4,522 research outputs found

    Supporting Collaboration in Mobile Environments

    Get PDF
    Continued rapid improvements in the hardware capabilities of mobile computing devices is driving a parallel need for a paradigm shift in software design for such devices with the aim of ushering in new classes of software applications for devices of the future. One such class of software application is collaborative applications that seem to reduce the burden and overhead of collaborations on human users by providing automated computational support for the more mundane and mechanical aspects of a cooperative effort. This dissertation addresses the research and software engineering questions associated with building a workflow-based collaboration system that can operate across mobile ad hoc networks, the most dynamic type of mobile networks that can function without dependence on any fixed external resources. While workflow management systems have been implemented for stable wired networks, the transition to a mobile network required the development of a knowledge management system for improving the predictability of the network topology, a mobility-aware specification language to specify workflows, and its accompanying algorithms that help automate key pieces of the software. In addition to details of the formulation, design, and implementation of the various algorithms and software components. this dissertation also describes the construction of a custom mobile workflow simulator that can be used to conduct simulation experiments that verify the effectiveness of the approaches presented in this document and beyond. Also presented are empirical results obtained using this simulator that show the effectiveness of the described approaches

    Supporting Collaborative Behavior in MANETs using Workflows

    Get PDF
    Groupware activities provide a powerful representation for many collaborative tasks. Today, the technologies that support typical groupware applications often assume a stable wired network infrastructure. The potential for collaboration in scenarios that lack this fixed infrastructure remains largely untapped. Such scenarios include activities on construction sites, wilderness exploration, disaster recovery, and rapid intervention teams. Communication in these scenarios can be supported using wireless ad hoc networks, an emerging technology whose full potential is yet to be understood and realized. In this paper, we consider the fundamental technical issues that need to be addressed in order to introduce groupware concepts into mobile ad hoc networks. Starting with a simple workflow model, we examine the process of allocating its actions to physically-mobile agents in a manner that accommodates transient communication and runtime errors

    Achieving Coordination Through Dynamic Construction of Open Workflows

    Get PDF
    Workflow middleware executes tasks orchestrated by rules defined in a carefully handcrafted static graph. Workflow management systems have proved effective for service-oriented business automation in stable, wired infrastructures. We introduce a radically new paradigm for workflow construction and execution called open workflow to support goal-directed coordination among physically mobile people and devices that form a transient community over an ad hoc wireless network. The quintessential feature of the open workflow paradigm is dynamic construction of custom, context-specific workflows in response to unpredictable and evolving circumstances by exploiting the knowledge and services available within a given spatiotemporal context. This paper introduces the open workflow approach, surveys open research challenges in this promising new field, and presents algorithmic, architectural, and evaluation results for the first practical realization of an open workflow management system

    Achieving Coordination Through Dynamic Construction of Open Workflows ** PLEASE SEE WUCSE-2009-14 **

    Get PDF
    Workflows, widely used on the Internet today, typically consist of a graph-like structure that defines the orchestration rules for executing a set of tasks, each of which is matched at run-rime to a corresponding service. The graph is static, specialized directories enable the discovery of services, and the wired infrastructure supports routing of results among tasks. In this paper we introduce a radically new paradigm for workflow construction and execution called open workflow. It is motivated by the growing reliance on wireless ad hoc networks in settings such as emergency response, field hospitals, and military operations. Open workflows facilitate goal-directed coordination among physically mobile agents (people and host devices) that form a transient community over an ad hoc wireless network. The quintessential feature of the open workflow paradigm is the ability to construct a custom context-specific workflow specification on the fly in response to unpredictable and evolving circumstances by exploiting the knowhow and services available within a given spatiotemporal context. This paper introduces the open workflow approach and explores the technical challenges (algorithms and architecture) associated with its first practical realization

    How Can AI be Distributed in the Computing Continuum? Introducing the Neural Pub/Sub Paradigm

    Full text link
    This paper proposes the neural publish/subscribe paradigm, a novel approach to orchestrating AI workflows in large-scale distributed AI systems in the computing continuum. Traditional centralized broker methodologies are increasingly struggling with managing the data surge resulting from the proliferation of 5G systems, connected devices, and ultra-reliable applications. Moreover, the advent of AI-powered applications, particularly those leveraging advanced neural network architectures, necessitates a new approach to orchestrate and schedule AI processes within the computing continuum. In response, the neural pub/sub paradigm aims to overcome these limitations by efficiently managing training, fine-tuning and inference workflows, improving distributed computation, facilitating dynamic resource allocation, and enhancing system resilience across the computing continuum. We explore this new paradigm through various design patterns, use cases, and discuss open research questions for further exploration

    Open Workflows: Context-Dependent Construction and Execution in Mobile Wireless Settings

    Get PDF
    Existing workflow middleware executes tasks orchestrated by rules defined in a carefully handcrafted static graph. Workflow management systems have proved effective for service-oriented business automation in stable, wired infrastructures. We introduce a radically new paradigm for workflow construction and execution called open workflow to support goal-directed coordination among physically mobile people and devices that form a transient community over an ad hoc wireless network. The quintessential feature of the open workflow paradigm is dynamic construction and execution of custom, context-specific workflows in response to unpredictable and evolving circumstances by exploiting the knowledge and services available within a given spatiotemporal context. This work introduces the open workflow approach, surveys open research challenges in this promising new field, and presents algorithmic, architectural, and evaluation results for the first practical realization of an open workflow management system

    Distributed Web Service Coordination for Collaboration Applications and Biological Workflows

    Get PDF
    In this dissertation work, we have investigated the main research thrust of decentralized coordination of workflows over web services. To address distributed workflow coordination, first we have developed “Web Coordination Bonds” as a capable set of dependency modeling primitives that enable each web service to manage its own dependencies. Web bond primitives are as powerful as extended Petri nets and have sufficient modeling and expressive capabilities to model workflow dependencies. We have designed and prototyped our “Web Service Coordination Management Middleware” (WSCMM) system that enhances current web services infrastructure to accommodate web bond enabled web services. Finally, based on core concepts of web coordination bonds and WSCMM, we have developed the “BondFlow” system that allows easy configuration distributed coordination of workflows. The footprint of the BonFlow runtime is 24KB and the additional third party software packages, SOAP client and XML parser, account for 115KB
    • …
    corecore