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ABSTRACT OF THE THESIS

Supporting Collaboration in Mobile Environments

by

Rohan Sen

Doctor of Philosophy in Computer Science

Washington University in St. Louis, 2008

Research Advisor: Professor Gruia-Catalin Roman

Continued rapid improvements in the hardware capabilities of mobile computing de-

vices is driving a parallel need for a paradigm shift in software design for such devices

with the aim of ushering in new classes of software applications for devices of the

future. One such class of software application is collaborative applications that seek

to reduce the burden and overhead of collaborations on human users by providing

automated computational support for the more mundane and mechanical aspects of

a cooperative effort.

This dissertation addresses the research and software engineering questions associ-

ated with building a workflow-based collaboration system that can operate across

mobile ad hoc networks, the most dynamic type of mobile networks that can function

without dependence on any fixed external resources. While workflow management

systems have been implemented for stable wired networks, the transition to a mobile

network required the development of a knowledge management system for improving

the predictability of the network topology, a mobility-aware specification language to
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specify workflows that execute across mobile networks in the physical world, a mo-

bile workflow-management system to execute the workflows, and its accompanying

algorithms that help automate key pieces of the software.

In addition to details of the formulation, design, and implementation of the various

algorithms and software components, this dissertation also describes the construction

of a custom mobile workflow simulator that can be used to conduct simulation ex-

periments that verify the effectiveness of the approaches presented in this document

and beyond. Also presented are empirical results obtained using this simulator that

show the effectiveness of the described approaches.
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Chapter 1

Introduction

Rapid advances in mobile computing technology are redefining the notions of a com-

puting device, the manner in which people interact with such devices, and the places

where such interactions take place. Just as the Internet revolution of the 1990’s

changed computing by linking millions of previously isolated computers to the World

Wide Web, so too is mobile computing by taking this computing and communication

power from the desk and putting it in users’ pockets and purses. The opportunities

made possible by a mobile computing device are incredible. For the first time, a

computing device is able to perceive different physical and computational environ-

ments by virtue of the fact that the device itself is physically mobile. Perhaps even

more importantly, due to the fact that these devices are typically carried on one’s

person, the computational and physical environment perceived by the device is the

same as that perceived by the user. The proximity to the user and the complemen-

tary perception of the environment makes it possible for mobile devices to become

digital representatives of their users, not only for local computing needs, but also in

collaborations with other people and their devices.

Mobile devices foster a very different type of usage model. Since the device is easily

accessible at all times, the notion of a “working session” where the user’s sole focus is

on interacting with a computer gives way to a usage model where interactions with the

computing device are interspersed and mingled with other activities in the user’s life.

In addition, instead of focused sessions, usage of the computer occurs sporadically at

all times and in many different places, depending on the user’s movements over time.

A large fraction of the software built today has been conceptualized with traditional

computing environments and usage models in mind which assume powerful desktop
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and laptop computers, stable wired network connections, and focused, single user

tasks. Initial applications for mobile devices beyond personal information manage-

ment (PIM) functions sought to take these so-called “desktop” applications, miniatur-

ize them and shoehorn them onto mobile devices. However, as mobile device usage

continues to grow and people mature as users, there will be a demand for a new

generation of applications that are designed for and specifically tailored to mobile

computing platforms. The grand challenge will be to design a new class of software

that can exploit the novel environment, usage model, and hardware capabilities of mo-

bile devices to provide value-added services that users cannot expect from traditional

computing platforms.

There are, however, several technical challenges that must be addressed in order to

achieve the aforementioned goals. The hardware capabilities of mobile devices con-

tinue to lag significantly beyond those of traditional computing platforms, imposing

constraints on software footprints. Limited screen real estate and restricted (and

sometimes counter-intuitive) user interfaces can be off-putting to users and must be

managed carefully to present all the necessary information. Finally, the motion of

users (and therefore the devices) creates a dynamic network topology which is not a

conducive substrate for running complex, distributed applications.

This dissertation describes the design principles, algorithms, software architecture

and implementation of one such new class of software applications for mobile de-

vices - workflow-based collaboration management systems that allow several users

equipped with mobile devices to work collaboratively towards a common goal and

have the nuances of their collaboration handled automatically by the software that

runs on their respective mobile devices. Users can input a specification describing

their collaborative activity, the data and notifications to be exchanged, as well as

the overall structure of the collaboration. The system takes this specification and

executes it, sending notifications and collecting data from the various participants in

a structured manner until the entire collaborative activity is completed.

The subsequent sections in this chapter describe mobile devices, applications, and

collaboration technology in more detail to set the context for the work in this dis-

sertation. The core contributions of the dissertation are presented in subsequent

sections.
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1.1 Mobile Devices and Applications - A Brief His-

torical Perspective

1.1.1 Mobile Hardware

The notion of a mobile device has evolved significantly over the years. In the early

90’s, a laptop was considered a mobile device because it was portable and provided

computing resources away from the work desk. However, with wireless networking in

its infancy, a laptop was tied to a fixed location for its communication needs. The

late 90’s saw the introduction of the personal digital assistant (PDA) with Palm Inc.

offering several models, which redefined the notion of a mobile device. PDA’s brought

several innovations such as a smaller form factor, limited touch screen user interface,

and synchronization with a desktop or laptop computer using a USB dock. Most

importantly, it was the first pseudo general purpose computer that could fit in one’s

pocket.

Early PDAs still suffered from several restrictions however. Colored displays did not

appear until later (Handspring being one of the earliest to offer this feature) and

high resolution UXGA displays did not become commonplace until the next decade.

Wireless network connections (Wi-Fi and Bluetooth) too were not common features

in the initial models and the processor architectures were very different from those

used in traditional computers. PDAs also suffered from limited system memory (on

the order of 10’s of megabytes) and lack of storage space for applications and data.

Around the same time that PDAs were becoming popular and adoption rates were

increasing, cellular phones too started offering significantly more capabilities. Col-

ored screens, more sophisticated applications, and connectivity over cellular networks

resulted in the cellular phone becoming a viable computing platform. In addition, the

immense number of cellular phones (approximately 2.5 billion worldwide in 2006 [33]

with a further 1.1 billion sold in 2007 [8]) made developing the platform an attractive

economic venture.

Today, PDAs and cellular phones have converged to an extent as the Smartphone, a

combination of PDA and cellular phone capabilities, though there exist strong markets
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for each individual technology. Smartphones run mobile OSs like Symbian, the mobile

version of Apple Inc.’s OS X, Google’s Android, and offer several applications. In fact,

Apple’s iTunes App Store and Nokia’s N-Series applications represent commercial

efforts to have a large library of applications for mobile devices. The mobile device

of today is a small form factor device with a high resolution display, approximately

50 to 100 MB of RAM, persistent storage on the order of a few GB via expandable

flash-based media, powerful mobility optimized processors operating at a few hundred

megahertz, multi-mode communication capabilities via Bluetooth, Wi-Fi, and cellular

networks, and a varied and customizable application suite.

1.1.2 Mobile Applications

Applications on mobile devices have been restricted primarily by the processing ca-

pabilities of the devices. As such, initial PDAs and cellular phones offered only basic

personal information management tools, calculators, converters, etc. With advances

in hardware, PDAs in particular were able to offer miniaturized versions of desktop

applications such as word processors, spreadsheets, presentation viewers (Documents

To Go, Microsoft MobileOffice), to name a few. Over time, these miniaturized appli-

cations grew more and more sophisticated, implementing many additional features.

As communication hardware became a standard feature of mobile devices, applica-

tions evolved to exploit this feature. Applications now offered synchronization of

data over the air, web browsers (MobileIE, OperaMini), email clients (OutlookMo-

bile, Apple Mail, Mobile Safari), instant messaging (mobile versions of AOL IM, MSN

Messenger, GoogleTalk, and Yahoo Messenger), and RSS feed readers. The advent

of the so-called Web 2.0 resulted in mobile devices offering various social networking

(Facebook, MySpace), and user-created content functions (live mobile blogging). To-

day, the boundaries are being pushed further with location-based services (geo-tagging

of photos in Google’s Picasa and Apple’s Mobile iPhoto) and applications which seek

to customize the user experience according to one’s instantaneous location (Zagat

restaurant guide etc.)

It is worth noting however that in today’s applications, the communication capabil-

ities of a phone or PDA are being used solely to reach into the network core and
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interact in a manner that is very similar to a user browsing the web on a desktop

PC, albeit mobile device users can move around while accessing this content. There

is very little attention being paid to applications that can utilize the communication

capabilities of the devices to interact with others in the immediate vicinity directly in

an ad hoc manner. Such peer-to-peer interactions are the ideal platform for building

collaborative applications, which is the topic of this dissertation.

1.2 Introducing Collaborative Technology

A human being typically interacts with several other human beings during the course

of the day and a fair fraction of these interactions are in person, or to be more precise,

with another human being in the immediate physical and temporal vicinity. Mobile

devices connected directly to other devices in proximity in a peer-to-peer manner

are digital mirrors of the human interaction and can help support and manage such

interactions. This observation is the basis for engineering collaborative applications

for mobile devices.

Collaborative work is not necessarily restricted to people working with others in

their proximity. Rather, collaborations can be defined more expansively to be an

activity which requires the skill and input of multiple people in order to be completed

successfully. As such, collaborative applications have a very different structure and

user interaction pattern compared to single-user applications. The following example

contrasts a reference single-user application with its collaborative version.

In a modern word processor, only one person may work on a document at any given

time. There is no scope for two people to work on the document simultaneously or

any facility by which notifications are traded when one user wants the other user to

take over or offer feedback. It may be argued that this paints a rather bleak picture.

There are, after all, versioning systems that support multiple users editing separate

copies of a document simultaneously and then merging the changes. There are also

ways to comment on documents, highlight changes, and share them using a workspace

such as in Groove [61]. However, it should be observed that in each of these cases, the

burden of taking the steps to ensure a smooth collaboration falls on the user. Also,
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most of the functionality described above are external, i.e., they are not built into

the word processor itself.

Consider a similar example where a group of people are working on writing an aca-

demic paper. Each person is responsible for certain sections and the people writing

the later sections must have the text of the earlier sections as a reference. One way

this can be done today is by exchanging several emails to determine who is responsi-

ble for which section. Once this is done, the person writing the first section generates

the text using a word processor, saves the document, and emails it to the next person

in line. Alternately, he saves the document to a common space and then emails the

next person in line that he/she can now access the document.

Consider the alternative using more advanced collaborative technologies. Initially, a

shared space is created with the pieces of work being represented graphically. All

participating authors connect to the shared space and claim their “piece” simply by

clicking on the graphical representations of each work task. A chat window is available

to discuss any conflicts or details. Once the work is divided, the appropriate author

begins writing the first section. When the section is finished, the author simply selects

a “save and notify” option rather than simply “save”. This action saves the document

and notifies the next person in line that the document is ready for his/her attention.

It should be apparent from reading the description above that the structured nature

of the collaborative activity helps define the actions that the underlying software tech-

nology must take in order to facilitate the smooth progress of the activity involving

multiple people. One example of such an underlying software technology that is well

suited to supporting structured collaborations is workflow technology. This disserta-

tion uses workflow technology to build collaborative systems for mobile devices.

1.3 State of the Art in Workflow Management

The basic workflow model has been in use for several decades and some forms of it

predate even the earliest computers. Non-computerized workflows have been used

extensively in a wide variety of settings such as film production, industrial manu-

facturing, and inventory management, to name a few. As computers began to play
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an increasingly larger role in business enterprises, and tasks previously performed by

people became the domain of machines, a need was perceived for software systems

that could execute electronic versions of workflows. This gave rise to the notion of

business process management, where business processes such as a loan approvals,

insurance claims processing, etc. were encoded as a workflow, and a workflow man-

agement system (WfMS) invoked several software components in a structured manner

to execute such business processes.

Currently, there are several commercially available workflow management systems

(WfMSs) that are designed for the World Wide Web or enterprise LANs such as

Oracle 9i Workflow [74], ActiveVOS [3], JBoss [46], BizTalk [62], and i-Flow [26].

While there are some differences in features (a summary of which appears in [106]),

they are all designed as centralized systems with the WfMS resident on a central

server, invoking software services synchronously across the LAN or the Internet as

required to advance the state of the business process.

While these systems represent mature and proven technology in wired settings, there

are significant challenges in getting such systems to work across mobile networks.

As with all software designed with stable settings in mind, WfMSs of today suffer

from the fact that they are centralized and monolithic pieces of software that cannot

easily adapt to a more fluid mobile setting. However, building a mobile WfMS is

an important endeavor since it is the lack of such a WfMS that prevents the use of

workflows in more dynamic and mobile settings. As indicated earlier in this section,

workflows have historically been used in a wide variety of contexts and there is no

factor (other than the lack of a suitable WfMS) that prevents their use for supporting

collaborations involving humans and software services across mobile networks in the

physical world.

1.4 Problems with Bringing Workflows to Mobile

Environments

The work presented in this dissertation tackles the problems associated with bringing

WfMSs to mobile settings and specifically to MANETs. The work is motivated by the
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fact that mobile devices represent the next big paradigm shift in computing technology

and enjoy unsurpassed ubiquity across the world. However, successfully transitioning

a WfMS to a mobile setting will require solving several research, intellectual, and

engineering challenges, which can be summarized into three broad categories:

• Context Knowledge. In a dynamic network that extends over the physical

world, knowledge about both the physical and computational environment is

key to shaping the execution of the workflow and making decisions that result

in the fewest number of errors. Gathering, storing, trading, and using this

knowledge requires a sophisticated software infrastructure that can deliver the

required information reliably.

• Decentralization. In mobile networks, where the participants exhibit physical

motion, the dependence on any centralized resource is risky since that resource

could move away and become unavailable. Any WfMS that must survive in

such an environment must be built in a decentralized and distributed manner

without compromising its consistency and integrity.

• Uncertainty. Human behavior can change in unpredictable ways and unan-

ticipated phenomena in the physical environment may affect the system. The

system must be able to deal with unpredictable changes and advance the work-

flow execution in exceptional circumstances.

In addition to these problems, a viable approach must contend with the fact that both

hardware and software for mobile devices are excessively fragmented with there being

numerous incompatible architectures, languages, programming tools, and execution

environments. While the artificial barriers to compatibility exist, the true potential

of mobile computing can never be realized. Initial steps are being taken to rectify

this problem [13, 65, 90] including an effort to standardize the computational envi-

ronment of mobile devices (Google’s Android project [72]). The solutions described

in subsequent chapters address these problems through their design and architecture.
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Figure 1.1: Relation between key contributions of this thesis

1.5 Contributions and Dissertation Overview

This dissertation is concerned with designing and building a workflow management

system for mobile devices and MANETs. The aim of such an effort is to enable the

application of workflow technology to model computer assisted collaborations that go

beyond business processes executing on a server machine and encompass person to

person collaborations taking place in the physical world. The contributions of this

dissertation can be divided into four key parts, the relationships between which are

shown in Figure 1.1. Each of these four contributions is described in detail below.

Mobility-Aware Workflow Specification Language. Any WfMS takes as input

a workflow that is encoded using a workflow specification language. For workflows

in mobile settings, it is important to augment a “traditional” workflow specification

language with constructs that allow the description of spatiotemporal constraints

and workflow behavior in response to contextual changes, as well as constructs that

allow simple decomposition and reconstruction of the specification in response to

the demands imposed by network conditions. The CiAN specification language is a

workflow specification language that has been designed with mobility in mind and is
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based on the most fundamental representation of a workflow - the directed graph. The

CiAN specification language provides constructs for describing fragmentable, flexible,

and context-aware workflows for mobile environments and is presented in Chapter 4.

Knowledge Management System. A knowledge management system makes it

easy for applications and middleware platforms to exchange relevant information

across the MANET with the idea that the possession of such information by other

participants in the network will improve decision making and performance of the

system as a whole. The knowledge management system trades information about

participants in the network using a gossiping protocol. This information is then stored

in a knowledge base organized by host and then by parameter, where a parameter

is a property (functional or non-functional) of a participant. The contents of the

knowledge base are made available to locally executing programs which may then use

the information to their benefit. The knowledge management system is described in

Chapter 3.

Allocation Algorithms. A workflow by definition consists of several smaller tasks

which must be executed by multiple participants, each possibly having a different set

of skills. The process by which the tasks in the workflow are assigned to suitable

participants is called allocation. The allocation process is especially crucial in a

system designed to run across a MANET because an incorrect decision can seldom

be reversed due to the relevant hosts being unreachable for significant periods of

time. Chapter 6 describes two allocation algorithms. The first is a baseline a priori

centralized approach that is mobility-aware and uses heuristics to limit backtracking.

The second is a just-in-time distributed approach that uses a system of bids and

measures of fitness to determine task allocations.

Workflow Execution Engine. Once a workflow has been allocated, it must be

executed and managed by a runtime system. The CiAN workflow management sys-

tem is a WfMS designed for MANETs. It advances the state of the art in WfMSs

by providing what is possibly the first WfMS that is designed to run in a completely

distributed and disconnected manner across MANETs with no dependence on any

external resources. This is made possible by CiAN’s filter-based architecture which

supports distributed workflow management and a hybrid host-agnostic communica-

tion protocol that uses a combination of store-and-forward and publish-subscribe
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approaches to enable disconnected communication across the MANET. The CiAN

workflow management system is described in Chapter 5.

The significance of bringing workflows to mobile environments is that it opens the

door for applying workflow technology to model arbitrary structured collaborations

anytime and anywhere. By untethering workflows from the wired network environ-

ment, this dissertation makes it possible for workflows to play a significant role in

computer assisted collaboration software. Such software could be used in novel appli-

cations such as construction management, geological surveys, management of outdoor

hospitality events, coordinating the renovation of a home, and much more.

The next chapter provides background information on the work in this dissertation,

followed by chapters that present the core technical contributions described above.

In addition to those contributions, this thesis also describes the design and imple-

mentation of a workflow simulator for MANETs in Chapter 7. This simulator has

been designed in a generic manner to empirically evaluate algorithms and protocols

relating to workflow management in MANETs. The simulator was used to generate

the results presented in certain chapters in this document. Chapter 8 describes future

extensions to the work described here before concluding remarks are given in Chapter

9.
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Chapter 2

Background & State of the Art

The work presented in this dissertation, the context for which was set in Chapter 1,

is concerned with building a workflow-based collaboration platform that can function

across mobile ad hoc networks (MANETs). The resultant workflow management

system (WfMS) relies on several existing technologies including coordination models,

service-oriented computing, and collaborative computing. This chapter expands upon

the presentation of Chapter 1, adding the necessary technical background information

relevant to the remainder of the document.

Since the work presented in this dissertation is designed for operation across MANETs,

the first section of this chapter describes the unique characteristics, constraints, and

challenges of the MANET environment. This is followed by a presentation of how

coordination technology can be used to design basic communication infrastructures

for such networks. Next is a description of service-oriented computing and the man-

ner in which mobile versions of this paradigm have been used to promote sharing of

software resources among capability-constrained mobile devices. The presentation is

concluded with a discussion of collaborative systems that compose the capabilities

of individual service-oriented computing systems and their human users to provide

collaborative computer supported problem solving capabilities.

2.1 Mobile Ad Hoc Networks

Ad hoc networks are a special type of network that are formed opportunistically

among groups of hosts. Typically, ad hoc networks do not depend on any fixed
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external resources–the infrastructure of the ad hoc network is borne completely by

the hosts that comprise it. Due to the opportunistic manner in which the network

is formed, the composition of the network may evolve rapidly over time, with hosts

entering and leaving the network at will, which in turn results in a very dynamic

network topology. Wireless sensor networks [20] are one type of ad hoc network

consisting of several sensor nodes. Each sensor node has a duty cycle and the network

at any time covers only those sensor nodes that are not in sleep mode.

Mobile ad hoc networks (MANETs) are ad hoc networks that are formed between

physically mobile hosts that are within communication range of each other. This

physical mobility adds yet another degree of dynamism to the ad hoc network, and

in combination with the relatively restricted communication range of mobile devices

creates an environment where the network topology is highly unsettled, making it

almost impossible to offer guarantees for being able to communicate with another

host in the network. In this type of network, wireless connections and communi-

cation windows between hosts are transient which leads to a highly decoupled style

of computing. This lack of ability to communicate with other hosts as needed also

forces the use of decentralized and redundant software architectures as opposed to

centralized architectures with a single point of failure.

MANETs have received a fair degree of attention from the research community. The

Internet Engineering Task Force (IETF) established the MANET working group to

standardize IP routing protocol functionality suitable for wireless routing application

within both static and dynamic topologies with increased dynamics due to node motion

or other factors [44]. This group has published several drafts and RFC’s [45] organized

as shown in [15]. MANETs have also featured prominently in conferences such as Mo-

bihoc and COORDINATION. While the role of MANETs has diminished somewhat

due to widely available cellular connectivity, there are still many application areas in

which MANETs are a necessity, especially in very remote areas, developing nations,

military operations, or in circumstances where communication is very localized and a

cellular uplink is not required, e.g., vehicular ad hoc networks, etc. As such, MANETs

represent a challenging and relevant area of research even in the context of alternate,

more pervasive communication media.
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Figure 2.1: Shortcomings of a Centralized Architecture in MANETs

The unique environment of MANETs forces software designers to think very differ-

ently about modeling, designing, and implementing software that can survive in such

situations. The following is a listing of the core design philosophies that must be

taken into account when programming for a MANET environment:

• Decentralization. Any distributed application running across a MANET must

be designed with a decentralized architecture and engineered to operate in a

peer-to-peer manner. In traditional client-server architectures, clients coordi-

nate with each other through a central server. In MANETs, the central server

may become unavailable for periods of time because it is not within communica-

tion range of some or all clients (see Figure 2.1). This creates a situation where

clients may be within communication range of each other but cannot interact

due to the lack of access to a coordinating server. Centralized architectures in

effect create a single point of failure which is highly undesirable in MANETs.

This problem can be eliminated to an extent by having redundant servers but

this too is a partial solution since hosts would need to be able to reach at least
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one of the servers (by no means guaranteed in a dynamic network) and in ad-

dition, the system has the burden of keeping the various redundant replicas

synchronized over the unstable network. In the work presented in this disser-

tation, the principle of decentralization has been applied both to the design of

the knowledge management system in Chapter 3 and the workflow management

system in Chapter 5.

• Redundancy. Any action taken or message sent across a MANET may get

dropped due to the communication link between host pairs breaking at an in-

opportune moment. In wired networks, where the likelihood of communication

links going down is relatively very small, the existence of a reliable communi-

cation protocol like TCP/IP suffices to ensure that data can be delivered from

one host to another with minimal risk of loss. In a MANET where the hosts’

mobility results in routes being available for very short periods of time, the

likelihood of a message getting lost or dropped is very high. Hence, it is always

advisable to build additional redundant mechanisms for coordinating among

hosts so that the likelihood of system failure due to the failed delivery of a mes-

sage or other communication is minimized. Such redundancy principles are used

in the publish-subscribe-based communication protocols used by the workflow

management system described in Chapter 5.

• Mobility Awareness. Any application that is aware of the mobility patterns

of the hosts in the MANET and exploits this information is likely to have a more

successful execution compared to ones that do not. By definition, communica-

tion windows in a MANET are opportunistic which means that disconnections

from other hosts can occur unexpectedly at any time. The effect of this on ap-

plications is that they cannot offer any guarantees as progress is predicated on

disconnections not occurring at inopportune times. Applications that are aware

of the mobility pattern of the host on which they are resident and other hosts in

the network can use this information to compute when communication windows

are likely to be available and when disconnections are likely to occur. This in

turn can be used to either schedule communication within available communi-

cation windows (and therefore offer some basic guarantees based on available

windows) or notify hosts that certain messages cannot be delivered due to the
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lack of a suitable window (rather than attempting the transmission and wait-

ing for a timeout). Mobility awareness is present in each and every aspect of

the work presented in this dissertation ranging from the software support for

awareness presented in Chapter 3 to specifications and algorithms designed with

mobility awareness in mind presented in Chapter 4 and 6 respectively.

• Flexible Communication. Communication middleware built for MANETs

must be flexible and robust against disconnections. In socket-based communica-

tion, if either the sender or the receiver disconnects, an exception occurs and the

socket must be recreated. In MANETs, where disconnections are commonplace,

such an approach can result in the system spending a large amount of time re-

covering from errors. Communication middleware designed for MANETs must

catch these errors and recover gracefully from them, all the time shielding the

application from such low level communication issues. This principle is applied

in the design of the software system and communication protocols described in

Chapter 5.

2.2 Coordination Technology

The volatility of a MANET can result in frequent breakdowns in communication links

which in turn affect applications. Coordination technology seeks to separate the be-

havior of a program from its interactions to improve modularity. In other words,

coordination is concerned with separating computing from communication. Coordi-

nation technology has several applications in a wide range of environments beyond

MANETs. However, coordination concepts are extremely relevant in MANETs as one

of the aims in MANET programming is to shield the applications from disruptions in

communication and similar low level details. A brief survey of coordination technol-

ogy is included here for completeness as the knowledge management system presented

in Chapter 3 as well as the algorithms presented in Chapter 6 of this dissertation use

coordination concepts in their design and their software architecture.

Typically, a coordination model is characterized by its use of a shared dataspace that

offers the following operations: (1) out, which places data in the shared space, (2)

in which removes data from the shared space, and (3) rd which creates a local copy
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of some data in the shared space. An agent that wishes to interact with another

agent places data in the shared space which is subsequently retrieved by the target

agent, thereby completing the interaction. The first example of a coordination model

was Linda [28]. In Linda, coordination is characterized by a centralized coordination

mechanism while the application that uses it may be distributed. In modern imple-

mentations of the coordination concept, such as JavaSpaces [101] and TSpaces [114],

various parts of the application coordinate with each other by means of a tuple space

maintained at a central location.

Coordination models have also found favor in agent-based systems. TuCSoN [71]

introduced multiple tuple spaces, called tuple centers while in MARS [12], mobile

agents are provided upon arrival on a particular host with a handle to the local

tuple space, which is shared among all agents present on the same host. Ara [82]

introduced a constrained rendezvous type of coordination: some agents assume the

role of coordination servers and represent meeting points where agents can ask for

services.

More recently, coordination models have been adapted to novel computational envi-

ronments [79], [78], [11], and [25], which highlights their versatility. LIME [66] was

the first piece of work that brought coordination technology to MANETs. LIME pro-

posed the idea of multiple (local) tuple spaces that were transiently shared to form a

federated shared dataspace when hosts are in communication range. Limone [24] is a

lightweight alternative to LIME implemented to offer fewer guarantees. TOTA [56]

uses spatially distributed tuples, injected in the networks and propagated according

to application specific patterns.

Coordination models adapted for MANETs often support only peer-to-peer connec-

tions. To support multi-hop connections, they need to be combined with MANET

routing protocols which fall into four broad categories: (1) proactive protocols such as

DSDV[83], WRP[67], CSGR[16], which constantly maintain and update routes using

routing tables at the cost of high bandwidth usage; (2) reactive protocols such as

AODV[84], TORA[80], ABR[104], DSR[47], which only search for routes when they

are required at the cost of low responsiveness; (3) hybrid protocols such as ZRP [34]
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that try to balance the trade offs between the first two approaches, and (4) discon-

nected routing such as Epidemic[105] and Message Relay[52], which allow messages

to be sent via a gossiping protocol.

2.3 Service Oriented Computing

While coordination technology can be used to communicate across a MANET, service-

oriented computing (SOC) can be used as a means to share functionality and capa-

bilities of hosts across the network. Service-oriented computing is an evolution of

object-oriented and component-oriented computing that seeks to encapsulate soft-

ware functionality using standardized wrappers. These wrapped software components

are referred to as services and clients may exploit these services using flexible inter-

faces that are specified at a high level. A service-oriented computing framework is

a conglomerate of elements, each element fulfilling a very specific role in the overall

framework. The salient elements required for a viable service-oriented computing

framework are as follows:

• The service description element is responsible for describing a service in a com-

prehensive, unambiguous manner that is machine interpretable to facilitate au-

tomation, and human-readable to facilitate rapid formulation by users.

• The service advertisement element is responsible for advertising a given service

description on a directory service or directly to other hosts in the network. The

effectiveness of an advertisement is measured as a combination of the extent

of its outreach and the specificity of information it provides up front about a

service, which can help determine whether a user would like to exploit that

service.

• The service discovery element is the keystone of any service-oriented computing

framework and carries out three main functions. It formulates a request, which

is a description of the needs of a user. This request is formatted in a similar

manner to the service description. This element also provides a matching func-

tion that pairs requests with similar service descriptions. Finally, it provides a

mechanism for the user to communicate with the service provider.
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• The service invocation element is responsible for facilitating the use of a ser-

vice. Its functions include transmitting commands from the user to the service

provider and receiving results. It is also responsible for maintaining the con-

nection between the user and the provider for the duration of their interaction.

• The service composition element provides mechanisms to merge two or more

services into a single composite service, which combines and enhances the func-

tions of the services being composed.

In a SOC framework, a service provider initially advertises some functionality (ser-

vice) it wishes to share by placing a service advertisement in a publicly available

service directory. Clients discover and use these functionalities at run time. In proxy-

based SOC, the service advertisement is in the form of a proxy object which can be

retrieved by clients and used as a local handle to the service process on a remote

server. The client interacts with the proxy as it would with any other local resource.

The proxy tunnels requests to the provider’s server in most cases. However, in some

cases, the proxy itself can deliver the entire functionality of the requested service and

does not need to tunnel client calls to its parent server. From the application pro-

grammer’s perspective, the proxy-server communication is abstracted from the client

but is relevant to the middleware programmer. Jini [110] is an implementation of the

proxy model, targeted towards wired and fairly reliable networks. This is evidenced

by its use of a centralized service directory, which is a single point of failure for the

system.

In Web services (WS), which is the dominant service-oriented architecture (SOA) for

wired network environments, service advertisements in the form of Uniform Resource

Identifiers (URI) are placed in a well known centralized Universal Description Dis-

covery & Integration (UDDI) [69] directory. Clients can search the directory for a

service using associated UDDI protocols, retrieve the URI for the service, and then

connect directly to the service at its specified URI using the Simple Object Access

Protocol (SOAP) [116]. Since the client interacts directly with the service, it requires

the client to be aware of the interaction protocol and the location of the service.

Strict enforcement of standards means that clients have to specify their requests in a

standardized format and syntax, and also follow standardized protocols for interac-

tion with the service. A collection of languages, all of which use XML [115] syntax,
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are used for client-service interactions. The lowest level language is the Resource

Description Framework (RDF) [87], which provides a basic set of constructs to de-

scribe entities and relations. The Web services Description Language (WSDL) [113],

describes the actual functionality of the service. SOAP describes what is being sent

across the wires and encapsulates all application layer protocol issues. Higher level

languages describe why a piece of data is being sent between two hosts. High level de-

scription languages are required to be clear and concise, and to support easy matching

between two entities. Ontologies are high level languages that capture the semantics

of an entity and its relation to other entities. An ontology is often itself structured

into layers. DAML+OIL [43] is a combination of a markup language to construct

ontologies (DAML) and an ontology inference layer (OIL) to interpret the semantics

of the description. A popular ontology for Web services is OWL [111, 57].

The major difference between Web services and proxy-based models is that in Web

services, a service is essentially a process running on a well known remote host and

it is up to the client to know the correct protocol to contact and use the server.

However, in proxy-based systems, a service is a combination of a process running

on a remote server and the proxy that it ships to the client. The client therefore

needs to only make local method calls to interact with the remote service. Despite

the differences, both approaches are targeted to wired infrastructures, evidenced by

centralized architectures that are not viable in more dynamic networks. A separate

research effort that adapted these approaches to MANETs is described in [39].

While SOC is not the focus of this dissertation, it does play an integral role in the

work presented here. The knowledge management system described in Chapter 3

was originally designed for a SOC framework for MANETs [39] and was subsequently

generalized for use in the WfMS presented in Chapter 5. Services also play a key role in

the workflow management system as the tasks in a workflow are ultimately satisfied

by a software service or a human user. The principles of service advertisement,

discovery, and invocation are all used within the context of the WfMS. Indeed, the

WfMS is one type of mechanism supporting service composition.
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2.4 Collaborative Computing

Computer Supported Collaborative Work (CSCW) seeks to solve problems associated

with building systems in which multiple users collaboratively solve a single problem.

The aim of such collaborative systems is to leverage the power of computational

tools to simplify person-to-person collaboration, automate certain mundane tasks,

and reduce the overhead associated with collaboration. The question as to the ex-

act definition of a collaborative system is debateable. According to some definitions,

devices like telephones, software like email clients, file sharing clients, etc. are col-

laborative systems since they allow sharing of information. In modern computing

systems however, the definition is being narrowed to cover only sophisticated systems

that provide end-to-end collaboration facilities [60]. The focus of this section will be

solely on such systems, which can be further broken down into three categories:

• Workspace Based Systems. Workspace-based systems such as [61, 75, 73, 4]

are based around the notion of a shared structure (the workspace) which con-

tains all the necessary resources to perform a collaborative activity. Users are

given controlled access to the resources within the shared structure and sys-

tems are in place to control versioning of documents and other such necessities.

Workspace-based systems typically split their functionality into modules such

as messaging, e-mail, document management, video conferencing, etc. The onus

is on the user to use these features in the manner that best supports the collab-

oration. Typically, the workspace is located on a central server with users all

seeing a consistent view. Some systems allow for temporary disconnection from

the central server (nomadic mobility) during which the user has a local copy of

the workspace available. When a user reconnects, the views of the workspaces

are synchronized.

• Ad hoc Processes. In certain collaborative activities, the goal of the activity

is well known but the exact manner in which the goal will be realized is not

clear. For example, in the collaborative design of a software system, the end

goal is a design document which captures the discussion. However, it is not

clear in which direction the discussion might go and how the discussion might

evolve. Ad hoc processes [19, 10] capture precisely such collaborations, allow-

ing the specification of the activity in terms of high level goals and checkpoints
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and leaving the choice of the actual strategy for realizing those goals until run-

time. To date, there have not been many systems supporting ad hoc processes

primarily due to the fact that ad hoc processes rely heavily on semantics to

translate between high level goals and actual strategies, which has not yet been

developed to an extent to be feasible.

• Synchronous and Structured Processes. For collaborations where the goal

as well as the path to the goal is well-defined, the use of synchronous and struc-

tured processes is preferred. In these cases, the activity is typically decomposed

into smaller tasks that must be completed in a certain order to achieve the

requisite goals. Structured processes are the least complex type of system to

implement but offer the least flexibility. Introducing an additional degree of

flexibility and migrating such processes to mobile networks is the focus of this

dissertation.

The work presented in this dissertation seeks to build a system that executes struc-

tured collaborative process across a MANET. More specifically, this dissertation de-

scribes (in Chapter 5) systems that execute workflows. Workflows can be concep-

tualized as a graph where the vertices represent tasks that must be completed and

the edges provide ordering among tasks and overall structures. The workflow as a

whole represents the collaborative activity and typically has a lattice structure. The

collaborative aspect of the workflow comes from the fact that different hosts can be

assigned (or take on) responsibility for different tasks in the workflow (described in

detail in Chapter 6).

For the work presented in this dissertation, it is assumed that there exists a group of

human users, each of whom is equipped with a mobile computing device such as an

ultramobile PC, PDA, or smartphone. All users are assumed to co-located initially.

Since the devices are carried on the person of the users, it is assumed that they are

physically mobile and that their motion pattern is the same as their associated user.

The devices are capable of communicating with each other using 802.11b/g/n radios

when they are within communication range of each other. However, such windows

of communication [37] (the intervals of time during which a pair of hosts are within

range) may be transient due to mobility.
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Each host that participates in the execution of a workflow provides the following

information about itself: 1) The name of the host, assumed to be unique in the

network, 2) a schedule, which indicates time intervals during which the host is not

available and cannot participate in the workflow execution, 3) the location of the host

before and after any time interval during which it is not available, and 4) the list of

services available on the host. Note that the list of services includes both software

services as well as services that represent the skills of the associated user that can be

exploited without the use of a computer (e.g., a metal welding skill). These pieces of

information are timestamped when they are created and traded freely in the network

using a gossipping protocol. Hosts store this information about other hosts in a

local knowledge base along with any additional non-functional information that a

host may choose to share (such as its current location, velocity, battery levels, etc.).

The contents of the knowledge base can be queried by other middleware components.

Finally, hosts may have sensors attached to them, e.g., a GPS receiver, which can

also be queried by the middleware.

Recall that a workflow is used to model a structured activity which can be divided

into smaller tasks. A workflow language on the other hand, provides a textual repre-

sentation of the workflow specification. The challenges in developing an appropriate

workflow language lie in determining the constructs that are provided, the degree of

flexibility allowed in the specification, the ability to fragment the specification for

easy distribution, and adopting a format that is both human readable and machine

parse-able.

After a workflow is specified, the next step is to determine how and to whom to

distribute each task based on individual properties of hosts and their motion pattern.

This process is called allocation and it is necessary to do this before execution begins

because at later stages, hosts may not be in communication range and hence may not

receive requests to perform tasks in the workflow and end up stalling the workflow

execution as a whole. The allocation process requires the development of complex

scheduling algorithms.

Once the workflow is allocated, it must be executed by WfMS. A task in the workflow

is considered to be ready for execution when a valid set of inputs are available. The

first task in the workflow has no inputs and is considered to be always ready. If
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the task involves execution of a software service, it is handled automatically by the

middleware. If not, the middleware prompts the user to take actions that fulfil the

requirements of the task. When the task is completed, the notification of completion

and any relevant data are sent to succeeding tasks as dictated by the structure of the

workflow. The challenge at this stage is to provide an execution engine that can 1)

manage the execution of the workflow in a distributed fashion and 2) communicate

notifications and data to succeeding tasks over the dynamic MANET.

The next chapter describes the knowledge base, followed by chapters which describe

the specification language, execution engine, and allocation algorithms, respectively.
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Chapter 3

The Use of Knowledge in Mobile

Environments

By definition, a mobile ad hoc network (MANET) has a dynamic network topology

which gives rise to frequent and unpredictable disconnections between pairs of hosts.

These unanticipated disconnections can cripple the execution of distributed applica-

tions across hosts in the network by occurring at the most inopportune moments. It

is therefore critical that mechanisms are put in place to prevent or mitigate the effects

of these disconnections.

3.1 Motivation

MANETs represent an exciting new frontier for mobile computing which present

unique engineering challenges. In MANETs, the typical host is a portable mobile

device that is constrained in terms of processing power, memory, and battery life.

The network itself is volatile and its topology evolves rapidly, making disconnections

a fact of life. Two factors affect disconnections in a MANET. The first of these

is the limited communication range of current generation radios. A typical current

generation wireless radio has a range between 25 to 200 meters (depending on the

environment and obstructions in the area). It may be argued that advances in radio

technology that improve ranges would reduce the likelihood of disconnection. While

this observation is correct, it still stands that if the radio range is significantly lesser

than the area spanned by the MANET, the problems of unanticipated disconnections

will still persist. The second cause of the frequent disconnections is the physical
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mobility of hosts. The physical movement of hosts results in them constantly coming

into and going out of communication range of each other. Since mobility patterns are

neither periodic nor known to the applications operating across the network, these

disconnections are almost always unanticipated.

A distributed application executing across a MANET is at the mercy of these unan-

ticipated disconnections. If the disconnections occur at an inopportune moment,

the application may, in the best case scenario, lose a significant amount of partially

completed work or at worst, crash due to errors caused by the disconnection. It is

therefore imperative that mechanisms be put in place to mitigate the effects of such

disconnections.

Current solutions to this problem involve attempting to eliminate the possibility of

disconnection. For example, in a hoarding strategy, the code for an entire service im-

plementation is copied to the client machine and is used locally so that disconnections

cease to be a factor. However this strategy cannot be employed in cases when the

software footprint is very large or when the code is proprietary. Nomadic strategies

rely on the fact that mobile hosts for the most part will stay within communication

range of a set of access points attached to a wired infrastructure and only move out of

range for short periods of time, which results in longer periods of connectivity and to

some extent, offers a guarantee of eventual reconnection. Such strategies are limiting,

as they impose bounds on the physical mobility of hosts (hosts cannot move too far

from the access point for extended periods of time) which is often neither practical

nor desirable.

The approach presented in this chapter does not seek to eliminate the possibility of dis-

connection. Instead, it focuses on choosing partner hosts carefully so that a disconnec-

tion does not occur at a critical juncture. This chapter introduces knowledge-driven

interactions between hosts in MANETs as a strategy that exploits the spatiotemporal

aspects of a distributed application’s requirements to carefully select partner hosts

that are likely to remain in communication range for the necessary duration. This

strategy thus reduces the likelihood of a disconnection at a crucial juncture, without

compromising other aspects of program execution or host operation. The essential

idea is to use knowledge about hosts’ physical motions to compute the time at which

two hosts are likely to be within communication range for a reasonable interval of
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time. This information is then matched with the application’s requirement profile,

which is specified a priori by the application programmer and is a list of applica-

tions to be provided by remote hosts and the intervals of time during which those

applications are required. The result is a proactively planned satisfying set, a list of

specific peer applications that are resident on hosts that are most likely to be within

communication range of the client at the times that they are required, and which will

remain within communication range for the projected duration of that need.

The theoretical solutions presented in the initial portion of this chapter have been

implemented in the context of a service-oriented system for MANETs called SPAWN

[39] to show proof of concept. The same approach can be used in a wide variety of

contexts and forms an integral part of the workflow engine described in Chapter 5

and the allocation algorithms described in Chapter 6.

3.2 Background & Related Work

The work presented in subsequent sections is implemented in the context of a service-

oriented computing (SOC) middleware for MANETs. In the interest of a complete

and well-rounded presentation, a brief overview of SOC is provided here along with

an explanation of why a proxy-based SOC architecture was chosen for the SPAWN

system.

In the SOC paradigm, a service provider advertises services, which represent some

capability that it is willing to share. These service advertisements are placed in a

publicly accessible service directory. Interested clients browse this service directory

for suitable services. When an appropriate service is found, the client obtains an

address (potentially a local handle) for the service. The client can then use the

service directly.
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3.2.1 The Case for Proxy-based SOC for MANETs

Most SOC architectures, such as the Service Location Protocol (SLP) [50], Salutation

[91], and those employed for Web services (WS) [5, 77] are designed for infrastructure-

rich centralized wired networks and, as such, are unsuitable for MANETs. For ex-

ample, in WS, the service directory is maintained at a central well-known location.

This is acceptable in the environment of the World Wide Web but unacceptable in

a MANET where a particular host may not be accessible to all other hosts as it can

move out of communication range or shut down. In addition, it is not reasonable to

impose on a single, resource poor host, the responsibility for handling all directory

functions.

The addressing scheme used in WS is also geared toward a reliable network. WS

uses a uniform resource identifier (URI) to indicate the logical location at which a

service may be accessed, and relies on the DNS infrastructure of the Internet to map

the address to a physical machine. In MANETs, having centralized DNS servers is

impractical and a logical address may not necessarily map to a device at a particular

physical location due to the movement of hosts, thus rendering this approach ineffec-

tive. SLP takes some steps towards accommodating mobility through a special mode

of operation that does not require a functioning directory agent, which is analogous

to a distributed service directory. In this mode, services and clients directly seek each

other out using a peer-to-peer model. However, this approach still does not solve

problems of addressing and service access.

Previous work in this area [95] has shown that the most effective kind of SOC model

for MANETs is a proxy-based model. In a proxy-based model, a proxy object is

included in the service advertisement. When a client retrieves the advertisement, it

obtains the proxy which it installs locally. The proxy then becomes a local handle

to the service on a remote machine. The client can then interact with the service by

making local method calls on the proxy, which then delegates the requests to its parent

service. The idea of proxy-based service oriented architectures was first proposed in

Jini [110] which was designed for wired networks. It has since been adapted for use

in MANETs as was shown in [38].
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Proxy-based architectures are especially effective in MANETs for two reasons: (a)

They help reduce the amount of software required on the client side, thereby making

thin clients possible; and (b) they abstract details of the protocol to be used between

the client and the service provider. Since the proxy is a self-contained piece of code

that can communicate with the provider host, the client is not required to be aware

of the communication protocol or to possess any other code to communicate with

the provider. The client is only required to carry the code that allows it to browse

for services and discover proxies. This results in a small footprint for the client

software, which is useful when running such software on mobile devices. The fact that

proxies abstract the communication protocol is especially useful in MANETs, where

standardized application level protocols are not prevalent. Hence, the abstraction of

a heterogeneous set of protocols by proxies allows a large set of hosts to communicate

with multiple service providers without the overhead of needing to know the specific

protocol for each provider.

Though proxies are a solution to certain problems associated with SOC in MANETs,

their usage does raise certain issues, some of which have been addressed in previous

work. In [40], the authors proposed an automatic code management system which

transparently ships and installs proxy code on the client host (once the client has

declared an interest in the service) as a solution to the problem of distributing the

binary code required by clients to execute proxies. A proxy upgrade system [94]

ensures that these proxies are upgraded transparently at run-time with very little

impact on the client application, so that the proxy software is kept consistent with

upgrades to the software on the provider host without the client application having

to handle this procedure explicitly. These mechanisms, which are portions of a larger

system supporting SOC in ad hoc networks solve some of the issues associated with

proxy-based SOC architectures. The important remaining problem of ensuring that

interactions between the proxy and the service are interrupted to the least extent

possible is the subject of this chapter.

3.2.2 Related Work

Ensuring that interactions between the proxy and its associated service are inter-

rupted as few times as possible is the responsibility of a knowledge management
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system. Knowledge management encompasses various topics such as meta informa-

tion management, information gathering and dissemination, information semantics,

and planned behavior. As such, a selection of related work from each of these topic

areas is presented in this section.

The overarching goal for introducing knowledge driven interactions to SOC in MANETs

is to establish a sense of predictability in an otherwise chaotic environment. One

method of achieving this is to use the notion of perception of the environment to make

decisions, as in the Task Control Architecture (TCA) [98] designed for autonomous

agents that control robots. Among other things, the TCA uses information about the

environment to ensure that the robot is not in any physical danger. The approach

presented in this chapter performs a similar kind of knowledge aggregation, though

it is used to protect clients of a service from unexpected disconnection.

All knowledge aggregation and dissemination that must be done to support knowledge-

driven architectures occurs at a meta-level, in the sense that the knowledge that is

traded is independent of the particular applications that are running on the individual

hosts. Thus, meta-information management and the structure of meta-information

structures become key facets of the system. One system proposed by Costa et al [17]

uses a centralized type repository to maintain meta data. However, such a centralized

solution creates a potential single point of failure. The knowledge base described in

this chapter uses multiple decentralized repositories called knowledge bases on each

host with the aim of decreasing the probability of failure.

Another issue that relates to knowledge management is information dissemination.

Essentially, to support knowledge driven interactions, each host must disseminate

knowledge about itself so that others may react to it. In [49], the authors propose three

schemes for information dissemination that are especially tailored to MANETs which

focus on rapid dissemination of information without duplication. Three strategies -

select then eliminate (STE), eliminate then select (ETS), and a hybrid of the two are

described as ways to ensure that only the relevant hosts get the information. The

approach presented in this chapter is able to use a less complex system due to its

use of the tuple space paradigm (described in detail in Section 3.4) which ensures

that information is distributed only to all connected hosts, which is exactly the set of
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hosts to which the knowledge should be disseminated. The use of the more lightweight

system also saves scarce computational resources on mobile devices.

The final issue relates to scheduling, with the added restriction that any such “sched-

uler” must make its decisions in the presence of information about the environment,

i.e., the scheduler should support the parameterization of its behavior. An example

of such a scheduler is [41], implemented for the DECAF architecture. Essentially, the

DECAF scheduler is able to take in functions that enable it to do planning. Two

strategies are suggested. The first is contingency planning, where every possibility is

evaluated and the putatively best one is chosen, and if that fails for some reason the

next best option is then chosen. The second strategy is to give the scheduler a utility

function, which it can use as a metric to choose among options.

3.3 Formal Model

This section outlines the underlying formal model for the knowledge management

system described in Section 3.4. The discussion of the formalization is preceded by

an example that motivates the scenarios where the work is applicable. From this

point on, the terminology used is consistent with the SOC paradigm. The reader

is reminded however, that the knowledge management model presented here applies

more generally beyond SOC–services in the model could be easily replaced by com-

ponents in a component-oriented middleware context [100], application fragments in

a path-oriented context [63], or workflows in a workflow management system.

3.3.1 Motivating Example

The knowledge management software is targeted towards hosts that primarily func-

tion in a MANET environment and must exploit some functionality on one of many

possible remote hosts in order to complete a task. The choice of the partner host is

crucial since a wrong choice can result in the hosts moving out of range before the

interaction is completed. The work presented in this chapter facilitates individual

applications in making better choices.
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Figure 3.1: Service request and service availability information for the client and
three service providers

Consider a scenario involving cars travelling on a highway. If the speed limit on the

highway and the destination of the cars is known, the location of cars on the highway

can be approximated to a reasonable degree as a function of time. This can be used

to build a motion profile for each car and therefore the motion profile of devices that

are carried by the occupants of the cars which offer various kinds of services. In one

of the cars, Robert is currently reading news items that were downloaded to his PDA,

but would like to listen to some music in 10 minutes time, when he will have finished

reading the news. Robert already has a pre-compiled playlist of his favorite songs

stored on his PDA. However, his PDA must contact a streaming music service to

obtain the songs. Robert instructs his PDA to have a music service discovered and

ready to use at 4:10 PM, which is 10 minutes from now. The PDA queries PDA’s

in other cars that are near the car that Robert is in for a streaming music service.

When the replies come back, it turns out that there are three cars that can offer the

service, as is shown pictorially in Figure 3.1.

Robert has also indicated that he would like to listen to the music for an hour and a

half, so the service must be available for that duration. From the figure it is clear that

the service offered by Car A will not remain connected for the required duration. Car

B will remain connected for the duration, but the knowledge Robert’s PDA possesses

about the device in Car B indicates that it is farther away from Robert’s car than Car

C, which could result in signal degradation resulting in a poor quality music stream.

Additionally, since the service on Car B becomes unavailable at the exact moment

that Robert’s requirement ends, there is no room for accommodating errors (perhaps
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due to Car B traveling slightly faster than it advertised). Hence, Robert’s PDA

chooses the service on Car C as the service that it will use. It stores this information

until it is time to invoke the service.

The determination of the correct candidate services is done by exploiting knowledge

about the other hosts in the network, i.e., their intended motion profile, which gives

the host’s projected location as a function of time. The client collects hosts’ motion

profiles via a gossipping protocol. It feeds the profiles it collects to an algorithm

that helps it choose the satisfying set of services. Once the algorithm returns the

satisfying set, the services in the set are ranked according to some criteria (currently

time to disconnection from the client is the criteria that a host uses to rank services).

The client connects to the service that is ranked highest from among those in the

satisfying set. It should be noted that in this example, the client had only one

service requirement. It is expected that a client application will have more than one

requirement during normal operation, in which case there would be multiple satisfying

sets, one per requirement. One service would be chosen from each set to satisfy the

corresponding requirement.

3.3.2 Knowledge Management Model

In the formal model for the knowledge management system, there are a finite set

of hosts (mobile devices), each distinguished by a unique identifier, that are capable

of physical motion in a predetermined area. Points outside this area are considered

undefined. A host may have one or more agents executing on it. Each agent represents

a service, i.e., an instance of a process that offers some functionality, and is capable

of logical mobility. Note that agents are used simply as units of modularity. It is also

assumed that the clocks on all participating hosts are synchronized using an external

solution such as [31]. The following definitions apply across the model:

H - the set of identifiers for hosts in the MANET

S - the set of identifiers for services available in the MANET

L - the set of valid locations which hosts may occupy

T - the time domain

K - the global knowledge in the MANET
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While K represents the global knowledge, K(h) is used to denote the knowledge

available on host h. More formally, it can be said that:

K =
∏

h K(h)

where the global knowledge K is defined as the logical union of the various local

knowledge bases on hosts in the MANET (the knowledge base on each host con-

tains non-functional information about the local host as well as other hosts in the

MANET). Examples of non-functional information are velocity of hosts, remaining

battery power, etc. The knowledge composition process
∏

is made possible by the

assumption that the knowledge held by any one host is always accurate albeit possi-

bly incomplete. For instance, a host h cannot have knowledge about another host i

in its local knowledge base K(h) that the host i does not have about itself in its own

knowledge base K(i), i.e., a host cannot know more about others than others know

about themselves. These and other similar restrictions are not within the scope of

this discussion. A more extensive discussion of issues may be found in [88].

In addition to the key elements of the model, individual hosts, services, service re-

quests and the knowledge associated with them are characterized in more detail.

Hosts. Hosts are devices capable of moving in physical space. In this model, a

host possessing a unique identifier h is characterized by its motion profile µ(h) and

knowledge base K(h). The motion profile of a host describes that host’s mobility

pattern, essentially a function that takes in a time value and returns the location of

the host at that time. For this work, It is assumed that the motion profile is provided

to the system, though such profiles can be easily computed by analyzing a personal

schedule, work schedules, etc. Formally:

µ: H → (T → L)

Note that for convenience, µ(h)(t) is written simply as µ(h, t)

The motion profile function can be used to express various types of mobility. For

example:

〈∀t : µ(h, t) = l〉 where (l ∈ L) indicates a stationary host
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µ(h, t) = µ(h, t0) + (t− t0)vh captures motion in a straight line at velocity vh.

Similarly, more complex motions can be captured with more complex specifications

for µ(h). The motion profiles of hosts are examples of knowledge since they help in

understanding how various para-functional (i.e., beyond the primary computation)

components of the system are behaving. Motion profiles are exchanged freely among

hosts using a gossiping protocol. Whenever two hosts meet, they exchange their own

motion profiles as well as the motion profiles they have collected from hosts during

previous encounters. This results in an epidemic flooding of motion profile information

in the network. A discussion of how these motion profiles are used appears in a later

subsection.

Services. Services are software processes that provide functionality that can be used

by interested clients. Each service s is characterized by its unique identifier (s ∈ S)

and the following attributes:

χ(s) - the capabilities of the service

π(s) - the performance attributes of the service

δ(s) - the external dependencies of the service

α(s) - the allocation profile of the service

The capabilities χ(s) describe the functionality of the service, e.g., a “printer” service,

while the performance attributes π(s) describe how well the functionality can be

discharged, e.g. resolution, pages per minute, etc.

The external dependencies of a service, i.e., other services that are required to dis-

charge the advertised functionality, are captured by δ, the set of dependencies. This

set of dependencies is computed by analyzing the code of the service:

δ : S → ℘(S) which induces the binary relation

x δ y ≡ (y ∈ δ(x)) ∨ 〈∃z :: xδz ∧ zδy〉

The first formula indicates that δ is a function from the set of service identifiers S

to the power set ℘ of service identifiers, i.e., the dependency of any service is on
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zero, one, or more other services. The second formula captures the closure of the

dependency function. It is assumed that any dependency needs to be migrated to

the host on which the primary service is executing and be available for the entire

duration of the service requirement. Admittedly, such a strategy may be considered

wasteful–dependencies could be available only when they are required, i.e., during a

small fraction of the service requirement interval overall, and could be used remotely.

However, this complicates the presentation, and a formal treatment of this issue is

deferred to future work.

Since services can be logically mobile, they can be resident on various hosts over time.

This is captured by the service’s allocation function α(s), which is specified as follows:

α : S → (T → H)

Again, for convenience, write α(s)(t) as α(s, t)

The function α(s, t) returns the host on which the service is resident at a given point

in time. If a service is not logically mobile, its allocation function always maps to the

host that created the service. In other words, α(s, t) gives the logical location of the

service at any given point in time.

Services also possess a motion profile µ, which like the motion profiles of hosts gives

the physical location of the service at a given point in time. However, unlike hosts,

the motion profile of a service cannot be defined in an arbitrary manner. Rather it

must be derived from the allocation profile. The motion profile of the service at a

given instant is the same as the motion profile of the host on which it resides at that

instant (which is indicated by its allocation profile). If a service moves to another

host, it “inherits” the motion profile for that host. I overload the definition of µ to

include mobility of services. Formally:

µ(s, t) = µ(α(s, t), t)

Like hosts, the motion profile of a service along with its allocation profile is considered

knowledge that is associated with that particular service and is freely traded in the

epidemic manner described earlier.
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Service Requests. Service requests are used by clients to specify the kind of services

in which they are interested. Traditionally, services were requested according to their

capabilities and performance attributes. In the model presented here, due to the

exploitation of knowledge, pre-planning can be supported, i.e., the client can decide a

priori the types of services it requires and the time intervals during which it requires

them. The system then uses all available knowledge to choose the services that are

best suited to the client’s needs and are actually within communication range of the

client during the interval of the requirement. Each request is assumed to have a unique

identifier. Thus a service request r is characterized using the attributes defined as

follows:

β(r) - the host that made the request

χ(r) - the capabilities desired

π(r) - the performance level desired

st(r) - the starting time for the service requirement

et(r) - the ending time for the service requirement

Observe that while the time interval for which the service is required is specified

explicitly, the location at which the service is required is not specified. This is because

the location value is implicitly specified. For a service request 〈r, h, c, p, t1, t2〉, the

locations at which the service is desired are given by the motion profile of the client

host h over the time interval [t1, t2]. In other words, the locations can be obtained by

evaluating the motion profile of the requesting host for all points in the time interval

specified explicitly in the request.

Having defined hosts, services and service requests, the next step is to define how

services are selected.

3.3.3 Defining the Satisfying Set

Recall that in traditional SOC systems, service selection was done according to ca-

pabilities and performance attributes. In addition to matching capabilities and per-

formance attributes, the system must also take into consideration the spatiotemporal
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characteristics of the service. This subsection formally describes how services are

chosen.

Basic Satisfiability. When looking for a service s which can satisfy a service request

r, the first thing that needs to be considered is whether that service is actually what

the client is looking for. This is called the basic satisfiability requirement. For a service

requirement r and a service s, a basic satisfiability relation σ is formally defined as:

σ(r, s) ≡ χ(r) ≤ χ(s) ∧ π(r) ≤ π(s)

The “ ≤′′ operator is overloaded in the formula. In the case of capabilities, the “ ≤′′

operator indicates that the public interface of service s completely covers the set of

operations specified in the service requirement r. In the case of the attributes, “ ≤′′

indicates that the service s has all the attributes specified in the service requirement

r and for every such attribute, the value of the attribute in the service subsumes that

in the requirement. The determination of whether one value is subsumed by another

is determined by the attribute type itself which is assumed to have a built-in com-

parator. Observe that the notion of basic satisfiability is identical to the satisfiability

requirements in traditional SOC systems. However, this is where limitations of the

current state of the art becomes apparent. A service that has all the capabilities and

performance is useless if it is not within communication range of the client at the time

of the requirement. Hence, the spatiotemporal characteristics of the service must be

taken into consideration, in addition to its capabilities.

Reachability. In addition to meeting the basic satisfiablity requirements, a service

must be reachable for the entire duration of the service requirement. A service is

considered reachable if its allocation profile α(s) evaluates to some host h that is

within communication range of the client host hc for the time interval of the service

requirement [t1, t2]. Formally, reachability ρ is defined as

ρ(hc, s, t1, t2) ≡ 〈∀t : t1 ≤ t ≤ t2 :: |µ(hc, t)− µ(α(s, t), t)| ≤ ∆〉
where ∆ is the communication range.

For convenience, the definition of ρ is overloaded to encompass the reachability be-

tween two hosts. It is simply defined as:
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ρ(hc, h, t1, t2) ≡ 〈∀t : t1 ≤ t ≤ t2 :: |µ(hc, t)− µ(h, t)| ≤ ∆〉

Observe that the definition of reachability ρ depends on having access to the motion

profiles of hosts and the allocation profiles of services in question. The reader is

reminded that these profiles constitute knowledge and are disseminated freely among

hosts in the MANET via a gossipping protocol. This knowledge is stored in a local

knowledge base on each host. The motion profiles stored in the knowledge base are

used to determine whether a service will be allocated to a host within range at the

time of the request, thereby meeting the reachability requirement.

Under the assumption that services do not exhibit logical mobility, a service s is said

to satisfy a service requirement r made by a client on host h if the following conditions

are met:

1) σ(r, s) - basic satisfiability

2) ρ(h, s, t1, t2) - reachability

3) 〈∀d : d ∈ δ(s) :: ρ(α(s, t), d, t1, t2)〉 - dependencies

all w.r.t. K(h)

Condition 1 above states that the service should meet the basic satisfiability require-

ments, i.e., capabilities and attributes, and that the service should be reachable for

the entire duration of the requirement. Further, all dependencies of the service should

also be reachable from the host on which the primary service is executing. Note that

K(h) is used to denote the knowledge base on the host identified by h. Since the

formulas depend on motion and allocation profiles, they have to be evaluated with

respect to some knowledge base. Since planning normally takes place at the point of

origin of the request, i.e., host h, the satisfiability is relative to its knowledge base,

i.e., K(h).

Logical Mobility. Thus far in this presentation, an assumption was made that

services were not logically mobile. Here, this assumption is removed and services

are allowed to migrate from host to host. The logical mobility of services adds a

degree of freedom. Services can now be migrated from a host that is not in range

of the client to one that is in range. Consider a scenario where an idle service can

be moved from the host on which it is currently resident (which ostensibly would
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not be in communication range at the time of the requirement) to a host that will

be in communication range at the appropriate time. For this, a function called Γ is

introduced and defined as follows:

Γ(h1, h2, t) = 〈∃ts, te : ts < te ≤ t :: ρ(h1, h2, ts, te)〉

The predicate Γ indicates whether there is a time interval before a deadline time t,

during which hosts h1 and h2 are in communication range (this interval can then be

used to logically move the service between the two hosts). Note that for this case,

once the service has moved to this host, the service is resident on the host at least

until the end time of the client’s request. Thus, under these assumptions, a service

s satisfies a requirement r made by host h by relying on host ht if the following

conditions are satisfied:

1) σ(r, s) - basic satisfiability

2) ρ(h, ht, st(r), et(r)) - reachability of some host ht

3) migrate(α(s, t), ht, et(r)) - migrate service to host ht

4) 〈∀d ∈ δ(s)∃hd :: ρ(hd, ht, st(r), et(r))∧ migrate(α(d, t), ht, st(r))〉 -

reachability to some host hd and migrate dependencies to host hd

w.r.t. K(h)

where

migrate(h1, h2, t) = Γ(h1, h2, t) ∨ 〈∃h, t′ : h ∈ H ∧ t′ < t ::

migrate(h1, h, t
′)∧ migrate(h, h2, t)〉

Even in the presence of logical mobility, the service must still meet the basic satis-

fiablity requirement. However, the reachability requirement is not a strict one. In

combination with the migrate operation, the reachability requirement can be stated

as: there should be a suitable host ht that is reachable, and the service should be able

to migrate to this host before the start time st(r) of the request and remain there for

the duration of the request.

To summarize, a service that is otherwise suitable in terms of capabilities and per-

formance but is not resident on a reachable host is being moved to a host that is
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reachable by the client before the client actually needs the service (proactive logical

movement). Naturally, any dependencies the service requires must also be moved in

a manner similar to the service itself.

Thus far, the conditions that result in a service satisfying a request have been formally

defined. It should be noted that the consideration of the spatiotemporal aspects of a

service and the proactive selection of services is only possible due to the knowledge

that is gathered by each host.

3.4 Software Architecture & Implementation

This section covers the software architecture and implementation details of the knowl-

edge management system that was formalized in Section 3.3. First, a brief overview

of SPAWN is provided. SPAWN is the SOC middleware for MANETs within which

the knowledge management system has been implemented. This is followed by a pre-

sentation of the basics of the knowledge management system and its role within the

context of the SPAWN system. A more detailed discussion of each of the components

of the knowledge management system appears next before the section is concluded

with code examples that show how an end user might access the system to request

services in a knowledge managed SPAWN architecture.

3.4.1 SPAWN Overview

SPAWN is a proxy-based SOC middleware for MANETs. It is based on the Jini [110]

model and is written entirely in Java. To adapt the Jini model to MANETs, several

changes were required. The centralized service directory of Jini was replaced with

local service directories on each host. When a host needs to advertise a service, it

places an advertisement (and the appropriate proxy) in its local service directory.

Groups of hosts that form a clique (i.e., all hosts in the group are within communi-

cation range of each other) logically merge their local service directories to form a

transiently shared service directory that is federated across all members of the clique.
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In this way, the advertisements in the local service directories become accessible to

other hosts in the MANET.

When a host moves away, it un-shares its local service directory. Hence, the service

advertisements belonging to that host are no longer available in the federated direc-

tory, which is consistent with the fact that the services offered by that host are also

not available (due to the host not being in communication range anymore). This

eliminates the need for the Jini leasing mechanism, which was not used in SPAWN.

The Java RMI mechanism for invoking services was replaced with a tuple-space-based

communication mechanism (described later) due to it being more resilient against dis-

ruptions. Finally, the centralized code repository for proxy code was replaced with a

transiently shared, federated repository, much like the service directory itself.

In addition to the modifications made to the Jini approach, two new features were

added. The first is an automated upgrade system where the services and their proxies

can be upgraded while they are running with very little interruption in communica-

tion. The second is a mobile thread system for Java where a service can be migrated

from host to host to stay in range of the client. More details on these enhancements

can be found in [39].

The dynamism of MANETs also precluded the direct use of traditional socket streams

as communication channels between service providers. Socket streams are associated

with two stable endpoints. When the connection between the endpoints breaks down,

the socket closes throwing an exception. To circumvent this, SPAWN uses a tuple

space abstraction which catches such exceptions and automatically tries to reconnect

with other co-located neighbors, thereby abstracting frequent disconnections from

the programmer. The tuple space also allows a generative style of content-based

communication as described in [28]. The service directory and code repository are

implemented in terms of tuple spaces which are automatically federated among hosts

in proximity. Tuple spaces are containers for tuples, which are ordered sequences

of Java objects that have a type and a value. An agent places a tuple in the tuple

space using the out(tuple) operation, making it available to all other agents that

are sharing the same tuple space. To read a tuple from the tuple space using the

in(template) operation, an agent needs to provide a template, which is a pattern

describing the tuple that the agent is interested in. A template is a sequence of fields,
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each of which can contain a formal (wildcard) representing the required type for that

field or an actual value that identifies the type and value of the corresponding field.

A template is said to match a tuple if all the corresponding fields match pairwise.

Service advertisements are implemented as tuples that contain a description of the

service’s capabilities while service requests are implemented as templates.

The ServiceDirectory class is a wrapper class that owns a generic tuple

space. Together, this class and tuple space comprise a service directory. The

ServiceDirectory class provides standard SOC operations such as advertise, re-

quest, and invoke. A service is advertised by placing a tuple in the tuple space owned

by the ServiceDirectory class using the out operation. A request is implemented

as a rd operation, with the interface of the desired service being passed as the tem-

plate. Invocation is done through a targeted remote out operation where the tuple

is stamped to indicate its destination host.

To provide asynchronous interactions, SPAWN offers a reaction mechanism. An agent

can declare interest in a tuple by registering a reaction on a tuple space using a remote

operation parametrized by an appropriate template and by providing a callback func-

tion to be called when a matching tuple becomes available. All reactions in SPAWN

are weak reactions, meaning that once the condition for the reaction becomes true,

the callback function is guaranteed to be called eventually, but not necessarily within

a single atomic step.

3.4.2 The Knowledge Management System

The Knowledge Management System described in this chapter has been implemented

as an extension to the SPAWN system. The knowledge management system fits

between the API layer and the communication layer of SPAWN. This required the

extensions to SPAWN shown in Figure 3.2.

The Knowledge Management System is responsible for handling the exchange of

knowledge among hosts in the MANET and managing the knowledge base on each

host so that the information it contains may be obtained easily by interested appli-

cations. More precisely, the Knowledge Management System performs the following
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Figure 3.2: SPAWN architecture with and without knowledge management

functions: (1) aggregation of knowledge about other hosts in the MANET, (2) dis-

semination of knowledge about the local host to other hosts, and (3) management of

the local knowledge base.

The knowledge management system is represented by a singleton KnowledgeManager

that runs on each host in the MANET. Like the rest of SPAWN, the KnowledgeManager

has been implemented in Java. On startup, the knowledge manager starts a SPAWN

agent which is called the knowledge agent. This agent is the interface between the

knowledge manager and the tuple space that is owned by the ServiceDirectory class

(the agent is necessary due to a design feature of SPAWN which allows only SPAWN

agents to access tuple spaces).

The SPAWN ServiceDirectory class now owns a KnowledgeManager, which encap-

sulates all knowledge management functions, in addition to a tuple space. All service

advertisements and requests are now directed to the KnowledgeManager instead of

being placed directly in the tuple space (service invocations and other communica-

tion are still placed directly in the tuple space). The KnowledgeManager has access

to the tuple space owned by the ServiceDirectory (through the KnowledgeAgent)

for communication related to the exchange of knowledge about services. To discover

services, the ServiceDirectory now calls the findService(...) method on the

KnowledgeManager which returns an appropriate service if one is available. Note

that the KnowledgeManager has access to the tuple space from which it retrieves
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all service advertisements, but it only makes services that meet spatiotemporal re-

quirements available to the ServiceDirectory class. Thus, the ServiceDirectory

contains only those services with an acceptable level of connectivity.

The KnowledgeManager has three sub-components: (1) a KnowledgeDisseminator

that distributes knowledge about its parent host and services running on it to other

hosts in the MANET, (2) a KnowledgeAggregator that gathers knowledge about

other hosts and services in the MANET, and (3) a KnowledgeBase that stores this

gathered knowledge. The complete structure of the knowledge management system

is shown in Figure 3.3. Before the details of these three components are presented,

the representation of the knowledge that is used for these components is described in

detail.
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Figure 3.3: The structure of the Knowledge Management System
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3.4.3 Knowledge Representation

The question of how knowledge is represented and codified is crucial as it determines

how knowledge can be organized and the flexibility with which it can be exchanged.

In the system, each piece of knowledge (excluding identifiers) is referred to as a

parameter. For example, a host h by this definition has one parameter, its motion

profile µ. A service s has multiple parameters, such as its capabilities χ, performance

attributes π, and so on. Every parameter is associated with an identifier which

identifies the host or service with which the parameter is associated. Parameters

are also stamped with the time of their last update. While the system can support

an arbitrary number of parameters, the following discussion restricts itself to those

described in Section 3.3.

Since the parameters represent knowledge and are intended to be communicated from

host to host, these parameters are encapsulated within tuples, just like all other

communications in the system. A special class of tuples is defined called “knowledge

tuples” that carry only knowledge. Knowledge tuples are distinguished from other

tuples by virtue of the fact that its first field contains the reserved string “Knowledge”.

The general form of the knowledge tuple is:

<“Knowledge”, String:owner , ParamType:type, Value:value>

Thus, for example, a knowledge tuple containing the allocation profile of some service

“printService” would look like:

<“Knowledge”, “printService” , AllocationProfile.class, profileValue>

where profileValue is an object of type AllocationProfile

The Knowledge Base

The Knowledge Base on each host is divided into two sections: gathered knowledge

and local knowledge. Gathered knowledge is knowledge associated with other hosts

and services in the MANET. Local knowledge is knowledge associated with the local

host. The local knowledge section is organized as a Vector of entries. Entries can

46



be only of type service entry since the only host being tracked in this section of the

knowledge base is the local host whose parameters are stored separately. Each entry

has within it a vector of parameters and their values, e.g., the host entry will have

a parameter called “motion profile” with a value that is a function definition. The

local knowledge portion offers the following basic API for access and updates:

Object:value getLocalParamValue(Entry:entry, String:paramName)

setLocalParamValue(Entry:entry, String:paramName, Object:newValue)

The gathered knowledge portion of the knowledge base is different from the local

knowledge portion in that more than one host entry may be present in the gathered

knowledge section, each host entry representing a host in the MANET of which the

local host is aware. The API of the gathered knowledge portion is:

Object:value getGatheredParamValue(Entry:entry, String:paramName)

setGatheredParamValue(Entry:entry, String:paramName, Object:newValue)

The second method is only accessible to the Knowledge Aggregator (described later)

to ensure that local applications do not tamper with the gathered knowledge. Both

parts of the knowledge base share a common API to create new entries and parame-

ters:

createHostEntry(String:hostName)

createServiceEntry(String:serviceName)

createHostParam(Entry:hostEntry, String:paramName, Object:paramValue)

createServiceParam(Entry:serviceEntry, String:paramName, Object:value)

Entries and parameters in the knowledge base are created on an on-demand basis.

A host entry for some host h is created only when some knowledge pertaining to

that host is received for the first time. Similarly, parameters are created as they

are needed. This allows for hosts to register interest in only some parameters of a

host or service, which is not essential in the limited scope of the presentation in this

section, but can be useful if a large amount of knowledge is traded and hence is an

accommodation for extensibility.
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Finally, the knowledge base supports several convenience methods:

Service:service findService(ServiceRequirement:requirement)

Vector:services getAllKnownServices()

Vector:motionProfiles getMPOfServicesWith(Capabilities:cap,

Attributes:attrib)

MotionProfile:mProfile getLocalMP()

The Knowledge Aggregator

The knowledge aggregator is responsible for aggregating knowledge from other hosts

in the MANET. Initially, the knowledge base on a host is empty save for the knowledge

about the local host. However, each host has a knowledge disseminator (described

next) that is responsible for distributing the contents of the knowledge base to other

hosts. Thus when a host encounters another host, the knowledge disseminators on

each host pairs up with the knowledge aggregator on the other host and exchange the

information in their knowledge base. Simply put, as hosts encounter more and more

hosts, their knowledge base continues to grow. Given the knowledge manager design,

it is also possible for hosts to exchange more restricted sets of parameters about

certain hosts rather than the complete contents of their knowledge bases. However,

this is outside the scope of this dissertation. It is assumed here that all knowledge is

freely exchanged.

The complete process from the creation of the knowledge manager to the aggregation

of knowledge is shown in Figure 3.4. Numbers in parentheses in the following text

refer to steps shown in the figure. To aggregate knowledge, the knowledge manager

registers reactions on the tuple space (7) (via the knowledge agent (6) since no other

class can perform tuple space operations). The reactions can be registered for each

type of knowledge that the knowledge manager wants to aggregate or for all types

of knowledge. For example, to aggregate any type of knowledge, the knowledge

manager registers a reaction with a template of the form <“Knowledge”, String.class,

String.class, Object.class,>. The first field indicates interest in knowledge tuples while

the second field is a wildcard indicating interest in any host that provides knowledge.

The third field is a wildcard indicating that all types of knowledge are of interest,
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:KnowledgeManager :KnowledgeBase

:KnowledgeAgent

2: <<create>>, 5: setLocalParamValue(Entry:entry, String:param, Object:value)

:KnowledgeAggregator

:KnowledgeDisseminator
3: <<create>>

1: <<create>>
6: registerReaction()

:TupleSpace

7: registerReaction()
11: out(knowledgeTuple)

:HostHandler:HostHandler

12: reactionFired()
13: <<create>>

4: <<create>>

8: disseminateParameter(String:param)

9: getLocalParamValue(String:param)
9: getGatheredParamValue(String:param)

10: out(knowledgeTuple)

14: report(knowledgeTuple)

15: createHostEntry(String:hostID)
17: createServiceEntry(String:serviceID)
16: createHostParam(String:paramName)
18: createServiceParam(String:paramName)
19: setGatheredParamValue(Entry:parentEntry
String:paramName, Object:value)

Figure 3.4: Interaction of the various components of the knowledge management
system

while the fourth is a class that is a wildcard for the actual value of the knowledge

parameter. Wildcards are used since any knowledge associated with any host in the

MANET is desirable.

When a host comes within communication range of the reference host, SPAWN raises

an event indicating that a new host has been detected (12). This event causes the re-

action registered (for knowledge) to fire. When the reaction fires, indicating that new

knowledge of the type for which interest was previously registered has been placed in

the tuple space, a HostHandler is created to retrieve a copy of the knowledge tuple

from the tuple space (13). Note that a copy of the knowledge tuple is retrieved so

that other hosts in the network may also read the same knowledge. It is the respon-

sibility of the host that disseminates the knowledge to remove any old tuples using

the in operation before outing a tuple with updated knowledge. Once the tuple has

been retrieved (14), the second field is examined. If the identifier in that field is not

present in the knowledge base, then a new entry is created in the knowledge base

using createHostEntry(...) (15) or createServiceEntry(...) (17) as appropri-

ate. If the entry exists, the next thing that is checked is whether the parameter type
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(indicated by the third field) is present under the host or service entry. If not, the pa-

rameter type is created using createHostParam(...) (16) or createServiceParam

(18) as appropriate. If the parameter type already exists, the timestamp of the value

in the fourth field of the tuple is checked against the value in the knowledge base.

If the newly retrieved value is more recent, the knowledge base is updated using the

setGatheredParamValue(...) method (19).

One concern is that the knowledge base may grow forever. This concern is addressed

by examining the motion profiles of the hosts and services and maintaining the entry

up to the latest point in time for which the motion profile has information. After this

time, the motion profile is deleted, as it is no longer of any use.

The Knowledge Disseminator

The knowledge disseminator is responsible for disseminating knowledge that is in a

host’s local knowledge base. This knowledge can be knowledge about the local host or

knowledge about other hosts that has been aggregated by the local host in the past.

The RequestHandler within the disseminator listens for requests from aggregators on

other hosts. When such a request is received (8), it obtains the appropriate contents

from the knowledge base and packages it. Each parameter in the knowledge base is

packaged into a knowledge tuple of the form

<“Knowledge”, String:owner , ParamType:type, Value:value>

Access to the knowledge is possible via the getLocalParamValue method (9) for

local knowledge and getGatheredParamValue method (9) for aggregated knowledge

as described earlier. Like the aggregator, the disseminator supports the dissemination

of a subset of all the information it has, if so desired. This is useful when two hosts

have a similar amount of knowledge in their knowledge bases and need send only

small updates rather than the complete contents of their knowledge base. Once the

knowledge tuples are ready, they are passed to the Transmitter which instructs the

knowledge agent to place the knowledge tuples into the federated tuple space (10).
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3.4.4 Anatomy of a Service Request

Having described the structure and implementation of the Knowledge Manager, this

section is concluded with a description of the process that occures when a client

wants to discover a service. The client makes a request to the ServiceDirectory

class, which has been updated to take parameters for the time duration for which the

service is required. Thus, for a client to request a service, it needs only three lines of

code:

//Get handle to local directory singleton

ServiceDirectory dir = ServiceDirectory.getLocalDirectory();

RequestID rid = dir.requestService(new ServiceRequest(

capabilities, attrib, startTime, endTime));

//At time startTime:

ServiceProxy proxy = dir.getProxy(rid);

The client can make the request at any time and gets a request ID which identifies

that particular request. A qualifying service is found, and its proxy stored locally. At

the time the client actually needs the service, it queries the ServiceDirectory with

the request ID and obtains the proxy which it can then use as needed.

While the client API is simple, complex operations are going on under the API

layer. Since this chapter addresses concerns at the middleware level, the code that

executes within the ServiceDirectory when a service request is received at the

API layer is now presented. The ServiceDirectory calls findService(req) on the

KnowledgeBase class. That method executes the following code.

ServiceProxy proxy = null;

boolean[] qualifies = true;

Pair[] mProfiles = KnowledgeBase.getMPOfServicesWith(

req.getCapabilities(), req.getAttributes());

for(int i = 0, i < mProfiles.length), i++){
for(int j = req.getStartTime(), j < req.getEndTime(), j++){

51



if(!(inRange(mProfiles[i].getMP().evaluate(j),

KnowledgeBase.getLocalMP().evaluate(j))) {
qualifies[i] = false;

}
}

}
for(int i = 0; i < qualifies.length; i++){

if(qualifies[i]){
proxy = KnowledgeBase.getGatheredParamValue(

mProfiles[i].getServiceEntry(), "Proxy")

return proxy;

}
}
return null;

The second line of code gets the motion profiles of all services that meet the ca-

pabilities and attributes requirements (but which may not meet the spatiotemporal

requirements). Details of how this method works is shown below.

Vector qualifyingServices = new Vector();

ServiceEntry[] services = KnowledgeBase.getAllKnownServices();

for(int i = 0; i < services.size(); i++){
if(KnowledgeBase.getGatheredParameter(services[i],

‘‘Capabilities’’).matches(req.getCapabilities()) &&

KnowledgeBase.getGatheredParameter(services[i],

‘‘Attributes’’).matches(req.getAttributes())) {
qualifyingServices.add(KnowledgeBase.getGatheredParameter(

services[i], ‘‘MotionProfile’’));

}
}

The matches method for capabilities returns true if the interface offered by the ser-

vice proxy is a subclass of the interface specified in the service requirement. For
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attributes, it checks to see that the service proxy has all the attributes specified in

the requirements. If this condition is satisfied, it checks each attribute individually.

Every attribute in the implementation is actually a three-tuple [attribute, value, com-

parator]. The comparator indicates whether a greater value or a lesser value of the

attribute is desired. If the attributes offered by the service compared using the com-

parator are greater than those in the requirement, the matches(...) method returns

true.

Once the motion profiles are obtained, the motion profiles of the local host and the

service are checked to see if they evaluate to locations that are in communication range

of each other. This procedure is repeated for the duration of the service request.

The first qualifying service that meets the spatiotemporal test is returned to the

ServiceDirectory.

On the back end, the knowledge manager watches the SPAWN tuple space for

knowledge tuples using the reaction method described previously. When such tuples

are located, the information in them is added to the KnowledgeBase using the

createHostEntry(...), createServiceEntry(...), createHostParam(...),

createServiceParam(...), and setGatheredParamValue(...) methods.

3.5 Results

Having described the formal model, architecture, and implementation details of the

knowledge management system in previous sections, this section presents results of

simulation experiments conducted to evaluate the approach. The goal of these ex-

periments is to show that the use of knowledge resulted in a better choice of service

being made, without which a task would have failed to complete. In the simulations,

the focus is on cases where hosts are mobile but services do not move between hosts,

as this case is perhaps the most practical given considerations of security, copyright,

and licensing. First, the experimental setup is described followed by results of several

experiments, which demonstrate the validity of the approach.
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3.5.1 Experimental Setup

To simulate the environment of a knowledge-driven MANET, a custom simulator was

developed in which hosts move within a well defined space according to predetermined

motion profiles and can offer or request services. The details of the experimental setup

are now presented:

Simulation Setup. The simulation space is a grid of 250 x 250 squares. Each square

is of size 5m2, resulting in an area of 1.25km x 1.25 km, an appropriately large area

in which hosts can move freely while having communication occur only occasionally.

A host occupies a single square, though a single square may accommodate more than

one host. The number of hosts used in the experiments ranges from 25 to 250. Each

host possesses a knowledge base, motion profile, service requirements profile and a

service offerings profile. Details on how these were generated are given below. All

simulations were run for 500 time points. At each time point, all hosts moved to

the next location as given by their motion profiles. They then exchanged knowledge

with neighbors within their communication radius (which ranged between 2 and 20

grid squares). Once the knowledge exchange phase was completed, the hosts tried to

satisfy their requirements. Finally, it should be noted that each data point shown in

the experiments represents an average value over 20 different data sets collected in

repeated runs.

Mobility Model. Experiments were run using two mobility models: (1) Random

Walk and (2) Random Waypoint. In random walk, a starting point was generated at

random. For each subsequent entry in the motion profile, one of four directions (UP,

DOWN, LEFT, RIGHT) was randomly selected with equal probability and the host

moved to that grid square. In random waypoint, a random start point and a random

waypoint was selected. The host was then moved with constant velocity from the

start point to the first waypoint. Once the waypoint was reached, another waypoint

was randomly generated and the process was repeated. In both models, hosts could

move only one grid square in a single iteration. All motion profiles were generated

prior to the actual experiment as hosts were required to know their motion plan a

priori (to be able to give it out as knowledge). As may be expected, the random walk

profiles tended to keep the host within a smaller region of the simulation space while

random waypoint tended to provide better coverage. A variable called MAX FUT was
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also defined, which restricted the amount of time into the future for which a motion

profile was valid.

Service Model. Each host in the simulation had a service offerings profile and a

service requirements profile. The service offerings profile for a host was generated by

selecting a random number of services from the master set of six services (printer,

pdfconvert, information, mp3convert, rsaencrypt, imagecrop). The service

requirements profile was generated by selecting a random number of requirements for

services that were not in the service offerings profile of the host. This resulted in (1)

the host not being able to satisfy requests locally, thereby biasing the statistics and

(2) the number of requirements being inversely proportional to a hosts capabilities.

All requirements in the system had a fixed length as defined by the global variable

REQ LEN. A host was considered satisfied if all its requirements were met.

Some Comments. The experimental parameters chosen represent all hosts within

a area of reasonable size. If the MANET is formed among a group of people working

in a remote area, 1.25km x 1.25km represents a fairly large area. If the MANET is

formed between cars on a highway, the area represents a sufficient distance ahead as

well as behind the car as well as to the side. The choice of an area of a different size

does not affect the results as long as the density of hosts is maintained. Similarly,

if the density of hosts is decreased for the area chosen, the performance is likewise

affected. Finally, the mobility of the hosts affects the outcomes, which is why the

experiments use two very different mobility models - the more random walk, and the

slightly more predictable waypoint model.

3.5.2 Experiment I: Varying the Communication Radius

The communication radius of a mobile device determines the extent of its reach and

affects the number of hosts with which it can exchange knowledge. This experiment

shows how the communication radius of hosts affects (1) the percentage of hosts that

have their requirements satisfied and (2) the average size of the knowledge base on

each host as a percentage of the size of the global knowledge base. These results are

shown in Figure 3.5.
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Figure 3.5: Size of knowledge base and percentage of hosts satisfied as a function of
communication range

As may be expected, there is an increase in both the percentage of hosts that have

their service requirements satisfied, as well as the average size of the knowledge base,

with an increase in communication range. The expanded communication range fosters

more interactions thereby expanding the knowledge base which in turn increases the

chances of finding suitable services. One may question the fact that even with a high

level of knowledge, a relatively low percentage of hosts requirements were satisfied.

There are several reasons for this low number. (1) Only the hosts that have all their

service requirements fulfilled are counted as having been satisfied. Thus, there were a

number of hosts that had most of their requirements satisfied but were not included

in the count because they were not completely satisfied. (2) In some cases, the host

acquired knowledge of a required service after the time of requirement had passed.

Thus, even though the knowledge was acquired, it did not help identify a service.

(3) In many cases, even though the knowledge about a host was acquired, it was not

suitably located to meet the timing constraints of the service requirements, i.e., the

fraction of exploitable knowledge was low. It is exploitable knowledge that explains

the difference in numbers between the random walk (WALK) and random waypoint

(WAYPT) models. Since WAYPT has better coverage of the entire space, a host

meets a lot of other hosts and gathers a lot of knowledge but those hosts are seldom
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Figure 3.6: Size of knowledge base and percentage of hosts satisfied as a function of
host density

on hand when a service is required. In WALK, the host stays within a small region

and meets fewer hosts and thereby has a smaller knowledge base, albeit one containing

a higher fraction of exploitable knowledge, i.e., the hosts in the knowledge base are

those nearby and which remain in close proximity due to their limited mobility. Thus,

in WALK, there is a greater correlation between knowledge base size and exploitable

knowledge, i.e., knowledge about hosts that can satisfy requirements.

3.5.3 Experiment II: Varying the Number of Hosts.

As mentioned for the previous experiment, the number of interactions a host has with

other hosts affects the percentage of hosts that are satisfied and the average size of

the knowledge base on each host. This experiment examines how host density affects

these parameters, the rationale being that a greater host density will, for a fixed

communication range, increase the potential number of interactions. The results are

shown in Figure 3.6.
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Figure 3.7: Number of meetings, knowledge base size, and satisfied hosts (random
walk model)

Increasing the host density increases the percentage of hosts satisfied, though the

rate of increase is not as marked as when the communication range is increased. In

fact, for WALK, the average knowledge base size actually decreased initially. The

explanation for this is simple. Adding hosts is not effective unless these additional

hosts interact with other hosts frequently. In the case where the average knowledge

base size decreased, the additional hosts were isolated from the rest, and hence their

knowledge bases were empty resulting in the average being brought down. Note

that this problem was not seen with the WAYPT model which tends to foster more

interactions and seldom isolates hosts in a specific region.

Manipulating the communication range and the number of hosts serves to increase or

decrease the number of meetings between hosts. The number of meetings is crucial

since a higher number of meetings theoretically translates to more opportunities for

knowledge exchange and service usage. In the experiments, it was found that an

increase in the number of meetings improves the percentage of hosts satisfied for

both mobility models. However, the size of the knowledge bases were much smaller

in WALK for a similar number of meetings. This was due to the localized nature of
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Figure 3.8: Number of meetings, knowledge base size, and satisfied hosts (random
waypoint model)

WALK which caused multiple meetings but seldom with unique hosts. The results

are shown in Figures 3.7 and 3.8.

3.5.4 Experiment III: Varying the Length of Requirements

Another factor that affects the percentage of hosts that are satisfied is the length

of the service requirement interval, with longer duration requirements having a lower

chance of being satisfied because they require the client and the service provider to be

within range and to have very similar mobility patterns over the requirement interval.

The experiments (Figure 3.9) confirmed this expectation. However, it is interesting

to note that even when the request length was longer than the maximum time a host

could be in communication range, a small percentage of requirements were still being

satisfied, which would be impossible without forward looking knowledge.
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Figure 3.9: Percentage of hosts being satisfied as a function of requirement length

3.5.5 Experiment IV: Varying the Forward Looking Window

Size

The final experiment examined the relationship between the amount of time into the

future for which a valid motion profile is available and the percentage of hosts that

are satisfied. If a larger forward looking window is available, then the chances of

finding a suitable service are greater than if the window is smaller. However, in the

experiments (see Figure 3.10) it was found that even with a window size that is 10%

of the optimum window size, approximately 50% of the hosts that would be satisfied

with the unlimited window still end up being satisfied. This is an important result

since it means that hosts need to predict their motion for only a short time into the

future, which is useful if the host “changes its mind” frequently or does not know its

long term mobility pattern.
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Figure 3.10: Percentage of hosts being satisfied as a function of future window size

3.5.6 Some Remarks

It should be noted that all the experiments shown above were conducted in a knowl-

edge managed environment. When the knowledge management feature was turned

off, the percentage of satisfied hosts fell to zero. Admittedly, it will not always be

the case that the satisfied hosts percentage will be zero as a non-knowledge-managed

system depends purely on chance to satisfy requests. The take home point is that

with knowledge management, the performance is better.

The results presented were obtained using randomly generated data sets. While the

experiments show general trends, it is acknowledged that the system will not be ef-

fective in particular scenarios where the requirements are in conflict with mobility

patterns, e.g., an isolated host can never hope to satisfy its requirement profile, nor

can a host that requests services before it has met another host. The aim of this

work is to show that for reasonable patterns of mobility and requests, the knowledge

management approach can bring a greater degree of predictability where a reason-

able mobility pattern is defined as a mobility pattern in which the host periodically

encounters other hosts and does not remain completely isolated for extended periods

of time.
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Given the results, one might question whether the overhead of knowledge management

is worth the relatively small gains in satisfaction percentage. Given that the target

devices are laptops and PDAs, there are relatively more resources to play with over de-

vices such as cellphones. These devices can also be considered to be longer-lived since

they can be recharged when their batteries run out. The SPAWN middleware was

tested both with and without the knowledge management. There was no significant

drop in performance when the knowledge management was enabled. However, knowl-

edge management does result in the number of messages exchanged in the network

to increase significantly due to the gossiping protocol used to exchange knowledge.

If the network is formed of devices using the 802.11b standard, then the additional

messages do not overload the network since the bandwidth is high enough to support

the knowledge data, which is not very large (on the order of a few KB at most).

However, where the impact of knowledge management is felt most is in the battery

life of the devices as more network traffic translates into the radio being on for longer

periods which is power intensive. Ultimately, if the fallout from an application failure

due to lost connectivity is high enough, the cost of the knowledge management can

be justified.

The final remark relates to those hosts that had part of their requirements satisfied.

There is a possibility for hosts that have most of their requirements satisfied to be

fully satisfied with the help of logically mobile services which can relocate themselves

with the aim of satisfying hosts that are close to being fully satisfied, which is part

of future investigations.

3.6 Chapter Summary

Using knowledge about other hosts in a MANET to plan interactions between clients

and service instances can yield benefits in terms of predictability and stability of ap-

plications that expand their capability via the opportunistic use of external services.

This chapter has described a formal model for proactive service selection in a knowl-

edge managed MANET. It has been shown that such an architecture is desirable in

the dynamic environment of a MANET. Details of a proof-of-concept implementation
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and evaluation results obtained through simulation are also presented. The knowl-

edge management system described in this chapter has been used in the context of

the CiAN workflow management system (described in subsequent chapters) where it

has been used to exchange capabilities of hosts, their motion pattern, availability to

perform tasks, and other such information critical to the functioning of the overall

system.
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Chapter 4

A Mobility-Aware Specification for

Workflows

The knowledge base described in the previous chapter is an integral part of the CiAN

workflow management system. As described in Chapter 2, a workflow management

system executes workflows that represent structured activities that can be executed

collaboratively. The CiAN research can be subdivided into three key projects: (1) the

design of a specification language to describe workflows with flexible structures and

mobility awareness, (2) the formulation and implementation of a set of algorithms that

allocate tasks in a workflow to suitable hosts taking into account their capabilities

and mobility pattern, and (3) the design and implementation of the runtime engine

that manages the collaborative but distributed execution of the tasks in the workflow

by a group of hosts. The design of the specification language is described in this

chapter while the runtime system and allocation algorithm projects are described in

Chapters 5 and 6 respectively.

There is a close relationship between workflow management systems (WfMSs) and

the specification languages they support, with the design and the architecture of the

former usually heavily influenced by the latter. As described in Section 2.4, a work-

flow can be conceptualized as a directed acyclic graph. The workflow specification

language is an encoding of the nodes and structure of such a graph in a format that

is easily interpretable by a machine. Workflows encoded in the CiAN specification

form inputs to the CiAN workflow engine described in Chapter 5, which executes

the workflow specification and produces the results of the collaboratively executed

workflow.
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4.1 Motivation

The most fundamental representation of a workflow is a directed graph where the

vertices represent tasks and the edges impose the ordering constraints and structure

among the tasks. By annotating the vertices and edges with additional information,

a graph can capture a complete workflow specification. However, a graph-based

specification cannot show the execution state of the workflow. This has prompted

the use of Petri-nets [85] where places and transitions are used to show the structural

specification and the tokens used to show the execution state.

While workflow specifications exist today that are based on Petri-net models (e.g.

PNML [22, 107]), the most popular workflow specification, BPEL [70] is based upon

the hierarchical composition of pre-defined structural components. Specification lan-

guages today also mirror the fact that almost all deployed WfMSs are designed to

run across corporate LANs or the Internet, i.e., across relatively stable network en-

vironments. The designs of these specification languages are geared toward a fully

connected distributed setting and do not include the kinds of provisions for flexibility

and adaptability that are needed in mobile environments.

When moving to a mobile environment, the rigidity of current generation specification

languages become a liability. Changes in a dynamic network environment may result

in the execution of the workflow becoming unviable, and the rigidity of the workflow

structure then induces a brittleness which can cause errors to occur frequently. In

addition, current specification languages do not offer spatiotemporal constructs that

allow the author of a workflow to place tasks at a physical location at a particular

time.

The work presented in this chapter is motivated by a desire to have a specification

for flexible and mobility-aware workflows that can not only allow the user to specify

environmental parameters to tasks but also allows the user to specify a structure

that is flexible and can adapt to changes in the execution environment. The CiAN

specification is a clean sheet approach to tackling this problem based on the most

fundamental representation of a workflow - the directed graph. Subsequent sections

of this chapter discuss the design and rationale of the CiAN specification for flexible

and mobility-aware workflows.
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4.2 Related Work

As indicated in Section 4.1, a sizeable selection of existing languages can be used

to specify workflows. Most of these languages use XML syntax such as BPEL [70],

WfXML [102], and XLANG [103]. Each of these languages provides a unique set of

constructs. What is common across these languages though, is that the constructs are

designed with wired networks in mind. For example, in BPEL, the workflow manage-

ment is centralized, the workflow itself is a monolithic entity, and tasks interact with

each other via centralized shared variables, which is appropriate for a wired LAN but

is not suited to the dynamic nature of MANETs. Attempts have been made to par-

tition the BPEL specification and facilitate coordination among the pieces by adding

special constructs like DoStart, ReceiveStart, DoEnd, and ReceiveEnd in [59]. While

that work describes a method for partitioning the specification, it does not support

fully decentralized execution, and as such falls short of the needs the CiAN specifi-

cation addresses. Another approach is described in [14] where the authors parse a

BPEL specification, discard all the structural constructs and use the link construct to

build a more graph-like specification. This approach in effect eliminates the need for

all but one of BPEL constructs and is still fairly rigid e.g., it does not allow optional

redundant edges.

A Petri net based language such as PNML [22] is more flexible as it adopts the graph

structure of Petri nets, but it is designed to be a general purpose language and hence

does not possess the specific constructs required to specify a workflow. However, these

constructs can be created, as shown by Alt et al. in [7], but as the authors indicate,

their language is targeted to grid computing applications exclusively. Perhaps the

most versatile Petri net based workflow language is YAWL [107], which uses XML

under the hood but can be written using a graphical tool where workflow patterns

are represented by a combination of annotated places, transitions, and arcs. The

versatility of YAWL is highlighted by the study in [106], which compares the features

of YAWL to other systems. In developing the CiAN specification language, there was

a choice between developing a language from scratch or extending a language such as

YAWL. The former option was chosen for the following reasons: (1) augmenting an

existing language with constructs for mobility and context-awareness would constrain

the CiAN specification to the semantics of that language; (2) in most cases, the syntax

66



and the form of the original specification would have needed to be heavily modified

which would have required a re-engineering of the runtime environment; and (3) a

tight integration between the language and the runtime system was desirable so that

the runtime system supported exactly the features of the language and no more,

thereby being more forgiving in terms of resource usage.

The next section describes the key features of the CiAN specification, the filter model,

which is the key concept around which the CiAN specification is based, and some

example CiAN specification code. This is followed by a qualitative comparison of

CiAN to existing approaches.

4.3 The CiAN Specification

The goal of the research presented in this dissertation is to build a WfMS for exe-

cuting collaborative tasks involving people and mobile devices in the physical world.

When workflows and WfMSs are migrated from wired network settings to the physical

world, it becomes necessary for the specification language to support certain features.

The notion of where and when a task is executed assumes a much larger signifi-

cance in the physical world than in a purely computational environment, as does the

responsiveness of the system to factors in the physical environment. In mobile envi-

ronments, executions of monolithic specifications can result in vulnerabilities in the

system due to a single point of failure, which points to a need for distributeable spec-

ifications that are flexible and can be adjusted in response to instantaneous network

conditions. Finally, it is crucial to include constructs that maintain the structural

integrity and semantics of the workflow, even if the specification is fragmented and

distributed. From these observations, three high level requirements can be distilled:

(1) the workflow must be completely fragmentable, i.e., it should be possible to divide

a workflow into as many pieces as there are tasks in that workflow, (2) there must

be support for the basic control flow patterns as suggested by van der Aalst in [106],

and (3) the structural semantics of the workflow must be context-dependent, i.e., the

semantics of the workflow structure could change depending on the context in which

it is executed. Given these requirements and the observations in the previous section,

the choice was made to model the CiAN specification using a directed acyclic graph
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model with filters. This section presents the salient features of the CiAN specification,

and the manner in which they are realized within the filters, as well as a description

of the syntax.

4.3.1 Specification Features

Fragmenting the Workflow. The adoption of the graph model allows easy frag-

mentation of a workflow into its constituent tasks (the first requirement) and assign-

ment of individual tasks for execution on available hosts since each task appears as

an individual unit connected by edges rather than as part of a composite structure

that may not be as easy to partition. In CiAN, the tasks in the workflow are listed

in no particular order. Then, treating these tasks as graph nodes, two adjacency lists

are built for each task, the input adjacency list and the output adjacency list. If

there is an outgoing edge from Task A to Task B, Task B is added to Task A’s output

adjacency list (Task A is automatically added to Task B’s input adjacency list since

an outgoing edge from A to B implies an incoming edge to B from A). Since any single

task in the workflow is only interested in the tasks from which it receives inputs and

those to which it must deliver outputs and is not affected by the remainder of the

workflow, the adjacency lists capture exactly the information needed by each single

task. Thus, the tasks and their associated adjacency lists can be easily distributed

across multiple hosts with the overall structure of the workflow being preserved, al-

beit in a distributed fashion, which is desirable for MANETs. To ensure structural

integrity of the workflow (e.g., checking for dangling edges, lack of lattice structure,

etc.), the specification is passed through a checker which lists errors in the workflow

in a similar manner as a compiler does for a program.

Context-aware Execution. When executing a workflow in an environment that

is as dynamic as a MANET, the emphasis is on designing a system that is adaptive,

rather than rigid. In traditional workflow specifications, the semantics of the edges

and the overall structure of the workflow cannot change once the workflow begins

execution which makes for very rigid constraints at runtime. To remedy this, fea-

tures were added to the CiAN specification that make the workflow context-aware, so

that the workflow can adapt to changes in the context in which it is executed. This

context-awareness is achieved by the use of selection conditions. As shown in Figure
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Figure 4.1: Detail of an input filter

4.1, each incoming edge to a task may have one or more selection conditions. Each

selection condition has one or more associated sub-conditions. If an edge has at least

one selection condition which has all its sub-conditions evaluate as true, then the

edge is marked active, otherwise the edge is marked as inactive. The sub-conditions

that make up the selection condition are of the form parameter name, comparator,

value where parameter name can be the name of another edge, a parameter in the

local knowledge base, or the name of a sensor. The comparator is any logical com-

parison operator, and the value is the value that is being tested against. For example

sensor:velocity, >, 10m/s is a condition that tests whether the velocity of the

host is greater than 10m/s. The use of selection conditions also allows redundancy

to be built in. For example, if edge1 and edge2 are two redundant edges, it can

be ensured that only one is selected by imposing the following conditions on edge1

and edge2 respectively: (edge1, !=, null) AND (edge2, ==, null) and (edge1,

==, null) AND (edge2, !=, null).

Support for Workflow Patterns. A graph-based workflow can be decomposed into

a set of canonical patterns, as suggested by van der Aalst in [106, 108]. These patterns

69



dictate edge selection (e.g., all edges, one edge, etc.) and specify synchronization

semantics. CiAN supports this via accept sets. Accept sets are subsets of incoming

edges that form acceptable input to the task. If all the edges in an accept set are

active, as determined by evaluating their individual selection conditions, then the task

is ready for execution. Accept sets provide support for the basic workflow patterns.

Support for some advanced patterns require the use of appropriate selection conditions

in combination with accept sets. As an example, if edge1 and edge2 are two incoming

edges, then an accept set containing both edges would result in AND semantics (all

inputs required). Two accept sets with one edge in each would result in OR semantics

(any one input is acceptable). When an acceptable combination of input edges is

available, the data transmitted along each edge is copied to a corresponding input

variable (specified as part of the workflow) from where it is read by the service that

performs the activity associated with the task. Detailed code examples showing the

translation of the workflow patterns to CiAN code is shown in Appendix D.

These features have been presented in the context of input edges. The same features

are available on output edges with small differences. The service performing the

activity associated with the task writes its results to output variables, which map to

output edges. Accept sets for output edges check if there is an acceptable subset of

edges that have results written to their corresponding output variables. If so, each of

those edges have their selection conditions tested and if any one of them is true, they

transmit the data in their output variables to the tasks at the sinks of those edges.

4.3.2 The Filter Model

The filter model has been designed under the assumption that the primary source of

flexibility in a workflow will be due to the re-arrangement or elimination of edges,

keeping the set of tasks in the workflow intact. Thus the tasks in the workflow are

treated as anchors and are represented just as they would be for a workflow that is

designed to execute across a stable network. For flexibility, the tasks are preceded and

succeeded by the input and output filters respectively (shown in Figure 4.2). These

filters encapsulate and manage the dynamics of the workflow structure.
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Figure 4.2: Workflow structure with and without filters.

<task>
    <name>Task1</name>
    <output-edges>
        <partner>Task2</partner>
        <partner>Task3</partner>
    </output-edges>
</task>
<task>
<name>Task2</name>
    <input-edges>
        <partner>Task1</partner>
    </input-edges>
</task>
<task>
<name>Task3</name>
    <input-edges>
        <partner>Task1</partner>
    </input-edges>
</task>

Task 
1

Task 
2

Task 
3

Figure 4.3: Translation of CiAN code to a graph structure

As shown in Figure 4.1, the various conditions, selection conditions, and accept sets

associated with a task specification are contained in the filter. As such, bespoke input

and output filters are created for each task. The information in the inputs section

of a task is used to customize a generic input filter for a specific task. The edge

tags are used to determine how many incoming edges need to be handled, and the

selection-condition tags to determine the conditions that the filter checks before

allowing the data associated with an edge to pass through it. Finally, the filter uses

the information in the accept-set to determine when the associated task should be

begun. Correspondingly, the outputs section is used to customize a generic output

filter for a specific task in the same manner. Figure 4.3 is a partial view of how

a snippet of CiAN specification code corresponds to and is translated to a graph

structure.
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The input filter handles all the processing to determine if an acceptable set of inputs

is available for the task. Once such a set is available, it invokes the task. The output

filter waits for the task to complete and then accepts the outputs of that task. As a

result of this setup, the task is agnostic to the manner in which its inputs are made

available or the destinations to which its output is delivered. This decoupling allows

the design of the task execution mechanism to be done assuming a notion of stability

in the workflow structure.

The filter also facilitates in providing the task with a notion of network stability.

Since the filter structures handle the receiving of inputs and disbursement of outputs

to hosts that are responsible for preceding and succeeding tasks in the workflow, they

can handle all the dynamics associated with the network, once again abstracting it

from the task. A detailed description of the runtime infrastructure to achieve this is

given in Chapter 5.

4.3.3 Syntax and Tags

The actual CiAN specification is an XML-based specification where each CiAN work-

flow must appear in its own file. A sample of the code is shown in Figure 4.4 and

detailed explanations of each of the tags appears in Appendix B. A CiAN workflow is

delimited by the <collaboration> tags. Within these tags, the specification is split

into two elements – the header and the body. The header declares the non-functional

information about the hosts and the network that this workflow relies on while the

body contains the actual task definitions. The header itself is split into two sections

delimited by the <knowledge-base> and <sensor> tags. The knowledge base section

specifies the names of the parameters found in the knowledge base of hosts that this

workflow relies on. This knowledge base is the same as the one presented in Chapter

3. Each of these parameter names are delimited by <knowledge-var> tags. The

sensor section specifies the names of the various sensor parameters that the workflow

relies upon and these are delimited by <sensor-var> tags (the sensors are assumed

to be attached to the local device). The absence of these parameter values at runtime

does not halt the execution of the workflow but could compromise its flexibility.
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<collaboration>
<knowledge-base>

<knowledge-var>host-capabilities</knowledge-var>
<knowledge-var>motion-profile</knowledge-var>

</knowledge-base>

<sensors>
<sensor-var>location</sensor-var>
<sensor-var>time</sensor-var>

</sensors>

<task>
<task-name>ExampleTask</task-name>
<earliest-start><date>09/21/2007</date><time>09:05:00</time></earliest-start>
<duration>180</duration>
<deadline><date>09/21/2007</date><time>09:09:00</time></deadline>
<loc-x>0</loc-x>
<loc-y>0</loc-y>

<inputs>
<edge>

<name>InEdge1</name>
<var>InputValue</var>
<partner>ExamplePredecessor</partner>

</edge>

<accept-set>
<set>

<name>InEdge1</name>
</set>

</accept-set>
</inputs>

<activity>
<input-vars>

<var>InputValue</var>
</input-vars>

<service>http://cian/Example</service>
<method>doExampleTask</method>

<output-vars>
<var>OutputValue</var>

</output-vars>
</activity>

<outputs>
<edge>

<name>OutEdge1</name>
<var>OutputValue</var>
<partner>ExampleSuccessor</partner>

</edge>

<accept-set>
<set>

<name>OutEdge1</name>
</set>

</accept-set>
</outputs>

</task>
</collaboration>

Figure 4.4: CiAN code example showing a single task within a workflow

73



The body of the workflow comprises one or more task definitions, delimited by the

<task> tag. The tasks can be specified in any order regardless of their position

in the workflow. A task definition consists of (1) a task name, delimited by the

<task-name> tag and unique in the scope of a workflow, (2) the earliest start time

of the task delimited by the <earliest-start> tag, (3) the duration of the task

delimited by the <duration>tag, (4) the deadline for completing the task delimited by

<deadline> tags, (5) the location of the task delimited by <loc-x> and <loc-y> tags

and three additional sections: input, activity, and output, delimited by the <inputs>,

<activity>, and <outputs> tags respectively. The input section defines one or more

edges, each delimited by the <edge> tag. Each edge represents a connection to another

task in the workflow and is analogous to the edge in the graph representation of

the workflow. The input section also defines one or more accept sets, delimited by

the <accept-set> tag. Inside each <set> element is a list of names of edges that

represents subsets of the input edges that are considered valid input. For example,

if a task had 6 incoming edges labelled 1 to 6, but those 6 edges were really a pair

of redundant inputs consisting of 3 edges each, then values from the first of the

redundant pairs (edges 1 to 3) are equally valid as the values from the second of the

redundant pairs (edges 4 to 6) and it is not necessary to wait for all the inputs. The

accept set captures this information. The outputs section is similar to the inputs

section in structure except that the edges are outgoing rather than incoming.

The activity section specifies information about the actual service that needs to ex-

ecute to complete a particular task. This section specifies the names of the input

variables to the service, delimited by the <input-vars> tag and the names of the

variables to which the service writes its output, delimited by the <output-vars> tag.

It should be noted here that since the input filter, service, and output filter for a

given task reside on the same host there is no issue of consistency or overhead in

using these variables. Finally, the actual location or URI of the service is delimited

by the <service> tags and the method to be invoked on that service by the <method>

tags.

Workflows specified in CiAN are flexible and context-sensitive due to the way an edge

is structured. Each edge has a name, delimited by the <edge-name> tag, which is

unique in the scope of a task. The <partner> tag is used to define the name of the

task at the other end of the edge. For incoming edges this is the source task, while
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for outgoing edges it is the sink task. The <var> tag specifies the name of the local

variable to which the value transmitted along the edge is written (in the case of input

edges) or from which it is read (in the case of output edges). These variables are

the same as those that appear as input variables and output variables in the activity

section. Values transmitted along an incoming edge are written to an input variable

from where the service reads it. The service’s output is written to an output variable

from where it is read and transmitted over an outgoing edge.

In addition to this basic information, each edge can specify zero or more selection

conditions (denoted by the <select-cond> tag) which may consist of multiple sub-

conditions. If any one of the selection condition blocks have all their sub-conditions

(denoted by <cond>) evaluate to true, then the value of the edge is considered accept-

able input to the task. Each condition is a three-tuple consisting of a parameter name

denoted by <param>, a comparator, and a value. The parameter can be of four dif-

ferent types: 1) knowledge:hostname:paramname, which refers to the non-functional

parameter called paramname of a host called hostname which may be found in the

local knowledge base, 2) sensor:sensorname, which refers to the value of a sensor

called sensorname, 3) edge:edgename, which refers to a value transmitted along an-

other edge whose name is edgename, and 4) var:varname which refers to the value of

a local variable called varname. The comparator may be the operators {<, >, <=,

>=, ==, !=}.

The graph like structure of the CiAN specification language helps support all the

basic control flow patterns. If parallelism is required, multiple output edges can fan

out from a single task. If sequential processing is desired, then only one output and

input may be used. Merges and splits can be built in similar ways. If an XOR merge

is desired, each edge can be tagged with a selection condition that requires all other

input edge values be equal to null. This way, the first edge that yields a value is

selected as input. Also, context sensitive selection is implemented in the same way,

e.g., an edge is not selected unless the temperature sensor has a value greater than

32.
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4.4 Qualitative Comparisons

Recall that the three required features of the CiAN specification were: (1) easy frag-

mentation, (2) context-aware execution, and (3) support for the basic control flow

patterns suggested by van der Aalst. Easy fragmentation was achieved by the use of

an underlying graph model and self-contained task descriptions. Context-awareness

was achieved through the use of selection conditions, and support for patterns through

the combined use of selection conditions and accept sets.

The ability of the CiAN specification to support the control flow patterns is detailed

separately in Appendix D. This section highlights the context-awareness features of

the CiAN specification via the examination of three example scenarios, each of which

progressively test the limits of existing approaches. For each scenario, the applicable

workflow is specified using the CiAN specification and two other languages that are

arguably the leaders in their respective spaces– BPEL [70] which is the most popular

workflow specification language for commercial deployments, and YAWL which is one

of the most mature systems to come out of academia. The cases and evaluations are

shown below.

4.4.1 Case 1: Writing a Paper

The first case examines a scenario where an academic paper must be written collab-

oratively. The workflow shown in Figure 4.5 depicts the structure of this activity.

Initially, the introduction is written to set the tone and message of the overall paper.

Once this is done, several sections can be written in parallel prior to the evaluation

and conclusion which must be written in order.

4.4.2 Case 2: Checking Out From an Online Store

The second case examines a scenario where a customer is checking out of an online

store. When the checkout button is pressed, the shipping and the tax is calculated

in parallel and applied towards the total for the order. If the total is greater than $
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Figure 4.5: CiAN Specification Case Study 1: Writing an Academic Paper

100, then a coupon is included with the order as part of a promotion. The workflow

structure is shown in Figure 4.6.
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Figure 4.6: CiAN Specification Case Study 2: Checking Out From An Online Store
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4.4.3 Case 3: Soil Sample Analysis

The final case examines a scenario where scientists are conducting soil sample tests

in the vicinity of a chemical plant at a specified time (shown in Figure 4.7). Once the

initial sample is taken, a basic analysis is done. Only if this shows a level of toxicity

over a certain threshold is the second analysis done. If the second analysis shows a

critically high toxicity level, then an emergency response is immediately called. If the

level is marginal, a confirming analysis is done and emergency response called only

if a high level of toxicity is confirmed. The preparation of a report and having the

supervisor sign off on it is done regardless of the toxicity levels.
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Figure 4.7: CiAN Specification Case Study 3: Soil Sample Analysis

4.4.4 Comparison

Figure 4.8 shows a summary view of the success of the CiAN specification versus the

other two languages in specifying the workflows associated with the three cases. For

case 1, where the workflow is fairly straightforward, all three languages do equally

well, though the code for CiAN is much longer than the others. In the second case,

with conditionals, again all languages do well except the amount of code for BPEL and

YAWL expand to handle the two options. In the third, where there are several options

and the actions taken depend on factors sensed during the workflow execution, CiAN

is much better equipped to handle the situation and the other languages must resort

to external solutions or syntactic manipulation to correctly specify the workflow.

For example, in BPEL, to have flexibility, the standard structural constructs must

be discarded in favor of the link construct and environmental variables can only

be introduced as system variables using an external solution. Similarly in YAWL,
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sensor values and environmental knowledge would need to be provided by an external

solution and integrated with the core engine. As such, these languages are at a

disadvantage to CiAN in mobile and rapidly evolving situations.
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Figure 4.8: Summary results of comparative analysis

The detailed code for each case for each language appears separately in Appendix E.

4.5 Chapter Summary

The CiAN specification has been designed from the ground up to be a workflow spec-

ification language that supports flexibility and adaptability of the workflow structure

in response to mobility. In addition, the specification language contains means to

describe spatiotemporal properties of tasks, an important feature when workflows are

being executed in the physical world. Through a case-study-based qualitative com-

parison, it has been shown that CiAN can specify adaptive workflows for scenarios

in which current approaches fail. This is a useful step towards a new generation of

flexible workflow specifications.

Another aspect that was kept in mind when designing the CiAN specification was

integration of the specification with the runtime system. System design concerns sig-

nificantly influenced the design of the language resulting in a very tight and intuitive

integration between the specification and the runtime components– sections of task
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specifications translate directly into customized runtime components. The link be-

tween the specification language and the runtime system is further highlighted in the

next chapter.
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Chapter 5

CiAN: A Workflow Management

System for MANETs

Workflow specifications written in the CiAN specification language are executed by

the CiAN workflow engine. The CiAN workflow engine is a workflow management

system (WfMS) targeted to mobile ad hoc networks (MANETs). As described in Sec-

tion 2.4, a WfMS takes a workflow specification as input, allocates individual tasks to

qualified hosts, and then manages the execution of these tasks across multiple hosts

until all tasks are complete. In the case of the CiAN workflow engine however, there

is an added requirement that all the aforementioned functions must work across a dy-

namic and volatile mobile environment. This chapter describes the design challenges,

resulting software architecture, and implementation of arguably the first WfMS that

is designed for operation in a fully ad hoc mobile network.

5.1 Motivation

The use of workflows to compose software services is a well-established concept, ev-

idenced by the existence of workflow languages such as BPEL [70], YAWL [107],

WfXML [102] and Workflow Management Systems (WfMSs) such as ActiveVOS (pre-

viously ActiveBPEL) [3], BizTalk [62], and the Oracle Workflow Engine [74], to name

a few. WfMSs take a workflow specification, which describes a complex activity split

into a structured set of smaller tasks as input. WfMSs choose software services to

perform each of the tasks in the workflow specification and orchestrate their exe-

cution such that, working in combination, they are able to complete the complex
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activity specified. While workflows are used in many applications today, arguably

the most common use is in the specification and execution of complex, multi-step

business processes, such as loan application processing, insurance claim adjustment,

etc. Most of these business processes run across a stable network (wired or nomadic

wireless) where the network topology is stable and connectivity among participants

and WfMSs is assured. As such, most commercially available and deployed WfMSs

today are designed to run in stable environments using centralized architectures and

orchestration of services.

It should be observed however, that there is no intrinsic constraint in the workflow

model that prevents it from being used in much broader contexts. Rather, it is the

lack of a suitable WfMS that prevents workflows from being used away from the

so-called network core. The goal in designing the CiAN specification and engine is

to broaden the scope of workflow usage to mobile settings, where the scope of the

workflow extends beyond computational tasks to tasks that are performed in the

physical world and the entities that perform the task are either software services or

humans with specific skill sets. In other words, the target is situations where a large

number of people (assisted by a library of software services) need to collaborate, but

where setting up a traditional WfMS over a temporary LAN, even if possible, is not

the most desirable option. This motivation paves the way for a WfMS that runs on

mobile devices over a MANET. Mobile workflow technology can be applied to a wide

range of applications such as emergency response, outdoor hospitality events, and

evidence-based practice, to name a few.

Migrating a WfMS from a wired or nomadic setting to MANETs is not trivial. In

wired systems, the WfMS and all the services it exploits to complete tasks can coordi-

nate with each other at any time due to the presence of the fixed network. A MANET

environment does not offer this luxury. The dynamic network topology and unpre-

dictable disconnections that are common in a MANET significantly reduce the ability

of the participants to communicate with each other or with a central coordinating en-

tity. In addition, the WfMS cannot execute on a single host because the loss of that

host compromises the collaboration among all other hosts in the MANET. Hence,

the workflow execution needs to proceed in a decentralized, choreographed fashion,

with redundancies built in to accommodate errors due to the inability of hosts in the
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network to communicate with each other. Solving these problems requires a redesign

of WfMSs at the most fundamental level.

The remainder of this chapter describes the system design and implementation solu-

tions that in combination make up a WfMS for MANET environments.

5.2 Related Work

At present, innumerable WfMSs are available as both commercial and open source

software, including FLOWer [76], AgentWork [64], Caramba [19], Groove [61], and

I-Flow [26]. ActiveVOS [3], JBoss [46], and the Oracle Workflow Engine [74] are just

a few of the engines available today that run BPEL workflows, while BizTalk [62]

supports XLANG. Each of these engines is designed for orchestrated operation in

wired settings.

As a result of being designed for wired environments, a lot of the systems available

today do not have the requisite flexibility for MANET environments. For exam-

ple, in BPEL-based systems, transfer of data between tasks is done by centralized

shared variables– an approach that is not practical in a MANET. A workaround to

this was proposed in [14] which uses message passing to distribute data in a wired

setting. However, this approach cannot handle the dynamism of MANETs. MoCA

[90] is better suited to mobility due to its use of proxies. Mobile users maintain

proxies on stable wired nodes which communicate with the MoCA directory service

(DS), configuration service (CS) and context information service (CIS) over a wired

link. These three modules coordinate the collaborations of multiple mobile hosts.

However, since most of the MoCA infrastructure resides on a wired network, only

nomadic mobility can be realistically supported as mobile hosts are dependent on the

DS, CS, and CIS for coordination. In AWA/PDA [99], the authors adopt a mobile

agent-based approach based on the GRASSHOPPER agent system. They define five

types of agents, the Workflow Agent (WA), Process Agent (PrA), Task Agent (TA),

Worklist Agent (WlA), and Personal Agent (PA). The PA is a daemon agent on a

mobile device and is not logically mobile. The rest of the agents are logically mobile

and can opportunistically move from one host to another. For example, a TA, which

coordinates a single task can migrate to a PDA, work while disconnected, and then
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report results when a connection is available to the WA. Since all necessary compo-

nents of the system are logically mobile, this type of architecture is better suited to

mobile environments. However, the dependence on a WA or WlA means that the

hosts carrying these agents must always be within communication range. While this

may be simulated by moving the process from one host to another this is computa-

tionally expensive and it may not be possible to guarantee connectivity with all hosts.

Finally, Exotica/FDMC [6] describes a scheme to handle disconnected mobile hosts.
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Figure 5.1: Orchestration vs. Choreography

WORKPAD [13] is designed to meet the challenges of collaboration in a peer-to-peer

MANET involving multiple human users. WORKPAD works by augmenting the basic

workflow specification with directives (mainly involving moving a host so that it can

communicate with another) so that the tasks in the workflow can hand off data to

subsequent tasks and thereby advance the execution of the workflow. WORKPAD’s

shortcoming is that it requires at least one member of a MANET to coordinate with

a central entity that coordinates the mobile devices, manages disconnection, and

augments the workflow specification with mobility directives. This dependence means

that WORKPAD cannot survive in ad hoc mode for an extended time. The work

presented in this chapter is targeted to an environment similar to that of WORKPAD.

However, the approach is different. Rather than insert directives to move hosts from
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one place to another, hosts are allowed to move pseudo-freely and other constructs are

used to ensure successful completion of workflows as described in subsequent sections.

To achieve true distributed management, the system must support a choreographed

style of execution (the differences between orchestrated and choreographed systems

is shown in Figure 5.1). With a choreography-based system, a leading concern is

the process by which a workflow is distributed across various participants and then

executed. In [68], the authors describe the process by which a monolithic workflow

specification can be fragmented and eventually distributed across multiple hosts while

in [14], the authors parse a BPEL specification, discard all the structural constructs

and use the link construct to build a more graph-like specification. Several systems

exist that achieve partial choreography, a survey of which appears in [36]. OSIRIS

[92] is one such system where individual nodes maintain a hyperdatabase (HDB) to

which service execution requests are pushed by a set of global process repositories.

The choice of to whom to push the request is handled by established load balancing

techniques. ADEPTDistribution [9] describes a scheme for distributed execution of

workflows such that the number of network messages is minimized. Additional efforts

are ongoing to define protocols and standards for choreography such as in WS-CDL

[112].

The CiAN workflow engine is a choreographed WfMS which uses an allocation pro-

cess to coordinate division of responsibility among hosts and a combination of filters

(described in Chapter 4) and host-agnostic publish-subscribe protocol for subsequent

choreographed execution. It should be noted that this chapter touches only briefly on

the allocation process, referring only to the software components needed to accom-

modate this function. The algorithmic aspects of allocation are treated separately in

the next chapter.

5.3 System Design

The CiAN middleware is designed to be a choreographed WfMS. A choreographed ex-

ecution model (as opposed to the orchestrated [109] models in common use at present)

has two phases– a negotiation phase and a peer-to-peer execution phase . During the

negotiation phase, the hosts participating in the choreographed execution determine
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their pattern of interaction. This pre-determined pattern of interaction is then used

to guide a message passing peer-to-peer protocol that advances the execution of the

workflow. In CiAN, the allocation process described in the next chapter serves the

function of the negotiation phase as it helps determine which hosts are responsible

for which tasks. Once tasks have been allocated, the primary responsibility of the

choreographed execution engine is to ensure that the tasks get executed without vio-

lating any structural or synchronization properties of the workflow as a whole. This

is done in two phases as described below.

Host A Host B Host C

Host D Host E

Allocation

Host A

Host B Host C

Host D Host E

Host A

Host B

Host C

Host D Host E

1 Allocation process 
(covered separately)

2 Start of
Execution

Waiting on Inputs

Results

Completed

Waiting on Inputs

3 Transfer of 
Results

Results

Figure 5.2: Steps in Executing a CiAN Workflow

Initial Installation. A coordinator allocates a task to a host by sending the target host

a full specification of the task (shown in Step 1 of Figure 5.2). When a host receives

such a specification, it installs it locally. The process of installation includes setting

up the appropriate data structures and threads to evaluate the selection conditions

and accept sets associated with that task (this process is described in more detail in

the Section 5.5). Once the task is installed, it creates a subscription for each incoming

edge to the task. A subscription is a request for the output of the tasks that are at the

source of the respective edges. These subscriptions are disseminated into the network
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using one of the protocols described in Section 5.4. At this stage, the host is ready

to execute the task.

Task Execution. While the task is ready to execute once it has disseminated its

subscriptions, it cannot move forward as long as it does not have a valid set of inputs.

When an input value for the task is received by the host (from another host across

the network), it evaluates the selection conditions and accept sets. As indicated in

Section 4.3, this evaluation is the responsibility of the software filters that precede the

task. If an acceptable combination of inputs has been received, the host executes the

task (usually by invoking a local service or prompting the user to take an action) and

produces outputs. The output data is then evaluated (by the output filter) in terms

of the output selection condition and accept sets and is subsequently disseminated

using the same protocols described in Section 5.4. The protocols ensure that the data

from a task is delivered only to those tasks that have declared interest in having that

data.

Given this model, a typical execution occurs as follows: the first task in a workflow

has no inputs and can begin execution immediately (Step 2 of Figure 5.2). Once it

is finished, it produces output data which are then transmitted over the MANET to

hosts that are responsible for executing the next set of tasks. This data then becomes

the inputs for those tasks, thereby triggering their execution (Step 3 of Figure 5.2).

This process continues until the last task is done executing.

5.4 Communication Protocols

The piece that glues the individual hosts executing their allocated portions of the

workflow into a cohesive distributed workflow execution is the communication pro-

tocol for exchanging data among hosts. Such a communication protocol must be

workflow-oriented, i.e., it must be aware of and accommodate the semantics of the

workflow structure and also be resilient to the dynamism of a MANET environment.

This section shows how current approaches tackle the problem and which is then

contrasted with the host-agnostic publish-subscribe-based approach of CiAN.
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In current MANET communication protocols such as [83, 47, 84, 48], the approach

is to assign an address to each host in the MANET, and then build routes between

hosts that are either maintained continuously or created on an on-demand basis. As

acknowledged in many papers, MANET routing protocols have an inherent disad-

vantage in that routes in a MANET do not last long and can be very expensive to

maintain. In addition, for the purposes of CiAN, MANET protocols have an added

disadvantage in that they are host-centric, i.e., addressing is done by host rather than

by any property of the workflow.

The CiAN approach is built on the notion of disconnected routes [37], which do not

need the entire route to be connected end-to-end like traditional MANET routes. In-

stead, disconnected routes use a store-and-forward approach where data is transferred

between hosts when there is a direct (single hop) link between them. In addition,

disconnected routes only require that the connection for the next hop be available for

communication rather than the entire route. By exploiting these direct links between

hosts in a temporally sequenced manner, disconnected routes can deliver data be-

tween pairs of hosts which are never directly connected with each other or connected

end-to-end via a route.

While disconnected routes alleviate the problem of route maintenance in a MANET,

they do not eliminate the fact that the addressing is still by host. To get around this,

a publish-subscribe-based overlay layer is used by CiAN for communication. This

layer is based on the principle that the hosts which have been allocated tasks will

publish the results of those tasks and will subscribe for any required inputs to those

tasks. By having the publish-subscribe layer deal in tasks, task input values, and task

output values, the communication protocol is made to be workflow-oriented rather

than host oriented, thus gearing it for the most stable feature of the system.

The publish-subscribe scheme works as follows: Each task in the workflow is numbered

using a breadth first graph traversal algorithm. When a host is allocated a task or set

of tasks, it creates an ordered vector consisting of the numbers of those tasks. Once

this vector has been created, it removes the lowest number from that vector. This

number then becomes that host’s identifying number until the task corresponding to

that number has been completed. At this point, the host chooses the next number

from the vector and uses it as its identifying number. If the vector is empty, the host
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assigns itself a null value. The null value is also assigned if the host does not have

any tasks allocated to it.

Any data generated by the host contains two fields: the (current) number of the task

generating the data and the number of the task that the data is targeted to. Any

subscription similarly has the number of the task requesting the data and the number

of the task from which the data is requested. An additional field is included in both

publications and subscriptions to track the current routing status of the message.

Observe that since hosts essentially number themselves based on the number of the

tasks they have, there is a simple mapping from tasks to hosts without any host

needing to be aware as to which specific host is executing a particular task. For

example, a host may simply subscribe to the output of “Task 5” and the routing

protocol then ensures that the request reaches the host who is publishing data that

is the output of “Task 5.”
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Figure 5.3: Steps in the Publish-Subscribe Communication Protocol

The data and subscriptions are routed among hosts using three distinct schemes, each

of which have their own strengths and disadvantages. What is common among them

is the restrictive flooding of data and subscriptions to a limited set of hosts in a way

that improves their chance of reaching the recipient.
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Routing Scheme 1. In Scheme 1, data and subscriptions are restricted to hosts

that have numbers in the range between the originating host and the recipient host.

Routing is also allowed to hosts that have a null value as their number. Data is

routed to any host that has a number between the generating task number and the

target task number or has no number in a strictly increasing fashion. Subscriptions

are routed similarly but in a strictly decreasing function. Routing to a host with no

number is considered neither a decrease nor an increase. In both cases, when the

message is routed, the current routing status field is updated to reflect the number of

the host to which it is routed (unless it is null in which case the value is not updated).

This ensures that the message always makes forward progress towards the target host.

A pictorial example of this scheme is shown in Figure 5.3.

Routing Scheme 2. Scheme 2 is a variation on Scheme 1 except that the allowable

range is different. Data can be routed to any host with a number that is between the

lowest possible task number in the workflow and the target task number. Subscrip-

tions are routed to a host with a number between the highest possible task number

in the workflow and the target task number. As with Scheme 1, routing is possible

at any time to a host with a null value number.

Routing Scheme 3. Scheme 3 is the most flexible of all the schemes and is based

on Scheme 1 with one exception. Data and subscriptions can be routed outside the

permissible range but this triggers a counter. If the data or subscription moves to a

host in range (as defined by Scheme 1) before the counter expires, the counter is reset,

otherwise the data or subscription is destroyed. This makes it possible for messages

to be routed to any host, but also ensures that messages that do not make sufficient

progress are destroyed.

Scheme 1 generates the lowest number of messages in the network but is restrictive in

the sense that the number of hosts that a message can be routed to is much smaller

than the total number of hosts collaborating. Scheme 2 increases the permissible range

but generates additional messages. Scheme 3 maintains the low range of Scheme 1 but

allows limited transgressions which represents the most favorable trade-off between

number of messages and number of hosts to which the message can be routed. The

relative performance of the three schemes is analyzed in detail in Section 5.6.
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Figure 5.4: CiAN System Architecture.

5.5 Implementation

The CiAN workflow engine is implemented in Java SE 5 and uses two external

packages– Sliver [35] and kSOAP [42]– to invoke Web services as part of workflow

task execution. CiAN also uses the JGraphT library [21] to verify the acyclic graph

structure of any workflow that is input to the system. This section is organized as

follows. First, some common implementation details are presented followed by the

description of the communication infrastructure and the publish-subscribe protocol

that is used to exchange data among hosts. This is followed by a brief description

of the task allocation infrastructure (included here for completeness but presented in

more detail in the next chapter) before concluding with a presentation of the chore-

ographed execution engine. A global view of the architecture of the system showing

the various functional components appears in Figure 5.4.

Launching CiAN. The CiAN middleware is capable of running in three modes: ini-

tiator, coordinator, or worker. As mentioned in previous sections, the initiator injects

the workflow into the system and fragments it, the coordinator allocates the tasks,
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and the workers perform the tasks. When a user launches CiAN, he/she provides

a host name (assumed to be unique), the mode in which CiAN is to be launched,

and a runtime properties file that defines the policies that the CiAN instance should

use (policies are covered in detail later in this section), and a host configuration file

which contains information about the host’s schedule and the services it possesses.

If the initiator mode is used, the user also passes the name of the file containing the

workflow specification to the system. All these pieces of information are passed to the

system as command line parameters. Depending on which mode is used, CiAN will

automatically perform certain actions. In initiator mode, it fragments the workflow

and passes it to available coordinators. In coordinator mode, it stands by to receive

task sets, and in worker mode, stands by to receive task solicitations and allocations.

Communication Infrastructure. The communication infrastructure of CiAN

is encapsulated in the CommunicationModule, WorkflowRouter, and HostHandler

classes. The CommunicationModule class implements a beaconing protocol that pe-

riodically broadcasts a host’s information and listens for beacons from other hosts.

When three beacons are received in a row from a host, the CommunicationModule

creates a HostHandler which is responsible for setting up a socket connection to

the newly discovered host and the object input and output streams. This creates a

channel of direct communication between a pair of hosts. This direct communication

channel is used during the process of allocating chunks of tasks to coordinators by

the initiator and also during the allocation process that occurs between hosts and co-

ordinators. Note that the direct connection approach is possible in both these cases

because coordinators are required to be co-located with the initiator initially and

hosts are also required to be co-located with coordinators when bidding on tasks.

The only function not covered fully by this style of communication is the data

exchange between two hosts as part of the workflow execution process. As de-

scribed in the previous section, when hosts are directly connected, they exchange

publications and subscriptions according to one of three schemes. Whenever a new

HostHandler is created, the CommunicationModule notifies the WorkflowRouter.

The WorkflowRouter then assembles a list of data and subscriptions that must be

transmitted to the host encountered (as defined by the routing scheme in use) and

passes them to the CommunicationModule to send to the other host. Conversely,

when data and subscriptions are received, the CommunicationModule passes them up
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to the WorkflowRouter. The WorkflowRouter maintains lists of subscriptions and

data that it has encountered thus far. If a newly received data or subscription results

in a match, the WorkflowRouter instructs the CommunicationModule to send the

data to the subscribing host using AODV [84].

It should be noted that the WorkflowRouter routes more than just data messages.

It can also route control messages that are used to issue commands within the

CiAN system and knowledge messages that are used to gossip knowledge about

other hosts in the network. The DataRoutingPolicy, ControlRoutingPolicy, and

KnowledgeRoutingPolicy are pluggable interfaces (which may have different con-

crete routing implementations for expandability). This flexibility has already been

used to implement each of the three routing schemes as plug-able data routing policies.

External Injecting Application

Planner

Route Information Central
Planner

Specification 
Disbursement PolicyKnowledge Base

Knowledge Routing Policy

Communication Module

Spec. 
Processor

Figure 5.5: CiAN architecture for the Initiator and Central Planner

Workflow Initiation and Allocation Infrastructure. Workflows are injected

into the CiAN system using the command line on a host that is running in initia-

tor mode, the architecture for which is shown in Figure 5.5. The WorkflowParser

reads the specification and converts it into executable objects. These objects are then

passed to the RoutingInfo component which assigns RouteInfo to each task (the

RouteInfo encodes the topological depth in the workflow graph as described in the

previous section). Once the workflow has been augmented with this information, two

subsequent actions are possible. If a centralized allocation scheme is being used, the

workflow is sent to the CentralPlanner, which implements a centralized allocation

algorithm and returns the workflow with each task annotated with the identifier of
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the host that it is allocated to. If a distributed allocation scheme is used, the workflow

is passed to the SpecificationProcessor which breaks it into smaller chunks using

the k-min cut or geographic cut [97] approach. The chunks are then passed to the

SpecificationDistributionPolicy to be sent to the coordinators as control mes-

sages via the CommunicationModule. It should be noted that the CentralPlanner

and SpecificationProcessor implement a common interface and can be plugged

into the architecture of the initiator as dictated by the type of allocation algorithm

in use.
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Routing Policy

Data
 Routing Policy

Knowledge 
Routing Policy

Control 
Listeners

Local
PlannerOther

Execution 
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Figure 5.6: Subset of CiAN architecture for distributed allocation

On the coordinators, when a chunk of tasks is received by the CommunicationModule,

it passes them on to the ControlRoutingPolicy of the WorkflowRouter. The

WorkflowRouter allows other components of the middleware to register themselves

as listeners for data, control, and knowledge messages. The LocalPlanner is one

such component that registers itself as a listener for control messages. When the

chunk of tasks is received by the WorkflowRouter, it passes it to all the listeners.

The LocalPlanner receives the chunk of tasks and installs it locally. The func-

tionality of the coordinator described in Section 6.3.2 is implemented within the

LocalPlanner. It should be noted though that the LocalPlanner is an abstract

class that can be extended by one or more concrete coordinator implementations.

When a coordinator needs to send messages to a host, it does so by passing it to the

ControlRoutingPolicy of the WorkflowRouter which in turn sends it out using the
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CommunicationModule. Figure 5.6 shows the components of the CiAN architecture

dedicated to distributed planning.

On the worker hosts, a similar setup exists, except that the implementation of

the LocalPlanner reflects the host’s end of the protocol rather than the coordi-

nator’s. When a solicitation is received (as a control message), it is passed up via

the WorkflowRouter to the LocalPlanner which analyzes the solicitation and pre-

pares a bid if appropriate. The bid is then transmitted via the WorkflowRouter and

CommunicationModule back to the coordinator. Future communications between co-

ordinator and worker host are handled in an identical manner.

Task Execution Infrastructure. When a coordinator allocates a task to a host,

it sends the task specification as a control message to that host. This message is

received by the LocalPlanner as described before. The LocalPlanner then passes

this specification to the Dispatcher which creates a new ServiceManager. The

ServiceManager is responsible for invoking the service associated with that task.

Within the ServiceManager are the InputFilter and OutputFilter. These fil-

ters implement the input selection conditions and accept sets and the output selec-

tion conditions and accept sets respectively. CiAN provides a GenericFilter class

which can be parametrized and customized to each task using the information in the

task specification. The ServiceManager also contains information about the service

to be invoked as part of the task execution. Once the ServiceManager has been

created, it examines the input edge information of the task (found as part of the

InputFilter instance it owns) and creates appropriate subscriptions, which it passes

to the DataRoutingPolicy of the WorkflowRouter for dispersal. At this point, the

host is waiting on its task inputs.

Inputs to a task are received as data messages routed by the WorkflowRouter to the

Dispatcher. The Dispatcher determines which task the data is for and passes it

to the appropriate ServiceManager. The ServiceManager applies the input data

to its InputFilter. If the recently received input forms a valid set of inputs to

the task (possibly in combination with other previously received inputs), then the

ServiceManager invokes the service. This is done by passing the name of the service,

method, and input parameters to the SOAPConverter, which translates this infor-

mation into a SOAP message and sends it to the SOAPFrontEnd which forwards it
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to the service itself (the invoking of the service is handled by Sliver [35]). Return

values are returned to the ServiceManager via the SOAPConverter. When return

values are received, the ServiceManager applies the result to its OutputFilter. If

a valid set of outputs is generated, it creates data messages for those values and

passes it to the Dispatcher which in turn passes it to the DataRoutingPolicy of the

WorkflowRouter for dispersal.

Knowledge Management. Along with allocation and execution of tasks, knowledge

management is a critical function which enables CiAN’s context awareness feature.

The knowledge management system is embodied by the KnowledgeBase (described in

detail in Chapter 3), which maintains a host’s awareness of other hosts executing the

workflows. Each known host has a record in the KnowledgeBase containing its name,

IP address and port, schedule, the RouteInfo associated with its last known task,

and a list of services offered. Each host begins with only its own information present

in a local knowledge base. Hosts exchange knowledge by gossiping, as described in

Section 2.4.

The host configuration file is an XML document describing the host on which CiAN

is executing. This file contains the three pieces of information— the host name, a

schedule of times when the host is unavailable, and a list of services offered — as well

as the port number for the Communications subsystem. This file provides the initial

population of the KnowledgeBase.

The Knowledge subsystem gossips knowledge whenever another host is encountered.

To accommodate the gossiping behaviors, the KnowledgeBase registers itself as a lis-

tener on the WorkflowRouter and CommunicationModule. The WorkflowRouter

notifies the KnowledgeBase whenever new knowledge is received. Similarly, the

CommunicationModule notifies the KnowledgeBase when a new host is within range

so that the KnowledgeBase can send information to it. Each piece of information is

time-stamped to allow decision making in the case of conflict. Conflict may occur

because of the changing connectivity of the MANET, where a host’s knowledge may

be out-of-date because it was out of contact with a subset of the other hosts in the

workflow. The knowledge base selects the newer information in such a case.
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Figure 5.7: CiAN running on ultramobile PC

5.6 Results

Having presented the CiAN system architecture and implementation in the previous

section, this section focuses on the effectiveness of the design and approaches. The ini-

tial portion of this section presents demonstration applications written and executed

in CiAN while the latter portion covers the results of simulation experiments.

5.6.1 Demo Applications.

The capabilities of CiAN are highlighted via two demonstration applications. The first

is a simple proof of concept which uses a simple workflow consisting of a sequence

of tasks that involve a human being taking a reading from a specified sensor and

reporting the value to the system. Figure 5.7 shows this application running on a

Samsung Ultramobile PC.

The second demonstration application involves one coordinator and three worker

hosts. The workflow for this application captures the process of collaboratively writing

an academic paper (similar to Case 1 in Section 4.4). The application displayed
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Figure 5.8: Screen shot with highlighted tasks showing allocation and completion
status of the workflow

a graphical representation of the progress of the workflow (a screenshot from this

application’s execution is shown in Figure 5.8 and further screen captures appear in

Appendix C). When worker hosts come within range of the coordinator, they receive

solicitations and can submit bids (as part of the allocation process described in the

next chapter). Once tasks are allocated, users receive prompts on their screens to

write sections of the paper. When each task is finished, the text is transmitted to

downstream tasks. At the end of the workflow, the application prints the completed

paper consisting of each of the individual sections in the correct order.

These applications are just a small fraction of what CiAN is capable of. They serve

as a proof of concept and a baseline from which more sophisticated applications can

be built.
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5.6.2 Simulation Experiments.

This subsection presents simulation results of the performance of the three schemes

are used for routing data between hosts. The three protocols were simulated in the

NS2 network simulator [1].

Simulation Setup.

The simulations were performed in a 200m x 200m space which represents the size of

a large outdoor work area. The transmission range of the mobile devices was set to

25m using the 2-ray ground propagation model and the 802.11b MAC layer. Though

the range of 802.11b can be higher than 25m, a conservative figure was chosen since

experience with actual devices showed this to be the most reasonable range in the

physical world. The experiments were performed with the hosts moving as per both

the random walk and the random waypoint mobility model. In both cases, hosts

moved with a uniform speed of 1.7 m/s which is close to human walking speed. In

the random walk model, the hosts moved for a random amount of time between

1 minute and 5 minutes. In random waypoint, the host moved until it reached a

waypoint. When the hosts paused, they did so randomly in the 1 minute to 5 minute

range when ostensibly they were performing some task.

Randomly generated workflows were used for the tests. Several matrices in the range

5x5 to 60x60 were generated. The rows and columns of the matrices represented

tasks. Using only the cells above the diagonal (to make the resultant graph directed),

the cells were randomly marked to create an edge between those task pairs. The

number of edges chosen was half the total possible number of edges. A single source

and sink task were manually added subsequently. The tasks were then reordered to

ensure they were in increasing order of position in the workflow.

Experiment 1: Overhead as a Function of Number of Hosts

The first experiment performed measured the overhead for executing the workflow

while varying the number of hosts. Overhead is the time that was spent transmitting
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Figure 5.9: Overhead as a Function of Number of Hosts

data from one host to another or time that was spent waiting for inputs. As expected,

the overhead dropped considerably with increased numbers of hosts. This is because

more hosts equates to more routing options which results in faster data delivery. The

results are shown in Figure 5.9. Each data point is an average of 30 runs with each run

representing a different workflow. The overhead time for executing a workflow, while

fairly large for small numbers of hosts was still significantly less than the time spent

actually performing the tasks in the workflow and as such, considered acceptable.

Also as expected, Scheme 3, which is the most flexible, performed better than the

others. The kink in the trend for Scheme 2 in random walk was due to tasks being

assigned to hosts in a small region, which allowed prompt communication and thereby

lower overhead of execution.

Experiment 2: Overhead as a Function of Number of Tasks

The second experiment, shown in Figure 5.10, measured the effect of an increase in

the number of tasks in the workflow on overhead. While overhead steadily increased

for increasing numbers of tasks, the per task overhead remained fairly static when

the number of tasks was below 30. However, above this number, the overhead per
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Figure 5.10: Overhead as a Function of Number of Tasks

task rose noticeably. This is attributed to the fact that this experiment was run by

keeping the number of hosts fixed at 30. When the number of tasks exceeded 30,

some hosts had multiple tasks assigned to them and since only one task is allowed to

execute at a time, it was found that tasks that were ready in terms of having all their

inputs were waiting for another task on the same host to finish, thereby increasing

the overhead.

Experiment 3: Routing Scheme 3 Performance

The final experiment studied Scheme 3 in more detail. Trials were run to measure

the overhead for a low number of tasks (15) and a high number of tasks (60) in

both mobility models when the counter for exceeding the permissible range was var-

ied. Each data point was an average of 20 runs using different workflows. It was

found that changing the counter value reduced the overhead but not by a significant

amount (shown in Figure 5.11). Given that higher counter values result in higher

network traffic, keeping the counter low is desirable and this can be done without

much performance penalty.
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Performance of Routing Scheme 3
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Figure 5.11: Routing Scheme 3 Performance

The results indicate that the routing protocols based on the task numbers has reason-

able performance and a level of overhead that is not a hindrance to the progression of

a collaboration. Most significantly in the trials, higher than 95% of workflows com-

pleted successfully despite numerous disconnections and interruptions. The small

number that did fail were due to aberrant mobility patterns of one or two hosts

that isolated themselves from the rest of the network and did not communicate with

their peers, thereby preventing the progress of the workflow. While these results are

encouraging, there remain further opportunities for optimization.

5.7 Chapter Summary

When WfMSs are ported to a MANET setting, most of the assumptions of stability

made by current WfMSs are no longer valid making these systems ill-equipped to

function in a MANET. This chapter addressed the problem of developing a WfMS for

MANETs from the ground up. This consists of a middleware that executes workflows

written in the CiAN specification. This middleware is designed to execute workflows

in a completely decentralized fashion, relying on non-functional knowledge to make
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decisions. Also described was a protocol for moving the result of a task from one host

to another by exploiting transient communication opportunities among hosts in the

MANET. The process of allocation, which was touched on only briefly in this chapter

is covered in detail in the next, including algorithms to determine how tasks get

allocated to hosts, which involves work in matching algorithms, as well as strategies

such as an auction-based or a marketplace-based strategy.
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Chapter 6

Allocation Algorithms

Allocation algorithms determine the manner in which hosts are given responsibility for

executing tasks in the workflow. Allocation can be run a priori, i.e., before execution

begins, or concurrently with the execution of the workflow on a just-in-time basis.

This chapter describes two allocation algorithms, one centralized and one distributed,

that allocate tasks to hosts using not only the host’s capacity to perform the task as

criteria but also its mobility pattern and other non-functional considerations.

6.1 Motivation

As indicated in previous chapters, the focus of this dissertation is on workflow man-

agement systems (WfMSs) that operate in dynamic settings such as a mobile ad

hoc network (MANET), where hosts are physically mobile and the network topology

evolves rapidly. There already exist several efforts to develop an execution engine for

workflows in mobile settings such as [99, 65, 35]. However, relatively little attention

has been paid to the equally-crucial process of allocation of tasks. An allocation

process for mobile settings in combination with an engine for mobile workflows can

enable applications that support collaboration among workers at a construction site,

coordination among a team of geological surveyors in a remote region, or coordination

between teams working at the scene of a toxic spill.

The approach presented in this chapter is a two step process. The first step involves

the development of a centralized allocation algorithm for MANETs that takes into

account the mobility of participating hosts when allocating tasks. While the use of
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Figure 6.1: Hierarchy for the distributed allocation scheme

a centralized approach makes the algorithm simpler, the dynamics of the workflow

execution environment create a new set of design challenges that are not faced when

executing in a wired network. An algorithm that uses a set of heuristics to minimize

the backtracking required when trying to determine a suitable allocation is described.

Since MANETs are not conducive to centralized solutions, the second step of the

approach consists of taking the centralized allocation process consisting of a single co-

ordinating entity and synchronous service calls and transforming it into a distributed

and asynchronous process. A distributed allocation algorithm is described that takes

a monolithic workflow and fragments it into smaller “sub-workflows” using a set of

pre-defined rules. Each fragment is then assigned to a local coordinator, a special

participant that is responsible for allocating a related subset of tasks that are as-

signed to it. The complete allocation hierarchy for the distributed scenario is shown

in Figure 6.1. The allocation process is designed to work in a “just-in-time” manner,

with tasks being allocated just before they need to be performed. The algorithm also

examines constraints on motion of participants, and uses different policies for work-

flow partitioning and degree of workflow distribution to better accommodate future

coordination efforts.
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The decentralized approach is beneficial because: (1) it mitigates the problem of a

single point of failure, crucial when operating in dynamic MANETs, (2) considering

the motion of hosts within the algorithm reduces the chance of having allocations

where the hosts cannot coordinate in the future, and (3) the just-in-time nature of

the algorithm removes the requirement that all tasks be assigned a priori, which

reduces the number of early (and potentially incorrect) allocation decisions.

6.2 Related Work

The fundamental problem is to develop a process by which tasks in a workflow are

assigned to hosts that can perform them. This process not only must consider a host’s

capability to perform the task, but also must take into account whether the host can

receive inputs from other hosts that perform the immediately preceding tasks, and

successfully transmit results to hosts performing the immediately succeeding tasks.

Recently some systems have been developed to address workflows in mobile settings

explicitly. A series of systems such as Exotica/FMDC [6], DOORS [86] and Toxic-

Farm [32], adapt workflow models for mobility by supporting workflows in the face of

network disconnections. Clients in these systems hoard the needed data from a cen-

tralized server before they disconnect from the network. Clients may then continue

to perform their task(s) while disconnected and the server merges any changes upon

reconnection. These systems, therefore, rely on some fixed network infrastructure

and assume disconnections are temporary. They also do not exploit the potential for

collaboration among clients which are not connected to a central server but which

may communicate directly with each other. Another approach to workflows in mo-

bile settings has been through the use of mobile agent technology. The Agent-based

Workflow Architecture (AWA) [99] consists of mobile Task Agents which can migrate

to mobile devices to execute workflow tasks. The task execution may occur while

the device is disconnected provided the Task Agent eventually has the opportunity

to migrate back to a Workflow Agent which oversees the execution of the workflow.

This agent-based approach is more flexible and appropriate for dynamic settings, but

its single point of failure (the Workflow Agent) makes it undesirable for MANETs.
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In MANETs however, neither is there the opportunity to have a centralized manage-

ment architecture, nor are the participants always accessible due to wireless links that

might break frequently due to host mobility. Hence the allocation process is much

more opportunistic in nature, allocating tasks a priori whenever hosts are within

communication range, which is a different approach from those in use today. Also,

ensuring that a host can receive inputs and successfully transmit outputs becomes

complex due to the mobility of participating hosts.

In a sense, the task allocation problem is similar to the Job Shop Scheduling (JSS)

problem where a set of jobs is scheduled on a set of machines such that no machine

executes more than one job at a time and the total duration for executing the jobs

is minimized. In this work, the tasks and participants are analogous to the jobs and

machines respectively.

The difference lies in the fact that the primary objective function here is to maximize

allocation. Minimizing the time required to complete the jobs is only a secondary

objective. Also, in addition to jobs being admitted during the scheduling process (the

entire workflow may not available for scheduling up front), the possibility of additional

machines being admitted during the scheduling process must also be accommodated.

Finally, the approach must also take into consideration the constraints imposed by

the physical mobility of hosts and the fact that the machines are heterogeneous (all

jobs cannot be scheduled on all machines).

In [27], the authors describe a heuristic-based method for solving the basic JSS prob-

lem while [23] describes a genetic approach to solving the same problem. More perti-

nent to this work is [58], which considers the JSS problem with availability constraints,

i.e., where the set of available machines on which to schedule jobs changes over time.

This is analogous to the reachability of hosts changing over time in a MANET. An-

other closely related piece of work is reactive JSS [53] where the schedule is not

computed a priori but rather over a period of time. More recently, researchers have

used neural nets to solve the JSS problem [117].

Another related area is robot task scheduling. In [30], the authors propose a taxonomy

of multi-robot task assignment problems. The work presented in this chapter is closest

to the extended time assignment variants of the problem proposed therein. Solutions
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to this problem involve using a market-based economic model [118] and an auction-

based approach [29] that uses concept of task utility and fitness of a robot to perform

a task to make allocations. Incorporation of spatiotemporal considerations including

the formation of organizations and a reward scheme is described in [18] while a scheme

for fault tolerant coalition formation is described in [81]. Similar approaches have been

used to allocate resources in wireless sensor networks [55].

6.3 Algorithm

6.3.1 Centralized Approach

This subsection describes the centralized allocation algorithm. This algorithm is

different from those employed by workflow systems in wired settings in the following

ways: 1) the allocation of tasks is done a priori and in a batch (all tasks are allocated

before the workflow execution begins) as opposed to in an on-demand fashion at

runtime, 2) hosts are evaluated on the basis of their functional capabilities as well

as their spatiotemporal behavior, and 3) the allocation process is partitioned into

sub-problems with backtracking capabilities built in. It should be noted that in

mobile environments, the allocation process assumes greater significance since a poor

allocation may not necessarily be able to be corrected at a later stage and can result

in the workflow not executing to completion due to non-functional circumstances

such as situations where a host has completed a task but cannot communicate the

completion to the next host in the workflow because that host is not reachable.

Before allocation of tasks to hosts can begin, any relevant constraints that ensure that

an undesirable allocation is not computed must be taken into account. Two types of

constraints are possible– host allocation constraints prevent certain hosts from being

allocated to a task, or require a particular host to be allocated to a task, e.g., that a

host must be allocated to both task X and task Y, or that task X cannot be allocated

to the same host as task Y, etc. Such constraints may be specified as a supplement

to the workflow specification. Spatiotemporal constraints prevent allocations that

are in conflict in the spatiotemporal domain, e.g., a host should not be allocated to

two tasks whose start and end times overlap, a host should not be allocated to two
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tasks if they are separated by time t and distance d, if the host’s maximum speed

is lower than d
t
, and two different hosts should not be allocated to two sequential

tasks if the host executing the second task cannot receive the results of the first

task (either directly or via a disconnected route) before the second task begins. The

existence of spatiotemporal constraints for tasks and hosts can be determined by calls

to the is spatiotemporal constraint and is meeting possible operations on the

knowledge base described in Chapter 3. The knowledge base can provide information

on such constraints because it contains the motion information of all relevant hosts

(due to it having been gossipped by the other hosts which are all assumed to be co-

located initially). Spatiotemporal constraints are especially important because they

abstract the effects of mobility and represent them as a simple constraint set to the

allocation algorithm.

Constraints are represented as 3-tuples of the form < t1, A, t2 > which indicates that

host A cannot be allocated to task t2 if it has been allocated to task t1. Note that

the algorithm is agnostic to the cause of the constraint which may be host-driven or

spatiotemporally driven. For simplicity, it is assumed that constraints are symmetric.

Once all constraints are established, the data structures that represent the initial state

of the allocation algorithm are built. In this phase, a table is created for every task in

the workflow as shown in Figure 6.2. The first column in each row represents a host

that has the functional capability to perform the task and is not subject to a host

constraint associated with that task. The matching of the functional capability of a

host with the requirements of a task can be easily computed [51] if hosts’ capabilities

and tasks requirements are expressed using a uniform ontology such as OWL-S [57].

The second column in each row is a list of tasks which cannot be allocated to the

host (in the first column) if that host were to be allocated the current task. This

information can be obtained from the constraints assembled previously– for each

constraint < t1, A, t2 >, the table is checked for task t1 to see if it has a row for host

A. If it does, then t2 is added to the corresponding list in the second column.

task 1
host A 2, 3
host B 3, 4
host D 3, 4, 5

task 2
host A 1, 4
host B 3, 4
host C 4, 5

Figure 6.2: Examples of constraint tables
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The tables for each task provide two pieces of information– the list of hosts to which

that task can be allocated, and the list of future allocations made impossible by that

decision, e.g., according to the first table in Figure 6.2, task 1 can be allocated to

hosts A, B, or D. Allocating task 1 to host A however, makes it impossible to allocate

tasks 2 or 3 to host A.

Allocation Algorithm.

The tables assembled in the previous step form the input to the core allocation al-

gorithm, the pseudo-code for which is shown in Figure 6.3. The algorithm first sorts

the tables in ascending order of the number of rows in the table. Then, within each

table, it sorts the rows in ascending order of the number of elements in the list in

the second column. Thus the tables are sorted according to the number of hosts that

can perform a task, and the rows are sorted according to the number of allocation

conflicts the allocation decision causes.

The algorithm begins with the task represented by the first table. It selects the first

host in that table. If this host has no conflicts, then it can allocate that host without

any conflicts, i.e., this host can be allocated without affecting any other allocation

decisions. Hence, the host is allocated to that task and the algorithm proceeds with

the next task. If the first host (call it host A) has at least one conflicting task,

then by allocating the task to the first host in the table, some future allocations are

made impossible. To establish whether this decision is the correct one, the algorithm

tries recursively to resolve the conflicts. For this, it creates a stack to keep track of

its allocation decisions as shown in Figure 6.4. It marks host A’s row in the table,

and pushes a token onto the stack reflecting this marking. Next, it collects the list

of conflicting tasks from the table. For each conflicting task, its grays out the row

with Host A in the corresponding task’s table, and pushes onto the stack a marker

that represents this change. When it later visits these tasks, it will disregard all

the rows that have been grayed out, since they reflect decisions that would violate

a constraint. This process continues until all conflicting tasks have been recursively

allocated at which point it returns to the original list of tasks and continues allocating

them sequentially as before.
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boolean heuristicAllocatetask(tasks, A, allocation)
for each row (G, conflicts) in A, ordered by |conflicts|

if |conflicts| = 0
allocation := allocation ∪ (A, G)
return true

myToken := new AllocationToken(A, G)
push(stack, myToken)
allocation := allocation ∪ (A, G)

for each C in conflicts
if C /∈ allocation

push(stack, new GreyRowToken(C, G))
disableRow(C.table, G)

for each C in conflicts, ordered by |conflicts|
if C /∈ allocation

if not heuristicAllocatetask(tasks, C, allocation)
do

token := pop(stack)
undo(token)

until token = myToken

push(stack, new GreyRowToken(A, G))
next row

return true
return false

map enhancedAllocate(tasks, hosts)
allocation := ∅
createConstraintTables(tasks, hosts)

for each A in tasks, ordered by |A.table|
if A /∈ allocation

heuristicAllocatetask(tasks, allocation, A)
return allocation

Figure 6.3: Psuedo-code for heuristic allocation algorithm

At some point, the algorithm may encounter a task with no capable hosts left (due

to them having been grayed out as an effect of previous allocation decisions). This

means that one of the earlier decisions was undesirable, and that it must roll its state

back to that decision point. It does this by popping elements off the stack, undoing

the changes that they represent, until it reaches a change to a table that marked one

of at least two remaining rows. This indicates a place where it made a decision that

may have been incorrect. It un-marks the host chosen at this point, and grays out its

row so that it doesn’t try that host again (it also pushes a token onto the stack for

the row that has just been grayed out). Finally, the algorithm attempts to re-allocate

the task to the next un-grayed host in the table.
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Figure 6.4: Allocation stack for tracking and rolling back changes

This algorithm has two key features. First, rather than allocating tasks in an arbitrary

order, it first allocates the tasks that are hardest to satisfy and allocates them to hosts

that will cause the fewest conflicts later. This reduces the amount of backtracking

that the algorithm must do, since it will first consider the paths that are least likely

to cause irresolvable conflicts. Second, the algorithm recurses through hosts’ conflict

lists, effectively dividing the allocation of the workflow into sub-problems. Due to

this recursive process, it is guaranteed first to consider the entire “conflict closure”

of a task, i.e., all the tasks that recursively conflict with it. Since by definition

tasks in one closure cannot conflict with tasks in another closure, they are allocated

completely independently of each other. So, once a closure has been fully allocated,

the algorithm will never revisit any of the tasks in it, which greatly reduces the scope

of backtracking.

Note that the algorithm does not consider the actual data flow when computing a

well-formed allocation. This has two implications. First, the constraint that two hosts

must “meet up” before exchanging data becomes more complex to describe when one

host must receive results from multiple predecessors. This constraint can be simplified

by requiring that all tasks corresponding to nodes that join to a common node in the

graph must take place in the same physical location. This behavior can be enforced

by adding “move to a common location” tasks to all the paths immediately before

the join point. Second, the allocation is conservative: it is assumed that all tasks

in the workflow will be executed, even though the workflow may split into multiple,

mutually-exclusive paths. Thus, valid allocations may exist which do not execute all

tasks, and which the algorithm will not find. This shortcoming can be worked around

by enumerating all possible traces through the workflow and attempting to allocate

each trace individually until one feasible allocation is found. As shown in Section
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6.5, the cost of running the algorithm is low enough to make this approach feasible.

Nevertheless, future work may consider ways to incorporate data flow information

into the algorithm’s decisions.

Before concluding this section, a brief discussion of the complexity of this algorithm

is presented. Since the algorithm involves backtracking, in theory its worst case

complexity is exponential. However, in practical use this is rarely likely to occur.

Consider a workflow of ‘n’ tasks which must be allocated to ‘h’ hosts. Theoretically,

there are ‘h’ options for each of the ‘n’ tasks leading to a worst case complexity of

nh. However, saying that there are ‘h’ options for each task, is in effect saying that

all ‘h’ hosts are capable of doing any of the ‘n’ tasks. If this were true however, it

would be much easier to find suitable hosts, and the amount of backtracking would be

reduced significantly, reducing the overall complexity. Another possibility is that the

number of hosts that are able to do a task is significantly less than ‘h’. Therefore ‘a’,

the average number of options << ‘h’ which means that na << nh. This complexity

assumes a brute force approach of trying all options in a random order as in the näıve

algorithm.

The algorithm presented here does not allocate tasks in a random order. Rather a

task that has the least number of possible hosts to service it is allocated first. In the

process of allocating this task, other opportunities for hosts to perform a task (due

to conflicts) are cancelled out which brings down the value of ‘a’ as the algorithm

progresses, making it more efficient at the tail end. Finally, once a task is allocated, it

is followed by the allocation of its conflict closure. This ensures that the backtracking

is over a subset of the tasks rather than the entire workflow because a task and its

conflict closure by definition do not cause conflicts with other tasks and hence once

allocated, need not be revisited as part of any backtracking. As such the algorithm

makes it possible to allocate tasks to hosts while taking into account their mobility

patterns at a lesser computational cost than a näıve approach.

6.3.2 Distributed Approach

In contrast to the centralized approach described in the previous subsection which

performs a priori allocation under the assumption of initial co-location of hosts, this
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subsection describes a distributed approach which requires initial co-location of only

the initiator of the workflow and a select group of hosts called coordinators that

execute the actual allocation process in a decentralized manner. The approach is

divided into three phases: 1) pre-processing steps, which occur prior to the actual

allocation process, 2) the core allocation process that is agnostic to whether it is run

in a centralized or distributed fashion, and 3) additional resources that distribute the

core process and manage the mobility of participating hosts. Each phase is described

in turn.

Pre-processing Steps. The first pre-processing step is to assign each task a time-

dependent utility value that represents how critical it is that the task be allocated.

For a task T at time t, its utility UT (t) = 1/(ET − t) where ET is the earliest starting

time for task T , and t is the current time. Thus, the further in the future a task’s

start time is, the lower it’s utility to the progression of the workflow at the current

time. The next step is to fragment the monolithic workflow into k pieces so that

tasks can be allocated by k coordinators in a distributed fashion. Two fragmentation

techniques are used:

k-Minimum Cut. Using a graph traversal algorithm, tasks are sorted into buckets

according to their depth in the graph. The k-minimum cut approach considers the

combined size of adjacent buckets in turn. Cuts are made between the k bucket pairs

that have the lowest combined value. The exception to this rule is that cuts are

note made that would result in a fragment having lower than f tasks, where f is a

user-defined parameter with a value less than N/k where N is the total number of

tasks in the workflow. In such a case, the next higher cutting point is chosen.

Geographic Cut. The area in which the workflow is to be executed is divided into k

equal sized zones. Using a graph traversal algorithm, the task locations are examined

and the task specifications are put into buckets that correspond to zones containing

the tasks’ locations. Thus, the tasks in any fragment are geographically related, i.e.,

they are in a subset of the total area.

The k-Minimum Cut technique keeps blocks of contiguous tasks under the responsi-

bility of one coordinator, which is useful when recovering from localized errors (not

covered in this dissertation). The geographic cut technique allows geographically re-

lated tasks to be handled by one coordinator. Since each coordinator is responsible
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Given an host with capabilities C, schedule SC, and capable of a maximum
velocity maxV that is analyzing a solicitation list S:

AnalyzeSolicitations(C, SC, maxV, S)
B ← ⊥
for each s ∈ S

if capabilities[s] ⊆ C then
if Available(SC, start[s], deadline[s]) then

precT ← GetPrecedingTask(SC, start[s])
succT ← GetSucceedingTask(SC, deadline[s])
precC ← GetCoordinator(precT )
succC ← GetCoordinator(succT )
precAvail← deadline[precT ] + |location[precT ]− location[precC]|/maxV
succAvail← deadline[s] + |location[succC]− location[s]|/maxV
precV ← (|location[precC]− location[s]|)/(start[s]− precAvail)
succV ← (|location[s]− location[succC]|)/ (start[succT ]− succAvail)
if precV ≤ maxV and succV ≤ maxV then

capFrac← |capabilities[s]|/|C|
bid← {capFrac, precV, succV, maxV,

GetDeadline(SC, succT )}
Insert(B, bid)

Transmit(B)

Figure 6.5: Procedure for bid formulation by worker hosts

for a specific sub-area, the geographic cut allows correlation between the location of

the coordinator and the tasks they are allocating.

Core Allocation Process. When a coordinator receives a fragment of the workflow,

it places the tasks in that fragment into a task list sorted in descending order according

to their utility. The time parameter t to the utility function of the tasks is the

start time of the workflow. Each task is assigned the status NO ATTENTION. The

coordinator then runs the allocation process continuously until all tasks are allocated.

The allocation process is split into two phases: (1) distributing solicitations to perform

tasks to worker hosts and generating bids and (2) allocating a task provisionally to a

host and then revisiting the allocation decisions over time. Each step is described in

detail below.

Distributing Solicitations and Generating Bids. For each task, the coordi-

nator formulates a solicitation which is a 6-tuple of the form <String:taskName,

List:capabilities, Location:taskLocation, Time:duration, Time:start, Time:deadLine>.

Each of the six pieces of information in the solicitation can be obtained from the task

specification [97]. When a worker host comes within communication range of the co-

ordinator, the solicitations are sent to that worker host (the detection of the presence
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of a worker host is done by the CommunicationModule using the procedure described

in 5.5). When a worker host receives the list of solicitations from the coordinator, it

analyzes them to determine whether it is suited to perform any of the tasks advertised

using the procedure shown in Figure 6.5. If so, it submits bids for the tasks it can

perform.

For each solicitation, the algorithm checks whether the capabilities required by the

task is a subset of the host’s capabilities. If so, it checks that host’s schedule to en-

sure that the host does not have any previously scheduled commitments at the time

that the task described in the solicitation needs to be performed. This is done using

the Available function on the host’s schedule which returns a boolean value. If this

check is successful, then the host is qualified and available to do the task. Finally, the

travel time is factored in. For this, the details of the tasks that would immediately

precede and succeed the task under consideration (were it to be assigned to this host)

are obtained. This is done using the GetPrecedingTask and GetSucceeding-

Task functions respectively. The velocity at which the host would need to travel

from the coordinator to which the results of the preceding task need to be delivered

to the location of the task under consideration, and then from the location of the co-

ordinator to which the current tasks’s results must be submitted to the location of the

succeeding task is computed. The reason the coordinator locations are used rather

than the task locations is due to the conservative planning done by the algorithm

(described later in this section). If both the preceding and succeeding velocities are

lower than the maximum velocity capability of the host, then it is eligible to submit

a bid for that task.

Before the submission, it calculates the fraction of its capabilities that it will use

in performing the tasks. It then creates a bid, which is a 5-tuple of the form

<double:capabilityFraction, double:precedingVelocity, double:succeedingVelocity, dou-

ble:maxVelocity, Time:deadline>. The deadline is computed by the GetDeadline

function of the host’s schedule, which determines the latest time at which the host

must leave the current location so as to have sufficient time to travel to the desig-

nated location of any previously made commitment in time. If the host has no other

commitments, this deadline value is infinity. This bid information is then added to

a set. Once all the solicitations are considered, the Transmit function sends all the

bids to the coordinator.
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Provisional Allocations and Re-allocations. During the allocation process, two things

happen in parallel– the allocation of tasks to hosts and the submission of bids by hosts.

The process of bid submission is covered first followed by the allocation process. When

a coordinator receives a bid, it is placed in a bid list that corresponds to the task that

it was submitted for. The corresponding task is marked as NEEDS ATTENTION in the

task list.

The bids in each bid list are sorted in descending order of the capability fraction

of the bid. The capability fraction indicates whether a host is specialized for the

task or not. A “jack of all trades” would use fewer of its capabilities for a task

than an host that is specialized for the task in question. Sorting the tasks in this

manner biases the algorithm to choose more specialized hosts before choosing hosts

with broader capabilities, the rationale being that it is desirable to have hosts with

broader capabilities available for tasks which may not have specialized hosts. To break

ties between bids, the average of ratios of the preceding and succeeding velocity to the

maximum velocity is used, which indicates how good a fit the task is in the schedule

of the host. Higher ratios indicate a more constrained time slot and therefore a better

fit in the schedule.

When bids are initially inserted into the lists, they are marked as NON CONFLICTING

indicating that the host that submitted the bid is not provisionally allocated to a

conflicting task. In the future, as hosts are provisionally allocated for a task, the

other bids belonging to the host that are in conflict (due to spatiotemporal constraints

or schedule constraints) with that particular provisional allocation are marked as

ARE CONFLICTING.

The allocation process iterates over the task list every p seconds and moves tasks to the

outstanding task queue if they are either (1) marked NEEDS ATTENTION due to a new

bid being submitted or (2) their earliest start time or host imposed deadline is within

minT (a parameter to the algorithm) seconds of the current time. The outstanding

task queue is processed in parallel as follows (see Figure 6.6): The coordinator removes

the first task from the outstanding tasks queue and looks at the bid list for that task.

The first bid that is marked as NON CONFLICTING in the bid list is the best qualified

host that has no other conflicts. This host is provisionally allocated to perform the

task, and all other bids submitted by the host that conflict with this allocation are
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Given a set of sorted bid lists with bids B, an outstanding task queue O,
a task list T , a minimum threshold minT , and re-evaluation period of n

Allocate(O, B, T, minT, n)
while O 6= ⊥ do

WaitOnEmpty(O)
t← RemoveFirst(O)
bid← RemoveFirstNonConflict(B, t)
if bid 6= ⊥ then

if alloc[t] = ⊥ then
alloc[t]← bid
ColorAsConflict(B, host[bid])

else
ColorAsConflict(B, host[Max(alloc[t], bid)])
ColorAsNonConflict(B, host[Min(alloc[t], bid)])
alloc[t]← Max(alloc[t], bid)

if ((start[t]− GetSystemTime() ≤ minT or alloc[t].
deadline ≤ GetSystemTime()) and alloc[t] 6= ⊥) then
NotifyHost(alloc[t])

else
color[t] ← NO ATTENTION
Insert(T, t)

Figure 6.6: Distributed allocation algorithm

marked ARE CONFLICTING. If the task under consideration already has a provisional

allocation, the algorithm chooses the better bid using the same criteria that is used

to rank bids. If there is a change in the provisional allocation, the conflicting bids are

updated accordingly with the new bid’s conflicts being marked as ARE CONFLICTING

and the old bid’s conflicts reinstated to NON CONFLICTING status. At this point, the

coordinator checks whether the current time is within some minT of the earliest

starting time of the task or whether the deadline set by the host submitting the

winning bid has arrived. If either of these is the case, then it makes the allocation

final by notifying the host of its newly allocated task. If the current time does not fall

within the minT of the earliest start time or the deadline has not approached, the

coordinator marks the task as NO ATTENTION, indicating that it does not need further

attention at this time and re-inserts it into the task list. If no bid is available at the

time of the initial evaluation, then the coordinator re-inserts the task into the task

queue.

The above scheme ensures that tasks are considered and re-considered by the alloca-

tion process every time a new bid comes in, if their start time is approaching, or if

the deadline imposed by the host with the winning bid is approaching. This ensures

that the allocation decision is made as late as possible and is the best option available
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at the time. Note however, that there is a greedy element to the approach which is

that if a host submits a bid and the deadline imposed by that host is approaching,

then we commit to that host rather than risk waiting for another, potentially better

host to come along. The complexity of the algorithm is shown in Figure 6.7.

Accommodating Physical Mobility. To accommodate mobility, it must be con-

sidered when allocating tasks to hosts because mobility affects the ability to transfer

results after it has finished the task to the host(s) that have been assigned subsequent

tasks in the workflow. The preferred method is to transfer the results directly to the

intended recipient via a publish-subscribe based protocol described in Section 5.4.

However, this may not always be possible due to the lack of a disconnected route [37]

(a spatiotemporal series of store and forward hops) between the two hosts in question.

In such cases, the source host can attempt to transmit the results to the coordinator

using the same publish-subscribe based protocol. If this too is not possible, the source

host must physically return to the coordinator and transfer results. The coordinator,

once it receives results, stores them until the recipient of those results is within range

and then transmits the results to that host. Since the existence of disconnected routes

between hosts cannot be known a priori without knowing their motion profile [96], in

the allocation planning always assumes that the worst case scenario will occur, i.e.,

the host will need to return to the coordinator. This additional travel during the

allocation process is factored in to the bid submission process (shown in Figure 6.5)

to ensure that even while hosts are physically mobile, there is a reliable way for them

to exchange data.

Distributing the Allocation Process. The transition from a centralized alloca-

tion algorithm to a distributed one is made possible by using multiple coordinators to

allocate a workflow. This transition requires two key changes: (1) splitting the work-

flow into discrete pieces and (2) modifying the behavior of the coordinators. These

are described in detail below.

Dividing the Workflow among Coordinators. By definition, the workflow for any

activity is a monolithic entity. It is assumed that initially, the initiator has the

specification of this monolithic workflow. The initiator is responsible for fragmenting

the workflow using either the k-min-cut or the geographic cut approach. If the k-

min-cut approach is used, fragments are assigned randomly to the coordinators. If
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the geographic cut is used, fragments are assigned such that the coordinators are

responsible for allocating tasks in the geographic area in which they operate. Each

coordinator, in addition to receiving a fragment of the workflow also receives a table of

tasks in the workflow that are not in the fragment allotted to it, along with the name

of the coordinator responsible for assigning each of those tasks. Once a coordinator

receives its fragment of the workflow, it can immediately begin executing the core

allocation process as described earlier.

Changes in Coordinator Behavior. From the coordinator’s point of view, the transi-

tion from a single coordinator to multiple coordinators requires only two relatively

minor changes. The first relates to the bid submission process. If a coordinator has

a bid from another host that is better, it immediately rejects the host’s bid, which

allows it to leave the locality (described in the next paragraph). Second, when cal-

culating the travel time of hosts to return results to the coordinator, the coordinator

now has to be aware whether the subsequent task that the results are destined for

will be allocated by itself or another coordinator. If the task is allocated by the same

coordinator, there is no change from the case of the single coordinator. If the task

is allocated by a different coordinator, the destination of the travel is changed to

be the coordinator that is allocating the subsequent task. From the worker host’s

perspective, factoring in which coordinator must be travelled to is handled as part of

the bid submission process shown in Figure 6.5.

Controlling Worker Host Motion. In a mobile setting, especially that of a MANET

where hosts are physically mobile, the effectiveness of the allocation process depends

heavily on host motion. If worker hosts move in an adversarial manner, they can

ensure that very few tasks get allocated. Even if worker hosts are not adversarial, e.g.,

if the worker hosts exhibit random movement, they can still affect the performance of

the allocation process. Simply put, when worker hosts move randomly, it becomes a

matter of chance whether they come within range of the coordinator and have tasks

allocated to them. It was found that by imposing minor constraints on worker host

behavior, it is possible to make the system more consistent and reliable, especially

when host and task densities are low.
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The constraints imposed on worker host motion are as follows. When a worker host

has time slots in its schedule that are free, it gravitates towards the nearest coor-

dinator. Upon coming within range of a coordinator, the worker host checks the

solicitations as before. However, if there are no tasks for which the worker host is

suited, it immediately leaves and goes to the next closest coordinator that it has

not yet visited. If it does submit bids, the coordinator checks whether the bid is

better than the current best choice. If not, the coordinator notifies the worker host

immediately of the failed bid. This ensures that a worker host is not waiting at a

coordinator while other coordinators have tasks that it could perform. These con-

straints are non-intrusive and in fact replicate the command and control structure of

many collaborative activities to which this work is targeted, i.e., it is analogous to a

worker returning to find a supervisor to be assigned additional tasks. As such, such

constraints are deemed to be reasonable. The performance of the approach with and

without these constraints is discussed in Section 6.5.

When the system is operating in a fully distributed manner, coordinators are usually

stationary and responsible for a fragment of the workflow. Worker hosts gravitate

towards a coordinator and remain there if there is a task that needs to be allocated

that it can perform competently. If the task is allocated to the worker host, it leaves,

performs the task and then returns to the coordinator. If the task is not allocated,

the worker host may move to another coordinator in search of tasks. The process

of searching for tasks and then performing them goes on until all the tasks are com-

pleted. At this point worker hosts have no more work to do and they gather around

the coordinators. Coordinators then transmit a termination signal that indicates

that its portion of the workflow has been completed and shuts down. Eventually all

coordinators shut down, indicating to the worker hosts that the workflow is complete.

Guarantees. In MANETs, it is difficult to provide guarantees due to the unpre-

dictable motion of hosts. However, when some constraints are imposed on how worker

hosts can move, as described above, it becomes easier to offer guarantees. The al-

location scheme does not guarantee to allocate all tasks on time. However, it does

guarantee that all tasks will eventually be allocated as long as there are worker hosts

available with the requisite services. It is possible to make this guarantee because

the motion constraints require each worker host to visit each coordinator looking for

work. Thus, if a coordinator has a task requiring a service that is on a particular
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Step Comp-
lexity Total

PREPROCESSING (on Initiator)
  Determining Parallel Tasks
  
  Fragmenting the graph
  - Graph traversal to make buckets

O(n)

O(n+ e) O(n+e)

CORE ALGORITHM (on Coordinator)
  Sorting Tasks by Utility with BubbleSort
  - Complexity is n2 only when all tasks are  in parallel with every  
    other task (pathological case)

  Formulating solicitations

  Inserting bids into sorted buckets
  - Assume each host submits a bid for each task (pathological case)
 
  Allocation and re-allocation
  - Each task is evaluated initially and re-evaluated every time a host submits a bid

O(n2)

O(n)

O(hn)

O(hn)

PROCESSING BIDS (on Worker Hosts)

  Analyzing solicitations + submitting bids
  - One solicitation per task in workflow

  Compute travel time for each solicitation

O(n)

O(n) O(n)

O(hn2)

Figure 6.7: Computational complexity of the allocation process

worker host, it is guaranteed to encounter that worker host eventually. The even-

tually semantics of the allocation scheme is sufficient for workflows where the tasks

are required to be executed according to some partial order. In fact, most workflows

today impose this requirement. Where the approach is not as efficient is when there

are strict deadlines for each task. In such cases, the delayed allocation affects the

remainder of the workflow, which is undesirable. However, as shown in Section 6.5,

the scheme performs fairly well in allocating tasks on time even with strict timing

constraints.

Analysis of computational complexity.

The allocation process described in this section consists of several small algorithms

that run in concert to make the task allocations to hosts. To make the analysis

of the computational complexity of this process more simple, each of the individual

algorithms are analyzed separately and subsequently combined to yield a combined

complexity for the process. The summary of the various complexities appears in

Figure 6.7.
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Pre-processing Stage. The first stage of the allocation process is the pre-processing

stage in which the workflow is split into multiple smaller pieces using the k-min or

geographic cut approach. For the k-min approach the first step is to determine the

degree of parallelization. To do this, the algorithm starts at the root of the workflow

graph, and moves through it visiting each node exactly once (a flag ensures that if

two nodes have a common child, the child is not checked twice). Hence this step

has a worst case complexity of O(n) where n is the number of tasks. Next, the

tasks are organized into buckets. For k-min, the buckets correspond to the depth in

the workflow. This is done with a standard traversal algorithm that has complexity

O(n+ e) where e is the number of edges in the graph. Finally, the minimum cuts are

determined by iterating over the buckets organized by depth which in the worst case

will be O(n) for the case where there is a bucket corresponding to each and every

depth in the graph. Thus the overall complexity for the preprocessing using k-min

is O(n + e). If geographic cut is used, it eliminates the first traversal to determine

the degree of parallelization but the overall worst case complexity for the bucketing

process remains the same, i.e., O(n+ e).

Core Algorithm. The next stage is the core algorithm execution. Here, the first

step is to sort tasks by utility which in the worst case can take O(n2) time using a

BubbleSort. This worst case is in fact a pathological workflow where every task is

in parallel with every other. In a typical workflow, sequential tasks are already in

utility order. The only tasks that may need re-arranging are the ones that occur in

parallel, which in most cases is much lower than the total number of tasks n. The

formulation of solicitations is constant time per task and hence has complexity O(n).

When hosts submit bids, they are inserted into the correct bucket containing bids

for the task (the buckets themselves are sorted). In the worst case, searching for the

bucket takes O(n) time (one bucket is maintained per task) and inserting it takes a

worst case O(h) time where h is the number of hosts (each host submits a bid for that

task). This yields a total complexity of O(hn). For the actual allocation, each task

is evaluated every time a new bid comes in or if its start time is approaching. Each

task in the worst case therefore gets evaluated h+ 1 times where h is the number of

hosts. In addition, each time a task is allocated, the algorithm must gray out other

bids which may take a worst case O(n) time (if that host had bid on all tasks in the

workflow). Hence, the combined complexity of this stage is O(hn2). It should be

noted however, that these complexities come from worst case pathological cases. All
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hosts would rarely bid to do a particular task because it is unlikely all of them would

be qualified and available to do it. A host would not bid on all tasks because it would

likely not have all the necessary qualifications, and also because all tasks would not

be allocated by a single coordinator. Hence, the practical values of h and n are much

smaller than their worst case values. Note however, that if a task is not allocated on

time, it will be re-evaluated every p seconds after its start time has passed. If the task

is not allocated soon after, the number of re-evaluations could dominate the overall

complexity.

Bid Submission. On the worker hosts, the analysis of each solicitation and the compu-

tation of travel can be achieved in constant time with the use of proper data structures

and multiple indexes and hence the analysis of solicitations takes O(n) time. In the

bid collection, the analysis is done based on the assumption that every host will sub-

mit a bid for every task, an unlikely thing to happen given hosts may not have the

capabilities to do all tasks.

It should be noted that each of the stages described above occur on separate hosts.

Hence, the initiator and worker hosts have a complexity of O(n+e) and O(n) respec-

tively. The bottleneck is the coordinator which has a complexity of O(hn) over the

life of the allocation process. However, since this process is spread out over a long

duration (corresponding to the execution of the workflow), this bottleneck is purely

theoretical and does not affect practical executions of the system.

6.4 Implementation

Both the centralized and the distributed algorithms have been implemented as plugins

to the CiAN engine. This section presents the implementation of the centralized

algorithm followed by a description of the distributed algorithm.

Centralized Allocation Algorithm

CiAN is designed to accommodate both centralized and distributed algorithms. When

central planning is used, CiAN designates a special host as the initiator which runs

the centralized planning software. Figure 6.8 shows the architecture of this software.
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Communication Module

Route Information Allocator

Planner

External Injecting Application

Specification Disbursement 
PolicyKnowledge Base

Knowledge Routing Policy

Figure 6.8: CiAN planning architecture

When the initiator is performing centralized planning duties (as opposed to fragment-

ing the workflow for a distributed allocation algorithm), an Allocator is used which

implements the centralized algorithm.

The centralized allocation algorithm allocates each task in the workflow to a suitable

host, where a suitable host is defined as a host whose capabilities are a superset of

the capability requirements of the task, and whose motion pattern allows it to be at

the location at which the task needs to be performed at the time it needs to be per-

formed. The external application injects the workflow specification (encoded in the

CiAN specification) into the planning system by way of the Planner. The Planner

feeds the specification to the RouteInformation unit, which augments the specifica-

tion with task numbers (used by the communication protocol that routes data between

hosts). This augmented specification is then returned to the Planner. The Planner

then passes this specification to the Allocator, which runs the centralized allocation

algorithm to determine the hosts that are assigned each task in the workflow. It

then annotates the specification with these allocations and returns it to the Planner,

which subsequently forwards it to the Specification Disbursement Policy mod-

ule, which breaks the workflow into its constituent tasks using a custom parser devel-

oped using the Java XML Processing API (JAXP), and sends each task specification

to the host to which it has been allocated using the CommunicationModule.
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The components with dotted borders are interfaces, i.e., they can be realized by differ-

ent plug-able policies, e.g., the SpecificationDisbursementPolicy can be realized

by the SendAllTasksToAllHosts policy or the SendOnlyRelevantTasks policy as

long as they obey the relevant interface. The Allocator uses the KnowledgeBase as

a resource for information about hosts, which are used to determine task allocations.

The KnowledgeBase is populated using a gossiping protocol [96].

Distributed Allocation Algorithm

The distributed allocation algorithm consists of a centralized initiation phase followed

by a distributed allocation phase. Each of the phases is implemented in CiAN as

follows:

Initiation Phase. During the initiation phase, a workflow is input on the initiator.

This host annotates the workflow with the metadata needed for routing purposes and

then fragments the workflow into multiple pieces as indicated in the previous sections.

The fragmentation algorithms are implemented as the RouteSpecification module

which substitutes for the Allocator shown in Figure 6.8. Note that this in effect

replaces the centralized planning algorithm above because the fragmentation is the

only part that needs to be done centrally. Once the workflow is fragmented, the

fragments are passed to the SpecificationDisbursement unit. Here, a policy is

implemented that distributes these fragments to the coordinators (as opposed to the

hosts as in the centralized algorithm). At this point, the distributed allocation phase

begins.

Allocation Phase. The software for the allocation phase executes within the

LocalPlanner shown in Figure 5.5 in Section 5.5. However, it should be noted that

the algorithm is part of the LocalPlanner only on those hosts that are designated

as coordinators. In effect, the LocalPlanner implements the “coordinator policy”

which encodes the allocation phase of the algorithm.

The workflow fragments from the initiator are received by coordinators as

ControlMessages. Since the LocalPlanner registers with the WorkflowRouter

as a ControlListener, it is notified when the ControlMessage containing the

workflow fragment is received. When the fragment is received, the LocalPlanner
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sets up the necessary data structures and creates the solicitations which it pack-

ages within a ControlMessage. When a host comes within communication range,

the WorkflowRouter detects this event and reports it to the LocalPlanner. The

LocalPlanner then transmits the ControlMessages containing the solicitations via

the WorkflowRouter and the CommunicationModule.

A different “worker host policy” is implemented within the LocalPlanners of the

worker hosts. This policy receives solicitations as ControlMessages and responds

with bids, also encapsulated within ControlMessages. The manner in which the

LocalPlanner on the worker hosts receive the ControlMessages is identical to the

coordinator. The LocalPlanner on the worker host is also responsible for any other

communication with the coordinator such as accepting the final allocation of a task.

When hosts submit bids to the coordinator, the LocalPlanner processes these bids

and runs the allocation process. As and when necessary, the LocalPlanner notifies

the hosts with the winning bids of its allocation decision.

6.5 Results

6.5.1 Centralized Algorithm

The centralized allocation algorithm was evaluated by designing a simulator written

in Java. A series of random workflows were generated and the time taken to find

an allocation was measured. For comparison, a näıve algorithm was implemented

that allocated tasks in a random order while the algorithm presented in this chapter

employs the heuristic of allocating the tasks with the most constraints first.

Randomly generating a set of realistic workflows is difficult, mainly because the “re-

alism” of workflows is hard to quantify. Instead, the random workflow generator

generates a diverse range of workflows based on several parameters:

• r, the number of requirements that actions may draw from

• a, the number of actions in the workflow
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• g, the number of agents in the system

• pr, the probability that an action has a specific requirement

• pc, the probability that an agent has a specific capability

• po, the probability of an agent having a constraint between actions
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Figure 6.9: Algorithm performance when po = 0.1 for a mix of allocatable and
un-allocatable workflows

Varying these parameters can help determine the effect that certain properties of

workflows have on allocation performance. For the sake of simplicity, there is no

distinction between spatiotemporal constraints and agent constraints. Rather, a set

of constraint tuples are generated directly, without first generating a set of causes for

those conflicts.

50 allocations of fully random workflows were performed using a wide range of values

for these parameters, and the time taken for each version of the algorithm either

to find an allocation or to determine that the workflow was impossible to allocate
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Figure 6.10: Algorithm performance when po = 0.1 for allocatable workflows only

was recorded. For comparison, this procedure was repeated with 50 more random

workflows that were first filtered to ensure that an allocation existed. Since the

decision space that the näıve algorithm traverses quickly becomes intractable as the

number of actions and agents increases, an upper-bound of 30 seconds was enforced

to find an allocation. In the interest of brevity, all results of all combinations of

parameters are not presented here. However, it should be noted that the parameters

that had the greatest effect on algorithm performance were the number of actions

in the graph, the ratio of actions to agents, and the probability of conflicts. Figures

6.9 and 6.10 show the effect of varying the first two of these parameters with po =

0.1, r = 8, pr = 0.1, and pc = 0.1; Figures 6.11 and 6.12 show the effect of repeating

these experiments with po = 0.3 and the other parameters unchanged. It should also

be noted that the algorithm required no more than 10 ms to allocate any workflow

of up to 24 actions, whereas the näıve algorithm frequently required more than 30

seconds to allocate the same workflow.
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Figure 6.11: Algorithm performance when po = 0.3 for a mix of allocatable and
un-allocatable workflows

The algorithm shows a significant performance improvement over näıve approaches

because in the event of a wrong decision, the heuristic algorithm only has to explore

the relatively small decision space of that sub-workflow before revisiting the incorrect

decision. Furthermore, the algorithm does not need to traverse the entire decision

space before it can conclude that a workflow is not allocatable.

6.5.2 Distributed Algorithm

The approaches described in this chapter were evaluated via simulation experiments

using the workflow simulator for MANETs that is described in Chapter 7. The

experimental setup is described first followed by details of individual experiments.

130



Only allocatable plans

0.01

0.1

1

10

100

1000

10000

4 6 8 10 12

# of agents

M
e
a
n

 t
im

e
 t

o
 p

e
r
fo

r
m

 a
ll
o

c
a
ti

o
n

 (
m

s
)

Naïve (a/g = 1/2) Enhanced (a/g = 1/2)

Naïve (a/g = 3/4) Enhanced (a/g = 3/4)

Naïve (a/g = 1) Enhanced (a/g = 1)

Naïve (a/g = 3/2) Enhanced (a/g = 3/2)

Naïve (a/g = 2) Enhanced (a/g = 2)

Figure 6.12: Algorithm performance when po = 0.3 for allocatable workflows only

Simulation Environment Setup. The simulation environment consists of a well-

defined, non-discrete space of 100 x 100 area. This area is occupied by a number

of hosts generated using the procedure detailed in Section 7.2. A host can move a

maximum of 1.0 units in one time step though it may occupy locations with fractional

values, e.g., (0.32, 6.71). Multiple hosts may occupy the same location simultaneously.

Each host has a default communication radius of 2 units. Hosts are placed in the area

at random locations initially. They move away from these initial locations as dictated

by their mobility profile (in the cases presented here, the mobility is dictated by the

controlled motion of the allocation algorithm in Section 6.3.2). The random workflows

are generated using the algorithm described in Section 7.2. The set of workflows

and hosts used are consistent across all experiments presented in this subsection.

Workflows are split (when required) in a random manner. During allocation, the

algorithm is held to strict timing constraints for each task which is more rigorous

than the simple ordering requirement of traditional workflows. In addition, it is
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ensured that every service required by a workflow is provided by at least one host in

the simulation. However, it is not guaranteed that all workflows are allocatable.

E1: Comparing Centralized and Distributed Approaches. This experiment

the distributed allocation scheme to the centralized allocation scheme presented in

6.3.1 (see Figure 6.13). For the distributed scheme, 4 coordinators were used. Each

data point is an average of 300 workflows, 100 each with 10, 25, and 50 tasks. The

experiments were conducted for cases where each host had a 0.1 and 0.5 probability

of having a particular service required by the workflow. As expected, the centralized

algorithm outperformed the distributed case because it has perfect knowledge of every

host’s capabilities and motion and therefore represents the optimal possible on-time

allocation percentage for a given configuration. The distributed algorithm which is

greedy and works in a just-in-time manner was able to allocate as many as 94% of

the tasks on time compared to the centralized algorithm when a sufficient number of

hosts was used. Greater numbers of hosts available to do tasks improved allocation

numbers due to additional options to choose from. This same reason is responsible for

the difference in numbers between the cases where the probability of the service being

available on a host is 0.1 vs 0.5. Thus, for reasonable host densities and appropri-

ate service distributions across hosts, the distributed approach which operates with

partial knowledge of the environment can achieve an on-time allocation success rate

close to the optimal success rate. It should be noted that the distributed algorithm

allocated the remaining tasks successfully eventually, but just not within the timing

constraints required.

E2: The Effect of Distributing the Allocation Process.

Experiment 2 shows the effect of different degrees of distribution on the allocation

process (see Figure 6.14). Each data point is an average of 3000 different workflows.

These workflows were executed by between 5 to 25 hosts with service probabilities of

0.1, 0.2, and 0.5. Once again, the most centralized approach (using the distributed

algorithm with just 1 coordinator) performs best. However, the distributed case for

the 2 coordinators is within 7% of the centralized case. Using a greater number of

coordinators reduces performance because each coordinator has a small set of tasks

and hosts spend a lot of time going from coordinator to coordinator to look for

work. Also, with multiple coordinators and large number of tasks, it is possible a
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host is waiting for an allocation from one coordinator when it is needed urgently at

another. This indicates that the relation between the number of tasks, hosts, and

coordinators must be rational. Simply adding more coordinators or hosts will not

improve numbers. As can be seen, 2 coordinators sufficed for 50 workflow tasks and

50 hosts. However, multiple coordinators fare better in other circumstances described

in following experiments.
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Figure 6.14: E2: Effect of using multiple coordinators

E3: The Effect of Controlling Host Motion.

The distributed allocation scheme assumes that a host initially seeks out a coordinator

to look for available tasks and repeats this procedure whenever it is not working on

a task. It also assumes that hosts move from coordinator to coordinator in a round

robin manner if its initial choice of coordinator does not have any suitable tasks

available. If both these assumptions are relaxed, and hosts move randomly, the

allocation performance drops off if all other factors are constant. As shown in Figure

6.15, for the 4-coordinator case, when hosts move randomly, the percentage of tasks

allocated on time drops off by about 10%. Since controlling host motion is a tradeoff

between freedom of mobility of the hosts and the execution and allocation performance
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of the workflow, this experiment helps quantify to a degree the implications of the

tradeoff. Results are shown for the case when a host has a 0.1 probability of having

a service and a 0.5 probability of having a service.
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Figure 6.15: E3: Random vs. controlled host motion

E4: Enlarging the Area of the Simulation.

Figure 6.16 shows the effect of enlarging the area in which the workflow takes place.

For the experiments thus far, a 100 x 100 space was used for the simulations. In

this experiment, the trials of Experiment 3 were repeated using smaller and larger

areas (small = half the length of the edge while larger = double the length of the

edge) while continuing to use 4 coordinators. For comparison purposes, the results

from E3 are shown as the “default size area” trend lines. As shown in the figure,

the performance differential for random motion is significant when the area becomes

larger. This is simply because the random motion pattern relies on pure chance to

encounter coordinators and bid on tasks. When the area is larger, the probability of

finding a coordinator goes down which results in fewer options for the coordinator and

therefore lower allocation numbers. For controlled motion, while there is a difference,

it is not as pronounced as in the random case. The discipline of the controlled motion
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approach ensures that it does not suffer in larger areas. The performance drop off

of the controlled motion cases is primarily due to larger distances being covered and

therefore hosts not being as available as they would be in smaller areas. It is also

worth noting that the controlled approach in a smaller area performs worse than the

random approach because in this situation, the tasks and coordinators are in such

close proximity to each other that visiting them in a systematic manner takes more

time than just visiting one encountered randomly.
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Figure 6.16: E4: Large vs. Small Areas of Simulation

E5: Using Geographic Distribution for Allocation.

In E2, the workflow was partitioned and tasks were distributed randomly to each

coordinator for allocation. This experiment contrasts the random distribution with a

localized or geographic distribution. In this scheme, each coordinator is responsible

for an area around itself and tasks falling within that area are distributed to that

coordinator for allocation. The results are shown in Figure 6.17 with the results

136



from E2 included for illustration. Using the geographic distribution method shows

an improvement across the board in on-time allocations.
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Figure 6.17: E5: Random vs. Geographic Distribution of Tasks

Discussion and Summary. The results shown in the experiments exhibit a wide

range of allocation performance from as high as 95% to as low as 40% for the dis-

tributed algorithm depending on parameters. The results support the conclusion

that there is no single recipe for ensuring high percentage of tasks allocated on time.

Rather, configurations should be chosen carefully depending on the size and com-

plexity of the task at hand. For example, in small areas with a large number of

tasks to allocate, there is no need for constraints on motion whereas in a large area

with a lower task density or host density, the motion constraints are a useful feature.

In addition, the degree to which the allocation process is distributed should depend

on the number of tasks to be allocated and the number of hosts available. Overall,

the distributed algorithm with partial knowledge of the configuration performed no

less than 82% as well as the optimal solution which was done offline with complete

knowledge of the configuration. This number is especially encouraging given that the

experiments were conducted with strict timing constraints. If the more traditional
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ordering constraints were used, the algorithm allocates 100% of tasks eventually if

the constraints on motion are applied. To summarize: (1) the distributed alloca-

tion performance is close to a centralized approach for reasonable configurations of

hosts, workflows and coordinators, (2) motion constraints on hosts are useful in situ-

ations where task, host, and coordinator density is low, and (3) the use of geographic

distribution of tasks helps allocation performance for large numbers of coordinators.

6.6 Chapter Summary

In a MANET environment, the process that assigns responsibility for workflow tasks

to hosts must be aware not only of the capability of the hosts to do the tasks but

also of their mobility pattern which will dictate whether they can receive inputs and

communicate results to other hosts. This chapter described two allocation processes.

The first is a centralized approach that takes into account mobility of hosts and the

second is a process by which a monolithic workflow is divided into smaller pieces and

then allocated in a distributed fashion by multiple coordinators in a MANET setting.

The approach combines a bidding scheme with measures of utility and fitness to make

allocation decisions. Experiments indicate that the approach works well when there

are reasonable levels of host and task density where it allocates as many as 94% of

the tasks on time. If minor constraints on host motion are applied, the algorithm

eventually allocates all tasks in all situations.
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Chapter 7

Mobile Workflow Evaluation Tools

The specification, engine, and allocation algorithms presented in the preceding chap-

ters are designed to support collaborations involving many people in the physical

world. Unfortunately, it is not always possible to test the system with large numbers

of participants due to the lack of access to a large number of mobile devices. Hence,

in addition to the demonstration applications, the solutions were tested using sim-

ulated experiments. Simulating this work required a workflow-aware simulator for

mobile ad hoc networks (MANETs). While network simulators such as NS2 [1] and

Omnet++ [2] can simulate MANETs to an extent, these packages do not support a

tight integration between host mobility and the applications that execute on them.

The mobile workflow simulator presented in this chapter is targeted to testing vari-

ous approaches that require the simulation of large numbers of workflows executed by

numerous hosts in mobile settings. The simulator provides the following salient fea-

tures: (1) generation of randomized workflows, (2) generation of hosts with randomly

selected attributes, and (3) simulation of all functions of a workflow management

system (WfMS) via the execution of arbitrary plug-able code.

7.1 Introduction

A workflow management system (WfMS) is responsible for executing properly speci-

fied workflows. In the work presented in this dissertation, a workflow can embody any

collaborative activity that has a fixed structure and acceptable workflows can range

from those that describe the writing of an academic paper to those that coordinate

the activities of workers at a factory. These workflows execute across multiple mobile
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hosts that are capable of physical mobility and communicate with each other across

a MANET.

Given that the hosts are essentially mobile devices carried by people, it is possible that

certain actions within the workflow could prompt the user to change his/her mobility

pattern or behave in a different manner. There is therefore a strong coupling between

the actions of the workflow management system and the behavior of the hosts. Also,

in contrast to network simulators, where the network performance is of key interest,

for this work the focus is on the performance of the workflow management system.

As such, this simulator is designed to be used to evaluate the various aspects of a

workflow management system. The simulator offers the following features:

• Random Workflow Generation. The simulator generates random workflow

structures, tasks, and synchronization semantics while obeying restrictions such

as the number of tasks in the workflow, the degree to which the workflow is

parallelized, the number of services the workflow requires, etc. For this, a special

generation algorithm was formulated that preserves randomness while allowing

categorization of workflows for comparison and repeated use in experiments.

• Programmable Hosts and Applications. The simulator provides generic

hosts that can move freely around the environment. The programmer of the

simulator can also load arbitrary applications on top of these generic hosts to

define their behavior (the WfMS can be implemented as a series of applica-

tions). These applications can manipulate aspects of host behavior using hooks

provided for the purpose. A fully-functional messaging system is also provided

so that hosts can exchange messages with each other.

• Physical Environment. The simulator provides a well-defined physical envi-

ronment in which the workflow takes place. In addition to providing a physical

space, the simulated physical environment supports randomized placement of

resources, hosts, and any other required entities.

The following sections describe the design of the random workflow generator and the

simulator.
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Figure 7.1: Inputs to and outputs from the workflow simulator

7.2 Simulator Design

A simulation of workflows across MANETs requires as inputs a set of workflows,

a set of hosts that will cooperatively execute these workflows, and environmental

parameters for the region in which the workflow is going to be simulated. Figure 7.1

shows the inputs to each step of the simulation and the relation between the various

components of the simulator. Each of these components is described in detail in this

section.

7.2.1 Random Workflow Generation

The goal in using the simulator is to be able to show that the developed solutions

work on a wide range of workflows that have different structures and task characteris-

tics. As such, having a large set of workflows whose structure and characteristics are

randomized are crucial. However, at the same time, it is important that these work-

flows have certain degrees of similarity. For example, it is not reasonable to compare
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the allocation time for a workflow with 10 tasks to a workflow with 100 tasks. As

such, the algorithm takes in the following parameters as input:

• Number of tasks. The number of tasks in the workflow. All generated workflows

have exactly the specified number of tasks.

• Maximum splits. The maximum number of edges that can come out of a single

task node. This number must be less than the number of tasks in the workflow.

• Split probability. The likelihood of a task having more than one output edge.

• Subset probability. An operational parameter that dictates the degree to which

the workflow has edges that are “long”, i.e., that bypass several tasks.

• Number of services. The size of the set of services that can be used as require-

ments for tasks in the workflow.

• Service probability. The probability that a task will require a particular service.

• Timing constraints. The maximum duration of a task as well as the maximum

possible gap between tasks.

• Master service set. The set of all possible services that can be included in a

workflow.

Given these inputs, the workflow generation algorithm proceeds as shown in Figure

7.2. Initially, the algorithm creates a source task and a sink task, which are the

anchors of the workflow. For each of the source and sink tasks, and for any subsequent

tasks generated, a location is chosen randomly which represents the place where the

task will be performed. In addition, a random subset of service requirements is

chosen from the master set of services available. The size of the subset is dependent

on the number of services and service probability parameters to the algorithm. Since

workflows by definition are lattice structures, the cases of multiple source tasks or

multiple sink tasks need not be handled. The newly created source and sink tasks are

added to a Workflow data structure. A Collection called left is then created, to

signify the expansion of the left side of the workflow, i.e., the source side. Initially, the

source task is added to the left collection. The workflow is then built up recursively.
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The recursive function first checks if the total number of tasks in the workflow has

reached the number needed, in which case it returns the contents of the left collec-

tion. The main function (GenerateRandomWorkflow(...)) adds edges from all tasks

in left to the sink task, effectively forming the “right” portion of the workflow. If

the total number of tasks is not reached, the recursive function generates a new task

to insert into the workflow. It then chooses a random subset of the tasks in left

and creates edges between those tasks and the newly created task. It then checks

each of those tasks in the randomly generated subset and removes them from left if

they have reached the maximum number of outgoing edges or if they are randomly

chosen for elimination. This recursion continues until the requisite number of tasks

have been created.

Next, time values are generated for tasks. A random start time and duration is chosen

for the first task. To get the deadline for this task, the duration of the task is added

plus a random buffer (subject to the timing constraints parameter to the algorithm)

to the start time of the task. For each of its children, a start time is assigned that is a

random amount of time after the deadline of the root task (once again, subject to the

timing constraints parameter). Note that this random time is generated separately

for each edge. The duration and deadline are generated in the same way as the first

task. When tasks have several incoming edges, they use the deadline of the task that

finishes the latest to generate a start time. The workflow is split at this stage for

applicable experiments (see Section 6.3.2). The workflows are written to a file which

is in turn passed in as an input to the simulator.

7.2.2 Random Host Generation

Workflows are just one part of the simulation. The tasks in the workflow must

be executed by hosts that can move around the environment. The host generation

process generates sets of hosts that have certain characteristics in common to ensure

that the experiments do not compare between two situations involving hosts that are

not similar. The host generation process takes in the following parameters:

• Number of hosts. The number of hosts in the set to be used for a particular

workflow execution.
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GenerateRandomWorkflow(numTasks, maxSplit, splitProb, subsetProb)
sourceTask ← GenerateNewRandomNode()
sinkTask ← GenerateNewRandomNode()
wf ← new Workflow(sourceTask, sinkTask)
left← ⊥
Add(left, sourceTask)
left← InsertTaskAndEdges(wf, left, numTasks, maxSplit, splitProb, subsetProb)
for each t ∈ left

if GetSuccessors(t) == ⊥
edge← new Edge(t, sinkNode)
AddEdge(workflow, edge)

InsertTaskAndEdges(wf, left, numTasks, maxSplit, splitProb, subsetProb)
if Size(wf) ≥ numTasks

return left
task ← GenerateNewRandomNode()
oldTasks← GetRandomSubset(left, subsetProb, numTasks,Size(wf))
for each t ∈ oldTasks

edge← new Edge(t, task)
AddEdge(workflow, edge)
if Size(GetSuccessors(t)) ≥ maxSplit or GetRandomNumber ≥ splitProb

Remove(left, t)
Add(left, task)
return InsertTasksAndEdges(wf, left, numTasks, maxSplit, splitProb, subsetProb)

Figure 7.2: Random workflow generation algorithm

• Maximum number of services. The maximum number of services that a host

can have.

• Number of services. The total number of distinct services across all hosts (this

must match the number used to generate any workflows that are executed with

this host set).

• Schedule granularity. The duration of a single entry in the host’s schedule.

• Schedule occupancy. The fraction of a host’s schedule that is marked as busy

initially.

• Schedule size. The number of entries the host’s schedule can hold.

In addition to these input parameters which generate “basic” hosts, i.e., hosts which

have no programmatic behavior, the following additional parameters can be specified

that give the host its behavior within the simulation.
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• Network type(s). The name(s) of the network(s) that the host is a part of and

what type they are (ad hoc, wired, etc.).

• Application list. A list of the names of the applications that will run atop the

simulated host.

• Application code. The actual code (specified in terms of the names of Java class

files) of the applications to be loaded on the host.

These parameters are all used to generate randomized hosts (by varying the value of

the parameters up to the maximum allowable). The host objects are written to a file

which is then passed in as an input to a simulation instance.

7.2.3 Workflow Execution Environment

The execution environment of the simulator has been designed in a generic manner

such that only the most basic resources are provided as part of the simulation system.

All experimental functionality that is to be tested using the simulator is integrated

into the simulation using plug-able modules. This design allows the same basic physi-

cal environment and hosts to be used to test different protocols and strategies without

having to generate a new environment for each. An initial set of plugins is provided,

which implement basic protocols and strategies to help the programmer of the simula-

tor get started in a reasonable period of time. Simulations occur in a lock-step fashion

involving 4 steps– move, update communication tables, communicate, and process,

relating to the physical motion of hosts, exchange of messages across the network,

and the local processing of those messages by applications. The choice of the lock-

step mechanism as opposed to continuous, parallel simulated execution of hosts was

due to the fact that minuscule timing differences between the approaches are not of

interest. Rather, observing if a certain sequence of events in a particular order results

in a successful execution is the primary goal of running these simulations.

Figure 7.3 shows the architecture of a virtual simulated host in the simulation. At

the bottom, the host has access to a network controller which encapsulates several

network interfaces. Network interfaces not only encapsulate the type of network but

also the instance of network. Therefore, each network interface has a type as well as
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Figure 7.3: Architecture of a host in the simulator

a name. Each type of network has associated with it several policies that dictate the

rules for two hosts to be in communication with each other, routing methodologies

and other such details. By creating a network interface of a particular type, a host is

bound to obey the rules associated with that network type when sending and receiving

data through that network interface. Currently, the types of networks provided are

wireless ad hoc with a static communication range and wired with routing. The

network interface architecture is itself completely plug-able and therefore can support

user-designed custom network types beyond the three types provided.

Above the network controller sits the messaging interface that is responsible for send-

ing and receiving messages between hosts. The messaging architecture is set up using

mailboxes rather than direct delivery of messages to decouple the applications that

reside above it from the network below. The messaging interface provides an inbox

and an outbox for incoming and outgoing messages respectively. Both of these use

mutual exclusion constructs to ensure that applications cannot access them at the

same time as the network controller. Applications can register for notifications when

certain types of messages (that are of interest to them) are placed in the inbox by

the network controller (as a result of it having received them from another host in

the simulation). It is up to the application to then subsequently retrieve the message

from the inbox. Messages placed in the outbox are transmitted to the target host

unless that host is not reachable from the current host (as defined by the appropri-

ate network interface). In such cases, the message is retained in the outbox and a

retransmission is attempted periodically until the message can be delivered.
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Atop the messaging interface sits the knowledge base which captures non-functional

information about hosts. It is similar to other applications with the exception that it

is automatically instantiated during a simulation and is made available as part of the

simulation code. This decision was made in support of the view that knowledge is

essential to execution across mobile networks. In the case that the programmer does

not need the knowledge base, he/she can disable it by setting a flag. The structure of

the knowledge base is a slightly simplified version of the knowledge base described in

Chapter 3. Applications that run on hosts encapsulate the logic that the host carries.

A host can support multiple applications and the programmer of the simulation can

choose to have facilities that allow applications to interact with each other. The

programmer can create these applications by simply extending an abstract class that

provides the hooks needed for notification. Beyond that, the programmer can place

arbitrary code in the applications.

The mobility manager is responsible for guiding the host through the environment.

Depending on the policy used by the programmer, the mobility of the host can be

autonomous or influenced by messages or any application. As with all other compo-

nents in the host, the mobility manager can be customized with plug-able policies to

create custom motion patterns and rules.

Figure 7.4 shows the architecture of the simulator execution environment. The key

components are the list of hosts and the environmental state component. The en-

vironmental state component maintains a record of the size of the environment, the
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attributes of each location in the environment, and any other details that are consid-

ered to be part of the state of the environment. The host list is simply a list of hosts

(as described earlier in this section) that have applications, motion policies, and one

or more network connections. This host list is populated from the file generated by

the host generator which forms an input to the simulator.

The Simulation Controller is the “brain” of the simulator and manages the sim-

ulation in lock step. The Simulation Controller works as follows: (1) It iterates

through the list of hosts and requests each of them to move to their “next” loca-

tion. The next location of a host is determined by its mobility controller depending

on the policy it is implementing. (2) After all hosts have moved, the Simulation

Controller invokes the Communication Table Updater to update the list of pos-

sible communication links based on the new locations of all the hosts. (3) Once

the links have been updated, the simulation controller invokes the Postmaster. The

Postmaster iterates through the outboxes of each host, takes each message and places

it in the inbox of the target host (subject to their being a valid communication link

between them - for this it consults the Communication Table Updater). (4) Once

the messages have been delivered, the Simulation Controller iterates through each

host and requests them to run each of their applications for one step. Once this is

complete, the simulation goes back to step 1 and repeats the process. The simula-

tion runs for a prescribed number of steps which is specified when the simulation is

initialized.

7.3 Implementation Details

The workflow simulator for MANETs is implemented in Java 2 SE using the Eclipse

development environment. This section describes the implementation details of the

generic simulator followed by the implementation of some of the plugins were used to

evaluate CiAN in the context of this simulator.
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7.3.1 Generic Simulator

The generic simulator is a collection of core classes, most of which are abstract classes

or interfaces. The intention is for programmers to extend the classes or implement the

interfaces and add custom functionality according to the needs of their simulations.

The classes in the generic simulator are described under three categories: (1) host,

(2) environment, and (3) network.

Host

The Host class is used to create a host within the simulator. The Host class im-

plements two interfaces AppHost and EnvHost. The AppHost interface defines the

methods that a host needs to expose to applications while the EnvHost interface ex-

poses the methods that the environment needs to manipulate on the host and perform

actions such as notifications to move, message delivery, etc. While rare, in theory, a

programmer could create hosts by implementing either the AppHost or the EnvHost

interfaces alone. Implementing only the AppHost interface would create a host that

would not be placed in the context of an environment. Implementing only the EnvHost

interface would create a host that had no resident applications (potentially useful for

simulating the outcome of different mobility patterns only).

The AppHost interface provides methods to put messages in the outbox, check the

inbox for messages, add and remove Applications, add and remove network inter-

faces, and obtain neighbor lists. The EnvHost interface contains methods for putting

messages in the inbox and checking the outbox, getting lists of the network inter-

faces the host has, and adding and removing neighbors from the host’s neighbor list.

The Host class maintains one instance each of the Inbox and Outbox classes as well

as a Collection of HostNetworks (that encapsulate the network interfaces) and a

NeighborCollection, which is a dynamic neighbor list. The Host class also provides

accessors and mutators for the data members of the class and implements the generic

behavior of the methods required by the two interfaces. Customized hosts can be

created by extending the Host class.
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Environment

The Environment class is the primary class that represents the physical environ-

ment and contains the logic for starting and advancing the lock-step simulation. The

Environment class encapsulates a Collection of EnvHosts which represent the hosts

in the simulation. To keep track of communication links, it maintains a communica-

tion table that is a mapping from the ID of an EnvHost to a Collection of IDs of

other EnvHosts that the particular host can communicate with. This table is updated

at every time step.

The Environment class also maintains the global notion of time for the simulation.

Time is tracked as a long value that is incremented after each cycle of four steps as

outlined in the previous section. Each Host is notified of the updated time each cycle

and they in turn notify any resident Applications of the updated time.

In addition to static data members, the Environment class has two additional com-

ponents, the PostMaster and the CommunicationTableUpdater. The PostMaster

takes messages from the Outboxes of Hosts and delivers them to the Inboxes of the

target Host. The CommunicationTableUpdater updates the communication table to

ensure that the list of hosts that a given host can communicate with is consistent

with the policies defined in the appropriate network interface.

Network

The simulator supports the existence of several networks within the physical environ-

ment. A network is embodied by the HostNetwork class which encapsulates a name

and type for the network. Hosts that have HostNetwork objects with the same net-

work name can communicate with each other subject to the constraints of the type

of network. Two types of network implementations are provided - WiredInternet

simulating a stable wired network and WirelessAdHocBiDirectional, simulating

wireless ad hoc networks. These two classes can be used in combination to simulate

nomadic networks.

The simulator also provides the NeighborCollection class that tracks the neighbor

list of a given host dynamically in conjunction with the CommunicationTableUpdater.
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A generic Message class is also provided which can be used as a generic wrapper for

more specific messages sent between hosts.

7.3.2 CiAN Plugins

One of the motivations in developing this simulator was to test the various protocols,

algorithms, and strategies that form the CiAN workflow management system. The

simulation of CiAN within the simulator is briefly described as a case study for the

successful use of the simulator.

The encoding of a CiAN workflow is presented first. For this, several classes were

implemented that are Java embodiments of elements in the CiAN specification.

The CiANWorkflow class encapsulates an entire CiAN workflow and contains sev-

eral CiANTask objects. The CiANTask objects contain CiANEdge objects that specify

the connections between the CiANTask object. The CiANWorkflow is passed into the

simulation by a CiANHost, in a manner similar to a real execution of CiAN, where an

initiator would inject the workflow into the system.

The CiANHost interface’s concrete implementation is contained in the CiANHostImpl

class. As with hosts in the simulation, the CiANHostImpl class can support arbitrary

applications. The CoordinatorTaskDistributer class implements the functionality

of the coordinator in CiAN while the WorkerTaskBidder class contains the logic for

worker hosts. In addition to these two main classes, a Schedule class was imple-

mented that is used to track the host’s schedules. The host’s motion logic is captured

in the WorkerMotionController or the CoordinatorMotionController classes de-

pending on the type of host (worker or coordinator).

The allocation process is contained within the CoordinatorTaskDistributer class.

This class maintains lists of TaskAllocation objects that track the allocation status

of various tasks. This application accepts TaskBid objects from worker hosts as bids

to perform tasks.
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7.3.3 Anatomy of Simulation Execution

A simulation of the CiAN system using the simulator works as follows. Before the

simulation begins, the LatticeGraphGenerator is used to create several random

workflows and the CiANHostGenerator is used to create the worker hosts and co-

ordinators. The workflows generated are loaded onto one of the generated hosts

(the initiator) and with the other hosts (coordinators and workers) is passed to the

MANETSimulator class. The MANETSimulator class instantiates an Environment ob-

ject passing in the list of hosts and configures all logging functions. At this point the

simulation is ready to run.

The MANETSimulator class invokes the start() method on the Environment which

begins the simulation. The Environment first invokes the deliverMessage() method

on the PostMaster which ensures that the messages in each host’s Outbox is deliv-

ered to the Inbox of the target host subject to the constraints in the respective

policies that implement the HostNetwork interface. Then, the Environment calls

the updateCommunicationTable(...) method on the CommunicationTableUpdater

class to update the connectivity map. Note that since in CiAN host motion is depen-

dent on the actions of the worker host and the coordinator, the Applications running

on the hosts are responsible for actually moving the host.The Environment then iter-

ates over all the hosts and invokes their stepAllApplications(...) method which

makes each Host run their applications for one time step. This process is repeated

until all applications on all hosts have terminated.

The logic of the CiAN system is captured in the Application class, more specifi-

cally the CoordinatorTaskDistributer and the WorkerTaskBidder classes. Each

time these classes are instructed to execute a time step (via a call to their step()

method) by the CiANHost (in response to the call from the Environment to each hosts

stepAllApplications(...) method), they take a step of the allocation algorithm,

execute tasks in the workflow, or simply move towards a coordinator or the location

of their task. Thus, it is the various step() calls that result in the progression of the

simulated CiAN system.
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7.4 Chapter Summary

This chapter has described the design and implementation of a workflow simulator for

mobile ad hoc networks. The simulator is designed in a generic fashion, providing ba-

sic entities such as hosts, environments, and messaging infrastructure. The remaining

components are designed to be plug-able, allowing the programmer of the simulator

to customize the behavior of each component. This level of customization makes

it possible for a vast variety of protocols and strategies to be evaluated under very

different simulated environmental conditions and mobility patterns. The simulator

described in this chapter has been used for the experiments described in Chapter 6

and is in use by other projects for simulating strategies associated with more dynamic

workflows.
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Chapter 8

Future Work

The work presented in this dissertation addresses the challenges of building a workflow-

based collaborative computing infrastructure across mobile networks. While the vari-

ous algorithms and protocols presented serve a specific purpose, the software systems,

in particular the CiAN workflow engine, have been engineered with future expansion

in mind. As such, they serve as a platform upon which additional functionality and

more sophisticated approaches can be built. A selection of potential extensions are

listed here.

Fault Tolerance. Fault tolerance refers to a workflow management system’s ability

to recover from errors and continue the execution of the workflow in its original form

or at the very least, complete the execution in a degraded mode of operation. In

traditional workflow management systems (WfMSs), the source of errors are purely

computational, i.e., software or hardware failure, and there exist various mechanisms

to tackle these [89, 54]. WfMSs designed for mobile environments must be able to

deal with such computational errors as well a whole new set of error types that arise

from operating on mobile hosts across a physical environment. Such errors might be

due to host mobility (host not within communication range), environmental factors

(resources not being available or environmental parameters not being within tolerance

levels), as well as random, unforeseen events. The problem is further exacerbated by

the fact that in MANETs, it is difficult to detect faults in a timely fashion due

to lack of communication guarantees and information about the errors cannot be

propagated within a community due to the same reason. As such, a well-integrated

fault tolerance and management system is required that can manage (potentially

redundant) executions, detect and transmit fault information, encapsulate recovery
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protocols, and work in conjunction with an institutional knowledge base to reduce the

chances of a recurrence of the error.

Institutional Knowledge. In typical practice, a workflow specification is written

once and then is instantiated by the WfMS for each individual case. Just as hu-

man beings learn from experience, there is a learning opportunity from executing a

workflow multiple times for different cases. The benefit of using knowledge about the

environment and the network in the execution of a workflow (for a single case) has

already been demonstrated in Chapter 3. However, there does not exist a mechanism

to transfer knowledge across multiple discrete executions of the same workflow. The

institutional knowledge base concept seeks to address this issue by storing information

about the execution of a workflow case that might be beneficial to subsequent case

executions. In contrast to the knowledge base presented in Chapter 3, the institu-

tional knowledge base would store primarily functional information that can include

but is not restricted to situations in which errors occurred, the causes of errors, proto-

cols for error recovery that had proven or previously demonstrated chance of success,

hosts that are more reliable for doing work compared to others, and environmental

factors that promote or hinder the execution of the workflow. This research effort

would need to formulate representations for the information, mechanisms to auto-

matically acquire and store this knowledge, and integrate the knowledge base itself

with decision-making components of the system.

Security and Access Control. In any software system, security and access control

are very relevant concerns. A security framework for WfMSs can be approached in

two stages. In the first stage, an assumption can be made that there exists a group of

participants that do not behave maliciously towards each other. If admission to this

group is controlled carefully, there need not be any further security within the group.

The development of such an access control scheme would require determining the

credentials that a participant needs to present in order to be admitted into the group.

For further fine-grained control within the group, a set of role-based permissions and

access rights can be set up so that participants can only view the subsection of the

workflow and its data according to the level of access granted, e.g., a worker cannot

view other workers’ evaluation forms but a supervisor can. This type of approach is

suitable especially for workflows that execute in areas where electronic surveillance

is at a minimum, such as a remote geological survey or a nature exploration activity.
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In the second stage, no assumptions need be made and appropriate security and

encryption frameworks can be used within the group. The challenge is to design a

lightweight security framework that can function effectively even when the system

components are fragmented and scattered over large physical areas.

Emergent and Unstructured Workflows. The workflow model has been demon-

strated as being powerful yet simple enough to model any structured collaborative

activity. However, all collaborative activities are not structured, especially a large

selection of those that happen in the physical world. Consider the example of a toxic

chemical spill where first responders must work together to rescue people and clean

up the spill. Such situations evolve very rapidly creating different pressures on ev-

eryone’s time. The collaborative nature of the activity is not well structured and

emerges in response to various environmental factors. Workflows and workflow man-

agement systems need to be adapted to deal with dynamism in the network as well

as dynamism in the workflow structure itself. This will allow workflow technology to

reach broader definitions of collaboration.
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Chapter 9

Conclusion

Mobile computing is clearly a wave of the future with increasingly more hardware and

software capability becoming available for computing on the go. The unique nature of

mobile devices and the fact that they are carried on the user’s person have created an

opportunity to engineer a new generation of software that has the potential to bring

computing technology to aspects of life that have not been previously imagined. The

work in this dissertation focuses on one such type of software - collaborative systems

based on workflow management for mobile networks. This dissertation has made the

following contributions:

• The design and implementation of a knowledge management system that gathers

and maintains non-functional information about hosts in a mobile network.

This information is used by other distributed software components to make

communication decisions and offer weak guarantees.

• The formulation of the CiAN specification language, an XML-based specifica-

tion language for choreographed workflows that are designed to execute in the

physical world across MANETs.

• The design and implementation of the CiAN workflow engine, to my knowledge

the first choreography-based workflow management system for MANETs.

• The formulation and evaluation of algorithms for allocation of workflow tasks

taking into account individual participants’ capabilities as well as their mobility

and other spatiotemporal constraints.
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• The design and implementation of a simulator for mobile workflows for evalu-

ating the approaches and contributions of this thesis.

The results presented in the chapters of this dissertation show that for reasonable

assumptions of non-adversarial host motion and properly structured workflows, the

algorithms and software design stand up well to tests. However, these contributions

are simply an initial step. As mobile hardware technology continues to advance,

it will open the door for offering even more sophisticated functionality on mobile

devices. The work presented represents a forward-looking foundation atop which

such advanced approaches could be built.
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Appendix A

Additional Experimental Data

The purpose of this appendix is to expand on the evaluation data shown in previ-

ous chapters for certain experiments. The data for the allocation experiments are

presented first followed by data for the publish-subscribe protocol.

E1: Comparing Centralized and Distributed Allocation Approaches. Fig-

ures A.1, A.2, and A.3 show the data for the centralized allocation algorithm vs.

the distributed allocation algorithm (with 4 coordinators) for 10, 25, and 50 task

workflows, with each data point being an average of 100 workflows. It can be seen

that holding the number of hosts and coordinators constant (as they are across the

three figures), increasing the number of workflow tasks results in decreased perfor-

mance, especially in the case where the likelihood of a host having a service is 10%

as opposed to 50%. In other words, the more specialized the hosts are, the more the

distributed approach struggles to allocate tasks. Also, increasing the number of tasks

results in there not being enough qualified hosts to do the work which results in a

drop in the allocation numbers. The fluctuations in the graph were due to certain

workflows requiring services in a manner that caused conflict. In all the experiments,

the outcome is reliant as much on the algorithm as on the distribution of services

across hosts, the initial location of the hosts, and the order in which hosts reach the

coordinator to be allocated tasks. The distributed approach numbers approach those

for the centralized case when hosts are less specialized and the ratio between tasks to

be performed and hosts available is reasonable.

E2: Using Multiple Coordinators. Figures A.4 through A.9 show the data for

Experiment 2 in Section 6.5 from a slightly different perspective. Figure A.4 shows

the percentage of tasks allocated on time as a function of the number of worker
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Figure A.1: On-time allocations for 10 task workflows
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Figure A.2: On-time allocations for 25 task workflows
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Figure A.3: On-time allocations for 50 task workflows

hosts used to complete the workflow. Observe that initially the numbers for multiple

coordinators are worse than those for a single coordinator (i.e., with centralized allo-

cation). However, as the number of hosts increases, the difference is decreased and at

25 hosts, the 2 coordinator case is better than the single case and the 4 coordinator

case is comparable. This supports the conclusion that there must be a reasonable

ratio of coordinators to hosts. Up to 20 hosts, the single coordinator does better

but beyond, multiple coordinators are desirable. This is because there is a tradeoff

between having one coordinator for all the tasks, which increases the amount of travel

hosts have to undertake between task locations and the coordinator, and the use of

multiple coordinators which increases travel between coordinators as hosts move from

one to another looking for a suitable task. Having multiple coordinators also can lead

to a host being locked at one coordinator when there is a more crucial task on another

coordinator that it could do. It is for these reasons that for low numbers of hosts,

fewer coordinators are preferred.

Figure A.5 shows the percentage of tasks allocated on time as a function of the proba-

bility of services being available on a particular host. The differences between the 1, 2,
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Figure A.4: On-time allocations as a function of number of hosts with different
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4, and 8 coordinator cases have already been explained in Figure A.4. It can be seen

that the performance when the chance of finding a service on a host is 50% is better

than when the chance is only 10%. This is in line with expectations because a higher

probability of finding a given service on a particular host translates into more options

for the coordinator to pick from resulting in an even distribution of the workload.

For the pathological case where every host can do every task, the algorithm does not

perform as well because the provisional allocation and re-evaluation mechanism relies

on comparisons between bids submitted by hosts to decide on an allocation, and in

the initial stages all hosts are equivalent for this purpose. It should be noted that

in this case, the need for allocation is in a sense eliminated since a simple greedy

strategy of allocating tasks to hosts on a first come first serve basis would suffice.

Figures A.6, A.7, A.8, and A.9 show on-time allocations for 10, 25, and 50 task work-

flows. As explained earlier, having more hosts increases the allocation performance

due to there being more allocation options. Typically, the performance did not differ

greatly as a function of workflow size which is encouraging. In the 1 coordinator case,

the workflow with 10 tasks had many parallel conflicting requirements and the poor
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Figure A.5: On-time allocations as a function of probability of availability of
services with different numbers of coordinators

performance was due to the coordinator “reserving” a qualified host for a particular

task to the detriment of the conflicting task. In the 8 coordinator case, the difference

is more marked due to the random distribution of tasks across coordinators which

resulted in a lot of hosts going back and forth between coordinators looking for tasks,

which ultimately made them unsuitable for being allocated tasks on time.

E3: The Tradeoff Between Random and Controlled Motion.

Figures A.10 and A.11 show additional data for Experiment 3 in Section 6.5. Figure

A.10 shows that for high numbers of tasks in the workflow, the random motion pat-

terns do better. This is because a high number of workflow tasks translates to a high

number of tasks on each coordinator on average. Thus, a host moving randomly has

a good chance of coming across a coordinator and the coordinator having something

suitable to allocate to that host. In controlled motion, the host systematically visits

each coordinator. This in order visiting pattern can delay the host’s arrival at the

coordinator which has tasks suitable for it and therefore causes a drop in allocation
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Figure A.6: On-time allocations with 1 coordinator for 10, 25, and 50 task workflows
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Figure A.7: On-time allocations with 2 coordinators for 10, 25, and 50 task
workflows
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Figure A.8: On-time allocations with 4 coordinators for 10, 25, and 50 task
workflows
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Figure A.9: On-time allocations with 8 coordinators for 10, 25, and 50 task
workflows
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Figure A.10: On-time allocations for random and controlled motion as a function of
number of tasks in the workflow

performance. Note however, that when there are fewer tasks to go around, the more

disciplined controlled motion approach yields greater benefits.

Figure A.11 shows the on-time allocation numbers as a function of probability of

availability of services. The controlled motion outperforms the random motion by a

margin that remains constant as the probability of the service being available goes

from 10% to 50%. This is because both approaches can exploit additional options to

increase allocation numbers. It should be noted though that when all hosts have all

services, the random motion of the hosts ceases to become a liability and outperforms

the controlled scheme. Thus, while a random approach can work in the pathological

case, for other cases, the controlled motion algorithm performs better.

E4: The Effect of Area Size on Allocation Performance

The experiments presented thus far were conducted using a 100 x 100 area. For this

experiment, a smaller 50 x 50 area and a larger 200 x 200 area was used. Figures

A.12 and A.13 show additional data for Experiment 4 in Section 6.5. The number of
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Figure A.11: On-time allocations for random and controlled motion as a function of
probability of availability of services

coordinators used was 4. Figure A.12 shows the differences in allocation performance

as a function of the number of tasks in the workflow. It can be seen that with

controlled motion, there is not a large difference in performance when the size of the

area of interest changes. In addition, performance is consistent in the larger area even

with a smaller number of tasks in the workflow. Thus, the use of controlled motion is

preferred when the spread of tasks in an area is sparse and discipline is required for

hosts to travel to those tasks and return to coordinators for further task allocations.

Figure A.13 shows the data as a function of the probability of finding a service on a

particular host. The tradeoffs between random motion and controlled motion patterns

are clearly evident here. With random motion, the performance is best when every

host can do every task (service probability 1.0) because any chance encounter can

result in a successful task allocation. It can be argued that in such a case, an allocation

process is not even necessary. However, in more realistic cases where each host can

only do a subset of tasks, the controlled approach can hold its own. The advantages

of the controlled motion approach can be mitigated when the area is smaller as shown
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Figure A.12: On-time allocations for random and controlled motion with varying
area sizes as a function of number of tasks in the workflow

but under the case of lower service probabilities and larger areas, the controlled motion

approach dominates.

E5: The Use of a Geographic Workflow Partitioning Strategy

In experiment 3, tasks in the workflow were distributed across coordinators in a

random manner. This distribution is done based on geographic proximity. Each

coordinator is responsible for an area around it (such that no place is left uncovered

by a coordinator and there are no overlaps). Tasks are distributed to the coordinator

that is responsible for the location at which the task must be performed. Figures

A.14 through A.18 show the data from this experiment. Figure A.14 shows the

percentage of tasks allocated successfully as a function of number of hosts. Compared

to the random distribution of experiment 2, the geographic distribution results in an

approximately 4% increase for the 2 and 4 coordinator cases and an approximate 8%

increase for the 8 coordinator case. This is due to the fact that hosts travel lesser

distances to tasks from the coordinator and thus have more time available to do other

tasks.
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Figure A.13: On-time allocations for random and controlled motion with varying
area sizes as a function of the probability of finding a service on a host
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Figure A.14: On-time allocations as a function of number of hosts with geographic
partitioning and different numbers of coordinators
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Figure A.15: On-time allocations as a function of the probability of finding a service
on a host with geographic partitioning and different numbers of coordinators

Figure A.15 shows the data as a function of the probability of finding a service on

a particular host. While the performance of the 2 coordinator case is slightly worse

with geographic partitioning, the 4 and 8 coordinator cases do slightly better. For

low numbers of coordinators, a situation arises where the balance of the tasks across

coordinators is uneven and this leads to some coordinators being starved of qualified

hosts resulting in a drop in overall allocation performance. With a larger number

of coordinators, this problem is mitigated somewhat and the gains from having the

hosts move smaller distances to their tasks overcomes any losses from the starvation

of coordinators.

Figures A.16, A.17, and A.18 break down the results by the number of coordinators

used and are placed here for completeness.
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Figure A.16: On-time allocations as a function of number of hosts with geographic
partitioning and 2 coordinators
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Figure A.17: On-time allocations as a function of number of hosts with geographic
partitioning and 4 coordinators
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Figure A.18: On-time allocations as a function of number of hosts with geographic
partitioning and 8 coordinators
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Appendix B

List of Tags in the CiAN

Specification

<collaboration> ... </collaboration>

The collaboration tags are the outermost tasks of the CiAN specification and are

used to delimit a single workflow specification. Only one pair of collaboration tags

can be used in a single file, thereby ensuring that each CiAN workflow appears in a

separate file.

<knowledge-base> ... </knowledge-base>

The knowledge-base tags delimit the first of two subsections of the CiAN specifica-

tion header. The knowledge base section specifies a list of knowledge base elements

that the workflow depends upon for correct execution. The knowledge base referred

to here is described in detail in Chapter 3.

<sensors> ... </sensors>

The sensors tags delimit the second of two subsections of the CiAN specification

header. The sensor section specifies a list of sensors on whose values the workflow

depends upon for correct execution. The software for actually interfacing with sensors

is not part of the CiAN system. However, CiAN supports any text-based sensor

readings.

<knowledge-var> ... </knowledge-var>

The knowledge-var tags delimit a single knowledge parameter that is required by the

173



workflow for correct operation. These tags are nested within the knowledge-base sec-

tion. The values of these tags correspond to the name of the parameters as described

in Section 3.4.3.

<sensor-var> ... </sensor-var>

The sensor-var tags delimit a single sensor that is required by the workflow for

correct operation. These tags are nested within the sensors section.

<task> ... </task>

The task tags delimit the definition of a single task in a CiAN workflow. Every CiAN

workflow is required to have at least one task in its definition. Multiple tasks can be

listed in a single CiAN specification as long as their definitions are sequential and not

nested.

<task-name> ... </task-name>

The task-name tags delimit the name of the task. This name is required to be unique

in the scope of the workflow.

<loc-x> ... </loc-x>

The loc-x tags delimit the x-coordinate of the location at which the task must

be performed. If GPS coordinates are being used, loc-x represents the longitude

component.

<loc-y> ... </loc-y>

The loc-y tags delimit the y-coordinate of the location at which the task must

be performed. If GPS coordinates are being used, loc-y represents the latitude

component.

<earliest-start> ... </earliest-start>

The earliest-start tags delimit the earliest possible time that the associated task

can start. Specifying an earliest start time does not guarantee that the task will start

executing at exactly that time.

<deadline> ... </deadline>

The deadline tags delimit the deadline by which the task must complete. Depending

on circumstances, the task may finish executing before the deadline but is guaranteed

to have finished by the deadline.
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<duration> ... </duration>

The duration tags delimit the maximum possible duration that the task can take to

execute. The value of the duration may be equal to the interval between the task’s

earliest start time and deadline or smaller.

<inputs> ... </inputs>

The input tags delimit the section of the task description that describes the incoming

edges, the conditions under which values along those edges are accepted, and sets of

legal inputs to the task. The entire inputs section is optional and can be skipped if

the task does not have any inputs (typically this is true only of the first task in the

workflow).

<activity> ... </activity>

The activity tags delimit the section of the task description that describes the

service that must be invoked to perform the task. This section also lists the names

of the input variables to the service and the names of the output variables to which

the service writes its return values.

<outputs> ... </outputs>

The output tags delimit the section of the task description that describes the outgoing

edges, the conditions under which values along those edges are transmitted, and sets

of legal outputs from the task. The entire outputs section is optional and can be

skipped if the task does not have any outputs (typically this is true only of the last

task in the workflow).

<edge> ... </edge>

The edge tags delimit the definition of a single incoming or outgoing edge from a

task. Each edge in the workflow is defined twice. Once as an outgoing edge from the

source task and once as an incoming edge to the sink task. Matching of the two is

done by edge name.

<edge-name> ... </edge-name>

The edge-name tags delimit the name of the edge, required to be unique in the scope

of the workflow.
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<var> ... </var>

The var tags delimit the name of a variable. Depending on the context, the value

enclosed within the var tag is the name of the variable that an edge should write the

value transmitted along it to (in the case of input edges), the variable that the edge

should read the value it should transmit from (in the case of output edges), or simply

the name of an input or output variable to a service.

<partner> ... </partner>

The partner tags delimit the name of the task that is at the source (for input edges)

and the sink (for output edges) of the edge.

<select-cond> ... </select-cond>

The select-cond tags delimit groups of conditions that must all be true in order

for any value to be transmitted along the associated edge. An edge may have zero or

more select-cond groups. Only one select-cond group (if multiple are specified)

need have all its sub-conditions evaluate to true in order for a value to be transmitted.

<cond> ... </cond>

The cond tags delimit a single condition within a selection condition group.

<param> ... </param>

The param tags delimit the parameter that needs to be tested against a value to

evaluate the condition. The value enclosed within the param tags must be of the form

knowledge:hostname:paramname for parameters in the knowledge base (note the sim-

ilarity of structure to the knowledge base described in Chapter 3), sensor:sensorname

for sensor values and edge:edgename for edge values. The value for paramname

must be chosen from one of the names indicated via knowledge-var tags in the

knowledge-base section. Similarly the value for sensorname must be chosen from a

value in the sensors section. The value of edgename must be chosen from the list of

similar (i.e. input or output depending on the edge for which the condition is written)

edges associated with the same task.

<comparator> ... </comparator>

The comparator tags delimit the comparator to be used in evaluating the condition.
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<value> ... </value>

The value tags delimit the value to test the condition with.

<accept-set> ... </accept-set>

The accept-set tags delimit groups of edges that if all active, form acceptable inputs

or outputs. An edge is considered active if at least one of its select-cond groups

has all its sub-conditions evaluate to true.

<set> ... </set>

The set tags delimit names of edges (using the edge-name tag that if all active, form

acceptable inputs or outputs. There may be more than one set in an accept-set

block.

<activity> ... </activity>

The activity tags delimit the details of the service that must be invoked in order

for the task to be completed.

<input-vars> ... </input-vars>

The input-vars tags delimit the set of names of input variables to the services.

Individual variable names are enclosed within var tags within the input-vars section.

<service> ... </service>

The service tags delimit the name of the service that must be invoked in order for

the task to be completed.

<method> ... </method>

The method tags delimit the name of the method on the service that must be invoked

in order for the task to be completed.

<output-vars> ... </output-vars>

The output-vars tags delimit the set of names of output variables that capture the

return values from a service execution. Individual variable names are enclosed within

var tags within the output-vars section.

<date> ... </date>

The date tags delimit the date and is used within the earliest-start and deadline

tags.
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<time> ... </time>

The time tags delimit the time and is used within the earliest-start and deadline

tags.
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Appendix C

Screenshots of a Demo CiAN

Application

A collaborative application that we have discussed at length in various chapters of

this document is based on a workflow for cooperatively authoring an academic paper.

This chapter presents a selection of screenshots (Figures C.1, C.2, C.3, C.4, and C.5)

from this application to illustrate its functionality.
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Figure C.1: Graphical representation of the workflow. Not neighbor list on the right

Figure C.2: Allocation in progress - highlighted tasks are allocated
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Figure C.3: Detail of a task

Figure C.4: Detail of a task with completed allocation indicator
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Figure C.5: Task execution: pop up window is for entering text for the introduction
section
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Appendix D

CiAN Specification Support for

Workflow Patterns

According to van der Aalst [106], all workflows are a composition of a certain set of

basic patterns. As mentioned in Chapters 4 and 5, CiAN provides support for all basic

control flow and advanced synchronization patterns via its use of selection conditions

and accept sets. This appendix outlines the code that must be written to create each

pattern. For brevity, only the input and output sections of a task specification are

shown as these are the only ones that are needed to illustrate the implementation of

the patterns. The pattern numbers and names are taken from [106].

Pattern 1: Sequence

<task>

<outputs>

<edge><edge-name> Edge1 < /edge-name>< /edge>

<accept-set>

<set><edge-name> Edge1 < /edge-name>< /set>

< /accept-set>

< /outputs>

< /task>

Pattern 2: Parallel Split

<task>

<outputs>

<edge><edge-name> Edge1 < /edge-name>< /edge>

<edge><edge-name> Edge2 < /edge-name>< /edge>

<accept-set>

<set>

<edge-name> Edge1 < /edge-name>

<edge-name> Edge2 < /edge-name>

< /set>

< /accept-set>

< /outputs>
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< /task>

Pattern 3: Synchronization

<task>

<inputs>

<edge><edge-name> Edge1 < /edge-name>< /edge>

<edge><edge-name> Edge2 < /edge-name>< /edge>

<accept-set>

<set>

<edge-name> Edge1 < /edge-name>

<edge-name> Edge2 < /edge-name>

< /set>

< /accept-set>

< /inputs>

< /task>

Pattern 4: Exclusive Choice

<task>

<inputs>

<edge>

<edge-name> Edge1 < /edge-name>

<select-cond>

<cond>

<param>ParamName< /param>

<comparator>==< /comparator>

<value>TestValue< /value>

< /cond>

< /select-cond>

< /edge>

<edge>

<edge-name> Edge2 < /edge-name>

<select-cond>

<cond>

<param>ParamName< /param>

<comparator>!=< /comparator>

<value>TestValue< /value>

< /cond>

< /select-cond>

< /edge>

<accept-set>

<set><edge-name> Edge1 < /edge-name>< /set>

<set><edge-name> Edge2 < /edge-name>< /set>

< /accept-set>

< /inputs>

< /task>

Pattern 5: Simple Merge

<task>

<inputs>

<edge><edge-name> Edge1 < /edge-name>< /edge>

<edge><edge-name> Edge2 < /edge-name>< /edge>

<accept-set>

<set><edge-name> Edge1 < /edge-name>< /set>
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<set><edge-name> Edge2 < /edge-name>< /set>

< /accept-set>

< /inputs>

< /task>

Pattern 6: Multi Choice

<task>

<outputs>

<edge>

<edge-name> Edge1 < /edge-name>

<select-cond>

<cond>

<param>ParamName< /param>

<comparator>==< /comparator>

<value>TestValue< /value>

< /cond>

< /select-cond>

< /edge>

<edge>

<edge-name> Edge2 < /edge-name>

<select-cond>

<cond>

<param>ParamName< /param>

<comparator>!=< /comparator>

<value>TestValue< /value>

< /cond>

< /select-cond>

< /edge>

<accept-set>

<set><edge-name> Edge1 < /edge-name>< /set>

<set><edge-name> Edge2 < /edge-name>< /set>

< /accept-set>

< /outputs>

< /task>

Pattern 7: Synchronizing Merge

The decision on when to merge is decided by a timeout. If within a certain amount of

time of the first input arriving, additional inputs are not detected, the synchronization

moves ahead.

<task>

<inputs>

<edge>

<edge-name> Edge1 < /edge-name>

<select-cond>

<cond>

<param>ParamName< /param>

<comparator>==< /comparator>

<value>TestValue< /value>

< /cond>

< /select-cond>

< /edge>

<edge>

<edge-name> Edge2 < /edge-name>

<select-cond>
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<cond>

<param>ParamName< /param>

<comparator>!=< /comparator>

<value>TestValue< /value>

< /cond>

< /select-cond>

< /edge>

<accept-set>

<set><edge-name> Edge1 < /edge-name>< /set>

<set><edge-name> Edge2 < /edge-name>< /set>

<set>

<edge-name> Edge1 < /edge-name>

<edge-name> Edge2 < /edge-name>

< /set>

< /accept-set>

< /inputs>

< /task>

Pattern 8: Multi Merge

Since CiAN does not support multiple cases, the multi merge pattern simplifies to

the simple merge pattern.

<task>

<inputs>

<edge><edge-name> Edge1 < /edge-name>< /edge>

<edge><edge-name> Edge2 < /edge-name>< /edge>

<accept-set>

<set><edge-name> Edge1 < /edge-name>< /set>

<set><edge-name> Edge2 < /edge-name>< /set>

< /accept-set>

< /inputs>

< /task>

Pattern 9: Discriminator

The CiAN discriminator is automatically reset for every case that is run.

<task>

<inputs>

<edge>

<edge-name> Edge1 < /edge-name>

<select-cond>

<cond>

<param>ParamName< /param>

<comparator>==< /comparator>

<value>TestValue< /value>

< /cond>

< /select-cond>

< /edge>

<edge>

<edge-name> Edge2 < /edge-name>

<select-cond>

<cond>

<param>ParamName< /param>

<comparator>!=< /comparator>

<value>TestValue< /value>
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< /cond>

< /select-cond>

< /edge>

<accept-set>

<set><edge-name> Edge1 < /edge-name>< /set>

<set><edge-name> Edge2 < /edge-name>< /set>

< /accept-set>

< /inputs>

< /task>
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Appendix E

Qualitative Code Comparison for

Cases

This section shows the code for the three cases outlined in Chapter 4 using BPEL,

YAWL, and CiAN. For brevity, parts of the code not crucial to the illustration have

not been included.

E.1 Case 1: Writing a Paper

E.1.1 CiAN Code for Case 1

<collaboration>

<task>

<task-name>WriteIntro< /task-name>

<outputs>

<edge>

<edge-name>IntroToBG< /edge-name>

<var>IntroText< /var>

<partner>writeBG< /partner>

< /edge>

<edge>

<edge-name>IntroToBody< /edge-name>

<var>IntroText< /var>

<partner>writeBody< /partner>

< /edge>

<edge>

<edge-name>IntroToImpl< /edge-name>

<var>IntroText< /var>

<partner>writeImpl< /partner>

< /edge>

<accept-set>

<set>

<edge-name>IntroToBG< /edge-name>

<edge-name>IntroToBody< /edge-name>

<edge-name>IntroToImpl< /edge-name>

< /set>

< /accept-set>< /outputs>

< /task>
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<task>

<task-name>WriteBG< /task-name>

<inputs>

<edge>

<edge-name>IntroToBG< /edge-name>

<var>IntroText< /var>

<partner>writeIntro< /partner>

< /edge>

<accept-set>

<set>

<edge-name>IntroToBG< /edge-name>

< /set>

< /accept-set>< /inputs>

<outputs>

<edge>

<edge-name>BGToEval< /edge-name>

<var>IntroBGText< /var>

<partner>writeEval< /partner>

< /edge>

<accept-set>

<set>

<edge-name>BGToEval< /edge-name>

< /set>

< /accept-set>< /outputs>

< /task>

<task>

<task-name>WriteBody< /task-name>

<inputs>

<edge>

<edge-name>IntroToBody< /edge-name>

<var>IntroText< /var>

<partner>writeIntro< /partner>

< /edge>

<accept-set>

<set>

<edge-name>IntroToBody< /edge-name>

< /set>

< /accept-set>< /inputs>

<outputs>

<edge>

<edge-name>BodyToEval< /edge-name>

<var>IntroBodyText< /var>

<partner>writeEval< /partner>

< /edge>

<accept-set>

<set>

<edge-name>BodyToEval< /edge-name>

< /set>

< /accept-set>< /outputs>

< /task>

<task>

<task-name>WriteImpl< /task-name>

<inputs>

<edge>

<edge-name>IntroToImpl< /edge-name>

<var>IntroText< /var>

<partner>writeIntro< /partner>

< /edge>

<accept-set>

<set>

<edge-name>IntroToImpl< /edge-name>

< /set>

< /accept-set>< /inputs>

<outputs>

<edge>

<edge-name>ImplToEval< /edge-name>

<var>IntroImplText< /var>

<partner>writeEval< /partner>
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< /edge>

<accept-set>

<set>

<edge-name>ImplToEval< /edge-name>

< /set>

< /accept-set>< /outputs>

< /task>

<task>

<task-name>WriteEval< /task-name>

<inputs>

<edge>

<edge-name>BGToEval< /edge-name>

<var>IntroBGText< /var>

<partner>writeBG< /partner>

< /edge>

<edge>

<edge-name>BodyToEval< /edge-name>

<var>IntroBodyText< /var>

<partner>writeBody< /partner>

< /edge>

<edge>

<edge-name>ImplToEval< /edge-name>

<var>IntroImplText< /var>

<partner>writeImpl< /partner>

< /edge>

<accept-set>

<set>

<edge-name>BGToEval< /edge-name>

<edge-name>BodyToEval< /edge-name>

<edge-name>ImplToEval< /edge-name>

< /set>

< /accept-set>< /inputs>

<outputs>

<edge>

<edge-name>EvalToConc< /edge-name>

<var>PaperText< /var>

<partner>writeConc< /partner>

< /edge>

<accept-set>

<set>

<edge-name>EvalToConc< /edge-name>

< /set>

< /accept-set>< /outputs>

< /task>

<task>

<task-name>WriteConc< /task-name>

<inputs>

<edge>

<edge-name>EvalToConc< /edge-name>

<var>PaperText< /var>

<partner>writeEval< /partner>

< /edge>

<accept-set>

<set>

<edge-name>EvalToConc< /edge-name>

< /set>

< /accept-set>< /inputs>

< /task>

< /collaboration>
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E.1.2 BPEL Code for Case 1

<process>

<name>WritePaper< /name>

<sequence>

<invoke>writeIntro< /invoke>

<flow>

<invoke>writeBG< /invoke>

<invoke>writeBody< /invoke>

<invoke>writeImpl< /invoke>

< /flow>

<invoke>writeEval< /invoke>

<invoke>writeConc< /invoke>

< /sequence>

< /process>

E.1.3 YAWL Code for Case 1

<processControlElements>

<task>

<id>writeIntro< /id>

<flowsInto><nextElementRef><id>writeBG< /id>< /nextElementRef>< /flowsInto>

<flowsInto><nextElementRef><id>writeBody< /id>< /nextElementRef>< /flowsInto>

<flowsInto><nextElementRef><id>writeImpl< /id>< /nextElementRef>< /flowsInto>

<join code>and< /join code>

<split code>and< /split code>

< /task>

<task>

<id>writeBG< /id>

<flowsInto><nextElementRef><id>writeEval< /id>< /nextElementRef>< /flowsInto>

<join code>and< /join code>

<split code>and< /split code>

< /task>

<task>

<id>writeBody< /id>

<flowsInto><nextElementRef><id>writeEval< /id>< /nextElementRef>< /flowsInto>

<join code>and< /join code>

<split code>and< /split code>

< /task>

<task>

<id>writeImpl< /id>

<flowsInto><nextElementRef><id>writeEval< /id>< /nextElementRef>< /flowsInto>

<join code>and< /join code>

<split code>and< /split code>

< /task>

<task>

<id>writeEval< /id>

<flowsInto><nextElementRef><id>writeConc< /id>< /nextElementRef>< /flowsInto>

<join code>and< /join code>

<split code>and< /split code>

< /task>

<task>

<id>writeConc< /id>

<join code>and< /join code>

<split code>and< /split code>

< /task>
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< /processControlElements>

E.2 Case 2: Checking Out From an Online Store

E.2.1 CiAN Code for Case 2

<collaboration>

<task>

<task-name>PlaceOrder< /task-name>

<outputs>

<edge>

<edge-name>OrderToShip< /edge-name>

<var>OrderInfo< /var>

<partner>CalcShipCost< /partner>

< /edge>

<edge>

<edge-name>OrderToTax< /edge-name>

<var>OrderInfo< /var>

<partner>CalcTax< /partner>

< /edge>

<accept-set>

<set>

<edge-name>OrderToShip< /edge-name>

<edge-name>OrderToTax< /edge-name>

< /set>

< /accept-set>< /outputs>

< /task>

<task>

<task-name>CalcShipCost< /task-name>

<inputs>

<edge>

<edge-name>OrderToShip< /edge-name>

<var>OrderInfo< /var>

<partner>PlaceOrder< /partner>

< /edge>

<accept-set>

<set>

<edge-name>OrderToShip< /edge-name>

< /set>

< /accept-set>< /inputs>

<outputs>

<edge>

<edge-name>ShipToPrint< /edge-name>

<var>ShipCost< /var>

<partner>PrintBill< /partner>

< /edge>

<accept-set>

<set>

<edge-name>ShipToPrint< /edge-name>

< /set>

< /accept-set>< /outputs>

< /task>

<task>

<task-name>CalcTax< /task-name>

<inputs>

<edge>

<edge-name>OrderToTax< /edge-name>

<var>OrderInfo< /var>

<partner>PlaceOrder< /partner>
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< /edge>

<accept-set>

<set>

<edge-name>OrderToTax< /edge-name>

< /set>

< /accept-set>< /inputs>

<outputs>

<edge>

<edge-name>TaxToPrint< /edge-name>

<var>TaxAmount< /var>

<partner>PrintBill< /partner>

< /edge>

<accept-set>

<set>

<edge-name>TaxToPrint< /edge-name>

< /set>

< /accept-set>< /outputs>

< /task>

<task>

<task-name>PrintBill< /task-name>

<inputs>

<edge>

<edge-name>ShipToPrint< /edge-name>

<var>ShipCost< /var>

<partner>CalcShipCost< /partner>

< /edge>

<edge>

<edge-name>TaxToPrint< /edge-name>

<var>TaxAmount< /var>

<partner>CalcTax< /partner>

< /edge>

<accept-set>

<set>

<edge-name>ShipToPrint< /edge-name>

<edge-name>TaxToPrint< /edge-name>

< /set>

< /accept-set>< /inputs>

<outputs>

<edge>

<edge-name>PrintToCoupon< /edge-name>

<var>OrderTotal< /var>

<partner>PrintCoupon< /partner>

<select-cond>

<cond>

<param>var:OrderTotal< /param>

<comparator>≥< /comparator>

<value>100< /value>

< /cond>

< /select-cond>

< /edge>

<edge>

<edge-name>PrintToDone< /edge-name>

<var>OrderTotal< /var>

<partner>Done< /partner>

<select-cond>

<cond>

<param>var:OrderTotal< /param>

<comparator><< /comparator>

<value>100< /value>

< /cond>

< /select-cond>

< /edge>

<accept-set>

<set>

<edge-name>PrintToCoupon< /edge-name>

< /set>

<set>

<edge-name>PrintToDone< /edge-name>

< /set>

< /accept-set>< /outputs>
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< /task>

<task>

<task-name>PrintCoupon< /task-name>

<inputs>

<edge>

<edge-name>PrintToCoupon< /edge-name>

<var>OrderTotal< /var>

<partner>PrintBill< /partner>

< /edge>

<accept-set>

<set>

<edge-name>PrintToCoupon< /edge-name>

< /set>

< /accept-set>< /inputs>

<outputs>

<edge>

<edge-name>CouponToDone< /edge-name>

<var>CouponValue< /var>

<partner>Done< /partner>

< /edge>

<accept-set>

<set>

<edge-name>CouponToDone< /edge-name>

< /set>

< /accept-set>< /outputs>

< /task>

<task>

<task-name>Done< /task-name>

<inputs>

<edge>

<edge-name>CouponToDone< /edge-name>

<var>CouponValue< /var>

<partner>PrintCoupon< /partner>

< /edge>

<edge>

<edge-name>PrintToDone< /edge-name>

<var>OrderTotal< /var>

<partner>PrintBill< /partner>

< /edge>

<accept-set>

<set>

<edge-name>CouponToDone< /edge-name>

< /set>

<set>

<edge-name>PrintToDone< /edge-name>

< /set>

< /accept-set>< /inputs>

< /task>

< /collaboration>

E.2.2 BPEL Code for Case 2

<process>

<name>CheckOutFromStore< /name>

<sequence>

<invoke>PlaceOrder< /invoke>

<flow>

<invoke>CalcShipCost< /invoke>

<invoke>CalcTax< /invoke>

< /flow>

<invoke>PrintBill< /invoke>
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<switch>

<case condition=ẗotal ≥ 100¨>

<invoke>IncludeCoupon< /invoke>

< /case>

<otherwise>

<invoke>Done< /invoke>

< /otherwise>

< /switch>

< /sequence>

< /process>

E.2.3 YAWL Code for Case 2

<processControlElements>

<task>

<id>PlaceOrder< /id>

<flowsInto><nextElementRef><id>CalcShipCost< /id>< /nextElementRef>< /flowsInto>

<flowsInto><nextElementRef><id>CalcTax< /id>< /nextElementRef>< /flowsInto>

<join code>and< /join code>

<split code>and< /split code>

< /task>

<task>

<id>CalcShipCost< /id>

<flowsInto><nextElementRef><id>PrintBill< /id>< /nextElementRef>< /flowsInto>

<join code>and< /join code>

<split code>and< /split code>

< /task>

<task>

<id>CalcTax< /id>

<flowsInto><nextElementRef><id>PrintBill< /id>< /nextElementRef>< /flowsInto>

<join code>and< /join code>

<split code>and< /split code>

< /task>

<task>

<id>printBill< /id>

<flowsInto><nextElementRef><id>CouponCondition< /id>< /nextElementRef>< /flowsInto>

<flowsInto><nextElementRef><id>Done< /id>< /nextElementRef>< /flowsInto>

<join code>and< /join code>

<split code>and< /split code>

< /task>

<condition>

<name>CouponCondition< /name>

<flowsInto><nextElementRef><id>PrintBill< /id>< /nextElementRef>< /flowsInto>

< /condition>

<task>

<id>printBill< /id>

<flowsInto><nextElementRef><id>Done< /id>< /nextElementRef>< /flowsInto>

<join code>and< /join code>

<split code>and< /split code>

< /task>

<task>

<id>Done< /id>

<join code>or< /join code>

<split code>and< /split code>

< /task>

< /processControlElements>
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E.3 Case 3: Soil Sample Analysis

E.3.1 CiAN Code for Case 3

<collaboration>

<task>

<task-name>TakeSoilSample< /task-name>

<earliest-start>1:00PM< /earliest-start>

<deadline>3:00PM< /deadline>

<duration>1:00hr< /duration>

<outputs>

<edge>

<edge-name>SampleToBasicAnalysis< /edge-name>

<var>SampleData< /var>

<partner>DoBasicAnalysis< /partner>

< /edge>

<accept-set>

<set>

<edge-name>SampleToBasicAnalysis< /edge-name>

< /set>

< /accept-set>< /outputs>

< /task>

<task>

<task-name>DoBasicAnalyis< /task-name>

<inputs>

<edge>

<edge-name>SampleToBasicAnalyis< /edge-name>

<var>SampleData< /var>

<partner>TakeSoilSample< /partner>

< /edge>

<accept-set>

<set>

<edge-name>SampleToBasicAnalyis< /edge-name>

< /set>

< /accept-set>< /inputs>

<outputs>

<edge>

<edge-name>BasicAnalysisToSecondAnalysis< /edge-name>

<var>SampleData< /var>

<partner>SecondAnalysis< /partner>

<select-cond>

<cond>

<param>var:SampleData< /param>

<comparator>>< /comparator>

<value>50< /value>

< /cond>

< /select-cond>

< /edge>

<edge>

<edge-name>BasicAnalysisToPrepReport< /edge-name>

<var>SampleData< /var>

<partner>PrepareReport< /partner>

<select-cond>

<cond>

<param>var:SampleData< /param>

<comparator><< /comparator>

<value>50< /value>

< /cond>

< /select-cond>

< /edge>

<accept-set>

<set>

<edge-name>BasicAnalysisToPrepReport< /edge-name>

< /set>

<set>

<edge-name>CouponToDone< /edge-name>
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< /set>

< /accept-set>< /outputs>

< /task>

<task>

<task-name>SecondAnalysis< /task-name>

<inputs>

<edge>

<edge-name>BasicAnalysisToSecondAnalysis< /edge-name>

<var>SampleData< /var>

<partner>DoBasicAnalysis< /partner>

< /edge>

<accept-set>

<set>

<edge-name>BasicAnalysisToSecondAnalysis< /edge-name>

< /set>

< /accept-set>< /inputs>

<outputs>

<edge>

<edge-name>SecondAnalysisToConfirmAnalysis< /edge-name>

<var>SampleData< /var>

<partner>ConfirmAnalysis< /partner>

<select-cond>

<cond>

<param>var:SampleData< /param>

<comparator>>< /comparator>

<value>50< /value>

< /cond>

<cond>

<param>var:SampleData< /param>

<comparator><< /comparator>

<value>100< /value>

< /cond>

< /select-cond>

< /edge>

<edge>

<edge-name>SecondAnalysisToCall911< /edge-name>

<var>SampleData< /var>

<partner>Call911< /partner>

<select-cond>

<cond>

<param>var:SampleData< /param>

<comparator>>< /comparator>

<value>100< /value>

< /cond>

< /select-cond>

< /edge>

<accept-set>

<set>

<edge-name>SecondAnalysisToConfirmAnalysis< /edge-name>

< /set>

<set>

<edge-name>SecondAnalysisToCall911< /edge-name>

< /set>

< /accept-set>< /outputs>

< /task>

<task>

<task-name>ConfirmAnalysis< /task-name>

<inputs>

<edge>

<edge-name>SecondAnalysisToConfirmAnalysis< /edge-name>

<var>SampleData< /var>

<partner>SecondAnalysis< /partner>

< /edge>

<accept-set>

<set>

<edge-name>SecondAnalysisToConfirmAnalysis< /edge-name>

< /set>

< /accept-set>< /inputs>

<outputs>
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<edge>

<edge-name>ConfirmAnalysisToPrepRept< /edge-name>

<var>SampleData< /var>

<partner>PrepareReport< /partner>

<select-cond>

<cond>

<param>var:SampleData< /param>

<comparator><< /comparator>

<value>75< /value>

< /cond>

< /select-cond>

< /edge>

<edge>

<edge-name>ConfirmAnalysisToCall911< /edge-name>

<var>SampleData< /var>

<partner>Call911< /partner>

<select-cond>

<cond>

<param>var:SampleData< /param>

<comparator>>< /comparator>

<value>75< /value>

< /cond>

< /select-cond>

< /edge>

<accept-set>

<set>

<edge-name>ConfirmAnalysisToPrepareReport< /edge-name>

< /set>

<set>

<edge-name>ConfirmAnalysisToCall911< /edge-name>

< /set>

< /accept-set>< /outputs>

< /task>

<task>

<task-name>Call911< /task-name>

<inputs>

<edge>

<edge-name>SecondAnalysisToCall911< /edge-name>

<var>SampleData< /var>

<partner>SecondAnalysis< /partner>

< /edge>

<edge>

<edge-name>ConfirmAnalysisToCall911< /edge-name>

<var>SampleData< /var>

<partner>ConfirmAnalysis< /partner>

< /edge>

<accept-set>

<set>

<edge-name>SecondAnalysisToCall911< /edge-name>

< /set>

<set>

<edge-name>ConfirmAnalysisToCall911< /edge-name>

< /set>

< /accept-set>< /inputs>

<outputs>

<edge>

<edge-name>Call911ToPrepareReport< /edge-name>

<var>911CallID< /var>

<partner>Stop< /partner>

< /edge>

<accept-set>

<set>

<edge-name>Call911ToPrepareReport< /edge-name>

< /set>

< /accept-set>< /outputs>

< /task>

<task>

<task-name>PrepareReport< /task-name>

<inputs>
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<edge>

<edge-name>BasicAnalysisToPrepReport< /edge-name>

<var>SampleData< /var>

<partner>DoBasicAnalysis< /partner>

< /edge>

<edge>

<edge-name>Call911ToPrepReport< /edge-name>

<var>SampleData< /var>

<partner>Call911< /partner>

< /edge>

<edge-name>ConfirmAnalysisToPrepReport< /edge-name>

<var>SampleData< /var>

<partner>ConfirmAnalysis< /partner>

< /edge>

<accept-set>

<set>

<edge-name>BasicAnalysisToPrepReport< /edge-name>

< /set>

<set>

<edge-name>Call911ToPrepReport< /edge-name>

< /set>

<set>

<edge-name>ConfirmAnalysisToPrepReport< /edge-name>

< /set>

< /accept-set>< /inputs>

<outputs>

<edge>

<edge-name>PrepareReportToGetSupervisorSignature< /edge-name>

<var>ToxicityReport< /var>

<partner>GetSupervisorSignature< /partner>

< /edge>

<accept-set>

<set>

<edge-name>PrepareReportToGetSupervisorSignature< /edge-name>

< /set>

< /accept-set>< /outputs>

< /task>

<task>

<task-name>GetSupervisorSignature< /task-name>

<inputs>

<edge>

<edge-name>PrepareReportToGetSupervisorSignature< /edge-name>

<var>ToxicityReport< /var>

<partner>PrepareReport< /partner>

< /edge>

<accept-set>

<set>

<edge-name>PrepareReportToGetSupervisorSignature< /edge-name>

< /set>

< /accept-set>< /inputs>

<outputs>

<edge>

<edge-name>GetSupervisorSignatureToStop< /edge-name>

<var>ToxicityReport< /var>

<partner>Stop< /partner>

< /edge>

<accept-set>

<set>

<edge-name>GetSupervisorSignatureToStop< /edge-name>

< /set>

< /accept-set>< /outputs>

< /task>

<task>

<task-name>Stop< /task-name>

<inputs>

<edge>

<edge-name>ConfirmAnalysisToStop< /edge-name>

<var>SampleData< /var>

<partner>ConfirmAnalysis< /partner>
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< /edge>

<edge>

<edge-name>Call911ToStop< /edge-name>

<var>911CallID< /var>

<partner>Call911< /partner>

< /edge>

<edge>

<edge-name>GetSupervisorSignatureToStop< /edge-name>

<var>ToxicityReport< /var>

<partner>GetSupervisorSignature< /partner>

< /edge>

<accept-set>

<set>

<edge-name>ConfirmAnalysisToStop< /edge-name>

< /set>

<set>

<edge-name>Call911ToStop< /edge-name>

< /set>

<set>

<edge-name>GetSupervisorSignatureToStop< /edge-name>

< /set>

< /accept-set>< /inputs>

< /task>

< /collaboration>

E.3.2 BPEL Code for Case 3

The soil sample analysis case cannot be implemented in BPEL. This is because BPEL

lacks the ability to specify spatiotemporal constraints on tasks as well as factor in

environmental parameters into the decision mechanism of the workflow execution

engine. These parameters could in theory be “faked” as variables in the BPEL ex-

ecution engine. However, these values would need to be gathered by an external

program which would then need to reach into the BPEL engine and modify its state.

According to currently available literature, this is not possible.

E.3.3 YAWL Code for Case 3

The soil sample analysis case cannot be implemented in YAWL for much the same

reasons that it cannot be in BPEL. The lack of the ability to specify spatiotemporal

constraints on tasks as well as there being no means factor in environmental parame-

ters into the decision mechanism of the workflow execution engine prevents this case

from being fully implemented in YAWL.
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