
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2006-8

2006-01-01

Supporting Collaborative Behavior in MANETs using Workflows Supporting Collaborative Behavior in MANETs using Workflows

Rohan Sen, Gregory Hackmann, Mart Haitjema, Gruia-Catalin Roman, and Gill

Groupware activities provide a powerful representation for many collaborative tasks. Today, the

technologies that support typical groupware applications often assume a stable wired network

infrastructure. The potential for collaboration in scenarios that lack this fixed infrastructure

remains largely untapped. Such scenarios include activities on construction sites, wilderness

exploration, disaster recovery, and rapid intervention teams. Communication in these scenarios

can be supported using wireless ad hoc networks, an emerging technology whose full potential

is yet to be understood and realized. In this paper, we consider the fundamental technical issues

that need to be addressed in order to introduce groupware concepts... Read complete abstract Read complete abstract

on page 2. on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Sen, Rohan; Hackmann, Gregory; Haitjema, Mart; Roman, Gruia-Catalin; and Gill, "Supporting Collaborative
Behavior in MANETs using Workflows" Report Number: WUCSE-2006-8 (2006). All Computer Science and
Engineering Research.
https://openscholarship.wustl.edu/cse_research/218

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233235044?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F218&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F218&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F218&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F218&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F218&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F218&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F218&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/218?utm_source=openscholarship.wustl.edu%2Fcse_research%2F218&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/218

Supporting Collaborative Behavior in MANETs using Workflows Supporting Collaborative Behavior in MANETs using Workflows

Rohan Sen, Gregory Hackmann, Mart Haitjema, Gruia-Catalin Roman, and Gill

Complete Abstract: Complete Abstract:

Groupware activities provide a powerful representation for many collaborative tasks. Today, the
technologies that support typical groupware applications often assume a stable wired network
infrastructure. The potential for collaboration in scenarios that lack this fixed infrastructure remains
largely untapped. Such scenarios include activities on construction sites, wilderness exploration, disaster
recovery, and rapid intervention teams. Communication in these scenarios can be supported using
wireless ad hoc networks, an emerging technology whose full potential is yet to be understood and
realized. In this paper, we consider the fundamental technical issues that need to be addressed in order to
introduce groupware concepts into mobile ad hoc networks. Starting with a simple workflow model, we
examine the process of allocating its actions to physically-mobile agents in a manner that
accommodates transient communication and runtime errors.

https://openscholarship.wustl.edu/cse_research/218?utm_source=openscholarship.wustl.edu%2Fcse_research%2F218&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/218?utm_source=openscholarship.wustl.edu%2Fcse_research%2F218&utm_medium=PDF&utm_campaign=PDFCoverPages

Department of Computer Science & Engineering

2006-8

Supporting Collaborative Behavior in MANETs using Workflows

Authors: Rohan Sen, Gregory Hackmann, Mart Haitjema, Gruia-Catalin Roman, Christopher Gill

Corresponding Author: rohan.sen@wustl.edu

Abstract: Groupware activities provide a powerful representation for many collaborative tasks. Today, the
technologies that support typical groupware applications often assume a stable wired network infrastructure.
The potential for collaboration in scenarios that lack this fixed infrastructure remains largely untapped. Such
scenarios include activities on construction sites, wilderness exploration, disaster recovery, and rapid
intervention teams. Communication in these scenarios can be supported using wireless ad hoc networks, an
emerging technology whose full potential is yet to be understood and realized. In this paper, we consider the
fundamental technical issues that need to be addressed in order to introduce groupware concepts into mobile ad
hoc networks. Starting with a simple workflow model, we examine the process of allocating its actions to
physically-mobile agents in a manner that accommodates transient communication and runtime errors.

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

Supporting Collaborative Behavior in MANETs using Workflows

Rohan Sen, Gregory Hackmann, Mart Haitjema, Gruia-Catalin Roman, and Christopher Gill
Department of Computer Science and Engineering

Washington University in St. Louis
Campus Box 1045, One Brookings Drive, St. Louis, MO 63130, U.S.A.

{rohan.sen, ghackmann, mart.haitjema, roman, cdgill}@wustl.edu

Abstract

Groupware activities provide a powerful representation
for many collaborative tasks. Today, the technologies that
support typical groupware applications often assume a sta-
ble wired network infrastructure. The potential for collab-
oration in scenarios that lack this fixed infrastructure re-
mains largely untapped. Such scenarios include activities
on construction sites, wilderness exploration, disaster re-
covery, and rapid intervention teams. Communication in
these scenarios can be supported using wireless ad hoc net-
works, an emerging technology whose full potential is yet to
be understood and realized. In this paper, we consider the
fundamental technical issues that need to be addressed in
order to introduce groupware concepts into mobile ad hoc
networks. Starting with a simple workflow model, we exam-
ine the process of allocating its actions to physically-mobile
agents in a manner that accommodates transient communi-
cation and runtime errors.

1 Introduction

Workflow Management Systems (WfMS)s constitute a
class of groupware that has been shown to be effective for
coordinating the activities of groups of individuals that are
working toward common goals. This effectiveness is evi-
denced by the formulation of standard workflow languages,
e.g., WS-BPEL [4] and Wf-XML [8], and commercial sup-
port for these standards from vendors like IBM [7] and
Oracle [5]. The academic community has also developed
numerous workflow systems and models, e.g., YAWL [9],
ADAPTflex [19], and OPENflow [13].

Most WfMSs today are targeted either for stable wired
networks, or for nomadic wireless networks where interrup-
tions are rare and the network topology remains stable for
extended periods of time. However, there are many dynamic
scenarios where such network models are either inappropri-
ate or too restrictive. Consider for example a large scale

disaster area where several agencies such as the police, fire
department, paramedics, etc. must coordinate their activi-
ties to gain control of the situation and save as many people
as possible. In such situations, a response plan encoded as a
dynamic workflow can help coordinate the activities of po-
tentially hundreds of first responders equipped with mobile
devices. In such situations, cellular networks may be un-
available due to destruction of transmitters or overloading
of the network capacity and there is no place where a cen-
tralized server can be placed. Hence, we must assume that
any network that is available to the responders is a mobile
ad hoc network (MANET) that is formed directly by the de-
vices of personnel in the area.

A MANET is a dynamic network that is formed on-
demand and relies on no external infrastructure. Since most
devices making up a MANET are physically mobile, the
network topology is very volatile and disconnections be-
tween hosts are commonplace. This introduces fresh chal-
lenges for the development of WfMSs that can survive and
execute in such dynamic environments. The lack of a cen-
tral server means that planning, allocation, and execution of
workflow tasks must occur in a completely distributed fash-
ion. Frequent disconnections may result in half-completed
tasks or in completed results not being passed on. Error han-
dling also becomes more complex, as nodes may not be able
to communicate failure information to others in the group.

This paper is an initial investigation into the implications
of ad hoc mobility for WfMSs. We have taken the essen-
tial features of the workflow model and have used them as
the basis for our study. The contributions of this paper are:
(1) an algorithm that allocates workflow tasks to individu-
als while taking into account their mobility as well as their
individual capabilities and (2) an error handling model that
uses a local re-planning strategy to recover from failures in
workflow execution in a distributed manner. We have kept
our presentation in this paper intentionally abstract rather
than committing to a specific workflow language, so that
the concepts and techniques presented in this paper are ap-
plicable to a broader set of WfMSs and are unaffected by

idiosyncrasies of particular workflow languages and system
implementations.

In Section 2 we describe other groupware approaches
that have been realized in wired and nomadic networks,
and identify limitations of these approaches in MANETS.
In Section 3 we discuss fundamental concepts of mobile
collaboration and identify plans as a suitable representation
of workflows. Section 4 describes a graph model for plans
and introduces the important concept of allocation. Section
5 presents our algorithm for allocating plans, and Section 6
describes how run-time errors can be handled. Finally, Sec-
tion 7 summarizes the approach presented in this paper and
describes additional areas of investigation that are needed
to extend the results of this study.

2 Related Work

Previous work in groupware systems has focused on spe-
cific application domains. This is especially true of the
systems historically used in enterprise settings. Traditional
groupware systems like Lotus Notes [3] and Groove [2] are
often deployed to support specific interactions, e.g., through
shared whiteboards and file sharing, and are rarely flexible
enough to accommodate entirely new kinds of applications.
For example, though construction workers could use Lotus
Notes to share a list of tasks that need to be completed on
a job site, absent additional programming, they cannot use
it to assign these tasks to qualified workers automatically or
to enforce the order in which jobs are performed.

More recently, there has been a push towards general-
purpose workflow systems, especially within the Web ser-
vices community. WS-BPEL [4], Wf-XML [8], and WS-
CDL [14] extend workflow execution to the Web services
domain. These languages define industry-standard XML
schemas that model business processes as workflows. WS-
BPEL in particular has been widely adopted by commer-
cial vendors such as IBM [7] and Oracle [5], as well as
by open-source workflow engines such as Twister [6] and
ActiveBPEL [1]. These efforts build on existing Web ser-
vice technologies like WSDL which are designed for stable
networks where temporal disconnections are not a concern.
Hence, they are best-suited for the coordination of legacy
Web services in wired networks.

Other workflow systems, such as Exotica/FMDC [10],
DOORS [18], and ToxicFarm [12], focus on supporting
workflow execution in the face of network disconnections.
Clients automatically hoard copies of needed data from
a centralized server before they disconnect from the net-
work. When the clients reconnect to the network, the server
merges any changes to this data. These systems often as-
sume that any disconnections from the network are tempo-
rary: clients must eventually reconnect to the server with the
results of their computations. Moreover, they do not lever-

age the potential for collaboration among clients which are
disconnected from the central server but which are in com-
munication with each other.

3 Fundamentals of Mobile Collaboration

A MANET, which is the target environment for our
work, consists of physically mobile devices (hosts) that sup-
port one or more agents, the basic units of modularity and
execution. The key challenges in developing software for
MANETs stems from the fact that motions of hosts results
in frequent disconnections, which can occur at inopportune
moments. In addition, one cannot rely on any fixed, cen-
tralized resources and the decentralization of the resources
makes resource allocation more complex. These challenges
are especially relevant to any WfMS targeted to MANETs.
Even a simple application such as a shared whiteboard must
be re-engineered because there is no central server that can
host the whiteboard. Similarly, mobility can result in a dis-
connection between collaborators or cause resources to be-
come unavailable.

One option for overcoming these challenges involves the
exploitation of knowledge of the mobility patterns of hosts.
Under this scheme, hosts report their motion profiles, which
give each host’s location as a function of time. These pro-
files can be used to deduce intervals of time when commu-
nication is guaranteed between a particular pair of hosts (by
virtue of them being in communication range of each other).
Although this approach would not be suitable if hosts pri-
marily moved in a random pattern, given that our work is
targeted to scenarios where groups of hosts collaborate to
achieve a single goal, it is plausible that in such situations,
mobility of the hosts follow well-defined patterns, which
can be captured, e.g., by examining information in personal
schedules, popular routes of travel, etc.

We assume a setting where a team of individuals meets
at the start of the day to work collaboratively on a complex
task. The individual activities associated with the task, as
well as the order in which they must be completed, is de-
fined in a plan. In simplest terms, a plan is a workflow
consisting of set of actions and edges that connect the ac-
tions, thereby imposing an ordering among the actions (a
more precise description appears in Section 4).

Each individual on the team carries a mobile device upon
which execute one or more agents. Each agent provides
some functionality which it advertises in terms of capa-
bilities and performance attributes. To use the terms of
the service-oriented computing paradigm, an agent can be
thought of as providing a service that could be used to ful-
fill the requirements of some activity within the plan. We
assume that each agent has the motion profile of the host on
which it is executing, which it exchanges freely with other
agents using a gossiping protocol. The motion profiles col-

2

lected by an agent are stored in a local knowledge base. A
closed collection of agents is called a group. Once a group
is defined, additional agents are not allowed to join, though
agents in the group may leave (of their own volition or due
to failure).

The remaining issue is that of allocating the actions in
the workflow to suitable agents in the group. A pre-selected
group leader runs a special agent that performs this alloca-
tion. Recall that all members of the group are initially co-
located. Thus, the group leader has access to the capability
and motion information of all agents in its group. The group
leader runs an allocation algorithm which allocates each ac-
tion in the plan to a particular agent keeping in mind not
only the agents capabilities but also its motion pattern. The
agents then disperse and begin execution. The next section
describes the structure of the plan in more detail and subse-
quent sections describe details of the allocation process.

4 Plan Structure

The plan is collectively the set of actions and an ordering
structure which dictates the sequence in which the actions
must be carried out in order to achieve the objectives of the
group. As was stated in the introduction, we intentionally
use a simple and abstract notation which captures only the
essential features of a workflow model so that we may ini-
tially explore the implications of mobility on this model,
without reference to more complex features.

The basic component of a plan is an action. Every action
has an identifier that is unique within any given plan. In
addition to the unique identifier, each action has a name,
which is a short English phrase used to describe the ac-
tion, and is mainly used to enhance human readability of
the plan. For example, a name for an action could be “Print
Paper”. The action specifies an input vector consisting of
input ports. Each input port corresponds to a single incom-
ing edge to the action and specifies the type of data that is
transmitted over that edge. Similarly, an output vector con-
sists of multiple output ports that specify the type of data
for each outgoing edge from an action. The action descrip-
tion specifies the characteristics of an agent that can perform
the action. In our model, this description is split into two
parts (1) capability requirements which describe what capa-
bilities an agent must have and (2) performance attributes
which specify how well an agent is able to deliver its capa-
bilities. The capabilities and attributes are specified as ele-
ments that obey an ontology, e.g., OWL-S [17]. It should
be observed that in addition to the explicitly specified re-
strictions, there is an implicit one which requires that the
agent chosen to perform the action must be able to take in
the inputs to the action as its own input and produce outputs
corresponding to the action’s outgoing edges.

The ordering structure is responsible for specifying the

order in which actions must be completed and the flow of
data and notifications between them. The ordering struc-
ture is specified in the form of a directed graph, with each
node in the graph corresponding to an action. In keeping
with the current state of the art in workflow systems, the
ordering structure is required to be a sequence or a lattice.
Multiple possible final outcomes of the workflow lead to a
tree structure (e.g., an injured person can be taken to one of
many hospitals), but this can be transformed into a lattice
by adding a dummy end node and adding edges from the
original end nodes to the dummy end node.

The ordering structure supports multiple edges to and
from a single action. Any action in the graph that has mul-
tiple edges emerging from it must specify the semantics of
traversing those edges. AND semantics requires that the
action must place data or notifications along all the edges
emerging from it. OR semantics requires that data or noti-
fications be placed on only one of the edges emerging from
the action. Correspondingly, any action that has multiple
incoming edges must also specify AND or OR semantics.
AND semantics in this context means that the action must
wait for all its inputs before proceeding with execution. OR
semantics means that only one of the inputs is required for
the action to proceed, though more than one available input
is also acceptable. Multiple edges are not allowed between
adjacent actions. The edges in the ordering structure must
mirror the inputs and outputs of the actions they connect,
i.e., there should be at least the same number of incoming
and outgoing edges to an action as there are inputs and out-
puts for that action.

In addition to actions and the ordering structure, we in-
troduce the notion of allocation constraints. These con-
straints must be obeyed by the allocation algorithm when
assigning actions to specific agents. An example of an al-
location constraints is that a group of actions must be al-
located to the same agent, such as in the case of electing
a supervisor from a group of workers, who must then pro-
vide periodic progress reports. The agent that performs the
supervisor action must be the one that performs the report
writing action. Another example of a constraint is when ac-
tions should not be allocated to the same agent such as in
the case where three reviewers are needed for reviewing a
paper. In this case, the same agent should not be allocated
to do more than one review.

5 Workflow Allocation & Execution

The allocation process maps each action in the plan to an
agent that is well-suited to carrying it out. There are several
important properties that must be satisfied while making
these allocations. First, actions must be allocated to agents
that are capable of carrying them out. Second, agents cannot
be allocated to carry out two actions simultaneously. Third,

3

Connection Profile
a – b 1 . . . 10
a – c 0 . . . 5
a – d 0 . . . 10
a – g 5 . . . 10
b – e 0 . . . 5
b – f 0 . . . 5
e – g 3 . . . 10
f – g 4 . . . 5

1
a1

2
b1, c1

6
d3

3
e2

4
f3 7

a1

5
g1

a1

a1b3
a1c2

a1b3e5
a1c2e4

a1b3f6
a1c2f5

a1b3e5g6
a1c2e4g5
a1c2f5g6

a1d4

a1{b3e5g6 || d4}6a7
a1{c2e4g5 || d4}5a6
a1{c2f5g6 || d4}6a7

AND

OR

Figure 1. Sample Connection Profile and Annotated Plan Graph

the allocations must preserve the agent constraints specified
within the workflow. Finally, agents must be connected to
their predecessors and successors at the appropriate times,
so that data may flow from one agent to another as needed.

The first issue is unaffected by mobility, so it can be
solved using existing agent matchmaking schemes. For
example, if agents advertise their capabilities and actions
express their requirements using a uniform ontology, such
as OWL-S [17], then matching actions to capable agents
is straightforward [16]. Likewise, the second and third is-
sues are fairly straightforward resource allocation problems
which are unaffected by mobility.

However, the issue of agent connectivity is critical in ad-
hoc environments, since it is greatly affected by agent mo-
bility. We must not assign two sequential actions to agents
which will never come into contact after the first action
completes. Otherwise, the first agent will be unable to pass
the result of its computation to the second agent, and hence
the second agent will never be able to begin its own com-
putation. If this scenario occurs at the wrong place in the
execution (i.e., in a path that is not part of an OR lattice),
then the entire workflow may fail.

We address this issue by leveraging the motion profiles
described in Section 4, in order to derive the physical dis-
tance between any two agents at a given point in time,
and hence determine when any two agents will be in com-
munication range. We call this derivation the “connection
profile”. For example, according to the connection profile
shown in Figure 1, agents a and b will be connected from
times 1 to 10. For the purposes of this paper, we assume
that each agent’s motion profile is accurate, and that they
are defined at least until the end of the plan’s execution. In
future work, we will accommodate inaccuracies in motion
profiles, as well as situations where the motion profile may
not be known far enough into the future.

Once the connection profile has been established, we can
begin the allocation process. This process will annotate the
workflow graph with all potential executions and their lat-
est possible ending times. We begin the annotation process

by marking the set of capable agents for each action, along
with the time each agent will need to complete it. These an-
notations are shown in the center of each action in Figure 1.

We can now determine which paths may traverse each
node in the graph. We represent these paths as ordered se-
quences that list the participating agents and their comple-
tion times. For example, the sequence “a1b3” defines a path
containing two actions, where the first action is performed
by agent a from times 0 to 1 and the second is performed by
agent b from times 1 to 3. We can compute these sequences
recursively as follows. If the node is not joining multiple
branches of an AND lattice (e.g., any node in Figure 1 be-
sides Node 7), then:

1. Collect the paths from all the predecessor actions. Select
one agent (B) that can perform the current action.

2. For each path, compute its new ending time as follows:

(a) Extract the last agent (A) from the sequence, along
with the corresponding ending time (t).

(b) Consult the connection profile to find the earliest time
after t that A and B will be connected. If they will
never be connected after time t, then discard this path.

(c) Take the time of connection and add the time that B
will need to perform the current action; call this time
t′. Concatenate Bt′ to the end of the sequence.

3. Repeat this process for all collected paths and all agents.

For example, consider Node 5 in Figure 1. One of its pre-
decessor’s sequences is “a1c2f5”. Agents f and g will be
connected immediately after f completes its computations
at time 5. Since it will take 1 unit of time for agent g to per-
form the action, we end up with the sequence “a1c2f5g6”.
However, we discard the path “a1b3f6”, since f and g will
never connect after time 6.

For nodes that join multiple branches on an AND lattice,
we follow the same procedure with a few modifications.
Instead of collecting each incoming sequence, we collect

4

combinations of incoming sequences, using one sequence
from each incoming edge on the graph. For each combina-
tion, we first extract the common prefix, i.e., the part corre-
sponding to all the actions before the lattice split. We then
collect the remaining portions of the sequences inside a pair
of brackets, with parallel bars separating each parallel path
through the lattice. We verify that B will connect to all of
its predecessors after they complete, and let t be the latest
time that any one input will arrive at B. Finally, we append
this bracketed expression and t to the prefix, and treat the
bracketed expression as a single path ending at t.

For example, at Node 7 in Figure 1, we collect the se-
quence a1b3e5g6 from Node 5 and a1d4 from Node 6.
We extract the prefix a1 and express the parallel paths as
{b3e5g6 || d4}. a will be connected to d and g when
they finish their computations, at times 4 and 6 respec-
tively. Execution will begin after g’s input arrives at time
6, and therefore end at time 7. So, we express the path as
a1{b3e5g6 || d4}6a7.

When this procedure has completed, we will have gath-
ered at the last node a list of all feasible allocations and
end times for the workflow’s actions; we can also trivially
compute their start times. Using this information, we can
discard paths which allocate two actions to the same agent
simultaneously, as well as paths which violate any agent
constraints. Since this procedure is not affected by mobil-
ity, we can adopt existing mechanisms for this, such as those
described in [11] and [15]. Any paths that are not discarded
represent acceptable allocations; we can select one to exe-
cute non-deterministically, or using some prescribed policy.

Once the allocation algorithm has run to completion, the
hosts that form the group are free to disband. The agent that
is assigned to the first action in the plan begins executing
while the agents assigned other actions do their own work
while waiting for inputs from their predecessors. When
an action is completed, the agent executing it notifies the
agents performing the subsequent actions, passing along
any necessary data. In the absence of errors, execution con-
tinues in this manner until the end of the plan is reached.
Recall that since the plan is required to be a lattice, there
is only one end state. The agent assigned to that end state
is responsible for collecting the results and notifying other
appropriate agents accordingly. In the next section, we dis-
cuss how we handle situations in which the execution does
not proceed as planned.

6 Error Handling

Error handing is an integral part of most workflow lan-
guages. In mobile settings, error handling assumes added
significance since the likelihood of errors in a MANET is
much higher than in more stable wired or nomadic settings.
The use of motion profiles helps to remove errors due to

hosts moving out of communication range. However, other
sources for errors still exist. For example, an agent may
crash unexpectedly or resources may become permanently
unavailable. In this section, we define the two types of er-
rors we handle and discuss their impact on the plan defini-
tion and allocation strategy.

We divide errors into two broad categories: (1) aborts -
errors from which it is possible to recover by re-allocating
agents and (2) failures - errors which require a change in
the plan structure. In the case of an abort, we simply back-
track to an appropriate point, re-allocate actions to alter-
nate agents, and continue execution. In the case of fail-
ure, we backtrack to an appropriate point, and choose an-
other branch in the plan, pruning the branch of the plan that
caused the failure. In both cases, it is crucial to establish the
point in the plan to which we must backtrack. To support
this, we introduce the concept of a failure zone.

A failure zone is the set of actions within the plan that
are affected by a particular error. Thus, if there is an error in
one of the actions in the zone, the entire zone is affected and
must be re-executed. Formally, a failure zone is defined as
the smallest lattice structure in the graph that includes (re-
cursively) the dependencies of the node that failed. Failure
zones are parameterized by a label that is associated with a
source of failure. When an error occurs, the affected area
of the graph is determined by the failure zone parameter-
ized with the same label as the factor that caused the error.
For example, consider a scenario where two actions must be
executed by the same agent. While executing one of those
actions, the agent unexpectedly crashed. Now, both actions
must be reassigned to another single agent. The bounds of
the failure zone can be calculated using simple rules. If
the dependencies are part of a lattice substructure within
the graph, the delimiters are placed at the greatest lower
bound and the least upper bound of the lattice substructure.
If the dependencies are within a sequential structure, then
the delimiters are placed at the first and last occurrence of a
dependent node, respectively. Graphs which are a combina-
tion of these two basic structures, must first apply the rule
for the lattice, and then the rule for sequential structure.

When an error occurs, the error type (abort or failure)
and the cause of the error are propagated in both directions
along the plan. Intermediate nodes forward the error if any
child or parent of the node is within the failure zone and
has not yet received the error notification. We designate the
greatest lower bound preceding the relevant failure zone as
the re-planning node. We cannot assign the lower bound
of the failure zone as the re-planning node because it might
itself be the node that caused the failure within the zone.
The agent assigned to the re-planning node must perform a
local re-allocation depending on the type of the error.

In the case of an abort, the agent at the re-planning node
runs the same allocation algorithm that was run by the group

5

leader in the beginning. However, since all agents are not
likely to be in range during this re-allocation process, the re-
planning agent uses the knowledge in its local knowledge
base, which is typically a subset of the global knowledge.
Thus, re-planning is likely to produce a sub-optimal allo-
cation, but does not result in a complete failure if alternate
suitable resources are available. In the case of failure, no
re-planning is required. This is because a failure indicates
that a particular path of workflow execution is infeasible.
Delimiters for failures must be placed at branches with OR
semantics so that alternate valid path for execution is avail-
able. The re-planning node simply resumes execution, ex-
cept that this time it takes a different branch. The original
branch is removed from the plan.

Any agents that are drafted to replace failed agents or
that are part of the alternate path are notified of their new
role just-in-time using the same notification system that is
used to inform agents responsible for subsequent actions to
begin execution or to pass data along, (i.e., just before an
agent receives the inputs for its action, it receives a notice
informing it of its new role within the overall plan execu-
tion.) This local re-planning can create a resource alloca-
tion problem if multiple errors exist simultaneously in the
plan since two re-planners not in communication range can
independently exploit an agent without knowledge of each
others’ actions. Due to constraints of space, we defer dis-
cussion of this problem to future work.

7 Conclusion

Collaboration frameworks for ad hoc mobile environ-
ments represent an exciting and relevant area of study, as
evidenced by the many possible applications of such tech-
nology, e.g., disaster response, wilderness exploration, and
construction management. In this paper, we adopted a sim-
plified workflow model which has been very successful
in stable wired networks and tried to understand how the
model would need to evolve if ad hoc mobility were intro-
duced. As a result of our study, we present an new alloca-
tion algorithm, that takes into account the motion pattern of
agents as well as their capabilities when allocating actions
to be executed by them. We also present an error handling
model which uses a de-centralized local re-planning strat-
egy to recover from errors during execution. The work pre-
sented here is a preliminary investigation in this area. Much
work needs to be done to develop more optimized execu-
tion engines, error handling mechanisms, and potentially
completely new collaboration models that are specifically
geared towards mobile environments.

References

[1] ActiveBPEL engine. http://www.activebpel.org/.

[2] Groove virtual office. http://www.groove.net/.
[3] IBM Lotus Notes. http://www.lotus.com/products/

product4.nsf/wdocs/noteshomepage.
[4] OASIS web services business process execution lan-

guage (WSBPEL) TC. http://www.oasis-open.org/

committees/tc home.php?wg abbrev=wsbpel.
[5] Oracle BPEL process manager. http://www.oracle.

com/technology/products/ias/bpel/index.html.
[6] Twister. http://www.smartcomps.org/twister/.
[7] WebSphere process server. http://www-306.ibm.com/

software/integration/wps/.
[8] Wf-XML 2.0. http://www.wfmc.org/standards/

wfxml demo.htm.
[9] W. M. P. v. d. Aalst and A. H. M. t. Hofstede. YAWL: Yet an-

other workflow language. Information Systems, 30(4):245–
275, 2005.

[10] G. Alonso, R. Gunthor, M. Kamath, D. Agrawal, A. E.
Abbadi, and C. Mohan. Exotica/FMDC: Handling discon-
nected clients in a workflow management system. In Proc.
3rd International Conference on Cooperative Information
Systems (CoopIS), pages 99–110, Vienna, May 1995.

[11] J. Eder, E. Panagos, H. Pozewaunig, and M. Rabinovich.
Time management in workflow systems. In 3rd Interna-
tional Conference on Business Information Systems, pages
265–280. Springer Verlag, 1999.

[12] C. Godart, P. Molli, G. Oster, O. Perrin, H. Skaf-Molli,
P. Ray, and F. Rabhi. The toxicfarm integrated coopera-
tion framework for virtual teams. Distributed and Parallel
Databases, 15(1):67–88, 2004.

[13] J. J. Halliday, S. K. Shrivastava, and S. M. Wheater. Flexible
workflow management in the openflow system. In EDOC
’01: Proceedings of the 5th IEEE International Confer-
ence on Enterprise Distributed Object Computing, page 82,
Washington, DC, USA, 2001. IEEE Computer Society.

[14] N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, Y. La-
fon, and C. Barreto. Web services choreography de-
scription language version 1.0. http://www.w3.org/TR/
ws-cdl-10/, November 2005.

[15] H. Li, Y. Yang, and T. Y. Chen. Resource constraints anal-
ysis of workflow specifications. J. Syst. Softw., 73(2):271–
285, 2004.

[16] L. Li and I. Horrocks. A software framework for match-
making based on semantic web technology. In WWW ’03:
Proceedings of the 12th international conference on World
Wide Web, pages 331–339. ACM Press, 2003.

[17] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDer-
mott, S. McIlraith, S. Narayanan, M. Paolucci, B. Parsia,
T. Payne, E. Sirin, N. Srinivasan, and K. Sycara. OWL-S:
Semantic markup for web services. http://www.w3.org/
Submission/OWL-S/, November 2004.

[18] N. Preguiça, J. L. Martins, H. Domingos, and S. Duarte.
Integrating synchronous and asynchronous interactions in
groupware applications. Lecture Notes in Computer Science,
3706:89–104, 2005.

[19] M. Reichert and P. Dadam. A framework for dynamic
changes in workflow management systems. In Proc. of the
8th International Workshop on Database and Expert Sys-
tems Applications, page 42. IEEE Computer Society, 1997.

6

	Supporting Collaborative Behavior in MANETs using Workflows
	Recommended Citation
	Supporting Collaborative Behavior in MANETs using Workflows

	tmp.1418149444.pdf.PAY_7

