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ABSTRACT 
 
 

Environmental concerns along with stronger governmental regulations regarding 

automotive fuel-economy and greenhouse-gas emissions are contributing to the push for 

development of more sustainable transportation technologies. Furthermore, the 

widespread use of the automobile gives rise to other issues such as traffic congestion and 

increasing traffic accidents. Consequently, two main goals of new technologies are the 

reduction of vehicle fuel consumption and emissions and the reduction of traffic 

congestion. While an extensive list of published work addresses the problem of fuel 

consumption reduction by optimizing the vehicle powertrain operations, particularly in 

the case of hybrid electric vehicles (HEV), approaches like eco-driving and traffic 

coordination have been studied more recently as alternative methods that can, in addition, 

address the problem of traffic congestion and traffic accidents reduction. 

This dissertation builds on some of those approaches, with particular emphasis on 

autonomous vehicle coordination control. In this direction, the objective is to derive an 

optimization approach for energy efficient and safe coordination control of vehicles in 

merging highways. Most of the current optimization-based centralized approaches to this 

problem are solved numerically, at the expense of a high computational load which limits 

their potential for real-time implementation. In addition, closed-form solutions, which are 

desired to facilitate traffic analysis and the development of approaches to address 

interconnected merging/intersection points and achieve further traffic improvements at 

the road-network level, are very limited in the literature. In this dissertation, through the 

application of the Pontryagin’s minimum principle, a closed-form solution is obtained 
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which allows the implementation of a real-time centralized optimal control for fleets of 

vehicles. The results of applying the proposed framework show that the system can 

reduce the fuel consumption by up to 50% and the travel time by an average of 6.9% with 

respect to a scenario with not coordination strategy. By integrating the traffic 

coordination scheme with in-vehicle energy management, a two level optimization 

system is achieved which allows assessing the benefits of integrating hybrid electric 

vehicles into the road network. 

Regarding in-vehicle energy optimization, four methods are developed to improve 

the tuning process of the equivalent consumption optimization strategy (ECMS). First, 

two model predictive control (MPC)-based strategies are implemented and the results 

show improvements in the efficiency obtained with the standard ECMS implementation. 

On the other hand, the research efforts focus in performing analysis of the engine and 

electric motor operating points which can lead to the optimal tuning of the ECMS with 

reduced iterations. Two approaches are evaluated and even though the results in fuel 

economy are slightly worse than those for the standard ECMS, they show potential to 

significantly reduce the tuning time of the ECMS. Additionally, the benefits of having 

less aggressive driving profiles on different powertrain technologies such as 

conventional, plug-in hybrid and electric vehicles are studied. 
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CHAPTER ONE 

1. INTRODUCTION 
 
1.1 Objective 

The primary objective of this dissertation is to investigate strategies with potential 

to achieve energy consumption reduction in the transportation sector. In particular, this 

dissertation proposes the use of optimal control theory to develop an optimization 

framework for fluent and energy-efficient coordination of vehicles in merging highways 

or intersections which has potential for real-time implementation. The dissertation 

focused in finding answers to four fundamental research questions: 

1.  What are the effects of having smoother driving on the vehicle’s energy 

consumption?  

2.  How to control the traffic to allow smooth and continuous driving on 

merging highways to optimize the energy use of the transportation network? 

3.  What is the appropriate optimization control method to obtain a closed-

form solution with potential for real-time implementation? 

4.  What will be the impact of integrating hybrid electric vehicles into the 

merging control system? 

 

1.2 Motivation  

According to the US Department of Transportation, the vehicle miles traveled 

have increased annually by an average of 1.7% since 1990 [1]. This is just one of the 

facts raising environmental concerns and uncertainty about the sufficiency of oil reserves. 
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Furthermore, the widespread use of the automobile generates other issues such as 

increased traffic accidents and traffic congestion. Intersections and merging roadways or 

on-ramps can be considered one of the primary sources of bottlenecks further 

contributing to traffic congestion, which worsens at peak hours, originating a stop-and-go 

operation of vehicles which account for additional fuel consumption.  

In the United States, on average, 5.5 billion hours are wasted each year due to 

vehicular congestion, which translates to about $121 billion [1]. Moreover, the reduced 

speed imposed by traffic congestion can produce driver discomfort and distraction. The 

limitation in mobility may also generate driver frustration, irritation, and stress, which 

may encourage more aggressive driving behavior and further slow the process of 

recovering free traffic flow [2]. 

Safety and environmental issues are also attributed to the transportation industry. 

In 2012, 2.2 million nonfatal injuries and 35,000 deaths were reported, and around 1.7 

billion metric tons of CO2 were released to the environment [1]. Factors such as these, 

along with stronger governmental regulations, are contributing to the push for 

development of more sustainable transportation technologies. Two main goals of the new 

technologies are the reduction of vehicle fuel consumption and emissions and the 

improvement (reduction) of traffic congestion. While an extensive list of published work 

attempts to address the problem of fuel consumption reduction by optimizing the vehicle 

powertrain operation, particularly in the case of hybrid electric vehicles (HEV), more 

recently, approaches like eco-driving and autonomous vehicle coordination are also being 
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explored as alternative methods which can, in addition, address the problem of traffic 

congestion.  

Several approaches have been proposed for the as a measure to improve the traffic 

flow. While heuristic methods are the most common choice with high potential for real 

time implementation, their lack of optimality and sometimes their low capacity to adapt 

to changing traffic conditions become their main drawbacks. On the other hand, 

depending on how they are formulated, optimization-based approaches which can derive 

global optimal solutions can be complex and can only be solved numerically at the 

expense of high computational loads, putting at risk its potential for real time 

implementation.  

This dissertation encompasses the improvement of the overall traffic efficiency on 

a portion of two convergent roads while addressing the reduction of the vehicles’ energy 

consumption. Consequently, an optimization approach for the vehicle coordination 

control at merging highways is proposed, which can also be used for the in-vehicle 

energy optimization control for hybrid electric vehicles (HEV). In this direction, and in 

an effort to exploit the potential online implementation of the ECMS, I explored two 

paths to improve the tuning process of this strategy: 1) the use of model predictive 

control and, 2) the analysis of the engine and motor operating points.   

 

1.3 Research Contribution  

After a thorough literature review, the following are identified as research 

opportunities in autonomous traffic coordination at intersections and merging roads: 
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• There is a limited amount of approaches which attempt to generate a closed-

form solution to the problem of automated intersection control which can 

adapt to different traffic conditions. Having a closed-form solution for a single 

intersection or merging point would be helpful to expand the problem to 

interconnected points and facilitate further traffic analysis and improvement at 

the road network level. 

• Although optimization-based centralized approaches can lead to global 

optimal solutions, depending on the way the optimization problem is 

formulated, it could only be solved numerically at the expense of a high 

computational load which limits its potential for real-time implementation. 

While these approaches can still be very helpful to assess the performance of 

decentralized solutions and the design of eco-driving systems, this becomes a 

major drawback for their practical implementation. 

• No attempts have been found to study the effects of introducing Hybrid 

Electric Vehicles into the traffic coordination system. 

In summary, and to the best of my knowledge, not centralized, real-time, closed-

form, optimal solutions to the problem of vehicle merging coordination are found on the 

literature. Therefore, the main contribution of this dissertation is the development of an 

optimization framework to obtain an analytical closed-form solution to the problem of 

centralized vehicle coordination control which addresses energy efficiency and collision 

avoidance and, has potential for real-time implementation.  

The specific contributions in this direction are: 
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1.  Derivation of an energy efficient, real-time implementable, closed-loop 

analytical solution to the problem of autonomous merging control. 

2.  Implementation of a centralized real-time vehicle coordination algorithm 

based on optimal control theory 

3.  Development of a benchmark system to assess the performance of 

decentralized solutions and the design of eco-driving assistance systems, as well as to aid 

in the implementation of in-vehicle energy management strategies for hybrid electric 

vehicles. Furthermore, having a detailed description of the dynamics of individuals 

merging and/or intersection points is important to conduct studies at the traffic network 

level. Hence, the outcomes of this research work could contribute to advances in traffic 

transportation and be an early step to achieve additional understanding of the interactions 

between entities in a highly complex system, as a traffic network, which could be used in 

the framework of complex systems theory for modeling and/or optimization of the 

transportation network. 

 

1.3.1 Additional Contributions  

A literature review in Energy Management for Hybrid Electric Vehicles allowed 

me to also identify that, even though the Equivalent Consumption Optimization Strategy 

(ECMS) is considered as one of the possibilities to overcome the computational burden 

of the global optimization-based approaches and achieve real-time optimal control, 

finding the optimal value of its equivalence coefficient is its main drawback because the 

requirement of accurate prediction of the future driving profile, i.e., finding its optimal 
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value becomes a global optimization problem too. Hence, it is desired to find a strategy to 

achieve its online tuning. While some efforts have been made in the past to address this 

issue, there is still room to achieve efficient tuning of this strategy. 

In this direction, the contributions of this dissertation are:  

1.  Development of two model predictive control (MPC)-based strategies to 

improve the efficiency of the standard implementation of the equivalent consumption 

minimization strategy (ECMS).  

2.  Implementation of two numerical solutions, for the tuning process of the 

ECMS, based on statistical analysis of the powertrain operating points which allow for 

reduced tuning iterations. Furthermore, one of the solution has potential to lead to the 

derivation of an analytical solution to the ECMS tuning problem. 

 

1.4 Broader Impacts   

Accidents due to the transportation sector result in about 35,000 fatalities and 2.2 

million injuries per year.  Thus, decreasing the number of fatalities and injuries caused by 

traffic accidents is a critical need to, not only achieve a better quality of life in our 

society, but also to reduce wasted time and have a stronger economic sector. Likewise, 

reducing the fuel consumption and dependence of the nation of foreign oil and ameliorate 

the environmental burden are currently on the top priorities of the United States.  

This research has the potential to help achieving a safer and more efficient 

transportation system, to improve the economic sector and to reduce the time wasted due 

to traffic.  The proposed system aims at contributing with a safe and time-energy efficient 
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coordination of vehicles which could lead to significant reduction in deaths and injuries 

due to accidents in the transportation sector as well as time and energy waste. 

Moreover, thinking on the proposed centralized system as a way to help 

advancing the development and massive use of autonomous vehicles, indirect broader 

impacts in the future are related to the possibility to provide mobility and independence 

to the elderly and disabled people as well as increment the productivity of the citizens by 

freeing their travel time to accomplish different activities. 

 

1.5 Research Scope   

The research is limited to the coordination of conventional engine-powered 

vehicles at merging highways and the analysis of the impacts of integrating hybrid 

electric vehicles into the coordination system. It is assumed the vehicles on the road 

network are autonomously driven or there is a driver following the instructions given by 

the centralized controller with a 100% accuracy. The analysis of the uncertainty produced 

by drivers who do not follow the given instructions is considered as an extension of the 

research but not included as a part of the dissertation.  

As an attempt to achieve real-time optimization for additional energy 

consumption reduction in the case of hybrid electric vehicles, alternative approaches for 

the tuning of the ECMS are explored and numerical solutions are proposed, leaving the 

possibility to find an analytical solution as a future work. 
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1.6 Dissertation Organization   

This dissertation work explores different methods for the optimization of the 

vehicle’s energy utilization such as in-vehicle energy management, eco-driving and 

particularly, traffic control at merging/intersecting roads. Consequently, chapter two 

present a detailed overview of the main approaches find in the literature about these three 

areas. Chapter three investigates strategies to achieve more efficient tuning strategies for 

the equivalent consumption minimization strategy (ECMS). The effects of having 

optimized/smoother driving profiles are explored in chapter four. Chapter five is 

concerned with the formulation and derivation of the optimal control solution for the 

traffic intersection coordination problem. Finally, the conclusions and future work are 

discussed in chapter six. 

 

1.7 Dissemination of results   

 

1.7.1 Journal 

1) J. Rios-Torres, A. A. Malikopoulos, P. Pisu. Optimal Control of Vehicle 

Coordination for Efficient Traffic Flow at Merging Roads. Submitted for 

evaluation to IEEE Transactions in Intelligent Transportation Systems.  

2) J. Rios-Torres, A. A. Malikopoulos, P. Pisu. A Survey on Driver 

Feedback Systems and Coordination of Connected and Automated Vehicles. 

Submitted for evaluation to IEEE Transactions in Intelligent Transportation 

Systems.  
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3) Rios-Torres, J., Sauras-Perez, P., Alfaro, R., Taiber, J. et al., "Eco-

Driving System for Energy Efficient Driving of an Electric Bus," SAE 

International Journal of Passenger Cars – Electron. Electr. Syst. 8(1):2015, 

doi:10.4271/2015-01-0158.  

4) Y. He., J. Rios, M.Chowdhury, P. Pisu. Forward Power-Train Energy 

Management Modeling for Assessing Benefits of Integrating Predictive Traffic 

Data into Plug-in-Hybrid Electric Vehicles. Transportation Research Part D: 

Transport and Environment, Volume 17, Issue 1, January 2012.  

5) A. Sciaretta, L. Serrao, P.C. Dewangan, P. Tona, E.N.D. Bergshoeff, C. 

Bordons, L. Charmpa, Ph. Elbert, L. Eriksson, T. Hofman, M. Hubacher, P. 

Isenegger, F. Lacandia, A. Laveau, H. Li, D. Marcos, T. Nuesch, S. Onori, P. 

Pisu, J. Rios, E. Silvas, M. Sivertsson, L. Tribioli, A.-J. van der Hoeven, and M. 

Wu, “A Controller Benchmark on the Supervisory Control of a Plug-in Hybrid 

Electric Vehicle,” Control Engineering Practice, Jan 2014. 

 

1.7.2 Conference 

6) J. Rios-Torres, A. A. Malikopoulos, P. Pisu. Online Optimal Control of 

Connected Vehicles for Efficient Traffic Flow at Merging Roads. Accepted for 

presentation at the 2015 IEEE 18th International Conference on Intelligent 

Transportation Systems. 

7) J. Rios-Torres, P. Pisu. “An alternative approach for the equivalent 

consumption minimization strategy- ECMS”. In review   
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8) Rios J., Sauras-Perez, P., Gil, A., Lorico, A. et al., "Battery Electric Bus 

Simulator - A Tool for Energy Consumption Analysis," SAE Technical Paper 

2014-01-2435, 2014, doi:10.4271/2014-01-2435.  

9) J. Rios, P. Pisu. 2013, "A Comparative Analysis of Optimization 

Strategies for a Power-Split Powertrain Hybrid Electric Vehicle. Proceedings of 

the FISITA 2012 World Automotive Congress,"Springer Berlin Heidelberg, pp. 

541-550.  
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CHAPTER TWO 

2 STATE OF THE ART 

 
2.1 Energy management for Hybrid Electric Vehicles 

Stronger governmental regulations regarding automotive fuel-economy and 

greenhouse-gas emissions along with environmental concerns, are critical factors which 

are fostering new challenges for the automotive industry [1], [3]. In this context, fuel 

economy improvement and emissions reduction are two essential issues which increase 

the momentum of Hybrid Electric Vehicles (HEV’s) as alternatives to address them. 

In addition to an internal combustion engine (ICE), the HEV powertrain contains 

one or more electric machines (EM) and one or more electrical energy storage systems 

(EESS), commonly batteries. The higher efficiency of the electric machine and the 

possibility to shut down the engine while idling, favors the vehicle’s efficiency and the 

reduction of the emissions. At the same time, the new components increase the degrees of 

freedom of the system adding more complexity and making more challenging the 

implementation of an energy control strategy to optimize the fuel consumption,  

The main goal of the energy control strategy is to determine the optimal power 

distribution among the powertrain devices, in such a way that the fuel consumption is 

minimized and, the driver’s power demand, the drivability and the system constraints are 

satisfied. Several control strategies have been proposed in the past and, they can be 

broadly classified into two groups: rule-based and optimization-based strategies [4], [5], 

[6].   
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The rule-based control is achieved by defining a set of heuristic rules according to 

the driving conditions [7], [8], [9], [10]. However, due to the dynamic characteristic of 

the powertrain components, they do not guarantee optimality and strongly depend on the 

powertrain configuration.  

The optimization-based strategies can be sub-divided into global optimization and 

local optimization strategies [4], [5], [11]. The global optimization is a non-causal 

approach, i.e. it requires accurate knowledge of the future driving profile, which aims to 

reduce the overall fuel consumption along the trip. Dynamic Programing (DP) is a 

commonly used technique to solve the global optimization problem [12]–[14]. Although 

the results guarantee optimality, it is a computationally expensive technique, a drawback 

limiting its capability for real-time implementation.  

On the other hand, it is possible to find a suboptimal solution by converting the 

global optimization problem into a local one. For this case, in addition to the chemical 

energy of the fuel, the electrical energy utilized should be included into the cost function 

in order to guarantee a near to optimal solution. Two main approaches can be identified: 

the Pontryagin’s minimum principle [15]–[17] and the equivalent consumption 

minimization strategy (ECMS) [18]–[20], [21]. 

The ECMS differs from the Pontryagin’s minimum principle in that it assumes the 

equivalent factor to be constant along the driving cycle [22]. In order to obtain close to 

optimal results, the ECMS requires a tuning process for each particular driving profile to 

find the optimal value of the equivalent factor  [20], [22]–[24]. This tuning process can 

then be formulated as a global optimization problem, a formulation that restricts the 
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potential for online implementation of the ECMS and prevents a more extensive and 

practical use of this approach. Therefore, it is essential to find fast and efficient tuning 

methods. In this direction, some authors have attempted to adaptively adjust the 

equivalent factor for a particular driving profile [9], [25], [26]. In the proposed strategies 

the s coefficient is updated every T seconds using the past value(s) of the coefficient as 

well as the deviation of the battery state of charge from the desired reference. 

 

2.2 Eco-driving 

Eco-driving systems (Fig.  1) guide drivers to achieve a more efficient driving 

style. This goal is commonly accomplished by using information from fuel-efficient 

driving profiles that are obtained through the use of heuristic rules or optimization 

routines. Such information can be released to the driver online or offline. This section 

summarizes the main eco-driving approaches described in the literature to date. 

 
Fig.  1. Driver information and feedback systems 
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2.2.1 Conventional Vehicles 

Conventional vehicles are powered by the chemical energy of fuel and their fuel 

efficiency is very sensitive to the time spent in idling and stop-and-go patterns. 

Consequently, there have been research efforts to integrate some degree of traffic 

information into eco-driving systems to avoid their excessive transient operation. The 

main eco-driving approaches can be classified as optimization-based and heuristic rules-

based. 

 

Optimization-Based Approaches: In [27], [28] the problem of finding optimal 

trajectories by indirect fuel consumption optimization is addressed. In [27], Asadi et al. 

formulated the problem of minimizing velocity transients and trip time, predicting traffic 

using a feed-forward traffic estimator based on the gas-kinetic model and using it as a 

constraint for the optimization problem. Dynamic programming (DP) is used that allows 

achieving up to a 21% fuel economy improvement. The authors emphasized the 

importance of prediction accuracy in achieving the potential improvements. Traffic light 

schedules and timing information were used by Asadi and Vahidi [28] to find a velocity 

trajectory that allows crossing a traffic light during the green phase without stopping, 

whenever possible. It is assumed the vehicle is equipped with short range radar, which is 

used to guarantee the vehicle keeps a safe distance from a preceding vehicle. This way, 

the problem is solved on two levels: first, heuristic rules are used to calculate the 

reference velocity for timely arrival at green lights; second, an optimization problem to 

minimize the speed tracking error and the braking force is solved by model predictive 
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control (MPC). The Powertrain Systems Analysis Toolkit (PSAT) and Simulink were 

used to estimate the fuel consumption, which was improved by 47% with the proposed 

system. In this work, deterministic traffic light timing was assumed. To have more 

realistic results, the authors propose using information from synchronized or traffic-

actuated lights in future work.  

Kamal et al. proposed in [29], and [30] to optimize the fuel economy on a host 

vehicle, including some dynamics from the surrounding vehicles, and presented some 

traffic network analysis. In [29] the multi-objective optimization target is to minimize 

four weighted terms: fuel economy, acceleration, deviation from an imposed speed limit, 

and deviation from the desired gap distance from the preceding vehicle. The fuel 

economy is estimated from an engine map and the MPC problem is solved by using 

computation and the generalized minimum residual (C/GMRES) method. They analyzed 

the effects of using the proposed system on a road section with intersections controlled by 

traffic lights using results from a simulation in the traffic simulator AIMSUN [31]. The 

reported fuel consumption reduction is 9.24%. In [30], the authors proposed to optimize 

the velocity profile by minimizing three terms: the cruising fuel consumption (assuming 

the vehicle operates at steady state), the acceleration force due to road grade, and the 

tracking speed error (with respect to the driver-desired velocity). Each term is multiplied 

by a weighting term whose values are tuned through observation. Fuel consumption is 

estimated by using a polynomial function. The optimization problem is solved by using 

the C/GMRES method, showing improvements of up to 10% in fuel economy. 
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In [32], Kamal, Imura, Hayakawa, Ohata and Aihara addressed the problem of 

smoothing the traffic flow by controlling a host vehicle. In this case, the dynamic 

behavior of the following vehicle is included in the multi-objective optimization, and the 

dynamics of the n preceding vehicles is used to estimate the future speed trajectory of the 

preceding vehicle. The cost function includes four weighted terms: deviation error from 

desired velocity, host vehicle acceleration, following vehicle acceleration, and deviation 

error from the desired gap with the preceding vehicle. The optimal velocity model is used 

to model the following and preceding vehicle dynamics, and the C/GMRES method is 

used to compute the solution. Through numerical simulation the authors showed that the 

system is able to reduce the propagation of a traffic jam on uniformly distributed dense 

traffic. No results are reported on fuel economy or emissions reduction. 

Zhang and Vahidi [33] proposed a predictive cruise control that uses probabilistic 

prediction of the preceding car position. The optimization problem aims at minimizing 

the vehicle’s acceleration and the car-following error so that efficiency can be improved 

while safety requirements are met. The estimation of the probability distribution for the 

position of the preceding car is made using a Markov chain. The problem is solved with 

MPC, and 15.5% improvement in fuel economy is achieved. 

Kerper et al. [34] used historical data to predict a short-term future velocity 

profile that is optimized to minimize fuel consumption. The Comprehensive Modal 

Emission Model (CMEM) is used to evaluate fuel and emissions, and a dynamic time 

warping algorithm is used for clustering. They reported 8.3% improvements in fuel 

economy. Mensing et al. [35] used DP to find the optimal eco-drive cycle. They 
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minimized the fuel consumption, which is estimated as a function of speed and velocity. 

According to the reported results, they found up to a 16% fuel consumption reduction.  

Wollaeger et al. [36] proposed a two-step optimization process. First the fuel 

consumption optimization problem is solved with DP by using a small grid. Then, a finer 

grid is defined around the initial optimal solution to find the global optimal. Their 

method, known as “pseudo-dynamic programming,” uses traffic information to define the 

constraints of the optimization problem. Improvements up to 14.02% in fuel economy are 

reported. While the authors stated the method reduces the computational burden of the 

DP algorithm, no results are provided to quantify the reduction of the execution time.  

In [37], Chen et al. included fuel consumption, relative velocity of the preceding 

vehicle, and acceleration in the cost function. Fuel consumption is calculated as a 

polynomial function of speed and acceleration. The results showed the fuel consumption 

rate remains lower than for the case of a simple car-following system at all instants of 

time. 

In [38], Ma addressed the fuel consumption minimization problem to find an 

optimal velocity trajectory for the vehicle before arriving at a congested point and after 

the congestion clears up (in such a way that the vehicle has to accelerate to continue in 

“free traffic flow”). Using CMEM to evaluate fuel and emissions, he found a 30% fuel 

economy improvement. Malikopoulos and Aguilar [26]-[[40] investigated the driving 

factors that have a major impact on fuel consumption and developed a driver instructor 

system to provide feedback to the driver in real time to alter her/his driving style and 

make it more eco-friendly. The system is integrated with an optimization framework that 
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can be used to optimize a driving style with respect to these driving factors. The 

optimization problem considers minimization of fuel consumption subject to speed or 

time constraints. In their approach, they used sequential quadratic programming to solve 

the problem achieving improvements of up to 23.2% in fuel economy. 

Cheng et al. [41] modeled the vehicle’s instantaneous fuel consumption as a 

piece-wise polynomial function of engine speed and torque. In addition to fuel 

consumption, they penalize time and acceleration. The proposed system was 

experimentally tested resulting in up to a 20% improvement. 

Mahler and Vahidi [42] introduced the probabilistic prediction of traffic-signal 

timing to find an optimal velocity profile that would maximize the potential of 

encountering traffic lights in the green phase. PSAT and Simulink are used to estimate 

the vehicles’ fuel consumption, and the solution is found by solving a nonlinear 

programming problem. Fuel economy improvements of 16% are reported, and the 

authors emphasize the need to further analyze the effects of informed vehicles on 

uninformed vehicles, penetration rates, and fleet efficiency. 

 

Heuristic Rules-Based Approaches: The works described in this section focus on 

the use of heuristic rules to find velocity profiles that reduced fuel consumption. Rakha 

and Kamalanathsharma [43] used signal phasing and timing information to compute ideal 

and/or feasible velocity profiles. The velocity profiles were used as inputs to estimate the 

required fuel consumption from the Virginia Tech microscopic or VT-micro model.  
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The approach presented by Munoz-Orgarero and Magaña [44] attempts to reduce 

the use of the brakes when the vehicle is approaching a traffic signal that requires the 

vehicle to stop. The authors used image recognition algorithms to detect a set of specific 

traffic signals, then the distance required to stop the vehicle without using the brakes is 

calculated and used to advise the driver when to release the accelerator pedal. The rolling 

resistance and road slope information are used in the speed calculation. Fuel consumption 

is calculated from the mass air flow sensor and the vehicle speed obtained from the 

OBD2 port. From the experimental results they concluded that decelerations greater than 

1.5 m/s2 produce an exponential increment in fuel consumption and confirmed that 

smooth acceleration patterns correlate to reductions in fuel consumption. 

In [45], Jiménez et al. proposed to define a set of action rules based on the 

information obtained after applying DP to solve the optimization problem for a variety of 

road segments. The fuel consumption estimation for the optimization problem is found by 

using a fuel consumption map. Road slope is considered in the system model. The 

proposed system allows real-time advice, accounting for traffic information (updates 

based on required travel time and remaining trip distance). Using the Quasi-Static 

Toolbox (QSS) in MATLAB/Simulink, they found that fuel consumption can be 

improved by up to 8%.  

In [46], Vagg et al. used information about the time between peaks and troughs of 

the speed profile, the acceleration, and the relative positive acceleration, which is a 

function of position, speed and acceleration, to give feedback to the driver in real time. 
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The feedback includes gear shifting advice. Experimental testing showed the proposed 

system provides average fuel savings of 7.6%.  

Wang et al. [47] deal with the minimization of emissions. They used an emissions 

map to derive a speed profile that produces minimum emissions and used it as a reference 

speed. The proposed multi-objective problem includes the cost of deviations from the 

emissions-optimal speed, the cost of deviation from a desired speed, the cost of deviating 

from the desired gap with the preceding vehicle, and, finally, the cost of high acceleration 

values. The problem is solved through DP for uniform prediction time windows. 

Simulations were performed for a 1 km single lane ring road for two average vehicle 

densities and assuming all the vehicles are equipped with the system. The results show 

that using the system’s reduced CO2 emissions rate can reduce emissions by 3.1% in free 

traffic and 9.1% under moderately congested conditions.  

 

2.2.2 Hybrid and Plug-in Hybrid Vehicles 

Hybrid electric vehicles (HEVs) (Fig.  2) and plug-in HEVs (PHEVs) have 

attracted considerable attention due to their potential for reducing petroleum consumption 

and greenhouse gas (GHG) emissions. This capability is mainly attributed to the 

following: 1) the potential for downsizing the engine; 2) the capability of recovering 

energy during braking, and thus recharging the energy storage unit (e.g., battery or 

ultracapacitor); and 3) the ability to minimize engine operation at speeds and loads where 

fuel efficiency is low. In addition, hybridization of conventional powertrain systems, 

which typically refers to the power requirements for the electric motor or the degree of 
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electrification, allows elimination of near-idle engine operation, thus enabling direct fuel 

economy enhancement. A typical HEV consists of the fuel converter (internal 

combustion engine), the inverter, the battery, and the electric machines (motor and 

generator). 

 
Fig.  2. HEV configuration showing the engine (red), the inverter (orange), the battery packages 

(blue), and the electric machines (yellow). 

 

HEVs may be categorized, based on architecture, as one of three types: 1) 

parallel, 2) series, or 3) power split. In parallel HEVs, both the engine and the motor are 

connected to the transmission, and thus, they can power the vehicle either separately or in 

combination. The series HEV, in which the electric motor is the only means of providing 

the power demanded by the driver, is the simplest HEV configuration. Finally, the power 

split HEV can operate either as a parallel or a series HEV, combining the advantages of 

both. PHEVs are hybrid vehicles with rechargeable batteries that can be restored to full 

charge by connecting a plug to an external electric wall socket. A PHEV shares the 

characteristics of both an HEV, having an electric motor and an internal combustion 

engine, and an all-electric vehicle (EV), having a plug to connect to the electrical grid. 

This is especially appealing in situations where daily commuting is within a small 
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amount of miles. These vehicle architectures usually have regeneration capabilities, 

which allows them to be more efficient in transient operation.  

Attempts to develop eco-driving systems for these HEV architectures frequently 

involve in-vehicle optimization. Calculating optimal deceleration patterns that maximize 

the energy recuperation along a route is the focus of Van Keulen et al. [48]. Using vehicle 

mass and geographical information to take advantage of road elevations, they predict the 

velocity profile for a particular route. Then they compute the required deceleration that 

allows the electric machine to generate at its maximum value and avoid the use of the 

mechanical brakes. The predicted speed profile is used later to find the optimal controls 

for in-vehicle energy management. 

In [49] and [50], Van Keulen et al. and Vajedi et al. proposed to divide the route 

into segments and to define a particular optimal trajectory shape for each segment. Then 

nonlinear programming is used to find the parameters for each segment that minimizes 

fuel consumption. Improvements of up to 5% and 18.2%, respectively, are reported for 

each approach. Mensing et al. [51] proposed to find the optimal velocity trajectory by 

minimizing the fuel consumption, state-of-charge variation rate, and time. The problem is 

solved using DP, yielding an improvement of 10% in fuel consumption.  

 

2.2.3 All-Electric Vehicles  

EVs are powered by an electric motor and a battery. The range or maximum 

number of miles the vehicle can travel without recharging is an important characteristic 
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defining vehicle performance. The main goal of eco-driving systems for this vehicle 

architecture is increasing the vehicle range.  

Energy consumption optimization is the focus of two studies reported in the 

literature recently [52], [53]. Through heuristic rules in [52] they find the feasible range 

that allows a vehicle to pass through traffic lights without stopping. This information is 

used to constrain the optimization problem, which is solved by nonlinear programming. 

In [53], the authors present a macroscopic steady-state analysis of an urban traffic 

network subject to boundary flows affected by traffic lights and variable speed limits. 

The cell transmission model, adapted to urban traffic, is used to model the system. In this 

model it is assumed that the vehicles on the road travel at an equilibrium speed. Thus, the 

road section is divided into homogeneous cells to represent the traffic flow. In this 

particular study, there are two representative cells: the congested cell and the free cell. 

The coauthors solve a multi-objective optimization problem to select the optimal velocity 

of the free cell using the instantaneous travel time, total travel time, total travel distance, 

and energy at the macroscopic level as the parameters of the cost function. Through the 

simulation of a road section with two traffic lights it was shown that the problem has a 

nontrivial solution.  

Freuer and Reuss [54] used predictive route data and information from a radar 

sensor to optimize energy use by minimizing the electric powertrain losses. The 

optimization problem is solved online using DP for horizons of different lengths 

depending on the available predictive data. Experimental results show the system is able 
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to reduce the vehicle’s energy use. A similar approach is presented by Dibb et al. [55] 

where the  battery power is calculated as a polynomial function of speed and torque.  

More recently, Rios-Torres et al. adapted and applied the optimization framework 

proposed by Malikopoulos and Aguilar  for conventional vehicles [39], [40], to 

implement a driver feedback system for an electric bus [56]. In their work, the optimal 

problem involves the minimization of the instantaneous vehicle power consumption 

which is modeled as a function of the speed and acceleration. Given the dimensions of 

the vehicle, the grade has a non-negligible impact on the vehicle power request. Thus, it 

is included in the instantaneous power meta-model which was generated by using 

experimental data from a real battery electric bus. In addition, the authors proposed a 

driver feedback interface and a driver scoring method to allow the driver improving the 

driving skills. The authors reported improvements of up to 30.33% in power 

consumption. 

Based on the reported review, it appears that most of the research in eco-driving 

to date has focused on conventional vehicles. Given the differences between internal 

combustion engines and electric machines, speed trajectories that are optimal for 

conventional vehicles are not necessarily optimal for hybrid electric or electric 

powertrains. Furthermore, given the different aerodynamics of light- and heavy-duty 

vehicles, optimal speed trajectories for them are not necessarily the same either. In 

addition, the following points can be emphasized.  

 Most of the eco-driving approaches address the issue of finding a fuel/energy 

optimal speed profile for a single vehicle. 
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 DP is the most common approach to solve the optimization problem, limiting the 

possibility of real-time implementation. 

 When attempting to account for traffic, traffic lights and car following have been 

the parameters most extensively used; minimum consideration has been given to 

ramps, intersections, or lane changing. 

 Most of the papers predict or assume traffic information is available and use it to 

set constraints for the optimization problem.  

 For hybrid vehicles, it is common to have a two-level optimization. Typically, in 

the first level there is in-vehicle optimization and in the second level, the speed 

profile is optimized to achieve further improvements. 

It can be seen that most of the published work focuses on finding an optimal 

velocity profile for a single vehicle by solving similar optimization problems and adding 

or neglecting particular parameters. DP and MPC seem to be the preferred tools to solve 

the optimization problem. Thus, it is possible to conclude that currently most of the 

papers addressing the problem of eco-driving build upon the same basic concepts. 

More recently some researchers have started exploring the effects of eco-driving 

systems on traffic networks and the possibilities of creating eco-driving systems for a 

fleet of vehicles or an entire vehicular network. Most of the research in this direction is 

focused on trying to find a speed trajectory that avoids collision and minimizes time. 

Thus, delay time is the performance metric mainly used to evaluate the effectiveness of 

the approaches. This new trend may lead to meaningful contributions to the sustainability 
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of the entire transportation infrastructure. Some common approaches reported in the 

literature in this area for the particular case of intersection control are detailed next. 

 

2.3 Autonomous intersection control 

Traffic lights are considered one of the most efficient ways to control the traffic 

through intersections and attempts are still being made in order to increase their 

effectiveness. Some of the more common approaches in this direction are presented by 

Li, Wen and Yao in [57]. However, with the appearance of V2V and V2I communication, 

and the increasing interest in automated vehicle technologies, the requirement of safe and 

efficient autonomous driving and intersection control algorithms is gaining more interest.  

Vehicle coordination control, including autonomous intersection and merging 

control, may lead to meaningful contributions to the sustainability of the entire 

transportation infrastructure. In this direction, the reported approaches can be broadly 

classified into centralized and decentralized approaches (Fig.  3). A significant portion of 

them are based on the use of reservation algorithms, multiagent systems, optimization, 

fuzzy logic, or polling strategies. When optimization is involved in the solution the most 

common tools to solve it are MPC, nonlinear programming, and mixed integer linear 

optimization.   
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Fig.  3. Classification of autonomous intersection control approaches 

 

Some of the first attempts to achieve a more efficient coordination of vehicles at 

intersections can be found back in 1977 when Pappis, and Mamdani [58] proposed the 

use of fuzzy logic to find more efficient switching times for the red and green cycles of a 

traffic light. Since then, the advances in technology has made possible the 

implementation of adaptive traffic lights which can adapt to the changing traffic 

conditions to reduce the traffic congestion[59]. However, nowadays the interest in 

connected and autonomous vehicles technologies is gaining momentum, which propels, 

among others, the development of algorithms for autonomous intersection and merging 

control. In this direction, back in 2008, Dresner and Stone [60] proposed a centralized 

system to achieve automated vehicle intersection control. After that, several approaches 

have been proposed to achieve safe and efficient autonomous control of the traffic 

through intersections and merging highways which can be broadly categorized as 

centralized and decentralize. Here, we categorize an approach as centralized if there is at 

least one task in the system that is globally decided for all vehicles by a single central 
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controller or coordinator. In the following subsections we formulate the intersection 

control problem and discuss the various approaches in each of these categories, i.e., 

centralized, decentralized.  

 

2.3.1 General problem formulation 

Typically, the crossing sequence on an intersection is controlled by traffic lights 

or stops signs which implies that, at some time, the vehicles on one road have to stop to 

concede the right of way to the vehicles on the other road. Fig.  4 illustrates a common 

intersection scenario in which it is possible to improve the traffic flow by using 

connected vehicle technologies, and thus minimizing the time for the vehicle spent idling. 

In such typical scenario, a control zone is defined as the section of the roads located 

inside a radius L of the intersection. 

 
Fig.  4. Simplest intersection scenario 

 

Based on the scenario illustrated in Fig.  4, it is assumed that the vehicles in the 

system are subject to a second order dynamics (1) 
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where { }1,2,..., , ,j m m= ∈  indexes the road, { }1,2,...., , ,i n n= ∈  indexes 

each vehicle, x  is the position of each vehicle, v  is its speed, and u  is the control input, 

which is vehicle’s acceleration. L  is the length of the control zone and S  is the length of 

the intersection zone. Eventually, when it is necessary to differentiate among the roads 

and vehicles, the subscripts p and q  will be used for the road and vehicles respectively. 

The general autonomous intersection control problem considers finding a control 

policy to coordinate the crossing sequence of the vehicles while satisfying certain 

constraints, i.e., avoiding collisions and minimizing travel time. It is possible to solve this 

problem through optimal control. Different formulations have led to different possible 

approaches. Some of the most common formulations in the centralized and decentralized 

case are discussed next.  

 

2.3.2 Centralized Approaches 

In centralized control the crossing sequence and respective crossing intervals are 

decided by a centralized controller while satisfying the constraints imposed by the road 

capacity. Some of the studies discussed in this section develop the control algorithm by 

implementing reservation schemes while others use an optimization framework.  
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2.3.2.1 Reservation Scheme 

In general, in this approach there is a centralized controller or intersection 

manager which coordinates the reservation or crossing schedule based on the requests 

and information received from the vehicles located inside the communication range. The 

intersection is divided into cells or points which are to be assigned or reserved for only 

one vehicle at each instant of time to avoid collisions (Fig.  5). The main challenges in 

this case are associated with the heavy communication requirements and the possible 

occurrence of deadlocks. The communication becomes a critical issue, particularly when 

vehicles are required to communicate several times with the central controller until their 

reservation request is approved. 

 
(a)      (b) 

Fig.  5. Cells reservation process at time t (as proposed in [57]). (a) Successful reservation. (b) 
Reservation request rejected due to conflict with a cell already reserved by another vehicle 

 

In [61] Dresner and Stone proposed the use of the reservation scheme to control a 

single intersection of two roads with vehicles traveling with similar speed on a single 

direction on each road, i.e., no turns are allowed. In their approach, each vehicle is treated 

as a driver agent which request the reservation of the space-time cells to cross the 

intersection at a particular time interval which is defined from the estimated arrival time 

to the intersection. Once the centralized reservation system receives the request, it accepts 
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if there is not any conflict with the already accepted reservations, otherwise, the request is 

to be rejected. In case of rejection, the driver agent is required to decelerate and send a 

new reservation request. Note that in this case, each driver agent has autonomy to decide 

the best trajectory to fulfill the assigned crossing time interval. To test the efficiency of 

the proposed system, they measured the delay incurred by the vehicles due to the 

deceleration required until the reservation request is accepted.  This work was later 

extended [60] to consider turning as well as including improvements like allowing the 

central controller: (1) to estimate the positions of the cars to prioritize the requests made 

for the vehicles which are closer to the intersection (reducing probability of deadlocks), 

(2) imposing the required acceleration profile inside the intersection zone  and (3) send a 

counter offer for the arrival time and trajectory when rejecting a request. Huang et al.[62] 

further extended the work in [60] by (1) centralizing the computation of the vehicle 

trajectories to reduce the possibilities of reservation cancelation due to inability to fulfill 

the initially reported arrival time, (2) adopting a hierarchical processing of the reservation 

request which accounts for the implementation of different priority assignations and (3) 

in addition to the mobility metrics, the author proposed to evaluates metrics related to 

environmental benefits. The reservation scheme have been also explored by Au and 

Stone [63], De la Fortelle [64], and Zhang et al. [65].   

 

2.3.2.2 Control Approaches 

The vehicle intersection control proposed by Wuthishuwong and Traechtler [66] 

consists of a two-level control. In the lower level an intersection agent uses estimation of 
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the traffic flow to define a control policy that guarantees traffic flow stability in the 

intersection. In the upper level, information about traffic density for the incoming and 

outgoing streets is shared among the connected intersection neighborhoods to improve 

system throughput. At this level, the consensus algorithm is used by each intersection 

agent to compute desired traffic density based on the information received from 

connected neighbors. This desired traffic density is then used to determine desired 

vehicle velocity using the Greenshield model. Graph theory is used to model the network, 

and the results showed that the adopted average vehicle velocity allows the system to 

maintain stability. 

Jin et al. [67] considered platoon formations for decentralized intersection control. 

In this work, the intersection controller communicates with the platoon leader and the 

leader with the followers. The platoons are defined according to the gap between adjacent 

vehicles and/or the size limit. Once a platoon is set, the leader calculates the time of 

arrival at the intersection for each vehicle and sends the information to the controller 

along with the request to cross the intersection. If the request is accepted, the platoon 

leader calculates the required vehicle trajectories to satisfy the assigned schedule and 

safety constraints. Simulation were performed in SUMO for a two roads intersection and 

the results showed up to a 23% reduction in fuel consumption and 30% reduction in 

travel time when compared with respect to traffic light-based and non-platoon-based 

approaches. 
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2.3.2.3 Optimal Control 

Optimizing travel time. Increasing the throughput of an intersection is one desired 

goal to reduce traffic congestion and it can be achieved through the optimization of the 

travel time for all the vehicles located inside a radius L  from the intersecting roads. For 

the scenario illustrated in Fig.  6, adopting a first come first serve (FIFO) system and 

allowing only one vehicle on the intersection at each instant of time, the optimization 

problem can be formulated as follows: 
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where Ta∆  is the minimum allowed time (time it takes to cross at the maximum 

speed maxv ) and  δ  is the minimum safest following distance. 

The approaches proposed by Li and Wang [68], Raravi et al. [69], Yan et al. [70], 

Zohdy et al. [71], Jin et al. [72], Wu et al. [73] and Zhu and Ukkusuri [74], focus on the 

formulation of an optimal control problem in which the objective function involves the 

travel time. The constraints, which are different in each work, are formulated with the 

goal of avoiding collisions. Dynamic programming (DP) is applied in [73] to solve the 

formulated optimization problem. As the complexity of DP increases with the addition of 
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lanes, the authors propose an alternative heuristic solution in which the system is 

modeled using Petri nets and the main goal is to minimize the sum of the lengths of the 

two queues. They found that platoon-based vehicular control improves traffic flow and 

based on this formulated rules to control the vehicle crossing sequence. A mathematical 

proof of this approach was presented by Wu et al. in [75]. 

 

Fig.  6. Intersection collision avoidance scenario for travel time optimization 

 

Minimizing the vehicles overlap. For the scenario illustrated in Fig.  6, assuming 

that the vehicles in the system follows the dynamics in (1), and that they are served on a 

first come first serve basis, i.e., a hierarchical sequence is established, in this approach 

the optimal control problem consists in minimizing the overlap of the vehicles position 

inside the intersection zone, i.e., the objective is to control the vehicles acceleration such 

that only a limited amount of vehicles are present inside the intersection at each instant of 

time. The total amount depend on the size of the vehicles, the length of the intersection 

area and the minimum safest following distance. The plot in Fig.  7 illustrates the general 

idea for this approach, where  a   is the maximum time between the time that the vehicles 

i  and 1i +  enter the intersection, in
it  and 1

in
it +  respectively, and b  is the minimum time 
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that the vehicles i  and 1i + , exit the intersection, out
it  and 1

out
it +  respectively. The objective 

is to minimize the length of the overlapped trajectories, i.e., the integral from a  to b  of 

the length of the trajectory arc. 

 
Fig.  7. Illustrative example of trajectories overlap  

 

The general optimization problem is stated in (3). In this formulation, constraints 

are imposed to satisfy the minimum and maximum speed limits and acceleration as well 

as to keep a safe inter-vehicular distance between vehicles on the same road. 
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This approach was first proposed by Lee and Park in [76] where they considered 

the case of a two-roads intersection with two lanes and turning capabilities using of a 

phase conflict map as a part of the problem formulation. Simulation results showed that 

the system is not only able to reduce total travel time and delays but also able to reduce 

fuel consumption. This work was later extended to the case of an urban corridor [77]. 
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Multi-objective optimization. A number of approaches have been proposed which 

address the problem by including more than one term into the cost function. In this case, 

it is common to assume that the vehicles have already been assigned a driving schedule, 

thus, the problem consist in minimizing the error between the actual vehicle speed and 

the desired speed as well as the acceleration. In this case, the optimization problem can 

be solved for time horizons of equal length and additional terms can be added to 

guarantee avoidance of collisions or achieve further time optimization. In general, this 

problem can be formulated as: 
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where H  is the total number of horizons, k  denotes each horizon, T  is the 

length of each horizon, w  denotes penalty weights and ( , )f uτ  is any additional 

function, which can be used to quantify the risk of collisions in the system. The 

constraints vary for each formulation, but in general the most common constraints are 

related to the speed and acceleration limits and safest following distance or time. 

This multiobjective optimization framework was used by Campos et al. [78] and 

Kamal et al. [79], [80]. The formulation in [78] includes speed tracking error and 

acceleration in the objective function to find safe trajectories while satisfying local 

constraints, like the avoidance of control inputs which belong to the critical set as defined 

in Hafner et al [81]. The set of constraints is later modified for a decentralized version of 

the controller in which a reservation scheme is used. Model predictive control (MPC) is 

used in [79], [80] to solve the multiobjective optimization problem that includes a risk 
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factor function to quantify the risk of collision at the intersection and constraints related 

to safe velocity and acceleration values.  

 

Other optimization-based approaches. Less common approaches were presented 

in [82], [83] and [84] and will be briefly described. Charalampidis and Gillet [82] derived 

closed-form solutions to the problem of intersection control. They used a second-order 

kinematic model to describe the vehicle dynamics and assumed all the vehicles initially 

travel at a maximum speed. This way, the collision avoidance strategy consists of finding 

the appropriate deceleration/acceleration pattern. Once the first vehicle reaches the 

communication range of the intersection manager, it calculates the time required to leave 

the intersection and sets a reservation. Once the second vehicle is detected, it is forced to 

adjust speed to an optimal speed value to ensure it reaches the intersection only after the 

first one has already crossed it. The optimal speed is calculated by minimizing the delay 

due to deceleration. This approach only allows one vehicle at the intersection at a time. 

Zohdy and Rakha [83] used game theory for this problem. In this application, a 

manager agent receives information from the vehicles in the road network and selects one 

of them to optimize its trajectory. At the same time, based on the available information, 

every vehicle agent optimizes its own trajectory. Using Monte Carlo simulations, it was 

shown that the proposed system is able to reduce the total delay compared to a traffic-

light-controlled intersection. 

The use of queueing theory to address this problem was proposed by Miculescu 

and Karaman [84]. In their approach, the system is modeled as a polling system with two 
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queues and one server. The customers (vehicles) are coordinated to cross the intersection 

without collisions. The polling system determines the sequence of times assigned to the 

vehicles on each road. Then, a coordination algorithm finds the safe trajectories for all the 

vehicles inside the control region using the time each vehicle should arrive to the 

intersection and the trajectory of the leading vehicle. Differential constraints are used to 

enforce safety. Simulations for light-, medium-, and heavy-load cases were performed 

using MATLAB. The results showed that the switching times needed to reassign the right 

of way from one road to another are reduced in the case of heavy loads, thus promoting 

platoon formations. 

 

2.3.3 Decentralized Approaches 

In decentralized control, each vehicle determines its own control policy based on 

the information received from the other vehicles on the road or some coordinator. One of 

the main challenges faced in the implementation of decentralized approaches is the 

possibility of having deadlocks in the solutions as a consequence of the use of local 

information. Various heuristic- and optimization-based decentralized control approaches 

have been described in the literature to date.  

 

2.3.3.1 Decentralized Heuristic Control 

Fuzzy logic. Was used by Milanes et al. [85] to design a controller that allows a 

fully automated vehicle to yield to an incoming vehicle in the conflicting road or to cross, 

if it is feasible and collision risk is not present. The fuzzy controller controls the throttle 
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and brake pedals of the automated vehicle and was experimentally implemented and 

tested on a two-road intersection in the presence of a human-controlled vehicle. In [86], 

Milanes et al. compare three heuristic intersection control schemes which were 

implemented based on: 1) Fuzzy logic, 2) Partial Motion Planner (PMP) and, 3)  

Heuristic static rules. The schemes were implemented in automated cars and 

experimental results showed they can safely interact in a cooperative environment 

working under a specific communication protocol. When operating in the presence of 

manually operated cars, the three autonomous vehicles were able to yield and stop before 

the intersection. The work described by Milanes et al. [85] was extended by Onieva et al. 

in [87]. The proposed control scheme consists of a three-layer fuzzy control system. The 

first layer, detects whether a turn or a straight path through the intersection is required. 

The second layer determines a feasible speed value to safely cross the intersection; in this 

layer the fuzzy algorithm is optimized by means of a genetic algorithm. The third layer 

determines the accelerator and brake commands required to track the speed reference 

given by the second layer. Simulation results showed the system was able to coordinate 

the vehicles without collisions.  

 

Definition of a critical/invariant set.  Based on the scenario illustrated in Fig.  8 

and under the dynamics in (1), it is possible to demonstrate that the system is monotone if 

the following assumptions are made: 1) The control input has a unique minimum and a 

unique maximum, i.e. min , maxj iu u u≤ ≤ , and the system (1) is non-decreasing in ,j iu , 2.) 

the system (1) has unique solutions, 3) only positive speeds are allowed: min , maxj iv v v< ≤ , 
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4) ,j iv  is bounded for all ,  min max [ , ]j iv v v∈ , 5) all the vehicles on the same path follow 

the same dynamics, i.e., , ,j i j qx x= , , ,j i j qv v=  for all { }  1, 2j ∈ , { },   1, 2,...,i q n∈ .   

From the monotonicity of the system it follows that the hierarchical sequence of 

the vehicles is kept as long as , ,j i j qx x≥ , , ,j i j qv v≥  and , ,j i j qu u≥  and this property allows 

the definition of a critical set.  Also, according to the geometry of the intersecting roads 

in Fig.  8, it is possible to have rear-end collisions when the vehicles travel on the same 

road, or side collisions when two vehicles from different roads are entering the 

intersection zone at the same instant of time.  The intersection zone can be represented by 

the interval , ,[ , ]in out
j i j ix x  which can be defined according to the vehicle length. Then, the 

critical set rear sideCS CS CS= ∪  is defined as the set of all the states in which the 

collisions are unavoidable: { }, ,x R : ( , ) |n
rear j i j qCS i q x x δ= ∈ ∃ − <  and , 

{ }, , , , , ,x : ( , , , ),  | ( , ) ( , ) ( , )n
side j i p q j i j i p q p qCS j p i q j p x x a b a b= ∈ ∃ ≠ ∈ ∩ . Thus, the problem consist in 

finding a control input ,j iu   such that , ,( , )j i j ix t u CS∉  for all 0, ,t j i≥ .   

Hafner et al. [81], [88] used the definition of the critical set in such a way that, if 

the current vehicle trajectories are close to the critical set, the control scheme is activated 

and inputs selected to lie outside the critical inputs set are applied to accelerate one 

vehicle and decelerate the other. Similarly, Colombo and Del Vecchio [89] proposed to 

find the set of control inputs that would avoid collisions, i.e., an invariant set. The 

problem is then translated into a scheduling problem and exact and approximated 

solutions are presented.  In this case, the controller only modifies the trajectory of a 
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vehicle if it detects that the current control input is outside the set of safe control actions. 

These approaches does not involve optimization, and the control scheme is deactivated 

after the current vehicles have safely crossed the intersection. 

 
Fig.  8. Intersection collision avoidance scenario illustrating the bad set 

 

In a similar approach, Quian et al. [90] proposed an algorithm to integrate legacy 

vehicles in the coordination system, i.e. manually driven vehicles with not V2V nor V2I 

communication capabilities. In this case, sensors located on the road will notify to the 

intersection controller the presence of legacy vehicles and by following predefined rules 

the legacy vehicles will be notified by means of a traffic light whether it is allowed or not 

to cross. The safety operation of the coordination algorithm was proved through 

simulation results, however, note that stop and go operation will still be allowed. 

 

Other heuristic approaches. In [91], Alonso et al. proposed two conflict 

resolution schemes in which an autonomous vehicle could make a decision about the 

appropriate crossing schedule and trajectory to follow to avoid collision with other 

manually driven vehicles on the road. To be able to safely drive through the intersections, 



 42 

the vehicles are assumed to have V2V capabilities, in particular they share information 

regarding their position, speed, driving direction (to recognize turning), accuracy of the 

position data and identification. The first scheme is based in the use of priority tables. 

Thus, by implementing a look up table including all the possible combinations of 

occupancy of the intersecting roads, a signal is defined which indicates to the vehicle 

whether it should continue moving or stop until the intersection is cleared. In the second 

scheme, each vehicle determine its own priority level and the look up table is created, so 

that the priority level is accounted for, to decide whether the vehicle should stop or cross. 

The approach was implemented and experimentally tested with three vehicles, which 

were able to safely interact in two different scenarios. 

Wu, Zhang, Luo and Cao [92] proposed centralized and decentralized algorithms. 

The centralized approach uses a controller node which communicates with the vehicles to 

coordinate the crossing sequence. To do that, each vehicle entering the queue sends a 

request to the controller to put in hold the vehicles coming from conflicting lanes. The 

rejection or acceptance depends on the previously accepted requests and the distance left 

to reach the intersection. Once each vehicle exits the intersection area, it sends a message 

to the controller to release the vehicles on hold.  In the decentralized approach, the best 

passing sequence is decided by wirelessly sharing the estimated arrival time among the 

vehicles on the queue. If any vehicle has an arrival time shorter than the current shared 

arrival time, it sends a message to prevent the current vehicle from crossing. This 

approach is a modified version of the Mutual Exclusion Problem (MUTEX) which the 

authors named Vehicle Mutual Exclusion for Intersections (VMEI). Additional logic is 



 43 

included for simultaneous crossing of vehicles traveling on non conflicting lanes.  As 

both schemes require fast and reliable communication, the network simulator NS-3 was 

used to evaluate the average queue length, average waiting time, system throughput and 

message cost. The two proposed approaches outperformed an adaptive traffic light 

approach while the centralized outperformed the distributed approach. The authors did 

not focus on optimizing a particular performance metric and the approach involves stop 

and go operation; hence, they may be missing opportunity to increase the efficiency of 

the system.  

In an alternative path, Khoury et al. [93], proposed an algorithm which in addition 

to be decentralized does not rely on V2V or V2I communication, but only on the 

information received from local sensors. With this approach the authors attempt to 

achieve a low cost, secure and private (since not communication is used) solution. 

 

2.3.3.2 Decentralized Optimal Control 

 

Multiobjective optimization.  In decentralized autonomous intersection control, 

multi-objective optimization solved for time horizons of equal length (T ) has also been 

proposed. As in the centralized case, in the decentralized approaches is also common to 

assume that the vehicles have already been assigned a driving schedule, thus, one of the 

terms in the objective function attempts to minimize the error between the vehicle speed 

at the current time step ( ( )iv l ) and the desired speed ( dv ). Minimizing the acceleration 

( u ) and other terms that can be related to collision avoidance ( , )f l u  is also common in 
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the formulations. Thus, the main difference with respect to the centralized case is the 

local nature of the information used to solve the optimization problem, i.e., each vehicle 

solves its own optimization problem based on the local information it poses and the one it 

receives from the vehicles located inside a particular radius from its current position. In 

general, the decentralized optimization problem can be formulated as: 

( )( )2 2 2

1
min ( ) ( ( )) ( ( , ))

T
v d u c

i i i iu l
w v l v w u l w f l u

=

− + +∑      (5) 

The  more common constraints found in the literature are related to the minimum 

safe distance/time gap between vehicles approaching the intersection, minimum 

following distance (for vehicles on the same lane) and speed and acceleration limits. The 

approaches presented in [94], [95], [96], [97] and [98] formulate multi-objective 

optimization problems. 

Makarem and Gillet [96] proposed a method that assumes the vehicles are 

traveling at a desired vehicle speed ( dv ) and thus, their expected time of arrival to the 

intersection ( iτ ) can be previously calculated.  Then, the control input is computed from 

a navigation function ( iφ ) which attempts to minimize the error between the desired 

speed and the actual speed of each vehicle ( iv ) while keeping a safe time gap among the 

vehicles attempting to cross the intersection as well as assigning smaller acceleration 

values to heavier vehicles compared to lighter vehicles. This last characteristic allows to 

assign smoother trajectories to heavier vehicles, thus reducing energy consumption. 

Assuming the vehicles in the system are subject to the dynamics in (1), the navigation 

function is mathematically formulated as in (6). 



 45 

2( ) ( , ) ( , , )v d g J
i i i i i q i

q i
w v v w w i q vφ β τ τ

≠
∑= − +       (6) 

Where vw , gw  and J i
i

q

Jw
J

=  are weight factors related to the speed error, time 

gap and vehicle inertia and iβ  is a function that guarantees the vehicles will safely cross 

the intersection keeping a safe time difference σ  to reach the intersection. A two-road 

intersection was simulated, and the performance of the approach was evaluated by 

measuring the total energy consumption and traffic flow and comparing them with those 

for an intersection controlled by traffic lights and those for an intersection controlled by a 

centralized approach. The results showed that the proposed strategy is 24% less energy 

efficient than the centralized approach but still more efficient than using traffic lights.  

Using MPC to solve the local optimization problem has been proposed by 

Makarem et al. [97], Qian et al.  and Kim and Kumar [98]. In the approach proposed by 

Makarem et al.  [97] each vehicle defines its constraints by using the local information it 

receives from the other vehicles inside the communication range. Then, each of them 

solves a linear quadratic optimal control problem according to its dynamics and 

constraints to avoid collision. Each vehicle calculates the time required to arrive at the 

intersection for all the vehicles in the network so that the priority to modify the 

acceleration control can be given to the one which is closest to the intersection. The 

effectiveness of the system is confirmed through simulations. On the other hand, Qian et 

al. [99] proposes to solve the problem in two levels. In a high level, the vehicles are 

coordinated based on some predefined priority scheme. Then, a low level control will 
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solve a multi-objective optimization problem based on the information of its current 

system state and short time prediction of the states evolution of the vehicles in front. 

 

Other optimization-based approaches. Tlig et al. [100] proposed a decentralized 

approach in which the vehicles are allowed to cross alternately. It is decentralized in the 

sense that each intersection is controlled independently. Thus, this approach still requires 

a centralized controller in charge of synchronizing the vehicles to achieve an alternated 

crossing sequence. After receiving approval to cross and the required arrival time to the 

intersection, each vehicle adjusts its own speed according to a previously defined ideal 

velocity profile which shape contains three zones: a deceleration zone, a constant speed 

zone, and an acceleration zone. The vehicle has to decide the optimal velocity value for 

the constant velocity zone and the time horizon it needs to keep such speed is computed 

according to the arrival time. The acceleration and deceleration rates are assume to be 

fixed and equal for all the vehicle.  A two-road intersection was simulated and total 

crossing time and energy consumption were used as performance metrics. The simulation 

results showed the proposed approach outperformed the standard traffic light-based 

intersection control approach. In [101], the same authors proposed a two-level control 

system for interconnected intersections. In the first level, a control agent coordinates the 

vehicles to allow them crossing alternately and deciding their own speed. In the second 

level, each intersection control agent shares information with its neighboring control 

agents to optimize the flows inside the road network. This is achieved by optimizing the 

phases of each intersection so that the desired optimal speeds for each road segment can 
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be calculated. Simulation of a traffic network with 6 roads and 12 intersections showed 

that the approach allows the vehicles to cross the intersections avoiding collisions.  

A significant portion of the proposed approaches on intersection control is based 

on the use of reservation algorithms, multiagent systems, optimization, fuzzy logic, or 

polling strategies. When optimization is involved in the solution the most common tools 

to solve it are MPC, nonlinear programming, and mixed integer linear optimization. 

Some authors have also attempted to use fuel/energy consumption as a performance 

metric; however, few attempts have been made to incorporate it directly in the trajectory 

optimization process. A few authors have addressed the problem of minimizing 

acceleration as an indirect attempt to reduce the vehicle’s fuel/energy use.  

A substantial amount of work has reported simulation results for a single 

intersection; only a few have attempted to consider interconnected intersections, which 

may result in a more complex problem but, could give insight of the impact on overall 

traffic conditions. Although the majority of work reported in the literature has 

demonstrated the effectiveness of the efficiency of their approaches with simulation 

results, very few papers have been found that attempt to generate some sort of closed-

form solutions to the problem of automated intersection control. 
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CHAPTER THREE 

3 EQUIVALENT CONSUMPTION MINIMIZATION STRATEGY (ECMS) 

 
3.1 ECMS formulation 

The main goal of an energy control strategy is to determine the optimal power 

distribution among the energy sources in a Hybrid Electric Vehicle (HEV), such that the 

fuel consumption is minimized and the driver’s power demand is satisfied. It also has to 

meet the drivability requirements and the system constraints such as the battery state of 

charge (SOC) bounds and the limitation of the powertrain devices. This global 

optimization problem is formulated as follows: 

0{ ( ), ( )}
min ( )f

eng em

T
fP t P t

m dτ τ∫         (7) 

Subject to the constraints: 

1 2( ) ( ) ( ) ( )req eng em emP t P t P t P t= + −   

min max0 1SOC SOC SOC< ≤ ≤ <   

,max0 ( ) ( )eng engP t P t≤ ≤   

,max0 ( ) ( )eng engt tω ω≤ ≤   

,max0 ( ) ( )eng engT t T t≤ ≤   

,min ,max( ) ( ) ( )em em emP t P t P t≤ ≤     

,min ,max( ) ( ) ( )em em emt t tω ω ω≤ ≤   

,min ,max( ) ( ) ( )em em emT t T t T t≤ ≤    
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Where  fT  is the duration of the trip, fm  is the fuel flow rate, P is power, T  is 

torque, ω  is speed, em  refers to the electric motor/generator, eng  refers to the engine, 

reqp  is the power request and SOC  is the battery state of charge.  

Dynamic Programming (DP) is commonly used to solve the global problem. 

However, it requires the continuous problem to be discretized, requiring a very fine grid 

in order to neglect the approximation error. This implies a high computational load to 

solve the problem which becomes a major drawback limiting its potential for real-time 

implementation. To overcome this drawback, the global optimization can be replaced by 

a local optimization problem which solution is known as the equivalent consumption 

minimization strategy (ECMS).  The ECMS strategy is based on the assumption that a 

present use of the energy storage system (EESS) corresponds to a future fuel 

consumption that will be required to recharge it. Similarly, a present recharge of the 

EESS corresponds to future fuel savings since the energy will be available for future use 

at a lower cost [23]. For this work the EESS is a battery. 

According to these assumptions, the solution of the local optimization problems is 

found by solving an instantaneous minimization of the equivalent fuel flow rate ,f eqm  at 

each instant of time, under the same constraints as in the global approach. The 

instantaneous minimization problem is stated in (8), and is subject to the same constraints 

as in (7). 

 ,{ ( ), ( )}
min ( )

eng emi
f eqP t P t

m t  t∀        (8) 

 , ,eng , ,( ) ( ) ( )f eq f f eq battm t m t m t= +    
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Where  ,f engm  is the engine’s fuel flow rate and , ,f eq battm  represents an equivalent 

fuel flow rate related to the use of the battery power. For the general case, and assuming 

the equivalence factor s  remains constant for the charging and discharging cases, the 

equivalent battery fuel flow rate is a function of the equivalence factor s , the battery 

power battP  and the lhvQ as in Eq. (9). 

, ,
batt

f eq batt
t lhv

Pm s
Q

β
η
⋅

= ⋅
⋅

         (9) 

Here, s is an optimization parameter to be tuned, is related to the average 

powertrain efficiency in the future and its optimal value will be different for diverse 

driving profiles. That is, an s value that assures a close to optimal use of the battery 

energy for a particular driving cycle, can lead to poor use of the battery in others.  

 

3.2 Improving the ECMS tuning through the use of MPC-based approaches1 

For this work, the ECMS was implemented for a plug-in hybrid electric vehicle 

and two strategies to tune the equivalence factor, based in MPC, were developed.  

 

3.2.1 PHEV Simulator  

PHEV’s powertrain architecture contains an internal combustion engine, electric 

motors, and two or more energy storage systems (ESS). They differ from the Hybrid 

Electric Vehicles in that PHEV’s can be plugged-in to the electric grid to recharge the 

battery. The power-split powertrain for the HEV was modeled following a forward 
                                                 

1 Based upon work supported by the National Science Foundation (NSF) and under Grant No. 0928744. Any opinions, findings, 
and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of 
the National Science Foundation 
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looking approach in which the simulation proceeds with the power request forward from 

the driver to the wheels. It includes the model of a driver to calculate the error between 

the velocity profile defined by the driving cycle and the current vehicle velocity, 

according to which the throttle and brake commands are calculated. To facilitate the on-

board implementation of an energy management strategy, a simulator of the forward-

looking model of PHEVs with power-split drive train was implemented in 

Matlab/Simulink. The main components and parameters were based on the Toyota Prius 

second generation PHEV (Table 1).  

Table 1. Main parameters of the power-split power-train 

 
 

The general structure of the model is shown in Fig.  9. The power demand from 

the wheels is split by a planetary gear set (PGS) to two motor-generators (MG) and an 

ICE. The ICE only outputs power to PGS but both MGs can work in either motor or 

generator mode. The MG1 works a generator to charge the battery when the state of 

charge (SOC) of the battery is low and outputs power as a motor to assist engine start 

process. The MG2 outputs power as a motor in normal driving while it retrieves power as 

a generator in regenerate braking process.  
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Fig.  9. Block diagram of a power-split HEV 

 
Based on commands from the driving block, the power request is calculated and 

given as an input to a supervisory controller that contains a control strategy to minimize 

fuel consumption, as well as meet the power demand while maintaining the drivability 

[102]. Thus, the controller calculates the optimal power-split among the components with 

the power routed through the power-train to the wheels. The controller, under several 

criteria, determines the proportion of power on each component; (a) the power request 

from the wheel is met within the limit of the system, (b) the SOC of the battery is within 

preferred range, and (c) each component operates within desired efficiency zone. With 

these criteria, overall fuel efficiency of the PHEV is optimized based upon the equivalent 

fuel consumption minimization strategy (ECMS) [23]. A conventional vehicle model was 

also built for comparison with the PHEV. For comparability, the parameters of the 

conventional vehicle model were the same as the PHEV except the engine power was 

doubled to compensate for the fact that the conventional vehicle does not have an electric 

motor to provide additional power. 
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3.2.2 ECMS tuning  

In (9) the equivalence factor s is an optimization parameter to be tuned and is 

related to the average powertrain efficiency in the future. The optimal value of s will be 

different for diverse driving profiles. That is, an s value that assures a close to optimal use 

of the battery energy for a particular driving cycle, can lead to poor use of the battery in 

others. This can be explained by the fact that the energy available for regeneration is a 

critical parameter that determines the amount of fuel required to recharge the battery and 

guarantee a sustaining operation. When addressing the issue of tuning the s coefficient, 

the energy control problem should be formulated as a global optimization problem and 

the cost function is defined as in (10). 

 
1 2

,0
, ,

( )min minf

eng em em

t
f eq

s P P P
m dτ τ∫        (10) 

According to this formulation, two approaches are proposed to adjust the 

equivalence factor in the ECMS. The first approach avoids the requirement of complete 

knowledge of the future conditions while the second approach allows adaptation to 

changes in the initially predicted velocity profile. 

 

3.2.2.1 Approach 1 

This approach is intended to get the maximum benefit by utilizing real-time 

roadway traffic data. The optimization is done for time horizons of equal lengths. Thus, 

the driving cycle is divided in sections according to the desired length. The optimization 

is done for each section to find the optimal control input s(k), avoiding the requirement of 
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knowledge about the entire driving profile. The cost function for the optimal control 

problem at each time horizon becomes  

 0

0
1 2

,
( ) , ,

( )min min
eng em em

t T kT
f eqt kT

s k P P P
m dτ τ+ +

+∫ 
  , 0,1,..., 1k Nτ∀ = −      (11)   

Where 0t  is the time at the beginning of the current optimization horizon, T  is the 

optimization horizon length, k is the optimization horizon number and N is the total 

number of optimization horizon windows.  

 

3.2.2.2 Approach 2 

In this approach the complete driving profile is used at first, but the optimal 

control input is recalculated and updated every T seconds for the remaining part of the 

predicted driving profile, i.e. from the current time to the estimated final trip time ft . 

Thus, allowing adaptation to changes in the driving profile along the route. The 

optimization problem is stated as: 

0
1 2

,
( ) , ,

( )min minf

eng em em

t
f eqt kT

s k P P P
m dτ τ+∫     , 0,1,..., 1k Nτ∀ = −     (12) 

 

3.2.3 Results 

For comparison purposes, each approach was tested under the Urban 

Dynamometer Driving Schedule (UDDS) and the Federal Highway Driving Schedule 

(FHDS) each one repeated for 3600 s and assuming a 100% accurate speed profile 

prediction. Initially, a single optimal value for the s coefficient that minimizes the fuel 

consumption for each driving cycle was found.  The results are summarized in Table 2. 
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Table 2. Fuel economy for single s value 

Driving Cycle S_opt MPG 
UDDS 4.4 55.45 
FHDS 3.3 67.94 

 

3.2.3.1 Approach 1 

According to the results in Table 3, initially the fuel economy improves for bigger 

time windows. This suggests that bigger time windows would yield better results. 

However, for time horizons 600 s, 900 s and 1200 s the MPG value was smaller than the 

value obtained for 300 s. For time windows less than 300 s, there is not enough 

opportunity to take full advantage of the battery energy. While for time windows greater 

than 300 s, there is a large variation in the driving profile, thus, a constant value of S is 

not enough to optimize the fuel economy.  Consequently, 300 s corresponds to the 

optimal value for the time horizon length. That means that it is required to have a 

prediction of the speed profile for the upcoming 300 s at each instant of time. 

Table 3. Fuel economy usign approach 1 to tune the s coefficient 

Driving 
Cycle 

Time 
horizon [s] 

MPG Improvement 
% 

UDDS 

60 53.52 -4.89 
120 56.34 0.11 
300 58.68 4.28 
600 56.67 0.70 
900 56.76 0.86 
1200 56.37 0.17 

FHDS 

60 66.78 -1.69 
120 67.99 0.076 
300 68.71 1.13 
600 68.43 0.72 
900 68.04 0.14 
1200 67.86 -0.11 
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It is also important to highlight that the improvement percentage is bigger for the 

UDDS cycle, which is consistent with the fact that there is more variation in the driving 

conditions for this driving cycle than for the FHDS cycle. 

 

3.2.3.2 Approach 2 

According to the results summarized in Table 4, this approach yields better fuel 

economy than approach 1, due to the use of the remaining part of the driving cycle and 

the continuous updating of the coefficient s. It is also important to point out the lower 

MPG values obtained for bigger updating time for the s coefficient which suggest in this 

approach a small window size is better to get maximum benefits. 

Table 4. Fuel economy using approach 2 to tune the s coefficient 

Driving Cycle Updating time 
window[s] 

MPG Improvement % 

UDDS 
60 60.41 6.85 
120 60.35 6.76 
300 59.20 4.95 

FHDS 
60 69.58 2.35 
120 69.32 1.98 
300 69.05 1.60 

 

The results demonstrates that model predictive control techniques are useful to 

reduce energy consumption in HEV’s using the ECMS algorithm as the base of its energy 

control strategy, while keeping its potential for real time implementation. In the first 

approach, roadway traffic prediction data is sent to the supervisory controller to tune the 

ECMS algorithm for a particular horizon time length. The results showed that 300 s is the 

optimal time horizon size, resulting in fuel economy improvements of 1.13 to 4.28% 
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when compared to the case of a constant s value for the complete predicted driving cycle. 

In the second approach, the control input is periodically recalculated, allowing adaptation 

to changes in the predicted driving profile along the entire trip. The simulations revealed 

that 60 seconds becomes an optimal updating time for this case, with fuel economy 

improvements of 2.35 to 6.85%.  

 

3.3 ECMS tuning through statistical analysis of engine operating points 

This approach starts with the use of the Willans-line model to parameterize the 

internal combustion engine (eng) which allows the use of the intrinsic engine efficiency 

to find a suitable range for the equivalent factor s  optimal value. Once the proper range 

is defined, it is possible to find the optimal value through analysis of the operating points’ 

distribution. The powertrain model used for this work is discussed next. 

 

3.3.1 Parallel through the road hybrid electric vehicle model 

In a parallel HEV the engine and the electric motor are habilitated to provide 

power independently or simultaneously. This combination adds a degree of freedom to 

the system which allows finding an optimal distribution of the power.  In the 

conventional parallel configuration, the electric motor and the engine are mechanically 

coupled in order to allow its simultaneous operation. However, as it is illustrated in Fig.  

10, for the parallel through the road configuration the coupling is achieved through the 

road.   
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Fig.  10. Schematic representation of a parallel through the road HEV 

 

Therefore, the requested power reqP  is a function of the engine power engP  and the 

electric machine power emP : 

 ( ) ( ) ( )req t eng battP t P t P tη β= +       (13) 

Where tη  is the transmission efficiency and β  is the efficiency of the electro-

mechanical path which depends on the direction of the electrical energy flow. The model 

was implemented using a forward-looking approach and utilizing the engine and the 

electric motor efficiency maps. The vehicle dynamics is defined by eq. (14). 

 
1 ( )t a g r

v

v f f f f
m

= − − −       (14) 

Where 2
a air d ff C A vρ= , sin( )g vf m g α= , cos( )r r vf C m g α= , v  is the 

longitudinal speed, vm is the mass of the vehicle, tf  is the traction force of the vehicle 

[N], airρ  is the density of air [kg/m3], dC  is the drag coefficient, fA  is the vehicle 
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frontal area, g  is the acceleration due to gravity [m/s2], α is the road grade and rC is the 

rolling resistance coefficient. 

The battery was modeled by using a first order approximation in which the state-

of-charge (SOC) dynamics is described by eq. (15). 

  int

int2

2
oc oc batt

batt

V - V - 4P R
SOC = -

R Q
         (15) 

Where ocV  is the battery open-circuit voltage, battP  is the battery power, intR  is the 

battery internal resistance and battQ  the battery capacity. The main parameters of the 

vehicle are presented in Table 5. 

Table 5. Main parameters of the vehicle  

Parameter Value 
Vehicle mass [Kg] 2000 
Aerodynamic drag coefficient 0.4160 
Vehicle frontal area [m2] 2.82 
Rolling resistance Coefficient 0.012 
Tire radius [m] 0.3305 
Engine max Power [kW] 110 
Motor max Power [kW]  25 
Battery capacity  [Ah] 6.5 

 

3.3.2 Willans-line model 

The Willans-line model provides a simplified representation of the engine torque 

and efficiency. It has been shown it can approximate the real engine behavior with 

significant precision [103]. Defining chemP as the chemical power available in the fuel, the 

engine power can be defined as in Eq. (16). 

( ) ( )eng eng eng chem f lhvP T P m Qω η η= = ⋅ = ⋅       (16) 
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Where engω  is the engine angular speed, engT  is the engine effective torque,  fm  

is the fuel mass flow rate, lhvQ  is the fuel low heating value and ( )η ⋅  is the engine 

efficiency that depend on different parameters. 

According to the Willans-line approximation, illustrated in, the engine’s 

efficiency can be assumed as an affine representation, relating the power and the fuel 

mass flow rate. Such relation is defined by Eq. (17). 

( ) ( ) ( ) ( )eng chem loss f lhv lossP e P P e m Q Pω ω ω ω= + = ⋅ +      (17) 

Where ( )e ω  is the intrinsic fuel conversion efficiency and ( )lossP ω  are the power 

losses due to air pumping, mechanical friction and magnetic phenomena. From Eq. (17), 

the engine fuel flow rate is defined as: 

,
eng loss

f eng
lhv

P P
m

e Q
−

=
⋅



        (18) 

 
Fig.  11. Willans line model affine representation  

 

The intrinsic fuel conversion efficiency is a parameter to be determined and it 

depends on engine parameters like the air to fuel ratio, the exhaust gas recirculation, 
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spark timing, etc. Moreover, this parameter, as well as lossP , are nonlinear and can be 

represented as a function of the engine speed and torque. However, the dependence on 

the torque can be neglected [103]. In particular, if full-load conditions are avoided 

equations (19) and (20) hold. 

2
00 01 02( ) ( )e a a aω ω ω≈ + +        (19) 

)()( 2
20 ωω losslossloss PPP +≈        (20) 

Fig.  12 illustrates the Willans lines for the 110 kW, 1.9-L Diesel engine used in 

this work. The corresponding intrinsic efficiency is presented in Fig.  13. 
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Fig.  12. Willans lines for a 110 Kw, 1.9L Engine  
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Fig.  13. Intrinsic fuel conversion efficiency for a 110 Kw, 1.9L Engine  

 

3.3.3 Equivalent consumption minimization strategy – ECMS 

Recall the optimization problem stated in section 3.1: 

,{ ( ), ( )}
min ( )

eng emi
f eqP t P t

m t       (21) 

Subject to: 

1 2( ) ( ) ( ) ( )req eng em emP t P t P t P t= + −   

min max0 1SOC SOC SOC< ≤ ≤ <   

,max0 ( ) ( )eng engP t P t≤ ≤   

,max0 ( ) ( )eng engt tω ω≤ ≤   

,max0 ( ) ( )eng engT t T t≤ ≤   

,min ,max( ) ( ) ( )em em emP t P t P t≤ ≤     

,min ,max( ) ( ) ( )em em emt t tω ω ω≤ ≤   

,min ,max( ) ( ) ( )em em emT t T t T t≤ ≤   

Where , ,eng , ,( ) ( ) ( )f eq f f eq battm t m t m t= +    is the equivalent fuel flow rate, ,f engm  is 

the engine’s fuel flow rate and , ,f eq battm  represents an equivalent fuel flow rate related to 

the use of the battery power. For the general case, and assuming the equivalence factor s  
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remains constant for the charging and discharging case, the equivalent battery fuel flow 

rate is a function of the equivalence factor s , the battery power battP  and the lhvQ as in 

(22). 

, ,
batt

f eq batt
t lhv

Pm s
Q

β
η
⋅

= ⋅
⋅

         (22) 

This local optimization is known as the equivalent consumption minimization 

strategy (ECMS) and constitutes the base of the energy management strategy used here. 

 

3.3.4 Alternative ECMS Implementation 

The Willans-line model is utilized to calculate the engine fuel consumption. Thus, 

assuming that the power request reqP  is a function of the engine power engP  and the 

battery power battP , as defined in Eq.(13), and utilizing Eq. (18), an alternative equation 

for the engine fuel flow rate is found (Eq.(23)). To simplify the analysis, all the 

efficiencies are assumed equal to 1. 

,
req batt t loss

f eng
t lhv

P P P
m

e Q
β η
η

− +
=        (23) 

Then, the equivalent fuel consumption is defined by Eq. (24). Note that, for a 

particular speed and power request, the first two terms in (24) are constant. Hence, the 

variables in the last term will define the conditions to have minimum equivalent fuel 

consumption.  

,
1

( ) ( ) ( )
req loss batt

f eq
t lhv lhv t lhv

P P Pm s
e Q e Q Q e

β
ω η ω η ω

 
= + + − 

 
       (24) 
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Thus, assuming 0reqP > and for given s , ω  and ( )e ω , the trend of ,f eqm  depends 

on the relation between s  and ( )e ω  as follows: 

 If 

,

,

,

0
1 0
( )

0 .

bat f eq

bat f eq

bat f eq

P m

S P m
e

P m const
ω

 > → ↑
> → < → ↓
 = → =

 

 If 

,

,

,

0
1 0
( )

0 .

bat f eq

bat f eq

bat f eq

P m

S P m
e

P m const
ω

 > → ↓
< → < → ↑
 = → =

 

For example, for 0batP > , this dependency is illustrated in Fig.  14. 

 

Fig.  14. Fuel flow rate ,f eqm  trends 

Consequently, to minimize the equivalent fuel consumption, if 1
( )s e ω> , batP  

has to be negative, i.e. engine is used to recharge the battery (recharging mode). In the 

contrary case, if   1
( )s e ω< , batP  has to be positive, i.e. the battery is providing power. 

This implies the speed value(s) for which 1
( )s e ω= , will divide the engine efficiency 

map in different regions. For each region the operating points will correspond to a 

particular mode of operation, i.e. recharging or discharging.  
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Accordingly, different values of s  will produce a different distribution of the 

recharging and discharging regions on the efficiency map. This behavior is illustrated in 

Fig.  15.  

 
Fig.  15. Relationship between the equivalence factor and the fuel intrinsic efficiency  

 

3.3.5 Operating points distribution graphic analysis 

It is important to note that the stated relationship between the equivalence factor 

s  and the fuel conversion intrinsic efficiency ( )e ω , allows defining a feasible range for 

the optimal value of s , reducing the search range and therefore the optimization time.  

For the case of the intrinsic efficiency plot in Fig.  13, the feasible range for the 

optimum value of s is [2.2161, 2.8652].  

Moreover, it is possible to take advantage of the particular distribution of the 

points to find a sustaining optimal value for s which produces a sustained used of the 

battery. This means to satisfy the condition SOEstart   SOEend. Note that, to meet this 

condition, the net energy content of the electric machine operating points must be zero or, 

very close to zero. 

To have a better understanding of the operating points distribution, the simulator 

was initially tuned for the FUDS driving cycle and by using a basic iterative tuning 
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approach it was found that the sustaining-optimal s value for the FUDS is 2.23233. Then, 

six different s values, contained in the previously defined feasible range, were chosen and 

the operating points for each one were analyzed.   

The previously stated division of the operating points in the engine efficiency 

map, for the optimal s value, is shown in Fig.  16. The operating points on the engine map 

are divided into two regions which are separated at the speed value correlated to the point 

12.23233 ( )S e ω= = , thus,  282ω = . The operating points located to the left belong to 

discharging points while the points located to the right are recharging points and are 

placed at higher efficiency values. 

 
Fig.  16. Engine Operating points for FUDS, S=2.23233  

 

Fig.  17 shows that the electric machine operating points are mainly concentrated 

in the areas of higher efficiency. The SOE pattern in Fig.  18 confirms that sustainability 

is achieved with the tuned s value.   

0.2 0.2 0.20.25 0.25 0.25
0.33

0.33
0.33

0.
35

0.35

0.35 0.35

0.35

0.
37

0.37 0.37 0.37

0.37

0.39

0.39 0.39

0.39

0.4

0.4

0.4
0.41

0.41

0.
41

R
ed

 L
in

e

Id
le

Speed [rad/s]

To
rq

ue
 [N

.m
]

ENGINE OPERATING POINTS

 

 

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400
Efficiency
Discharging
Recharging
Recovery
Max torque

 1
( )s e ω=



 67 

The additional six values of s used for analysis are 2.22, 2.228, 2.236, 2.244, 

2.252, 2.26, and the respective engine operating points are shown in Fig.  19. 
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Fig.  17. Electric Motor Operating points for FUDS, S=2.23233  
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Fig.  18. SOE and SOC patterns for FUDS, S=2.23233  
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Fig.  19. Engine Operating Points for different values of S (pink: discharging, blue: recharging, 

Green: recovery) 

 

Between S1 and S2 (Fig.  19), the operating points are only for discharging 

condition. From S2 to S3, there is a significant difference since the recharging points 

appear on the map. This implies that the sustaining s  value must be contained inside this 

range, which can be confirmed with the tuned value previously found. From S3 to S6, the 

distribution moves to the right showing an increment of the recharging points. Note that 

from S3 to S6 some outliers are present which are due to limitations in the machines. 

Such outliers are not present for the case of the sustaining s  value (refer to Fig.  16). 

According to the histograms in Fig.  20, the operating points corresponding to the values 

of s   which allow recharging of the battery, follow a bimodal distribution 
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Fig.  20. Histograms for Engine Operating points (pink: discharging, blue: recharging, Green: 

recovery)  

 

The operating points for the case of the electric motor are shown in Fig.  21. To 

have a sustaining battery use, the electric motor operating points need to have a net 

energy balance, i.e., the net summation of the points must be zero or very close to zero.  

 
Fig.  21. Electric motor operating points for different values of s (pink: discharging, blue: recharging, 

green: recovery) 
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For S1 and S2, there is over-discharging which means, the final SOE is lower than 

the initial SOE. In contrast, for S3 to S6, there is over-charging of the battery. Hence, the 

final SOE is bigger than the initial SOE. Note that the distribution of the operating points 

remains relatively constant for S1 and S2 and for S4 to S6. 

The histograms in Fig.  22 show the trend of the electric motor power. Note that 

as the value of s increases the distribution is skewed to the left due to the increment of the 

recharging power. For a sustaining operation, it is required to have a mean power equal to 

zero. 

 
Fig.  22. Histograms for electric motor operating points  

 

3.3.6 Operating points distribution net energy analysis 

To complement the graphic analysis and have a better understanding of the 

operating points trends due to changes on the s  value, the net engine and electric motor 
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-60 -40 -20 0 20 40 60
0

200

400

600

Power [kWh]

F
re

qu
en

cy

EM POWER-S1

-60 -40 -20 0 20 40 60
0

200

400

600

Power [kWh]

F
re

qu
en

cy

EM POWER-S2

-60 -40 -20 0 20 40 60
0

200

400

600

Power [kWh]

F
re

qu
en

cy

EM POWER-S3

-60 -40 -20 0 20 40 60
0

200

400

600

Power [kWh]

F
re

qu
en

cy

EM POWER-S4

-60 -40 -20 0 20 40 60
0

200

400

600

Power [kWh]

F
re

qu
en

cy

EM POWER-S5

-60 -40 -20 0 20 40 60
0

200

400

600

Power [kWh]

F
re

qu
en

cy

EM POWER-S6

 

   
 



 71 

,S , ,S , ,S ,i i iICE net ICE dis ICE chgE E E= +        (25) 

,S , ,S , ,S , ,S ,i i i iEM net EM dis EM chg EM recE E E E= + +       (26) 

Then, the net delta energy (ΔE) and the net delta energy total (ΔEtotal) was 

determined for each consecutive pair of s values using equations (27), (28) and (29).  

1 1,S ,S ,S , ,S ,i i i iICE ICE net ICE netE E E
+ +

∆ = −        (27) 

1 1,S ,S ,S , ,S ,i i i iEM EM net EM netE E E
+ +

∆ = −        (28) 

1 1 1,S ,S ,S ,S ,S ,Si i i i i itotal ICE EME E E
+ + +

∆ = ∆ −∆        (29) 

From the results reported in Table 6, it is observed that for the range of s  

containing the optimal sustaining value, there is a change of sign in the final delta SOE 

value.  

Table 6. Operating points Net energy analysis  

 
 

Thus, for lower values of s   the difference between the final and initial delta SOE 

is positive. As s  increases and the optimal sustaining value is reached, the difference will 

tend to zero. Finally, for further increments in s  the difference becomes negative, 
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resulting in over-charging of the battery. Accordingly, the optimal sustaining s  value 

should be between the two for which a change of sign is given, i.e 2s  and 3s  in Table 6. 

Furthermore, as seen in Fig.  23, it was found that the net delta energy total has a 

maximum for the s  pair which contains the Optimal Sustaining opts  value. The following 

observations are valid for each region: 

 Over-discharging region: the net delta energy is very close to cero.  

- The energy values for two different  s   are very close to each other. This 

is valid for both, the engine and the electric motor, so they cancel each 

other.  

- The engine is hardly used. Thus its energy use is very low. 

 Over-charging region: the net delta energy is a little higher than the over-

discharging, but still lower. 

- In this case the values continue being very close to each other, although 

the engine is being used to recharge the electric machine, its net energy is 

still small. The total energy is even lower since the savings from 

recharging the electric machine are subtracted. 

 
 Sustaining region: The region containing the optimum will have a change of 

sign in the electric motor net energy, and a significant jump in the engine net 

energy due to its additional use to recharge the battery. Thus it will contain 

maximum net delta energy total (Fig.  23). 
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Fig.  23. Delta energy total – FUDS  

 

The analysis was repeated for FHDS and US06 using different values of s. For all 

the evaluated cases the results were consistent with the mentioned observations.   

 

3.3.7 Proposed Tuning approaches 

Two approaches are proposed to solve numerically the problem. The first 

approach is based in the operating points comparison and net delta energy total. The 

second approach is based in the final delta SOC and energy required to achieve charge 

sustainability.  

 

3.3.7.1 Approach 1 

The goal on this approach is to find a pair of S values which produces the 

maximum net delta energy total, while the difference between the two is less than a 

previously defined threshold.  
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The optimization problem can be stated as in (30). 

1
1

,S ,S,
max

i i
i i

totalS S
J E

+
+

= ∆          (30) 

The algorithm is summarized in Table 7. 

Table 7. Algorithm for approach 1  

Inputs Outputs 
S1, S2, S3 , Sopt1, Sopt2 

1. Define the desired threshold ( )δ  or minimum desired resolution for s 
2. Choose 3 values for s in the probable region (Smin, Smin+(Smax-Smin)/2, Smax) 
3. Calculate intrinsic efficiency and use interpolation to find ω 
4. Run simulator for each s value and save relevant data 
5. Calculate  for consecutive pairs of s 
6. Choose the s pair producing the maximum  and save the new Smin and Smax 

values 
7. Repeat steps 2 to 6 until the threshold defined in step 1 is reached 

 

To achieve a final SOE value very close to zero for the FUDS driving cycle, a 

resolution of at least 0.00001 is required. If the entire “feasible” s range is gridded, 

700004 iterations are required to achieve such resolution. However, if the algorithm 

described in Table 7 is used, only 0.059% of those iterations are needed. 

The plot in Fig.  24 illustrates the convergence rate of the approach 1. 

 
Fig.  24. Convergence rate for Approach 1  
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3.3.7.2 Approach 2 

This approach attempts to use the histograms information along with the final 

SOE to find the value of s which will produce a battery charge sustaining operation. The 

algorithm is summarized in Table 8.  

Table 8. Algorithm for approach 2 

Inputs Outputs 
S1, S2, S3 , Sopt1, Sopt2 

1. Define the desired threshold ( )δ  or minimum desired resolution for ΔSOE 
2. Select S=Smin+(Smax-Smin)/2 
3. Run simulator 
4. Find final ΔSOE and calculate the corresponding energy value 
5. Add or subtract bins (counts*width of bins) to achieve final ΔSOE=0 and determine the new 

ω 
6. Use interpolation to find the intrinsic efficiency which corresponds to the ω found in step 4. 
7. Calculate the S value corresponding to the intrinsic efficiency found in step 5.  
8. Repeat steps 3 to 7 until ΔSOE δ≤   

 

In this case, to achieve a resolution of 0.001 by gridding the entire “feasible” s 

range, around 700 iterations are needed. However, only 0.57% of such iterations are 

required for approach 2, which corresponds to 16% of the iterations required for approach 

1. The plot in Fig.  25 illustrates the convergence rate of the approach 2. 

The results presented in this section, have been consistent with the results 

obtained for the FHDS and US06 cycles. 
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Fig.  25. Convergence rate for approach 2  

 

3.3.8 Concluding Remarks 

An alternative approach for the ECMS strategy implementation has been 

proposed. The strategy involves the use of the Willans-line approximation to estimate the 

engine fuel consumption. Although the strategy still requires the tuning of the equivalent 

factor, the use of the intrinsic efficiency and its stated relation to the equivalence factor, 

allows finding a feasible region for the optimal value of s. Thus, it speeds up the tuning 

process. Furthermore, the new operating points distribution is useful to facilitate the real-

time tuning of the strategy. 

For the proposed numerical solutions, it was found that the number of iterations 

required to find an optimal sustaining value for s, can be reduced by up to 0.057% the 

total number of iterations required with a standard iterative approach. 
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CHAPTER FOUR 

4 DRIVING PROFILE OPTIMIZATION  AND ECO-DRIVING 

 
4.1 Effects of smoother driving profile for conventional and PHEV powertrains2 

With the goal of assess the benefits of having smoother speed profiles, the models 

of a conventional vehicle and a PHEV were implemented in Matlab/Simulink. Then, for 

the PHEV an energy management strategy was implemented and finally, a driving cycle 

optimization routine was developed. By combining those elements we obtained a two 

level optimization system. In a low level, the PHEV energy consumption is optimized by 

using the ECMS. And, in a high level, the driving profile predicted from information 

obtained through intelligent transportation systems is optimized to avoid frequent 

acceleration/deceleration paths. For details regarding the in-vehicle optimization for the 

plug-in hybrid electric vehicle, refer to the content in section 3.1 

 

4.1.1 Driving profile optimization 

The driving profile optimization was implemented following a basic approach in 

which the vehicle speed v  within an optimization horizon T  is defined as: 

( ) ( )v f t a t dt∫= =          (31) 

For each optimization horizon, the initial speed is fixed to the speed at the end of 

the previous optimization horizon and the distances are the same before and after the 

optimization: 

                                                 
2 Based upon work supported by the National Science Foundation (NSF) and under Grant No. 0928744. Any opinions, findings, 

and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of 
the National Science Foundation. 
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0 0( )f t v=           (32) 

0( ) pf t T v+ =          (33) 

0

0
( )t T

t f t dt s+
∫ =          (34) 

Where 0t  is the time at the beginning of the current optimization horizon, T is the 

length of the optimization horizon, 0v  is the vehicle speed at the beginning of the current 

optimization horizon, pv   is the predicted speed at time 0t T+ , and s  is the distance 

between the current position and the predicted position at  0t T+ . The acceleration is 

assumed constant when the driver is following the driving cycle: 

2 2
0

2
pv v

a
s
−

=           (35) 

And the vehicle speed becomes: 

0( )v f t v at= = +          (36) 

To meet the constraints (33) and (34), the actual time for the vehicle to travel the 

distance s  may be different from the optimization horizon. However, the travel time is 

not the primary consideration and the differences in travel time obtained with the testing 

results are within an acceptable range. 

 

4.1.2 Results 

Two tests were conducted to analyze the effects of smoother driving patterns. 
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4.1.2.1 Test 1: model validation  

The fuel economy of the PHEV was estimated for standard driving cycles and the 

results were compared to results obtained with Dynamic programming published by Liu 

and Peng [104]. Errors of less than 6% confirmed the validity of the results (Table 9). 

Table 9. Fuel consumption for standard driving cycles  

Standard Driving cycle MPG 
(Dynamic Programing) 

MPG 
(PHEV Simulator) 

Error 

UDDS 
FHDS 

57 
67 

56.87 
63.02 

0.23% 
5.94% 

 

4.1.2.2 Test 2: driving profile optimization performance  

The velocity profiles were optimized and the fuel economy was estimated for 

each vehicle. Three different optimization horizon sizes were evaluated for the 

conventional and the PHEV: 30 s, 60 s and 120 s. The performance in terms of mpg and 

the corresponding improvement percentage is shown for optimization horizons in Table 

10. Improvements are seen with respect to the fuel efficiency of conventional vehicles on 

the original simulation cycles. Although the performance varies among driving cycles 

with a few of them exhibiting a slight decrease in efficiency, the average improvement in 

fuel efficiency is significant: 54% for the 30 s horizon, 78% for the 60 s horizon and 86% 

for the 120 s horizon. A better performance was achieved for the PHEV by integrating 

the cycle optimization algorithm in the PHEV power management system (Table 11). 

Over a 100% average improvement was obtained for all optimization horizons compared 

to the PHEV without cycle optimization. Like conventional vehicles, the 120 s horizon 

has the highest average fuel efficiency of 63.37 mpg, compared to 62.94 mpg for 60 s and 

62.93 mpg for 30 s. 
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Table 10. Driving cycle optimization performance for conventional vehicle  

 
Table 11. Driving cycle optimization performance for PHEV 

 
 

4.2 Eco-driving for electric vehicles 

To analyze the effects of less aggressive driving in electric vehicles, the driving 

profile optimization framework proposed by Malikopoulos and Aguilar [40] for 

conventional gasoline-powered vehicles was adapted to the case of an electric bus. It uses 

a base driving profile for a particular schedule and finds the energy-optimal driving 

profile which will yield lower energy consumption for that route. The Optimization 

routine is composed by three main processes: (1) Energy consumption estimation, (2) 

Optimization problem solution and, (3) Finding the optimal driving profile. 
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4.2.1 Energy consumption estimation 

To estimate the energy consumption of the electric bus over a defined driving 

route, the base normal driving profile illustrated in Fig.  26 was used. It was obtained 

experimentally from an actual electric bus through the can data. Additional relevant data 

related to the electric bus performance was also recorded to obtain a meta-model for the 

fuel consumption. 
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Fig.  26. Base normal driving profile  

 

The meta-model allows estimating the instantaneous electrical power P  as a 

function of the speed v , acceleration a  a nd grade θ . Using a meta-model avoids the 

requirement of more complex models or simulations, speeding up the solution of the 

optimization problem. Since it is wanted to estimate the instantaneous power 

consumption, the equation for the meta-model (Equation (37)) is chosen to be similar in 

structure to the vehicle dynamics equation. 

3
1 2 3 4( , ) cos( ) sin( )P f v a v va vα θ α θ α α= = + + +       (37) 
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Where iα  are the linear coefficients correlating the power with the speed and 

acceleration. In order to find these coefficients, the system of Equation (38) is used and 

solved for X . To find the solution, the experimental data for the base normal driving 

profile is used. 

Y AX=           (38) 

Fig.  27 illustrates the meta-model for the base normal driving profile. 

-2
-1

0
1

2

0
5

10
15

20
-1

-0.5

0

0.5

1

x 10
6

Acceleration [m/s2]

Instantaneous Power Vs Speed and Acceleration for Base Normal Driving Profile

Speed [m/s]

P
ow

er
 [W

]

 
Fig.  27. Meta-model for the base normal driving profile  

 

4.2.2 Optimization Problem 

The main goal is to find an energy-optimal vehicle speed profile, i.e. a speed 

profile which reduces the total electric bus energy requirement for a particular route. To 

achieve it, the objective of the optimization problem is the minimization of the vehicle 

instantaneous power with respect to the acceleration. Since vehicle speed and 

acceleration are correlated, the optimal acceleration profile produces a new optimal 

velocity profile.  
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Because bus routes are tight to specific schedules that need to be met, the time is a 

critical factor. Thus, the optimization problem is subject to a constraint in time in order to 

try to keep the schedule within an acceptable range with respect to the original. Finally, a 

constraint in the optimal speed value is imposed in order to avoid the trivial solution. 

The optimization problem is then formulated as in Equation (39). 

3
1 2 3 4min ( , ) min( cos( ) sin( ) )

a a
f v a v va vα θ α θ α α= + + +     (39) 

Subject to:  
*

*

(1 )ori

lb ub

t t q

v v v

 ≤ +


≤ ≤
  

Where *t  is the total time for the optimal driving profile, orit  is the total time for 

the original driving profile and q  is a number between 0 and 1 defining the maximum 

allowed delay for the optimal total time with respect to the original, *v  is the optimal 

speed, and , lb ubv v  are the lower and upper bounds for the vehicle speed. 

 
4.2.3 Optimal velocity profile 

The solution of the optimization is an energy-optimal acceleration profile which is 

used along with the data from the base normal driving profile to generate the final 

optimal speed profile. 

In order to preserve the stops with respect to their original position and maintain 

the original distance of the route, the time intervals ( t∆ ) are calculated from the original 

speed profile ( v ) and total distance ( S ) according to Equation (40). 
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 = ∆ + − ∆ 
 

      (40) 

Then, the optimal speed profile is calculated at each instant of time using 

Equation (41). 

* * *
1 1.( )k k k k kv v a t t+ += + −         (41) 

 
4.2.4 Results 

Three speed profiles were optimized and the potential energy savings were 

calculated for each case assuming that the optimal speed profile is followed with a 100% 

accuracy. 

As a first approximation, an ideal speed profile, i.e., a trapezoid-shaped with 

symmetric acceleration and deceleration patterns (Fig.  28), was created by using 

information from Google Transit [105]. A route schedule for the Clemson Area Transit -

CAT Bus, was utilized as base to generate an ideal speed profile schedule. The short 23 

km speed profile was determined by assuming absence of traffic.  

The remaining two speed profiles were generated from the ideal route schedule 

described in section 4.2.1. The route schedule was driven twice, one time using a normal 

driving style (Fig.  29) and a second time using a more aggressive driving style (Fig.  30). 

The difference between the two profiles can be confirmed by comparing the maximum 

acceleration values which remain higher for the aggressive drive. 



 85 

0 200 400 600 800 1000 1200 1400 1600 1800
0

5

10

15

20

25

30

35

Time [s]

S
pe

ed
 [m

/s
]

 p   g  

 

 

 
Fig.  28. Ideal speed profile – google transit 
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Fig.  29. Vehicle speed and acceleration profiles for normal drive 
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Fig.  30. Vehicle speed and acceleration profiles for aggressive drive 
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4.2.4.1 Google Transit 

As seen in Fig.  31, an energy-optimal speed profile was obtained for the speed 

profile generated from google transit information. For this case, it is allowed a maximum 

delay of 10% over the base speed profile arrival time. 

The optimized speed profile follows the constraint related to the position of the 

stops and describes a smooth acceleration and fast deceleration profiles. This goes along 

with the fact that faster deceleration will encourage a bigger regeneration portion while 

smoother acceleration will promote energy savings. Note that for the segments of the 

speed profile in which there are hard acceleration/deceleration patterns and short time at 

constant speed, the optimal speed profile reaches a lower maximum speed value 

compared to the base speed profile. As a consequence, the maximum acceleration value 

is also reduced. On the contrary, when acceleration/deceleration patterns are smoother, 

the optimal speed profile reaches higher maximum speed values. This allows 

compensating for the longer time accelerating at a lower rate in such a way that the 

maximum allowed time to reach the destination can be kept. 
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Fig.  31. Energy-Optimal speed profile vs distance for ideal speed profile – google transit 
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Fig.  32 shows that the optimal speed profile takes longer time to reach the 

destination than the base speed profile but remains inside the allowed 10%. In Fig.  33, 

the energy use for the optimal speed profile remains below the energy use for the base 

ideal driving profile. The total improvement is 5.3% which demonstrates the potential 

energy savings that can be achieved by using the proposed eco-driving tool. 
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Fig.  32. Energy-Optimal speed profile vs time for ideal speed profile – google transit 

 

4.2.4.2 Experimental Routes 

According to the plots in Fig.  34 and Fig.  35, for the aggressive speed profile, 

the optimal speed remains below the speed values for the base case. Once again, to 

compensate for the lower speed values and remain in the allowed arrival time, the time 

spent at the bus stops is reduced. In this case, the arrival time is delayed by 0.7% of the 

baseline time.  
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Fig.  33. Energy use for base and optimal speed profiles – ideal speed profile – Google Transit 
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Fig.  34. Energy-Optimal speed profile vs distance for aggressive driving style 
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Fig.  35. Energy-Optimal speed profile vs time for aggressive driving style 
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Fig.  36 represents the energy use for the base and the optimized driving profiles. 

For the aggressive style, the achieved reduction was about 30.33%, which support the 

potential energy savings related to the use of the proposed eco-driving system. The 

optimization algorithm was also tested for the normal drive speed profile in Fig.  29. 

Vehicle speed and acceleration profiles for normal drive.  The total energy used for this 

case was 19.47% less than for the base driving profile while the final arrival time was 

6.3% shorter. 
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Fig.  36. Energy use for base and optimal speed profiles – normal style driving 

 

4.2.5 Concluding remarks 

The implemented eco-driving system optimizes a particular route schedule to 

minimize the bus energy consumption with a constraint on time. It provides online 

feedback and an offline score to the driver which allows comparing different drivers to a 

“theoretical optimal driver”. 

To test the performance of the system three different speed profiles were used and 

the corresponding energy-optimal speed profiles were generated. Assuming the driver 
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was able to closely follow the optimal speed profiles, it was estimated that the use of the 

system can yield energy consumption reductions of up to 30.33%. 
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CHAPTER FIVE 

5 OPTIMAL TRAFFIC CONTROL AT MERGING HIGHWAYS3  

 
The increasing demand for travel has generated significant challenges related to 

traffic congestion and accidents. Although driver responses to various disturbances can 

cause congestion [40], intersections and merging roadways are the primary sources of 

bottlenecks, further contributing to traffic congestion, which worsens at peak hours and 

accounts for additional fuel consumption [106]. In the United States, on average 5.5 

billion hours are wasted each year due to vehicular congestion, which translates to about 

$121 billion dollars [1]. Moreover, the reduced speed imposed by traffic congestion can 

produce driver discomfort, distraction, and frustration, which may encourage more 

aggressive driving behavior [39] and further slow the process of recovering free traffic 

flow [2]. Safety and environmental issues are also attributed to vehicular traffic. In 2012, 

more than 2 million nonfatal injuries and 35,000 deaths were attributed to motor vehicles, 

and around 1.7 billion metric tons of CO2 were released to the environment by motor 

vehicles [1].  

A significant research effort has been expended on improving traffic flow at 

intersections using connected vehicle technologies. Although heuristic approaches have 

been popular partly due to practical implications for online implementation, several 

optimization-based approaches have been proposed in the literature. This research work 

                                                 
3 This work was supported by the Laboratory Directed Research and Development Program of the Oak Ridge National Laboratory, 

Oak Ridge, TN 37831 USA, managed by UT-Battelle, LLC, for the US Department of Energy (DOE), and in part by UT-Battelle, 
LLC, through DOE contract DE-AC05-00OR22725. 
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is concerned with improvement of the overall traffic efficiency on a portion of two 

convergent roads, which is similar to an intersection problem. 

Although previous research reported in the literature has aimed at enhancing the 

understanding of coordinating vehicles at either intersections or merging roads, deriving 

an optimal closed-form solution in terms of fuel consumption that can be implemented 

online still remains a challenging control problem. Two main objectives here are: (1) to 

formulate the problem of optimal coordination of vehicles at merging roads under the 

hard constraint of collision avoidance and (2) to derive a closed-form solution that can be 

implemented online in a centralized fashion. 

 

5.1 Problem formulation 

Fig.  37 illustrates a common scenario in which a secondary one-lane road merges 

onto a main two-lane road. Typically, the vehicles on the secondary road have to yield to 

the vehicles on the main road and wait until the safest opportunity to merge onto the main 

road. On highly congested roads the merging process is even more tedious and undesired 

stop-and-go traffic flow becomes unavoidable. In this paper, we seek to improve the 

overall traffic efficiency in terms of fuel consumption on a portion of two convergent 

roads while indirectly improving travel time.  
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Fig.  37. Merging roads—scenario under consideration. 

 

5.1.1 Notation 

In our analysis, the subscript j  denotes the road ( 1j =  for main road and 2j =  

for secondary road), the subscript i  denotes each vehicle on the road, and the superscripts 

0 and f denote the initial and final conditions. The variable u  represents the control input, 

which in our case corresponds to the acceleration. The total number of merging 

roads/lanes is denoted by m , and the total number of vehicles on each road is denoted by 

n . 

 

5.1.2 Modeling Framework 

Each vehicle is subject to a second order dynamics, as defined by:  

,
i i

i i

x v
v u
=

=





          (42) 

where ix  is the vehicle’s i   position [ ]m , iv  [ / ]m s  is the vehicle’s i   speed, and 

iu  is the vehicle’s i  acceleration (control input). 
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We consider a main and a secondary road merging together (Fig.  38). A 

centralized controller derives the optimal control policy (acceleration profile) in terms of 

fuel consumption for each vehicle driving inside a particular radius—defined as the 

control zone — under the hard constraint to enable the vehicles to cross the merging zone 

without collision. 

 
Fig.  38. Merging roads with connected vehicles. 

 

It is assumed that each vehicle can communicate with the centralized controller. 

The vehicles transmit information regarding their locations and distances from the 

merging zone. Based on this information, the controller assigns a hierarchy to the 

vehicles and calculates the optimal control policy (acceleration profile) as a function of 

time for all vehicles in the control zone. The main goal is to reduce fuel consumption 

while coordinating the vehicles crossing the merging zone by achieving a continuous 

traffic flow. The optimal control policy of the centralized controller for each vehicle is 

communicated to the corresponding vehicle. If the vehicles are autonomous, then they 

will just follow the policy imposed by the controller. If there is a driver, then the implicit 

assumption is that the driver will follow the control policy—provided as instructions—of 

 



 95 

the centralized controller. Future research should investigate how to incentivize, or 

persuade, drivers to follow the instructions. 

It is wanted to reduce fuel consumption by minimizing the acceleration while 

improving the traffic flow on a merging point of two roads by coordinating the vehicles 

inside a control zone (Fig.  39).  

 
Fig.  39. Simplified scenario: two one-lane merging roads. 

 

To estimate the fuel consumption, we use the polynomial meta-model proposed in 

[107] that yields vehicle fuel consumption as a function of the speed and acceleration: 

,v cruise accelf f f= +          (43) 

where 2 3
0 1 2 3cruisef w w v w v w v= + ⋅ + ⋅ + ⋅  estimates the fuel consumed by a 

vehicle traveling at a constant speed v , and 2
0 1 2( )accelf a r r v r v= ⋅ + ⋅ + ⋅  is the additional 

fuel consumption caused by acceleration. The polynomial coefficients  and i iw r  are 

calculated from experimental data. For the vehicle parameters reported in [107], where 

the vehicle mass is 1, 200vM =  kg, the drag coefficient is 0.32DC = , the air density is 
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1.184aρ =  km/m3, the frontal area is 2.5fA =  m2, and the rolling resistance coefficient 

is 0.015µ = , the polynomial coefficients are: 0 0.1569w = , 2
1 2.45 10w −= × , 

4
2 7.415 10w −= − × , 5

3 5.975 10w −= × , 0 0.07224r = , 2
1 9.681 10r −= × , and 

3
2 1.075 10r −= × .     

 

5.1.3 Optimization Problem Formulation 

Fig.  40 illustrates the fuel consumption variation with respect to the vehicle speed 

and acceleration. Clearly, there is a monotonic relationship between fuel consumption 

and acceleration. Consequently, instead of formulating a fuel consumption minimization 

problem we can formulate the problem considering vehicle acceleration which result in 

reduced fuel consumption. In this context, the objective is to find for each vehicle the 

optimal acceleration profile from the time they enter in the control zone until the time 

they exit the merging zone.  

 
Fig.  40. Fuel consumption model. 
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The initial and final conditions are related to each vehicle’s position and speed. 

More specifically, the initial position for vehicle i in the road j refers to the starting point 

of the control zone, 0
, ,( )j i j ix t ; similarly, the initial condition for the speed is the one that 

the vehicle has when entering the control zone,  0
, ,( )j i j iv t , i.e., the driver’s desired speed, 

desv , which the vehicle has when it enters the control zone. Similarly, the final condition 

for control is the position at which the vehicle leaves the merging zone, , ,( )f
j i j ix t . We 

assume that after leaving the merging zone the driver would wish to return back to the 

initial desired speed, desv .  

To ensure the absence of collisions, we consider the following constraints in our 

problem formulation. To avoid rear end collisions for vehicles on the same roads, we 

impose the condition that the position of the precedent vehicle, , ( ),j ix t  should be greater 

than or equal to the position of the following vehicle, , 1( )j ix t+ , plus a predefined safe 

distance δ . To avoid lateral collisions when the vehicles from the secondary road are 

merging into the primary road, we impose the condition that the vehicles are going to be 

coordinated on a first come, first serve basis. 

To simplify notation, we make an explicit distinction between the vehicles 

traveling on the primary road, i.e., we will use 1j = , and those traveling on the 

secondary road, i.e., we will use 2j = . Thus, if the difference between the position of the 

vehicle i traveling on the primary road, 1, ( )ix t , and the position of a vehicle k traveling on 

the secondary road, 2, ( )kx t , is less than the length of the merging zone, S , then, the 
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vehicle which is closer to the merging zone will be served first. For example, if at time t 

the position of the vehicle on the primary road, 1, ( )ix t , is greater than the position of the 

vehicle on the secondary road, 2, ( )kx t , the vehicle on the primary road is closer to the 

merging zone and will be served first. Consequently, the vehicle in the secondary road 

will be controlled in such a way that it will reach the merging zone only by the time the 

vehicle 1, ( )ix t  has exited it. 

The optimization problem is formulated as follows: 

,

, ,

2
2

,0
1 1

1min min
2

out
j i

j i j i

n t

j iu u j i
J u dt

= =

= ∑∑∫ ,      (44) 

Subject to 

- Vehicle dynamics: 

 , ,

, ,

j i j i

j i j i

x v
v u

=

=





  

- Initial conditions: 

 
0

, ,

0
, , ,

( ) 0

( ) ( )
j i j i

j i j i j i

x t

v t v t

=

=
 

- Final conditions:  

 , , ,

, ,

( ) ( )

( )

f
j i j i j i

f
j i j i des

x t L S x t

v t v

= + −

=
 

- Safety constraints: 

o Rear end collision avoidance:  

, , 1( ) ( )j i j ix t x t δ+≥ +  
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o Lateral collision avoidance:  

If 1, 2,( ) ( )i kx t x t S− ≤ , 

Then 

   If 1, 2,( ) ( )i kx t x t≥  ⇒  2,k 2, 1, 1,( ) ( )f f
k i ix t x t S≤ −   

   else 1, 1, 2, 2,( ) ( )f f
i i k kx t x t S≤ − . 

The analytical solution to this optimization problem is presented next.  

 

5.2 Analytical solution 

To address this problem we consider the following three steps: (1) defining a 

hierarchical vehicle sequence based on which vehicle is closer to the merging zone, (2) 

assigning the times for each vehicle to reach and leave the merging zone that guarantee 

collision avoidance, and (3) finding the closed-form analytical solution for the 

optimization problem. 

 

5.2.1 Defining the hierarchical vehicle sequence  

When a vehicle reaches the control zone it starts communicating its position to the 

centralized controller. Then the controller defines a hierarchical vehicle sequence starting 

with the vehicle that is closer to the merging zone (Fig.  41). If two vehicles on different 

roads have the same distance from the merging zone, the priority will be given to the 

vehicle on the main road. Note that with such a hierarchy, the problem of blocked lanes is 
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avoided because, at each instant of time, only the vehicle that is closest to the merging 

zone will have the right-of-way.  

In our analysis, we use a single subscript identifying each vehicle on the control 

zone, starting from the one that is closest to the merging zone, i.e., 1i = , to the one which 

is farthest from the merging zone. 

 

 
Fig.  41. Hierarchical crossing sequence. 

 

5.2.2 Assigning the times to enter and exit the merging zone 

Once the hierarchy is defined, the controller assigns to each vehicle i in the 

control zone the time, in
it , to enter the merging zone. To eliminate the chance of lateral 

collisions we impose the condition that only one vehicle at a time can be in the merging 

zone. Thus, the time for each vehicle i, in
it , to enter the merging zone is determined by the 

time, 1
out
it − , that the previous vehicle, i-1, in the hierarchy has exited it, as illustrated in Fig.  

42.  
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Fig.  42. Illustration of time calculation for vehicles entering the merging zone from different roads. 

 

For vehicles traveling on the same road, this constraint is modified to maintain a 

minimum safe distance, δ , between them, as shown in Fig.  43.  

 
Fig.  43. Illustration of time calculation for vehicles entering the merging zone on the same road. 

 

These times, which impose the constraints to avoid either lateral or rear end 

collisions, are assigned at each instant of time to allow readjustment according to the 

traffic conditions. 

Based on the previous two steps, the optimal control problem for n vehicles is 

formulated as follows 
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2

0
1

1min min
2

f
i

i i

n t

iu u i
J u dt

=

= ∑∫         (45) 

Subject to 

- Vehicle dynamics: 

 

- Initial conditions:  

0

0

(t ) 0

(t ) ( )
i i

i i i

x

v v t

=

=
 

- Final conditions: 

( ) ( )

( )

f
i i i

f
i i des

x t L S x t

v t v

= + −

=
  

- Safety constraints: 

o Rear end collisions avoidance:  

  1
out

i it tδ
+ ≥  

o Lateral collisions avoidance:  

  1
in out
i it t+ ≥   

where 0
it  is the time that the vehicle i enters the control zone, and f

it  is the time 

the vehicle i exits the merging zone. Thus, the safety constraints have been translated into 

time constraints and will be used with the boundary conditions for the analytical solution. 

Since the initial vehicle speed when the vehicle enters the control zone is the driver’s 

desired speed, we designate the final speed, when the vehicle exits the merging zone to 

be equal to the initial speed. However, this could be modified appropriately.  
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5.2.3 Analytical solution 

For the analytical solution of problem (3), Pontryagin’s minimum principle is 

applied. We seek to find the optimal control *( )u t  which drives the system along an 

optimal trajectory *( )x t . For each vehicle i, the Hamiltonian function of the above 

optimization problem is 

21( , , , )
2

x v x v
i i i i i i i i i iH x v u v uλ λ λ λ= + +       (46) 

where v
iλ  and u

iλ  are the co-state components. Applying the Hamiltonian 

minimization condition, the optimal control can be given as a function of the co-states 

* 0.v
i iu λ+ =           (47) 

The adjoin equations yield 

0x
i

i

H
x

λ ∂
= − =

∂
          (48) 

,v x
i i

i

H
v

λ λ∂
= − = −

∂
          (49) 

and hence * v
i iu λ= − . From (48) we have x

i iaλ =  and from (49) implies 

( )v
i i ia t bλ = − + , where ia  and ib  are constants of integration corresponding to each 

vehicle i. Consequently, the optimal control input (acceleration/deceleration profile) as a 

function of time is given by 

* .i i iu a t b= +           (50) 

Substituting the last equation to the vehicle dynamics equations (1) we can find 

the optimal speed and position for each vehicle, namely 
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* 21( )
2i i i iv t a t b t c= + +          (51) 

* 3 21 1( ) ,
6 2i i i i ix t a t b t c t d= + + +        (52) 

where ic  and id  are constants of integration. The constants ia , ib , ic , and id  can 

be computed by the initial and final conditions in (53). It is important to emphasize that 

this analytical solution can be implemented online. To derive online the optimal control 

for each vehicle, we need to update the integration constants at each time t. Equations 

(51) and (52) along with the initial and final conditions defined in the optimization 

problem (45) can be used to form a system of four equations  of the form i i iTb = q . Note 

that in this step, we are already satisfying the initial and final conditions, including the 

safety constraints. 

      (53) 

Hence we have 

⋅-1
i i ib = (T ) q           (54) 

where ib  is a vector containing the four integration constants ia , ib , ic  and id . 

As we continuously update the constants using (53) the controller yields the closed-loop 

optimal acceleration/deceleration for each vehicle i over time from (50), .  
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5.3 Simulation Results 

To validate the effectiveness of the efficiency of our analytical solution we 

simulated the merging scenario presented in previous section in Matlab/Simulink. In our 

case study, the length of the control zone is 400 m, and the merging zone length is 30 m. 

It is assumed that each vehicle travels at a constant speed of 30 mph (13.41 m/s) before 

entering the control zone. As soon as a vehicle reaches the control zone then the 

centralized controller designates the acceleration/deceleration profile for each vehicle 

until it exits the merging zone. All vehicles are assumed to have the characteristics 

described in Section II. 

We considered the case of coordinating 30 vehicles, 15 for each road. The 

centralized controller is able to derive online the optimal control 

(acceleration/deceleration profile) by avoiding collision in the merging zone, while only 

one vehicle at the time was crossing the merging zone, as illustrated in Fig.  44.  

 
Fig.  44. Distance of the thirty vehicles traveled in merging coordination (road 1 corresponds to the 

main road and road 2 corresponds to the secondary road). 

 

We note that as the number of vehicles on each road in the control zone increases, 

there is an impact on the acceleration profile for each vehicle (Fig.  45). The controller 
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accelerates the vehicles that are closer to the merging zone to create more space in the 

road for the vehicles following. However, as the number of vehicles on the road increases 

and reaches its maximum capacity, eventually the vehicles entering the control zone need 

to decelerate (Fig.  45).  
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Fig.  45. Acceleration profile in merging coordination of thirty vehicles (road 1 corresponds to the 

main road and road 2 corresponds to the secondary road). 

 

As a result, the vehicles ahead in the hierarchy are able to cross the control zone 

in a shorter time than the rest of the vehicles. Thus, as the number of vehicles increases, 

at some point of time the vehicles that enter the control zone may be required to come to 

a full stop as imposed by the road capacity constraints. Note that the little jumps above 

the desired speed in (Fig.  46) are due to the fact that the matrix Ti in (54) tends to 

become singular when the vehicle i exits the merging zone.  
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Fig.  46. Speed profile in merging coordination of thirty vehicles (road 1 corresponds to the main 

road and road 2 corresponds to the secondary road). 

 

The optimal solution for the vehicle coordination was compared to a baseline 

scenario. In the baseline scenario, the vehicles on the main road have the right-of-way, so 

all the vehicles in the secondary road need to come to a full stop before they enter the 

merging zone and wait until the vehicles on the main road cross the merging zone. That 

is, the vehicles on the secondary road have to come to a full stop before entering the 

merging zone. The optimal acceleration/deceleration profile imposed by the controller 

resulted in minimizing fuel consumption both at the control zone and merging zone as 

shown in Fig.  47. The fuel consumption improvement in the coordinated scenario is due 

to the fact that the vehicles coming from the secondary road do not come to a full stop 

before they enter to the main road, thereby conserving momentum and fuel while also 

improving travel time.  
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5.3.1 Fuel consumption results for a fleet of 30 conventional vehicles 

The overall fuel consumption improvement when the conventional vehicles are 

coordinated compared to the baseline scenario is 49.8%. Moreover, the coordination of 

vehicles resulted in improving the total travel time by 6.9% compared to the baseline 

(Fig.  48).  
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Fig.  47. Cumulative fuel consumption comparison. 
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Fig.  48. Total travel time. 
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5.3.2 Fuel consumption results for a fleet of 30 HEVs 

To evaluate the benefits of integrating Hybrid Electric Vehicles and the 

coordination algorithm, the baseline and the optimized driving profiles obtained with the 

simulations, were used to run the simulator described in section 3.3.1, which corresponds 

to a parallel through the road powertrain configuration, using the ECMS as the energy 

management strategy. 

The overall fuel consumption improvement when the 30 HEVs are coordinated 

compared to the baseline scenario (also with HEVs) is 47%.  The slightly decreased 

result is due to the fact that HEVs can perform better than conventional engine-powered 

vehicles in stop and go operation.  

 

5.4 Concluding remarks 

An analytical formulation for the problem of optimally coordinating the 

trajectories of vehicles traveling over two merging highways was developed. The 

problem was translated into a constrained optimization problem that aims to find a safe 

and fuel-efficient crossing schedule, i.e., velocity profile and arrival time to the merging 

zone, for all the vehicles in a control zone. Fuel-efficiency is indirectly addressed by 

using acceleration as the objective function of the optimal control problem. Then, by 

applying Pontryagin’s minimum principle, it was showed that it is possible to obtain a 

closed-form solution, which allows the implementation of a centralized real-time optimal 

control.  
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The effectiveness of the control policies was validated through simulations, which 

showed the system outperformed a baseline scenario where there was no coordination 

and the vehicles were required to stop 
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CHAPTER SIX 

6 CONCLUSIONS AND FUTURE WORK  

 
This dissertation work explores different methods for the optimization/reduction 

of the vehicle’s energy/fuel utilization.  

In chapter three, the research efforts are concentrated in the optimization of the 

fuel consumption for hybrid electric vehicles. In particular, the problem of finding more 

efficient techniques to tune the equivalent factor of the ECMS is addressed, and four 

different strategies are proposed. The first two strategies, based on model predictive 

control, allow updating of the s factor along a particular driving profile. In the first MPC-

based approach, roadway traffic prediction data is sent to the supervisory controller to 

tune the ECMS algorithm for a particular time window length, resulting in reduction of 

up to 4.28% in fuel consumption. In the second MPC-based approach, the control input is 

periodically recalculated, allowing adaptation to changes in the initially predicted driving 

profile for the entire trip and fuel consumption reduction of up to 6.85%. The remaining 

two strategies, based on the analysis of the operating points distribution, involve the use 

of the Willans-line model to estimate the engine fuel consumption. Although the tuning 

of the equivalence factor s is still required, the use of the intrinsic efficiency and its stated 

relation to the equivalence factor, allows finding a probable range for it, speeding up the 

tuning process. Furthermore, the new operating point distribution, resulting from the use 

of the Willans-line model, is useful to facilitate the real-time tuning of the strategy. For 

the proposed numerical solutions, even though the results are slightly worse than for the 

case of the map-based ECMS strategy, it is found that the number of iterations required to 
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find an optimal sustaining value for s, can be reduced to 0.059% the number of iterations 

required with a standard iterative approach. This confirms their potential for real time 

implementation. 

Then, in chapter four, the research is extended to the fuel/energy utilization 

optimization for conventional and electric vehicles, in which case the effects of having 

smoother driving profiles are explored. In this case, it is found that driving profile 

optimization and eco-driving can contribute with meaningful energy savings for 

conventional and electric vehicles. In the particular case of electric powertrains, and 

assuming the driver is able to closely follow the optimal speed profiles proposed by an 

eco-driving system, it is estimated that energy consumption reductions of up to 30.33% 

can be achieved. 

Finally, in chapter five the research focus on vehicle coordination control at 

merging highways to avoid frequent acceleration/deceleration patterns for a fleet of 

vehicles. An analytical formulation for the problem of optimally coordinating the 

trajectories of vehicles traveling over two merging highways is developed. The problem 

is translated into a constrained optimization problem that aims to find a safe and fuel-

efficient crossing schedule, i.e., velocity profile and arrival time to the merging zone, for 

all the vehicles in a control zone. Fuel-efficiency is indirectly addressed by using 

acceleration as the objective function of the optimal control problem. Then, by applying 

Pontryagin’s minimum principle, it is shown that it is possible to obtain a closed-form 

solution, which allows the implementation of a centralized real-time optimal control. The 

effectiveness of the control policies is validated through simulations, showing that the 
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system outperformed a baseline scenario where there is not coordination and the vehicles 

are required to stop. 

 

6.1 Future work 

The present research work can be extended in different directions as suggested 

below.  

For the case of the Willans-based tuning strategies, it is proposed as future work 

to consider the efficiencies of the electric motor, generator, etc., as well as the 

dependence of the engine’s intrinsic efficiency on the torque. Such considerations, 

converts the problem into a 3D problem in which the regions illustrated in Fig.  16, are to 

be separated by a surface instead of a line.  

For the case of the eco-driving system, there are still aspects to be improved to 

achieve more realistic outcomes:  

 In the case of significant changes with respect to the base driving profile, 

the meta-model utilized to estimate the instantaneous power may not be 

accurate enough to represent the vehicle behavior. Thus, a new meta-

model has to be recalculated for each new driving profile. 

 As the problem is solved offline, the eco-driving system will not adapt to 

changing traffic conditions. Consequently, in case of significant changes 

in the base driving profile the optimality of the solution will not be valid 

and the percentage of improvement may be lower. Therefore, finding a 

solution which allows online implementation is a desired goal. 
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 Many other factors influencing the vehicle energy use are still to be 

studied. Analyses are to be done about how to integrate those in the 

optimization strategy. In particular, the analysis of the experimental 

information gathered during the execution of the project, allowed to 

identify the road grade, cornering effects and the wind speed as important 

factors influencing the vehicle energy consumption.  

For the centralized traffic coordination system, it is proposed to explore the 

uncertainty produced in the system by having drivers who do not follow the given 

instructions. Additionally, the coordination of vehicles around roundabouts and the 

control on a road network containing interconnected merging/intersection points and 

roundabouts will extend and complement the results presented in this dissertation.  
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