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ABSTRACT 

Safety, mobility and environmental impact are the three major challenges in 

today’s transportation system. As the advances in wireless communication and vehicle 

automation technologies, they have rapidly led to the emergence and development of 

connected and automated vehicles (CAVs). We can expect fully CAVs by 2030. The 

CAV technologies offer another solution for the issues we are dealing with in the current 

transportation system. 

In the meanwhile, urban roads are one of the most important part in the 

transportation network. Urban roads are characterized by multiple interconnected 

intersections. They are more complicated than highway traffic, because the vehicles on 

the urban roads are moving in multiple directions with higher relative velocity. Most of 

the traffic accidents happened at intersections and the intersections are the major 

contribution to the traffic congestions. Our urban road infrastructures are also becoming 

more intelligent. Sensor-embedded roadways are continuously gathering traffic data from 

passing vehicles. 

Our smart vehicles are meeting intelligent roads. However, we have not taken the 

fully advantages of the data rich traffic environment provided by the connected vehicle 

technologies and intelligent road infrastructures. 

The objective of this research is to develop a coordination control strategy for a 

group of connected vehicles under intelligent traffic environment, which can guide the 

vehicles passing through the intersections and make smart lane change decisions with the 
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objective of improving overall fuel economy and traffic mobility. The coordination 

control strategy should also be robust to imperfect connectivity conditions with various 

connected vehicle penetration rate. 

This dissertation proposes a hierarchical control method to coordinate a group of 

connected vehicles travelling on urban roads with intersections. The dissertation includes 

four parts of the application of our proposed method: First, we focus on the coordination 

of the connected vehicles on the multiple interconnected unsignalized intersection roads, 

where the traffic signals are removed and the collision avoidance at the intersection area 

relays on the communication and cooperation of the connected vehicles and intersection 

controllers. Second, a fuel efficient hierarchical control method is proposed to control the 

connected vehicles travel on the signalized intersection roads. With the signal phase and 

timing (SPAT) information, our proposed approach is able to help the connected vehicles 

minimize red light idling and improve the fuel economy at the same time. Third, the 

research is extended form single lane to multiple lane, where the connected vehicle 

discretionary and cooperative mandatory lane change have been explored. Finally, we 

have analysis the real-world implementation potential of our proposed algorithm 

including the communication delay and real-time implementation analysis. 
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CHAPTER 1 INTRODUCTION 

 

There are three aspects of challenges we are facing in today’s transportation 

system: safety, mobility and environmental impact of the vehicles. They are causing 

significant economic impact, deaths of civilians and waste of natural resources. Millions 

of crashes happening every year ends up with tens of thousands of deaths [1], which 

makes safety one of the most critical topics in the transportation system. For example, 

there were 5.6 million crashes and 32,675 highway deaths in 2014 [2]. Mobility and 

environment aspects are correlated. The vehicle ownership keeps on growing, especially 

in the developing countries [3]. At the same time, the vehicle miles traveled has increased 

annually by an average of 1.7% since 1990 [4]. The widespread use of vehicles makes 

traffic congestion a growing issue in many metropolitan areas [5]. The cost of traffic 

congestion in U.S. resulted in 6.9 billion extra hours of travel time for the drivers and 

$121 billion economic loss [6]. The environment is also affected. 3.1 billion pounds of 

additional CO2 released to the air due to the vehicles stuck and idling on the congested 

roads [7]. 

1.1 Connected and Automated Vehicles 

The advances in wireless communication and vehicle automation technologies are 

making the transportation system more intelligent. These technologies have rapidly led to 

the emergence and development of connected and automated vehicles (CAVs). We can 

expect full CAVs in the very near future [8]. 
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Figure 1.1 Connected and automated vehicle technology road map [8] 

 

According to the U.S. Department of Transportation’s National Highway Safety 

Administration (NHTSA), the vehicle automation has been defined as five levels [9]. 

Figure 1.1 shows the connected and automated vehicle technology road map. In this way, 

Levels 1, 2 and 3 need different level of constant human input and monitoring of the 

driving environment. Connectivity is available at this stage, including V2V (Vehicle-to-

vehicle) and V2I (Vehicle-to-infrastructure). Levels 4 and 5 are the ones corresponding to 

a fully automated driving mode without requiring any driver intervention. 

The CAV technologies offer us another potential solution to the three issues we 

are dealing with in the current transportation system. In the safety aspect, according to 

U.S. Department of Transportation (DOT), combined V2V and V2I technology can 

address about 80% of all vehicle targeted crashes by increasing situational awareness and 

provide driver warnings or advisories [10]. For mobility and environmental impact of the 

vehicles, the CAV technologies can maximize transportation system efficiency and 

minimize traffic congestion by providing real-time traffic data to enable making smart 

routing choices that reduces travel delay. Also, it can give motorists the real-time 

information to make “green” transportation choices [11]. In such ways, the mobility of 
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the traffic system can be improved which also improves the environmental aspect 

because of the reduction of unnecessary idling time of the vehicles on the roads. 

1.2 Urban Roads 

Urban roads are one of the most important parts of the transportation system. 

They are characterized by multiple interconnected intersections where vehicles are 

moving in different directions with high relative velocity, so the traffic on urban roads is 

more complex than highway traffic [12]. It has been noted that intersections are major 

barrier of urban traffic safety and mobility. About 50% of urban crashes and 30% of rural 

crashes take place at the intersections [13]. Intersections only make up a small portion of 

transportation system, but they are the major contribution to urban traffic congestion [14]. 

In the meanwhile, our urban roads infrastructures are also becoming more 

intelligent. It has been estimated by American Association of State Highway and 

Transportation Officials (AASHTO) that up to 80% intersections will be V2I-enabled by 

2040 [15]. That means the sensor-embedded roadways are able to continuously gather 

data from passing vehicles [16]. Our smart vehicles are meeting the intelligent roads. 

1.3 Research Questions and Research Objective 

As we discussed before, the advances in connected vehicle technologies and 

intelligent road infrastructure are offering us data rich traffic environment. How can we 

utilize the advantage to improve our transportation system in the sense of fuel economy 

and traffic mobility? It brings us series of research questions. 
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• How to control a group of connected vehicles travelling on urban roads, 

passing through intersections safely and improving fuel economy as well 

as traffic mobility at the same time. 

• How to deal with imperfect connectivity environment with various 

connected vehicle penetration rate. 

• How to make lane change decisions to gain its own benefits with 

minimum negative impacts on the others. 

To answer these questions, the objective of this research is to develop a 

coordination control strategy for a group of connected vehicles under intelligent traffic 

environment, which can guide the vehicles passing through the intersections and make 

smart lane change decisions, with the objective of improving overall fuel economy, 

traffic mobility and robust to various connected vehicle penetration rate. 

1.4 General Introduction of Hierarchical Control Architecture 

A Hierarchical control Architecture is a form of control system in which a set of 

devices and governing software is arranged in hierarchical tree [17]. Figure 1.2 shows an 

idealized hierarchical control architecture. The unlabeled rectangles represent layers, and 

the double lines represent information flow. The dotted lines show how the output at one 

time is the input for the next time. Typically, there are three types of inputs to each layer 

at each time: previous state, low-level percepts and high-level commands. There are also 

three types of outputs: next state value, low-level commands and high-level percepts [18]. 
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Figure 1.2 Idealized Hierarchical Control Architecture 

 

The idea of hierarchical control architecture is the attempt to partition complex 

problems by decomposing them into smaller, more manageable subproblems. In such a 

way, each layer of the subproblems would have lighter computational burden. In this 

architecture, the subsystems need to interact or combined together to achieve a single 

task. The hierarchical control architecture is a common control structure to achieve real-

time control in the application of manufacturing, robotics and vehicles [19] [20] [21]. 

Since the scope of this research is controlling a group of connected vehicles on 

urban roads with multiple interconnected intersections, the system we are dealing with is 

a large scale and spatially widely arranged system. Also, the vehicles come and leave the 

control region very frequently. To reduce communication and computation burden and 
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realize real-time control implementation, it is very appropriate to apply hierarchical 

control architecture in our problem. More details about the hierarchical control 

architecture will be further discussed later in the next chapters of this manuscript. 

1.5 Novelty and Contribution  

The world’s first electric traffic signal emerged in about a century ago [22]. Before that, 

in the earliest days of the automobile, navigating on the America’s roads was a chaotic 

experience with pedestrians, bicycles and horses all competing with motor vehicle for 

right of way. The situation was alleviated as the development of traffic signals and rules. 

The mature traffic rules and well-designed traffic singles regulate the vehicles travelling 

safely on the roads in nowadays. 

The emergence of the connected and automated vehicle (CAV) technologies can 

potentially address the traffic safety, mobility and environment impact, which are the 

major challenges in today’s transportation system [10]. The major automotive OEMs and 

some technology companies have been focusing on the development of the autonomous 

vehicles or self-driving cars recently. The target is to enable the vehicle make their own 

motion planning and decisions, while travelling on the roads, based on the data from the 

environment captured by the perception system (LIDAR, camera, etc.) [23]. Google’s 

autonomous vehicles have logged nearly 2 million miles of testing and are racking up to 

10,000 miles a week learning to drive on public roads [24]. As the efforts from various 

stakeholders, the CAV technology is expected to become matured and affordable to the 

public in the near future. It is expected that by 2035, 18 million partially autonomous 

vehicles could be sold per year globally, which captures 25% of the new car market [25].  
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However, in the future when most of the vehicles on the roads are CAVs, if they make 

decisions based only on their own interest and compete the right of way with the others 

and even with the normal vehicles (non-automated), we will suffer the traffic chaos 

similar to what we have already experienced about a century ago when the number of 

automobiles on the roads started growing. The coordination strategies are necessary like 

today’s traffic rules and signals to regulate the CAVs’ motion as a group on public road 

and pursue common objective (e.g., fuel economy, mobility). 

In this dissertation work, we focus on the scenario that most of the vehicles involved are 

CAVs. The control method for coordinating a group of CAVs travelling on urban roads 

with multiple interconnected intersections has been developed to improve overall vehicle 

fuel economy and traffic mobility with the focus of individual vehicle trajectory 

planning. The hierarchical control architecture has been applied in the design of the 

control method to enable the cooperation among CAVs and intersection controllers. The 

advantage of the hierarchical control architecture is that it allows to partition complex 

problems into smaller, more manageable subproblems to enable real-time 

implementation. Another advantage is that different scope of the problem can be 

addressed in different layer. For example, in our research, the macroscopic level of traffic 

density balance can be addressed in the higher-level layer, while the microscopic of the 

vehicle motion control evaluation can be solved in another vehicle local level layer. 

Different layers interact and combined to achieve a single task. 
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The dissertation focuses on two types of intersections: unsignalized and signalized 

intersection roads. The followings provide brief literature review and motivation of our 

work in the dissertation. For more details, please refer to the corresponding chapters. 

In the first part, we have developed the longitudinal control strategy for a group of CAVs 

travelling on multiple interconnected unsignalized intersections. A lot of research has 

focused on the coordination of vehicles at intersections using CAV technologies to avoid 

vehicle collisions. The coordination approaches at isolated intersection can be 

categorized as heuristic approaches, reservation-based approaches and optimization-

based approaches. 

In heuristic approaches, fuzzy logic is a widely used technique. It allows the actions and 

decisions to be described as simple rules, which is well suited in the complex 

transportation problems. Milanes et al. [26] first presented an intersection detection 

system with the capability of detecting the position and intention of other cars in its 

vicinity. The authors then used fuzzy controller to control the throttle and braking of the 

CAVs based on the distance and speed information. The real-world experiment between 

one manually driven and the other fully automated vehicles was also provided in [26]. 

This work was further extended by involving genetic algorithm to tune fuzzy controller 

parameters [27]. Other heuristic approaches include Wu et al. [28] where authors 

formulated the problem as a mutual exclusion problem. The vehicles could compete for 

the privilege of passing an intersection. Hafner et al.   [29] [30] treated the collision 

avoidance as the problem of keeping the system state always outside the capture set, 

which is the set where collision is unavoidable given the vehicle dynamics and control 
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effort’s limitations. In general, heuristic approaches only focus on collision avoidance at 

the intersection and do not consider fuel economy, traffic mobility or environmental 

impact. Most of the heuristic approaches are decentralized in nature, which means the 

vehicle local controller only makes the decisions for this corresponding vehicle. 

The general idea of reservation-based approaches is that the intersection controller 

coordinates the time-space reservation based on the request from the vehicles. Dresner 

and Stone [31] proposed a multi-agent system where each vehicle acts as a driver agent 

and is responsible for sending the information of its vehicle size, predicted arrival time 

and velocity to the intersection manager. The intersection manager based on the request 

and information to coordinate a space-time reservation on the intersection. It will 

simulate the vehicle’s trajectory through the intersection, and check for the conflicts with 

the previous reservations. In the end, the intersection manager will grant or reject the 

request and send it back to the driver agent. Fortelle [32] further extended this work by 

discretizing the intersection into critical points. In doing so, it allowed lower rate of 

vehicles pass an intersection than the cell-based reservation, but it improved the system 

scalability and reduced the computational burden. Platoon-based reservation extension 

can be found in [33]. The disadvantages of the reservation-based approaches are that they 

don’t focus on fuel economy and sometimes the system will suffer from heavy 

communication requirement because one vehicle may be required to communicate 

several times until the request is approved. The reservation-based approaches are typical 

centralized in nature. The intersection manager acts as a centralized controller and makes 

all the decisions for all the CAVs within the control region.  
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Since the aforementioned two approaches do not focus on fuel economy or system 

mobility, researchers came up with optimization-based approach. Lee and Park [34] 

proposed an algorithm with the objective of minimizing the total overlapped vehicle 

trajectory length projected in the intersection zone. In doing so, only a limited number of 

vehicles were inside an intersection at each time instance to avoid collisions. The 

simulation results in [34] showed significant reduction of  total stop and delay time 

compared to the conventional intersection control mechanisms. Other optimization based 

approaches aim at minimizing the total travel time. Jin et al. [35] proposed a two-lane 

intersection scenario which allowed only one vehicle on the intersection at each instance 

of time. With the information of approaching time of the vehicles, the optimal scheduled 

departure time of the vehicles was evaluated in [35], while the vehicles chose its 

appropriate trajectory to follow its prescribed departure time. Yan et al. [36] proposed a 

more complex scenario with multiple lanes including turning lanes. The CAVs on 

different lanes were first categorized into different vehicle classes based on their 

compatibility of coexistence at the intersection area and dynamic programming was used 

to determine vehicle class passing sequence. Some research effort has been spent on 

improving more than one aspect of the transportation system, which is multi-objective 

optimization. Kamal et al. [37] proposed a centralized Model Predictive Control (MPC) 

strategy with multiple terms in the cost function such as tracking a desired velocity, 

minimizing acceleration and minimizing the risk of collision. The main disadvantage of 

such centralized methods is the computational burden issue on the centralized controller 

to enable real-time operation especially in large-scale systems. Makarem and Gillet [38] 
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on the other hand, proposed a decentralized MPC method where the cost function and the 

constraints were similar to [37], but instead of one centralized control unit making 

decisions for all the involved vehicles, each vehicle is considered to plan its own 

trajectory and avoid rear end collisions or collisions at the intersection area. Although it 

would be computational efficiency in this way, the solution will be suboptimal due to the 

limited information one controller can gather. In order to achieve online real-time 

optimization, Rios-Torres et al. [39] developed a closed-form formulation for fuel 

economic control of the vehicles travelling over merging roads, while first-come-first-

serve (FCFS) is used to determine vehicle passing sequence. The simulation results 

presented in [39] showed significant reduction on fuel consumption. 

There are numerous research focusing on the coordination of CAVs at isolated 

intersections, but urban road scenario generally consists of multiple intersections 

interconnected with each other. In such scenarios, what happens in one single intersection 

will influence the behavior of the whole intersection network. However, current isolated 

intersection coordination approaches lack the consideration of downstream traffic 

information, which means two things: first, once the vehicle clears the intersection, it is 

out of the consideration of intersection controller; second, whatever traffic status 

downstream the intersection doesn’t influence the intersection coordination strategy. Due 

to these two shortcomings, we will not get optimal solutions when we extend current 

isolated coordination approaches to multi-intersection scenarios. 

The main contributions (chapter 2.1) of this part of the dissertation are: first, a novel 

hierarchical control strategy for multiple CAVs, passing through multiple interconnected 



 12 

unsignalized intersections has been developed, that focuses on the improvement of 

vehicle fuel economy and system mobility; second, a novel intersection management 

strategy is proposed where the intersection controller utilizes the traffic density 

information of the downstream road segment to realize smooth velocity transition of the 

vehicles between two adjacent roads to further improve the system performance; third, 

fast model predictive control is employed on vehicle local controller to enable real time 

operation. 

In the second part, we focus on the scenario that the group of vehicles travelling on 

multiple signalized intersections. The reason why we target on the signalized 

intersections road is not only because the traffic signals are controlling most of our 

current intersections, but also because that by assuming fixed signal timing and simple 

two signal phases, it is possible to allow us focus on one direction roads with limited 

number of vehicles (e.g., the vehicles on the other direction roads and the vehicles on the 

left or right turn lane can be ignored). The problem becomes more manageable and easier 

to solve, which allows us to study different control aspects independently including: 

longitudinal motion control, lane change decision making, delay estimation & 

compensation. This allowed us to gain full understanding of each aspect of the problem 

which can be used to deal with more complex traffic scenarios. 

There are generally two categories in the literature to solve the issue of vehicles travelling 

on signalized intersections. The first one focuses on controller the traffic signal. The 

research on improving the traffic efficiency at signalized intersections can be categorized 

into two areas: traffic signal control and connected vehicle coordination. For the traffic 
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signal control area, Mohamed at el. [40] proposed a two-stage fuzzy logic controller to 

determine whether the current signal phase time interval needs to extended or terminated. 

In [41] [42], Model Predictive Control (MPC) is used to determine signal timing with the 

objective of minimizing the queue lengths in the traffic network.  Some other research 

focused on multiple traffic signal synchronization [43] [44] [45], where the signal timing 

of a series of interconnected traffic signal is adjusted to make the drivers encounter a long 

string of green lights. The approach of traffic signal control can be very expensive to 

implement, because only updating the traffic signal timing across the U.S. is estimated to 

cost $ 271 million annually [46]. Besides, even if the traffic signal is well tuned, the 

scenario could still happen that a vehicle cruises at high speed to a green light, but later 

suffers a hard brake due to the traffic light sudden change to red. It is inefficient from fuel 

economy perspective. 

Thus, the problem is better solved on the vehicle side with the knowledge of the traffic 

signal information. An algorithm minimizing acceleration for a vehicle passing through 

multiple traffic signal lights is presented by Mandava at el. [47]. A machine learning 

based approach was proposed in [48] where smart phones are used to predict the phase of 

traffic lights. Asadi and Vahidi in [49] developed a predictive cruise control using traffic 

signal information to reduce idling time and minimize vehicle’s acceleration. This work 

was later extended by using a probabilistic approach to consider noisy traffic light 

conditions [50]. In the previous research of our group [51] [52], collaborating with Dr. 

Vahidi, we utilized the hierarchical control architecture where the intersection controller 

evaluate the target velocity for each vehicle based on the SPAT information to help the 
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vehicles minimize red light idling, while the vehicle local controller uses MPC to track 

the target velocity. We considered two extra terms in our cost function for vehicle 

longitudinal motion control. The first term is a car following cost, which makes the 

vehicle maintain desired headway distance and time to its preceding vehicle. The other 

term is the rate between fuel (conventional vehicle) and power (HEV) consumption per 

unit distance, which further improves the fuel economy of the vehicles ( 

chapter 2.2). 

In this dissertation, we further extend the previous work [51] [52] on vehicle longitudinal 

motion control reported as in Chapter 2.2 and also performed the connected vehicle 

penetration rate study and lane change decision evaluation. In chapter 2.2, we built the 

connection between vehicle local controller and the powertrain controllers. For HEVs, 

recuperation efficiency feedback is enabled between the optimization problem in the 

vehicle local controller and the HEV energy management layer. Further fuel economy 

improvement can be achieved by selecting appropriate efficiency feedback update rate. 

In the previous described research efforts, all the subject vehicles under consideration are 

assumed to be connected, which is a very strong assumption under current stage of 

connected vehicle development. Furthermore, most of the research on studying the 

effects of connected vehicle penetration rate are based on statistical analysis at the 

macroscopic level [53] [54]. The effect of connected vehicle penetration rate studies at a 

microscopic level involving individual vehicle decision making has not been explored. 

The key purpose of the study in Chapter 2.3 is to explore the effects of the presence of 

the unconnected vehicles in the sense of both connected vehicle penetration rate and the 
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position of the unconnected vehicles on the convoy. The main contribution in Chapter 2.3 

is investigating the vehicles mixed scenarios at a microscopic level focusing on each 

vehicle’s decision making. The key findings include: first, the effect of unconnected 

vehicles in the convoy on the overall fuel economy has been discovered; second, the 

discretionary lane change triggering factors have been determined, which will be utilized 

in LCD study in Chapter 3. 

In the aforementioned research, only longitudinal motion coordination is considered. The 

connected vehicles are assumed to remain on their lane with no lane changes or turns at 

intersections. However, in a real world driving scenario, the vehicles not only move 

forward and pass through intersections, but also change lanes. Lane change is one of the 

unavoidable driver behavior in our traffic environment [55]. Poor lane change decision 

(LCD) has negative impact of both traffic safety and efficiency. For traffic safety impact, 

4% to 10% of the traffic accidents are caused by lane change maneuver [56]. 78% of lane 

change accidents take place in dense traffic flow with low speed and small inter-vehicle 

space [57], which is exactly the focus of this dissertation, urban roads. For traffic 

efficiency impact, lane change could generate a capacity drop with shockwaves in both 

lanes [58]. It has also been confirmed that aggressive lane changes on highways or urban 

traffic result in 20-30% extra fuel consumption [59]. 

The decision to make a lane change can be classified as mandatory lane change and 

discretionary lane change based on different driving incentives [60]. Mandatory lane 

change happens when a vehicle has to change lane to follow a specified path or due to the 

road geometry (i.e. lane merging ahead). For discretionary lane change, it occurs when a 



 16 

vehicle changes to a lane offering better traffic conditions, i.e. higher speed or lower 

traffic density, but it does not necessarily happen. The literature on lane change decision 

can be categorized into three catalogs. In Gipps [61] and Hidas [62] [63], the LCD is 

made through gap acceptance model based approaches. Lane change is motivated by 

some triggering factors like the locations of permanent obstructions, the presence of 

heavy vehicles, special purpose lanes or the intention to turn. The critical or acceptable 

gap is also defined by either exponential function or normal distribution of certain 

parameters, like velocity, distance, allowable acceleration and so on. Once the lane 

change is triggered and the gap on the target lane is greater than the critical gap, lane 

change will be executed. The Gipps LCD model [61] was later further extended by 

involving probability theory to make the LCD model more realistic [64]. Some other 

researchers developed LCD model based on utility theory. The basic idea is to compare 

the utility of staying on the current lane and the risks associated with lane change. 

Kesting et al. [65] proposed the LCD model also known as MOBIL (Minimizing Overall 

Braking Induced by Lane Changes). The authors compared the overall acceleration as the 

utility of the criteria of lane change. In general, higher overall acceleration means higher 

velocity and higher traffic mobility. Teloedo et al. [66] proposed a model which is 

capable of evaluating mandatory and discretionary lane changes and later an explicit 

target lane model was studied in [67] where the lane with the highest utility is selected as 

a destination lane. The other catalog of the LCD model is optimization based approach 

where the longitude motion and LCD are integrated together and the optimization 
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problem is formulated to determine when and where it is optimal to change lane [68] [69] 

[70].  

For the gap acceptance and utility based model, only the subject vehicle’s LCD and 

action are considered and the reactions and effects of the surrounding vehicles are 

ignored. Also, the subject vehicle makes decisions independently based on limited 

information, thus the advantages of connected vehicles have not been fully explored. In 

some scenarios, the mandatory lane change may not be able to be execute without 

cooperation due to the short inter-vehicle distance enabled by connected vehicle 

technology. In the utility based model, LCD is based on utility advantage on the current 

moment and ignore the sudden changes on traffic conditions, for example traffic signal 

light changes. For the optimization based approach, the longitudinal motion is continuous 

while the LCD is discrete. In another words, the frequency for evaluating the longitudinal 

motion decision is much higher than the LCD evaluation. Thus, integrating these two 

together into one optimization problem leads to a mixed integer programming problem. 

Most solution methods for mixed integer programming problems utilize some sort of tree 

search algorithm and it can be computational inefficient and suffer from poor scalability, 

especially when the number of subject vehicle increases, which makes them unsuitable 

for real-time implementation. 

The main contributions in Chapter 3 of the dissertation are: first, under hierarchical 

control architecture, a novel discretionary lane change decision model has been 

developed for a group of vehicles travelling on signalized intersection roads. Second, the 

key contribution of the hierarchical control method is that the discretionary LCD is 



 18 

evaluated at the intersection controller layer and sent to each vehicle local controller. In 

such a way, the continuous longitudinal motion control and the discrete LCD are 

decoupled and evaluated at different layers. Thus, our novel LCD model is able to avoid 

solving the mixed integer programming problem to improve the system scalability and 

computational efficiency. The LCD at the intersection controller layer is based on 

offering the subject vehicle higher probability to achieve its target velocity with 

minimum negative impact on the rest of the vehicles in the group. Another important lane 

change triggering factor is related to the presence of the unconnected vehicles in the 

convoy. Third, a novel cooperative mandatory lane change model has been developed. 

The cooperation during lane change between the host vehicle and the vehicles on the 

target lane is achieved by modeling a virtual vehicle on the target lane with identical state 

variables as the host vehicle. With the method developed, the negative impacts caused by 

the mandatory lane change can be minimized on congested roads. 
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CHAPTER 2 LONGITUDINAL MOTION COORDINATION 

2.1 Unsignalized Traffic Intersection 

2.1.1 Introduction 

The importance of the intersection on urban transportation system has already 

been discussed in the previous section. The intersections are currently controlled by 

traffic lights, rules and stop signs. Despite the fact that there are numerous research on 

adaptive traffic lights control over the decades [42] [41] [71], which are focusing on 

optimizing the traffic light phase switching sequence and period to improve the traffic 

efficiency, the current intersection control mechanisms will still unavoidably generate 

vehicles’ stop-and-go driving patterns at the intersections. On the other hand, the 

infrastructures are also under changes to fulfil the goal of Intelligent Transportation 

System (ITS). The current intersection control mechanisms cannot take the full 

advantages of the CAVs’ capabilities. 

Under these circumstances, the research on coordination of CAVs at intelligent 

intersections becomes an important topic. Recently lots of research has focused on 

developing coordination strategies that lead CAVs cross the intersections safely. 

Researchers are trying to potentially remove current intersection control mechanisms 

(traffic lights, stop signs, etc.) to avoid unnecessary and inefficient stop-and-go driving 

patterns and solely rely on the cooperation and communication among the connected 

vehicles and intersection controllers. At the same time, the coordination strategies should 
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focus on the improvement of different aspects of the transportation system such as 

reduction of travel time, and the improvement of vehicle fuel economy. 

2.1.2 Literature Review 

A lot of research has focused on the coordination of vehicles at intersections using 

CAV technologies to avoid vehicle collisions. In this section, a brief summary of such 

research is presented. The coordination approaches at isolated intersection can be 

categorized as heuristic approaches, reservation-based approaches and optimization-

based approaches. 

In heuristic approaches, fuzzy logic is a widely used technique. It allows the 

actions and decisions to be described as simple rules, which is well suited in the complex 

transportation problems. Milanes et al. [26] first presented an intersection detection 

system with the capability of detecting the position and intention of other cars in its 

vicinity. The authors then used fuzzy controller to control the throttle and braking of the 

CAVs based on the distance and speed information. The real-world experiment between 

one manually driven and the other fully automated vehicles was also provided in [26]. 

This work was further extended by involving genetic algorithm to tune fuzzy controller 

parameters [27]. Other heuristic approaches include Wu et al. [28] where authors 

formulated the problem as a mutual exclusion problem. The vehicles could compete for 

the privilege of passing an intersection. Hafner et al.   [29] [30] treated the collision 

avoidance as the problem of keeping the system state always outside the capture set, 

which is the set where collision is unavoidable given the vehicle dynamics and control 

effort’s limitations. In general, heuristic approaches only focus on collision avoidance at 
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the intersection and do not consider fuel economy, traffic mobility or environmental 

impact. Most of the heuristic approaches are decentralized in nature, which means the 

vehicle local controller only makes the decisions for this corresponding vehicle. 

The general idea of reservation-based approaches is that the intersection controller 

coordinates the time-space reservation based on the request from the vehicles. Dresner 

and Stone [31] proposed a multi-agent system where each vehicle acts as a driver agent 

and is responsible for sending the information of its vehicle size, predicted arrival time 

and velocity to the intersection manager. The intersection manager based on the request 

and information to coordinate a space-time reservation on the intersection. It will 

simulate the vehicle’s trajectory through the intersection, and check for the conflicts with 

the previous reservations. In the end, the intersection manager will grant or reject the 

request and send it back to the driver agent. Fortelle [32] further extended this work by 

discretizing the intersection into critical points. In doing so, it allowed lower rate of 

vehicles pass an intersection than the cell-based reservation, but it improved the system 

scalability and reduced the computational burden. Platoon-based reservation extension 

can be found in [33]. The disadvantages of the reservation-based approaches are that they 

don’t focus on fuel economy and sometimes the system will suffer from heavy 

communication requirement because one vehicle may be required to communicate 

several times until the request is approved. The reservation-based approaches are typical 

centralized in nature. The intersection manager acts as a centralized controller and makes 

all the decisions for all the CAVs within the control region.  
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Since the aforementioned two approaches do not focus on fuel economy or system 

mobility, researchers came up with optimization-based approach. Lee and Park [34] 

proposed an algorithm with the objective of minimizing the total overlapped vehicle 

trajectory length projected in the intersection zone. In doing so, only a limited number of 

vehicles were inside an intersection at each time instance to avoid collisions. The 

simulation results in [34] showed significant reduction of  total stop and delay time 

compared to the conventional intersection control mechanisms. Other optimization based 

approaches aim at minimizing the total travel time. Jin et al. [35] proposed a two-lane 

intersection scenario which allowed only one vehicle on the intersection at each instance 

of time. With the information of approaching time of the vehicles, the optimal scheduled 

departure time of the vehicles was evaluated in [35], while the vehicles chose its 

appropriate trajectory to follow its prescribed departure time. Yan et al. [36] proposed a 

more complex scenario with multiple lanes including turning lanes. The CAVs on 

different lanes were first categorized into different vehicle classes based on their 

compatibility of coexistence at the intersection area and dynamic programming was used 

to determine vehicle class passing sequence. Some research effort has been spent on 

improving more than one aspect of the transportation system, which is multi-objective 

optimization. Kamal et al. [37] proposed a centralized Model Predictive Control (MPC) 

strategy with multiple terms in the cost function such as tracking a desired velocity, 

minimizing acceleration and minimizing the risk of collision. The main disadvantage of 

such centralized methods is the computational burden issue on the centralized controller 

to enable real-time operation especially in large-scale systems. Makarem and Gillet [38] 
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on the other hand, proposed a decentralized MPC method where the cost function and the 

constraints were similar to [37], but instead of one centralized control unit making 

decisions for all the involved vehicles, each vehicle is considered to plan its own 

trajectory and avoid rear end collisions or collisions at the intersection area. Although it 

would be computational efficiency in this way, the solution will be suboptimal due to the 

limited information one controller can gather. In order to achieve online real-time 

optimization, Rios-Torres et al. [39] developed a closed-form formulation for fuel 

economic control of the vehicles travelling over merging roads, while first-come-first-

serve (FCFS) is used to determine vehicle passing sequence. The simulation results 

presented in [39] showed significant reduction on fuel consumption. 

2.1.3 Research Gap 

There are numerous research focusing on the coordination of CAVs at isolated 

intersections, but urban road scenario generally consists of multiple intersections 

interconnected with each other. In such scenarios, what happens in one single intersection 

will influence the behavior of the whole intersection network. However, current isolated 

intersection coordination approaches lack the consideration of downstream traffic 

information, which means two things: first, once the vehicle clears the intersection, it is 

out of the consideration of intersection controller; second, whatever traffic status 

downstream the intersection doesn’t influence the intersection coordination strategy. 

Figure 2.1 illustrates an example of aforementioned shortcomings. In Figure 2.1, the 

intersection controller only control the vehicles from upstream and is not aware of the 

vehicles downstream are moving slowly because of traffic jam. Due to lack of the 
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consideration of the downstream traffic jam condition, the vehicle on the upstream may 

receive the instruction of maintaining current velocity from intersection controller (due to 

no vehicles on the other direction), which the vehicle will later end up with suffering 

from sharp deceleration or even collision. Due to these two shortcomings, we will not get 

optimal solutions when we extend current isolated coordination approaches to multi-

intersection scenarios. Additionally, the research on coordination of CAVs at multi-

intersection are still on macroscopic level with the focus on traffic flow, average speed 

and route selection. Wuthishuwong and Treachtler [72] [73] used consensus algorithm to 

balance the traffic density over a traffic network. Tilg et al. [74] proposed an algorithm to 

allow vehicles from different directions pass the intersection alternatingly and generate 

free flow over the network through adjusting the alternating switching frequency. 

Hauskencht et al. [75] extended the work of [76] by enabling dynamic routing with the 

help of traffic density information. However, the fuel economy and individual vehicle 

trajectory planning in presence of multiple-intersection scenarios is not the focus of the 

aforementioned studies. 
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Figure 2.1 Illustration of the disadvantages of current isolated intersection coordination 

approaches 

 

2.1.4 Approach 

In this section, a hierarchical CAVs coordination strategy for multiple 

interconnected intersections is presented. Figure 2.2 shows the schematic of the focused 

problem. We assume all the vehicles under consideration are connected vehicles. The 

vehicles do not change lane or make turns at the intersection. V2V, V2I and I2I 

communication network is assumed to be available. The major contribution of this work 

is developing a coordination strategy of connected vehicles at multiple interconnected 

intersections with the focus of individual vehicle trajectory planning. The coordination 

strategy also helps improve overall fuel economy and traffic mobility. 
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Figure 2.2 The schematic of the longitudinal coordination on traffic lightless intersections 

 

The hierarchical control architecture of this approach is shown in Figure 2.3. At 

the first layer, the traffic density information is shared between the intersections and 

consensus algorithm [77] [78] is used to speed up traffic density balance over the 

network. The second layer is the centralized intersection controller which is responsible 

for assigning reference velocity for each vehicle on the incoming roads to avoid 

intersection collisions. At the last, each vehicle local controller utilizes Model Predictive 

Control (MPC) to track the reference velocity. The details on each of the layers can be 

found in the next few sections. 
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Figure 2.3 The hierarchical control architecture of the longitudinal coordination on traffic 

lightless intersections 

 

A. Traffic Flow Model and Consensus Algorithm 

In real traffic environment, there are three parameters used to describe the traffic 

behavior in the macroscopic level: average velocity, traffic density and traffic flow. 

Traffic flow model is designed to present the relationship among these parameters. 

 

Figure 2.4 Greenshield model and modified traffic flow model 
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The Greenshield model [79] implies a simple linear function relationship to 

describe the relationship between average velocity and traffic density. When the traffic 

density reaches the jam density, the average velocity approaches to zero, which means 

the vehicles have to stop. As the traffic density decreases, the average velocity grows till 

the free flow velocity. The Greenshield model considers all conventional vehicles with no 

communication and automation capabilities, so we made some modifications based on 

the Greenshield model for our problem with CAVs involved. Figure 2.4 shows the 

modified relationship between average velocity and density. It can be expressed as: 
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In (2.1), V  is the road average velocity and ( )vf ρ  is the mapping from road 

density ρ  to road average velocity. When the traffic density ρ  on the road is less or 

equal to the free flow density threshold fρ  , the road average velocity is considered to be 

constant fV , which can be the speed limit for the road. Otherwise, the velocity would 

drop linearly with a slope sk  as the density increases as shown in Figure 2.4. 

We made the modifications based on the assumption that with only a few 

vehicles, the modern CAV control strategies, such as platoon and connected adapted 

cruise control (CACC), could enable all the vehicles on the same road travel at a high 

velocity. It can be assumed that the travelling velocity will decrease slowly due to 

communication delay and safety consideration when the number of vehicles exceeds a 
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threshold. We also assume the CAVs will travel as the modified traffic flow, if there is no 

coordination strategy involved. 

In a road network, the traffic status may be different in different roads. When the 

vehicle travels from one road or intersection to another, it may suffer sudden velocity 

changes, which is energy inefficient and uncomfortable for the drivers. From fuel 

economy perspective, minimizing vehicle velocity deviation during the trip generally 

results in the improvement of fuel consumption [80]. With infrastructure-to-infrastructure 

communications (I2I), an intersection could be informed about the traffic density at its 

neighborhood intersections so that it could plan the CAVs’ trajectories ahead of time to 

achieve smooth velocity transitions. For example, if the downstream road is congested 

and the average velocity is low (Figure 2.1), the vehicles on the upstream road could slow 

down slowly instead of suddenly deceleration once entering the next road from the 

minimizing fuel consumption point of view. 

 Consensus algorithm is implemented in this study to balance the traffic density 

over multiple intersections and minimize the average velocity difference from road to 

road. Consensus algorithms are very common in multi-robot formation control problems 

[77, 81]. It has also been recently studied for the balancing traffic density in the 

intersection network [72, 82]. The algorithm can be implemented in a decentralized 

fashion and it naturally gives the convergence properties, which is desirable for large-

scale complex system. The new desired road average velocity ( )*
CRV k  is presented in 

(2.2). 
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( ) ( )( ) ( )( ) ( )( )( )*
CR v CR CR v CR v ERV k f k f k f kρ λ ρ ρ= + −                                                (2.2) 

It is considering current traffic density CRρ  on its own road CR  and the density 

difference compared with the road ER , where ER is the road the vehicles in CR  will 

finally enter. In (2.2), k  indicates the time step and CRλ  is a constant factor which 

indicates how much the velocity will be changed based on its original flow model. 

In such a way, we have built the interconnection between the intersection 

controllers through traffic density information. This is the first layer in our coordination 

strategy. The new road desired average velocities ( )*
CRV k  is calculated based on 

consensus algorithm in this layer to help speed up the density balance process. In next 

section, we will illustrate how the intersection controller would assign reference 

velocities for each vehicle within the control region. 

B. Optimal reference velocity assignment 

Ideally, all the vehicles on the same road should move at the road desired average 

velocity from (2.2). However, in doing so, there would be a high chance of vehicle 

collision between the vehicles coming from conflict roads at intersection. The conflict 

roads here mean the roads with vehicles approaching the same intersection from different 

directions. To avoid vehicle collision at the intersections, we consider in this paper that 

the intersection controller adjusts the individual vehicle reference velocity. We formulate 

it as an optimization problem. The cost function for a single intersection is given by: 
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Here, m and n  are the indices of two conflict roads and p  and q  are the vehicle 

indices in road m  and n  respectively. *
mV  and *

nV  represent the road desired velocity 

obtained from (2.2) of road m and n respectively. In (2.3), ,m pv  and ,n qv  indicate the 

individual vehicle reference velocities and they are also the decision variables of the 

optimization problem. The constants pw  and qw  are the weighting factors representing 

the vehicle types. We want to punish the velocity changes of conventional vehicles and 

encourage the velocity changes for hybrid electrical vehicles (HEVs), if there is any. The 

reason behind this is that HEVs could recuperate from braking and accelerate with the 

power from battery, so maintaining less velocity deviation of conventional vehicles and 

encouraging HEVs velocity changes would result in better fuel economy. The weighting 

factors mw  and nw  represent the relative density relation between road m  and road n . 

Figure 2.5 shows the explanation of the notations mentioned above. If m nρ ρ> , then 

m nw w> , if m nρ ρ< , then m nw w<  and m nw w=  otherwise. This means, the vehicles on 

the road with higher density will get the priority and move faster and closer to the road’s 

desired velocity, which would speed up the process of density balancing due to higher 
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velocity on higher density road. The cost function is subjected to the constraints from 

(2.3b) to (2.3e). ,m pτ  and ,n qτ  in (2.3b) are the estimated time of arrival (ETA) to the 

intersection between roads m and n for the vehicles p and q respectively. For example, 

the ETA of vehicle p  can be expressed as (2.3e) where ,m pS  denotes the distance of 

vehicle p  on road m to the intersection. Thus, (2.3b) is used to avoid collision at the 

intersection by guaranteeing there is a time interval of 0τ  between the vehicles on 

conflict roads arriving at the intersection. The constraints in (2.3c) are making sure that 

the vehicles reference velocity is within the speed limit range. In (2.3d), uba  and lba  

present the maximum and minimum velocity change at each time step while ( ), 1m pv k −  

indicates the vehicle real velocity in last time step. The same constraints in (2.3c) are also 

applied to vehicles p  on road m . 

 

Figure 2.5 Illustration of the notations in Equation (2.3) 
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The intersection controller utilizes the information of both traffic status 

(information within its control region and neighborhood intersection) and the states of 

vehicles (velocity, position and vehicle type) for its decision making. Solving the 

optimization problem in (3), the intersection controller can assign reference velocity to 

each individual vehicle with the objectives of avoiding intersection vehicle collisions, 

improving the fuel economy and speeding up density balancing process. This is the 

second layer of our coordination strategy. Now in this layer, at each time step, each 

vehicle will send its velocity and position information to its intersection controller and 

receive the advisory reference velocity. The next step would be for the vehicle local 

controller to track its reference velocity while avoiding read end collision with its 

preceding vehicle. 

C. MPC tracking reference velocity assignment 

The advantages of model predictive control (MPC) is that it can deal with 

constrained problems and it allows the current time step to be optimized while keeping 

future time steps in account. At each time step, the optimal control problem is solved 

over a finite horizon, but only implements on the current time step [83]. MPC is also very 

suitable for the application of tracking problem [84].  

The longitudinal dynamics of any vehicle index of  i is given by [85]: 
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xn
ix ∈ℜ , un

iu ∈ℜ  and 2xn = , 1un =  in our case. In (2.4), [ ],i i ix s v= , where is  is 

the position of vehicle i  and iv  is its velocity. The control input iu  is the traction or 

braking force per unit mass of a vehicle at any time instance. i
hM , DC , aρ , i

vA  , µ , g  and 

θ  denote the mass of the vehicle, drag coefficient, air density, frontal area of the vehicle, 

rolling friction coefficient, gravitational constant and road gradient respectively. It should 

be noted that this vehicle longitudinal dynamic definition is used through the whole 

thesis. 

Once the reference velocity iv  for any vehicle i  is calculated from (2.3a) in 

Section 2.1.4B, then the tracking problem is solved as a receding horizon problem. For 

each vehicle i  and a time horizon T , the following cost function is solved at each time 

step k : 

( ) ( )( ) ( ) ( ) ( ) ( )
( )

1 2 2 2
1 2 3 4arg min

i

ik T
fueli

i i i ij i
u t k i

f t
J w v t v k w t R t w u t w

v t

+ −

=

= − + + +  
∑



                 (2.5a) 

( ) ( ) ( ) ,i i
lb i ubv t v t v t t≤ ≤ ∀                                                                                            (2.5b)               

( ) ( ) ,i i
lb i ubu t u t u t≤ ≤ ∀                                                                                                 (2.5c) 

( ) ( ) ( )( ) ( ) ( )( )0ij hd i j i jR t S t v t v t s t s t= + − + −                                                              (2.5d)           

In the cost function (2.5a), the first term is used to track the reference velocity 

( )iv k , the second term minimizes the deviation from a desired distance between vehicle 

i  and its preceding vehicle j , and the third term minimizes the control effort. The last 

term minimizes the fuel consumption rate per unit distance which is the factor how our 
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proposed approach would realize the improvement on the fuel economy. The definition 

of ( )i
fuelf t  can be found in the next subsection. In (2.5a), 1w , 3w  and 4w  are constant 

weightings, while ( )2
iw t , is chosen as a function of the relative distance, ( ) ( )( )j is t s t− , 

so it increases as the relative distance decreases and vice versa. The choice of ( )2
iw t  is 

similar to [85]. ( )i
lbv t   and ( )i

ubv t  in (2.5b) indicate the speed limits of the road while 

( )i
lbu t   and ( )i

ubu t  in (2.5c) denote the vehicle’s traction and deceleration limits. The 

problem in (2.5) also needs to be solved considering the constraints of the system 

dynamics in (2.4). 0S  and hdt  in (2.5d) are predefined critical distance and headway time 

respectively. 

D. Fuel consumption evaluation 

The rate of fuel consumption for the conventional vehicles is evaluated by the 

polynomial metamodel proposed in [85]: 

( ) ( ) ( )i i i
fuel cruise accelf t f t f t= +  

                                                                                           (2.6a) 

( ) ( ) ( ) ( )2 3
0 1 2 3

i
cruise i i if t b b v t b v t b v t= + ⋅ + ⋅ + ⋅

                                            (2.6b 

( ) ( ) ( )( )2
0 1 2ˆi

accel i i if t a r r v t r v t= ⋅ + ⋅ + ⋅

                                                                  (2.6c)           

21ˆ
2

i
i D a v i ii

h

a C A v g g u
M

ρ µ θ= − − − +
                                                        (2.6d) 

( )i
cruisef t  and ( )i

accelf t denote the fuel consumed by a vehicle travelling at constant 

velocity and the additional fuel consumption while the vehicle accelerating respectively. 
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The vehicle and environmental related parameters are taken from [85]: 1200i
hM = kg , 

2.5i
vA = 2m , 0.32DC = , 1.184aρ =  3/kg m  and 0θ = . The polynomial coefficients are 

equal to: 0 0.1569b = , 2
1 2.45 10b −= × , 4

2 7.415 10b −= − × , 5
3 5.975 10b −= × , 

0 0.07224r = , 2
1 9.681 10r −= ×  and 3

2 1.075 10r −= × . If ( ) 0iv t =  or 0iu < , it means the 

vehicle is idling. The fuel consumption can be set to be constant as: ( ) 0.1fuelf t = . 

 

2.1.5 Simulation Results 

In this section, the performance of the proposed approach explained in the 

previous section is evaluated by two different scale of scenarios. The small scale case 

contains 38 vehicles initially within the network, while the other one is more complex 

with 150 vehicles initially. New vehicles will come into the control region in both 

scenarios.  

A. Small scale scenario 

The intersection network structure and initial simulation setup is shown in Figure 

2.6. The scenario consists of two intersections interconnected with each other. There are 

7 one-way roads in total and the length of each road is 500 m. Road 1, road 2, road 3 and 

road 4 belong to intersection 1, while road 4, road 5, road 6 and road 7 belong to 

intersection 2. Initially, there are 5 vehicles on each road except the interconnecting road 

(road 4) which contains 8 vehicles. The red arrows in Figure 2.6 indicate the vehicle 

moving directions. At first we assume all the vehicles are the same type, so 1p qw w= = . 
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The effects of different vehicle types mixed driving scenario will be discussed later. 

There is at least 10 m  headway between the two adjacent vehicles in the initial set up and 

100 m  distance between the intersection and the vehicle closest to the intersection on 

upstream road, which gives the vehicles enough space to adjust their velocities to avoid 

collisions at intersection. In every 10 seconds, we consider new vehicles enter the region 

from 3 different roads (road 2, road 5 and road 7) to make the simulation run 

continuously. Since we are considering single lane roads, the vehicles do not overtake 

during the simulation and we assume the vehicles do not turn at the intersections. 

 

Figure 2.6 Schematic of the initial simulation setup 

In the traffic flow model for this case, the free flow density threshold considered 

is 5fρ = , speed limit 8fV = /m s , and the slope 0.25sk = − . The average road velocity 

is set to be constant and equal to the speed limit for road 3, road 6 and road 7. The 

simulation runs for 150 seconds with a prediction horizon 5T =  seconds and a time step 

of 0.5t∆ =  second. The initial velocity of each vehicle i  is set to be 0 7iv = /m s . In the 

simulation, we consider the vehicles and the intersection area are points. The vehicle 
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length and the area of intersections are taken into account by the parameters of: time 

interval 0 1τ = s , critical distance 0 10S = m and headway time 1hdt = s . The other 

bounding coefficients in the constraints are equal to: ( ) 0i
lbv t = /m s , ( ) 8i

ubv t = /m s , 

( ) 2.5i
lbu t = − 2/m s , ( ) 2.5i

ubu t = 2/m s , ( )lb lba u t t= ⋅∆  and ( )ub uba u t t= ⋅∆ . 
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Figure 2.7 All initial vehicle trajectories on x-direction roads (road 1, road 4 and road 7) 
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Figure 2.8 All initial vehicle trajectories on y-direction roads (road 2 and road 3) of 

intersection 1 
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Figure 2.9 All initial vehicle trajectories on y-direction roads (road 5 and road 6) of 

intersection 2 
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Figure 2.10 Relative distance to the intersection of vehicles from road 1 and road 2 of 

intersection 1 in small scale scenario 
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Figure 2.11 Relative distance to the intersection of vehicles from road 4 and road 5 of 

intersection 2 in small scale scenario 
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(e)                        (f) 

Figure 2.12 Randomly selected vehicle velocity tracking performance 

 

Figure 2.7 to Figure 2.12 show the simulation results of our proposed 

methodology on the small scale scenario. Figure 2.7 shows the trajectories of all 18 

vehicles initially on x-direction roads during the simulation. Figure 2.8 and Figure 2.9 

shows the initial 10 vehicle trajectories on y-direction roads of intersection 1 and 2 

respectively. The results show no intersection among any of the trajectories, which means 

there is no rear end collision.  
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Figure 2.10 and Figure 2.11 show the relative distance of the vehicles coming 

from different directions to the intersection 1 and 2 respectively. It should be noted that 

the blue and red lines on the figures indicate the vehicles from different directions and on 

different roads. The intersections between blue and red trajectories do not mean there is 

collision. The collision between vehicles from different directions can only happen at the 

crossroad area. As it can be seen from the Figure 2.10 and Figure 2.11, that collision at 

the intersections are avoided when using our proposed method. 

Figure 2.12 shows the performance of some randomly selected vehicles’ local 

controllers when using MPC to track the reference velocity received from the intersection 

controller. Figure 2.12a to Figure 2.12d show very good tracking performance. However, 

in Figure 2.12e and Figure 2.12f, it can be noticed that the vehicles are unable to track the 

reference velocity very well at the beginning. This is because the vehicles are also 

constrained by the minimum headway distance and time to its preceding vehicle. The 

velocity profiles of vehicle 19 and 27 are affected by their preceding vehicles’ position 

and velocity. 

To show the advantages of our proposed approach, we designed two baseline 

methods. The first one is the method without I2I communication (no I2I), which means 

one intersection does not have the traffic information of its neighborhood intersection. In 

this method, the road desired velocities ( *
mV  and *

nV ) are not calculated from (2.2), but 

directly from the traffic flow model (2.1). The vehicles will travel as the traffic flow 

without the consensus algorithm involved, so there is no interconnection between the 

intersections. The other baseline method is the one without optimally assigning reference 
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velocity to individual vehicle (no optimization). In this method, the I2I communication is 

still working. However, we set the cost function in (2.3a) to be constant and the 

constraints remain the same. Thus, the intersection controller still have the capabilities to 

avoid vehicle collisions at intersection, but the assigned reference velocity will not be 

optimal with respect to anything. 

We evaluate these approaches on two aspects: fuel economy (miles per gallon 

(mpg)) and mobility. For fuel economy, we compared the average, maximum, minimum 

and standard deviation of the fuel economy of all the initial vehicles. The mobility is 

measured as the total time taken by the initial vehicles to leave the given control region. 

The results are tabulated in Table 2.1. It should be noted that the results in Table 2.1 are 

all initial 38 vehicles. Since we fix the incoming times of new vehicles, they are unlikely 

to change their velocities a lot. It is not necessary to include all the vehicles while 

conducting the performance comparison. 
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Table 2.1 Fuel economy and mobility comparison of small scale scenario 

Approach Proposed No I2I No Optimization 

Average Fuel 

Economy (mpg) 
46.62 45.82 42.98 

Maximum Fuel 

Economy (mpg) 
50.12 49.41 49.41 

Minimum Fuel 

Economy (mpg) 
41.14 39.85 34.57 

Fuel Economy 

Standard Deviation 
2.1353 2.0231 4.2719 

All Vehicle Total 

Travel Time (s) 
1503 1523.5 1659 

 

 

Compared with no optimization method, the proposed approach shows significant 

reduction on fuel consumption and total travel time. 8.47 % of average fuel economy and 

10.28 % of total travel time improvement can be expected. Also, even the minimum fuel 

economy in our proposed approach is comparable with the average fuel economy of the 

no optimization method. When compared with no I2I method, the performance of the 

proposed method is better for both fuel economy and mobility, but the improvement is 

not very impressive. The reason behind this is that there is a lot of information we can 

share between the intersection controllers through I2I. Traffic density information is only 
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one part of all the factors that influence the performance of intersection coordination 

strategy and it may not be the most critical one, so we can only achieve slight 

performance improvement by sharing traffic density information. There might be more 

improvement on the performance if more information is shared. However, as the 

consequence, the computation and communication burden would increase at the same 

time and it would be harder to realize the real-time implementation. 

B. Small scale scenario 

To demonstrate the feasibility and scalability of our methodology, a larger scale 

scenario with more vehicles has been explored. The traffic network structure remains the 

same, but the length of each road is extended to 500 m . Initially, there are 20 vehicles on 

each road except the interconnecting road, where there are 30 vehicles, so there are 150 

vehicles in total initially within the control region. Most of the parameters set up are the 

same with the previous scenario, except that 20fρ = , 15fV = /m s  and initial velocity 

0 12iv = /m s . Since it is a more complex scenario and it is much more crowed on the 

interconnecting road (30 vehicles on the middle road), it is very hard to maintain 10 m 

minimum headway distance, so we set 0 7S = m . 
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Figure 2.13 (a) Relative distance to the intersection of vehicles form road 1 and road 2 of 

intersection 1 in larger scale scenario (b) Partial zooming in on intersection area 

 

Figure 2.13 and Figure 2.14 shows the simulation results similar to the pervious 

scenario at intersection 1 and 2 respectively. It can be observed that there is no collision 

at the intersection areas in this scenario. We also conducted the comparison between our 

proposed method and the two baseline methods. It should be noted that, while examining 

the simulation results of fuel economy, we notice that there are a few vehicles that leave 

the control region very fast because of their initial positions and thus it is meaningless to 
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evaluate their fuel consumption. Table 2.2 shows the comparison results without taking 

into account the aforementioned vehicles. The results and conclusions from Table 2.2 are 

similar to the small scale scenario. 
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Figure 2.14 (a) Relative distance to the intersection of vehicles form road 4 and road 5 of 

intersection 2 in larger scale scenario (b) Partial zooming in on intersection area 
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Table 2.2 Fuel economy and mobility comparison of larger scale scenario 

Approach Proposed No I2I No Optimization 

Average Fuel Economy 

(mpg) 
47.01 46.39 45.62 

Maximum Fuel 

Economy (mpg) 
52.32 52.50 50.52 

Minimum Fuel 

Economy (mpg) 
41.01 40.75 41.04 

Fuel Economy  

Standard Deviation 
2.9676 3.2627 2.2244 

All Vehicle Total Travel 

Time (s) 
7581.5 7732.5 8088.5 

 

C. Effects of mixed vehicle types 

To study the effects of involving HEVs to our coordination strategy, another 

scenario has been explored. In this case, we only consider one intersection and two 

vehicles approaching to the intersection from x-direction and y-direction respective. The 

initial velocity and distance to the intersection are the same for both vehicles, such that 

the ETA of the two vehicles to the intersection is the same and they need to adjust their 

velocities to avoid collision at the intersection. To simplify the simulation, we ignore the 



 49 

reference velocity tracking using MPC discussed in the previous section and assume the 

vehicles will travel at the reference velocity exactly at each time step. 

We first set 1p qw w= = , indicating the two vehicles are the same type. Then we 

set 0.8pw =  and 1qw = , which means the vehicle from x-direction is a HEV and the 

vehicle from y-direction is a conventional vehicle. We set the weighting factor of HEV is 

less than the conventional vehicle, because we want to encourage the velocity changes of 

HEV and maintain less velocity deviation of the conventional vehicle. Since the HEV 

could recuperate from braking and accelerate with the power from battery, these 

weighting factors set up would achieve optimal overall fuel economy. Figure 2.15 shows 

the simulation results. It can be noticed that in the same weighting factor simulation, the 

controller will increase the velocity of one vehicle and decrease the other one randomly. 

In the other case, when different weights are sued, the velocity of conventional vehicle 

remains the same during the simulation and the HEV changes its velocity to avoid 

collision. The vehicle passing sequence are different for the two cases as shown in Figure 

2.15. We believe the overall fuel efficiency can be improved by adding appropriate 

weighting factors representing different vehicle types. However, it is very hard to 

evaluate the fuel efficiency of the HEV in this case because the HEV only travels for a 

short distance and time to cross the intersection. Further research effort may worth to 

expend on this area. 
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(a)                                            (b) 

Figure 2.15 Effects of vehicle type on intersection passing sequence: (a) two vehicles 

with the same weighting factor (b) two vehicles with different weighting factors 

 

2.1.6 Conclusion 

In this section, a hierarchical control strategy is presented focusing on the 

coordination of CAVs at multiple intersections. For the first layer, each intersection is a 

decentralized controller sharing the neighborhood intersection traffic density information 

through I2I communication. The intersection controllers generate the average road 

velocity to assist the traffic density balance over the traffic network. In the second layer, 

the intersection controllers optimally assign the reference velocity for each individual 

vehicle based on the objective of minimizing the deviation from average road velocity 

and avoiding collision at the intersection. In the last layer, each vehicle as a decentralized 

local controller sends out its position and velocity information and uses MPC to track the 
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reference velocity sent from the intersection controller. The three layers are 

interconnected and mutually influence one another. By applying the hierarchical control 

architecture, we can reduce the computational burden on a single controller to achieve the 

real-time control of the vehicles at the intersections. 

The proposed approach has been implemented on a small scale scenario with 

fewer vehicles and on a larger scale scenario with more vehicles. The successful 

implementation on both scenarios demonstrates the feasibility and scalability of our 

method. In order to prove the advantages of our proposed approach, two baseline 

methods are designed: no I2I method and no optimization method. The simulation results 

show the proposed approach outperformed the two baseline methods in both fuel 

economy and mobility. 8.47 % of average fuel economy improvement and 10.28 % of 

total travel time reduction can be expected compared with no optimization method from 

the small scale scenario. The scenario with mixed vehicle types has also been explored. 

The simulation results show that with the effect of vehicle types, the proposed method 

can generate a different vehicle passing sequence at the intersection with the objective of 

optimizing overall fuel economy. 

2.1.7 Related Publication 

• Du, Z., Chaudhuri, B.H. and Pisu, P., 2016. Distributed Coordination of 

Connected and Automated Vehicles at Multiple Interconnected 

Intersections.World Academy of Science, Engineering and Technology, 

International Journal of Computer, Electrical, Automation, Control and 

Information Engineering, 10(6), pp.842-848. 
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2.2 Signalized Traffic Intersection 

2.2.1 Introduction 

Although we discussed the development of the coordination strategy for a group 

of CAVs at unsignalized traffic intersection relying only on the communication and 

cooperation of involved vehicles and intersection controllers, the traffic lights are still 

playing an important role in governing our current intersections at current stage of 

intelligent transportation system. Also, the traffic light controlled intersections would still 

be functional even at lower connected vehicle penetration rate unlike the traffic lightless 

intersection coordination strategy. However, poor traffic signal timing accounts for about 

5 to 10% of traffic delays or 295 million vehicle-hours of delay on major roadways alone 

[86], which is very inefficient. 

The objective of this research is to develop a coordination strategy for a group of 

connected vehicle passing through multiple interconnected signalized traffic intersections 

with the focus of individual trajectory planning. Utilizing the traffic signal phase and 

timing (SPAT) information to improve fuel economy and traffic mobility for both 

conventional vehicles and hybrid electric vehicles (HEVs) by avoiding or minimizing red 

light stops. The coordination strategy should also be robust to various connected vehicle 

penetration rate. Figure 2.16 shows the schematic of the problem. We assume single lane 

road with multiple interconnected intersections controlled by traffic lights. Vehicles do 

not turn or do overtake during the simulation. The traffic lights SPAT information is 



 54 

assumed to be known. The V2V and V2I communication environment is available among 

the vehicles and the intersection controllers. 

 

Figure 2.16 The schematic of the traffic light intersection problem 

2.2.2 Literature Review 

There are generally two categories in the literature to solve the issue of poor 

signal timing. The first one focuses on controller the traffic signal. Numerous research 

effort has been put on designing the traffic-actuated signals [87] [88], where the traffic 

signal phase and timing are response to the change of the traffic conditions. Some other 

researchers focus on developing the synchronization of a series adjacent traffic lights to 

generate vehicles’ free flow or green wave travelling conditions [43] [89] [90]. However, 

these approaches are very costly to implement and maintain. It is estimated that annually 

updating the traffic signal timing over the nation would cost about $217 million [46]. It is 

even worse that although the traffic signal timing is well designed, vehicles will still 

often cruise at full speed to a green light and have to come to a sudden halt when the 

traffic light turns red [91]. 

Thus, the problem is better to be solved on the vehicle side with the knowledge of 

the SPAT information. An algorithm minimizing acceleration for a vehicle passing 

through multiple traffic signal lights is presented in [47]. Asadi and Vahidi in [49] 

developed a Model Predictive Control (MPC) based strategy using SPAT information to 
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reduce idling time and minimize vehicle’s acceleration. This work was later extended by 

using a probabilistic approach to consider noisy traffic light conditions [50]. A machine 

learning based approach was proposed in [48] where smart phones are used to predict the 

phase of traffic lights. 

Since the objective of this work includes improving the fuel economy for both 

conventional vehicle and HEVs, and we have ready discussed the fuel consumption 

evaluation for conventional vehicles in the last section (Section 2.1.4D), it is better to 

give a brief review on the HEVs fuel economy research. Hybrid electric vehicles with at 

least two power sources have attracted great public attention because of the potential of 

reducing fuel consumption and emission. At any time, the power split between the engine 

and the alternative power source (e.g. battery) is required optimal to improve fuel 

economy while satisfying the driver power request at the same time. Thus, the control 

strategy for HEVs plays an important role of affecting their performance. Brahma et al. 

[92] proposed to use dynamic programming to control the power split with a given 

driving profile. The authors in [93] [94] considered driving behavior and real-time road 

conditions for HEVs, while the authors in [95] [96] have developed energy management 

strategies for both HEVs and plug-in electric vehicles that uses real-time road grade and 

trip information. Future driving behavior prediction using historical data can be found in 

[97] [98].  

Most of the literature in HEV energy management research only focuses on 

controlling the power split and do not consider controlling the driver behavior. For the 

fuel economy control strategies mentioned above, the focus is only on one single subject 
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vehicle and do not consider multiple vehicles in the road where behavior of one vehicle 

affects the others. Also, very few study can be found in the literature on the impact of 

connected and unconnected vehicle mixed scenario (effects of connected vehicle 

penetration rate) while focusing on individual vehicle trajectories. The last but not least, 

most of the work makes single lane assumption without considering lane change. We will 

discuss the lane change problem in the next section. 

2.2.3 Approach 

In this section, the hierarchical control strategy for a group of connected vehicles 

passing through multiple interaction connected traffic light intersections is introduced. 

Figure 2.17 shows the hierarchical control architecture. At the first layer, the centralized 

intersection controller assigns target velocity for the vehicles based on SPAT information 

to help the vehicles avoid or minimize red light idling. In next layer, the  vehicle local 

controller uses MPC to track the reference velocity sent from the intersection controller 

with the objective to improve fuel economy. If the vehicles are HEVs, another layer is 

applied to deal with the HEV energy management. Adaptive Equivalent Consumption 

Minimization Strategy (A-ECMS) is utilized to determine the power split. 

The major contribution of this work is developing the coordination strategy for a 

group of connected vehicles passing through signalized traffic intersections. Utilizing 

SPAT information to avoid or minimize red light idling to improve the fuel economy and 

traffic mobility. The study on the effect of connected vehicle penetration rate is also 

conducted. 
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Figure 2.17 Hierarchical control architecture of traffic light intersection problem 

 

A. Target velocity 

The target velocity of a vehicle determined by the centralized intersection 

controller is presented. Rather than simply choosing the target velocity as the speed limit 

of the road, the target velocity can be chosen based on the SPAT information that helps 

the vehicle minimize stopping at red light. Similar to [49], the target velocity of each 

vehicle is calculated at time instance k  as: 

( )

( )

( )

( )

target max max

if red

if green and

if green and Otherwise
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w cycle g
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                                                          (2.7a) 
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Figure 2.18 Schematic of the target velocity and velocity range lower bound evaluation 

 

Here ( )iad k  is the distance between ( )is k  (the position of vehicle i) and the 

traffic signal a at time instant k , rt  and gt  are the red and green light duration 

respectively, so the full cycle duration is cyclet . wK  is an integer representing the traffic 

light cycle number. The function mod in (2.7b) is a modulo function which generates the 

residue of division k  by cyclet . From (2.7a), if the traffic light is green, the speed limit is 

chosen as the target velocity unless the constraint ( )
max

ia

w cycle r

d k
v

K t t k
≤

− −
 is not satisfied. In 

that case, the vehicle desires to pass through the traffic signal in the next green light 

widow as shown in the third case of (2.7a). If no feasible velocity is obtained in the 
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consecutive green light windows, the vehicle has to stop at the approaching traffic light 

signal. Figure 2.18 shows the schematic of how our target velocity is evaluated. 

Basically, the vehicle target velocity is aiming at passing the intersection at the start of 

the green window. Instead of using zero as the velocity lower bound for the optimization 

problem later, the velocity lower bound is also evaluated. The calculation of velocity 

lower bound is similar to the target velocity, but it is targeting at passing the intersection 

at the end of green window. Both target velocity and the velocity lower bound are sent to 

each approaching connected vehicle local controller for the MPC optimization problem, 

such that the vehicle velocity within the range will possibly pass the intersection without 

stop. 

B. MPC tracking target velocity in a fuel efficient way 

Once the target velocity of a vehicle is determined, the problem of generation of 

energy efficient velocity profiles is solved in a model predictive control framework. If the 

vehicles are conventional vehicle, the MPC problem formulation is presented in (2.8), 

which is similar to in Section 2.1.4C: 

( ) ( )( ) ( ) ( ) ( ) ( )
( )

1 2 2 2
1 target 2 3 4arg min

i

ik T
fueli i

i i ij i
u t k i

f t
J w v t v k w t R t w u t w

v t

+ −

=

= − + + +  
∑



           (2.8) 

However, if the vehicles are HEVs, our goal is to minimize the power associated 

with traction force per unit distance for each vehicle by controlling the vehicle traction 

and braking force. The problem is presented by the following equations (2.9): 
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( ) ( )( ) ( ) ( ) ( ) ( )
( ) ( )

1 2 2 2
1 target 2 3 4arg min

1i

ik T
traci i

i i ij i
u t k i i

P t t
J w v t v k w t R t w u t w

s k T s k

+ −

=

∆= − + + +  + − − 
∑       (2.9a) 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )3
1 2

1

2

1
2

0 0
1

0 0
1

i i i i i i i i
trac a D v i h i i h i rec i h i

ii

ii

P t C A v t M gv t v t M u t t v t M u t

if u
otherwise

if u
otherwise

ρ µ θ β β η

β

β

   = + + + + −   

≤
= 


>
= 


(2.9b) 

( ) ( )( ) ( ) ( )( )0ij hd i j i jR S t v t v t s t s t= + − + −                                                                  (2.9c) 

( ) ( ) ( )min max
i i

iv t v t v t≤ ≤                                                                                                 (2.9d)   

( ) ( ) ( )min max
i i

iu t u t u t≤ ≤                                                                                                (2.9e) 

The first term in the cost function in (2.9a) punishes the deviation from the target 

velocity while the last term minimizes the control effort. It should be noted that the 

variables recuperation efficiency ( )i
rec tη  are obtained from our lower level controller. 

The second term minimizes the deviation from a desirable headway distance and time 

between vehicle i  and its preceding vehicle j . 0S  and hdt  in (2.9c) are predefined critical 

headway distance and time respectively. The first two terms define the desired separation 

of two following vehicles and the third term in (2.9c) indicates the real distance between 

the two vehicles. The third term minimizes the power at the wheel per unit distance 

where ( )i
tracP t  can be computed from (2.9b). In (2.9b), i

tracP  is the power associated with 

the traction force derivate from [99] [100]. It can be seen from (2.9a), that the objective is 

to minimize the power associated with the traction force, such that by applying proper 

lower level energy management strategy, we can expect fuel economy improvement. 



 61 

( )i
rec tη  is the recuperation efficiency for each vehicle i . It is worth to mention that 

( )i
rec tη  is obtained from the lower level controller. 1w , 3w  and 4w  are constant weighting 

factors respectively. ( )2w t  is chosen as a function of the relative distance, so that it 

increases as the relative distance decreases and vice versa. Equations (2.9d) and (2.9e) 

indicate the constraints of the velocity and acceleration where minv  and maxv  are the 

minimum and maximum allowable speed respectively, while minu  and maxu  are the 

minimum and maximum possible acceleration of a vehicle i  respectively. 

C. A-ECMS energy management 

If the vehicles are HEVs, the energy management controller maps the velocity 

evaluated by the vehicle local controller to power request and solves the optimal power 

split between engine and the battery. At the same time, the recuperation efficiency is fed 

back to the vehicle local controller layer for future velocity profile evaluation. In this 

research, the optimization of the power split is realized by using Adaptive Equivalent 

Consumption Minimization Strategy (A-ECMS) [101]. A-ECMS, similar to ECMS, does 

not require the knowledge of future driving cycles and has a low computational burden. 

Apart from that, by using online adaptation of the equivalence factor ( )eqvs t  instead of 

constant eqvs  in ECMS, better performance can be achieved under various driving 

conditions while sustaining battery SOC within desired limits. The detailed problem is 

described by the following equations: 

( )( ) ( ),arg min
l
i

l
f i f em

u
m u t t m t t ∆ + ∆                                                                                          (2.10a)                 
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( ) ( ) ( ) ( ) ( ), 1eqv el
f em el el

el el LHV

Pm t s t P t
P H
γ γ η

η
 

= + − ∆ 
 

                                               (2.10b)  

( ) ( ) ( )( ) ( ) ( )( )1 0.5 1 0eqv eqv eqv
ps t s t s t c SOC SOC t+ = + − + −                                         (2.10c) 

( )1 sgn
2

elP
γ

+
=                                                                                                           (2.10d) 

( ) ( ) 00fSOC t SOC ε− ≤                                                                                             (2.10e) 

Here, ( ),f emm t  is the equivalent fuel consumption rate of the electrical machine, 

γ  is unit step function, elη  is the efficiency of the electrical path and elP  is the power 

from the electric machine. ( )eqvs t  as the equivalent factor is evaluated in (2.10c), where 

pc  is the step size acting as a proportional feedback gain as mentioned in [101]. It can be 

noticed that the equivalent factor changes as the battery SOC deviates from its initial 

SOC. The constraint in (2.10b) has been relaxed to (2.10e) so that the difference between 

the final SOC and the initial SOC stays within a small bound 0ε . 

In this research, the efficiencies feedback is achieved by the following procedure. 

The vehicle local controller evaluates the velocity profiles for a certain time window with 

initial recuperation efficiency. The velocity profiles are then sent to each energy 

management layer controller. The energy management controllers follow the velocity 

profiles and optimize the power split. At the same time, the average recuperation 

efficiency is computed and fed back to the vehicle local controller layer for the future 

velocity profile evaluations. By doing so we closed the loop between the vehicle local 

controller layer and energy management controller layer and these two layers are 
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mutually affecting each other. We name the time window while computing the average 

efficiencies as feedback time window. 

2.2.4 Simulation Results 

The simulation results of the proposed method are shown in this section. We run 

the simulation in MATLAB R2014a. Detailed modeling of the HEVs are developed 

based on Autonomie software. The description of the HEVs are provided in Table 2.3. 

We consider a scenario with 10 vehicles in a single lane road with traffic lights at every 

500 m.  Two signal timings are chose to demonstrate the performance of our proposed 

approach. The first signal timings choice is sampled from a uniform distribution with 

range 37s to 43s for the red light window ( rt ) and 12s to 17s for the green light window 

( gt ) for each cycle of every traffic signal. For simplicity, we name this signal timings as 

tr40-tg15, because 40rt s=  and 15gt s=  are the mean value for the range of red light 

window and green light window respectively. The second choice is called tr30-tg10 with 

range 27s to 33s for the red light window ( rt ) and 7s to 13s for the green light window 

( gt ). 

A 600s simulation time duration is considered for each simulation case. The 

trajectories of all the vehicles in the tr40-tg15 case and tr30-tg10 case without 

considering the recuperation efficiency feedback are shown in Figure 2.19 and Figure 

2.21 respectively. Here the meaning of without considering the recuperation efficiency 

feedback is that we use constant ( )i
rec tη  for all the vehicles and all the time instance in 

(2.9a). As the baseline comparison, Figure 2.20 and Figure 2.22 shows that all the 
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vehicles are controlled by Gipps car following model [102]. The velocity profiles of all 

the vehicles for both signal timings cases are shown in Figure 2.23 and Figure 2.24 

respectively. The different colors in the figures stand for different vehicles’ trajectories. 

The red bars on the figures indicate the red signal and its duration. It can be observed 

from the figures that our proposed method enables free flow by generating velocity 

profiles that helps vehicle reduce the red light idling. In our simulations, only one vehicle 

suffers a short stop as shown in Figure 2.24. However, the vehicles governed by Gipps 

car following model suffered lots of stops at red lights during the simulation. The fuel 

economy results are summarized in Table 2.4 

Table 2.3 Parameters and components of the vehicles 

Component and 

Parameters 
Description and Value 

Vehicle Mass 

Vehicle Front Area 

Drag Coefficient 

1360 (kg) 

2.25 (m2) 

0.3 

Engine 110 kW and 2.2 L SI gasoline engine 

Motor 
Permanent Magnet electric motor of the MY04 with 

continuous power of 25 kW and peak power of 50 kW 

Energy Storage Li-ion Battery with capacity 6 Ah and 75 cells 

Transmission 5 speed auto gear box with final drive 4.438 

Power Converter Output voltage 12 V and efficiency 0.95 

Wheel P195/65/R15 
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Table 2.4 Summary of fuel economy comparison 

 Vehicle # 1 2 3 4 5 6 7 8 9 10 Avg MPG 

Tr 30s 

Tg 10s 

Proposed 52.62 53.43 50.16 50.41 51.33 52.30 51.97 53.86 53.19 52.64 52.19 

Gipps 30.19 31.92 28.34 29.15 30.95 32.88 33.71 33.87 30.79 31.84 31.37 

Tr 40s 

Tg 15s 

Proposed 54.16 51.19 53.09 52.97 51.39 48.87 47.56 47.01 46.00 46.43 49.87 

Gipps 31.62 31.51 31.65 31.83 29.83 28.94 31.82 33.84 35.11 33.97 32.01 
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Figure 2.19 All vehicle trajectories of tr30-tg10 no efficiency feedback (the red dash lines 

indicate traffic lights) 
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Figure 2.20 All vehicle trajectories of tr30-tg10 in Gipps car following 
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Figure 2.21 All vehicle trajectories of tr40-tg15 no efficiency feedback (the red dash lines 

indicate traffic lights) 
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Figure 2.22 All vehicle trajectories of tr40-tg15 in Gipps car following 
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Figure 2.23 All vehicle velocity profiles of tr30-tg10 no efficiency feedback 
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Figure 2.24 All vehicle velocity profiles of tr40-tg15 no efficiency feedback 

 

To demonstrate the performance improvement of the efficiencies feedback 

proposed in this research, we choose 40s, 60s, 75s, 100s and 200s as our feedback time 

windows and compare with our baseline (no efficiency feedback) for both 

aforementioned two signal timings cases. The average fuel economy results for both of 

the signal timings are presented in Figure 2.25 and Figure 2.26 respectively. The detailed 

fuel economy results are tabulated Table 2.5. It can be noticed that the fuel economy 

performance is improved when using the efficiencies feedback proposed in this research 

compared with baseline where there is no efficiencies feedback. That is because with the 

efficiencies feedback, the velocity profiles evaluated by the vehicle local controller 

coincide with the real operating efficiencies of the HEVs, such that the fuel economy is 

improved. The best performance appears at around 60s to 75s feedback time window 

which indicates that a proper selection of the feedback time window is important. Figure 

2.27 and Figure 2.28 show the velocity profiles and SOC of all the feedback time 
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windows in tr30-tg10 case for vehicle No. 1 and No. 7 respectively. Figure 2.29 and 

Figure 2.30 show the velocity profiles and SOC of all the feedback time windows 

mentioned above in tr40-tg15 case for vehicle No. 1 and No. 7 respectively. It can be 

seen from the figures that different feedback time windows slightly affect the velocity 

profiles and the SOC of every vehicle stays within a 2% bound. There is only little final 

SOC variation among different simulation cases, so the effect of final SOC difference on 

the fuel consumption evaluation can be negligible. For the sake of simplicity, the velocity 

profiles and SOC data of the rest vehicles are not presented. 

 

Table 2.5  Summary of average fuel economy of different feedback windows 

 Average Fuel Economy (mpg) 

Signal Timings 40s 60s 75s 100s 200s Baseline 

tr40-tg15 51.54 51.71 51.35 50.01 50.41 49.87 

tr30-tg10 53.55 53.76 53.14 52.85 52.96 52.19 
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Figure 2.25 Average fuel economy of tr30-tg10 
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Figure 2.26 Average fuel economy of tr40-tg15 
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Figure 2.27 Vehicle No.1 in different feedback time windows of tr30-tg10 case: (a) 

velocity profiles (b) SOC data  

 

 

Figure 2.28 Vehicle No.7 in different feedback time windows of tr30-tg10 case: (a) 

velocity profiles (b) SOC data 
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Figure 2.29 Vehicle No.1 in different feedback time windows of tr40-tg15 case: (a) 

velocity profiles (b) SOC data 

 

 

Figure 2.30 Vehicle No.7 in different feedback time windows of tr40-tg15 case: (a) 

velocity profiles (b) SOC data 
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2.2.5 Conclusion 

This section presents a novel hierarchical control architecture where different 

layers of controllers, although solves different problems, aims at improving fuel economy 

of a group of HEVs. The different layers of controllers mutually affect each other. The 

SPAT information is utilized to avoid or minimize red light idling to improve overall fuel 

economy and traffic mobility. The simulation results show the fuel economy 

improvement of our proposed approach.  

2.2.6 Related Publication 

 

• Z. Du, L. Qiu and P. Pisu, Hierarchical Energy Management Control of 

Connected Hybrid Electric Vehicles on Urban Roads with Efficiencies Feedback, 
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• L. Qiu, Z. Du, L. Qian and P. Pisu, Hierarchical Energy Management Control 

Strategies for Connected Hybrid Electric Vehicles Considering Efficiencies 

Feedback, Journal of Applied Research and Technology (under review) 
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2.3 Connected Vehicle Penetration Rate Study 

2.3.1 Introduction 

In our previous work, we have designed a fuel efficient control strategy for a 

group of connected vehicles on urban roads with signalized intersections. We assumed 

that all the vehicles are connected vehicles, which is a very strong assumption under 

current stage of the connected vehicle development. In this section, we focus on the 

connected and unconnected vehicles mixed scenario. In the literature, most of the 

research on connected vehicle penetration rate studies are carried at macroscopic level 

[53] [54]. The major contribution of the work in this section is that the effects of 

connected vehicle penetration rate is studied considering individual vehicle decision 

making at microscopic level, i.e., the control input (acceleration and deceleration in our 

case) of each vehicle at every time step. 

In this section, a simulation study is conducted to find out the effects of various 

connected vehicle penetration rate and the presence of unconnected vehicles on the 

convoy. In this study, we assume the connected vehicle can send its position and velocity 

information to the centralized intersection controller and receive the target velocity at the 

same time. The connected vehicle longitudinal motion is controlled by our hierarchical 

control architecture (in Section 2.2.3). The unconnected vehicles do not have the 

capability of sending or receiving any information from the intersection controller, but its 

position and velocity information can be captured by the onboard sensors of the 

connected vehicles and sent to the intersection controller. The unconnected vehicles are 

also assumed to have a good estimation on the distance between itself and its preceding 
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vehicle or the approaching traffic lights. The unconnected vehicle longitudinal motion is 

controlled by the modified Gipps car following model. Figure 2.31 shows the schematic 

of the simulation scenario. 

 

 

Figure 2.31 Schematic of the connected and unconnected vehicles mixed scenario 

 

2.3.2 Modified Gipps Car Following Model 

The Gipps car following model [102] was proposed to estimate the behavior of 

the preceding vehicle in a stream of traffic. In this section, we modified the original 

model for controlling the longitudinal motion of the unconnected vehicles travelling on 

signalized intersection roads with the capability of stopping at the red signal light. For 

any unconnected vehicle i, if it is following a lead vehicle, the original Gipps car 

following model is applied as in (2.11): 

( ) ( ) ( ) ( )2.5 1 0.025i ia i
i i ub i i

ub lb

v t v t
v t k v t u k

v v
 

+ ∆ = + ⋅ ⋅∆ ⋅ − ⋅ + 
 

                                     (2.11a) 

( ) ( ) ( ) ( ) ( ) ( )2
2 1

1 0 12 ib i i i
i lb lb lb i i i i

lb

v t
v t k u k u k u s t S s t v t k

u
−

− −

 
+ ∆ = ⋅∆ + ⋅∆ − ⋅ − − − ⋅∆ −     

 
 (2.11b) 

( ) ( )( )(t k) min k , ka b
i i iv v t v t+ ∆ = + ∆ + ∆                                                                   (2.11c) 
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In above equations, a
nv  is the maximum speed a vehicle can accelerate to during 

one time step k∆ , while b
nv  is the maximum safe speed for vehicle i with respect to the 

vehicle in front at time t. The velocity of vehicle i in the next time step is the minimum of 

a
nv  and b

nv . The rest parameters are consistent with the definition in Section II. More 

details about the original Gipps car following model can be found in [102]. 

If the vehicle is the leading vehicle in the convoy or there is no vehicle between 

itself and the approaching traffic light, the Gipps car following model is modified as: 

 

( ) ( )
( )

( ) ( ) ( )( )
( ) ( )( )

*

b*

2

* b*

if light = red

2

(t k) min k , k

a a
i i

i
i lb

i i
lb lb light i i

a
i i i

v t k v t k

v t k u k

u k u s s t v t k

v v t v t

+ ∆ = + ∆

+ ∆ = ⋅∆

 + ⋅∆ − ⋅ − − ⋅∆ 

+ ∆ = + ∆ + ∆

                                                        (2.12a) 

( )( )( )
if light = green

(t k) (t) min 0.5 ,  /i i
i i ub ub iv v u v v t k k+ ∆ = + ⋅ − ∆ ⋅∆

                                             (2.12b) 

In this case, when the leading vehicle is approaching a red light, *a
iv  remains the 

same with the original model a
iv . However, the second equation of (2.12a) is modified, 

where the position 1is −  and velocity 1iv −  of the preceding vehicle is replaced by the 

upcoming traffic light with the position of lights  and zero velocity. By this modification, 

the unconnected vehicles governed by the modified Gipps car following model are able 

to stop at the red light. If the unconnected vehicle is approaching a green light, a constant 
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acceleration is applied unless its velocity is reaching the speed limit of the road as 

described in (2.12). 

2.3.3 Simulation Results 

In this section, we present the simulation study of the connected and unconnected 

vehicles mixed scenario to find out the effects of the presence of the unconnected 

vehicles on the convoy. The simulation scenario considered is a single lane road with 

traffic lights at every 500 m. The baseline duration of the traffic signal green and red are 

15gt s=  and 40rt s= , respectively. The traffic signal timing of each traffic light and 

every cycle varies from the baseline following a uniform distribution and they are 

assumed to be known by the centralized intersection controllers. The simulation run for 

600 s with the sampling time of 0.5k s=  and the prediction horizon of 6T s= . There are 

10 conventional vehicles on the convoy with identical parameters: 1200i
hM kg= , 

22.5i
vA m= , 0.32DC = , 23 /i

ubu m s=  and 23 /i
lbu m s= − . The speed limit of the road 

20 /ubv m s= . We assume the road is flat, so 0θ =  degree. The ten vehicles can be either 

connected or unconnected depending on the initial set up. Several scenarios have been 

studied with different connected vehicle penetration rate and different unconnected 

vehicle positions on the convoy. 
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Figure 2.32 Vehicle trajectories of all connected vehicle scenario 

0 100 200 300 400 500 600
0

1000

2000

3000

4000

5000

6000

7000

8000

Time (secs)

D
is

ta
nc

e 
(m

)

 

Figure 2.33 Vehicle trajectories of all unconnected vehicle scenario 
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Vehicle # All Connected All Unconnected 

1 40.75 24.83 

2 40.35 24.20 

3 40.49 24.42 

4 40.66 24.55 

5 39.34 24.59 

6 39.58 24.58 

7 39.80 24.62 

8 40.03 24.08 

9 40.19 24.06 

10 41.03 23.17 

Avg MPG 40.22 24.31 

Standard 

Deviation 
0.7304 0.4731 

Table 2.6 Summary of fuel economy (MPG) evaluation I 

 

The simulation results of all connected (100% penetration rate) and all 

unconnected (0 penetration rate) vehicles scenarios are first presented to show the 

performance and advantages of our proposed connected vehicle longitudinal motion 

coordination. Figure 2.32 and Figure 2.33 show all the 10 vehicles’ trajectories of all 

connected vehicles scenario and all unconnected vehicles scenario, respectively. The red 
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horizontal bars on the figures indicate the red light windows of every traffic light and 

each cycle. Different color of trajectories represents different vehicles. The fuel 

consumption of the two simulation scenarios are tabulated in Table 2.1.  In Figure 2.32, 

the connected vehicles controlled by our proposed strategy are able to avoid most of the 

red lights, However, the unconnected vehicles governed by the modified Gipps car 

following model do not have the capability of red light stop avoidance. The average 

velocity during the simulation is 10.03 m/s and 8.50 m/s for all connected and all 

unconnected vehicles scenario respectively, which indicates the better traffic mobility can 

be achieved by our proposed strategy. At the same time, significant fuel economy 

improvement is achieved by the connected vehicles as shown in Table 1 due to the pre-

knowledge of the SPAT information, minimizing fuel consumption during the trip and 

mild acceleration/deceleration. 
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Figure 2.34 Vehicle trajectories when vehicle # 2, 3, 4, and 9 are unconnected 
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Figure 2.35 Vehicle trajectories when only vehicle # 4 is unconnected 

0 100 200 300 400 500 600
0

1000

2000

3000

4000

5000

6000

7000

8000

Time (secs)

D
is

ta
nc

e 
(m

)

 

Figure 2.36 Vehicle trajectories when only vehicle # 1 is unconnected 
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Figure 2.37 Vehicle trajectories when only vehicle # 1 is connected 

 

Vehicle # 
# 2 3 4 9 

Unconnected 

# 4 

Unconnected 

# 1 

Unconnected 

# 1 

Connected 

1 40.75 40.75 24.83 40.75 

2 28.18 40.35 38.15 28.17 

3 28.32 40.49 38.34 28.32 

4 28.44 38.80 38.49 28.44 

5 34.12 38.62 38.68 28.53 

6 34.40 38.81 39.00 28.48 

7 34.57 39.01 39.26 28.53 

8 34.85 39.30 35.79 25.91 

9 30.43 39.33 36.63 25.02 

10 32.87 40.43 37.95 25.16 
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Avg MPG 32.69 39.59 36.71 28.73 

STD 3.9549 0.8233 4.3083 4.4678 

* The bold MPG numbers indicate the vehicles are unconnected 

Table 2.7 Summary of fuel economy (MPG) Evaluation II 

 

Figure 2.34 to Figure 2.37 show all the vehicles’ trajectory under various 

connected and unconnected vehicles mixed scenarios and the fuel consumption 

evaluation is summarized in Table 2.7. The vehicle is numbered as shown in Figure 2.31, 

where vehicle # 1 is the leading vehicle on the convoy. For the sake of simplicity, we 

define the connected vehicle which is following an unconnected vehicle as CFU 

(connected following unconnected), while the unconnected vehicle which is following a 

connected vehicle as UFC (unconnected following connected). 

From the mixed scenario simulation results, a few conclusions can be made. First, 

the fuel economy of UFC is improved compared with all unconnected vehicles scenario 

(Table 2.6). The reason behind this is the unconnected vehicles are following an optimal 

trajectory generated by the connected vehicles for at least a while before they are stopped 

by the red light. For instance, the unconnected vehicle # 2, 3 and 9 in Figure 2.34 follow 

the optimal trajectory of connected vehicle #1, thus the fuel economy gets improved. 

Another example is the unconnected vehicle # 4 in Figure 2.35, which follows the 

connected vehicles and avoid most of the red lights during the simulation, thus the fuel 

economy of vehicle # 4 in Figure 2.35 improves significantly. Secondly, the fuel 

economy of CFU is better than unconnected vehicles, but it is not as good as the 
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performance in all connected vehicles scenario. For example, vehicle # 5, 6, 7 and 10 in 

Figure 2.34, these connected vehicles controlled by our proposed strategy can still avoid 

most of the red lights even following the unconnected vehicles which stop frequently, but 

they unavoidably suffer a couple of stops due to following the bad trajectories of its 

preceding uncounted vehicles. That explains the performance degradation for the CFU. 

Additionally, from the simulation study, we find the connected vehicle 

penetration rate does not necessarily relate to the average fuel economy of the convoy 

particularly in our no lane change setup. The scenarios in Figure 2.35 and Figure 2.36 

have the same connected vehicle penetration rate (90%, only one vehicle is unconnected 

in both scenarios). However, the average MPG (third and fourth column in Table 2.7) is 

quite different. That is because the unconnected vehicle # 4 in Figure 2.35 like we 

discussed before follows the connected vehicles adequately for most of the simulation 

due to its initial position and traffic signal timing. Also, it only affects the fuel economy 

of the rest 6 vehicles behind it. In the other case, the vehicle # 1 in Figure 2.36 is 

unconnected and it affects all the rest 9 vehicles on the convoy, thus the overall fuel 

economy decreases. In Figure 2.37, even there is only one vehicle is connected (vehicle # 

1), but the only connected vehicle is the leading vehicle on the convoy. It improves the 

fuel economy of all the rest unconnected vehicles and increases the average fuel economy 

of the convoy. 

From the above simulation study and analysis, it can be concluded that the 

connected vehicle penetration rate does not necessarily relate to the average fuel 

economy performance of the convoy, but the position of the unconnected vehicle on the 
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convoy matters. From the fuel economy perspective, the connected vehicle should not 

follow an unconnected vehicle which will decrease the fuel economy of the connected 

vehicle. This conclusion gives us a very important triggering factor of discretionary lane 

change when the single lane assumption is removed. Other than the discretionary lane 

change triggering factors like seeking better traffic conditions or get higher velocity, the 

presence of unconnected vehicle is another important triggering factor we will consider in 

the following lane change study.  

2.3.4  Conclusion 

In this section, the Gipps car following model is modified for the unconnected 

vehicles on the signalized intersection roads. The scenarios of connected and 

unconnected vehicles mixed scenario have been simulated where the connected vehicles 

are controlled by our proposed hierarchical control architecture and the unconnected 

vehicles are governed by the modified Gipps car following model. From the simulation 

results, we conclude that the connected vehicles do not want to follow unconnected 

vehicles from the fuel consumption perspective. Also, under our single lane assumption, 

the connected vehicle penetration rate does not relate to the average fuel economy of the 

group of vehicles directly. The position of the unconnected vehicle on the convoy affects 

the average fuel economy significantly. 

2.3.5 Related Publication 

• Z. Du, B. HomChauduri and P. Pisu, Coordination Strategy for Vehicles Passing 

Multiple Signalized Intersections: A Connected Vehicle Penetration Rate Study, 
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Proceedings of 2017 American Control Conference (ACC), Seattle, WA, May 

2017.  

• Z. Du, B. HomChauduri and P. Pisu, The Discretionary Lane Change Decision 

Study for a Group of Vehicles on Urban Roads under Imperfect Connected 

Vehicle Penetration Rate, IEEE Transactions on Intelligent Transportation 

Systems (under review) 
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CHAPTER 3 LANE CHANGE DECISION 

3.1 Introduction on Lane Change Decision (LCD) 

We assume all the vehicles do not change lane or make turns at the intersections 

in our previous research setup. However, in the real world driving scenario, the vehicles 

not only move forward and pass through intersections but also perform lane change. Lane 

change is one of the basic driver behaviors, which can never be avoid in real traffic 

environment [55]. Poor lane change decision has negative impact of both traffic safety 

and efficiency. For traffic safety impact, 4% to 10% of the traffic accidents are caused by 

lane change maneuver [56]. Also, 78% of lane change accidents take place in dense 

traffic flow with low speed and small inter-vehicle space [57], which is, exactly the focus 

of our research, urban areas. For traffic efficiency impact, lane change could generate a 

capacity drop with shockwaves in both lanes [58]. It has also been confirmed that 

aggressive lane changes on highways or urban traffic, result in consuming 20- 30% extra 

fuel [59]. 

The lane change is classified as mandatory lane change and discretionary lane 

change based on different driving incentives [60]. Mandatory lane change occurs when a 

vehicle must change lane to follow a specified path or due to the road geometry (i.e., lane 

merging ahead). On the other hand, discretionary lane change occurs when a vehicle 

changes to a lane perceived to offer better traffic conditions i.e., higher speed or moving 

to a lane with lower traffic density, but it does not necessarily happen. 
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3.2  Literature Reviews 

The literature on LCD can be categorized into three catalogs. In Gipps [61] and 

Hidas [62] [63], the LCD is made through gap acceptance model based approaches. Lane 

change is motivated by locations of permanent obstructions, the presence of heavy 

vehicles, special purpose lanes or the intention to turn. The critical or acceptable gap is 

defined by either exponential function or normal distribution of certain parameters, like 

velocity, distance, allowable acceleration and so on. Once the lane change is motivated 

and the gap on the target lane is greater than the critical gap, lane change will be 

executed. The Gipps LCD [61] was later extended by involving probability theory to 

make the LCD model more realistic [64]. Some other researchers developed LCD model 

based on utility theory. The basic idea is to compare the utility of staying in the current 

lane and the risks associated with lane change. Kesting et al. [65] proposed the LCD 

model known as MOBIL (Minimizing Overall Braking Induced by Lane Changes). The 

authors compared the overall acceleration as the utility of the criteria of lane change. 

Basically, higher overall acceleration means higher velocity and higher traffic mobility. 

Other utility theory based LCD models include Ahmed [103], Toledo [67] [66] and so on. 

The other catalog of the LCD model is optimization based approach where the longitude 

motion and LCD are integrated together and the optimization problem is formulated to 

determine when and where it is optimal to change lane [69] [55] [68].  

For the gap acceptance and utility based model, only the subject vehicle’s LCD 

and action are considered and the reactions and affection of surrounding vehicles are 

ignored. Additionally, the subject vehicle makes decisions independently. The advantages 
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of connected vehicles have not been fully taken. Sometimes the mandatory lane change 

may not be able to be executed independently due to short inter-vehicle distance enabled 

by connected vehicle technologies. In the utility based model, LCD is made based on the 

utility advantage on the current moment ignoring the sudden changes on the traffic 

conditions, like the traffic light changes in our research.  For optimization based 

approach, since the longitudinal motion is continuous while the LCD is discrete, 

integrating these two together into one optimization problem ends up with a Mixed 

Integer Programming Problem. Most solution methods for Mixed Integer Problem apply 

some form of tree searching and it can be very computational inefficient and with poor 

scalability especially when the number of subject vehicle increases, which makes it 

unrealistic for real-time implementation.  

3.3  Discretionary Lane Change Decision 

In this section, our approach of discretionary LCD is introduced. We initiate our 

research on LCD by starting with discretionary LCD, because it is easier to handle 

compared with mandatory LCD. No cooperation among the connected vehicles is 

necessary. Once we get enough experience dealing with the discretionary LCD, we can 

move on to study the mandatory LCD, which is more challenging. 

3.3.1 Problem Formulation   

In this research, we focus on a connected vehicle environment with a group of 

connected and unconnected vehicles on a road with two identical lanes. The vehicles can 

make discretionary LCD to gain benefits such as higher velocity or better fuel economy. 
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We assume the vehicles only pass through and do not make turns at any signalized 

intersection. In this connected vehicle frame work, the information of position and 

velocity of a particular connected vehicle is assumed to be available to its near 

neighborhood via V2V communication. The information of all the connected vehicles 

within a certain region (e.g., within the range of Dedicated Short Range Communications 

(DSRC)) is available to the centralized intersection controller. Figure 3.1 shows the 

schematic of our research scenario. The vehicle with question marks is an unconnected 

vehicle, i.e., the vehicle which does not share or receive any information from other 

vehicles or traffic infrastructure. The rest vehicles in Figure 3.1 are connected and under 

the control of our proposed algorithm. Similar to our previous research [51] [104] [52], 

we attempt to formulate and solve the problem in the hierarchical control architecture, 

such that the problem is decomposed and resolved in different layers in order to reduce 

the computational complexity and realize the real-time implementation. Figure 3.2 shows 

the schematic of the hierarchical control architecture, where the centralized intersection 

controller evaluates the target velocity for each vehicle approaching to the intersection 

based on the SPAT information to help the vehicles minimize red light idling. At the 

vehicle local controller level, each vehicle tracks the target velocity from the intersection 

controller in a fuel efficient manner by using MPC. At the same time the vehicles avoid 

rear-end collisions and seeking discretionary lane change opportunities.  
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Figure 3.1 The schematic of the discretionary lane change problem 

 

Figure 3.2 Schematic of the hierarchical control architecture in the discretionary LCD 

research 

 

In our two-lane scenario, similar to [68], we define { }0 1 , il l l∈  that indicates two 

different lane. The lane change decision variable for any vehicle i at each time step k is 

defined as ( ) { }0, 1i kδ ∈ . ( ) 0i kδ =  and ( ) 1i kδ =  represent the decision of “stay on the 

current lane” and “change to the adjacent lane”, respectively. It worth to be mentioned 

that we only focus on the discretion LCD making in this research. The lateral dynamics 

of the vehicle is ignored and we assume an instant jump for the vehicle from one lane to 

the other. 
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To integrate the discretionary LCD with our previous research about longitudinal 

motion coordination on multiple interconnected traffic light intersections with single lane 

road, the optimization problem can be formulated as followings: 

( ) ( )( ) ( ) ( )
( )

( )( ) ( ) ( )
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1 target 3 4
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2 2 5
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                                        (3.1a) 

( ) ( ) ( ) ,i i
lb i ubv t v t v t t≤ ≤ ∀                                                                                           (3.1b) 

( ) ,i i
lb i ubu u t u t≤ ≤ ∀                                                                                                    (3.1c) 

( ) ( ) ( )( ) ( ) ( )( )* * *0 hd i iij j j
R t S t v t v t s t s t= + − + −                                                          (3.1d) 

Here, the term ( )*ij
R t  in (3.1d) is used to avoid rear-end collision and maintain 

desired headway distance and time for vehicle i and its preceding vehicle *j . *j  can be 

either cj  or tj , which represents the preceding vehicle of vehicle i on the current or 

target lane respectively. The notations are shown in Figure 3.3. In Figure 3.3, vehicle cj  

is the preceding vehicle of vehicle i on the current lane, while vehicle tj  and tq  are 

vehicle i’s preceding and following vehicle on the target lane respectively.  

 
Figure 3.3 Schematic of the vehicles’ relative positions and notations 
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In (3.1a), the first term is used to track the target velocity obtained from the 

intersection controller. The second term minimizes the longitudinal control effort to 

achieve mild acceleration and declaration. The third term penalizes the fuel consumption 

per unite distance. The fourth and fifth term minimizes the deviation from the desired 

headway distance and time between vehicle i and its preceding vehicle cj  on the current 

lane or vehicle tj  on the target lane respectively. changeJ  in the fifth term consists of extra 

cost punishes the lane change and  ( )( )2

tq i
R t  (similar to the definition in (3.1d)), which 

represents the effects on the following vehicle tq  when vehicle i moves to the target lane. 

At every time step, only one term exists in the cost function between the fourth and fifth 

term. For example, if the lane change decision variable ( ) 0i kδ = , it means the vehicle 

will not change lane and travel on its current lane. Then the fifth term is zero and vice 

versa. 1w , 3w  and 4w  are constant weighting factors respectively. ( )*

2
ijw t  is chosen as a 

function of the relative distance, so that it increases as the relative distance decreases and 

vice versa. The definition of *j  is the same with the *j  in ( )*ij
R t .  Equation (3.1b) and 

(3.1c) indicate the constraints on vehicle velocity and acceleration, respectively. 

This optimal control problem formulation ends up with a mixed integer 

programing problem, because the decision variable of longitudinal acceleration iu  is 

considered to be continuous, while the lane change decision iδ  (0 or 1) is discrete. Most 

solution methods for mixed integer programming problem apply some form of tree 

search, which is computational inefficient and poor on scalability [105]. 
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In our hierarchical control architecture, the centralized intersection controller has 

all the connected vehicles’ velocity and position information within its region. These 

information is sufficient to make the centralized intersection controller capable of making 

a discretionary LCD for any connected vehicle. If the lane change decision is made in the 

intersection controller, the decision variable iδ  in (3.1a) becomes an input from the 

intersection controller. In such a way, the optimal control problem can be reformulated to 

avoid solving the mixed integer programming problem. 

 

3.3.2 Approach 

To avoid solving the mixed integer programming problem discussed in the 

previous, the optimization problem is reformulated. The centralized intersection 

controller has the position and velocity information of the approaching connected 

vehicles. The information of unconnected vehicles can be captured bey the onboard 

sensors of the surrounding connected vehicles and sent to the centralized intersection 

controller. Since the centralized intersection controller has sufficient information, it has 

the capability of making the discretionary lane change decision for the connected 

vehicles. Figure 3.4 shows the reconstructed schematic of the control architecture. Instead 

of making the lane change decision among the vehicle local controllers, the decision is 

made by the intersection controller and sent to each connected vehicle. In such a way, our 

approach is able to decrease the computational complexity and improve the system 

feasibility and scalability. Our approach works in three phases: first, the target velocity of 
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each connected vehicle is evaluated, which remains the same as described in the previous 

research. Second, the lane change decisions are made to help the connected vehicle gain 

more opportunity to travel at its target velocity. The reason behind is that the connected 

vehicle travelling at the target velocity has less chance to be stopped by a red light, which 

will improve its mobility and fuel economy. These above two phases are completed at the 

centralized intersection controller. Finally, each vehicle controller uses a reformatted 

MPC to track the target velocity and follow the lane change instruction. 

 

 

Figure 3.4 Reconstructed schematic of the control architecture for discretionary lane 

change study 

A. Discretionary lane change decision 

The discretionary lane change decisions of the connected vehicles in our proposed 

approach are made at the centralized intersection controller. There are several 

discretionary LCD triggering factors the centralized intersection controller would 

consider during the decision making: 

1. The ability to track the target velocity. 
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2. Minimum impact on the lag vehicles on the target lane 

3. Lane traffic density balance 

4. The vehicle position in the convoy. 

5. The presence of the unconnected vehicles. 

 The first objective is to allow a connected vehicle gain higher opportunity to 

achieve its target velocity through lane change. Considering the first and last cases in 

(2.7a) of the target velocity evaluation equation, the target velocity of a subject vehicle is 

always higher than its preceding vehicle if there any. The subject vehicle here means the 

vehicle which is under the evaluation of lane change by the centralized controller. 

However, the subject vehicle may never achieve its target velocity due to the constraints 

of maintaining minimum headway distance and time to its preceding vehicle. Under this 

circumstance, if the lane beside the subject vehicle is available, the subject vehicle would 

receive the lane change instruction to change lane and achieve its target velocity. For the 

second factor, when a subject vehicle changes lane, it may cause negative impact on the 

lag vehicles on the target lane. This impact needs to be minimized. In the third factor, the 

density of different lanes needs to be balanced for better traffic efficiency, so the vehicle 

should be punished if it changes lane from a lower density lane to a higher density lane. 

In the fourth point, the more rear of a vehicle’s position in the convoy, it has more chance 

to be stopped by the red lights. It is true in both of our research or real traffic 

environment, so the vehicle rear in the convoy should have more desire to change lane. 

Additionally, based on the connected vehicle penetration rate study, the lane change 

decision will also help the subject vehicle avoid following an unconnected vehicle. By 
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doing so, the discretionary lane change behavior of the connected vehicle will not only 

improve its own but also the overall group performance in the sense of traffic mobility 

and fuel economy.  

Instead of making lane change decisions from the MPC among the vehicle local 

controllers, the centralized intersection controller would compare the cost of travelling on 

the current lane and on the target lane for each connected vehicle and then make the lane 

change decisions. The lane change decisions will be sent to each vehicle as the input of 

the MPC problem. The computation of the lane change at time instance K is presented as: 

( ) ( )4

c

c
c ij
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J K w R K J= ⋅ +                                                                                                       (3.2a) 
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 − >

= 


                                                                  (3.2e) 

Here, the time step K∆  of the time instance K while the lane change decision 

evaluation is much greater than the time step  k∆  of the time instance k in the MPC 

problem mentioned previously. That is because the frequency of lane change is much 

lower than the longitudinal dynamics. Equation (3.2a) and (3.2b) evaluate the cost of 

maintaining target velocity while running on the current lane and on the target lane 



 98 

respectively. The definition of R  in (3.2a) and (3.2b) is similar to (3.1d), but we use the 

target velocity instead of the real velocity of a connected vehicle. For example, 

( ) ( ) ( )( ) ( ) ( )( )0 target target

c

c c
i j

hd iij j
R K S t v K v K s K s K= + − + −  

The notation of  cj , tj  and tq  are consistent with (3.1), and the definition of tij
R  

and tq i
R  are similar to cij

R .  The first term in (3.2a) penalizes the vehicle i getting too 

close to its preceding vehicle while maintain its target velocity. The second term 

represents an additional cost if vehicle i is following an unconnected vehicle.  unconnJ  is 0, 

if the preceding vehicle is connected. Otherwise, unconnJ = unconnε , which is a constant cost 

as shown in (3.2d). The first term in (3.2b) is similar to (3.2a), while the second term 

indicates the impact of lane change to the vehicle tq  behind the vehicle i on the target 

lane. The effect here means that the vehicle tq  may not be able to maintain its target 

velocity due to vehicle i’ lane change and headway distance of vehicle tq  is decreased. 

The third term penalizes the vehicle from a higher density lane changing to a lower 

density lane as shown in (3.2c), which will balance the traffic density between the two 

lanes and maximize the traffic efficiency. cρ  and tρ  in (3.2c) represent the traffic 

density on the current and target lane respectively. densityε  is a constant cost associated 

with the third term of (3.2b). The last term in (3.2b) prevents the vehicle i changes to a 

lane that will end up with following an unconnected vehicle. At the end, the lane change 

decision is made by comparing the cost of running on the current lane and on the target 

lane in (3.2e), where criticalJ  is constant threshold. In a special scenario that both a vehicle 
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and its preceding vehicle could make discretionary lane change after the evaluation by 

the centralized intersection controller. In such scenario, the centralized intersection would 

decision to make the vehicle behind to change lane due to the fourth triggering factor 

mentioned before and it is pointless to make both vehicles change lane. 

In such an approach, the discretionary lane change decisions for the connected 

vehicles motivated by gaining higher opportunity of marinating the target velocity and 

avoiding following an unconnected vehicle have been made by the centralized 

intersection controller. The discretionary LCD along with the target velocity will be sent 

to the vehicle local controller and fed into the MPC problem. 

 

B. Reformulated MPC problem 

Since the lane change decisions have already been made at the centralized 

intersection controller previously, the decision variable of iδ  can be removed from (3.2). 

Thus, we can reformulate the mixed integer programming problem to a nonlinear 

optimization problem. The reformulated optimization problem for each vehicle i for a 

finite time horizon T is presented as: 
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( ) ,i i
lb i ubu u t u t≤ ≤ ∀                                                                                                    (3.3d) 

In above equations, the lane change decision ( )i kδ  is obtained from (3.2) only 

when the time instance k of the MPC problem matches the lane change evaluation time 

instance K, otherwise ( ) 0i kδ =  as shown in (3.3b). Equation (3.3c) and (3.3d) are 

consistent with (3.1b) and (3.1c). 

In our approach, the discrete lane change decision is evaluated by the centralized 

intersection controller and fed into the MPC problem instead of solving among the 

vehicle local controllers. By doing so, we can avoid solving the mixed integer 

programming problem to improve the computational efficient, system scalability and 

feasibility. The performance of our proposed approach is presented through the 

simulation in the next subsection. 

 

3.3.3 Simulation Results 

The simulation setup here is almost similar to the connected vehicle penetration 

rate study, except that the single lane road is replaced by a road with two-identical-lane. 

The time step for target velocity evaluation and MPC remains 0.5k∆ = s, while the lane 

change decision is evaluated at the time step of 15K∆ = s. There are 15 vehicles in total. 

Initially, there are 10 vehicles on lane 0 and 5 vehicles on lane 1. 

To demonstrate the advantages of our proposed discretionary LCD approach, we 

have two different simulation setups. One is called homogenous scenario where all the 



 101 

involved vehicles are connected vehicles. The other is heterogeneous scenario which is a 

connected and unconnected vehicle mixed scenario 

 

A. Homogenous scenario 

In the homogenous scenario, all the vehicles are connected. We compared our 

proposed approach with the case which all the vehicles are not allowed to make lane 

change. Figure 3.5 shows the positions of all the vehicles at the time instance when the 

lane changes happen. The positions in red in the figures mean the vehicle just made a 

lane change. The initial positions of all the connected vehicles are shown in Figure 3.5a. 

It worth to be mentioned that at t=1s in Figure 3.5b, both vehicle # 2 and 3 are feasible to 

change lane. However, it doesn’t make sense to make two following vehicles to change 

lane together, and based on the fourth lane change triggering factor, the rear vehicle 

(vehicle # 3) receives the lane change instruction at this time instance. The vehicle # 3 at 

the next lane change evaluation timing (t=16s) is still feasible to change lane as shown in 

Figure 3.5c. It should be noted that there are not many lane changes happened during the 

simulation. That is because after several lane changes and the method of target velocity 

evaluation, the vehicles will move beside each other on the two lanes and there is no 

further room to make lane changes as it can be seen from Figure 3.5d. The fuel economy 

and mobility performance compared our proposed approach and the case with no lane 

changes are tabulated in Table 3.1. There is slightly improvement on each aspect over the 

baseline. The reason behind this it that it is a homogenous scenario where all the 

connected vehicles are identical and the fuel economy is already an optimal solution. 
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Furthermore, the lane changes only happen on a few vehicles. There is not much room 

for the further improvement on the performance. However, the performance is still 

impressive given the aforementioned reasons and considering the average is over 15 

vehicles. 

 

(a) t=0s 

 

(b) t=1s 
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(c) t=16s 

 

(d) t=106s 
Figure 3.5 All vehicles’ positions when lane changes happen in homogeneous scenario 

 

Approach Total red light idling (s) Average velocity (m/s) Average MPG 

No lane change 105 10.54 41.78 

Proposed approach 93.5 10.66 41.88 

Table 3.1 Fuel economy and mobility comparison in the homogeneous scenario 
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B. Heterogeneous scenario 

In the heterogeneous scenario, the simulation setup is the same with the previous 

homogeneous scenario, except that the vehicle # 6, 7 and 8 on lane 0 are defined to be 

unconnected. All the vehicle parameters are still considered to be identical. For the 

connected vehicles, the longitudinal motion and the discretionary LCD are controlled by 

the approaches described in thesis. The longitudinal motion of the unconnected vehicles, 

similar to the previous section, is controlled by the modified Gipps car following model. 

For the LCD model of the unconnected vehicles, a simplified probability based LCD 

model [106] is applied, where the probability of the unconnected vehicle lane change is 

assumed to be linear distribution with the available gap length on the target lane. 

There are three cases we have studied. The first one is all the vehicles are not 

allowed to change lane. The second one is unconnected vehicles do not change lane while 

the connected vehicles can make lane changes based on our approach. The last one is that 

the unconnected vehicles use the probability based LCD model and the connected 

vehicles are governed by our proposed approach. Figure 3.6 shows the positions of all the 

vehicles at the time instance when the lane changes happen under the scenario of 

unconnected vehicles do not change lane. The positions in black represent the 

unconnected vehicle # 6, 7 and 8 respectively. The rest results of the fuel economy and 

mobility performance are summarized in Table 3.2. In the third cases, since it involves 

the probability based method, the results in the corresponding row of Table 3.2 are 

averaged over multiple simulations.  
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(a) t=0s 

 

(b) t=1s 

 

(c) t=16s 
Figure 3.6 All vehicles’ positions when lane changes happen under heterogeneous 

scenario and unconnected vehicles do not change lane 
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Approach 
Total red light 

idling (s) 

Average 

velocity (m/s) 
Average MPG 

(All vehicles)  

No lane change 
490 10.13 38.32 

Unconnected no lane change & 

connected proposed lane change 
293.5 10.62 40.89 

Uncounted probability lane change 

& connected proposed lane change 

(average) 

256 10.52 40.14 

Table 3.2 Fuel economy and mobility comparison in the heterogeneous scenario 

 

The case of the unconnected vehicles no lane change and the connected vehicles 

using our proposed approach offers the best performance. The improvement is much 

more significant in this heterogeneous. Most of the improvement on the fuel economy 

comes from the vehicle # 9 and 10 which initially follow the unconnected vehicles, 

because these vehicles (vehicle # 9 and 10) would follow the unconnected vehicles 

during the entire trip without proper lane change, which will affect the performance as 

discussed in Section. III. The case where the unconnected vehicles make lane change by 

the probability based approach suffers certain level of performance degradation. That is 

because the probability based LCD model of the unconnected vehicles gives non-optimal 

LCD most of the time and the random behavior of the unconnected vehicles will have 

negative impact of the overall performance. 
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3.3.4 Conclusion 

In this section, a hierarchical control architecture is proposed to coordinate the 

longitudinal motion and evaluate the discretionary LCD for the connected vehicles is 

proposed. We focus on the scenario of a group vehicles under imperfect connected 

vehicle penetration rate (connected and unconnected vehicles mixed scenario) travelling 

on a multiple-lane road with signalized intersections. The SPAT information is utilized 

by the centralized intersection controller to evaluate the target velocity for the connected 

vehicles in order to help minimize red light idling. The vehicle local controllers use MPC 

for the longitudinal motion to track the target velocity in a fuel efficient manner. A novel 

discretionary LCD approach is proposed in this research. The centralized intersection 

with sufficient vehicle information would evaluate the LCD for the connected vehicles 

and send to the connected vehicles along with the evaluated target velocity. In such an 

approach, we avoid solving the mixed integer programming problem to decrease the 

computational complexity and improve the system scalability and feasibility. The LCD in 

our approach are made based on offer the subject vehicle higher possibility to achieve its 

target velocity and with minimum negative impact on the rest of the vehicles in the group 

at the same time. Another important lane change triggering factor, which is the presence 

of the unconnected vehicles on the convoy, discovered in the connected vehicle 

penetration rate study is also involved. In the simulation study of the discretionary lane 

change behavior, both homogeneous and heterogeneous scenario have been provided. 

The simulation results show the improvement of the group performance. 
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The future research direction includes the development of lane change strategies 

for the connected vehicles on the roads with asymmetric lanes where the mandatory lane 

changes could happen. That would require the collaboration work of a subgroup of 

vehicles involved. Other future research could be the experimental validation of our 

proposed approach on the robotic cars which offer us a safe and cost-effective way to 

validate the real-time implementation potential of our strategies. 

3.3.5 Related Publication 

 

• Z. Du and P. Pisu, A Fuel Efficient Control Strategy for Connected Vehicles in 

Urban Roads with Multiple-lane, in the proceedings of, the 55th IEEE Conference 

on Decision and Control 

• Z. Du, B. HomChauduri and P. Pisu, The Discretionary Lane Change Decision 

Study for a Group of Vehicles on Urban Roads under Imperfect Connected 

Vehicle Penetration Rate, IEEE Transactions on Intelligent Transportation 

Systems (under review) 
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3.4 Mandatory Lane Change Decision 

In our previous research, we have developed the fuel efficient [52] [107] [108],  

control strategies for a group of connected vehicles (both conventional and hybrid electric 

vehicles) on urban roads utilizing SPAT information. Later the work has been extended 

to a multiple lane scenario where the connected vehicle discretionary lane change has 

been enabled [109]. In this paper, we extend our previous work and investigate the 

connected cooperative mandatory lane change behavior. In our approach, the intersection 

centralized controller sends out target velocities to each approaching connected vehicles 

and the vehicle decentralized controller uses MPC to track the target velocity. The 

vehicles with mandatory lane change request (host vehicles) would cooperate with the 

vehicles on the target lane (the lane that the host vehicle needs to change to) to complete 

the lane change process. 

3.4.1 Problem Formulation 

In this research, we focus on a connected vehicle environment with a group of 

connected vehicles travelling on signalized intersection roads. Some of the vehicles need 

to make mandatory lane change in order to make a turn at the intersection. The objective 

of this research is to develop a cooperative mandatory lane change strategy where the 

host vehicle is able to cooperate with the vehicles on its target lane to accomplish the lane 

change process in a safe and efficient manner. Figure 3.7 shows the schematic of the 

problem. Vehicle 2 needs to change to lane 1 to make a right turn at the intersection. 

However, the inter-vehicle distance is too short to make a safe lane change. In such case, 

Vehicle 2 needs to cooperate with the vehicles (e.g., probably Vehicle 5 and 6) on lane 1. 
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Figure 3.7 Schematic of the mandatory lane change problem 

 

The problem we are addressing in this section is in a large scale system where the 

connected vehicles and intersection controllers are spatially widely arranged.  The 

connected vehicles approach and leave the control region of the intersection controllers 

all the time. Besides, one connected vehicle could be under the control of multiple 

different intersection controllers during its trip. The fully centralized or decentralized 

control architecture suffers poor scalability while handling such system. The hierarchical 

control architecture is applied in this research for the purpose of reducing communication 

and computational burden, improving the system scalability and realizing real-time 

implementation. The general idea of hierarchical control architecture is to decompose 

complex problems into some smaller more manageable sub-problems. The subsystems 

collaborate with each other to achieve one common task [19] [20]. 

Figure 3.8 shows the schematic of our proposed hierarchical control architecture. 

The centralized intersection controller gathers the SPAT information from the traffic 

lights and the connected vehicle positions. With these information, the centralized 

intersection controller evaluates the target velocity for each approaching connected 

vehicle to aid the connected vehicles avoid red light stop. For the longitudinal motion of 

the connected vehicles, each decentralized vehicle controller uses MPC to track the target 
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velocity evaluated by the centralized intersection controller in a fuel efficient manner. 

Once some criteria are met, the host vehicle who has prescribed path and need to do the 

mandatory lane change would seek and cooperate with vehicles on its target lane. 

 

 

Figure 3.8 Schematic of the proposed hierarchical control architecture for the mandatory 

lane change 

 

In this section, we focus on a connected vehicle environment with a group of 

connected vehicles on a road with two lanes. The host vehicles are able to perform 

mandatory lane change. The vehicle discretionary lane change for the purpose of gaining 

better traffic conditions is not considered in this paper. In this connected vehicle frame 

work, the information of position and velocity of a particular vehicle is considered to be 

available to the vehicles’ neighborhood through vehicle-to-vehicle communication. The 

information of all the vehicles within a certain region is available to the centralized 

intersection controller. The SPAT information of each traffic light and every cycle is 

assumed to be available to the centralized intersection controller. In this research, we 
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assume the lane change process as an instant jump. The lateral dynamics of a vehicle and 

the vehicle’s behavior after mandatory lane change is out of the scope of this research. 

We also assume that the vehicles on the target lane are all willing to cooperative with 

host vehicles. 

3.4.2 Mandatory Lane Change Algorithm  

The longitudinal motion of the vehicles is controlled by our hierarchical control 

architecture, which is the same with previous research. For the sake of simplicity, it is not 

repeated it here. In this section, the cooperative mandatory lane change algorithm is 

explained. In our algorithm, we assume that when the host vehicle whom needs to change 

lane reaches a certain distance to the intersection, the mandatory lane change algorithm 

will be initiated and the host vehicle will start to cooperate with the surrounding vehicles 

on the target lane. The vehicles on the target lane are also assumed to be willingly 

cooperative, once they get the request from the host vehicle. It should be noted that in this 

research, the host vehicle will straightly cooperate with the vehicles right beside itself at 

the moment the distance criteria are met. Other types of cooperation are not considered in 

this work. 
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Figure 3.9 Schematic of the proposed cooperative mandatory lane change algorithm 

 

Figure 3.7 shows the schematic of the proposed mandatory lane change algorithm. 

The notations in the algorithm are also shown in Figure 3.7. Vehicle cj indicates the host 

vehicle’s preceding vehicle on the current lane. Vehicle tj  and tq  represent the 

preceding and following vehicle of the virtual vehicle on the target lane, respectively. 

The detailed algorithm is listed as follows: 

• Step 1: If criteria
host
iad d≤ , go to Step 2. Otherwise, skip this algorithm. host

iad  is the 

distance between the host vehicle and the intersection, while criteriad  is the 

predefined critical distance where the algorithm is initiated. 

• Step 2: A virtual vehicle [ ]ˆ ˆ ˆ T
host host hostx s v= with the same position and velocity 

of the host vehicle is placed on the target lane ( ˆhost hostx x= ).  

• Step 3: For the host vehicle, replace the ijR  in the cost function 

( ) ( )( ) ( ) ( ) ( ) ( )
( )

1 2 2 2
1 target 2 3 4arg min
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(2.8) in Section 2.2.3B by _ _ _
max(R ,R )c thost j host j host j

R = , where 

( ) ( ) ( )( ) ( ) ( )( )0_ c c chd host hosthost j j j
R t S t v t v t s t s t= + − + −  and similarly, 

( ) ( )( ) ( ) ( )( )0_ t t thd host hosthost j j j
R S t v t v t s t s t= + − + − . The host vehicle is constrained 

by both vehicle cj and  tj , so we choose the one contributes more one the cost 

function. 

• Step 4: As the host vehicle approaching the intersection, Additional weighting is 

added to the second term of the cost function for the host vehicle and vehicle 

tq on the target lane in order the speed up the process of generating space for the 

host vehicle. In such a way, the host vehicle can complete the lane change before 

the intersection. 

• Step 5: if 0_tq virtual
R r≤ −  and 0virtual_ tj

R r≤ − , the algorithm ends. 0r  is a predefined 

positive value close to zero. At this moment, it means there is enough space for 

the host vehicle’s lane change maneuver on the target lane. The host vehicle can 

finish the lane change safely. Otherwise, go to Step 2. The definition of  
_tq virtual

R  

and 
virtual_ tj

R are similar to the definition of ijR  in the cost function (2.8) in Section 

2.2.3B and Step 3. 

The basic idea of the above algorithm is that by inserting a virtual vehicle with the 

same state variables on the target lane, the second term of cost function (2.8) in Section 

III.B which maintains the desired headway distance will generate enough headway 

distance and time between vehicle tq and the virtual vehicle as well as the virtual vehicle 
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and vehicle tj . In such a way, there would be enough space for the host vehicle to make 

the lane change maneuver safely. For Step 3, because the host vehicle and the virtual 

vehicle are constrained by two different preceding vehicles (vehicle cj and  tj  

respectively), we use one with larger second term of cost function (2.8) for the host 

vehicle to guarantee safety. The simulation results compared with the baseline method 

showing the advantage of our proposed method can be found in the next section. 

3.4.3 Simulation Results 

In this section, the simulation results of the methodology explained in the last 

sections are presented. The simulation scenario in this work is a two-lane straight road 

with traffic signal lights at every 500 m. The time step for target velocity evaluation, 

MPC and the cooperative lane change algorithm is 0.5k = s. The prediction horizon 

6T = s of the MPC problem is used. All the vehicles are considered to be connected and 

automated vehicles with identical parameters. The vehicle parameters and the coefficients 

associated with fuel consumption evaluation is the same with the previous research. The 

signal timing of each traffic signal light and every cycle varies from the baseline of  

15gt = s and  40rt = s following a uniform distribution. 

To demonstrate the advantages of our proposed cooperative lane change 

algorithm, we develop a baseline mandatory lane change strategy without cooperation 

with any other vehicles. The general idea of the baseline strategy is that once the host 

vehicle meets the criteria in Step 1, it will start to look for the available gap on the target 

lane. If the gap is enough, the host vehicle will make the lane change. Otherwise, the host 
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vehicle will decelerate and even stop if necessary when it is close enough to the 

intersection until it finds the available gap for the lane change. The gap mentioned here is 

defined in terms of both inter-vehicle distance and relative velocity, similar to Step 5. The 

aforementioned baseline strategy describes the behavior of real world drivers when they 

have to make mandatory lane change to follow a prescribed path. 

In the simulation scenario, there are 14 vehicles in total. Initially, there are 8 

vehicles on lane 0 and 6 vehicles on lane 1. Vehicle 2 is the host vehicle which has to 

change from lane 0 to lane 1 before reaching to the first intersection (at 500 m). Figure 

3.10 shows the initial positions of all the vehicles. To show that our longitudinal 

coordination strategy with the SPAT information is capable of helping the connected 

vehicles minimize the red light idling, the host vehicle is first set not to change lane, and 

only move straight at this time. Figure 3.11 and Figure 3.12 show the vehicle trajectories 

on lane 0 and lane 1, respectively. The red bars on the figures indicate the red signal and 

its duration. The figures show the connected vehicles avoid the red light stop through 

tracking the target velocity evaluated by the centralized intersection controller. For more 

detailed results on this topic, please refer to our previous work [52] [107] [108]. 
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Figure 3.10 Initial positions of all the vehicles at t=0s in mandatory lane change study 
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Figure 3.11 All vehicle trajectories on lane 0 without mandatory lane change 
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Figure 3.12 All vehicle trajectories on lane 1 without mandatory lane change 

 

Now the mandatory lane change of the host vehicle 2 is enabled and it has to 

compete the lane change from lane 0 to lane 1 before the first intersection at 500 m. 

Figure 3.13 shows the positions of all the vehicles when the lane change algorithm is 

about to start as the host vehicle is approaching the criteria criteria 150d = m. Figure 3.14 

and Figure 3.15 show the vehicle positions for the proposed and baseline strategy when 

the algorithms terminate and the host vehicle is ready to change lane, respectively. In 

Figure 3.14, as our proposed cooperative lane change algorithm is designed for the host 

vehicle to cooperate with the vehicles right beside itself (vehicle 9 and 10 in this 

scenario), a virtual vehicle is inserted between vehicle 9 and 10. After the algorithm runs 

for 6.5s, enough space is generated through the cooperation and the host vehicle is ready 

to change lane. However, in Figure 3.15, as there is no cooperation in the baseline 

algorithm, the host vehicle has to keep on decelerating, because there is no enough space 

on the target lane. The host vehicle can only change after all the vehicles on the target 
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lane passing itself due to tight inter vehicle distance. It should be noted that there seems 

to be quite a lot space between vehicle 13 and 14 in Figure 3.15. However, the host 

vehicle has been kept on decelerating, there is high velocity difference between the host 

vehicle and vehicle 14. It is not safe for the host vehicle to move into the gap between the 

vehicle 13 and 14. 

 

Figure 3.13 Vehicle positions when the mandatory lane change algorithm is about to start 

(t=19s) 

 

Figure 3.14 Vehicle positions when the proposed algorithm ends and the host vehicle is 

changing the lane (t=25.5s) 
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Figure 3.15 Vehicles positions when the baseline algorithm ends and the host vehicle is 

change the lane (t=29.5s) 

 

In Figure 3.15, it can be seen that vehicle 3, 4, 5, 6, 7 and 8 on lane 0 are far away 

from vehicle 2. Due to vehicle 2’s deceleration, its following vehicles (vehicle 3 to 8) are 

unable to track their target velocity very well, therefore missing the opportunity to pass 

the intersection within the upcoming green light window. Our longitudinal coordination 

strategy forces them to slow down to stop at the intersection and wait for the next green 

window. Figure 3.16 shows the trajectories of vehicle 2, 3 and 4 under the baseline lane 

change algorithm. The solid red trajectory indicates vehicle 2 is moving on lane 0, while 

the dash red trajectory means vehicle 2 competes its lane change and travels on lane 1. 

Because of the deceleration of vehicle 2, vehicle 3 and 4 cannot track their target velocity 

and are forced to stop at the intersection and wait for the next green light window. Figure 

3.17 shows the trajectories of vehicle 2, 3 and 4 under the proposed cooperative lane 

change algorithm. It can be noticed that the host vehicle’s following vehicle 3 and 4 are 
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not affected a lot and they can still track their target velocity and pass the intersection 

without stopping. 
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Figure 3.16 Trajectories of vehicle 2, 3 and 4 under the baseline mandatory lane change 

algorithm 
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Figure 3.17 (a) Trajectories of vehicle 2, 3 and 4 under the proposed mandatory lane 

change algorithm (b) Partially zoomed-in plot 
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  Proposed Baseline 

Lane 0 

Vehicle 2 (HV) 41.54 37.41 

Vehicle 3 43.21 24.33 

Vehicle 4 43.98 24.40 

Vehicle 5 44.78 25.93 

Vehicle 6 45.35 26.99 

Vehicle 7 44.26 27.31 

Vehicle 8 45.52 30.26 

Lane 1 

Vehicle 10 42.77 44.03 

Vehicle 11 46.63 47.08 

Vehicle 12 43.62 44.32 

Vehicle 13 43.86 44.60 

Vehicle 14 48.01 47.70 

 
Avg MPG 44.46 35.36 

Lane change duration (s) 6.5 10.5 

Table 3.3 Summary of vehicle fuel consumption (MPG) and lane change duration 

 

The vehicle fuel efficiency and lane change duration for both the proposed and 

baseline algorithm are summarized in Table 3.3. The first vehicles (vehicle 1 and 9) on 

both lanes are not shown in the table, because the behavior of these vehicles are identical 

in both methods. From the table, it can be seen that the vehicles on lane 0 of the baseline 
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method suffer significant fuel efficiency degradation compared with the proposed method. 

In the proposed method, there is only slightly fuel efficiency degradation for the vehicles 

on lane 1 due to the effect of cooperating with the host vehicle. The measurement of lane 

change duration indicates the time lane change algorithm runs. It takes much longer for 

the host vehicle in the baseline method to complete the mandatory lane change without 

cooperation compared with the proposed method. That means our proposed method is 

more efficient. 

3.4.4 Conclusion 

In this research, the scenario of a group of vehicles moving on signalized 

intersection roads is studied, where some vehicles have to make mandatory lane change 

to follow a prescribed path. For the connected vehicle longitudinal coordination, the fuel 

efficient control strategy utilizing SPAT information is utlized to help the connected 

vehicles minimize red light stop, thus reducing the fuel consumption. Apart from that, a 

cooperative mandatory lane change algorithm has also been proposed. The host vehicle 

cooperates with the vehicles on the target lane to complete its mandatory lane change. 

The algorithm is realized through inserting a virtual vehicle on the target lane which has 

identical state variables with the host vehicle. Simulation results show the advantages of 

the cooperation during the lane change in the aspects of both fuel and system efficiency. 

One of the future research direction includes integrating both mandatory and 

discretionary lane change to study the reactions of the connected vehicles trigged by 

mandatory lane change. Other future research can be considering the communication 

latency to be more realistic. 
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3.4.5 Related Publication 

• Z. Du and P. Pisu, Cooperative Mandatory Lane Change for Connected Vehicles 

on Signalized Intersection Roads, 2018 American Control Conference (ACC) (in 

preparation) 
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CHAPTER 4 REAL-WORLD IMPLEMENTATION ANAYLYSIS 

4.1 Communication Delay 

4.1.1 Introduction 

Our proposed hierarchical control method for both the signalized and unsignalized 

intersections study relays on the wireless communication including V2V, V2I and I2I. 

We assume our previous research is under ideal communication environment with on 

communication delay. However, in the real-world implementation, while the wireless 

communication allows the connected vehicles to receive sufficient information to make 

optimal control decisions, it also introduces delays into the control loop due to the 

intermittencies and packet drops. Current designated short range communication (DSRC) 

protocols broadcast messages in every 100 ms and the packet delivery ratio varies 

depending on distance and geography [110]. It has also been shown that a high number of 

channel access requests, either due to a high number of communicating vehicles or high 

data volumes produced by these vehicles, may result in dropped packets and unbounded 

delays. The arising delays may significantly change the traffic dynamics leading to 

instabilities at the linear and nonlinear levels [111] [112]. 

In this section, we focus on the scenario similar to Section 2.2 with a group of 

connected conventional vehicles travelling on single lane signalized intersection roads. 

However, we introduce the random bounded delay into the communication network to 

make the simulation scenario more realistic. The delay estimation method has been 

proposed and we have also developed an approach utilized the delay estimation to 
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compensate the negative impacts on the system performance caused by the involved 

random bounded delay in the communication network.  

Figure 4.1 shows the schematic of the problem. We assume the delay τ at any 

instance of time is the same all over the communication network including V2V and V2I. 

The dash line in  Figure 4.1 indicate the information is transmitted through wireless 

communication, while the sold line represents the information is obtained from vehicle 

onboard sensors. Any vehicle i measures the position and velocity of its preceding 

vehicle i-1 from the onboard sensors and receives the position information of vehicle i-1 

via V2V as well. Each vehicle i sends its position information to the intersection 

controller and receives the reference velocity through V2I. The communication delay 

exists on both ways. 

 

Figure 4.1 Schematic of the communication delay problem 

4.1.2 Approach 

In this section, two aspects of this problem have been addressed: first, we describe 

the method used to estimate the delay in the communication network; second, with the 

estimation, the approach we used to compensate the delay and maintain the proper 

function and performance of our algorithm is presented.  
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A. Delay estimation 

In this research, we assume the delay in the communication network (V2V and 

V2I) is consistent at any instance of time. The stochastic delay τ  is defined as: 

l kτ = ⋅∆ ,  { }max0,1,...,l l∈                                                                                                       (4.1) 

where k∆  is the sampling time of the system and l follows a uniform distribution 

between 0 to maxl .  

Taylor series expansion technique [113] is often used to approximate delayed 

systems by ordinary differential equations in different engineering and biological 

applications. If the delay is sufficient small compared to the characteristic time of the 

system then replacing the delayed term by zeroth-order or first-order expansion provides 

a good approximation [114] [115]. The first-order approximation is also often used for 

stochastic time-delay systems to eliminate the delay from the equation [116]. The Taylor 

series approximation can also be valid for large delays as well. In human balancing 

models with reflex delay, the delayed terms are often approximated by either first-order 

[117] or second-order [118] [119] Taylor series expansion. 

In this research, the second-order Taylor series expansion is applied here to 

approximate the delay τ . For any vehicle i at any time t, it has the position ( )1is t−  and 

velocity ( )1iv t−  information of the preceding vehicle i-1 from its own onboard sensors 

and the information are assumed to be accurate and non-delayed. The vehicle i also 

receives the position information ( )1is t τ− −  from vehicle i-1 through wireless 
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communication and it comes with delay τ . The delayed position information is expanded 

by second-order Tayler series similar to [120] as: 

( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( )( )

2
1 1 1 1

1 1

1 1 1

1
2

/

i i i i

i i

i i i

s t s t s t s t

s t v t

s t v t v t k k
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− = − ⋅ + ⋅ ⋅

=

= − −∆ ∆

 


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                                                                              (4.2) 

Here, ( )1is t−  is the position of vehicle i-1 coming from the onboard sensor of 

vehicle i. The first-order derivative ( )1is t−  is the velocity ( )1iv t−  of vehicle i-1, which is 

obtained from the onboard sensor of vehicle i. The second-order derivative ( )1is t−  is the 

acceleration of vehicle i-1 which can be either obtained from the wireless communication 

or approximated by the derivative of the velocity. In this research, we chose the second 

option and differentiate the velocity information from the onboard sensor. ( )1is t τ− −  is 

the delayed position information broadcasted by vehicle i-1 via wireless communication. 

At any time t, as we have the value of ( )1is t τ− − , ( )1is t− , ( )1is t− , ( )1is t− , we can solve 

the following second-order differential equation for τ , such that the delay can be 

approximated. 

( ) ( ) ( ) ( )2
1 1 1 1

1 0
2 i i i is t s t s t s tτ τ τ− − − −⋅ ⋅ − ⋅ + − − =                                                                          (4.3) 

B. Delay compensation 

In our hierarchical control method, the control input of each vehicle is determined 

from the MPC at the vehicle local controller. One of the advantages of the MPC is that it 

allows the current time step to be optimized while keeping future time steps in account. 
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At each time step, the optimal control problem is solved over a finite horizon, but only 

implements the control of the first step. If the prediction horizon is greater than the 

maximum delay in the communication network, the rest of the control evaluated within 

the finite horizon besides the first one can be utilized to compensate the delay. For the 

MPC problem with the prediction horizon of T, at any instance of time k, instead of only 

implementing the control ( )1u k + , the rest predictions from ( )2u k +  to ( )1u k T+ −  are 

also saved for the purpose of delay compensation. 

In the hierarchical control architecture, the vehicle local controllers send the 

vehicle position to the centralized intersection controller. The intersection controller 

evaluates the target velocity for each vehicle based on the received positon and SPAT 

information and then send it back to the vehicle local controller. That is a two-way 

communication between the vehicle local controller and the intersection controller. If the 

estimated delay in the communication network is τ̂ , the vehicle local control would 

receive the target velocity from the intersection controller with the delay of ˆ2τ . Since the 

delay τ can be estimated based on the approach proposed in the last subsection, to 

compensate the communication delay at any instance of time k, instead of sending the 

position ( )is k  to the intersection controller, we can send ( )ˆ2is k τ+ , which can be 

evaluated from the controls within the prediction horizon and vehicle dynamics model. In 

such a way, the communication delay can be compensation and minimize the negative 

impacts of the delay on the performance of our system. 
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4.1.3 Simulation Results 

In our simulation setup, the sampling time 0.5k∆ = s and max 3l = , which means 

the delay τ  follows a uniform distribution between 0 to 1.5 s. The prediction horizon of 

the MPC problem T=6 s, which makes max2T τ> , such that the prediction horizon can 

cover two times of the maximum delay in order to compensate the delay. The simulate is 

set to run for 400 s. Three simulation scenarios are shown in this section including the 

simulation with ideal communication network (no delay), the simulation with random 

delay as described above and the simulation with both delay and delay compensation. 
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Figure 4.2 The random delay in the communication network and estimation errors 

 

The upper plot in Figure 4.2 shows the delay we injected into the system 

distributed from 0 to 1.5 s with 0.5 s as the increment. The lower plot in Figure 4.2 shows 

the error compared with the estimation from our proposed approach in Section 4.1.2A. 



 132 

The errors are all within 0.2 s which is acceptable. It should be noted that there are a few 

spikes on the estimation error in the figure at time instance when the traffic signal light 

change from red to green or the otherwise. The reason behind is that the vehicle control 

input has a jump either from acceleration to deceleration or vice versa at the time 

instances when the traffic signal light change the status. The second-order Taylor series 

expansion approach to approximate the delay involves the vehicle acceleration terms, and 

that may be the reason of existing spikes on the estimation error. It indicates the Taylor 

series expansion may not be a good way for the delay estimation. Future research 

includes seeking different delay estimation approaches for our problem.  
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Figure 4.3 All vehicle trajectories in the simulation scenario with ideal communication 

network (no delay) 



 133 

0 100 200 300 400

Time (secs)

0

1000

2000

3000

4000

5000

6000

D
is

ta
nc

e 
(m

)

 

Figure 4.4 All vehicle trajectories in the simulation scenario with random delay without 

compensation 
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Figure 4.5 All vehicle trajectories in the simulation scenario with random delay and 

compensation 

 

Figure 4.3 shows all the vehicle trajectories under ideal communication network 

work without any delay. The simulation results are similar to our previous research. 
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Figure 4.4 shows all the vehicle trajectories under random delay in the communication 

network without compensation. In this scenario, some vehicles are stopped by the red 

light, because the target velocity evaluated by the centralized intersection is based on the 

delayed position information. It should be noted that even under the delayed 

communication scenario, there would be no rear-end collisions happen, because the 

information the preceding vehicle can be obtained from the onboard sensors of the 

following vehicle and it is considered to be accurate without delay. Figure 4.5 shows all 

the vehicle trajectories when the communication network is under the same delay, but our 

proposed compensation approach is involved. It can be seen that the trajectories are 

almost the same with the ones in Figure 4.3 where there is no delay. The fuel economy 

performance of the three scenarios are summarized in Table 4.1. The performance of the 

delay compensation scenario is almost the same compared with the ideal case. 

 

 
Average Fuel Economy 

(MPG) 
Standard Deviation 

No delay 40.42 0.5322 

Random delay 38.66 0.4961 

Random delay & compensation 40.41 0.5478 

Table 4.1 Summary of average fuel economy on delay estimation and compensation 

study 
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4.1.4 Conclusion 

In this section, a more realistic simulation scenario with random communication 

delay is investigated. The delay estimation utilizing second-order Taylor series expansion 

is presented. We also take the advantage of the MPC optimization and use the prediction 

within the time horizon to compensate the delay. The simulation results show the 

effectiveness of our proposed approaches. Future research direction may include seeking 

other delay estimation method which is suitable for our hieratical control method.  

4.1.5 Related Publication 

• Z. Du, Z. Abdollahi and P. Pisu, The Hierarchical Control Method for a group of 

connected vehicles travelling on signalized intersection roads with stochastic 

communication delay, 2018 American Control Conference (in preparation) 
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4.2 Real-time Implementation Potential 

To evaluate the real-time implementation potential of our hierarchical control 

method and prepare for the future experimental validation, the following simulation study 

is conducted. 

We integrate our hierarchical control algorithm for the connected vehicles on 

traffic signalized intersections into MATLAB SIMULINK. The MPC optimization 

problem at the vehicle local controller level is solved at a faster rate by exploiting the 

system structure and the approximation methods similar to [121] [122] [123] and the 

approach in Section 2.1.4. The solution method is called Fast-MPC, which is targeting on 

improving the computational efficient for real-time implementation. A 3D vehicle 

dynamics animation model is also integrated for better visualization. Our hierarchical 

control algorithm is used to control the longitudinal dynamics of the two vehicles in the 

3D animation model. The simulation is implemented under the Simulink Desktop Real-

Time block. The Simulink Desktop Real-Time provides a real-time kernel for executing 

Simulink models on laptop or desktop. If the algorithm is too slow and missing ticks 

exceeds the maximum allowance, it reports error and stops the simulation. Figure 4.6 

shows the simulation environment. 
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Figure 4.6 Real-time simulation environment 

 

The successful execution of this simulation proves that our algorithm has the 

capability of real-time implementation. It should be noted that we used only one laptop 
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and run the MPC for the control of both vehicles in the 3D animation model. In the real-

world implementation, we are expecting the decentralized control for each vehicle and 

the MPC would be executed parallelly in separate control unites, so further computational 

burden decrease can be expected. 

As we have shown the capability of real-time implementation of our algorithm in 

the simulation, one of the future research is to conduct the real-world experimental 

validation based on the Arduino robot cars, which will be further discussed in section of 

our future work.  
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CHAPTER 5 CONCLUSIONS AND FUTURE WORK 

4.1 Conclusions 

This dissertation work proposes the hierarchical control method for coordinating a 

group of connected vehicles travelling on urban roads. The hierarchical control strategy 

can guide the vehicles passing through the intersections and make smart lane change 

decisions, with the objective of improving overall fuel economy, traffic mobility and 

robust to various connected vehicle penetration rate. Our approach also has great 

potential for real-world implementation. 

In chapter 2, the connected vehicle longitudinal motion coordination is exploited. 

In section 2.1, we focus on the connected vehicle travelling on multiple interconnected 

unsignalized intersection roads. The intersection area vehicle collision avoidance relays 

on the communication and cooperation among the connected vehicles and the intersection 

controllers. Our control strategies successfully guarantees the vehicle collision avoidance 

at the intersection area. Rapid traffic density balance and smooth vehicle transition from 

different roads have also been achieved. In section 2.2, the scenario has been changed to 

the signalized intersection roads. The centralized intersection controller evaluates the 

target velocity for each approaching connected vehicle based on their position and the 

traffic SPAT information to help the vehicles minimize red light idling. The vehicle local 

controllers apply MPC to track the target velocity in a fuel efficient manner. The 

simulation results compared with the baseline method where the longitudinal dynamics of 

the vehicles are controlled by modified Gipps care following model show the fuel 
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economy improvement of our proposed approach. In section 2.3, the effects of the 

connected vehicle penetration rate have been explored. we find that the connected vehicle 

penetration rate does not relate to the average fuel economy of the group of vehicles 

directly. The position of the unconnected vehicle on the convoy affects the average fuel 

economy significantly. Also, under our single lane assumption, the connected vehicles do 

not want to follow unconnected vehicles from the fuel consumption perspective. The 

simulation results offer us another motivation for the study of the connected vehicle lane 

change behavior. 

In chapter 3, the connected vehicle discretionary and cooperative mandatory lane 

change decision have been studied. In section 3.3, the discretionary LCD in our proposed 

approach is made based on offering the subject vehicle higher possibility to achieve its 

target velocity and with minimum negative impact on the rest of the vehicles in the group 

at the same time. Another important lane change triggering factor the presence of the 

unconnected vehicles on the convoy, which is discovered in the connected vehicle 

penetration rate study is also involved. In the simulation study of the discretionary lane 

change behavior, both homogeneous and heterogeneous scenario have been provided. 

The simulation results show the improvement of the group performance under the 

proposed algorithm. In section 3.4, the cooperative mandatory lane change algorithm has 

been proposed. The host vehicle cooperates with the vehicles on the target lane to 

complete its mandatory lane change. The algorithm is realized through inserting a virtual 

vehicle on the target lane which has identical state variables with the host vehicle. 
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Simulation results show the advantages of the cooperation during the lane change in the 

aspects of both fuel and system efficiency. 

Finally, in chapter 4, several aspects of real-world implementation our proposed 

method is facing have been investigated. In section 4.1, we have studied the effects of 

random communication delay on our hierarchical control method. The delay estimation 

approach based on second-order Taylor series has been proposed. The control predictions 

in the MPC horizon are utilized to compensate the delay. Simulation results show that 

with the delay estimation and compensation, the system performance are comparable 

with the ideal communication network case. In section 4.2, we investigate the real-time 

implementation potential of our algorithm with the help of Simulink desktop real-time. 

The simulation proves the algorithm have the capability of real-time implementation, 

which is critical for the future real-world experimental validation. 

4.2 Future Work 

The present research work can be extended in different directions as suggested 

below. 

For the coordination strategy at unsignalized intersections, it is proposed as future 

work to consider sharing other information besides the traffic density between the 

adjacent intersection controllers. The most critical information which affects the system 

performance needs to be exploited in order to improve the overall performance without 

increasing too much communication and computation burden. 

For the lane change decision study, it would be more realistic to include the lane 

change process. In our previous work, we ignored the vehicle lateral motion and assume 
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instant jump from current lane to the target lane for the sake of simplicity. However, lane 

change may take around 4s which may vary based on velocity and traffic conditions. We 

also need to consider maintaining the collision avoidance constraints on both lane during 

the process. For the cooperative mandatory lane change study, exploring the optimal lane 

change initiation point may be one of the future research direction. In our current work, 

we set a fixed lane change algorithm start point, which may not be the optimal one. 

One of the future research direction may also include seeking other 

communication delay estimation and compensation approaches to overcome the 

shortcomings of the Taylor series expansions. 

The experimental validation of our hierarchical control method is another future 

research. We are building the experimental test platform based on Arduino robot cars 

with the capability of wireless communication, indoor GPS localization and lane 

recognition & tracking. Figure 5.1 shows the schematic of the future experimental 

validation plan. The traffic signal lights send their SPAT information to our algorithm. At 

the same time, the Arduino robot cars also send their GPS position and velocity to our 

algorithm via UDP communication protocol. Our algorithm based on the information 

gathered evaluates the control input for the robot cars to help them minimize red light 

idling time.  
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Figure 5.1 Schematic of future experimental validation plan 
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