
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

All Computer Science and Engineering 
Research Computer Science and Engineering 

Report Number: wucse-2009-73 

2009 

Open Workflows: Context-Dependent Construction and Execution Open Workflows: Context-Dependent Construction and Execution 

in Mobile Wireless Settings in Mobile Wireless Settings 

Louis Thomas, Justin Wilson, Grui-Catalin Roman, and Christopher Gill 

Existing workflow middleware executes tasks orchestrated by rules defined in a carefully 

handcrafted static graph. Workflow management systems have proved effective for service-

oriented business automation in stable, wired infrastructures. We introduce a radically new 

paradigm for workflow construction and execution called open workflow to support goal-

directed coordination among physically mobile people and devices that form a transient 

community over an ad hoc wireless network. The quintessential feature of the open workflow 

paradigm is dynamic construction and execution of custom, context-specific workflows in 

response to unpredictable and evolving circumstances by exploiting the knowledge and 

services available within a given spatiotemporal... Read complete abstract on page 2. Read complete abstract on page 2. 

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research 

 Part of the Computer Engineering Commons, and the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Thomas, Louis; Wilson, Justin; Roman, Grui-Catalin; and Gill, Christopher, "Open Workflows: Context-
Dependent Construction and Execution in Mobile Wireless Settings" Report Number: wucse-2009-73 
(2009). All Computer Science and Engineering Research. 
https://openscholarship.wustl.edu/cse_research/27 

Department of Computer Science & Engineering - Washington University in St. Louis 
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233234654?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/27?utm_source=openscholarship.wustl.edu%2Fcse_research%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx


This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/27 

Open Workflows: Context-Dependent Construction and Execution in Mobile Open Workflows: Context-Dependent Construction and Execution in Mobile 
Wireless Settings Wireless Settings 

Louis Thomas, Justin Wilson, Grui-Catalin Roman, and Christopher Gill 

Complete Abstract: Complete Abstract: 

Existing workflow middleware executes tasks orchestrated by rules defined in a carefully handcrafted 
static graph. Workflow management systems have proved effective for service-oriented business 
automation in stable, wired infrastructures. We introduce a radically new paradigm for workflow 
construction and execution called open workflow to support goal-directed coordination among physically 
mobile people and devices that form a transient community over an ad hoc wireless network. The 
quintessential feature of the open workflow paradigm is dynamic construction and execution of custom, 
context-specific workflows in response to unpredictable and evolving circumstances by exploiting the 
knowledge and services available within a given spatiotemporal context. This work introduces the open 
workflow approach, surveys open research challenges in this promising new field, and presents 
algorithmic, architectural, and evaluation results for the first practical realization of an open workflow 
management system. 

https://openscholarship.wustl.edu/cse_research/27?utm_source=openscholarship.wustl.edu%2Fcse_research%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/27?utm_source=openscholarship.wustl.edu%2Fcse_research%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages


Department of Computer Science & Engineering

2009-73

Open Workflows: Context-Dependent Construction and Execution in
Mobile Wireless Settings

Authors: Louis Thomas, Justin Wilson, Gruia-Catalin Roman, and Christopher Gill

Web Page: http://mobilab.wustl.edu/projects/openworkflow/

Abstract: Existing workflow middleware executes tasks orchestrated by rules defined in a carefully handcrafted
static graph. Workflow management systems have proved effective for service-oriented business automation in
stable, wired infrastructures. We introduce a radically new paradigm for workflow construction and execution
called open workflow to support goal-directed coordination among physically mobile people and devices that
form a transient community over an ad hoc wireless network. The quintessential feature of the open workflow
paradigm is dynamic construction and execution of custom, context-specific workflows in response to
unpredictable and evolving circumstances by exploiting the knowledge and services available within a given
spatiotemporal context. This work introduces the open workflow approach, surveys open research challenges in
this promising new field, and presents algorithmic, architectural, and evaluation results for the first practical
realization of an open workflow management system.

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160



SUBMITTED TO IEEE TSE, 2009-11-01 1

Open Workflows: Context-Dependent Construction
and Execution in Mobile Wireless Settings

Louis Thomas, Justin Wilson, Gruia-Catalin Roman, and Christopher Gill
Department of Computer Science and Engineering

Washington University in St. Louis
{thomasl,wilsonj,roman,cdgill}@cse.wustl.edu

Abstract—Existing workflow middleware executes tasks or-
chestrated by rules defined in a carefully handcrafted static
graph. Workflow management systems have proved effective
for service-oriented business automation in stable, wired in-
frastructures. We introduce a radically new paradigm for
workflow construction and execution called open workflow to
support goal-directed coordination among physically mobile
people and devices that form a transient community over an
ad hoc wireless network. The quintessential feature of the open
workflow paradigm is dynamic construction and execution of
custom, context-specific workflows in response to unpredictable
and evolving circumstances by exploiting the knowledge and
services available within a given spatiotemporal context. This
work introduces the open workflow approach, surveys open
research challenges in this promising new field, and presents
algorithmic, architectural, and evaluation results for the first
practical realization of an open workflow management system.

I. INTRODUCTION

With the development of small, powerful wireless devices,
computing must embrace the frequent, transient, ad hoc in-
teractions inherent to mobile environments. As computing
and communication become more and more integrated into
the fabric of our society, new kinds of enterprises and new
forms of social interactions will continue to emerge. We ask
the fundamental question (which we explored first in [1]):
how can ad hoc communities of people and their personal
devices coordinate to solve problems? Application domains
that motivate or even require this form of interaction in-
clude low profile military operations, emergency responses
to major natural disasters, scientific expeditions in remote
parts of the globe, field hospitals, and large construction
sites. These application domains share several key features:
ad hoc interactions among people, high levels of mobility,
the need to respond to unexpected developments, the use of
locally available resources, prescribed rules of operation, and
specialized knowhow. For instance, consider a construction
worker discovering a mercury spill. While there is a prescribed
response, it is his supervisor who has the needed expertise
and training. She initiates the response, but access to the spill
is made difficult by a support structure whose dismantling
requires special intervention which only the chief engineer can
manage. The result is a series of frantic phone calls and the
dispatching of various workers and equipment to execute what
might be seen as a workflow that is reactive, opportunistic,

composite, and constrained by the set of participants present
on the site along with their knowledge and resources.

Current workflow middleware allows people to initiate
complex goal-oriented activities that leverage services made
available by a wide range of service-oriented portals. In the
typical scenario, a user employs a web browser to make a
request to a workflow engine responsible for executing a
predefined workflow that can satisfy the specific user need,
e.g., to print photos, reserve tickets, or make a bid in an online
auction. The workflow is a directed acyclic graph with vertices
denoting tasks and edges defining an execution order along
with the flow of data and control. Each task is a specification
for a service to be discovered and invoked by the workflow
engine. What makes the workflow paradigm successful is the
high degree of decoupling that it exhibits at multiple levels:
between the user’s need and the workflow required to satisfy it,
between the task specifications and the services that implement
them, and between the workflow engine that invokes a service
and the service provider that executes it.

Despite workflow middleware being well established, ef-
forts toward using it in ad hoc wireless environments are
relatively new. Our previous research in this area includes the
development of workflow execution engines targeted to small
portable devices [2], and techniques for executing workflows
in mobile wireless networks [3]. These studies reveal the need
for a major reevaluation of the way one thinks about workflow
middleware: hosts may move, service availability may depend
upon which hosts are within communication range, user needs
tend to be situational, and one cannot anticipate the range
of responses demanded by changing circumstances. These
observations suggest that in ad hoc wireless settings it is
desirable to tailor or generate workflows dynamically.

Starting with this premise, we pose the question of how
workflow middleware might be reshaped for use in the absence
of any wired connectivity. In this research, we explore whether
workflow middleware can become a coordination mechanism
for activities that are carried out in an ad hoc setting.

We use the term open workflow to denote a workflow
specification, construction, and execution paradigm that is
shaped by the dynamics and constraints of an activity whose
underlying infrastructure is a mobile ad hoc wireless network.
We assume a set of participants (people and the host devices
they carry) that are dedicated towards a common purpose and
that move about and interact with each other and with the

Submitted to IEEE TSE, 2009-11-01



2 SUBMITTED TO IEEE TSE, 2009-11-01

real world. The participants form a transient community that
evolves over time. In our approach, one of the members of
a community identifies a need for action, which then results
in the dynamic construction of a workflow to satisfy the
need and the execution of that workflow in a distributed and
cooperative manner. An important feature of the open work-
flow paradigm is the workflow construction process: workflow
fragments encoding individual knowledge distributed across
the set of participants are assembled into a custom workflow
both automatically and contextually. In doing so, we also
consider the available resources (expressed as services offered
by the participants) along with the mobility of the participants
and their willingness to commit to being present at a specific
place and time and to delivering results to any other dependent
participants. The latter highlights another feature of the open
workflow paradigm, its sensitivity to the time and location
considerations necessary when performing activities in the real
world.

In [1] we began to explore the challenges of building a
workflow on the fly from available contextual knowledge,
i.e., the open workflow paradigm, and built a platform for
further experimentation with that approach. In this article, we
expand the approach by presenting in Section II an enhanced
formalism for describing open workflow construction that
supports parameterized tasks for better context sensitivity.
Section III explains how we achieve collaborative construction,
allocation, and execution of open workflows and extends the
construction and allocation algorithms presented in [1] to
capture the dynamics of service availability. In Section IV,
we present our updated open workflow management system
and discuss its architecture. In Section V, we evaluate its
performance and discuss directions for future work. Section VI
highlights related research and contrasts it with this work. We
provide conclusions in Section VII.

II. PROBLEM DEFINITION

A. Motivating Example

To highlight the possibilities and advantages of the open
workflow paradigm, consider the demands placed on a
university-wide emergency response system. The university
must be prepared to cope with a wide variety of disasters,
such as a fire in a building, a tornado, an earthquake, or
violence on campus. While the same emergency response
system will be used for each of these events, the proper
reaction varies significantly: evacuating the building during
a fire versus heading to the basement during a tornado. The
knowledge of how to react to each emergency is decentralized
and location specific, as each building will have a different
evacuation route and an individual will only be interested in
the evacuation route for the building they are in. Furthermore,
different university departments may have department specific
knowledge that will influence the plan. The aeronautics depart-
ment might have a wind tunnel that must be shut down during
a building evacuation for the safety of emergency personnel.
The department emergency coordinator will be aware of all
the special facilities of the department, such as the wind
tunnel, but only the professor and a few students will be

Response
Complete

Check All
Departments

Dept. Responded,
Dept = Aero

Dept. Responded,
Dept = Bio

…

Wind Tunnel 
On

Wind Tunnel 
Off

Throw Main 
Breaker

Magnet
On

Magnet
Off

Quench
MRI Magnet

Head Count
Complete

Dept. Responded,
Dept = X

Check Common
Dept. Response

Checklist
Dept. Specific 

Response Complete,
Dept = X

Perform 
Head Count

Head Count
Complete

At 
Assembly

Point

Wind Tunnel
Off

Check Aero
Dept. Specific

Checklist

Dept. Specific 
Response Complete,

Dept = Aero

Magnet
Off

Check Bio
Dept. Specific

Checklist

Dept. Specific 
Response Complete,

Dept = Bio

Aeronautics Dept.

Biology Dept.

Emergency Response Officer

University Emergency Response Chief 

Fig. 1. Task knowledge in an emergency response scenario.

able to properly shut down the wind tunnel, demonstrating
that knowledge and ability can be independent. Devices can
participate in the community as well. The wind tunnel may
have a small monitoring device (similar to a warning light) that
can participate in the workflow to contribute the knowledge
that the wind tunnel is active and needs to be shut down, even
though the monitoring device itself does not have the ability
to power down the wind tunnel.

Suppose a fire breaks out in a building on this campus.
When the fire alarm sounds, the emergency response chief
wants to make sure that proper procedures are followed and
everyone gets out safely. She requests a disaster response
workflow from the open workflow system on her mobile
device, specifying that there has been a fire. The open work-
flow engine begins by collecting knowledge contained on the
mobile devices owned by the members of the emergency
preparedness team. As shown in Figure 1, the chief’s PDA
knows that her task is to coordinate with the other departments
in the university. Another officer has been developing a general
response plan consisting of a set of tasks that can be used with
any department. The coordinators for each department know
the tasks that are specific for their department, such as shutting
down a dangerously strong MRI magnet or high velocity wind
tunnel fan.

Using the knowledge gathered from throughout the commu-
nity, the open workflow engine searches for a set of tasks that
can be connected into a workflow that meets the conditions and
requirements given by the emergency response chief. There
may be many possible workflows, and some tasks may or may
not be used. The engine may need to specialize general tasks,



THOMAS et al.: ACHIEVING COORDINATION THROUGH DYNAMIC CONSTRUCTION OF OPEN WORKFLOWS 3

Response
Complete

Check All
Departments

Dept. Responded,
Dept = Aero

Dept. Responded,
Dept = Bio

…

Wind Tunnel 
OnWind Tunnel 

Off

Throw Main 
Breaker

Magnet
On

Quench
MRI Magnet

Head Count
Complete

Check Common
Dept. Response

Checklist

Perform 
Head Count At 

Assembly
Point

Check Aero
Dept. Specific

Checklist

Dept. Specific 
Response Complete,

Dept = Aero

Magnet
Off

Check Bio
Dept. Specific

Checklist

Dept. Specific 
Response Complete,

Dept = Bio

Perform 
Head Count

Head Count
Complete

At 
Assembly

Point

Check Common
Dept. Response

Checklist

Fig. 2. A customized emergency response workflow.

such as the common department plan, to adapt them to the
context in which they will be used. An example of such a
workflow that meets the requirements for responding to a fire
is shown in Figure 2.

The open workflow engine then searches for participants
that are able to perform the activities indicated by the work-
flow. The aeronautics professor’s PDA will notify him that
he needs to shut down the wind tunnel, while an emergency
response officer (or other suitably responsible person) will
be directed to each assembly point to do a head count. The
allocation of tasks by the open workflow engine is sensitive to
abilities (the officer would not be sent to shut down the wind
tunnel) and to spatiotemporal constraints (the officer would not
be told to do two head counts at the same time, and would not
be directed to run to the other side of campus if another officer
was nearer). If the chief had given different conditions and
requirements (e.g., due to a tornado), the resulting workflow
could be very different (e.g., people would be directed to go
to the basement rather than exit the building). The constructed
workflow is also sensitive to the state of the environment: if
the wind tunnel was already off, all the requirements for the
biology department’s checklist would already be met and there
would be no need to add a task to turn it off.

A plan to handle a campus emergency must be adaptive to
the dynamic campus environment. For example, if a week-
long spring carnival is being put on by the student body in
a large campus quadrangle, the emergency response plan will
have to adjust during this time. The emergency assembly point
that usually occupies the quad will have to move, and the
carnival itself will be another group with which to coordinate.
Notice that in our example, only a small change is needed

to incorporate the carnival into the university wide emergency
response system: the emergency response chief would only
need to update her “Check All Departments” task in her PDA
to include the carnival as another “department”. Even people
not normally considered part of the campus community will
impact the emergency response plan. Visitors will need clear
directions to an emergency assembly point and may need
assistance rejoining their hosts. Construction on campus will
involve new groups to coordinate and new needs and activities
during an emergency.

A traditional static workflow would be difficult to main-
tain in the face of the continuously changing community.
To be sensitive to the variety of emergency situations and
the individual capabilities and dynamic availability of the
members of the campus community, the workflow would need
to contain a large number of conditional branches which must
be carefully crafted and assiduously maintained. Such a static
workflow cannot respond rapidly to new resources or changes
in the environment. An open workflow system can construct
a workflow customized to the state of the campus community
at the time the emergency occurs, and each person’s device
can guide them and give them specific directions customized
to the current emergency. Sensitivity to context, in the form of
knowledge, capabilities, and availability, is the driving force
behind the creation of our open workflow system.

B. Formalization

A community consists of a set of participants (people and
their mobile devices) willing to work cooperatively to solve
problems. A community is dynamic in that its membership
and thus the knowledge, capabilities, availability, and other
resources provided by its members are not fixed a priori. The
resources available to solve one problem may be significantly
different from the resources available to solve the next prob-
lem, and the resources may be different even between two
instances of the same problem leading to significantly different
solutions. However, we make the simplifying assumption that
the community is stable for each problem instance and that
all participants are mutually reachable with no changes in
connectivity or resource availability while the community is
creating a plan (i.e., a workflow) to solve the problem. This
assumption is reasonable if the time taken to generate the plan
is sufficiently short.

A workflow is defined as a collection of interlinked ab-
stract tasks. A task represents a single abstract behavior or
accomplishment without completely specifying how it must
be performed. A service is a concrete implementation of
a task and may involve a computation by the device, an
activity performed by the user, or some combination of the
two. Execution of a task thus consists of the invocation of
a service satisfying the respective task specification. Within
a workflow, different tasks may be performed in sequence
or in parallel by one actor or by multiple actors. Each task
has preconditions that must be met before the task can be
performed, and postconditions that describe the results of per-
forming the task. Abstractly, we can enable the performance
of a given task by performing one or more preceding tasks



4 SUBMITTED TO IEEE TSE, 2009-11-01

whose postconditions taken together ensure the preconditions
necessary for the given task. The order, timing, and executors
of the preceding tasks are unconstrained so long as the given
task’s preconditions hold when it is to be performed. As the
postcondition of one task can be the precondition of another,
we can treat them uniformly as conditions. We assume that a
task is either conjunctive, requiring all of its preconditions, or
disjunctive, requiring only one of its preconditions, and that a
task produces or establishes all of its postconditions.

Tasks can be joined together by exactly matching pre-
conditions to postconditions. Conditions and tasks within a
workflow thus may be considered nodes in a bipartite directed
acyclic graph. We begin with the simplifying assuming that
each condition and task in the graph can be represented by a
simple semantic label, where each label has a distinct meaning.

A workflow has the additional constraints that (1) all sources
(nodes without any incoming edges) and all sinks (nodes
without any outgoing edges) are conditions, (2) a condition
can have at most one incoming edge, and (3) there are no
duplicate nodes (nodes with the same label) in the graph. This
definition allows us to compose two workflows by merging
(a) identical sinks from one workflow with the corresponding
sources from the other workflow and (b) identical sources
in both workflows. Two workflows are composable if and
only if matching sinks and sources yields a valid workflow.
For instance, a workflow W1 with sources {a, b, c} and sinks
{d, e, f} and a workflow W2 with sources {c, d, e} and sinks
{g, ℎ} can be composed into a new workflow W with sources
{a, b, c} and sinks {f, g, ℎ}. Workflow fragments are merely
small workflows (possibly even a single task) that are intended
to be composed into larger workflows at a later time.

A workflow is constructed in response to an expressed need.
In general, this need is stated in terms of a specification S:
a predicate that indicates whether or not a workflow is
satisfactory. The inset and the outset of a workflow are its
sources and sinks respectively. We assume S is of the form

S ∈ P(Conditions)× P(Conditions) 7→ Boolean

A workflow W with inset W.in and outset W.out then satisfies
a specification S if and only if S(W.in,W.out) is true.

Composing workflow fragments may produce a workflow
that cannot satisfy a specification S only due to the existence
of extra sinks or sources. We can prune a workflow to remove
unnecessary data flows, subject to the following constraints
which ensure the result remains a valid workflow: (1) task
outputs that are sinks can be pruned so long as every task
has at least one output, (2) task inputs that are sources can be
pruned for disjunctive tasks so long as every task has at least
one input, and (3) tasks can be pruned so long as any task
inputs that are sources and any task outputs that are sinks are
also pruned.

Once a problem has been identified and a specification
given, the knowhow (in the form of workflow fragments) and
capabilities (in the form of services) of the local community
are synthesized to form a plan by constructing a workflow. The
construction problem is defined as follows. Given a workflow
specification S and a set of workflow fragments K, find a set
of workflow fragments in K which may be composed (subject

to pruning) into a workflow W that satisfies S — we say that
W is feasible given S and K. It is important to note that
the defining features of the open workflow paradigm rest with
the fact that the specification S can be generated dynamically
in response to a new need, context change, or other event,
and that the set K represents the combined knowledge of the
community as a whole. K is distributed and dynamic. As
participants move around in space, the knowledge available
to the community changes with its membership and their
experiences. For the same specification, different communities
may respond differently or may be unable to construct an
appropriate workflow.

As the plan is formed, tasks must be allocated to partici-
pants who will eventually execute corresponding services. The
availability of services and resources within the community
determines to whom tasks are allocated. Service availability
is determined by whether any participant can commit to
providing a service: that is, (1) whether the participant is
capable of performing the service, (2) whether the participant
has time available, (3) whether the participant can travel to
the necessary location to perform the service, (4) whether the
participant can gather the necessary inputs and distribute any
outputs in a timely manner, and (5) whether the participant
is willing (according to their preferences) to perform the
service. If the community is stable and all participants are
mutually reachable, it is easy to guarantee that the participants
supporting the execution of tasks that depend upon each other
are able to communicate the needed results in a timely fashion.
More sophisticated routing techniques and analysis [4] may be
needed if the movement of participants results in temporary
disconnections. Once a participant has made a commitment, it
is responsible for ensuring the service is executed as agreed. A
participant is thus free to move about and requires no further
communication with the community except possibly for previ-
ously agreed upon meetings to gather inputs or distribute out-
puts. As individual participants execute their assigned services
from the dynamically constructed workflow, the community as
a whole thus performs the activities necessary to satisfy the
specification and achieve the original goal.

We can expand the expressiveness of our workflow rep-
resentation by relaxing the assumption that conditions are
represented as simple labels. Let the representation of each
condition be a set of attributes, where each attribute is a 3-
tuple consisting of a name, a type, and a value-set. The name
of an attribute identifies its semantics, and the value-set of
an attribute is a nonempty set of elements of the attribute’s
type. Attributes are metadata describing the actual data flow
or control flow semantics of conditions. By tracking multiple
attributes for each condition, we can more closely model
realistic behavior. For example, consider a task that delivers
a load of bricks. Instead of having a postcondition of “bricks
delivered”, we can have the more descriptive postcondition
of “label: bricks delivered, location: St. Louis, quantity: 50”,
which is significantly different from the task with the post-
condition “label: bricks delivered, location: St. Charles, quan-
tity: 100”. In this case, each condition has three attributes,
namely ‘label’, ‘location’, and ‘quantity’. We use value-sets
rather than single values as it allows us to indicate that a



THOMAS et al.: ACHIEVING COORDINATION THROUGH DYNAMIC CONSTRUCTION OF OPEN WORKFLOWS 5

metadata attribute has multiple acceptable values, whether
represented as a numeric range or a set of enumerated values.
For example, “shipping: {overnight, 2-day}” indicates that
both overnight and 2-day shipping are acceptable, but ground
shipping not acceptable.

In order for tasks to be joined, their preconditions and
postconditions still must match exactly. When they do not
match, it may still be possible to join the tasks by special-
izing them, further constraining the tasks’ preconditions and
postconditions when there are multiple acceptable values until
they do match. The required specialization can be determined
by intersecting the conditions; if the intersection is empty,
the tasks cannot be connected. Starting at the bottom of the
hierarchy, two attributes (with the same name and type) may
be intersected to produce a new attribute (with the same name
and type) whose value-set is the intersection of the original
attributes’ value-sets. However, if the intersection of the value-
sets is the empty set, then the intersection of the attributes is
empty — there is no attribute corresponding to the intersection.
Next, two conditions may be intersected to produce a new
condition containing the attributes resulting from intersecting
the attributes of the original conditions on a name-and-type
by name-and-type basis. If any of the attribute intersections
are empty, then the intersection of the conditions is considered
empty. For example, if the postcondition of task “Buy Animal”
is the condition “animal: {pig, chicken}” and the precondition
of task “Raise Animal” is “animal: {cow, chicken}”, then
the tasks cannot be safely connected as we might buy an
animal that we can’t raise. However, the intersection of the
conditions is “animal: chicken”, meaning that both tasks
agree that a chicken would be acceptable, so a specialized
version of the “Buy Animal” task that only produced chickens
and a specialized version of the “Raise Animal” task that
only consumed chickens could be connected together. If the
precondition of task “Raise Animal” was “animal: {dog, cat}”,
the intersection would be empty and there would be no way
to specialize these tasks to make them compatible. If there are
any attributes in one condition that are not in the other, then
the intersection of the conditions is also considered empty —
that is, there is a semantic mismatch and the two conditions
cannot safely be connected. For example, there is no way
to specialize a task with the postcondition “animal: goose”
and a task with the precondition “animal: goose, lays-golden-
eggs: true” to make them compatible. Even though both tasks
involve a goose, a task that can produce a goose is unlikely to
be able to produce a goose that lays golden eggs, and a task
that requires a goose that lays golden eggs is unlikely to be
able to establish its postconditions with a regular goose.

To correctly specialize a task, it is important to maintain
the same relationships among the preconditions and postcon-
ditions of the new task that the original task establishes among
its preconditions and postconditions. We extend the definition
of a task to include a set of relations. A relation is a formula
establishing a relationship between two or more individual
attributes of task. We make the simplifying assumption that a
relation always establishes the equality of two attributes. For
example, consider the task “Raise Animal” which has precon-
dition “label: baby animal, animal: {cow, chicken}” and the

postcondition “label: adult animal, animal {cow, chicken}”. If
we specialize this task so that the postcondition is an adult
cow, we need to correspondingly change the precondition lest
we claim that we can turn a baby chicken into an adult cow.1

We add the relation

precondition.animal = postcondition.animal

to our task definition to make the relationship explicit. Re-
lations can establish equality between any two attributes,
whether one is in the precondition and one is in the post-
condition, both are in the precondition, or both are in the
postcondition. For example, when assembling a car it may be
important to establish the relation that the color of received
car door be the same as the color of the received car body.

Changing condition labels to attribute sets also requires
a clarification of the workflow composition rules. Duplicate
condition nodes are still prohibited in the graph, but the
condition “animal: {pig, chicken}” and the condition “animal:
chicken” are considered distinct. A “Buy Animal” task with
the postcondition condition “animal: {pig, chicken}” should
also be distinct from a “Buy Animal” task with the post-
condition “animal: chicken”, so we change the rule to say
that a task’s uniqueness is determined by is preconditions,
postconditions, and label taken as a whole. Thus, two different
specializations of the same task are not considered duplicate
tasks, and we can use a task more that once in a workflow
so long as the contexts (as represented by the specializations
of the tasks) are distinct. A general task may be performed at
two different locations or produce two different sized outputs
in the same workflow because the instances are two distinct
specializations.2

With the introduction of attribute sets and task specializa-
tion, we need new rules to specify which services implement a
task specification. Here we consider each task as it is used in
the final workflow, meaning that it may have adjusted attributes
due to specialization and that unnecessary preconditions and
postconditions will have been removed. A service implements
a task’s specification if it meets the following four require-
ments.

1) The service’s label must exactly match the label of
the task, and the service and the task must both be
conjunctive or both be disjunctive.

2) The service’s relations must exactly match the task’s
relations.3

3) The service’s preconditions must dominate the tasks
preconditions. That is, the service must accept at least
all of the possible input values that the task accepts,

1The original task indicates that it might perform this feat, but not that
it must. A service that just raises the animal normally still conforms to the
behavior specified by the original task.

2The careful reader may have noticed that the workflow in Figure 2 violates
this rule. Adding a “location” attribute to the “At Assembly Point” condition
would make the workflow valid and be very helpful to the officer trying to
perform the head count.

3This is a sufficient though not strictly necessary condition to guarantee a
service meets a task specification. It is only necessary that a service’s relations
establish at least all the conditions the tasks’s relations establish, but this
quickly becomes undecidable once the relations besides simple equality are
allowed.



6 SUBMITTED TO IEEE TSE, 2009-11-01

though it may accept inputs that the task would not.
We say that one attribute dominates another if they
have the same type and the dominant attribute’s value-
set contains at least all the values in the subordinant
attribute’s value-set. A condition dominates another if
they have the same set of attribute names and all of the
dominant condition’s attributes dominate the subordinant
condition’s attributes on a name-by-name basis. For a
disjunctive task, the service must have a precondition
that dominates the task’s one precondition (and any extra
service preconditions are disregarded). For a conjunctive
task, the task and the service must have the same number
of preconditions and there must be a one-to-one mapping
from task precondition to service precondition such that
each service precondition dominates its corresponding
task precondition.

4) The tasks’s postconditions must dominate the service’s
postconditions, when the service’s preconditions are
specialized to match the task’s preconditions. That is,
the service must produce at most any of the possible
output values that the task produces, though it may
never produce some outputs that the task would. The
service must have at least as many postconditions as the
task and there must be a one-to-one mapping from task
postcondition to service postcondition such that each
task postcondition dominate the service postcondition.
(Any extra service postconditions are disregarded.)

III. COLLABORATIVE CONSTRUCTION, ALLOCATION, AND
EXECUTION

A. Construction

We begin this section by introducing a construction algo-
rithm for open workflows under the simplifying assumption
that conditions are represented by simple labels. We assume
a participant has identified a need for action and generated a
specification S of the form

W.in ⊆ � ∧W.out = !

where � and ! are sets of conditions with � being the triggering
conditions and ! being the conditions that represent the goal.
The participant is in contact with the other members of a
community and can collect from each a set of workflow
fragments. For the purposes of illustration, we start with the
simplifying assumption that the participant initially collects
all the fragments in the community to create the set K. Using
the gathered information, the participant runs our algorithm
to find a feasible workflow — a workflow composed of
fragments from K (subject to pruning) that satisfies S — if
one exists. We only consider initially the issue of generating
one feasible workflow, although there are potentially many
ways of combining fragments in K to satisfy S. While our
algorithm chooses arbitrarily among equivalent options, any
heuristic may be incorporated to direct the search toward more
favorable solutions.

Our algorithm is based on graph traversal and graph col-
oring, and takes its inspiration from spanning tree algorithms
and routing algorithms such as AODV [5]. Our strategy is

to combine all workflow fragments from K into one large
graph, henceforth called the workflow supergraph G. The
supergraph represents a unified view of all possible actions
represented in the set K, however it is not necessarily a
valid workflow since it may have cycles, outputs produced
by multiple tasks, unavailable inputs, or undesired outputs.
We use a node coloring process on the supergraph G to
identify one feasible workflow within this graph. We start by
coloring the nodes corresponding to set � of the specification
S. Following the data flows, we explore the graph, growing
the colored section as we identify which tasks and conditions
are reachable from �. We call a condition reachable when it is
in � or when it denotes the output of a reachable task; a task
is reachable when all necessary input conditions are available
for its execution via some path starting from �.

Once we have reached all the elements of !, we prune the
reachable set down to a valid workflow. Working backwards
with a new color, we identify only those paths which are
actually required to reach !. The pruning phase removes
cycles, ensures only one task produces each output, and
excludes undesirable outputs. Once the second color has swept
all the way back to �, we have fully identified W , a valid
workflow that satisfies specification S and that is composed
only of fragments in K that have been pruned of unneeded
outputs and paths.

With this general strategy in mind, we present the full
pseudo-code in Algorithm 1. For purposes of the algorithm,
we annotate every node and edge in G with a color (initially
uncolored) and every node with a distance (initially ∞)
from a source on the graph. Nodes are marked green for
reachability during the exploration phase and blue for work-
flow membership during the pruning phase; purple identifies
nodes on the boundary of the blue region. Condition nodes
are considered disjunctive. The algorithm selects nodes non-
deterministically; any node may be processed next so long as
it matches the guard condition.

We offer a proof sketch of the correctness of our algorithm
by highlighting several key invariants. First, we claim that
every green node is reachable starting from �, and all of its
prerequisites have a smaller distance. A node is reachable
when it is in �, or when its prerequisites are reachable. The
invariant holds after every step of the algorithm because we
start with the nodes in � with distance 0 and we work outward
one edge at a time, coloring a node n green only when n’s
prerequisites are already green (reachable) and assigning n a
distance greater than any of its prerequisites.

Second, once ! is colored blue, we claim that after every
even number of iterations, the graph of blue nodes and blue
edges is a valid workflow. At each step we choose a node n
which is in the inset of the blue portion of the supergraph as
it has no blue parents. Once we color the prerequisites of n
blue, n is no longer a member of the inset but the prerequisite
nodes are now members, so n and thus n’s dependents are
still reachable from the inset. On an odd iteration we color
a task, and on the even iteration we color its prerequisite
conditions. Thus, after each pair of steps, the sinks and sources
of the graph will be conditions and the graph will be a valid
workflow.



THOMAS et al.: ACHIEVING COORDINATION THROUGH DYNAMIC CONSTRUCTION OF OPEN WORKFLOWS 7

Algorithm 1 Workflow Construction (given �, !, and K)
— Construct Supergraph —
G← ∅
for all fragments F ∈ K do

for all nodes n ∈ F do if n /∈ G then G← G∪{n}
end if end for
for all edges e ∈ F do if e /∈ G then G← G∪{e}
end if end for

end for

— Exploration Phase —
Track the set of greenNodes (initially empty).
for all n ∈ � do (n.color, n.distance) ← (green, 0) end
for
until ! ⊆ greenNodes ∨ none of the following cases apply,
for some n ∈ G do

if n is disjunctive ∧ any of n’s parents are green then
d ← min{p ∈ n’s parents ∨ p.color =
green ∣ p.distance}
if (n.color = uncolored ∨ (n.color = green ∧
n.distance > d+ 1)) then

(n.color, n.distance)← (green, d+ 1)
end if

else if n is conjunctive ∧ all of n’s parents are green
then

d ← max{p ∈ n’s parents ∨ p.color =
green ∣ p.distance}
if (n.color = uncolored ∨ (n.color = green ∧
n.distance > d+ 1)) then

(n.color, n.distance)← (green, d+ 1)
end if

end if
end until
if ¬(! ⊆ greenNodes) then there is no solution — exit.

— Pruning Phase —
Track the set of purpleNodes (initially empty).
for all n ∈ ! do n.color ← purple end for
until purpleNodes = ∅ for some n ∈ purpleNodes do

if n.distance = 0 then
requiredParents ← ∅

else if n is disjunctive then
requiredParents ← {the parent of n with mini-
mum distance}

else if n is conjunctive then
requiredParents ← n’s parents

end if
for all p ∈ requiredParents do

edge(p, n).color ← blue
if p.color = green then p.color ← purple end
if

end for
n.color ← blue

end until
The set of nodes and edges colored blue is the constructed
workflow.

Finally, we claim that the coloring of blue nodes will
eventually terminate, and upon termination the graph formed
by the blue nodes and edges will be a workflow satisfying
specification S. From the first invariant, every node n with
distance greater than 0 must have prerequisites with distance
strictly less than n’s distance. Every time a node n in the inset
is replaced with its prerequisites, the distance of the nodes
added to the inset is strictly less than the distance of the node
removed. Eventually the inset will consist solely of nodes with
distance 0 (thus nodes in �) and the algorithm will terminate.
As the inset is a subset of � and the outset is equal to !, the
workflow consisting of the blue nodes and edges satisfies S.

While there are many ways to maintain a community and
share knowledge within that community, we chose an approach
that places few restrictions on the members. We constrain
our definition of a community to one whose participants
are within communication range of each other and announce
their willingness to participate. The community is dynamic as
members can join and leave at will.

We observe that the coloring process requires only local
knowledge. Thus, we relax the assumption that all of the work-
flow fragments are collected from the community before the
coloring process begins. In our implementation, the member
constructing the workflow builds the set of workflow fragments
K and thus the supergraph G incrementally by querying other
members of the community for workflow fragments that can
be used to extend G. Members joining after the algorithm has
started can still contribute knowledge, and the departure of a
member does not affect the knowledge already collected in the
supergraph.

We next tackle the challenge of constructing a valid work-
flow when configurations are represented as attribute sets
rather than simple labels. If we were to directly apply the
preceding algorithm, we would need to create a supergraph
node for every possible specialization of every task that may
appear in the workflow, which quickly becomes intractably
large. Instead, we place each task into the supergraph once,
using a special representation of the conditions. Consider two
tasks that can be connected in a workflow by specializing
their conditions. Their corresponding task nodes should be
correspondingly connected (through a condition node) in the
supergraph. However, if the tasks’ original conditions do
not match, the two task nodes would be connected to two
different condition nodes with no connection between them.
We combine those two condition nodes into a condition bin
node, where a condition bin represents a generalization rather
than a specialization of a condition. We say that a condition
fits into a bin if (1) the condition and the bin have the same
number of attributes and the same set of attribute names, and
(2) for each attribute, the bin contains at least one value that
the condition contains. Our supergraph is now a bipartite graph
of task nodes and condition bin nodes.

As new workflow fragments are received from the commu-
nity to be added to the supergraph, we must incrementally
update the condition bins with the new conditions. We main-
tain the invariants that every condition in K fits into exactly
one bin in the supergraph, and that every pair of conditions
with a non-empty intersection fall into the same bin. If a



8 SUBMITTED TO IEEE TSE, 2009-11-01

new condition fits into none of the condition bins in the
supergraph, a new condition bin is created that has the same
attribute sets as the condition. If the new condition fits into one
existing bin, the bin is updated by adding any new values from
the condition’s value-sets to the bin’s value-sets, maintaining
the invariants by ensuring that any subsequently encountered
condition with these values will also fit into this bin. Finally,
if the new condition fits into more than one existing bin, all
matching condition bins must be merged. Condition bins are
merged by (1) creating a new bin containing an attribute-by-
attribute union of all the value-sets, and (2) pointing the edges
incident on all the old bins to the new bin. The merging of
two condition bins in a supergraph can force further merging
with other related bins in order to maintain the invariants.

The resulting supergraph is a useful, simplified represen-
tation of the workflow construction problem. If there is no
workflow in the supergraph that satisfies S while ignoring
task specialization and relations, then there is definitely no
satisfying workflow to be constructed from the available tasks
while honoring task specialization and relations. The inverse
does not hold, but we use the detection of a simplified
workflow in the supergraph as an indication that we can start
searching for a complete workflow.

There is more useful information we can glean from the
supergraph. As stated earlier, tasks reachable from � are col-
ored green in the supergraph. We can also use the supergraph
to identify and color all the tasks that can eventually reach
!. We use a similar traversal algorithm going in the opposite
direction to identify these tasks. As we now want a node to
possibly have two colors, we will say that this reverse traversal
flags nodes with the color red. Only nodes that are flagged both
green and red can be in the solution, which reduces the number
of nodes we need to consider during workflow construction.

We can construct valid workflow satisfying S by building
backward from ! to � just as in the blue coloring process. Each
time a task is added to the workflow under construction, both
the new task and the existing task in the workflow may need to
be specialized before the new task can be joined to the existing
task. When a parent task must be chosen for a condition, the
supergraph constrains the search space to only those tasks
connected to the corresponding condition bin. However, we
do not know which of those parent tasks, if any, will lead to a
feasible workflow, so we may need to use backtracking to try
the alternatives. The construction of the workflow can traverse
cycles in the supergraph, so long as a particular specialization
of a task in the cycle does not occur more than once in the
final workflow.

At this point, while we can construct a valid workflow
satisfying S, we do not have enough information to guarantee
that the workflow we construct will be allocatable. We discuss
out approach to this problem in the next section.

B. Allocation

If we do not take into account the availability of services
as provided by the members of the community, we may
construct a feasible workflow that the community cannot
execute. Once the supergraph indicates that a task may be

in the final workflow (that is, the task is flagged as both green
and red), we query the community to find the availability of
services corresponding to this task. A participant’s availability
information for a task consists of (1) the set of services
provided by the participant that implement the task and (2) a
list of the participant’s availability windows for each service,
where each window consists a starting time, a starting location
(where the participant will be when it becomes available), an
ending time, and an ending location (where the participant
must be to meet its next commitment). A window may also
be open ended (no end time or end location) if the participant
has no further commitments. The supergraph allows us to
collect only the relevant details from the extensive availability
information distributed amongst the participants. We make the
simplifying assumption that every service available within the
community has at least one open ended availability window.

For each task, there may may be no service availability, or
there may be multiple implementing services available from
multiple participants. To ensure that we only consider tasks
with available corresponding services during construction, we
create a new supergraph from the service definitions (which we
denote the service supergraph to distinguish it from the task
supergraph). We execute our previously described construction
algorithm using the service supergraph, producing a valid
workflow consisting of service invocations that satisfies the
specification S using only services that are available within the
community. We use the term service invocation to describe a
single usage of a service in a workflow, since a service may be
invoked multiple times but with different contexts (specializa-
tions) as previously described. In our initial implementation of
this algorithm, we perform an iterative deepening depth first
search through the service supergraph to construct our final
workflow.

The final step of the allocation phase is to allocate each
service invocation in the workflow to a participant in the
community. For each service invocation in the constructed
workflow that has no unallocated predecessors, we allocate
it to the first available time slot in our collection of par-
ticipant availability windows. Our allocation is sensitive to
the spatiotemporal constraints of the participants. We assume
that each service invocation will have a specified location and
duration determined from the service and task metadata during
construction, and we assume that each participant can tell
us how long it takes for that participant to travel between
two locations. To determine whether a service allocation will
fit into an availability window, we verify that the participant
has enough time to (1) travel from their starting location to
the service location, (2) execute the service for the specified
duration, and (3) travel from the service location to their
ending location (to meet their next commitment). By the
assumption of at least one open ended availability window,
we are guaranteed to find at least one suitable participant. We
allocate the service invocation to that participant, and iterate
until all of the service invocations in the workflow have been
allocated to the community.



THOMAS et al.: ACHIEVING COORDINATION THROUGH DYNAMIC CONSTRUCTION OF OPEN WORKFLOWS 9

C. Execution

When a participant is allocated a service invocation, it adds
a commitment to its schedule that contains all the necessary
information to execute the service. The participant is free to
roam, but is responsible for meeting its commitments. Thus
the execution phase of an open workflow proceeds in a fully
decentralized, distributed manner. To meet a commitment, the
participant must (1) acquire the required inputs for the service
from the executor of the preceding tasks, (2) be at the required
location for executing the service, and (3) execute the service
at the required time. The participant monitors these conditions
and, based upon their knowledge of their location and the
travel times involved, travels and communicates as necessary
to meet the conditions and successfully execute the service.
Once the service has been executed, the participant’s final
responsibility is to communicate the service’s outputs to any
other participants that require them.

IV. SYSTEM ARCHITECTURE

A. An Open Workflow Management System

We have designed and implemented a complete open work-
flow management system in Java. Our approach offers an
intuitive calendar-like interface, behind which integrated goal
specification, communication, and service invocation features
combine to enable construction and execution of sophisticated
open workflows. Source code and executables for the applica-
tion are available as open source software at our web site [6].

The basic steps in deploying an application using our open
workflow management system are (1) installing the program
on the users’ devices, (2) adding knowhow in the form
of workflow fragments, and (3) adding service descriptions.
In our implementation, we use XML configuration files to
provide the task and service definitions for each device. Once
this initial configuration has been completed, any participant
can use their device to create a problem specification. In
response, the system will automatically construct, allocate, and
(by prompting the users) execute an appropriate workflow.

Figure 3 shows two screenshots from community members
participating in an open workflow. The tabs on the left are for
reviewing static knowledge. On the top are tabs for dynamic
activities and alerts. Figure 3(a) shows the form that allows the
user to create a problem specification by entering information
about the triggering conditions and goal. In Figure 3(b),
the Schedule tab allows the user to view their schedule of
commitments. The necessary travel time is also blocked out in
the schedule, and the system has added an alert tab to notify
the user that they must soon begin traveling to meet their
scheduled commitment. The remaining tabs allow the user to
configure the list of workflow fragments (knowhow), the list
of local services (capabilities), and other system settings.

The system invokes services by loading the Java class
named in the XML configuration file, passing it a map of
the inputs received from the preceding workflow tasks and
configuration parameters from the XML configuration file,
and receiving a map of outputs to send to the subsequent
workflow tasks. Thus the system can feasibly invoke any
computational service that can be called from Java. The system

(a) Add Problem tab

(b) Schedule tab

Fig. 3. Screenshots from community members participating in an emergency
response open workflow.

also directly supports services that require user action. We
provide a sample service implementation that interacts with
the user by presenting a simple form, where the form is defined
in the XML configuration file. Human-oriented “services” can
be implemented by presenting the user with a form for data
entry or even just brief instructions and a button to click when
the activity is complete.

B. Goals, Design Principles, and Architecture

Our goal is a system that will support the coordination and
participation of devices with diverse capabilities. Further, we
want to build a system robust enough and flexible enough to
encourage rather than hinder innovations from future research.
Consideration of these goals led us to the following two design



10 SUBMITTED TO IEEE TSE, 2009-11-01

Communications
Layer

TravelRoute

Schedule

Service

Execution

Fragment

Task Availability

Service
Instances

UI

UI

UIUI

UI

Workflow 
Initiator

Workflow

UI

UI
Workflow

Workspaces

Inter-service Messages

Execution Subsystem Construction Subsystem

Task Availability and 
Task Allocation Messages

Fragment Messages

Workflow Status Messages

CurrentLocationUI

Travel Route Messages

Fig. 4. System architecture.

principles. First, the architecture should break apart the major
responsibilities of the system into independent components,
allowing each host to provide only the components that are
appropriate to the host’s physical capabilities. Second, the
architecture should isolate and hide the highly variable details
of the transports, protocols, and caching schemes used dur-
ing communication by providing an abstract communications
layer. Passing messages through an intermediary also ensures
that local and remote components are accessed uniformly.

Based upon these design principles, we identified the fol-
lowing major responsibilities for our open workflow manage-
ment system, as illustrated in Figure 4. We first observe that
for a particular open workflow problem, one host acts as the
initiator while all hosts (including the initiator) may act as
participants. We therefore split the system responsibilities into
two corresponding subsystems: the construction subsystem
and the execution subsystem. The construction subsystem is
responsible for identifying the problem to be solved, issuing
queries to discover knowhow, capabilities, and availability, for-
mulating the plan of action, and assigning work. The execution
subsystem is responsible for replying to informational queries,
accepting appropriate work assignments, and actually doing
the processing or communicating necessary to complete the
work.

a) Construction Subsystem.: The Workflow Initiator is
responsible for interacting with the user to define the trigger
conditions and goal conditions for the new problem. The
Workflow Manager is the core component of the construction
subsystem. The Workflow Manager creates and maintains a
separate workspace for each open workflow, allowing it to
work simultaneously on multiple isolated and independent
problems. The Workflow Manager issues queries to discover
knowhow (“Fragment Messages”) and integrates the responses
into the supergraph. It queries for availability and travel
time information (“Travel Route Messages”) and constructs
an open workflow. Finally, it issues allocation requests to
participants and listens to confirm that each allocation is
properly committed (“Workflow Status Messages”).

b) Execution Subsystem.: The Fragment Manager is re-
sponsible for maintaining a host’s database of workflow frag-
ments and responding to knowhow queries during workflow
construction. The Travel Route Manager is responsible for

maintaining a host’s database of known locations and travel
times. The Current Location manager encapsulates detecting
and tracking the participant’s location. The Schedule Man-
ager tracks the host’s schedule and scheduling preferences. It
maintains a database of all commitments, primarily consisting
of scheduled service invocations and their associated location
and travel time details, which is the key data structure for both
allocation and execution of an open workflow. The Execution
Manager monitors the input, spatial, and temporal conditions
required for each scheduled service invocation during the
execution phase. Once an invocation’s necessary conditions
are met, it triggers service execution, and publishes any
output messages. It also responds to queries about the service
invocations it is monitoring for execution. (We direct the
Workflow Manager’s queries to the Execution Manager rather
than the Schedule Manager because we plan in future work to
expose further status information beyond just whether a service
invocation has been allocated.) The Service Manager maintains
the list of services exposed by this host and provides a
uniform service invocation interface to the Execution Manager
by handling parameter marshaling and any other mechanics
required to actually invoke a local service during the execution
phase. Finally, the Task Allocation Manager responds to avail-
ability queries by summarizing and translating the information
from the Schedule Manager and the Service Manager. It also
translates task allocation requests into commitments that can
be added to the Schedule manager.

Our architecture permits multiple open workflows to be
constructed and executed concurrently within the same com-
munity and even within the same host. The Workflow Manager
maintains a separate workspace containing construction state
information for each workflow. The remaining components
(such as the Task Availability Manager, Fragment Manager,
Schedule Manager, etc.) act at task granularity and thus handle
two task-based requests from two separate workflows no
differently than they handle two task-based requests from the
same workflow. While multiple workflows will necessarily
compete for utilization of the same resources (in the form
of hosts, their capabilities, and other resources present in the
environment), there is no impedance at an architectural level to
constructing and executing multiple open workflows at once.

Our current system architecture varies in two ways from
the architecture presented in [1]. The primary change is the
replacement of the Auction Manager and Auction Participation
Manager, which performed allocation in a manner similar
to our earlier Collaboration in Ad hoc Networks (CiAN)
middleware [3], with the Task Availability Manager which
implements the approach described in this paper. The other
change was to encapsulate location and travel time informa-
tion management within the Current Location Manager and
the Travel Route Manager. These refinements were achieved
without significant impact to other subsystems due to the
modularity and flexibility of our architecture overall.

V. EVALUATION

We use a combination of simulation and empirical eval-
uation to test our system and demonstrate the viability of



THOMAS et al.: ACHIEVING COORDINATION THROUGH DYNAMIC CONSTRUCTION OF OPEN WORKFLOWS 11

the open workflow paradigm. We focus on characterizing the
performance of the system in terms of three variables that
have the greatest impact on the scalability of our architecture:
the number of participants in the community, the number of
tasks known to the entire community, and the difficulty of the
problem being solved which we characterize by the size of the
resulting workflow.

Our experimental set up is as follows. Given the number
of hosts, the global number of tasks, and the length of the
workflow as parameters for an experiment, we configure the
hosts, establish connectivity within the community, and then
measure the time taken from when the specification is given
to the initiating host to the time when all tasks of the resulting
workflow have been successfully allocated to some host.

To configure the hosts, we first construct a workflow su-
pergraph of the chosen size by creating the desired number of
nodes and then repeatedly adding edges between disconnected
nodes until the graph is strongly connected. From this single
supergraph we can then draw a large number of guaranteed-
satisfiable specifications by randomly picking triggering and
goal conditions. We use only disjunctive task nodes in order to
maintain the guarantee of satisfiability during our automated
evaluations. Given a supergraph and a chosen number of
hosts, we finish setting up the scenario by distributing the
tasks randomly and evenly amongst the hosts, and inde-
pendently distributing corresponding services randomly and
evenly amongst the hosts. Each of the n hosts has only 1

n th
of the entire supergraph, so the hosts must cooperate to solve
the posed problem. For each test run, the test driver randomly
choses a path of the desired length through the supergraph,
and the initial and final label nodes of the path are used as the
specification for that test run. In all of the figures below, the
results for each path length are the average of one hundred
runs.

For the simulations, all the hosts were run within in a single
JVM and communicate solely through a simulated network.
The simulations were run on a Windows XP workstation with
a 2.8 GHz Intel Xeon processor and 2.75 GB of memory,
running the Java 1.6.0 16 HotSpot Client VM.

In Figure 5, we show the average time for each path length
from a supergraph with 25 task nodes as the number of
participating hosts varies from 2 to 16. The average time
grows roughly linearly with the number of hosts, as in our
implementation the initiating host communicates pairwise with
every member of the community during the construction and
allocation phases. We note that even if we were to broadcast
requests rather than using pairwise communication, the pro-
cessing of responses by the initiating host would still require
time linear in the number of hosts in the community.

In Figure 6, we show the average time for each path length
for 2 participating hosts as the number of task nodes in the
supergraph varies from 25 to 100. As we increase the length of
the solution paths, we see the average time will be dominated
by the time taken to search through the service supergraph
to construct the workflow. The rate of increase grows with
the number of task nodes because the Workflow Manager
encounters more nodes during its search through the densely
connected supergraph as the number of tasks increases. The

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0 2 4 6 8 10 12 14 16 18

Hosts

S
ec

o
n

d
s

length 10

length 8

length 6

length 4

length 2

Fig. 5. Simulation of 25 task nodes partitioned across different numbers of
hosts.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

2 4 6 8 10 12 14

Path Length

S
ec

o
n

d
s

100 node

75 node

50 node

25 node

Fig. 6. Simulation of different numbers of task nodes partitioned across 2
hosts.

0

1

2

3

4

5

6

7

8

9

2 4 6 8 10 12 14

Path Length

S
ec

o
n

d
s

25 task

50 task

100 task

Fig. 7. Empirical performance of ad hoc wireless networking for different
numbers of task nodes partitioned across 4 hosts.

longest path through the graph also increases as the size of
the graph increases, which explains the absence of timings for
path lengths greater than 10 in the small 25 task supergraph.

After the simulations, we performed empirical evaluation
of our application using four Fit-2PCs connected by an ad
hoc wireless network using 802.llg (54Mbit/s). The hosts
were all running Ubuntu Linux 8.04 with a 1.6 GHz Intel
Atom processor and 1 GB of 533 MHz DDR2 memory.
All hosts were running the Java 1.6.0 16 HotSpot Client
VM. Connectivity among the hosts was verified before the
measurements were started. The timing results for workflow
graphs with 25, 50, and 100 task nodes are shown Figure 7.

We can see from this graph that even in a realistic net-
working environment, our system shows the potential to solve



12 SUBMITTED TO IEEE TSE, 2009-11-01

reasonably sized problems with acceptable response times. For
example, with a community knowledge base of fifty tasks to
explore, and a solution path length of fourteen, our system
finds and allocates a solution in about two and a half seconds
on average.

A. Directions for Future Work

These encouraging results demonstrate that our system is
ready to be evaluated against real-world problems. In order
to accomplish this, we will seek a community to serve as a
source of realistic benchmarks. We expect to face new issues
when adapting our system to the rigors and challenges posed
by our sample community.

One such concern for future research is the representa-
tion specifications. Weakening our initial assumption that a
specification only involves the inset and outset would allow
specifications that include constraints on all aspects of the
workflow graph, such as path length, task preferences, and
external temporal and spatial constraints. Furthermore, the
specification can be expanded to influence the allocation and
execution phases. A specification, for example, could minimize
the set of participants or restrict the locations of certain
tasks. As the the sophistication of our formalism increases,
more advanced planning techniques need to be brought into
play. Solving problems with hundreds of tasks and large
workflow path lengths will require further optimizations to our
basic iterative deepening depth first search that take further
advantage of the inherent structure of valid workflow graphs.

The handling of errors, community dynamics, and changes
in the environment by the open workflow paradigm is another
area for future research. For example, the departure of a
participant or a other change in availability during the end
of the allocation phase may cause the allocation to fail. When
such a change is detected, an alternative workflow that does not
require the lost resources could be constructed. A failure dur-
ing execution should result in a revised or repaired workflow,
which requires reconstruction, reallocation, and compensating
execution. Extending the current implementation with more
feedback mechanisms between the construction, allocation,
and execution phases seems like a promising approach. Devel-
oping an appropriate commitment and execution state model
that allows the participants to accomplish these activities in a
mobile ad hoc setting is a focus for future work.

We also want to investigate relaxing the current restriction
that construction and allocation are performed by a single host.
A middleware that supports distribution of these tasks would
allow construction and allocation in the face of fragmentation
of the community and support localized recovery after a
failure. When location constraints prohibit a rendezvous for
data transfer, the system should be extended to consider
scheduling participants into the workflow as couriers.

Finally, as with any application facing the rigors of the real
world, security is critical. In addition to the usual concerns of
trust, authorization, and privacy, the open workflow paradigm
presents new challenges as it encourages participation across
multiple administrative domains and social networks. Rec-
ognizing and handling changes in authorization and privacy

due to roles and social context and resolving conflicting
and competing specification ontologies are topics for future
research.

VI. RELATED WORK

In this research, we have focused on overcoming the
challenges of bringing workflows to transient communities
connected by mobile ad hoc networks. Standard workflow
management systems, such as ActiveBPEL [7], Oracle Work-
flow Engine [8], JBoss [9], and BizTalk [10], are designed to
work in fully wired environments, such as corporate LANs or
across the Internet. Reliance on centralized control and reli-
able communication mean such solutions cannot successfully
operate under the constraints of dynamic mobile environments.

Several workflow systems have been developed which ex-
tend the realms in which workflows may operate. The work
on federating separate execution engines running independent
workflows by Omicini, et al., [11] removes the requirement of
centralized control. Chafle, et al., [12], investigate decentral-
ized orchestration of a single workflow by partitioning the
workflow at build time and using message passing at run
time. Both approaches still assume reliable communication
and a fixed group of participants. MoCA [13] uses proxies for
distributed control and has some design features that support
mobile environments while Exotica/FDMC [14] describes a
scheme to handle disconnected mobile hosts. In AWA/PDA
[15], the authors adopt a mobile agent based approach based
on the GRASSHOPPER agent system. WORKPAD [16] is
designed to meet the challenges of collaboration in a peer-
to-peer MANET involving multiple human users, however
WORKPAD retains the requirement that at least one member
of the MANET be connected with a central coordinating
entity that orchestrates the workflow and shoulders any heavy
computational loads. Sliver [2] brings a full BPEL execution
engine to a single cell phone, however that phone still acts as
the sole coordinator. Finally, CiAN [3] presents a workflow
management system which eliminates the need for a central
arbiter by distributing not only service execution but also the
task allocation problem across multiple hosts.

While our system builds upon CiAN’s model of distributed
workflow allocation and execution, all these systems assume
that a thoughtfully designed and fully specified workflow
already exists. Open workflow is designed for settings where
the availability of resources and the range of responses de-
manded by changing circumstances cannot be anticipated. The
workflow to be executed must be generated on the fly to match
the present situation.

The automatic composition of services has been explored
using a variety of AI planing engines, including Golog [17],
Workflow Prolog [18], and PDDL [19]. A review of further
automated service composition methods may be found in [20].
Ponnekanti and Fox create workflows by rule-based chaining
in SWORD [21], and discuss situations in which the resulting
workflows may not produce the desired results due to the
preconditions and postconditions of each task not being suffi-
ciently specified. Fantechi and Najm [22] present an approach
for ensuring correct service composition by using a more



THOMAS et al.: ACHIEVING COORDINATION THROUGH DYNAMIC CONSTRUCTION OF OPEN WORKFLOWS 13

detailed formal specification of the service behavior. While
the initial open workflow construction algorithm we present is
a simplified alternative to the powerful techniques presented in
these papers, it also addresses a new problem specific to the
mobile ad hoc environment. All these systems assume that
the knowledge base from which to build the workflow already
exists. We have built upon their work by showing how to
construct both the knowledge base and the derived workflow
on the fly based on the knowhow and capabilities available
within the community.

VII. CONCLUSIONS

In this research, we have introduced the open workflow
paradigm. We began in [1] by presenting the first algorithm
for building a workflow on the fly from available contextual
knowledge and constructing a platform for further experimen-
tation with that approach. In this article we have presented
important extensions to this work: an enhanced formalism for
describing workflow construction that supports parameterized
tasks for better context sensitivity and extended construction
and allocation algorithms to capture the dynamics of service
availability in an ad hoc community. These proposed advances
have been implemented and evaluated in our open workflow
platform.

Taken together, the novel open workflow paradigm explored
by this research enables the development of new classes of
applications that are designed to exploit community knowledge
in solving real world problems that arise unexpectedly and
can be addressed only through the coordinated exploitation
of capabilities distributed among the members of the commu-
nity. The open workflow paradigm presents significant new
challenges for the middleware, MANET, workflow, planning,
and human-computer interaction research communities. The
work presented here represents only the first steps toward
characterizing and addressing these concerns.

In producing the first practical implementation of an open
workflow management system, we have affected a major
paradigm shift in workflow middleware. Open workflows are
much more than sophisticated scripts that enable one to exploit
available services — they are a coordination vehicle for social
and business activities that allows cooperating participants to
construct and execute responses to needs identified by the
participants. The open workflow paradigm enables the devel-
opment of an entirely new class of systems that are nimble,
mobile, and supportive of this new style of coordination.

Acknowledgments. This paper is based upon work sup-
ported in part by the National Science Foundation (NSF)
under grant No. IIS-0534699. Any opinions, findings, and
conclusions or recommendations expressed in this paper are
those of the authors and do not necessarily reflect the views
of NSF.

REFERENCES

[1] L. Thomas, J. Wilson, G.-C. Roman, and C. Gill, “Achieving coordina-
tion through dynamic construction of open workflows,” in (to appear)
Proceedings of the 10th ACM/IFIP/USENIX International Conference
on Middleware (Middleware 2009), Urbana Champaign, IL, USA,
November 30, 2009.

[2] G. Hackmann, M. Haitjema, C. Gill, and G.-C. Roman, “Sliver:
A BPEL workflow process execution engine for mobile devices,”
in LNCS, vol. 4294, 2006, pp. 503–508. [Online]. Available:
http://dx.doi.org/10.1007/11948148 47

[3] R. Sen, G.-C. Roman, and C. D. Gill, “CiAN: A workflow engine
for MANETs,” in COORDINATION, ser. Lecture Notes in Computer
Science, D. Lea and G. Zavattaro, Eds., vol. 5052. Springer, 2008, pp.
280–295.

[4] R. Handorean, C. D. Gill, and G.-C. Roman, “Accommodating transient
connectivity in ad hoc and mobile settings,” in Pervasive, ser. Lecture
Notes in Computer Science, A. Ferscha and F. Mattern, Eds., vol. 3001.
Springer, 2004, pp. 305–322.

[5] C. E. Perkins and E. M. Belding-Royer, “Ad-hoc on-demand distance
vector routing,” in WMCSA. IEEE Computer Society, 1999, pp. 90–100.

[6] Mobilab Group, “Open workflow project web site,” http://mobilab.wustl.
edu/projects/openworkflow/.

[7] Active-Endpoints, “ActiveBPEL engine,” http://www.active-endpoints.
com/active-bpel-engine-overview.htm.

[8] Oracle Inc., “Oracle workflow,” http://www.oracle.com/technology/
products/integration/workflow/workflow fov.html.

[9] JBoss Labs, “JBoss application server,” http://www.jboss.com/docs/
index.

[10] Microsoft Corp., “The BizTalk server,” http://www.microsoft.com/
biztalk/.

[11] A. Omicini, A. Ricci, and N. Zaghini, “Distributed workflow upon
linkable coordination artifacts,” in COORDINATION, ser. Lecture Notes
in Computer Science, P. Ciancarini and H. Wiklicky, Eds., vol. 4038.
Springer, 2006, pp. 228–246.

[12] G. Chafle, S. Chandra, V. Mann, and M. G. Nanda, “Decentralized
orchestration of composite web services,” in Proc. of the 13th Intl. WWW
Conference, 2004, pp. 134–143.

[13] V. Sacramento, M. Endler, H. K. Rubinsztejn, L. D. S. Lima,
K. Gonçalves, and G. A. Bueno, “An architecture supporting the
development of collaborative applications for mobile users,” in Proc.
of WETICE ’04, 2004, pp. 109–114.

[14] G. Alonso, R. Gunthor, M. Kamath, D. Agrawal, A. E. Abbadi, and
C. Mohan, “Exotica/FDMC: A workflow management system for mobile
and disconnected clients,” Parallel and Distributed Databases, vol. 4,
no. 3, 1996.

[15] H. Stormer and K. Knorr, “PDA- and agent-based execution of workflow
tasks,” in Proceedings of Informatik 2001, 2001, pp. 968–973.

[16] M. Mecella, M. Angelaccio, A. Krek, T. Catarci, B. Buttarazzi, and
S. Dustdar, “WORKPAD: an adaptive peer-to-peer software infrastruc-
ture for supporting collaborative work of human operators in emer-
gency/disaster scenarios,” Collaborative Technologies and Systems, In-
ternational Symposium on, vol. 0, pp. 173–180, 2006.

[17] S. McIlraith and T. C. Son, “Adapting golog for composition of semantic
web services,” in Proceedings of the 8th International Conference on
Knowledge Representation and Reasoning(KR2002), 2002, pp. 482–493.

[18] S. Gregory and M. Paschali, “A prolog-based language for workflow
programming,” in COORDINATION, ser. Lecture Notes in Computer
Science, A. L. Murphy and J. Vitek, Eds., vol. 4467. Springer, 2007,
pp. 56–75.

[19] D. McDermott, “Estimated-regression planning for interactions with web
services,” in Proceedings of the 6th International Conference on AI
Planning and Scheduling. AAAI Press, 2002, pp. 204–211.

[20] J. Rao and X. Su, “A survey of automated web service composition
methods,” in In Proceedings of the First International Workshop on
Semantic Web Services and Web Process Composition, SWSWPC 2004.
Springer-Verlag, 2004, pp. 43–54.

[21] S. R. Ponnekanti and A. Fox, “SWORD: A developer toolkit for web
service composition,” in Proceedings of the 11th World Wide Web
Conference, Honolulu, Hawaii, USA, May 2002. [Online]. Available:
http://www2002.org/CDROM/alternate/786/

[22] A. Fantechi and E. Najm, “Session types for orchestration charts,” in
COORDINATION, ser. Lecture Notes in Computer Science, D. Lea and
G. Zavattaro, Eds., vol. 5052. Springer, 2008, pp. 117–134.


	Open Workflows: Context-Dependent Construction and Execution in Mobile Wireless Settings
	Recommended Citation
	Open Workflows: Context-Dependent Construction and Execution in Mobile Wireless Settings

	tmp.1415131658.pdf.FIDvr

