shortening.

The decrease in muscle force was largely influenced by the muscle's force-velocity

characteristic represented by Hill's parameters AREL and BREL corresponding to the curvature

G and the maximum muscle fibre shortening velocity vMAX (detail in chapter IV; Fig. 7E,F).

A steeper decent of the muscle force was observed for higher values for G and vMAX. In

contrast to Fig. 7E, different muscle forces were observed at the end of the ground contact for

changes in the maximum shortening velocity vMAX.



92

Fig. 8 Rotational stiffnesses at ankle
(c12) and knee (c23) joint and stiffness
ratio RC = c12 / c23. During active peak
(0.3−0.9 tC) the stiffness ratio RC was
well above 0.4.

Joint stiffness behaviour (Fig. 8)

At joint level, muscle preactivation resulted in high rotational stiffnesses at knee and ankle

joint (c12, c23) during the first 10 ms after touch-down. After 30 − 40 ms steadily descending

stiffness values of less than 20 Nm/deg (1146 Nm/rad) were observed. During the active

phase (40 − 100 ms) stiffness ratios RC between 0.4 and 0.8 were observed. The first

10−30 ms and at the end of the ground contact (last 10 ms) RC values lower than 0.4 were

found  (Fig. 8).

DISCUSSION

In this study the mechanisms of leg stiffness in long jump were addressed. It was found, that

leg stiffness originates from (1) quasi-elastically operating leg joints (due to muscle

operation) and (2) a synchronised joint kinematics. According to the results of chapter III,

this may result in a spring-like operation of the leg.

Muscle operation in the optimal solution

On knee and ankle joint the strongest monoarticular leg muscles (VAS and SOL) were active.

To gain maximum performance, these muscles had to be fully activated during the whole

stance phase. The level of preactivation at VAS was about 50% higher compared to SOL.

The spring-like torque characteristics at knee and ankle joint were mainly due to the

sinusoidal force pattern of these monoarticular muscles with maximum forces present at about
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half the contact time (VAS 0.43 tC, SOL 0.47 tC). A comparable knee and ankle torque

behaviour was found in an inverse dynamics analysis of the long jump by Stefanyshyn and

Nigg (1998). They observed the highest torques at about midstance: for knee joint at

0.45 − 0.5 tC and for ankle joint at 0.5 − 0.6 tC. With regard to the net joint power curves

(Fig. 7 in Stefanyshyn and Nigg, 1998) a similar quasi-elastic behaviour was found at knee

and ankle joint with absorption during the first half and release in the second half.

The almost symmetric shape of the force patterns was associated with an synchronous flexion

and extension of both joints. This resulted in comparable muscle lengthening tracings for SOL

and VAS (Fig. 6). A similar timing of flexion and extension was found in experimental

studies (Hay et al., 1999; Stefanyshyn and Nigg, 1998).

The biarticular muscles GAS and HAM were dropped out during the optimisation process.

These muscles are less powerful compared to SOL and VAS. Furthermore, they are attributed

to be responsible for the inter-segmental coordination (Van Ingen Schenau, 1989) which in

the present study was completely controlled by the optimisation algorithm. Nevertheless,

these muscles should be active during long jump (Kyröläinen et al., 1987). As shown in

chapter III, a biarticular GAS could guarantee synchronous joint flexion at different landing

conditions.

The action of the two remaining muscles RF and GLM was characterised by a lower level of

preactivation and resulted in an almost parallel alignment of the upper body (HATL-segment)

with the leg axis (Fig. 1C). As a result, only a moderate net power was predicted for the hip

which agrees with the calculations of Stefanyshyn and Nigg (1998). A quasi-elastic operation

was not present at the hip. As the ground reaction force was roughly pointing to the hip (due

to the alignment of the HATL-segment) an existing hip stiffness could not contribute to the

leg stiffness (Farley et al., 1998; chapter III).

The GLM was the only muscle which was only shortening during the ground contact and

supplied energy at the hip joint. A part of this energy could by transferred to the knee by the

biarticular RF which was slightly less preactivated than the GLM. This action of biarticular

muscles could improve the quasi-elastic operation of the knee or ankle joint and should be

investigated in more detail in future.

Importance of muscle and tendon properties on muscle force pattern

The symmetric shape of the force pattern of the monoarticular VAS was a consequence of the

force-length relationship (Fig. 7A, B), the force-velocity relationship (Fig. 7D−F) and the

activation dynamics q(t) (Fig. 7C). The muscle properties taken from the literature (Van Soest

and Bobbert, 1993) proved to be suited to obtain the sinusoidal muscle force tracings.
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The force generation was largely influenced by the force-length relationship, the activation

dynamics and the shape of the eccentric force-velocity relationship. High muscle forces

require to operate near to the optimum fibre length !CE,OPT and high eccentric forces. To

obtain a symmetrical force pattern following situations were favourable:

(1) to operate slightly below the optimal fibre length,

(2) a width of about 0.5 in the force-length curve,

(3) approaching the maximum activation at about midstance,

(4) a considerable force enhancement (NECC about 1.5 or higher),

(5) to reach the maximum shortening velocity vMAX (here 12.7 m/s) at take-off, and

(6) to adapt the curvature G (here 2.44) to the maximum shortening velocity.

The timing of the force peak was largely influenced by !CE,OPT (1) and the width (2) of the

force-length curve. Furthermore, the instant of maximum lengthening velocity had a strong

influence on the instant of maximum muscle force. A compliant serial elastic structure may

delay the fibre lengthening (chapter IV).

The descent of muscle force was mainly influenced by the Hill-parameters (AREL and BREL) or

the maximum shortening velocity and the curvature G, respectively, characterising the force-

velocity relationship.

Requirements to the joint torque characteristics

Quasi-elastic joint operation requires maximum torque to occur at midstance and the same

torques for equal joint configurations during loading and unloading. Monoarticular muscles

are not able to work conservatively if maximum activation is assumed. Even by taking further

serial elastic structure (e.g. aponeurosis) into account this problem can only be solved in part.

As mentioned above, biarticular muscles could be used to transfer energy from more proximal

joints to the knee and ankle joints. For instance, a delayed inset of biarticular GAS resulted in

a reduced variance in leg stiffness, e.g. a more elastic behaviour.

The nonlinearity of the torque characteristic on joint level demanded in chapter III was mainly

a consequence of the nonlinear tendon properties as shown in chapter IV. In this study a

quadratic shape of the tendon stress-strain relationship was implemented. In fact, an exponent

of about 1.7 would be necessary to result in a linear leg length – force relationship in the

segmented system. The exponent of 2.0 resulted in a slightly curved descent (Fig. 3A).

Nevertheless, there are other factors which might influence the exponent of the torque

characteristic such as position dependent moment arms of the leg muscles and intrinsic

muscle properties. For instance, the higher curvature (G = 5) used in chapter IV could

compensate the lower exponent for the tendon stress-strain characteristics (1.75 or 1,
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respectively) during leg lengthening (Fig. 7E). Finally, the action of biarticular muscles could

imply a highly nonlinear increase of joint torque for unequal joint flexion or extension.

The leg stiffness in the optimal solution

The steady descent in the predicted leg stiffness kLEG(t) (Fig. 3B) was a consequence of the

high eccentric work performed by the strongest monoarticular leg muscles (Figs. 5, 6).

Although the length of the serial elastic elements (SE) was merely given by the tendon length

and the contribution of the aponeurosis was neglected (Tab. 1: VAS !SE,0 = 0.16 m; in chapter

IV: !SE,0 = 0.42 m) the previously predicted delay in CE stretch was still present (Fig. 6B).

Nevertheless, the serial elastic structures within the muscle belly (aponeurosis) considered in

chapter IV might explain the higher predicted variation in active leg stiffness STV (15.4%) in

part. Recently, the mechanical properties of aponeurosis and tendon of the cat soleus muscle

were found to be similar (Scott and Loeb, 1995). A doubled compliance of the serial elastic

structures would reduce the stiffness variation below 10%. Especially the compliance of the

most distal structures (like SOL) showed a strong influence on the stiffness variation (STV).

This corresponds to elastic structures identified in the human foot which were not represented

in this model (Ker et al., 1987).

Other origins of increased leg elasticity (lower STV values) could be biarticular muscles in

the stance leg (see above) and movements of the remaining limbs with respect to the trunk.

Contributions of the swing leg to jumping performance was studied in detail by Hildebrand

and Prause (1988). According to their results, the acceleration of the swing leg leads to a

prolonged ground contact and an increase in (kinetic) energy. Similar effects are assumable

for the arm movement during the take-off phase of a long jump. Whether these effects are

able to explain the predicted descent in the leg stiffness behaviour remains to be investigated.

Joint stiffness behaviour

The losses due to the eccentric muscle operation led to rotational stiffnesses (c12, c23) largely

decreasing during the active peak (Fig. 8). In this period, the stiffness ratio RC was in the

range of the values predicted by the three segment-model (Fig. 11D in chapter III). Similar

stiffness ratios were found in an inverse dynamics analysis of running (RC about 0.5; Günther

at al., in prep.). For equal knee and ankle joint angles, a stiffness ratio of 0.4 corresponds to an

equal loading of both joint in a three-segmental leg. Due to the more flexed ankle joint

position (about 25 − 30 degree) with respect to the knee joint values of 0.5 − 0.8 are required

for a homogeneous joint loading (details in Chapter III). These values were present in the

optimal solution during the active phase although the instantaneous joint stiffness values were
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changing by a factor 2 − 3. During the passive peak (10 − 30 ms), shortfall in ankle joint

stiffness (RC < 0.4) was compensated by heel contact which prevents ankle over-flexion.

Leg behaviour during the passive peak

Finally, the mechanisms of the first passive peak were addressed in this study. This was

already done in chapter II (spring-mass model with a distal mass) and in chapter IV (two-

segment model with one leg muscle). The four-segment model covers both contributions

considered previously in separate studies: the effect of decelerated distal masses (chapter II)

and the effect of high eccentric muscle forces together with an almost stretched leg

immediately after touch-down. It was found, that the latter effect was of minor importance

compared to the first one (Fig. 4). In contrast to the extended spring-mass model (chapter II),

here the deceleration of rigid leg segments was modelled (no wobbling masses). This led to

displacements of the contacting foot which were clearly larger than observed experimentally

(predicted vertical displacement ∆y ≈ 7 cm).

The excursion of soft masses surrounding the rigid skeleton could explain this difference.

These effects were neglected in this study. Thus, the description of the foot contact (Eq. 1a,b)

is taking mechanical properties of the heel pad, foot deformation and wobbling masses

(muscles, tendons, ligaments) of the stance leg into account. The mechanical properties of leg

muscles could play an important role for the modulation of wobbling masses (first described

by Gruber, 1987; Gruber et al., 1998). Therefore, the coupling parameters of the wobbling

masses (swing mass in chapter II) are influenced by the activation state of the leg muscles.

This would imply variations in the parameters of the force functions describing the foot

contact in the present study (Eq. 1a,b).
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GENERAL DISCUSSION AND CONCLUSION

VI
In this thesis the relationship between leg construction, leg performance and spring-like leg

operation was addressed. The human long jump was taken as the movement of choice as a

clear performance criterion exists.

The general dynamics of the long jump was investigated, first in a purely mechanical manner

(chapter II), later taking muscle dynamics into account (chapter IV and V). Here the shape of

the ground reaction force characterised by two clearly separated force peaks (passive and

active peak) was guiding to an improved understanding.

The passive peak

The first peak was attributed to the deceleration of the distal segment masses in the stance leg.

Thereby, the coupling of soft masses coupled to the skeleton had to be described by non-

linear visco-elastic elements (chapter II). A neglect of this displacements would lead to

unrealistic high forces after touch-down (Gruber, 1987; Gruber et al., 1998). Otherwise, a

much more compliant (and larger) foot would be necessary to avoid the risk of joint damage.
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This understanding of the passive peak contradicts the explanation given by Alexander (1990)

who postulated that a highly activated extensor muscle could account for the first peak. In

chapter IV his model was improved by a more realistic representation of the knee extensor

muscle tendon complex. It was found, that the muscle's contribution to the passive peak could

be moderate but clearly less than predicted previously. Finally, in chapter V, the origins of the

passive peak were investigated taking muscle dynamics and distal segment masses into

account. The contributions to the first peak could now be distinguished: The assumption in the

first model (chapter II) was supported: the distal mass deceleration was the dominating effect.

Nevertheless, the passive muscle properties could play an essential role for the shape of the

passive peak. In fact, a main part of the soft masses in the leg segments consists of muscles.

By changing the activation the mechanical properties of the muscles could be influenced

(Meier and Blickhan, 1999). This would change coupling parameters in the nonlinear spring-

damper element of the swing mass (chapter II).

The active peak

Despite the large variety in jumping style and performances observed experimentally, a

surprisingly constant leg stiffness was found during the active peak (chapter II, V). Therefore,

a linear spring was adequate to predict the shape of the ground reaction force (chapter II). But

there are no springs in the leg which could account for the observed spring-like behaviour. A

first approach was to identify the 'leg spring' within the zigzag of the leg segments (foot,

shank, thigh; chapter III). This required to assume rotational springs at the joint. It was found

how the rotational stiffnesses must be adjusted to the segment length design. Thereby

nonlinear torque characteristics with exponents between 1.5 and 2.0 enhance the leg stability

and result in an almost constant leg stiffness. This range seems to fit with experimental

estimates of tendon properties which dominate the torque characteristics at excessive loading

of the muscle-tendon complex (chapter IV). A higher exponent than 2.0 would improve leg

stability for highly bent joint configurations (less than 40°). This exceeds the anatomical

range of motion and would require more robust tissues (tendons, fibres, ligaments) to bear the

increased loading rates.

Then, the elastic mechanisms of the structures surrounding the joints had to be identified. This

was done first for one joint (knee: chapter IV) and finally for all major leg joints (ankle, knee,

hip; chapter V). Torques had to rise continuously during leg shortening and to decrease

smoothly during lengthening. It was shown that muscles can generate such a characteristic at

a constant stimulation level at certain lengths due to the force-length, force-velocity and
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activation characteristics (chapter V). At high loading rates, the nonlinear stress-strain

property of the tendons may coin a nonlinearity in the joint torque characteristic (chapter IV).

Symmetrical operation of knee and ankle joint

A nonlinear torque characteristic forces the parallel operation of knee and ankle joint during

leg loading (chapter III) and consequently results in an almost constant leg stiffness.

Nevertheless, a proper adjustment of the rotational stiffnesses is still necessary to result in

symmetrical loading configurations (chapter III). The optimisation procedure applied to the

four-segment model was doing this almost perfectly by calculating the optimal stimulation

pattern of the leg muscles. In reality, a considerable noise is present at the neural stimulation

signals (Bobbert and van Zandwijk, 1999) and initial joint configurations. Under these

circumstances biarticular muscles (depressed by the optimisation algorithm in chapter IV)

could be of advantage. This was shown with the three-segmental spring-mass model in

chapter III. The special design of the musculo-skeletal system provides stability on the single

joint level (Wagner and Blickhan, 1999). This might also facilitate operation of multi joint

systems.

The role of the foot

In chapter IV it was concluded that the missing foot required unrealistic high muscle forces to

result in realistic ground reaction forces. This agrees with the statement noted above that the

zigzag mode of leg loading realises the highest overall (leg) stiffness. On the other hand,

introducing a redundant kinematic chain requires to generate torques at multiple joints. The

high gain in leg stiffness is achieved by a relatively small foot which reduces the stiffness

requirements at the ankle joint. The distance of the knee joint to the leg line of action can be

reduced by a more flexed ankle joint (asymmetric loading). Nevertheless, a homogeneous

loading of knee and ankle joint can be maintained by adapting the joint stiffnesses to the

differences in joint angles. Here biarticular muscles and muscle-reflex circuits could support

the stiffness regulation (Winters, 1995).

In contrast to the most vertical movements (hopping, countermovement jumps, drop jumps)

where the foot orientation can be adjusted, in forward directed movements (like running) the

foot position is mostly given by the heel contact in the first half of the contact phase. A foot

fixed to the ground couples knee and ankle flexion. In a vertical movement, the flexion at

ankle joint would be only half the flexion of the knee. This situation is not a symmetrical (or

quasi-symmetrical) loading condition and is usually not realised.
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In forward running or jumping the ankle flexion is about half the knee flexion plus the change

in leg angle as long as the foot aligns with the ground. For symmetrical loading this fixes the

relation between knee flexion and angle of attack.

The origins of leg lengthening

In chapter II the general dynamics of the long jump was described by a spring-mass model.

To fit the experimental data the rest length of the leg spring had to be increased from touch-

down to take-off. Mechanically this implies an additional supply of energy to the elastic

energy of the spring which was subsequently released to the energy of the point mass. Where

could this energy come from?

Starting on the joint level, a change in leg length could originate form different joint angles at

touch-down and take-off. A change of the nominal joint angle could be realised by shifting

the rest lengths (due to the force-length relationship) of antagonist muscles spanning the joint

(Gielen et al., 1995). This could explain smooth changes in posture for some joint angles.

Another way is to assume spring-like muscle properties as described by Feldman (1966) and

supported by our findings in chapter V. Then the muscle force is characterised by a stiffness k

and a threshold bias x which might be potentially controlled by neural commands to the

muscle-reflex system (Winters, 1995).

In contrast to running or hopping, these strategies can not account for leg lengthening in long

jump due to the almost stretched knee position and the relatively flat angle of attack at touch-

down. Therefore, the movements of the remaining limbs (swing leg, arms) must be taken into

account. The centre of mass moves forward and upward relative to the trunk as shown in

Fig. 3 (chapter V). In fact, the acceleration of the swing leg (Hildebrand and Prause, 1988;

Sørenson et al., 1999) and the arms (Hatze, 1981a) with respect to the body is an important

technique to increase jumping performance as it allows to increase the amount and the angle

of the take-off velocity. This corresponds to the low jumping distances of the model treated in

chapter V where the masses of head, arms, trunk and swing leg were added to the rigid trunk

segment.

How is spring-like leg operation related to leg performance?

Assuming a spring-like leg operation (chapter II) a minimal stiffness is necessary to achieve

the maximum jumping distance for a given run-up speed (about 10 kN/m for a speed of

8.2 m/s). A further increase in leg stiffness will not improve the performance of the jump and

requires a steeper angle of attack for maximum distance. Therefore, several strategies may
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lead to the same distance. At the muscular level it was shown that maximising the leg

performance may result in an almost linear leg stiffness (chapter IV and V). This was

achieved by eccentrically operating (i.e. absorbing) leg extensor muscles. Therefore, for

flatter angles of attack the energy absorption dominated due to higher loading speeds of the

muscle (chapter IV). This led to an almost constant angle of attack (about 65°) predicted to

result in maximum jumping performance for largely different run-up speeds (6 − 12 m/s). In

our experiments about the same angle of attack was used by the subject independent of the

jumping distance (3.8 − 6.9 m) and running speed (6.5 − 9.1 m/s).

The serial elastic structures connecting the muscle fibres to the skeleton support the quasi-

elastic operation of the leg muscles by shifting the instant of maximum muscle lengthening

velocity to about half the contact time (chapter IV and V). Spring-like operation requires to

generate the highest forces at midstance. Due to the steep increase of the force-velocity

relationship (eccentric force enhancement) maximal muscle stretching velocity and maximal

muscle force occur almost simultaneously. For high stretching velocities a saturation in the

eccentric force-velocity curve occurs at a critical muscle speed vCrit. Therefore, the muscle

stiffness is limited by the maximum eccentric force which can not be exceeded for fibre

stretching velocities greater than the critical loading speed vCrit. Higher muscle speeds would

increase the energy losses dramatically with a decrease in muscle stiffness at further

lengthening. A high increase in metabolic demands was found for running with an unusual

amount of leg shortening (Groucho running: McMahon et al., 1987).

Finally, maximum performance requires a control that synchronises the joint movements

(chapter III and V). Such a leg operation minimises the intermuscular energy exchange and

results in the highest leg forces. Due to the predicted joint characteristics a spring-like leg

operation was found to result in maximum jumping distance. Optimised segment kinematics

with respect to minimal distances of the joints to the force line of action may lead to a

maximised leg stiffness (chapter III). It remains for further investigations whether this

explains e.g. the differences in aerobic demands observed in treadmill running for different

leg stiffnesses (Dalleau et al., 1998; Heise and Martin, 1998) or changes of the leg kinematics

during exhaustive exercises (e.g. distance running: Williams et al., 1991).
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Further steps

In the future the focus will be on following three general directions:

•  verification, adaptation and generalisation of the principles of spring-like legs for other

types of movement (running, vertical hopping) and for animal locomotion including

evolutionary and ontogenetic aspects of leg design;

•  application to technical systems (robotics), ergonomics and prosthetics;

•  integration of neuro-physiological and metabolic aspects of muscle operation.

Many strategies of leg construction and control presented in this study seem to fit to other

types of human or animal motion. For instance, the three segment model was already

successfully adapted to the hind limb of running cockroaches. As an approximation for the

overall leg function the front and hind limbs of small mammals may be looked at as a  z-

shaped pantograph. Functionally, scapula, humerus and radius/ulna of the front limb of

quadrupeds correspond to the femur, tibia/fibula and metatarsals of the hind limb (Fischer and

Witte, 1998). Taking the most distal segments into account a four segmental representation

with a z-shaped proximal and a bowed distal part seems to be more appropriate. In fast

synchronous gaits, the pelvis significantly rotating against the lumbar vertebral column in the

lumbar region is used as an additional proximal segment of the hind limb.

Currently, a physical model is build to illustrate the predicted mechanisms of stiffness

adjustment of a multisegmental chain with variable segment lengths and exponents of the

torque characteristic and a set of different springs (supported by C. Schilling, TU Ilmenau).

With regard to technical applications the local implementation of muscle-like actuators is of

general importance. At the muscle and joint level neuronal feedback mediated by muscle

spindles and tendon organs can also result in a spring-like behaviour (Blickhan, 1996). The

stiffness is largely determined by the gain within the reflex loop. Thus, suitable reflexes could

also help to control multisegmental systems (Winters, 1995). This influence will be

investigated in the next future.

Reflex control is not suitable for highly dynamic situations due to the synaptic delay and the

time necessary for force generation. Certainly, any system with mechanical properties

resulting by itself in a robust behaviour is much easier to control. Such solutions seem to be

preferred by nature.
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