76,012 research outputs found

    Mechanism of the fcc-hcp Phase Transformation in Solid Ar

    Full text link
    We present an atomistic description of the {\it fcc}--to--{\it hcp} transformation mechanism in solid argon (Ar) obtained from transition path sampling molecular dynamics simulation. The phase transition pathways collected during the sampling for an 8000--particle system reveal three transition types according to the lattice deformation and relaxation details. In all three transition types, we see a critical accumulation of defects and uniform growth of a less ordered transition state, followed by a homogeneous growth of an ordered phase. Stacking disorder is discussed to describe the transition process and the cooperative motions of atoms in \{111\} planes. We investigate the nucleation with larger system. In a system of 18000--particles, the collective movements of atoms required for this transition are facilitated by the formation and growth of stacking faults. However the enthalpy barrier is still far beyond the thermal fluctuation. The high barrier explains previous experimental observations of the inaccessibility of the bulk transition at low pressure and its sluggishness even at extremely high pressure. The transition mechanism in bulk Ar is different from Ar nanoclusters as the orthorhombic intermediate structure proposed for the latter is not observed in any of our simulations.Comment: 25 pages, 12 figures, journal supplementary included as appendi

    Mobile Formation Coordination and Tracking Control for Multiple Non-holonomic Vehicles

    Full text link
    This paper addresses forward motion control for trajectory tracking and mobile formation coordination for a group of non-holonomic vehicles on SE(2). Firstly, by constructing an intermediate attitude variable which involves vehicles' position information and desired attitude, the translational and rotational control inputs are designed in two stages to solve the trajectory tracking problem. Secondly, the coordination relationships of relative positions and headings are explored thoroughly for a group of non-holonomic vehicles to maintain a mobile formation with rigid body motion constraints. We prove that, except for the cases of parallel formation and translational straight line formation, a mobile formation with strict rigid-body motion can be achieved if and only if the ratios of linear speed to angular speed for each individual vehicle are constants. Motion properties for mobile formation with weak rigid-body motion are also demonstrated. Thereafter, based on the proposed trajectory tracking approach, a distributed mobile formation control law is designed under a directed tree graph. The performance of the proposed controllers is validated by both numerical simulations and experiments

    Direct Observation of Early-stage Quantum Dot Growth Mechanisms with High-temperature Ab Initio Molecular Dynamics

    Get PDF
    Colloidal quantum dots (QDs) exhibit highly desirable size- and shape-dependent properties for applications from electronic devices to imaging. Indium phosphide QDs have emerged as a primary candidate to replace the more toxic CdSe QDs, but production of InP QDs with the desired properties lags behind other QD materials due to a poor understanding of how to tune the growth process. Using high-temperature ab initio molecular dynamics (AIMD) simulations, we report the first direct observation of the early stage intermediates and subsequent formation of an InP cluster from separated indium and phosphorus precursors. In our simulations, indium agglomeration precedes formation of In-P bonds. We observe a predominantly intercomplex pathway in which In-P bonds form between one set of precursor copies while the carboxylate ligand of a second indium precursor in the agglomerated indium abstracts a ligand from the phosphorus precursor. This process produces an indium-rich cluster with structural properties comparable to those in bulk zinc-blende InP crystals. Minimum energy pathway characterization of the AIMD-sampled reaction events confirms these observations and identifies that In-carboxylate dissociation energetics solely determine the barrier along the In-P bond formation pathway, which is lower for intercomplex (13 kcal/mol) than intracomplex (21 kcal/mol) mechanisms. The phosphorus precursor chemistry, on the other hand, controls the thermodynamics of the reaction. Our observations of the differing roles of precursors in controlling QD formation strongly suggests that the challenges thus far encountered in InP QD synthesis optimization may be attributed to an overlooked need for a cooperative tuning strategy that simultaneously addresses the chemistry of both indium and phosphorus precursors.Comment: 40 pages, 9 figures, submitted for publicatio

    Self-Organized Vortices of Circling Self-Propelled Particles and Curved Active Flagella

    Get PDF
    Self-propelled point-like particles move along circular trajectories when their translocation velocity is constant and the angular velocity related to their orientation vector is also constant. We investigate the collective behavior of ensembles of such circle swimmers by Brownian dynamics simulations. If the particles interact via a "velocity-trajectory coordination" rule within neighboring particles, a self-organized vortex pattern emerges. This vortex pattern is characterized by its particle-density correlation function GρG_\rho, the density correlation function GcG_c of trajectory centers, and an order parameter SS representing the degree of the aggregation of the particles. Here, we systematically vary the system parameters, such as the particle density and the interaction range, in order to reveal the transition of the system from a light-vortex-dominated to heavy-vortex-dominated state, where vortices contain mainly a single and many self-propelled particles, respectively. We also study a semi-dilute solution of curved, sinusoidal-beating flagella, as an example of circling self-propelled particles with explicit propulsion mechanism and excluded-volume interactions. Our simulation results are compared with previous experimental results for the vortices in sea-urchin sperm solutions near a wall. The properties of the vortices in simulations and experiments are found to agree quantitatively.Comment: 14 pages, 15 figure

    Formation control of a group of micro aerial vehicles (MAVs)

    Get PDF
    Coordinated motion of Unmanned Aerial Vehicles (UAVs) has been a growing research interest in the last decade. In this paper we propose a coordination model that makes use of virtual springs and dampers to generate reference trajectories for a group of quadrotors. Virtual forces exerted on each vehicle are produced by using projected distances between the quadrotors. Several coordinated task scenarios are presented and the performance of the proposed method is verified by simulations
    corecore