19 research outputs found

    The Hierarchical Control Method for Coordinating a Group of Connected Vehicles on Urban Roads

    Get PDF
    Safety, mobility and environmental impact are the three major challenges in today\u27s transportation system. As the advances in wireless communication and vehicle automation technologies, they have rapidly led to the emergence and development of connected and automated vehicles (CAVs). We can expect fully CAVs by 2030. The CAV technologies offer another solution for the issues we are dealing with in the current transportation system. In the meanwhile, urban roads are one of the most important part in the transportation network. Urban roads are characterized by multiple interconnected intersections. They are more complicated than highway traffic, because the vehicles on the urban roads are moving in multiple directions with higher relative velocity. Most of the traffic accidents happened at intersections and the intersections are the major contribution to the traffic congestions. Our urban road infrastructures are also becoming more intelligent. Sensor-embedded roadways are continuously gathering traffic data from passing vehicles. Our smart vehicles are meeting intelligent roads. However, we have not taken the fully advantages of the data rich traffic environment provided by the connected vehicle technologies and intelligent road infrastructures. The objective of this research is to develop a coordination control strategy for a group of connected vehicles under intelligent traffic environment, which can guide the vehicles passing through the intersections and make smart lane change decisions with the objective of improving overall fuel economy and traffic mobility. The coordination control strategy should also be robust to imperfect connectivity conditions with various connected vehicle penetration rate. This dissertation proposes a hierarchical control method to coordinate a group of connected vehicles travelling on urban roads with intersections. The dissertation includes four parts of the application of our proposed method: First, we focus on the coordination of the connected vehicles on the multiple interconnected unsignalized intersection roads, where the traffic signals are removed and the collision avoidance at the intersection area relays on the communication and cooperation of the connected vehicles and intersection controllers. Second, a fuel efficient hierarchical control method is proposed to control the connected vehicles travel on the signalized intersection roads. With the signal phase and timing (SPAT) information, our proposed approach is able to help the connected vehicles minimize red light idling and improve the fuel economy at the same time. Third, the research is extended form single lane to multiple lane, where the connected vehicle discretionary and cooperative mandatory lane change have been explored. Finally, we have analysis the real-world implementation potential of our proposed algorithm including the communication delay and real-time implementation analysis

    Autonomous driving at intersections: combining theoretical analysis with practical considerations

    No full text
    International audienceThe move towards automated driving is gaining impetus recently. This paper follows the approach of combining theoretical analysis with practical issues. It gives an insight of some practical problems that are encountered when running automated vehicles in real environments, using intersection crossing as a major example. The aim is not to try to be exhaustive but to show some criteria (safety, efficiency, reactivity, resilience, scalability…) for decision making in automated driving that have to be balanced before any mass deployment. In a second part we introduce mathematical tools that can help define algorithms and systems that improve current state of the art. We will also show some perspective for accommodating the hypotheses of these mathematical tools with real life constraints

    Traffic management system for smart road networks reserved for self-driving cars

    Get PDF
    A model of a smart road network consisting of unsignalised intersections and smart roads connecting them is considered in this work with the aim of presenting a traffic management system for self-driving cars (or, more generally, autonomous vehicles) which travel the network. The proposed system repeatedly solves a set of mathematical programming problems (each of them relative to a single intersection or to a single road stretch of the network) within a decentralised control scheme in which each local intersection controller and each local road controller communicates with the fully autonomous vehicles in order to receive travel data from vehicles and to provide speed profiles to them once determined the optimal solution of the problem. In order to reduce the computational effort required to provide the optimal solution, a discrete-time approach is adopted so that, in each time interval, a limited number of vehicles are taken into consideration; in this way, solutions can be determined in a very short time thus making the proposed model compatible with a practical application to real traffic systems. The proposed model is general enough, and can be adapted to different scenarios of smart road networks reserved for self-driving cars

    A comprehensive survey on cooperative intersection management for heterogeneous connected vehicles

    Get PDF
    Nowadays, with the advancement of technology, world is trending toward high mobility and dynamics. In this context, intersection management (IM) as one of the most crucial elements of the transportation sector demands high attention. Today, road entities including infrastructures, vulnerable road users (VRUs) such as motorcycles, moped, scooters, pedestrians, bicycles, and other types of vehicles such as trucks, buses, cars, emergency vehicles, and railway vehicles like trains or trams are able to communicate cooperatively using vehicle-to-everything (V2X) communications and provide traffic safety, efficiency, infotainment and ecological improvements. In this paper, we take into account different types of intersections in terms of signalized, semi-autonomous (hybrid) and autonomous intersections and conduct a comprehensive survey on various intersection management methods for heterogeneous connected vehicles (CVs). We consider heterogeneous classes of vehicles such as road and rail vehicles as well as VRUs including bicycles, scooters and motorcycles. All kinds of intersection goals, modeling, coordination architectures, scheduling policies are thoroughly discussed. Signalized and semi-autonomous intersections are assessed with respect to these parameters. We especially focus on autonomous intersection management (AIM) and categorize this section based on four major goals involving safety, efficiency, infotainment and environment. Each intersection goal provides an in-depth investigation on the corresponding literature from the aforementioned perspectives. Moreover, robustness and resiliency of IM are explored from diverse points of view encompassing sensors, information management and sharing, planning universal scheme, heterogeneous collaboration, vehicle classification, quality measurement, external factors, intersection types, localization faults, communication anomalies and channel optimization, synchronization, vehicle dynamics and model mismatch, model uncertainties, recovery, security and privacy

    An Optimization Approach for Energy Efficient Coordination Control of Vehicles in Merging Highways

    Get PDF
    Environmental concerns along with stronger governmental regulations regarding automotive fuel-economy and greenhouse-gas emissions are contributing to the push for development of more sustainable transportation technologies. Furthermore, the widespread use of the automobile gives rise to other issues such as traffic congestion and increasing traffic accidents. Consequently, two main goals of new technologies are the reduction of vehicle fuel consumption and emissions and the reduction of traffic congestion. While an extensive list of published work addresses the problem of fuel consumption reduction by optimizing the vehicle powertrain operations, particularly in the case of hybrid electric vehicles (HEV), approaches like eco-driving and traffic coordination have been studied more recently as alternative methods that can, in addition, address the problem of traffic congestion and traffic accidents reduction. This dissertation builds on some of those approaches, with particular emphasis on autonomous vehicle coordination control. In this direction, the objective is to derive an optimization approach for energy efficient and safe coordination control of vehicles in merging highways. Most of the current optimization-based centralized approaches to this problem are solved numerically, at the expense of a high computational load which limits their potential for real-time implementation. In addition, closed-form solutions, which are desired to facilitate traffic analysis and the development of approaches to address interconnected merging/intersection points and achieve further traffic improvements at the road-network level, are very limited in the literature. In this dissertation, through the application of the Pontryagin’s minimum principle, a closed-form solution is obtained which allows the implementation of a real-time centralized optimal control for fleets of vehicles. The results of applying the proposed framework show that the system can reduce the fuel consumption by up to 50% and the travel time by an average of 6.9% with respect to a scenario with not coordination strategy. By integrating the traffic coordination scheme with in-vehicle energy management, a two level optimization system is achieved which allows assessing the benefits of integrating hybrid electric vehicles into the road network. Regarding in-vehicle energy optimization, four methods are developed to improve the tuning process of the equivalent consumption optimization strategy (ECMS). First, two model predictive control (MPC)-based strategies are implemented and the results show improvements in the efficiency obtained with the standard ECMS implementation. On the other hand, the research efforts focus in performing analysis of the engine and electric motor operating points which can lead to the optimal tuning of the ECMS with reduced iterations. Two approaches are evaluated and even though the results in fuel economy are slightly worse than those for the standard ECMS, they show potential to significantly reduce the tuning time of the ECMS. Additionally, the benefits of having less aggressive driving profiles on different powertrain technologies such as conventional, plug-in hybrid and electric vehicles are studied

    Traffic Management System for the combined optimal routing, scheduling and motion planning of self-driving vehicles inside reserved smart road networks

    Get PDF
    The topic discussed in this thesis belongs to the field of automation of transport systems, which has grown in importance in the last decade, both in the innovation field (where different automation technologies have been gradually introduced in different sectors of road transport, in the promising view of making it more efficient, safer, and greener) and in the research field (where different research activities and publications have addressed the problem under different points of view). More in detail, this work addresses the problem of autonomous vehicles coordina tion inside reserved road networks by proposing a novel Traffic Management System (TMS) for the combined routing, scheduling and motion planning of the vehicles. To this aim, the network is assumed to have a modular structure, which results from a certain number of roads and intersections assembled together. The way in which roads and intersections are put together defines the network layout. Within such a system architecture, the main tasks addressed by the TMS are: (1) at the higher level, the optimal routing of the vehicles in the network, exploiting the available information coming from the vehicles and the various elements of the network; (2) at a lower level, the modeling and optimization of the vehicle trajectories and speeds for each road and for each intersection in the network; (3) the coordination between the vehicles and the elements of the network, to ensure a combined approach that considers, in a recursive way, the scheduling and motion planning of the vehicles in the various elements when solving the routing problem. In particular, the routing and the scheduling and motion planning problems are formulated as MILP optimization problems, aiming to maximize the performance of the entire network (routing model) and the performance of its single elements - roads and intersections (scheduling and motion planning model) while guaranteeing the requested level of safety and comfort for the passengers. Besides, one of the main features of the proposed approach consists of the integration of the scheduling decisions and the motion planning computation by means of constraints regarding the speed limit, the acceleration, and the so-called safety dynamic constraints on incompatible positions of conflicting vehicles. In particular, thanks to these last constraints, it is possible to consider the real space occupancy of the vehicles avoiding collisions. After the theoretical discussion of the proposed TMS and of its components and models, the thesis presents and discusses the results of different numerical experiments, aimed at testing the TMS in some specific scenarios. In particular, the routing model and the scheduling and motion planning model are tested on different scenarios, which demonstrate the effectiveness and the validity of such approach in performing the addressed tasks, also compared with more traditional methods. Finally, the computational effort needed for the problem solution, which is a key element to take into account, is discussed both for the road element and the intersection element

    Ecological Control and Coordination of Connected and Automated PHEVs at Roundabouts under Uncertainty

    Get PDF
    During the last decade, comprehensive research efforts were concentrated on autonomous driving. Annually, many car accidents happen as a result of human faults. Extreme traffic congestion prolongs commute time, increase air pollution and cause other transportation inefficiencies. Consequently, using advanced technologies to make vehicles less dependent on human drivers enable more efficient use of time for passengers and decrease car accidents. Connectivity between vehicles and automation provides a spectacular opportunity to improve traffic flow, safety, and efficiency. There are different main active research subjects under the broad domain of autonomous driving, one of them is intersection control for connected and automated vehicles (CAVs) which can be categorized into centralized and decentralized approaches. The environmental and strict regulatory demands require automotive companies to reduce Carbon Dioxide emissions by investing more in Electric Vehicles (EVs) and Plug-in Hybrid Electric vehicles (PHEVs). A PHEV equipped with connectivity and automation looks more interesting to automobile consumers since they can have advantages of both fewer emissions and enhanced abilities. Since the powertrain of PHEVs consists of different sources of power, advanced control techniques such as Model Predictive Control (MPC) is needed. Coordination of vehicles at roundabouts is a demanding problem especially by knowing that the chance of both lateral and longitudinal collision exists. To this end, first, we proposed a centralized nonlinear MPC-based controller to adhere to calculated priorities for connected and automated PHEVs (CA-PHEVs). We further continued this research by proposing an approach for solving nonlinear multi-objective optimal control problem of decentralized coordination of CA-PHEVs at roundabouts with consideration of fuel economy. It was found that the proposed controller can calculate priority based on a navigation function and provide a safe gap between vehicles. A novel priority calculation logic based on optimal control is proposed as well and its performance is compared with the navigation function approach. In addition to the decentralized control approach, we considered a more realistic robust tube-based nonlinear MPC decentralized approach to solve this problem in the presence of uncertainties. We used simulations to test the controller and a Toyota Prius PHEV high-fidelity model is used in this thesis for simulations. Simulation results show that the addition of robustness, and energy economy to performance index can improve the fuel consumption of the vehicle. One of the major concerns in designing a controller for automotive applications is real-time implementation. The results of hardware-in-the-loop experiments show the real-time implementation of the controllers

    Advancing Intersection Management by Utilizing Cost Effective Intelligent Vehicle Concepts and Vehicle-to-Infrastructure Communication Techniques

    Get PDF
    Intelligent Transport Systems (ITS) is a growing field of research which focuses on the alleviation of traffic congestion and road accidents caused by miscommunication or confusion of human drivers. Intelligent Intersection Management is a subdivision of ITS which focuses on the seamless management of vehicles arriving at, traversing and exiting intersections to prevent congestion and collision within or around the intersection. This research sought to develop a cost effective method of implementing wireless Vehicle-to-Infrastructure (V2I) communication based Intelligent Intersection Management, by employing the use of 1:4.5 scale version autonomous vehicle prototypes, on a similarly scaled four-way intersection. This was accomplished by employing Robot Operating System (ROS) on a single board computer platform which communicated comma-separated integers via Zigbee XBee radio transceivers to prioritize navigation of vehicles arriving at the intersection based on arrival time and the vehicles’ projected paths
    corecore