
Georgia State University
ScholarWorks @ Georgia State University

Computer Science Dissertations Department of Computer Science

12-5-2007

Distributed Web Service Coordination for
Collaboration Applications and Biological
Workflows
Janaka Lalith Balasooriya

Follow this and additional works at: https://scholarworks.gsu.edu/cs_diss

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Department of Computer Science at ScholarWorks @ Georgia State University. It
has been accepted for inclusion in Computer Science Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For
more information, please contact scholarworks@gsu.edu.

Recommended Citation
Balasooriya, Janaka Lalith, "Distributed Web Service Coordination for Collaboration Applications and Biological Workflows."
Dissertation, Georgia State University, 2007.
https://scholarworks.gsu.edu/cs_diss/30

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks @ Georgia State University

https://core.ac.uk/display/71421698?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/computer_science?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

DISTRIBUTED WEB SERVICE COORDINATION FOR COLLABORATIVE
APPLICATIONS AND BIOLOGICAL WORKFLOWS

by

JANAKA BALASOORIYA

Under the Direction of Sushil K. Prasad

ABSTRACT

In this dissertation work, we have investigated the main research thrust of decentralized

coordination of workflows over web services. To address distributed workflow

coordination, first we have developed “Web Coordination Bonds” as a capable set of

dependency modeling primitives that enable each web service to manage its own

dependencies. Web bond primitives are as powerful as extended Petri nets and have

sufficient modeling and expressive capabilities to model workflow dependencies. We

have designed and prototyped our “Web Service Coordination Management Middleware”

(WSCMM) system that enhances current web services infrastructure to accommodate

web bond enabled web services. Finally, based on core concepts of web coordination

bonds and WSCMM, we have developed the “BondFlow” system that allows easy

configuration distributed coordination of workflows. The footprint of the BonFlow

runtime is 24KB and the additional third party software packages, SOAP client and XML

parser, account for 115KB.

INDEX WORDS: Web Services, Biological Workflows, Expressiveness, Formal
Workflow Models, Distributed Coordination, Collaborative
Applications

DISTRIBUTED WEB SERVICE COORDINATION FOR COLLABORATIVE

APPLICATIONS AND BIOLOGICAL WORKFLOWS

By

JANAKA BALASOORIYA

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree

Of

Doctor of Philosophy

in the College of Arts and Sciences

Georgia State University

2006

Copyright By
Balasooriya Mudiyanselage Janaka Lalith Balasooriya

2006

Distributed Web Service Coordination for Collaborative Applications and
Biological Workflows

by

Janaka Balasooriya

Major Professor: Sushil K. Prasad
Committee: Shamkant Navathe
 Rajashekar Sunderraman

 Yi Pan

Electronic Version Approved:

Office of Graduate Studies
College of Arts and Sciences
Georgia State University
December 2006

iv

To my parents and family, for their guidance, support, love, and enthusiasm

v

Acknowledgements

A journey is easier when you travel together. Interdependence is certainly more valuable than

independence. This thesis is the result of five years of work whereby I have been accompanied

and supported by many people. It is a pleasant aspect that I have now the opportunity to express

my gratitude for all of them. The first person I would like to thank is my supervisor Prof. Sushil

K Prasad. I have been in his project since 2001 when I started my graduate studies at GSU. His

overly enthusiasm and integral view on research and his mission for providing 'only high-quality

work and not less', has made a deep impression on me. I owe him lots of gratitude for having me

shown this way of research. Besides of being an excellent supervisor, he was as close as a relative

and a good friend to me. I am really glad that I have come to get know him in my life. I would

like express my sincere gratitude to Prof. Sham Navathe who kept an eye on the progress of my

work, shared his wealth of knowledge and experience, and always was available when I needed

his advise. I would also like to thank the other members of my PhD committee who monitored

my work and took effort in reading and providing me with valuable comments on earlier versions

of this thesis: Raj Sundarraman, Yi Pan, I thank you all. I had the pleasure to work with several

two Master students, Mohini Pandhye and Jaimini Joshi who did their graduation work in our

project and have been beneficial for the presented work in this thesis. I feel a deep sense of

gratitude for my late father and mother who formed part of my vision and taught me the good

things that really matter in life. The happy memory of my father still provides a persistent

inspiration for my journey in this life. I am grateful for my sisters. I am glad to be one of them. I

am very grateful for my wife, for her encouragement, love, and patience during the PhD period.

One of the best experiences that we lived through in this period was the birth of our son Thilina,

who provided an additional and joyful dimension to our life mission. The chain of my gratitude

would be definitely incomplete if I would forget to thank the first cause of this chain, K.N.King

and Unil Perera. Using Aristotle's words, The Prime Movers, my deepest and sincere gratitude for

recommending me to the graduate program.

vi

 Table of Content
List of Figures.. x

List of Tables .. xiii

ABBREVIATIONS.. xiv

CHAPTER 1 INTRODUCTION.. 1

1. 1 Motivation.. 3

1.2 Current State of the Art... 5

1.3 Limitations of Current Technology .. 7

1.4 Problem Statement and Research Goals ... 12

1.5 Contributions and Significance... 13

1.6 Organization of the Thesis .. 15

CHAPTER 2 BACKGROUND.. 18

2.1 Workflow Management Systems.. 18

2.2 Information Systems ... 27

2.3 Web Services .. 31

2.4 Merging Web Service and Workflows ... 35

CHAPTER 3 WEB COORDINATION BONDS ... 37

3.1 Introduction... 37

3.2 Web Coordination Bond Concepts ... 39

3.2.1 Notations for Web Bonds.. 42

3.3 Evaluating Capabilities of Web Coordination Bonds... 43

3.4 Modeling Power of Web Bonds.. 44

3. 5 Modeling Various Dependency Scenarios Using Web Coordination Bonds 50

3.5.1 Producer-Consumer Dependencies... 50

3.5.2 Shared Resource Dependencies .. 52

3.5.3 An Application Scenario: Shared Calendars of Meeting Example....................... 53

3.6 Related Work and Discussion... 55

3.7 Summary ... 60

CHAPTER 4 EXPRESSIVNESS OF WEB COORDINATION BONDS 61

4.1 Modeling Workflow Control Flow Pattern: Background 62

vii

4.1.1 Business Process Execution Language for Web Service (WS-BPEL) 65

5.1.2 Petri-net... 66

4.2 Modeling Workflow Control Flow Patterns Using Web Coordination Bonds....... 67

4.2.1 Basic Control Flow Patterns ... 69

4.2.2 Advanced Synchronization Patterns ... 71

4.2.3 Patterns Involving Multiple Instances (MI).. 77

4.2.4 State Based Patterns.. 82

4.2.5 Structural Patterns... 86

4.2.6 Cancellation Patterns .. 88

4.3 Modeling Communication Patterns .. 90

4.3.1 Synchronous Communication... 91

4.3.2 Asynchronous Communication... 92

4.4 Related Work and Discussion... 94

4.5 Summary ... 98

CHAPTER 5 WEB COORDINATION MANAGEMENT MIDDLEWARE

SYSTEM .. 100

5.1 Limitations of Current Centralized Coordination ... 101

5.2 Evolution of Database Application Development .. 103

5.3 Functionalities Encapsulated by the Centralized Workflow........................... 105

5.4 Web Service Coordination Management Middleware Architecture: An

Overview... 109

5.5 Web Service Coordination Management System ... 111

5.6 Web Service Management System ... 116

5.7 Summary ... 120

CHAPTER 6 SIMULATION AND VERIFICATION OF WEB SERVICE

COORDINATION MANAGEMENT MIDDLEWARE... 121

6.1 Realization of WSCMM Using Web Coordination Bonds................................... 122

6.2 Background: Discrete Event System Specification (DEVS) 124

6.3 Simulating WSCMM Architecture ... 126

6.3.1 Message Handler... 126

6.3.2 The Web Service Management System .. 129

viii

6.3.3 The Web Service Coordination Management System (WSCMS)...................... 131

6.3.4 Web Service .. 132

6.4 Simulation Scenarios .. 134

6.4.1 Simulating Pre-Execution Dependencies.. 137

6.5 WSCMM: Compatibility with other Standards .. 141

6.6 Discussion and Related Work... 144

CHAPTER 7 THE BONDFLOW SYSTEM .. 149

7.1 Limitations of Current Technology .. 152

7.2 The BondFlow Solution.. 152

7.3 Developer’s View of BondFlow System .. 154

7.4 Two-Layered Workflow Software Architecture... 156

7.4.1 Web Bond layer and the Bond Repository ... 160

7.4.2 Web Bond Layer ... 161

7.4.3 High-level Programmability ... 162

7.5 The BondFlow System Architecture: Design and Implementation 163

7.6 Handheld-Based Execution... 167

7.7 System Evaluation .. 170

7.8 Related Work and Discussion... 176

 7.9 Summary ……………………………………………………………………… 178

CHAPTER 8 BIOLOGICAL WORKFLOWS .. 179

8.1 Challenges in Biological and Data and Tool Integration...................................... 179

 8.1.1 Web service Enabled Biological Tools……………………………………..181

 8.2 Motivating Example... 185

8.3 Using the BondFlow System for Biological Workflows 188

8.3.1 Workflow Development Methodology.. 190

8.3.2 Alignment Region Comparison Workflow using the BondFlow System.......... 192

 8.3.3 System output…………………………………………………………………192

8.4 Conclusions and Future Work .. 197

ix

CHAPTER 9 CONCLUSIONS AND FUTURE WORK .. 199

9.1 A Platform to Configure and Deploy Distributed Workflows over Web Services200

9.2 Future Work .. 201

BIBLIOGRAPHY... 203

x

 List of Figures

Figure 1.1 Purchase Order Workflow.. 5

Figure 1.2: Current State of the Art of Web Service Workflow Development:

Architecture of traditional WS-BPEL Implementation .. 6

Figure 2.1: Manual Supply Chain Management .. 19

Figure 2.2: Automated Supply Chain Management ... 20

Figure 2.3: Quotation Process Workflow Specification .. 21

Figure 2.4: Interaction among Workflow Activities .. 23

Figure 2.5: Workflow Reference Model .. 24

Figure 2.6: A Typical Workflow Engine ... 25

Figure 2.7: A Typical Information System .. 27

Figure 2.8: B2B Integration .. 29

Figure 2.9: The Interoperability Problem ... 30

Figure 2.10: Web Services: A Uniform Interface and a Common Communication

Protocol ... 31

Figure 2.11: Web Service Definition .. 31

Figure 2.12: Current Web Services Infrastructure.. 32

Figure 2.13: Web Service Composition.. 33

Figure 2.14: Taxonomy of Web Service Standards .. 34

Figure 2.15: Workflow Language and Protocol Chronology .. 35

Figure 3.1: Analogy between Chemical Bonds and Web Bonds...................................... 38

Figure 3.2: Subscription bond …………………………………………… 42

Figure 3.3 Negotiation bond ... 42

Figure 3.4 Subscription-negotiation bond pair ... 43

Figure 3 5: Petri Net with inhibitor arcs (EPN) ………………………………… . 47

Figure 3 6: Simulating EPN using web bonds .. 47

Figure 3.7: Coordinating Producer-Consumer web Processes ... 50

Figure 3.8 Modelling Resource Sharing among Competing Web Processes ………… 52

Figure 3.9 Coordinating multiple producers with a consumer Web process ……………53

Figure 3.10: Scheduled Meeting .. 54

xi

Figure 3.11: A Tentative Meeting.. 55

Figure 4.1: Petri-net model ... 66

Figure 4.2: Parallel Split ... 69

Figure 4.3: Simple Merge ... 70

Figure 4.4: Advanced Synchronization... 71

Figure 4.5:Synchronization Pattern .. 73

Figure 4.6: Multi Merge.. 74

Figure 4.7: Discriminator pattern.. 76

Figure 4.8: MI without Synchronization... 78

Figure 4.9: MI with prior design time knowledge .. 79

Figure 4.10: Differed Choice .. 83

Figure 4.11: Mile stone pattern... 84

Figure 4.12: Interleaved Parallel Routing... 85

Figure 4.13: Arbitrary cycle.. 86

Figure 4.14: Arbitrary cycle using web bonds.. 87

Figure 4.15: Reply/Request ... 91

Figure 4.16: Publish-Subscribe Communication .. 93

Figure 5.1: Current State of the Art: Composite Web Process as a Central Coordinator101

Figure 5.2: Evolution of Database Application Infrastructure 104

Figure 5.3: Proposed development for web service infrastructure 105

Figure 5.4: Functional decomposition of composite web process.................................. 107

Figure 5.5: Web Service Coordination Middleware Overview 109

Figure 5.6: Enforcing Pre Execution Dependencies ... 112

Figure 5.7: Enforcing Post Execution Dependencies ... 114

Figure 5.8: Web service management System.. 116

Figure 5.9: Coordinator Proxy Object Architecture ... 117

Figure 5.10: Typical Flow within a coordinator proxy object .. 118

Figure 6.1: Enforcing Dependencies Using Web Coordination Bonds 122

Figure 6.2: Simulation Scenario ... 124

Figure 6.3: DEVS simulation model... 125

Figure 6.4 : WSCMM Simulation Model ... 127

xii

Figure 6.5: Message Handler .. 129

Figure 6.6: Web Service Management System... 130

Figure 6.7: Web Service Coordination Management System... 131

Figure 6.8: Simulation Architecture ... 134

Figure 6.9: Message Routing in WSCMM Simulation... 136

Figure 7.1 Flow within the Coordinator Object.. 154

Figure 7.2: Developers Perspective of the BondFlow System 155

Figure 7.3: Two-Layer Workflow Software Architecture .. 157

Figure 7.4: Web Service Coordinator Proxy Object... 158

Figure 7.5: Flow within a Proxy Object.. 159

Figure 7.6: Elements of a Typical “Bond” …………………………………… 160

Figure 7.7: Sample Bond Repository... 160

Figure 7.8: Purchase Order Workflow.. 162

Figure 7.9: BondFlow System Architecture 164

Figure 7.10: Proxy object generation.. 164

Figure 7.11: The BondFlow Runtime 166

Figure 7.12: Workflow configuration... 166

Figure 7.13: Workflow Distributed among Several iPAQ’s... 169

Figure 7.14: Book Price Workflow... 172

Figure 7.15: Traffic Condition Workflow ... 172

Figure 7.16: Purchase order workflow 173

Figure 7.17: Online book purchase workflow .. 173

Figure 7.18: Execution timings for sample workflow control flow patterns.................. 175

Figure 8.1: Alignment Region Comparison Workflow ... 186

Figure 8.2: The BondFlow system for Biological Workflows 188

Figure 8.3: The BondFlow System: Users Perspective .. 191

Figure 8.4 : Alignment Region Comparison Workflow using web coordination bonds 193

Figure 8.5: The BondFlow System Executing Alignment Region Comparison Workflow

... 194

Figure 9.1: Workflow Coordination Architectures of the BondFlow System................ 201

xiii

 List of Tables

Table 3.1 Comparison of Web Service Coordination Languages/Standards................... 57

Table 4.1 Workflow Control Flow Patterns.. 62

Table 4.2: BPEL Primitives ... 65

Table 4.3 Support for workflow control patterns in different web service composition

languages and standards ... 68

Table 4.4: Patterns Involving Multiple Instances ... 81

Table 4.5: Cancellation Patterns ... 89

Table 4.6: Communication patterns ... 90

Table 6.1: External Messages among Web Services When Enforcing Dependencies Using

Web Coordination Bonds.. 123

Table 6.2: Message tag and the outgoing message ports at the Message Handler 128

Table 6.3: Actions taken at WSMS... 131

Table 6.4: Actions Taken at WSCMS... 132

Table 6.5: Different states of Middleware Components.. 133

Table 6.6: Simulation Output for Incoming Messages ... 137

Table 6.7: Architectural Enhancements to Web Services.. 145

Table 7.1: Size of WSDL (number of methods) vs. Proxy Object Generation Time 171

Table 7.2: Workflow execution timings ... 174

Table 7.3: Footprint of the workflow.. 174

xiv

ABBREVIATIONS

ASAP Asynchronous Service Access Protocol
BPEL4WS
WS-BPEL

Business Process Execution Language for Web Services

BPMI Business Process Modeling Initiative
BPML Business Process Modeling Language
BPMN Business Process Modeling Notation
BPSS Business Process Specification Schema
CFA Communicating Finite Automata
CPO Coordinator Proxy Object
DAML-S DARPA Agent Markup Language
DBMS Database Management System
DEVS Discrete Event System Specification
HTTP Hypertext Markup Language
IDE Interactive Development Environment
NASL Network Access Service Language
OASIS Organization for the Advancement of Structured Information

Standards
QoS Quality of Service
RDF Resource Description Framework
REST Representational State Transfer
RPC Remote Procedure Call
SOC Service Oriented Computing
SOAP Simple Object Access Protocol
UDDI Universal Description, Discovery and Integration
UML-WSC UML Profile for Web Service Composition
URI Universal Resource Locator
W3C World Wide Web Consortium
WDS Well-Defined Service
WFMS Workflow Management System
WS Web Service
WSCI Web Service Choreography Interface
WSCMS Web Service Coordination Management System
WS-Conversion Web Service Conversation
WS-Coordination Web Service Coordination
WSDL Web Service Description Language
WSFL Web Service Flow Language
WSMF Web Service Modeling Framework
WSMS Web Service Management System
WS-Policy Web Service Policy
WSs Web Services
WSTMW Web Service Transaction Middleware
WS-Transaction Web Service Transaction
WWW World Wide Web
XL XML Language for Web Service Composition

xv

XLANG Web Services for Business Process Design
XML Extensible Markup Language
YAML Yet Another Workflow Model
WSCMM Service Coordination Management Middleware

1

CHAPTER 1

INTRODUCTION

“Software as a Service” or Service Oriented Computing (SOC) is the recent notable

development in software engineering [Alo04, Pap05, Wee05]. These software services

will be running on heterogeneous platforms and distributed information networks,

providing services to other entities in the network [Gir04]. Web service (WS)

infrastructure is arguably the most important realization of the SOC architecture

[Wee05]. Web service is defined as a “self-contained modular application that can be

described, published, located, and invoked over the net” [Ley02]. It encapsulates the

computational complexity and hides system and network heterogeneity. Web services

expose their functionality through a well-defined interface. Client entities interact with

the interface of the web services. One can harness the true potential of the WS

infrastructure by integrating different web services together to form sophisticated

applications such as workflows [Dus04, Ko03]. Therefore, in the SOC model, WSs

become the building blocks based on which new applications are created. Such

integration enables inter-organizational collaboration and spans application domains as

diverse as enterprise e-commerce applications (supply chains, work flows, and virtual

organizations) [Dus04]), personal applications (travel, calendaring and scheduling)

[Moo04], and scientific biomedical applications (biomedical data and tool integration,

and workflows) [Ber03, Nek03, Moo04, Pic99, 80, Wil00, Aal02].

 However, the current state of the art in developing such workflow applications over

web services employs a centralized composite process to coordinate the constituent web

services. This coordinator process is complex, less scalable, and bulky. Moreover,

2

currently there is no fundamental framework for workflow dependency modeling.

Therefore, currently, workflow development process is a tedious task and confined only

to expert developers.

 In this dissertation, we have investigated the main research thrust of decentralized

coordination of workflows over web services and its applicability biological workflows.

First, we have proposed and formally investigated “web coordination bonds” as a capable

set of primitives for distributed workflows over web services. Then, we have designed

and prototyped our “Web Service Coordination Management Middleware (WSCMM)”

that enhances current web service infrastructure so that web services become stateful self-

coordinating entities enabling them to actively participate in workflows. Finally, based on

the core concepts of web coordination bonds and WSCMM, we have developed our

“BondFlow” system that allows easy configuration and distributed deployment of

workflows over web services. The BondFlow system distributes the centralized

coordination logic by (i) extending the web services into self-coordinating entities using

coordinator proxy objects, and (ii) creating the workflow over these entities by

interconnecting them into a distributed network of objects using web bond primitives.

Finally, we have employed the BondFlow system to configure and execute biological

workflows such as DNA sequence analysis.

 Chapter 1 starts with motivation for this research using few web service based

workflow examples. Then, we discuss limitations of the current state of the art in

developing workflows over web services. Next, we state our research goals and

contributions. Finally, we highlight the organization of this dissertation.

3

1. 1 Motivation

Following examples of a few selected web services based applications highlight the

corresponding research domains.

E-Commerce Applications: E-commerce applications rapidly change the way businesses

perform their transactions. However, as most researchers have pointed out, “real

revolution comes when businesses begin to conduct their activities electronically with

other businesses over the web thereby increasing efficiency (higher throughput) and

robustness (easy modification, correctness verification)” [Sha01]. For example, in a

supply chain application scenario, we can envision that a consumer’s web service

automatically finds a suitable supplier and places the order using pre-specified rules/logic

and business relationships. The intermediate steps may be as follows. The consumer calls

for bids. Each potential bidder’s web service evaluates requirements of the buyer and

subsequently enters the bidding process. Then the buyer’s web service evaluates the bids,

selects a supplier and places the order. Finally, the suppliers web service contacts the

transportation service for delivery. Development of such complex applications is a

tedious task today. However, a suitable workflow infrastructure can automate this

process.

Travel Applications: Future web services will much more sophisticated, interconnected,

and interoperable [Har04]. For example a travel application integrates reservations of

flights, rental cars, and hotel accommodations. Most existing travel reservation

applications do not combine and maintain a global relation among these services. As a

result, manual changes need to be performed if one portion of the itinerary changes. The

process behind such applications would not only integrate these web services, but also

4

enforce Quality of Service (QoS) constraints such as deadlines and budget requirements.

If the flight is cancelled, then automatic cancellation of car and hotel reservations will be

triggered, thus easing the burden on the user to manually cancel all associated

reservations.

Bio-Medical Applications: Rapid development of ad-hoc and other collaborative

applications by leveraging off existing bio-medical web services will be the key to bring

the Internet’s collaborative potential to the non computer scientists. These bio-medical

web services would comprise various heterogeneous and autonomous data stores as well

as a myriad of higher-level value-added bio-informatics server applications (e.g., search

and data mining engines, genetic databases, molecular dynamics tools, pattern

recognizers, and algorithmic tools) published as web services [Nav04]. Scientists must

be empowered to easily and rapidly compose and link existing bio-medical web services

to create ad-hoc client as well as server applications. For example, such capabilities

would be needed to quickly put together an experiment-specific ad-hoc application for

recognizing protein molecules with certain descriptors by accessing a select set of bio-

chemical databases, passing the aggregated results to a simulated annealing tool, and

inserting a bit of scientific logic which has evolved from experimentation [Byr01].

 Many of those applications are long-running transactions and workflows that require

much more beyond the currently supported invoke/respond protocols [Dou03, Dou03,

Lit03]. Thus, efficient coordination technologies are required to rapidly develop and

deploy robust collaborative applications by leveraging off the existing web services

[Pic99, Jon03]. Therefore, the underlying computational issues are fundamental and with

wide scope.

5

1.2 Current State of the Art

 Figure 1.1 illustrates the purchase order workflow presented in the WS-BPEL (Web

Services Business Process Execution Language) specification [Wan05]. The operation of

this workflow is as follows: on receiving a purchase order, the receive purchase order

web service processes the request and trigger three concurrent tasks to initiate the price

calculation, select a suitable shipper, and schedule the production and shipment. Once all

three tasks are done, invoice processing task will be initiated.

Figure 1.1 Purchase Order Workflow (dark arrows represent the control flow

dependencies while dashed arrows represent data flow dependencies)

Figure 1.2 illustrates the software architecture of the WS-BPEL based implementation of

the workflow. It models the composite workflow process as a separate state-preserving

R ecive Purchase
O rder

Arrange Log istics

Invoice
Processing

C om plete
production
Scheduling

C om plete P rice
C alcu lation

In itia te P roduction
scheduling

D ecide on
Shipper

In itia te P rice
C alcu lation

6

web process encapsulating all the data flow and control flow requirements. This is due to

the fact that WSs have been designed to be stateless autonomous entities. Thus, they are

not active participants in the workflow. A composed web process needs to encapsulate

numerous functionalities ranging from application logic to transaction management. It is

the designer’s responsibility to focus on low level (atomic) details such as message

correlation, and state (context) information to high-level application logic. Therefore,

BPEL is at the level of the assembly language for web service composition and

coordination. Moreover, the composite web process becomes a central coordinating

entity. Section 1.3 further elaborates limitations of the current technology.

Figure 1.2: Current State of the Art of Web Service Workflow Development:

Architecture of traditional WS-BPEL Implementation

Price
Calc

Receive
Purchase

Shipper

Product
ion

schedul
e

Invoice

t
e
xt

t
e
xt

t
e
xt

t
e
xtt

e
xt

Invoke/Respond
Communication

Composite web
process with all the

communication,
coordination and

workflow logic

7

1.3 Limitations of Current Technology

This section highlights limitations on workflow coordination architecture, coordination

technologies, and deployment and execution platforms of the current web service

workflow technology.

Workflow Coordination: As we have seen in the purchase order workflow example,

current state of the art in developing workflows over web services is to model the

composite web service (workflow process) as a separate state-preserving web process, as

WSs are stateless and not active participants. Thus, the composed web process needs to

encapsulate numerous functionalities ranging from application logic to transaction

management making it a central coordinating agent [Alo04, Bar05]. However,

centralized coordination is not desirable in highly distributed web services infrastructure:

(i) Due to security, privacy, or licensing imperatives, some web-based objects will only

allow direct pair-wise interactions without any coordinating third-party entity; and (ii)

Centralized coordination/workflows suffer from issues such as scalability, performance,

and fault tolerance [Gir04]. Efforts such as IBM symphony [Gir04] try to eliminate

centralize coordination by partitioning centralized BPEL code into separate modules so

that they can run in a distributed setting. However, there are limitations to such efforts.

First, it is necessary to develop the centralized BPEL code and then distribute it. Second,

there are usually problems in partitioning the code in complex application scenarios such

as long running transactional applications without proper infrastructure support.

Middleware platforms for web services are emerging as a solution to this problem.

8

 In [Bar05] authors point out that it is necessary to identify different levels of software

abstractions (viewpoints) from web service composition and coordination and generalize

them. These generalized functionalities can be used to further enhance web service’s

interface. This will transform the web services we know today into coordination aware

stateful web entities making the application development less programming intensive and

enabling distributed coordination. While investigating the current efforts towards this

goal, it is interesting and encouraging to see that a significant effort is being made in both

academia and industry [Bar05, Sch05, Ben05].

Coordination primitives: Unavailability of a comprehensive fundamental framework to

model workflows is another significant issue in current workflow development. There are

many overlapping and competing languages for web service workflow development.

However, none of them are comprehensive enough.

 In [Gri01], authors propose use of Petri nets for web service workflows. Petri nets are

a well-founded process modeling technique with formal semantics [Aal02]. They have

been used to model and analyze several types of processes including protocols,

manufacturing systems, and business processes [Gri01]. BPEL4WS is becoming popular

in web services community as a workflow language. BPEL allows a mixture of block and

graph structured process models, thus making the language expressive at the price of

being complex [Aal03b]. SUN, BEA, SAP and Intalio came up with another standard

called WSCI (Web Service Choreography Interface). BPML and ebXML are other

candidates in the same race. WS-Coordination (Web Services Coordination) is a

proposed IT industry standard, which contains specification for composition and

9

coordination among distributed web services [Woh03]. The PhD thesis presented in

[Kie02] has studied the expressiveness and suitability of these languages for modeling

workflow control flow patterns. Using those workflow patterns as a benchmark, web

services composition and workflow languages such as BPEL4WS, XLANG, WSFL,

BPML, WSCI, and High-level Petri-net-based languages have been evaluated [Aal03b].

This evaluation shows that none of these languages are compressive enough to model

workflow dependencies. This abundant number of languages/standards has still failed to

give a framework, which is fundamentally sound and yet powerful in operation. To

overcome this problem, initially, a critical evaluation of these standards is required

Workflow Deployment and Execution Platforms: World Wide Web became so popular

due to its simplicity and easy accessibility. In contrast, CORBA, RMI and DECOM did

not succeed to the level that their proponents expected. This is mainly due to the

complexity of these technologies despite great features they carry [Dus04, Woh03]. Web

services are to bridge the gap between two technologies. Therefore, ideally, applications

that we configure using web services should be able to deploy and execute in web-like

(preferably over Internet) infrastructure enabling them to be executed on both wired and

wireless devices including servers, PCs, handhelds, and even on cell phones. Executing

workflows over wireless devices has significant benefits [Dus04-Haw05]. Portions of

long-running workflows can reside on handheld device providing monitoring and

controlling capabilities as well as hosting services. Current web service workflow

deployment platforms are difficult to interact with and confined only to expert users.

Additionally, current platforms consume significant amount of resources and are difficult

10

to deploy on limited resource wireless devices. Some of the current web service

composition and coordination architectures inherently assume that services are resident

on the wired infrastructure. However, there is an increasing interest in both industry and

academia to empower mobile devices. In [Cha04], authors describe issues related to

service composition in mobile environments and evaluate criteria for judging protocols

that enable such composition. A distributed architecture and associated protocols for

service composition in mobile environments that take into consideration mobility,

dynamic changing service topology and device resources are presented in [Haw05]. The

composition protocols are based on distributed brokerage mechanisms and utilize a

distributed service discovery process over ad-hoc network connectivity. In [Dus04]

authors present architecture for mobile device collaboration using web services. In

[Mna04] authors present a rapid application development environment for mobile web

services. In [Ste03, Haw05] authors present web service based mobile application

integration frameworks. However, most of these technologies consider handheld devices

as clients.

Biological data and tool integration: Enormous amount of biological data is being

produced by biologists. It is estimated that about one billion data stores available. These

data inherits heterogeneity in their format and representation [Lab03]. Also, numerous

applications have been developed to analyses these data and produce meaningful results

such as identification unknown species and diagnosis of deceases. Data analysis requires

multiple resources to be integrated and filter data from one source and feed into another.

However, these data sources are heterogeneous in nature. For example,

11

i) data being stored are highly diverse

ii) data being stored are highly representational heterogeneous

iii) data sources and tools are autonomous and have different interfaces and

querying capabilities.

In [Pao05, Lab03], authors discuss aforementioned facts in detail. Currently, most

popular and highly used methodology is to develop programs (or scripts) from the

scratch. This is very time consuming and ineffective. In [Her04], authors state that

manual data processing has been pushed to the limit and requires more pragmatic

approaches. As a solution web browser based data processing tools have been developed.

Research groups at European institute of Bioinformatics have identified significant

drawbacks in this approach.

i) Web browser based tools are difficult to use in case of large amount of data to

be retrieved and analyzed.

ii) In case of workflow applications, the developer needs to copy data from one

source and paste them to the other interface. This is tedious, as data formatting

and copy and paste process need to be repeated several times.

Researchers have identified web services are a better technology to deal with these

difficulties. Data produces can have unique interfaces to supply data and users can use

standard set of technologies to access them. Also, large amount of data can be attached as

SOAP attachments and feeding from one source to another can be automated relatively

easily [Lab03]. Many major bioinformatics institutes such as NCBI, DDBJ, and EBI have

already started converting their biological data sources and search tool into web services.

12

However, still the workflow development and deployment platforms are difficult to use

and need significant amount of programming. For example, Pegasys [Sha04],

Taverna[Hul06], and Discovery Net[DiscoveryNet] are great systems with graphical user

interfaces to compose biological workflow. However, most of them are domain specific

and suitable for pre-configured systems and workflows. For example, Pegasys [Sha04]

system has been designed to achieve three goals: modularity, flexibility, and data

integration in biological workflows. It includes tools for pair-wise and multiple sequence

alignment and gene prediction, RNA gene detection. Users of the Pegasys system create

a DAG to represents the workflow. Each node v, represents either a input sequence, an

individual program or a output node while an edge between two nodes represents the data

flow. DAG can be created dynamically at runtime using the Pegasys GUI and

subsequently converted into a structured XML file, which will be transferred to the

Pegasys server that executes the workflow. Data filters take care of input/output

formatting from one tool to another. However, one major draw back of the system is that

programs and filters need to written by experts to add new tools to the system. System is

pre-configured.

1.4 Problem Statement and Research Goals

In this dissertation we have undertaken following research thrusts to tackle outstanding

issues identified in the preceding section.

1. Develop a core set of capable primitives which enable Web services to hook

together in a desired structure to enforce automatic information flow, group

13

constraint satisfaction, and data and control dependencies, all without any central

coordinating authority. Prove expressive power, analytical power, and sufficiency

of web coordination bonds.

2. Extend the web service infrastructure beyond the basic service architecture

(invoke and respond) to self-coordinating web processes collaborating among

themselves in the desired configuration as per user’s application (transient to long

lasting).

3. Create an easy to use platform so that developers including non-computer

scientists can configure and deploy their workflows.

4. Evaluate the performance and capabilities of the prototype “BondFlow” system .

5. Apply the BondFlow system to develop biological data and tool integration.

We have made following contributions in this dissertation work.

1.5 Contributions and Significance

1. Set of Coordination Primitives for Workflow Dependency Modeling: We have

developed “Web Coordination Bonds” as a capable set of primitives for

distributed workflow coordination over web services. Web bond primitives are as

14

powerful the Petri nets extended with inhibitor arcs* and have sufficient modeling

and expressive capabilities to model workflow dependencies.

2. Distributed Coordination: We have designed and prototyped our Web Service

Coordination Management Middleware (WSCMM) system that enhances current

web services infrastructure. WSCMM distributes the workflow coordination

among participant web services by generating an “intelligent” web service

Coordinator Proxy Object (CPO) or coordinator object for short per web service.

These coordinator objects are stateful and enable encapsulated web services to be

interconnected. An interconnected coordinator object together with its

dependency parameters represents a coordination aware workflow node on behalf

of the encapsulated web service. This transforms current stateless passive web

services into self-coordinating active workflow entities.

3. The BondFlow System : Based on core concepts of web coordination and

WSCMM, we have developed the Bondflow system that allows easy

configurability and distributed workflow coordination. Also, the footprint of the

BondFlow runtime is 24KB and the additional third party software packages,

SOAP client and XML parser, account for 115KB. Moreover, the footprint of the

coordinator object is small (~10KB) enabling them to reside on java-enable

handheld devices.

* Thereafter, for the convenience, we will refer to the Petri nets extended with inhibitor
arcs as “extended Petri nets.”

15

4. Using the BondFlow System for Biological Workflows: We developed few

biological workflows such as Alignment Region Comparison Workflow using the

BondFlow system. We further layout a stepwise methodology to develop simple

biological workflows using this system. Steps involve (a) finding biological data

sources and tools, and wrapping them into web services; (b) generating data

adaptor web services for each connector edge in the ad-hoc workflow; (c)

configure the workflow over web-enabled tools, data sources, and data adaptors;

(d) execute workflow. Currently, the first step is in research state and step two is

function is cases where data input and output requirements are specified using

regular expressions.

1.6 Organization of the Thesis

The remainder of this dissertation is organized as follows.

Chapter 2 introduces the reader to technologies such as workflows, web services, and

workflows over web services. The main purpose of this chapter is to provide readers with

required understanding of the key technologies that help them to follow the remaining

chapters smoothly.

Chapter 3 introduces the idea of web coordination bonds as a capable set of primitives for

distributed workflow dependency modeling. Also, we establish that web bonds are as

powerful as extended Petri nets (Petri net with inhibitor arcs) in their modeling power.

We also illustrate the expressive capabilities of web bonds by modeling various

dependency scenarios.

16

Chapter 4 further elaborates the expressiveness of web bonds by modeling a

comprehensive set of workflow control flow patterns and distributed communication

patterns. None of the current coordination technologies are capable of comprehensively

modeling them. This exercise proves that web bonds are superior to the current

technology in terms of their expressiveness and modeling of complex coordination.

Chapter 5 discusses the architectural enhancements that are needed to distribute the

workflow coordination among web services. In this chapter we have undertaken the task

of architecting our WSCMM. First, we have identified major functionalities encapsulated

by the current web service workflows. Then we formulate the architecture of the

middleware system to encapsulate generic layers of functionality.

Chapter 6 discusses the realization of WSCMM using web coordination bonds. Then we

simulate the architecture for correctness verification. Discrete Event System Specification

(DEVS) simulation tool has been used for the simulation. We have simulated web bond

interactions and a simple workflow scenario. Our simulation results show that the

middleware behaves accurately.

Chapter 7 discusses our prototype implementation of the BondFlow system. The

BondFlow system is based on web coordination bond and WSCMM concepts. It provides

and environment to easily configure and execute distributed workflows over web

services. The workflow deployment environment is light weight and can be used to

deploy workflows on small handheld devices.

17

Chapter 8 illustrates the use of the BondFlow system in biological workflows. First we

identify issues related to biological workflows creation (data and tool integration). Then,

we discuss the use of web service technology in biological data and tool integration.

Finally, we illustrate the configuration and deployment of DNA Alignment Region

Comparison using the BondFlow system.

Finally, Chapter 9 presents conclusions of this dissertation work and future research

directions.

18

CHAPTER 2

BACKGROUND

In Chapter 1, workflow applications over web service have been identified as one of the

major trends in developing current Internet applications. The four main research thrusts

performed in this dissertation research work are aimed at finding a better technology for

distributed workflows over web services. Thus, the content of this dissertation is based on

two technologies, workflows and web services. This chapter is devoted to give a

sufficient understanding of the two technologies and discuss how these two technologies

have merged. We present this as a historical perspective as well as a technical

background that helps readers better absorb the contributions of this work. We do not

focus on any specific technology but will provide a comprehensive discussion on the

technology behind workflows and web services. The remaining chapters discuss specific

technologies wherever applicable. First, we discuss workflow management systems and

problems they have faced in Enterprise Application Integration (EAI). Then, we present

technological reasons that are contributing to the advancements needed in web service

technology. Finally, we discuss how these two technologies have merged (or will be

merged) together.

2.1 Workflow Management Systems

The origin of (Workflow Management System) WfMSs is office automation. Office

automation can be simply described as routing electronic version of administrative

documents such as project reviews from one point to another. Initially, office automation

was email based and later it is incorporating more sophisticated web-based forms. In

19

web-based forms, most of the document/information routing and decision-making have

been automated. The sequence of such actions takes place to complete one task. This kind

of composition of tasks is called administrative workflows.

In industry, activities are not as simple as document routing. Initially, significant portion

of human involvement was needed in the process. For example, earlier, supply chain

applications had been handled manually where significant portions of workflow activities

were manual activities (Figure 2.1). However, many of these tasks such as order

processing, shipping management, and quotation can be automated. Such a automated

process is capable of handling complex business actives as oppose to simple document

management. As technology matured, manual handling of many activities have been

transferred to software applications and tools. Figure 2.2 illustrates the automation of

supply chain management. It is clear that tools/software modules interact with each other

in a given order to accomplish the task. Such applications are called production

workflows.

Figure 2.1: Manual Supply Chain Management [9]

20

(WfMS: Workflow Management Systems)

 Figure 2.2: Automated Supply Chain Management [Alo04]

Characteristics Workflow Applications: Software applications interact in different

ways to enforce the workflow requirements. These interactions can be triggered by

manual entities or can be automated. However, in order to maintain the correct

behavior of the workflows, such systems need to have an administrator. This

administrator in its configuration is called the workflow management system.

Workflow management system makes sure that the order of execution of activities is

correct and handles any errors (Figure 2.2) and exceptions rising during the

execution.

21

 Figure 2.3: Quotation Process Workflow Specification [Alo04]

Figure 2.3 illustrates the workflow process to model the quotation process. Here,

rectangular boxes represent processing elements while diamond shapes represent

decision-making elements. For example, “get quote from quotation system” process

22

can be started only if one of the variables, “GoAhead” or “offered” is true. These

variables essentially carry the control. Thus, “get quote from quotation system” has

control dependencies and in this case it is an “OR” join. Similarly, it needs data to

process the order. These types of dependencies are called data dependencies.

Moreover, after the “update quotation system” process, it has to split the control into

two paths (customer and the quote forecasting system). Many such data and control

dependencies can occur in a workflow [Aal03a, Aal03b]. In this dissertation we will

study these dependencies in detail [Chapter 3, Chapter4]. It is the responsibility of the

workflow management system to integrate different activities together to enforce such

workflow dependencies.

 One of the major issues in such workflow applications is to integrate different

system (s) together. This is mainly because these systems are running on different

platforms and maintained by different departments. Any integration and process

automation implies bringing all participating autonomous, heterogeneous entities

together. Typically, workflow activities interact through message brokers where

network and system heterogeneities are handled using adaptors (Figure 2.4). WfMSs

focus on the definition and maintenance of the integration logic of such systems.

23

Figure 2.4: Interaction among Workflow Activities [Alo04]

 Thus, workflow is a complex process with many requirements including workflow

definition, dependency modeling, error handling, and modeling inter-operation among

activities. In 1996, the Workflow Management Coalition (WfMC

(http://www.wfmc.org/)) was formed to standardize the workflow activity definition and

their requirements. WfMC defines the workflow as follows.

The Workflow Definition: “The automation of a business process, in whole or part,

during which documents, information or tasks are passed from one participant to another

for action, according to a set of procedural rules” [WFMC].

 This definition captures the essence of a workflow process. There are significant points

that we can comprehend from this definition. First, work is fully or partially automated

thereby information is being passed from one activity to another electronically and

24

decision are being made without (or with minimum) human interaction. Also, there are a

set of rules that govern the behavior of the workflow. In order to accommodate these

requirements of this definition, WfMC has defined a workflow reference model. The

workflow reference model essentially specifies a framework for workflow systems

identifying their characteristics, functions, and interfaces. It defines five interfaces as

shown in Figure 2.5. Here, we will briefly review each interface.

Workflow Reference Model

 Figure 2.5: Workflow Reference Model [WFMC]

Process Definition Tools Interface: Process definition is the task of modeling control

flow, data flow, and other dependencies of a workflow. In other words, the workflow

process defines the relationship among the activities of a workflow. Workflow

W orkflow API and Interchange

Process Definition

Other W orkflow
Engines

W orkflow
Client

Application

Administrative and
Monitoring Tools

Invoked
Applications

W orkflow
Engine (s)

Interface 1

Interface 2 Interface 3

In
te

rfa
ce

 4

In
te

rfa
ce

 5

25

description languages such as XPDL, WS-BPEL and BPML support modeling these

relationships (dependencies). The workflow engine interprets the workflow definition and

enforces these dependencies. In Chapter 3 and 4, we extensively look at different (web

service) workflow languages. These chapters also discuss web coordination bonds, one of

the significant outcomes of this dissertation work, as a mechanism to define workflow

processes.

The Workflow Engine: The main task of the workflow engine is to retrieve the workflow

definition, determine which node (activity) is to be processed, acquire required

resource(s), and place them in the work queue. Figure 2.6 illustrates the components of a

generic workflow engine. The Inbound queue returns data/control from completed tasks.

Based on that it determines the next task to be executed. In Chapters 5, 6, and 7 we

discuss workflow enactment in our BondFlow system, which is based on web

coordination bonds.

 Figure 2.6: A Typical Workflow Engine [Alo04]

26

Administration & Monitoring Tools Interface: This is one of the most important units

of a WfMS. It basically defines monitoring and fault handling functions. The monitoring

tools support following functions [WFMC].

• Track and monitor individual work requests

• Review resource productivity and work volume analysis

• Quickly search for and identify a work request

• Provide feedback on performance issues

• Get information about the bottlenecks in the process

• Analysis to implement changes to the workflow process

Failure handling is very critical and a proper fault handling mechanism is a must for

useful workflow management systems. There are several techniques such as forward

recovery, backward recovery, and exception handling to handle errors in a workflow

[WFMC].

3. Workflow Interoperability Interface: This interface defines protocols and

technologies to inter-operate among workflow activities. Workflow activities give rise to

network and systems heterogeneity. The interoperability interface defines a set of

interoperable protocols [WFMC]. Section 2.2 discusses issues of this type of

interoperability in detail and reason out how web services solve such interoperability

problems.

27

4. Workflow Client Application Interface: This refers to the definition of APIs for

client applications to request services from the workflow engine to control the

progression of processes, activities and work-items.

5. Invoked Application Interface: This is the standard interface definition of APIs that

allow the workflow engine to invoke a variety of applications, through common agent

software.

 In this section, we have discussed the essential details about what workflows are and

what is involved in defining and executing workflows. As we have mentioned earlier,

interoperability among workflow entities is one of the pressing issues. Section 2.2

discusses the interoperability problem in detail and illustrates how web services solve the

interoperability problem.

2.2 Information Systems

 Figure 2.7: A Typical Information System [Alo04]

28

Figure 2.7 illustrates the architectural organization of a typical information system. In

an automated workflow, these information systems interact among each other to enact

workflow requirements. Thus, it is important to have a better understanding of the

technology behind information systems. Any information system has three distinct

layers, namely requesters, an information management system, and service providers.

First, we will focus on the implementation of the information system.

 At an abstract level, information systems are designed around three layers:

presentation layer, application layer, and resource management layer [Bra03]. The

way these layers are arranged between service provider and the service requester

determines if it is 1-tier, 2-tier, 3-tier, or n-tier. In 1-tier systems, all three layers have

been implemented by a single system and hosted in a single machine. Service

requesters interact with the interface of the system to get services rendered. Such

systems are similar to the early MainFrame systems. Clients of such systems act as

dummy terminals.

 2-tier systems are classical client server systems where both clients and the

information systems execute stubs related to the service. Java RMI, CORBA and

DCOM are classic examples of such systems. The 3-tier and multi-tier systems use

one or more middleware components to render services to clients. Figure 2.7

illustrates different architectures of information systems.

29

 Figure 2.8: B2B Integration

Currently, many information systems are multi-tier systems. In the world of workflows,

underlying implementations of information systems are important because, it is required

to integrate several such systems together to form sophisticated workflows. These

systems are maintained by different organization having various propriety requirements.

 Inter-organizational integration is handled mainly in the following three layers.

• Presentation layer.
• Middleware layer.
• Application layer.

However, the development of inter-organizational workflows is handicapped due to

several reasons: a) organizations are reluctant to expose their application logic, b) There

is heterogeneity of application logic and technology used. Figure 2.9 further illustrates

this interoperability problem.

30

 Figure 2.9: The Interoperability Problem

Suppose a workflow has a requirement to integrate three systems A, B, and C. Also,

suppose these systems have been developed using COM, RMI, and CORBA.

Applications developed using these technologies do not communicate with each other

directly. Different inter-operability protocols are needed and this solution is not scalable.

From Conventional Information Systems to Web services: In order to solve the inter-

operability problem, service providers need to have a universally accepted interface for

their services. This has led to the idea of “service oriented computing”. Service provides

publish the interface of their services so that other entities can find and use them.

Vendors use universally accepted Internet protocols to exchange data and service

invocation. Since these information services are distributed across the Internet, they are

called web services (Figure 2.10).

A

C

B

Inter-operability
protocols

RMI

CORBACOM

31

Figure 2.10: Web Services: A Uniform Interface and a Common Communication
Protocol

2.3 Web Services

Web service is defined as “a software application identified by a URI, whose interface

and binding are capable of being defined, described, and discovered as XML artifacts.

Web service supports direct interactions with other software agents using XML based

messages and exchanged via internet-based protocols” [Aal02] (W3C).

 Figure 2.11: Web Service Definition

SSOOAAPP

A

B

C

32

Web services hide the system and network heterogeneities using uniform interface

(WSDL) and a common communication protocol (SOAP). With these features, web

services brings the loosely coupledness to information systems. They are loosely coupled

because the service developments and the application developments are totally

orthogonal and service requesters can dynamically query available services and bind

them to the application at runtime. This means that web services need a repository to

register them so that requesters can query and find them at runtime. Figure 2.12 illustrates

the current web services infrastructure. Service developers publish their services in the

UDDI (or other local) directory and applications (application developers) look up the

directory for required services.

 Figure 2.12: Current Web Services Infrastructure

Web service based applications are developed by composing different web services

together. These composite applications are typically long running. Figure 2.13 shows the

current state of the art in developing composite web service applications. The composite

33

web service handles communication as well as the application logic. Majority of web

service based applications are workflows so that they have to model and enforce most of

the workflow requirements described in the previous section [Aal03a]. New protocols

and standards are required to develop these applications efficiently. There is a plethora of

overlapping and competing standards for web service coordination. However, the

technology itself is relatively new and is in the development stage.

 Figure 2.13: Web Service Composition

Figure 2.14 shows the taxonomy of current web service protocols and languages. In this

dissertation we focus on web service composition and middleware support for web

service composition.

WS

Invoke/Response Composite Web Process

WS

WS

WS

WS WS

Composite Web Process

WS WS

WS WS

WS WS

SOAP

Communication

34

 Figure 2.14: Taxonomy of Web Service Standards

In chapters 3 and 4, we present web coordination bonds as a set of primitives for web

services coordination and dependency modeling. Chapters 5 and 6 present our WSCMM

for distributed workflow coordination web services. Finally, we present the BondFlow

system as a workflow composition and deployment engine.

35

2.4 Merging Web Service and Workflows

While web service technology is proliferating, workflow management systems are

moving forward in parallel. Figure 2.15 shows the chronology of workflow languages

and systems. Originally this figure has been published in [Mue05]. We have modified it

to add current developments. It is important to note that XML is becoming the common

technology for workflow specifications. Current standard XPDL has been evolved with

many ideas from web service standard organizations such as OASIS and W3C. These

developments clearly indicate that future workflow applications depend on the Internet

and web service technologies.

Figure 2.15: Workflow Language and Protocol Chronology [Mue05]

OASIS

1997 1996 2003 1998 1999 2000 2001 2002

t

SOAP Conversation
Protocol

SWAP

SWAP AWSP

Wf-XML 2.0

WF-Facility
ASAP

ebXML
BPSS

BPEL4WS 1.1
(WSBPEL)

WSCI

WSCL

Web Service
Choreography

FDL WSFL

XLANG

BPML

CDL

BPEL4WS

IETF

Independ

IBM,MICROSOFT,
BEA

W3C

O
M
G

IB
M

W
f
M
C

Mic
roso
ft

BPMI

HP

B
E
A

?

Interface 4
(MIME)

Interface 4
(MIME) Wf-XML 1.0

2005

XPDL

36

As we have mentioned, contributions of this dissertation work are three fold: a) a set of

coordination primitives for web service workflow dependency modeling, b) a middleware

framework for distributed workflow coordination, and c) a system to configure and

execute workflows. Each subsequent chapter discusses more specific technologies and

related work in detail.

37

CHAPTER 3

WEB COORDINATION BONDS

In this chapter we introduce web coordination bonds (also alternatively called “web

bonds” for short, or “coordination links” to generalize to web and non-web entities) as a

capable set of primitives for web service coordination. The idea of web coordination

bonds originated from our study of how to setup a meeting using online calendars of

schedules of people with automatic negotiation among calendars in case of individual

cancellations. The result was the artifact called coordination links to establish and enforce

dependencies among collaborating entities [Pra03a, Pra03b, Pra04a].

 First we present the idea of web bonds [Pra04b]. Then, we formally define a network

of over objects and prove that web bonds are at least as powerful as the Petri nets

extended with inhibitor arcs. Web bonds can establish (model) and enforce (deploy and

execute) dependencies of various kinds [Pra05]. Next, we demonstrate this for producer-

consumer relationships and shared-resource relationships. These two kinds of

relationships have been shown to yield the fundamental categories of dependencies

[Mal94]. A detailed meeting setup example is also presented to further illustrate the

resource-sharing paradigm. Finally, we survey the relevant literature, and compare and

contrast with web coordination bonds.

3.1 Introduction

Web coordination bonds are analogous to the chemical bonds in chemical compounds,

which are too simple yet extremely powerful to enable all sorts of basic and complex

38

chemical compounds to exist naturally and to be manufactured artificially. Different

atoms expose sites with certain number of either excess or shortage of electrons. For

example, oxygen atom has two negatively charged sites, and hydrogen has a deficit of

one electron, giving it a positively charged site. To form a water molecule, therefore, two

hydrogen atoms bond with an oxygen atom - each bond is just a sharing of an electron

between a donor and a recipient site. The web services are simple or composite server

objects situated on the web with well-defined interfaces and are the “web atoms.”

Molecules are, therefore, analogous to all collaborating processes involving individual

web service components. The list of such “web molecules” spans transient to long-

running collaborative processes, transactions, client-server and p2p distributed

applications, workflows as well as virtual organizations. Taking the analogy further, the

challenge is to (i) to define the analogous “bonding sites” or simple “web hooks” in the

web service interface needed to mesh multiple web entities together, and (ii) to develop

the analogous concept of a few simple yet powerful types of “web bonds” which would

be the coordination threads to bind and produce the “Web molecules” out of multiple

“web atoms.” These “web bond” primitives should allow rapid modeling and

deployment of collaborative applications of all kinds and complexities (Fig. 3.1).

Figure 3.1: Analogy between Chemical Bonds and Web Bonds

H

H

H

Web
Bonds

Delivery

Internet

Billing

Pickup

Order
Delivery

Internet

Billing

Pickup

Order

Web bonds: Package pickup and
delivery workflow over web services
using web bond primitives

H

Chemical
Bonding

Four H atoms and One C atom Methane Molecule

C H

H

H

H

C

Chemical bond: Formation of the
compound CHB4 B

39

 Currently, the hooks exposed by the web services are the basic methods published and

the bonds available are no more capable than the one-time invocations of those methods

by a client web entity.

3.2 Web Coordination Bond Concepts

Web bonds enable applications to create contracts between entities and enforce

interdependencies and constraints, and carry out atomic transactions spanning over a

group of web entities/processes. We define two types of web bonds: subscription bonds

and negotiation bonds. The subscription bond allows automatic flow of information from

a source entity to other entities that subscribe to it. This can be employed for

synchronization as well as more complex changes, needing data, control, or event flows.

Negotiation bonds enforce dependencies and constraints across entities and trigger

changes based on constraint satisfaction.

 A web bond is specified by its type (subscription/negotiation), references to one or

more web entities, triggers associated with each reference (event-condition-action rules)

[Pat99], a priority, a constraint (AND, OR, XOR), and a bond creation expiry time

[Pra04b, Pra04a]. Let an entity A be bonded to entities B and C, which may in turn be

bonded to other entities. A change in A may trigger changes in B and C, or A can change

only if B and C can be successfully changed. In the following, the phrase "Change X" is

employed to refer to an action on X (action usually is a particular method invocation on

web service X with a specified set of parameters); "Mark X" refers to an attempted

change, which triggers any associated bond without an actual change on X.

 Subscription-and Bond: Mark A; If successful then Change A and Try: Change B,

Change C.

40

A ``try" may not succeed. Similarly, subscription-or and subscription-xor bonds can be

defined.

 Negotiation-and Bond: Change A only if B and C can be successfully changed.

(Implements atomic transaction with "and" logic)

Semantics (shown for the illustration, but may have alternative implementations):

Mark A for change and Lock A

If successful

 Mark B and C for change and Lock B and C

 If successful to lock both B and C

 Change A

 Change B and C

 Unlock B and C

Unlock A

Note that locks are only for the explanation of the semantics. A reservation/locking

mechanism to implement this usually will have an expiry time to obviate deadlocks. In a

database web service, this would usually indicate a “ready to commit" stage.

Negotiation-or Bond: Change A only if at least one of B and C can be successfully

changed. (Implements atomic transaction with "or" logic and can be extended to at least k

out of n).

Semantics:

Mark A for change and Lock A

 Mark B and C for change; Obtain locks on those entities that can be

successfully changed.

 If at least one lock is obtained

Then Change A; Change the locked entities.

Unlock entities

41

Negotiation-xor Bond: Change A only if exactly one of B and C can be successfully

changed. (implements atomic transaction with "xor" logic and can be extended to exactly

k out of n).

Semantics:

Mark A for change and Lock A

Mark B and C for change. Obtain locks on those entities that can be

successfully changed.

If exactly one lock is obtained

Then Change A; Change the locked entities.

Unlock entities

A negotiation bond from A to B has two interpretations: pre-execution and post-

execution. In case of pre-execution, in order to start the activity A, B needs to complete

its execution. In case of post-execution, in order to start the activity A, A needs to make

sure that B can be completed afterwards. Both pre- and post-execution interpretations of

negotiation bonds enforce atomicity. In the rest of the paper, unless specified, we have

employed the pre-execution type of negotiation bonds implicitly.

 Web bonds can be tentative or confirmed. Confirmed bonds receive messages and

trigger appropriate actions. Tentative bonds are in waiting state to become confirmed.

They are in the waiting state due to reasons such as less priority and inadequate

resources. Usefulness of tentative bonds can be explained using the following meeting

example. Suppose an attendee cannot commit for a meeting at the time meeting is

scheduled, but the initiator still wants to schedule a tentative meeting, pending changes in

the schedule of the attendee at a later time. If this attendee is a “must” attendee, then

there is a tentative bond created back to the initiator. Typically, the reason that an

attendee cannot commit is because of a prior commitment, and hence a non-tentative

confirmed negotiation bond. Many such tentative bonds may go out from an attendee,

42

and therefore, these tentative bonds are in a priority queue of waiting list. If and when the

confirmed bond is destroyed, the highest priority tentative bond in the waiting list is

converted to a confirmed bond, and the associated trigger is activated. This trigger could

allow the initiator of the meeting to resolve the conflicts for this meeting and declare it

committed.

3.2.1 Notations for Web Bonds

A subscription bond from A to B is denoted as a dashed directed arrow from A to B. A

negotiation bond from A to B is denoted as a solid directed arrow from A to B. A

negotiation-and bond from A to B and C is denoted by two solid arrows, one each to B

and C, with a "*" in between the arrows. Similarly, a negotiation-or bond from A to B and

C is denoted by two solid arrows, one each to B and C, with a "+" in between the arrows.

A negotiation-xor bond from A to B and C is denoted by two solid arrows, one each to B

and C, with a "^" in between the arrows. A tentative bond, which is a negotiation bond in

a waiting list, is shown as a solid arrow with cuts.

 As shown in Figure 3.2, if there is a subscription bond from activity A to activity B, it

implies that once A completes its execution (or, completes some functionality indicated

by the subscription bond), B will be notified with suitable control and data as specified by

the subscription bond.

 Figure 3.2: Subscription bond Figure 3.3 Negotiation bond

Negotiation bonds enforce dependencies and constraints across entities and trigger

changes based on constraint satisfaction. If there is a negotiation bond from activity B to

activity A (Figure 3.3), it has two interpretations: pre execution and post execution. In

case of pre-execution, in order to start activity B, A needs to complete its execution. In

A B A B

43

case of post-execution, in order to start activity B, B needs to make sure that A can be

completed afterwards. In this dissertation, we have primarily employed the pre-execution

type of negotiation bonds implicitly.

Methods of activities can be bonded using both types of bonds simultaneously. This

special case is denoted as subscription-negotiation bond pair (Figure 3.4).

 Figure 3.4 Subscription-negotiation bond pair

Subscription-negotiation bond pair enforces the following condition. In order to execute

B, the activity A must be completed, and in addition, A can inform B of its execution by

sending control and/or data to B.

3.3 Evaluating Capabilities of Web Coordination Bonds

Efficient and effective distributed coordination require solid, unambiguous set of

primitives with sufficient expressive capabilities to bond (hook) autonomous constituent

parties together to form a coherent unit. Expressive power of a language has been

generally linked to its suitability. In our context, the primitives which make up such a

language should have enough expressive power to model complex processes, clearly

defined semantics [Bus03] to avoid ambiguity, and enough analytical power to learn

about and verify the correctness [Tho03]. To illustrate expressive and modeling power,

consider a comparison between C++ vs. Java when we need to program a GUI interface.

In terms of modeling capabilities both languages are Turing complete. However, one can

write such a program easily using Java’s swing package that may require much more

A B

44

effort in C++. Thus, Java turns out to be more expressive in this case. The difference

between modeling power and expressiveness is that the former indicates the ability to

design or model coordination (interaction) patterns whereas the latter denotes how

efficiently and easily such patters can be modeled. In other words, modeling power can

be regarded as the theoretical limit, whereas expressive power can be regarded as the

practical limit. Thus, it is important to access both the modeling power and the expressive

power to evaluate capabilities of web bonds.

 In this chapter, we prove that web bonds can model extended Petri nets, and thus, are

fundamentally capable primitives [Woh02]. In the literature, authors have generally

agreed on some standard workflow control flow and distributed communication patterns.

It is our intent to prove in the next chapter that web bonds can indeed model such

patterns.

3.4 Modeling Power of Web Bonds

In this section, we prove the modeling power of web coordination bonds in terms of Petri

nets. Petri nets have been employed as a benchmark to access the capabilities of object

oriented programming, showing that object-oriented features can be mapped directly onto

behaviorally equivalent colored Petri nets [Jen87, Lak94, Lak95].

 We establish here that web bonds have the modeling power of extended Petri nets.

This is important because extended Petri nets are the most powerful among different Petri

net models and is equivalent to the Turing machine [Age74, Mur89]. We prove this by

simulating the transitions that an extended Petri net can carry out by employing a network

of web bonds over stateful objects. An extended Petri net has places, transitions, and two

kinds of arcs, normal arcs and inhibitor arcs that link places to corresponding transitions.

45

A transition can fire if and only if each input place associated with normal arcs has a

token that can be consumed by the transition and each input place associated with

inhibitor arcs has no token. Firing of a transition results in placing a token in each output

place. We model each place as an object having methods to consume a token, add a

token, and check if it has zero tokens. A transition is modeled as an object which “fires“if

and only if the input and output objects satisfy the condition for firing the transition. It

employs a suitable network of negotiation bonds to enforce this dependency.

 Before going into details of the proof, first we formally define the Petri nets with

inhibitor arcs as the Extended Petri Nets (EPN) and also give a formal definition of a

network of web bonds.

Extended Petri Net (EPN): A EPN is defined as a 4-tuple (P, T, A, f) [Age73], where

T = {t B1B, t B2, B…, t BnB} is a finite set of transitions,

P = {p B1 B, pB2, …, BpBmB} is a finite set of places,

A = {T×P} ∪ {P×T} is a finite set of directed arcs such that

(pBi B, tBj B) ∈ A => (tBj B, pBi B) ∉ A,

(tBj B, pBi B) ∈ A => (pBi B, t Bj B) ∉ A, and

f: A -> {True, False} indicates if an arc is a normal arc or an inhibitor arc.

Two sets IBi B′, I Bi B′′ are defined as follows for a given transition tBi B:

 I Bi B′ = {j | (pBj B, tBi B) ∈ A and f(p Bj B, tBi B) = True}, is the set of indices of the places which

have normal arcs to transition tBi B.

 I Bi B′′ = {j | (pBj B, tBi B) ∈ A and f(pBj B, tBi B) = False}, is the set of indices of the places

which have inhibitor arcs to transition t Bi B.

Transition firing rule: A transition tBi B is enabled if its input places have at least one token

each except for those places which have inhibitor arcs to tBi B, which must have zero tokens

each. That is, for each arc (pBj, Bt Bi B) ∈ A, p Bj B > 0 for all j ∈ IBi B′ and p Bj B= 0 for all j ∈ IBi B′′. An

46

enabled transition can fire. When tBi B fires, it atomically i) deletes a token from each input

place pBj for all j ∈ IBi B′, and ii) puts a token in each output place pBj B where (tBi B, pBj B) ∈ A.

A Network of Web Bonds (WB) is defined as a 2-tuple (O, B), where

O = {o B1 B, oB2, … , BoBn B} is a finite set of objects, and

B = {bB1 B, bB2B, …, bBmB} is a finite set of bonds.

An object oBi B is a 2-tuple (M,V), where M = {mB1 B, mB2 B, …, mB|M|B} is a finite set of methods

available at o Bi B and V = {v B1, BvB2, B..., vB|V|B } is a finite set of data variables [Lak94]. We use

the notation oBi B.mBj B(paramBk B) to denote the method mBj B of object o Bi B with parameter set paramBk B.

A bond bBℓ Bis a 3-tuple (s, D, Type), where

s = o Bi B.mBj B(paramBk B) is the source method,

D = set of one or more destination methods oBi B′.mBj B′(paramBk B′), and

Type ∈ {Subscription, Negotiation}.

Subscription bond: A subscription bond from method mBj Bwith parameter set paramBk B of

object oBi B to method mBi B′ B Bwith parameter set paramBk B′ of object oBi B′ is defined as follows:

 if o Bi B.mBj B(paramBk B) is executed then invoke oBi B′.mBi B′(paramBk B′).

Negotiation-and bond: A negotiation-and bond from method mBj Bwith parameter set

paramBk B of object oBi B to each of oBi B′.mBj B′(paramBk B′) ∈ D is defined as follows:

 execute oBi B.mBj B(paramBk B) only if all oBi B′.mBj B′(paramBk B′) ∈ D can be executed.

47

Theorem: Web bonds have the modeling power of Extended Petri Nets as defined above.

Proof: To prove this we map a generic EPN to a network of web bonds as follows

(Figure 3.5 and Figure 3.6).

Figure 3 5: Petri Net with inhibitor arcs (EPN) Figure 3 6: Simulating EPN using web
bonds

We define a network of web bonds WB(O, B) corresponding to a EPN(T, P, A, f). Set O

is a collection of two types of objects, corresponding to the places and the transitions of

EPN, defined as follows (Figure 3.6).

pBm pBk B

pBn pBm+1B

Transition T

…

pBk-1B pB1B

… …

opk

opm incr()

decr()

zero()

incr()

decr()

zero()

incr()

decr()

zero()

incr()

decr()

zero()

op1

opk-1

op n

opm +1

incr()

decr()

zero()

incr()

decr()

zero()

fire()

otBi B

48

 O = P′∪ T′ such that P′= {opBj B | pBj B ∈ P}, T′= {otBi B | tBi B ∈ T}.

Each op Bj B ∈ P′ and otBi B ∈ T′ has the following methods and data variables.

 opBj B = ({increment(), decrement(), zero()}, {int num_tokens}), and

 ot Bi B = ({fire()}, {}), where,

For each tBi B, its set of incident arcs is mapped to a negotiation-and bond

bBi B =(otBi B.fire(), DBi B, negotiation-and) in B

 with set of destination methods D Bi B defined as follows:

 DBi B= {op Bj B.decrement() | j ∈ IBi B′} ∪ {opBj B.zero() | j ∈ IBi B′′B B} ∪ {opBj B.increment() | (tBi B, pBj B) ∈

A}.

In addition to these negotiation bonds among the objects in OB Bto carry out the transition

firing, there are three sets of subscription bonds in B for event flows whenever tokens

change:

 {(op Bj B.increment(), ot Bi B.fire(), subscription) | j ∈ I′Bi B } B B∪

 {(op Bj B.zero(), otBi B.fire(), subscription) | j ∈ IBi B′′B B} ∪

 {(op Bj B.decrement(), opBi B.zero(), subscription) | j ∈ IBi B′′}.

The first and the second set of subscription bonds, respectively, check for firing transition

t Bi B after an additional token is received in an input place and an inhibitor input place

reaches zero tokens. Third set invokes zero token checking in inhibitor places after each

decrement.

We define three sets JBi B′, J Bi B′′, and JBi B′′′ in WB as follows.

increment():

 num_tokens ++;

 return true;

 decrement():

if (num_tokens >0)
 { num_tokens --;
 return true;
 }
else return false;

zero():
 if (num_tokens = = 0)
 return true;
 else
 return false;

fire():
 return true;

49

i) JBi B′ = IBi B′,

ii) J Bi B′′ = IBi B′′, and

iii) J Bi B′′′ = {j | (tBi B, pBj B) ∈ A}.

With that we prove that when transition tBi B∈ T of EPN fires there is a corresponding

execution of fire() method of object ot Bi B ∈ T′ of WB, and vice-versa.

Part I: For each firing of transition tBi B∈ T of EPN there is a corresponding execution of

fire() method of object ot Bi B ∈ T′ of WB.

When transition tBi B ∈ T of EPN fires, it atomically deletes a token from each input place pBj B

for all j ∈ IBi B, puts a token in each output place pBj B where (tBi B,pBj B) ∈ A and makes sure that pBj B

= 0 for all j ∈ IBi B′′. Correspondingly, because of the negotiation-and bond bi according to

the above mapping, when otBi B.fire() method in WB is executed successfully, then,

atomically, all opBj B’s for all j ∈ JBi B′ execute opBj B.decrement() method, all op Bj B’s for all j ∈

J Bi B′′′ execute opBj B.increment() method, and all opBj B’s for all j ∈ J Bi B′′ execute opBj B.zero() method

successfully.

Part II: For each execution of fire() method of object otBi B ∈ T′ of WB, there is a

corresponding firing of transition tBi B∈ T of EPN.

According to the mapping, when otBi B.fire() method of object ot Bi B ∈ T′ of WB is executed, it

atomically executes opBj B.decrement() method in op’s for all j ∈ JBi B′, opBj B.increment()

methods in opBj B’s for all j ∈ JBi B′′′, and op Bj B.zero() method for all j ∈ JBi B′′. Correspondingly,

the transition tBi B ∈ T of EPN is enabled and its firing atomically deletes a token from each

input place pBj B for all j ∈ I′Bi B, puts a token in each output place pBj B where (tBi B, pBj B) ∈ A, and

makes sure that pBj B = 0 for all j ∈ IBi B′′.

Corollary: Web bonds can simulate the operation of a Turing machine.

Proof: Extended Petri nets as defined above and Turing machines are equivalent

[Age74]. We have shown that the extended Petri net can be simulated using a network of

50

web bonds. Therefore, web bonds can simulate the operations of Turing machines. Thus,

web bonds are fundamentally sound in terms of their modeling power.

3. 5 Modeling Various Dependency Scenarios Using Web Coordination Bonds

Expressive capabilities of web bonds can be illustrated through typical scenarios of

dependencies. In [Mal94], authors have identified common dependencies between

activities such as producer/consumer and shared resources. In this section, we illustrate

how such dependencies can be modeled using web coordination bonds.

3.5.1 Producer-Consumer Dependencies

Figure 3.7 shows how a classic relationship of a producer and consumer web process can

be modeled using two negotiation bonds. The “Place_Order” method at a consumer

process needs to ensure that the producer has enough inventories such that the

corresponding “Accept_Order” method will get executed successfully.

Figure 3.7: Coordinating Producer-Consumer web Processes

Place Order () Accept Order ()

Dispatch Goods() Accept Delivery()

Producer Web
Process

Negotiation
Bond

(NB)
Subscription
Bond (SB)

NB

Consumer Web
Process

51

Before guaranteeing this, the “Accept_Order” probably will check the current and

projected inventory. A negotiation bond is created from consumer web process to

producer web process. This is the basic situation for deploying a negotiation bond. Once

order has been placed by the consumer and accepted by the producer, a subscription bond

serves notice to “Dispatch_Goods” method. Note that the web bonds are useful within a

web process as well. Again before “Dispatch_Goods” executes, it needs to ensure that

consumer’s “Accept_Delivery” method can be completed successfully (ensuring that

enough space is available, for example).

Figure 3.8 illustrates how multiple producer scenarios can be easily integrated with a

consumer. “Call_ for_ Bids (I, C)” is executed announcing solicitation of bids (at least I,

an installment, but no more than C, the capacity). At all the producers, which have

subscribed to this method at the consumer, their “Place_Bid” method is activated. Those

producers, who are able and willing to place bids successfully, activate the “Select_Bid”

method of the consumer. The subscription bonds carry out these two steps, as no

negotiation is needed. Once a successful bid of a Producer PBiB has been chosen, the

subscription bond from “Select_Bid ()” is triggered, which activates the “Place_Order”

method at the consumer, and the scenario as in the previous paragraph gets carried out.

52

3.5.2 Shared Resource Dependencies

Modeling dependencies between competing entities for a shared resource is natural to

web bonds.

Resource Allocation

Figure 3.9 shows the bonds needed for two processes A and B to compete for a shared

resource process. The “Acquire” method of competing processes have a negotiation bond

to the “Allocate” method of the shared resource web process; unless “Allocate” can be

guaranteed, “Acquire” can not succeed. Note that “Allocate” will guarantee

reservation/lock to only one requesting process, say A, by creating a negotiation bond

back to A, while wait-listing B’s request using a tentative bond back to B (Figure 3.9b).

Subsequently A executes its “Release” thereby de-allocating its reservation and thus

deleting the negotiation bond that was created from the shared resource to A. This will

Figure 3.8: Coordinating multiple producers with a consumer Web process

 P 2 : Place Bid ()
…. P 3 : Pl ace Bid ()

.

 P 1 : Place Bid ()

P i : Place Bid ()

SB’S

P i : Accept Order ()

P i : Dispatch Goods

(I<= N <= C)

Producer Web
Processes

SB

Producer Web
Process Pi

Call For
Bids (I, C)

Select Bid ()

Place Order (I,C)

Accept
Delivery ()

Consumer Web
Process

SB

NB’S

53

change the tentative bond to B into a confirmed bond, triggering a round of negotiation

with “Acquire” process of B (Figure 3.9c).

3.5.3 An Application Scenario: Shared Calendars of Meeting Example

The potential of web-bond-like primitives and their utility in modeling and enforcing

contracts among competing web services can be further illustrated by a calendar of

meeting example. For this application, we demonstrate here how an empty time slot is

found, how a meeting is setup (tentative and confirmed), and how voluntary and

involuntary changes are automatically handled. A simple scenario is as follows: A wants

to call a meeting between times t1 and t2 involving B, C, D and himself. The first step is

to invoke Get_Available_Times() method to find the empty slots in everybody's calendar.

A then reserves the desired empty slot by calling Setup_Meeting(t1,t2) method. This

causes a series of steps. A negotiation-and bond is created from A's slot (t1,t2) to each of

Figure 3.9: Modeling Resource Sharing among Competing Web Processes

Acquire ()

Release()

Web Process B

Acquire ()

Release ()

Allocate ()

DeAllocate ()

Shared Resource

(a) Both A and B
compete for the same
resource

Web Process A

Acquire ()

Release()

Acquire ()

Release ()

Shared Resource

Allocate ()

DeAllocate ()

(c) A released the resource
and the tentative bond to B
becomes confirmed

Web Process A

Acquire ()

Release ()

Acquire ()

Release ()

Shared Resource

Allocate ()

DeAllocate ()

(b) A acquired the resource and B
is waiting. A tentative bond is
created from the acquired
resource to B

Web Process B Web Process B

54

the calendar tables (A.Setup_Metting(t1,t2), {A.Reserve_Slot(t1,t2), B.Reserve_Slot(t1,t2),

C.Reserve_Slot (t1, t2) , D. Reserve_Slot (t1, t2)}, negotiation-and) (Figure 3.10).

Figure 3.10: Scheduled Meeting

If slot can be reserved, then each corresponding slot at A, B, C and D create a negotiation

bond back to A's slot. That is (A.Reserve_Slot(t1,t2), {X.Setup_Metting(t1,t2) | X ∈ { A, B,

C, D}}, negotiation-and) are created.

Else, for those folks who could not be reserved, a tentative bond back to A is queued up at

the corresponding slots to be triggered whenever the status of the slot changes. The

forward negotiation-and bond to A, B, C and D are left in place. Back subscription bonds

to A from others are created to inform A of subsequent changes in the other participants

and to help A decide to cancel this tentative meeting or try another time slot.

Assume that C could not be reserved. Thus, C has a tentative bond back to A, and

others have subscription bonds to A (Figure 3.11). Whenever C becomes available (i.e,

Release_Slot(t1,t2) method is invoked), if the tentative bond back to A is of highest

priority, it will get triggered, informing A of C's availability. This triggers the

negotiation-and bond from A’s Setup_Meeting(t1,t2) to Reserve_Slot(t1,t2) of A, B, C and

*

B’s Calendar

D’s Calendar

A’s Calendar

*

C’s Calendar
Forward Negotiation Bond

Back Negotiation Bond

Reserve Slot(t1,t2)

Reserve Slot(t1,t2)

Reserve Slot(t1,t2)

Reserve Slot(t1,t2)

Setup_Meeting(t1,t2)

55

D, resulting in another round of negotiation. If all succeed, then corresponding slots are

reserved, and the target slots at A, B, C and D create negotiation bonds back to A's

Setup_Meeting(t1,t2) method (Figure 3.10). Thus, a tentative meeting has been converted

to committed state.

Figure 3.11: A Tentative Meeting

Now, suppose D wants to change the schedule for this meeting. This would trigger its

bond to A, triggering the forward negotiation-and bond from A to A, B, C and D. If all

succeed, then a new duration is reserved at each calendar with all forward and back bonds

established. If not all can agree, then D would be unable to change the schedule of the

meeting (assuming D is not sufficiently high priority).

3.6 Related Work and Discussion

Web services are the most recent technological advancement in distributed information

systems [Woh03, Pap05]. Therefore, web services related challenges could be understood

*

B’s Calendar

D’s Calendar

A’s Calendar

C’s Calendar

Tentative Negotiation
 Bond

Reserve Slot(t1,t2)

Reserve Slot(t1,t2)

Reserve Slot(t1,t2)

Reserve Slot(t1,t2)

Setup Meeting(t1,t2)

Committed
elsewhere

56

by considering how distributed systems evolved in the past. Web services were emerged

to solve the network and system heterogeneity problems that the enterprise application

integration (EAI) community faced for decades [Woh03, Aal02, Aal03a]. They hide the

network and platform heterogeneities providing a uniform interface (WSDL) to describe

services, a common communication protocol (SOAP) to send messages among services,

and a directory (UDDI) service to publish and find services. In [Dou03], authors have

argued that web services will play a major role in electronic data exchange and

transaction processing systems. In [Ley02], authors illustrate how existing WSs are

tailored to develop business processes over the Internet. Such applications need several

web services to be integrated together, which implies proper coordination (in particular,

control flow and dataflow) as well as message handling (sequencing and correlation)

among participating web services to accomplish the business logic efficiently. Moreover,

web service integration is intended to enable inter-organizational collaboration. Those

coordinated activities are long-running (workflows, transactions) and require much more

beyond invoke-response protocols and conventional transaction protocols such as two

phase commit (2PC) are not suitable [Ley02, Yun98, Lit03].

57

Table 3.1 Comparison of Web Service Coordination Languages/Standards

1 [Sha02], 2 [20], 3 [Woh03], 4 [Bal05a, Pra04c, Pra05]

Furthermore, currently individual WSs are stateless and do not have any provision to

store state information for long-lived transactions/workflows [Aal03a, Pel03]T. Many

languages, including WSFL [WSFL], WSCI [WSCI], WS-Coordination [WSC02], WS-

Conversation, BPML, XLANG [Tha01], BPSS, and BPEL4WS [Woh03] have emerged

as WS composition and coordination languages [Aal03c, Wee05]. Table 1 compares and

contrasts characteristics of a cross section of these main languages with web bonds.

Coordination Primitives: First, we focus on the coordination primitives of these

languages. These languages/standards propose various techniques for inter-linking

different WS’s together to form a composed web service application (web process). Web

process consists of activities that are linked with participant web services. Links act as

the communication channel, and all the communication handling need to be programmed

by the developer (Table 1, Column 1). Among these techniques, WSFL proposed three

 Mode of
Operation

Data
flow

Failure
recovery

Quality
of
Service
(QoS)

Web
Services
Based

Distributed
Coordination

Easy
Configurability
/Workflow
Development

Mobile-
Domain
Support

XPDL1 Activities
invoke
applications

No data
conversi
on

Not-
Specified

Activity
attributes
such as,
duration,
cost…etc

Not
Specifica
lly for
web
services

No Partial No

BPML 2 Activities
implement
actions

Data
mapping
from one
activity
to
another

Compens
ation,
Time-
outs and
event
handlers

Not-
Specified

Yes No Partial No

BPEL4WS
3

Activities
invoke Web
services

Data
container
s

Compens
ation

Deadline
and
durations

Yes No Partial No

Web
Bonds4

Web
services
invoke
other web
services

Data
adaptors

Partial Availabil
ity,
priority,
expiry
time

Yes Yes Yes Yes
(Using
SyD
middlew
are)

58

types of links: control links, data links, and plug links [Ley02]. “Control links connect the

completion of one activity to the execution of another. Data link connection represents a

data exchange between the two web services, and plug link represents the inherent

client/server structure of a web service” [Ley02]. In BPEL4WS, a partner represents both

the consumer (sequester) and the producer (supplier) web service [Wee05]. Partner link is

associated with two WSDL port types of interacting web services. Partner link is bi-

directional and it defines the shape of a relationship with a partner. Bi-directionality of

partner links enables two services to exchange messages during the lifetime of the

process instance. Since BPEL is based on IBM’s WSFL and Microsoft’s XLANG, BPEL

partner links underpin WSFL’s control links, plug links and data link concepts. The key

difference between BPEL4WS partner links and web coordination bonds is that web

bonds allow dependency modeling through negotiation bonds while partner links act as a

channel between two port types between two interacting services for data exchanges and

invocations. Group dependencies and constraints need to be modeled using other

language constructs. Therefore, partner link is used to directly model peer-to-peer

conversational partner relationships.

 The XML Linking Working Group proposed the XLink language, which is capable of

establishing relationships between resources or portions of resources on the web.

Currently this workgroup is not active. However, XML’s RDF [RDF04] proposes a

similar idea. Both XLink and RDF “provide a way of asserting relations between

resources” [RDF04]. In particular, RDF is a XML based mata language for representing

information about resources in the World Wide Web. RDF is based on the idea of

identifying things using Web identifiers (called Uniform Resource Identifiers, or URIs),

and describing resources in terms of simple properties and property values. RDF allows

establish relationship among entities of the resource based on its class definition schema

and intended for programs to read and understand them [Eli05]. Such technologies have

the potential to evolve as useful tools for WS-composition.

59

 Semantic web community also proposes an ontology-based framework OWL-S

(DAML-S) to enhance the web service infrastructure [Ver05, Bra03]. OWL-L proposes a

new layer of metadata on top of WSDL so that services can be described and discovered

semantically. Such enhancements should strengthen the integration and composition and

provide automatic verification mechanism [Hul04]. Detailed discussion on semantic web

service based composition is in [Ver05, Bru05, Bra03]

Formalizing Web Service Coordination Techniques: In [Ben02], authors have pointed

out that lack of fundamental primitives for web service integration has resulted in

plethora of products and standards. These standards are overlapping competing, and far

from being complete. They require refinement, consolidation, standardization, and

theoretical treatment to find a small yet powerful core set of threading primitives [Sta03].

In [Bru05], authors present a hierarchy of transactional calculi with increasing

expressiveness. They start from a very small language in which activities can only be

composed sequentially. Then, progressively introduce parallel composition, nesting,

programmable compensations and exception handling. In [1], author discusses pros and

cons of Petri nets and Pi calculus for web service conversion languages (WSCL) and

illustrates fundamental differences between Petri nets and Pi calculus. A choreography

language named CL [Bus05] is another noticeable effort towards formalizing web

coordination. Following the approach of WS-CDL, in CL choreography contains a

“global” definition of the common ordering conditions and constraints under which

messages are exchanged within a conversation among collaborating services. In [Luc05],

authors argue that three different mechanisms for error handling available in BPEL are

not necessary in web service composition. They have formalized a novel orchestration

language based on the idea of event notification as the unique error handling mechanism,

and present a formal definition of three BPEL mechanisms in terms of their calculus. In

[Coo05], authors propose a programming language which directly supports Web service

60

development that leverages XQuery for native XML processing, supports implicit

message correlation and has high level calculus-style concurrency control. However, such

developments are in very early stage and much remains to be done to find a web service

“coordination theory.”

3.7 Summary

The next generation Internet applications will be various kinds of collaborative

applications among heterogeneous, autonomous entities deployed over the web. Even if

there are a variety of products and standards for web services composition, there is no

fundamental framework to develop and deploy collaborative applications over web

services. In this chapter, we have introduced the concept of web coordination bonds as an

effort towards a fundamental set of primitives for web service coordination. Web

coordination bonds enable web services to create and enforce interdependencies and

constraints, and carry out atomic transactions spanning over a group of web

entities/processes. We have demonstrated the concept of web coordination bonds as a

capable framework to develop and deploy such collaborative applications with the

required theoretical underpinning. We theoretically showed its modeling power is

equivalent to the modeling power of extended Petri net. We also highlighted the

expressive power of web coordination bonds by modeling various dependency scenarios.

In the next chapter we further illustrate the on expressiveness of web coordination bonds

by modeling a comprehensive set of benchmark workflow control flow patterns and

distributed communication patterns.

61

CHAPTER 4

EXPRESSIVNESS OF WEB COORDINATION BONDS

In Chapter 3, we have presented the idea of web coordination bonds and proved that web

bonds can model extended Petri-nets, and thus, are fundamentally capable primitives

(Modeling power [Wee05, Pra05]. However, in practical terms, what matters most is their

expressiveness or the suitability [Kie02]. As we have mentioned earlier, modeling power

and the expressiveness are closely related terms. However, the subtle difference between

two terms is that the former indicates the ability to design or model coordination

(interaction) patterns whereas the latter denotes how efficiently and easily such patters

can be modeled. Therefore, modeling interaction patterns is a suitable benchmark for

evaluating expressiveness [Aal03a, Aal03b].

 Significant research work has been carried out by both academia and industry to

identify interaction/ dependency patterns and adequacy of workflow languages to enforce

such interaction patters in web service coordination/choreography [Aal03a, Aal03b,

Aal04, Ben02, Dus04, Bru05]. One of the perceptible outcomes of such analysis has been

the identification of different categories of workflow control flow patterns,

communication patterns, and resource sharing patterns. Among interaction patterns,

workflow control flow patterns and distributed communication patterns capture essential

requirements to model workflow dependencies [Gua98, Hua98, Pre02]. Therefore, here,

we demonstrate the expressiveness of web coordination bonds by modeling a

comprehensive set of benchmark workflow scenarios and distributed communication

patterns. In addition, a comparative analysis is presented against corresponding BPEL

and Petri-Net based constructs for aforementioned patterns.

62

4.1 Modeling Workflow Control Flow Pattern: Background

In this section we briefly discuss workflow control flow patterns, WS-BPEL and Petri net

terminology that will be used in this Chapter. In [Aal03c], authors have gathered

following six categories of control flow patterns that occur in workflows. Table 4.1,

briefly describes a benchmark set of workflow control flow patterns.

Table 4.1: Workflow Control Flow Patterns

Category

Benchmark

patterns

Description

Sequence An activity of a workflow is enabled after
completion of another activity the same
workflow.

Parallel Split AND split is a point in a workflow where
control is passed to multiple paths and all
paths are executed in parallel

Synchronization Synchronization is a point in a workflow
where multiple control paths converge into a
single control

Exclusive Choice XOR-Split is a point in a workflow where
one of possible paths is selected.

Basic control flow

Simple Merge XOR-merge is a point in a workflow where
alternative branches get together without
synchronization.

Multi-Choice A point in a workflow where one or several
paths will be chosen based on some selection
criteria

Advanced
branching and
Synchronization

Synchronizing-
Merge

OR-merge is a point in a workflow where
several control paths converge into a single
control. If more than one path is active
synchronization is required

63

Multi-Merge Multi-merge is a point where several
branches merge without synchronization.
Also, for each active path activity followed
by merge will be executed in execution order.

Discriminator A point in a workflow where it starts the
subsequent activity as soon as one of the
incoming paths is completed and waits for
other paths to complete and ignore.

MI without
synchronization

For any workflow activity, multiple instances
of that activity can be created. These
activities and independent and do not need to
synchronize.

MI with prior
design time
knowledge

For any workflow activity, multiple instances
of that activity can be created. These
activities need to synchronize before starting
subsequent activities of the workflow.

MI with prior run
time knowledge

For any workflow activity, multiple instances
of that activity can be created. These
activities need to synchronize before starting
subsequent activities of the workflow.
Difficulty here is that numbers of instances is
not known at the design time.

Patterns involving
multiple instances
(MI)

MI without prior
run time
knowledge

For any workflow activity, multiple instances
of that activity can be created. These
activities need to synchronize before starting
subsequent activities of the workflow. It
becomes more difficult due to the fact that
numbers of instances is not known at the
design time.

Deferred choice A point in a workflow where one of the
several possible paths is chosen. However,
deferred choice is different from XOR logic
in that choice is made by the environment
(user) not explicitly based on data. Once a
particular path is chosen other branches are
withdrawn.

State-based
patterns

Interleaved
parallel routing

A point in a workflow where set of activities
executed in any
order. Importantly, all the activities will
executed. Order is not known
before runtime.

64

Milestone Milestone is a state based control flow
pattern where an activity is enabled only if a
certain state has been reached and still not
expired. Therefore, to start an activity that
has milestone control dependency it needs to
wait for that specified state.

Arbitrary cycle A point in a workflow where some set of
activities (paths) can be repeated several
times.

Structured
patterns

Implicit
termination

A workflow needs to terminate when there is
no other activity to perform (on other active
activity and no other activity can be made
active)

Cancel activity Enabled activity is removed from the
workflow.

Cancellation
patterns

Cancel case This is an extended version of cancel activity
where the whole workflow instance is
removed

i. Basic control flow patterns capture simple control flow such as sequence,

AND split,

 and AND joint.

ii. Advanced branching and synchronization capture patterns such as

synchronous merge and multi merge require complex decision-making.

iii, iv. Structured and state based patterns require analyzing current execution state of

 the workflow. and decisions are made accordingly. Such decisions are made at

 runtime.

v. Patterns involving multiple instances need to manage (create and synchronize)

multiple instances of workflow activities during the execution of the

workflow.

vi. Finally, cancellation patterns need workflow to remove one or more activities

or dismantle the whole workflow during the execution.

65

4.1.1 Business Process Execution Language for Web Service (WS-BPEL)

BPEL4WS [Alo04, WSCI] (Business Process Execution Language for Web Services) is a

process modeling language developed by IBM, Microsoft, and BEA. It supersedes

XLANG (Microsoft) and WSFL (IBM) and built on top of WSDL. BPEL defines

activities as the basic components of a process definition. Structured activities prescribe

the order in which a collection of activities take place (Table 4.2). Ordinary sequential

control between activities is provided by sequence, switch, and while. Concurrency and

synchronization between activities is provided by flow structure. Nondeterministic choice

based on external events is provided by pick. In BPEL, process instance-relevant data

(containers) can be referred to in routing logic and expressions (receive, send). It also

defines a mechanism for catching and handling faults similar to common programming

languages such as Java. One may also define a compensation handler to enable

compensatory activities in the event of actions that cannot be explicitly undone.

Table 4.2: BPEL Primitives [WSCI]

BPEL-
Primitives

Functionality

BPEL-

Primitives

Functionality

<sequence> One after the other <reply> Send msg to partner as
response to <receive>
other

<flow> Parallel <assign>

Manipulate variables

<pick> Choose by inbound message <wait>

For duration / until time

<while> Iteration <terminate>

End the process

<scope> Nest, with declarations and
handlers, synchronize
communication

<compensate> Run compensation
handler

<invoke> Send msg to partner; possibly
receive response

<empty> Do nothing

<receive> Accept msg from partner <throw>

Exit with fault to outer
scope

66

BPEL Partner Links: The concept of partners is used to define two web services that are

to be invoked as part of the process. It is based on two elements: a) partner link type: it

contains two port types, one for each of the roles in the partner entry (i.e., one port type is

the port type of the process itself, the other one is the port type of the service being

invoked), b) partner Link: the actual link to the service. This is where the actual

assignment to a binding is made (outside the scope of BPEL). Bi-directionality of partner

links enables two services to exchange messages during the lifetime of the process

instance.

5.1.2 Petri-net

 (a) Before firing transition T (b) After firing transition T

Figure 4.1: Petri-net model

Petri-net is one of the widely adopted tools for concurrent process modeling. Petri-net

modeling has been developed on three fundamental primitive concepts: tokens, places,

and transitions.

Tokens: dots that move between places.

Places: represents “states” of system based on the distribution of tokens.

P1

P2

P3

T1

T2

P1

P2

P3

T1

T2

67

Transitions: A transition has Zero or more input arcs coming from input places and zero

or more output arcs going to output places. Transition is enabled if and only if there are

one or more tokens in all input places. Enabled transition fires: by removing one token

from each input place and depositing one token in each output place.

 Modeling power of Petri-net is equivalent to the modeling power of Turing machine

[Age74]. Thus it has sufficient modeling power to model any computable function.

Extended versions such as color Petri-net and timed Petri-net have been proposed for

easy usage of the concept. However, fundamental capabilities remain the same. Extensive

discussion on Petri-nets is in [Mur89]. Currently, significant amount of interest has been

shown in modeling workflows and distributed computing scenarios over web services

based on Petri-net modeling [Aal04, Aal02, Ben03].

 Reminder of the Chapter discusses how to model these patterns using web

coordination bond highlighting corresponding BPEL and Petri net-based

implementations. We compare and contrast Petri-net, BPEL and web coordination bonds

implementation alternatives.

 4.2 Modeling Workflow Control Flow Patterns Using Web Coordination Bonds

Different workflow models have different expressive capabilities to enforce these control

flow patterns [Aal03a]. However, analysis shows that none of them is comprehensive

enough [Aal03a]. Table 4.3 shows a pattern-based analysis of BEPL, Petri-Net, WSCI,

and Web Coordination bonds (Here, “+” implies direct support, “-“ implies no direct

support, and “+/-“ implies direct support with some restrictions). As shown in Table 2,

web bond artifacts have enough expressive power to enforce these control flow patterns

68

directly. Remaining sections of this Chapter discuss issues related to modeling these

interaction patterns and reason out why web coordination bond is a better candidate.

Table 4.3: Support for workflow control patterns in different web service composition

languages and standards [Wfp03, Aal02, Aal03a]*

Pattern Standard/Product

Web
Bond

Petri
Net(Basic+
High level)

BPEL4WS WSCI

1. Basic Control: Sequence + + + +
Parallel Split + + + +
Synchronization + + + +
Exclusive Choice + + + +
Simple Merge + + + +
2. Advanced Branching &
Synchronization: Multi Choice

+ + + -

Synchronizing Merge + - + -
Multi Merge + + - +/-
Discriminator + - - -
3. Structural: Arbitrary Cycles + + - -
Implicit Termination + - + +
4. Multiple Instances: MI without
Synchronization

+ + + +

MI with a Priori Design Time
Knowledge

+ + + +

MI with a Priori Runtime
Knowledge

+ - - -

MI without a Priori Runtime
Knowledge

+ - - -

5. State based: Deferred Choice + + + +
Interleaved Parallel Routing + + +/- -
Milestone + + - -
6. Cancellation: Cancel Activity + +/- + +
Cancel Case + - + +

 * We have taken column 2, 3 and 4 from ref [Aal03a]

69

4.2.1 Basic Control Flow Patterns

Basics control flow patterns capture simple split and join constructs. Sequence, the simplest

of basic control flow patterns, requires an activity of a workflow to be enabled directly after

the completion of another activity of the same workflow. Parallel split and exclusive choice

dictates the workflow activity to split the control to multiple paths or pass the control to

exactly one of possible paths respectively. Synchronization pattern requires that multiple

control paths converge into a single control whereas simple merge requires alternative

branches get together without synchronization. These constructs are relatively easy to

implement and almost all the workflow models have mechanisms to support them (Table

4.2). Parallel split and simple merge constructs have being presented in this section.

Implementations of other basic control flow patterns are in [Pra04c].

Parallel split (AND-Split): AND split is a point in a workflow where control is passed to multiple

paths and all paths are executed in parallel (Figure 4.2a).

Figure 4.2: Parallel Split

4.2a: AND-Split
Syntax

4.2b: AND-Split using
Web Bonds

4.2c: AND-Split BPEL
Implementation

[Woh02]

<sequence>
 activity A
 <flow>
 activity B
 activity C
 </flow>
</sequence>

C

A

B

 C

A

B

*

Pa

Pc

Pb

Ta

Tb

Tc

4.2d: AND-Split Petri
net Implementation

70

Order of execution: A->[B,C] or A-> [C, B]

Implementation: Both, B and C, are to be executed in parallel once A is completed. It can

be captured by creating subscription bonds from A to B and C (Figure 4.2b). These

subscription bonds make sure that control is passed to both B and C simultaneously after

the completion of A. Negotiation bonds from B, C to A are required to ensure that B and

C can be executed only after A is competed.

 BPEL enforces parallel split using flow activity control after the completion of A

(Figure 4.2c). In Petri-net implementation, transition Ta represents the activity A of the

workflow When Ta fires, it puts a token each in places Pb and Pc enabling transitions Tb

and Tc (Figure 4.2d) simultaneously.

Simple Merge (XOR merge): XOR-merge is a point in a workflow where alternative

branches get together without synchronization.

 Figure 4.3: Simple Merge

4.3a: XOR-Merge
Syntax

4.3b: XOR-Merge
using Web bonds

4.3c: XOR-Merge BPEL
Implementation [Woh02]

<flow>
<define control links
from A, B to C>

 activity C
 join condition= A
OR B
</flow>

B

A

XOR C

A

C

B

^

4.3d: XOR-Merge Ptri
net Implementation

Pc

Pc

Pc

Ta

Tb

Tc

71

Order of execution: AC, BC

Implementation: Complexity of XOR-merge is reduced due to the assumption that alternative

threads A and B do not execute in parallel. Construction shown in Figure 4.3a implements

the simple merge using web bonds. Negotiation bonds from C to A and B with XOR logic

make sure that C will be executed only if one of A and B are active.

 BPEL models simple merge by having control links from A, B to C and evaluating ‘OR’

join condition between bonds (Figure 4.3c). Corresponding Petri net construct is shown in

Figure 4.3d. This is valid construct due to the assumption that either Ta or Tb gets fired

placing only one token in place Pc. However, such assumptions may not be realistic

especially in distributed settings. Relaxation of this assumption leads to advanced

synchronization patterns such as Multi merge and Sync merge that will be discussed in

following section.

4.2.2 Advanced Synchronization Patterns

Figure 4.4: Advanced Synchronization

As shown in Figure 4.4, in advanced synchronization models, problem arises as the split

node can activate m out of n paths (0 ≤ m ≤ n). When it comes to the synchronization,

B1

C

Bn

B2A

How
many

paths are
active ?

Synchronize
or Merge ?

72

synchronization node needs to know which paths to be synchronized. In some cases,

synchronization needs to be done based on different merging criteria [Kie02]. Thus,

synchronization is a significant issue in workflow modeling and has gained considerable

attention [Bar05,Gor05, WSCI, Jan03, Wee05]. There are four advanced synchronization

patterns: Multi choice, Synchronous merge, Discriminator, and Multi merge. Multi

choice is the split of control to one or several paths based on some selection criteria.

Three synchronization patters; Synchronous merge, Discriminator, and Multi merge

layout different rules of merging control flow.

 Multi choice is a simple construct to implement and many workflow technologies

have direct support. BEPL implements the multi choice by using switch-case construct or

using partner links with OR logic embedded [WSCI]. Web bonds enforce multi choice by

having subscriptions bonds from the split node to destination nodes with OR logic

embedded. Evaluation conditions need to be specified during the bond creation time.

Petri net enforces this logic by having AND-split followed by XOR-split.

Synchronization patterns are hard to model. Here, we discuss synchronization patterns in

detail.

Synchronous merge (OR - Merge) (Figure 4.5a): OR-merge is a point in a workflow

where several control paths converge into a single control.

73

Figure 4.5:Synchronization Pattern

Order of execution: ABD, ACD, ABCD, ACBD.

Implementation: In Synchronous merge, if more than one path is active then these paths

need to be synchronized. Otherwise only merge takes place. Main difficulty with

synchronization is to decide when to synchronize and when to merge. As shown in Fig

9c, this difficulty can be eliminated by creating a subscription bond from activity A to

“Sync” activity. This subscription bond transfers data pertaining to the split of control at

A. Then, based on that data “Sync” waits for all the active paths before activating the

subscription bond from “Sync” to D. A Negotiation bond from “Sync” to A is required

because “Sync” must start its activities after the completion of A.

 It is not easy to model such patterns using Petri-net based models as Petri-net

supports only XOR-join or AND-join directly [Aal03a]. There are several alternatives

solutions to this problem.

1. Split node informs the synchronization node which paths to synchronize (as we

have used in web bond based implementation).

<flow>

<define links from the
split node>

 Activity A
 Trigger links
 Activities B and C

Trigger links
 Activity D
</flow>

 4.5b. Synchronization

using BPEL
4.5c. Synchronization using Web
Bonds

4.5a. Synchronization
syntax

B

D

C

A

A

B

C

Sync D+
+

74

2. Activate all the paths from split node with either true or false tokens.

Synchronization node can synchronize the true paths and ignore the false paths.

For the first solution, the designer has to put some extra logic to send information from

split-node to join node, and also the join node to process it. Such logic is not available in

Petri-net. In the second solution, the designer has to extend the Petri net model to

accommodate true/false tokens. BEPL support this construct as it allows control links to

pass true/false tokens via control links. This method is known as the dead path

elimination [WSCI] (Figure 4.5b).

Multi Merge (Figure 4.6a): Multi-merge is a point where several branches merge without

synchronization. Merge activity will be instantiated several times.

 Figure 4.6: Multi Merge

Order of execution: ABD, ACD, ABDCD, ABCDD, ACDBD ACBDD

Implementation: In this construct, activity D will be activated several times based on

number of active paths. This can be enforced using the bond structure shown in Figure

4.6c. A is the split point with OR split. “Merge” has to execute D as many as number of

active control paths. This can be implemented as follows.

4.6b Multi merge using
Petri Net

4.6c Multi merge using Web Bonds 4.6a Multi merge syntax

B

D

C

A

A

B

C

Merge D
^

+
Pd

Pc

Pb

Td

Tc

Tb

75

 Merge has negotiation bonds with OR logic with all incoming paths. Once it receives

control from one of its incoming paths, “Merge” makes a copy of its out going bonds.

Then removes all the bonds related to the currently active path. Then it triggers the

subscription bond from merge to D. Once D finishes its execution D triggers the

subscription bond back to “Merge”. At this time, “Merge” reinstates copied bonds back

and repeats the same procedure for all other incoming controls.

 BPEL does not have direct construct because the designer has to keep track of if an

instance of D is running and wait for it to finish before stating another. Otherwise it has

to create a new instance of D, which is not intended here. Petri-net nicely capture as Td

can be fired only when there is a token in place Pd and it is ready to fire. Td becomes

ready once it completes the current execution of Td.

 Unlike synchronization, “Merge” create instances of D each time it receives control

from an active path. Therefore, “Merge” does not need to know information about active

paths in advance. In synchronizing D is executed once. Here, in Multi-merge activity

after multi-merge is executed several times based on number of active paths. We can

have a control pattern between those two extremes where activity D is executed once but

it can be started as soon as one of B or C is completed. This is called the discriminator,

the next pattern.

Discriminator (Figure 4.7a): A point in a workflow where the activity is started as soon as

one of the incoming paths is completed. Then it waits for other paths to complete and ignores

the control.

76

Figure 4.7: Discriminator pattern

Order of execution: ABCD, ACBD, ABDC, ACDB

Implementation: In discriminator construct, activity “Disc” waits for the control from one of

the incoming paths and activates D. After that it waits for remaining paths for the control and

ignores them. This can easily be enforced by creating a separate activity “Disc” with the

bond structure as shown in Figure 4.7b. Negotiation bonds from “Disc” to B and C with OR

logic ensure that “Disc” can get control from several paths. However, in this case, it has to

wait for only one specific control path. This information needs to be sent by A or “Disc” has

to decide it based on runtime data. Former can be enforced by having a subscription from A

to “Disc”. However, latter is workflow designer’s responsibility. Once “Disc” receives

control from the desired path, it activates the subscription bond from “Disc” to D.

Subsequent invocations to “Disc” through subscription bonds from incoming paths will be

ignored because the subscription bond from ”Disc” to D has already been fired.

 Both BPEL and Petri net do not support this construct. As pointed out in [Wee05], BPEL

join constructs are evaluated once all links have their logical value. However, this case

requires first positive link to be identified and precede the execution of the workflow. Other

links need to be ignored. In case of BPEL it is workflow designer’s responsibility to

incorporate such logic. Colored or timed Petri-nest can be used to model this pattern.

4.7b Discriminator using web
bonds

B

D

C

A

4.7a Discriminator syntax

A

B

C

Disc D+
^

77

However, the workflow designer has to incorporate extra logic to identify the proper tokens

to enforce the discriminator and discard other tokens.

M out of N: This can be deduced from construct for synchronous merge with m paths out of

N. In this case, “Disc” waits for M incoming branches to be completed before starting the

next activity and waits for other incoming branches and ignores them.

4.2.3 Patterns Involving Multiple Instances (MI)

Multiple instance patterns require workflow activity to instantiate several instances of the

activity. In some situations, these instances need to be synchronized under various

conditions before proceeding to the next activity of the workflow. Four patterns involving

multiple instances have been identified [Aal03c]: a) Multiple instances without

synchronization, b) Multiple instances with prior design time knowledge, c) Multiple

instances with prior runtime knowledge, and d) Multiple instances without prior runtime

knowledge. To facilitate multiple instance patterns, workflow activity should support

multiple instantiation. Table 2 Illustrates how to model these multiple instance creation

patterns using web bonds highlighting corresponding BPEL and Petri net alternatives.

Multiple instances without synchronization: Among those four patterns, this is the

simplest as it does not need to synchronize with instances. Therefore, any activity can

instantiate as many instances as required and transfer the control to the next activity. The

next activity does not need to wait on all the instances to be finished before starting its

execution. In fact, this is similar to sequence in terms control flow structure.

78

Figure 4.8: MI without Synchronization

Figure 4.8c shows the bond structure to enforce this pattern. Activity B will create

multiple instances of it and then passes the control to C. This can be achieved by set of

subscription bonds from B to each of its instances. This enables instances to be created

with suitable initial data set. As soon as instances are created, B triggers the subscription

bond from B to C and passes the control to C. At this time, instances may active and

running. Most of the workflow models support this construct. Both BPEL and Petri-net

support this construct directly. BPEL spawns as many instance as required using a while

loop (Figure 4.8b).

Multiple instances with prior design time knowledge: In this case, synchronization is

required but number of instances is known at the design time. All three modeling techniques

support this construct (Figure 4.9). Here, the control flow logic is similar to AND-Split

followed by AND-Join.

B

I1 In

C A

<process>
<while cond==”c1”>
 <invoke process B>
 </invoke>
</while>
<process>

Create
instances

Ta

Tb

Ti

4.8b MI without
synchronization using BPEL
[Woh02]

4.8c MI without synchronization
using Web Bonds

4.8a MI without
synchronization using Petri
Net

79

Implementation: As number of instances is known at the design time, placeholders for them

are created at the design time. This can be enforced through parallel split followed by

synchronize merge. Fig. 13c shows the bond structure to enforce this control flow.

 Figure 4.9: MI with prior design time knowledge

Multiple instances with or without prior runtime knowledge: These patters are hard to

model. Designer of the workflow is not aware of number of instances at the design time.

As it is a runtime parameter designer cannot model them using place and transitions in

Petri-net. Therefore, the designer has to come up with the logic to control and keep track

of number of instances and synchronize them. Such modeling is difficult and need

considerable effort. Both BPEL and Petri net do not directly support this construct

[Men04, Aal02]. Programming language techniques outside of Petri-net or BPEL core

primitives are required (Table3, Columns 1, 2). Keeping a counter and updating it when

instance are spawned and terminated would be a one simple solution (Table 3, Column

2). However, web coordination bonds enable such dynamic modeling due to it ability

handle message based as well as state based synchronization and the dynamic nature.

4.9b MI with prior design
time knowledge using
BPEL [Woh02]

4.9c MI with prior design time
knowledge using Web Bonds

4.9a MI with prior design time
knowledge using Petri Net

B

I1

In

*
C

A

<process>
<flow>
<while cond==”c1”>
 <invoke process B>
 </invoke>
<flow>
</while>
<process> Pc

Pc

Pc

Pc
Tb Tc

TI1

80

Subscription bonds and negotiation bonds keep track of instances and synchronize them

accordingly.

 MI with prior runtime knowledge: For any workflow activity, multiple instances of that

activity can be created. These activities need to synchronize before starting subsequent

activities of the workflow.

Implementation: As number of instances is not known at the design time, most of the

workflow models cannot enforce this construct. Due to the dynamic creation and deletion

facility of web bonds, this can easily be enforced using web bonds. To enforce this

control we introduce a new node which is capable of creating and synchronizing

instances (Table 4.3, Row 1, Column 3). Here, activity B passes the control to “create”

sub-activity with instant creation parameters. Subscription bonds (with AND logic

embedded) will be created with each instance at runtime. At the same time, it makes sure

that the sub-activity “sync” creates negotiation bond with each instance. This is achieved

through the subscription bond from “create“ activity to “sync” activity. This

subscription bond passes all the instance related information to “sync” and then “sync”

creates negotiation bonds with each instance at runtime. Having negotiation bonds to

each instance, “sync” activity ensures that it waits for all instances to be finished before

passing the control to C.

MI without prior runtime knowledge: For any workflow activity, multiple instances of

that activity can be created. These activities need to synchronize before starting

subsequent activities of the workflow. Unlike previous case, here, number of instances is

not known before runtime. Implementation: This is one of the most difficult controls to

be enforced. web bonds can enforce this relatively less difficulty. In order to accomplish

81

this we can create the bond structure as shown in Table 4.3, Row 1, Column3, web bond

based implementation. “Create Instance” activity is capable of spawning new instances.

All the instances must be synchronized before activating activity C. In order to achieve

this C has a negotiation bond with “Sync”. When “Create Instance” activity creates a

new instance, “Sync” activity adds a new negotiation bond to that instance dynamically.

This can be achieved by having two subscription bonds form “Create Instance” activity to

new instance and “Sync” activity with AND logic. With this construct, “Sync” can only

complete its activity once all the instances are done. “Ext” is an external activity that

may trigger “Create Instance” activity to create new instances.

Table 4.4: Patterns Involving Multiple Instances

Petri-Net based WS-BPEL [Wee05] Web Coordination Bonds
a) MI with prior runtime
knowledge

Tc

Pc

Designer needs to
keep track of
number of active
instances and
their
synchronization

Tb

b) MI without prior runtime
knowledge

A B C create sync

*

I3 I2 I1

*

A B

Create Instances

Sync

C

A A A

Ext

 moreInstances:=True
 i:=0
 <while moreInstances OR
i>0>
 <pick>
 <onMessage
StartNewActivityA>
 invoke activityA
 i:=i+1
 </onMessage>
 <onMessage
ActivityAFinished>
 i:=i-1
 </onMessage>
 <onMessage
NoMoreInstances>
 moreInstances:=False
 </onMessage>
 </pick>
 </while>

No direct support

82

4.2.4 State Based Patterns

 Sate based patterns require control path of the workflow to be decided based the current

execution status of the workflow. Here, we illustrate how to enforce these constructs

using web coordination bonds. Also, corresponding BPEL and Petri net constructs have

been discussed.

Deferred Choice (Figure 4.10a): A point in a workflow where one of the several possible

paths is chosen. However, deferred choice is different from XOR logic in that choice is made

by the environment (user) not explicitly based on data. Once a particular path is chosen other

branches are withdrawn.

Implementation: As shown in Figure 4.10a, B is the differed choice point where several

alternatives are offered and only one is chosen. Unlike XOR split, here, alternatives are

offered to the environment and upon selection of the appropriate control path, other

alternatives are withdrawn. This can be achieved with bond structure shown in Fig. 14b.

“Ext” is the workflow activity that receives external inputs for the differed choice. When

“Diff” is active, “Ext” can select either B or C thought the subscription bond from “Ext”

to “Diff”. Negotiation bond from “Diff” to “Ext” make sure that “Diff“ can be invoked

only if “Ext” sends its selection. This invocation triggers subscription bond with XOR

logic to B and C. Only one bond will be selected and other bond will be deleted at

runtime. Deletion makes sure that other alternatives are withdrawn.

 BPEL implements this construct using pick activity. Pick activity waits for the

appropriate message before passing the control. As shown in Figure 4.10c, upon receipt of

83

the message, says C, it picks the activity C and execute. Corresponding Petri net

implementation is shown in Figure 4.10d, once Ta fires; it puts a token in place Pa. Then,

whenever, place Text has a token it can fire either Tc or Td. Text gets a token when external

even Text fires.

Figure 4.10: Differed Choice

Milestone: Milestone is a state based control flow pattern where an activity is enabled

only if a certain state has been reached and still not expired [Aal03c]. Therefore, to start an

activity that has milestone control dependency it needs to wait for that specified state. For

example, as shown in Figure 4.11a, activity C is enabled if activity A has been completed,

hence M has the control, and B has not been completed, hence the control is still in M. In

other words, control has been released from A and has not been consumed by C yet. This

situation can easily be modeled using middle activity M [Aal03c].

Implementation: This is difficult control to enforce because there is a race condition among

activities and the execution of some activities may disable others. Most workflow systems do

not have automatic way of disabling and enabled activity. However, milestone can easily be

enforced using the power of negotiation bonds as shown in Figure 4.11b. C has a negotiation

C

Diff

B
Ext

A XOR

 Ta

Text

Tb

Tc

<pick>
 <onmessageB>
 activity B
 </onmessageB>
 <onmessage C>
 activity C
 </onmessageB>
</pick>

C

Diff

B
Ext

A XOR

4.10a Differed Choice
Syntax

4.10b Differed Choice
using web bonds

4.10c Differed
Choice using BPEL

4.10d Differed Choice
Using Petri Net

84

bond to M. This means that C can only be done if M is completed. In this case, M is

completed if M has the control. In addition, M has a subscription bond to inform the arrival

of control to C. Negotiation bonds from M to A and B are also required to enforce

dependencies of M to A and B to M.

Figure 4.11: Mile stone pattern

 Petri-net has direct support for milestone and all other state based construct because

original Petri-net concepts are based on representing state of different activities. As shown in

Figure 4.11c, once M has a token it enables both B and C. But if C gets the control it just fire

it and then via dummy transition C’, C puts the control back in M. If M gets the control, then

C is disabled and it is no longer available to fire. This is exactly the behavior expected from

the milestone pattern. Once aging, BPEL does not have proper constructs available as the

designer need to keep track of a) The availability of control at b) Invoke either C or B and, c)

If C is invoked place the control back to M. In [Wee05], authors presents a work around

BPEL solution to milestone using while and pick activities.

^

A M B

C

A M B

C

B A
M

C C’

4.11a Mile stone pattern
syntax

4.11b Mile stone pattern
using Web Bonds

4.11c Mile stone pattern
Using Petri net

85

Interleaved parallel routing (Figure 4.12a): A point in a workflow where set of activities

are executed in any order. Importantly, all the activities will be executed. Order is not known

before runtime.

Figure 4.12: Interleaved Parallel Routing

Implementation: Interleaved parallel routing is one of the difficult control patterns to be

modeled. Petri net provides a satisfactory solution with the cost of having extra node (place)

that does not belong to the original workflow. Using web bonds an explicit “interleaver”

construct can be modeled using the bond structure as shown in Figure 4.12b. Operation of the

“interleaver”, I, is as follows.

I has three subscription bonds to each of B1 … Bn XOR logic. Once I receives the control

from A, it selects one of the outgoing paths, say Bm. Upon selection of that bond, I makes a

copy of the selected bond to a temporary location. Then the bond will be removed from the

original group. In this case, two bonds with XOR logic will remain after the deletion of first

bond. Finally, copy of the bond will be executed by enabling selected path (In this case Bm

Activitie
s will be
executed
in any
order

A C B

2

1

n

Ta

T2

T2

T1

Tn

T1

Tn-1

…

B1

IA C

Bn

Bm

86

will be enabled). Upon completion of the selected activity (Bm), it sends the control back to I

and the activity C. This will enable I again. Then I will select one of existing paths and

follow the same procedure. However, C will not be enabled until activities B1 … Bn are

completed in any order. This is enforced by having negotiation bonds from C to each of B1

through Bn.

 Petri net based implementation of this pattern is shown in Figure 4.12c. Tree like structure

ensures that the section of each activity is arbitrary. However, when there are many workflow

nodes, tree becomes very large. BPEL does not have direct constructs to implement this

pattern. In [Wee05], authors present a work around solution. In their solution, a container,

which has exclusive access, has being implemented and each activity gets access rights to the

container randomly. An activity currently holding the container will be executed. Upon

release of the container, another activity acquires the access rights.

4.2.5 Structural Patterns

There are two types of workflow structure based patterns: arbitrary cycle and the implicit

terminator.

Arbitrary Cycle (Figure 4.13): A point in a workflow where some set of activities (paths) can

be repeated several times.

Figure 4.13: Arbitrary cycle

M= Merge, X= XOR

A M B C X D

87

Figure 4.14: Arbitrary cycle using web bonds

Implementation: Arbitrary cycle is relatively easy construct to model (Figure 4.14). Activity

M merges two paths from A to M and X to M. X is the activity which creates the arbitrary

cycle. From X, subscription bond with XOR logic puts the control in cycle path or normal

path. Merge activity has two negotiation bonds with XOR logic to A and X. They make sure

that merge is active if either activity A or activity X is completed. X and M can be places in

any arbitrary location of the workflow with above bond structure that supports the arbitrary

cycle.

 XOR split of Petri net can be used to direct the control to any location of the workflow that

enables activities to be repeated. BPEL does not support this construct as it does not have

jump instruction. While loop cannot be used as it enables repetition with definite entry and

exit points [Wee05].

Implicit terminator: A workflow needs to terminate when there is no other activity to be

performed.

Implementation: Web bonds, by their nature, make sure that workflow activities do not

require such explicit final node because activity itself acts as an implicit terminator. If an

object in a workflow does not have any live bonds (both in coming and outgoing) it acts

as an implicit terminator. BPEL follows a similar logic using flow constructs and links.

Activities can have sink activities which are not source for any link without requiring one

unique terminating node [Wee05]. However, in Petri-net, it not easy to implement this as

A M B C X D
+ ^

88

the designer has to keep track of running threads before completing the workflow

[Aal02].

4.2.6 Cancellation Patterns

Cancellation patterns are difficult to realize and different application will have different

requirements. First, cancel activity and cancel case will be discussed then we explain the

logic behind cancellation using web bonds by implementing the cancellation of meeting

scenario.

Cancel Activity (Table 4.5, row 1): Cancellation of an activity requires it to be removed from

the workflow. There are several possible ways that this can be implemented using web

bonds. Simplest method is to introduce an external activity “Ext” having a subscription bond

to another activity that may be cancelled in the future. In this case, once “Ext” triggers the

subscription bond, it will disable the activity B. When B is cancelled, it deletes (invalidates)

all outgoing bonds attached to it. This will virtually remove the activity from the workflow.

However, cancellation of and activity may trigger another set of cancellation/compensation

activities of the workflow. As shown in web bond based implementation subscription bonds

from B to A and C enforce such dependencies. For example, cancellation of an airline

reservation will prompt hotel and car rental reservations to be cancelled. Such scenarios have

to be identified during the design time. In fact, this is true for cancel case pattern also.

Cancel case (Table 4.5, row 2): This is an extended version of cancel activity where the

whole workflow instance is removed. Cancel case is an extension to the cancel activity.

Cancel case is relatively easy to implement using web bonds. In order to accomplish this we

can have an external activity “Ext” which has subscription bonds to all activities in the

89

workflow with AND logic. Once “Ext” triggers subscription bonds, each activity deletes all

active bonds attached to it. This will virtually dismantle the workflow.

Table 4.5: Cancellation Patterns

WS-BPEL [Wee05] Web Coordination Bonds

Terminator activity
<scope>
 …….
terminate A
trigger appropriate compensation and
fault handling
 ……..
</scope>

terminate process <…>
terminate the whole process (whole
workflow or the sub process of the
workflow)

CBA

Ext

CBA

Ext

90

4.3 Modeling Communication Patterns

Table 4.6: Communication patterns (Values for column 2 have been taken from reference
[Wee05])

Message interaction among different entities of a distributed system is vital to its

flexibility [Wee05]. Two basic distributed communication paradigms are synchronous

and asynchronous communication. Synchronous communication needs the message

sender to halt its process until it receives an acknowledgement or data from the receiver

whereas asynchronous does not have such requirement. Any fundamental framework that

facilitates composing applications over distributed components/objects must support both

types of communication. As shown Table 4.5 web bonds have expressive capabilities to

model these communication patterns directly. However, BPEL does not directly support

asynchronous communication constructs. In this Section we illustrate how web bonds can

be used to enforce different types of synchronous and asynchronous communication

patterns.

Pattern WS-BPEL Web Coordination
Bonds

Synchronous
1. Request-Reply

+ +

2. One way + +

3. Polling + +

Asynchronous
1. Message passing

+ +

2. Publish/Subscribe - +

3. Broadcast - +

91

4.3.1 Synchronous Communication

In synchronous messaging, message sender halts its execution until it receives the reply

from the receiver. There are three different synchronous messaging patterns:

request/reply, one way, and polling. In case of Request/reply scenario, sender expects the

message receiver to send data/control to the sender while One way scenario expects the

receiver to acknowledge the receipt of the message. Finally, Polling, allows the sender to

continue its processing to while it is waiting for the reply. However, sender polls in

regular intervals to the receiver to check the availability of results. Here, we illustrate the

Request/Reply scenario. BPEL directly supports all the synchronous messaging [Wee05].

Request/Reply

Figure 4.15: Reply/Request

Reply request scenario needs sender to halts its operation until it receives data from the

receiver. Subscription bond from “Request()” function of the sender to “Receive()”

function of the receiver (Figure 4.15) enables sender to make requests. Simultaneously

the “Request()” function sends control to the “Receive()” function of the sender. This is

enforced by having another subscription bond from “Request()” function to the

“Receive()” of the sender with AND logic. Sender has to wait until it receives dada from

the receiver. This can easily be enforced by having a negotiation bond from “Receive()”

Request()

Receive()

Receive()

Reply()

*

92

function of the sender to the “Reply()” function of the receiver. Negotiation bond makes

sure that “Receive()” function keeps the control until it gets the reply from receiver.

BPEL’s invoke/receive activities at senders site directly support this construct. Receiver’s

site supports this construct using receive/reply construct.

4.3.2 Asynchronous Communication

Here, message sender continues its operation after completion of the message dispatch. It

does not wait for the reply from the receiver. Synchronous communication also has three

scenarios. Message passing is the simplest asynchronous communication method. Once

sender makes the request it does not wait for the reply. Sender essentially forgets the

request. Receiver processes the request. Publish/subscribe enables sender to determine

the receiver based on the interest of the receiver. Then it dispatches messages only to the

interested receivers. Finally, Broadcast can be seen as more relaxed version of publish

/subscribe. Unlike publish subscribe when an event occurs it will be broadcast to all

receivers regardless of their interest.

Publish/Subscribe: Publish/subscribe enables sender to determine the receiver based on

the interest of the receiver. Receiver 1 has it interest in the event B which is identified by

the function Fb(). This is enforced by having a subscription bond from Fb() to B() of

receiver 1. Other two receives, receiver 2 and receiver 3, have their interest in the event A

which is identified by Fa(). This is enforced by having subscription bonds from Fa() to

A() of receiver 2 and receiver 3. When an event B() happens at sender 1, it will trigger

the subscription bond from B() of sender 1 to Fb() of subscription list. Fb() will in turn

trigger appropriate subscription bonds. (In this case it is Fb() to B() of receiver 1).

93

Similarly when an event A() happens at sender 2, it will trigger the subscription bond

form A() to Fa() subscription list. Fa() will in turn trigger the appropriate subscription

bonds. (In this case, two bonds from Fa() to A() of receiver 2 and receiver 3)

Figure 4.16: Publish-Subscribe Communication

 Publish subscribe is not directly supported by BPEL. However, one can use BPEL’s

event handling functionalities to construct publish-subscribe scenario. But the designer

has to put much effort designing the event handling mechanisms.

Fb()

Fa()

 A()

B()

A()

A()

B()

Receiver 1

Receiver 3

Receiver 2

Subscription list

Sender 1

Sender 2

94

4.4 Related Work and Discussion

In this section we critically discuss languages and tools available for web service

workflow coordination, modeling and expressive capabilities of these languages, and

efforts towards formalizing web service coordination.

 Many languages including WSFL [Ley01], WSCI [WSCI02], WS-Coordination

[WSC], WS-Conversation [WSCL], BPML [Ave02], XLANG [Tha01], BPSS

[ebXML03], and BPEL4WS [Wee05] have emerged as WS composition languages

[Aal03a]. However, these languages provide different techniques to compose web

services without solid theoretical underpinning. Too many standards make the process

complex and add ambiguity to the system [Hul04]. Some authors refer to these competing

standards as the “web service acronym hell” [Aal03b]. Various research and

standardizing efforts are underway to standardize web service composition technologies.

Interaction Pattern Based Analysis: Passing control and data among participant entities

are carried out by establishing a communication channels among participants. Effective

and efficient maintenance of the channel content is prime importance in SOC. Proper

understanding about interaction patterns helps in this regard. In [Car99], authors have

taken some initiatives towards such analysis. In [Aal03b], authors suggested that it is

necessary to critically evaluate current coordination standards and develop unambiguous

methodology to define web service coordination. In [Ben02], authors have taken a good

initiative toward such framework by identifying various interaction patterns in web

service composition. Research efforts such as [Lom01, Bic03, Zla03, Lim02] try to

address the negotiation issues related to e-commerce. In [Ver05, McL02, Ko03, Kim02]

95

authors have identified problems and solutions to some of them related to negotiation

process involved in supply chain management.

 Modeling and representing negotiation logistics using formal tools such as Petri nets is

important because such representation gives an opportunity to perform formal analysis. In

[Hua02], authors discuss modeling e-negotiation activities using Petri nets. In that

authors have pointed out that in e-negotiation among multiple agents. In [Rap00],

authors have proposed a Petri net based model to manage interdependencies among

collaborative tasks in workflows. In this scheme, workflow dependencies are mapped to

coordination level by inserting adequate high-level Petri net models. HiworD [Ben03] is

a Petri net based workflow design and simulation tool, which allows designers to model

and simulate business process before deploying the actual workflow.

 As we have discussed in section 3, in [Aal03c], authors have gathered a repository of

workflow patterns that are common in workflow modeling and they have grouped them

into six categories (Table 4.1). PhD thesis presented in [Kie02] has studied the

expressiveness and suitability of workflow languages for modeling these control flow

patterns. Also, in this thesis, Petri net has been used as the formal modeling tool. Such

studies show that any workflow standard should have enough expressive power to model

complex systems. Using those workflow patterns as a benchmark, web services

composition and workflow languages such as BPEL4WS, XLANG, WSFL, BPML,

WSCI, and High-level Petri-net-based languages have been evaluated [Wee05].

In[Woh03], authors have identified three good reasons to use Petri-net namely; a)

Formal semantics, but easy to model graphical representations, b) State-based instead of

just event based, and c) Abundance of analysis techniques. However, despite those

96

important properties Petri-net has difficulties dealing with complex workflow control

patters based on multiple instances, advance synchronization, cancellation [Aal02]. The

difficulty lies due to the fact that Petri-net depends heavily on state-based rather than the

event/message based. Due to distributed nature of today’s information technologies

(middleware, web services) underling techniques need to have both state as well as

message handling capabilities [War 05]. BPEL on the other hand tries to satisfy these two

requirements and is becoming popular among we services community as a workflow

language. However, BPEL also has difficulties enforcing complex control flow patterns

and the language itself is complex. This section discusses challenges Petri-net and BPEL

face handling aforementioned workflow control flow patterns successfully. We note that

an existing workflow modeling framework called “YAML” [Aal02] is also capable of

handling all these control flow patterns. The difference between YAML and web bonds is

that YAML has been specifically designed to enforce these control flow patterns (by

essentially augmenting a Petri net based system) by adding explicit constructs for each

control. In contrast, web bonds have been designed as a generic framework for

coordination/collaboration among distributed systems and these happen to be capable of

handling these workflow control flow patterns.

Theoretical Treatments of Web Service Coordination: In [Ben02], authors have pointed

out that lack of fundamental primitives for web service integration has resulted in

plethora of products and standards. These standards are overlapping, and are suitable for

domain experts. They require refinement, consolidation, standardization and theoretical

treatment to find a small yet powerful core set of threading primitives. In [Bru05],

authors present a hierarchy of transactional calculi with increasing expressiveness. They

97

start from a very small language in which activities can only be composed sequentially.

Then, progressively introduce parallel composition, nesting, programmable

compensations and exception handling. In [Aal05], author discusses pros and cons of

Petri nets and Pi calculus for web service conversion languages (WSCL) and illustrates

fundamental differences between Petri nets and Pi calculus. A choreography language

named CL [Bus05] is another noticeable effort towards formalizing web coordination.

Following the approach of WS-CDL, in CL choreography contains a “global” definition

of the common ordering conditions and constraints under which messages are exchanged

within a conversation among collaborating services. In [Luc05], authors argue that three

different mechanisms for error handling available in BPEL are not necessary in web

service composition. They have formalized a novel orchestration language based on the

idea of event notification as the unique error handling mechanism, and present a formal

definition of three BPEL mechanisms in terms of their calculus. In [Coo05], authors

propose a programming language which directly supports web service development,

leverages XQuery for native XML processing, supports implicit message correlation and

has high level calculus-style concurrency control. However, such developments are in

very early stage and much remains to be done to find a web service “coordination

theory.”

98

4.5 Summary

PhD dissertation presented in [Kie02] has studied the expressiveness and suitability of

workflow languages for modeling these control flow patterns. Also, in this thesis, Petri

net has been used as the formal modeling tool. Such studies show that any workflow

standard should have enough expressive power to model complex systems. Using those

workflow patterns as a benchmark, web services composition and workflow languages

such as BPEL4WS, XLANG, WSFL, BPML, WSCI, and High-level Petri-net-based

languages have been evaluated [Wee05]. In [Woh03], authors have identified three good

reasons to use Petri-net namely; a) Formal semantics, but easy to model graphical

representations, b) State-based instead of just event based, and c) Abundance of analysis

techniques. However, despite those important properties Petri-net has difficulties dealing

with complex workflow control patters based on multiple instances, advance

synchronization, cancellation [Aal02]. The difficulty lies due to the fact that Petri-net

depends heavily on state-based rather than the event/message based. Due to distributed

nature of today’s information technologies (middleware, web services) underling

techniques need to have both state as well as message handling capabilities [Wee05].

BPEL on the other hand tries to satisfy these two requirements and is becoming popular

among we services community as a workflow language. However, BPEL also has

difficulties enforcing complex control flow patterns and the language itself is complex.

This section discusses challenges Petri-net and BPEL face handling aforementioned

workflow control flow patterns successfully. We note that an existing workflow modeling

framework called “YAML” [Aal03] is also capable of handling all these control flow

99

patterns. The difference between YAML and web bonds is that YAML has been

specifically designed to enforce these control flow patterns (by essentially augmenting a

Petri net based system) by adding explicit constructs for each control. In contrast, web

bonds have been designed as a generic framework for coordination/collaboration among

distributed systems and these happen to be capable of handling these workflow control

flow patterns. Moreover, web bonds are capable of modeling all the benchmark workflow

control flow patterns and distributed communication patterns.

100

CHAPTER 5

WEB COORDINATION MANAGEMENT MIDDLEWARE SYSTEM

As we have mentioned in Chapter 1, existing workflow technologies over web services

are constrained by the stateless architecture of the web services. This typically results in

complex and centralized logic for workflow coordination. Coordination technologies

such as web coordination bonds enable distributed coordination. However, currently web

services are not capable of maintaining and managing coordination and enforcing their

own dependencies. Key architectural enhancements are needed to transform the stateless

web services into state-preserving self-coordinating entities to allow distributed

coordination. Such capability enhancements in the web services will also lead to simpler

coordination logic. In this Chapter we present our Web Service Coordination

Management Middleware (WSCMM) that is a simple but powerful enhancement to the

web service infrastructure enabling the services locally manage the dependencies and the

handle messages resulting from multiple workflows. The development of a WSCMM is

analogous to the development of a DBMS (database management system) to coordinate

the execution of queries and transactions in the web services domain.

 We have carried out a detailed simulation to identify and key components and design

issues of our middleware. Also, we compare and contrast our architecture with the

current web service technologies, and present details of a prototype implementation.

Proof-of-concept experiments demonstrate that we can develop both centralized and

distributed workflows over the architecturally enhanced web services with relative

simplicity.

101

 Chapter 7 presents simulation details and Chapter 8 discussed the prototype

implementation details. Rest of this Chapter has been organized as follows. First, we

revisit the current state of the art in web service workflow development and present our

vision. Also, pinpoint issues pertaining to current web service based workflow

development and deployment. Then, we propose our middleware solution and identify

key components and their functionality.

5.1 Limitations of Current Centralized Coordination

Service composition is the process of aggregating standalone (Web) services together to

form another value-added service based upon pre-defined application logic. Usually,

composed service is state preserving and acts as the central coordinating agent. The

constituent services can be from different organizations providing way to develop inter-

organizational collaborative applications (Figure 5.1).

Figure 5.1: Current State of the Art: Composite Web Process as a Central Coordinator

Due to its centralized nature and the inability of participant web services to share the

burden of enforcing composition and coordination constraints, composed web process

WS

Invoke/Response Composite Web Process

WS

WS

WS

WS WS

Composite Web Process

WS WS

WS WS

WS WS

SOAP

Communication

102

has to encapsulate numerous functionalities ranging from application logic to transaction

management. There are two district sets of problems of this model.

Detailed level programming: A composed web process needs to encapsulate numerous

functionalities ranging from application logic to transaction management. It is the

designer’s responsibility to focus on low level (atomic) details such as message

correlation, and state (context) information to high-level application logic. Therefore,

current technologies such as BPEL are at the level of the assembly language for web

service composition and coordination.

Centralized coordination: Due to the current architecture of the composed web process it

becomes a central coordinating agent. There are both pros and cons in centralized

coordination; the positive point is being total control over the behavior of the web

process. However, distributed coordination has two categories of advantages over

centralized coordination: (i) Due to security, privacy, or licensing imperatives, some web-

based objects will only allow direct pair-wise interactions without any coordinating third-

party entity; and (ii) Centralized coordination/workflows suffer from issues such as

scalability, performance, and fault tolerance [Gir04]. For example, data transfer and

message passing among participant web services need to go through the central web

process generating more network traffic and making the composed web process more

complex. Efforts such as IBM symphony [Gir04] try to eliminate centralize coordination

by partitioning centralized BPEL code into separate modules so that they can run in a

distributed setting. However, there are limitations to such efforts. First, it is necessary to

develop the centralized BPEL code and then distribute it. Second, usually, there are

103

problems partitioning the code in complex application scenarios such as long running

transactional applications without proper infrastructure support.

Solution: In order to overcome above limitations, it is necessary to: i) Extract higher-

level abstractions such as coordination and message correlation, which are independent

from the application logic of the composition, and ii) Distribute these responsibilities

among constituent web entities. This will transform the web services we know today into

conversation and coordination aware stateful web entities and make the application

development less intensive [Jor05, Bar05, Sch05, Bou05, Wan05, Tai04]. We envision

web service actively participate in workflow enforcing their own dependencies as shown

in Figure 5.1

 Chapter 7 discusses relevant important developments on web service composition,

coordination, and enhancements to the basic web service infrastructure

5.2 Evolution of Database Application Development

A good motivating analogy would be to consider the evolution of database application

development platforms.

Fig. 3 illustrates the evolution of database technologies from simple file system to a three-

tier system, equipped with layers to manage the database, user interface, and workflows,

progressively reducing the burden of application development. In early 60’s, application

developer had the burden of capturing all the logic of data manipulation, constraint

checking and concurrency control (Figure 5.2a). With the introduction of database

104

management systems (DMBS), most of the data handling functionalities was transferred

to DBMSs. Development of various middleware technologies and workflow management

systems further reduced the burden of application developer (Figure 5.2d).

Figure 5.2: Evolution of Database Application Infrastructure [Aal98]

 The current, web server based applications and the first stage database applications have

similar characteristics. Application programmer has the burden of capturing all the

application logic as well as house keeping tasks. The individual Web services,

encapsulating information and data stores, with its access methods described using Web

Service Description Language (WSDL), lacks even the basic management system (Figure

5.3a), not to mention any support for transactions, composition, or workflows. Application

programmer has the burden of capturing almost all of the coordination logic. From this

perspective, Web services infrastructure is still in its early developmental stage.

Therefore, we propose to a) Enhance the web services infrastructure so that it has a

management system for web services to manage methods and method invocations more

effectively akin to DBMS in databases, b) Evaluate coordination and composition

techniques for Web services and transfer generic functional layers to Web service side so

(a): File
systems

(b): 1-Tire
database
applications

(c): 2-Tire
database
applications

(d): 3 - Tire
database
applications

UIMS UIMS

APPL
APPL

(Applicat
ion)

APPL

DBMS DBMS DBMS

APPL
WFMS

DB DB DBFile system

(a): File
systems

(b): 1-Tier
database
applications

(c): 2-Tier
database
applications

(d): 3 - Tier
database
applications

UIMS UIMS

APPL
APPL

(Applicat
ion)

APPL

DBMS DBMS DBMS

APPL
WFMS

UIMS UIMS

APPL
APPL

(Applicat
ion)

APPL

DBMS DBMS DBMS

APPL
WFMS

DB DB DBFile system

105

that they become capable entities to enforce distributed coordination akin to WFMS in

databases. We call them Web Service Management System (WSMS) and Web Service

Coordination Management System (WSCMS) respectively. The following section

presents our architecture.

Figure 5.3: Proposed development for web service infrastructure

5.3 Functionalities Encapsulated by the Centralized Workflow

Here, we identify functionalities encapsulated by the composite web process and

requirements for distributed web service coordination. Then we layout requirements of a

middleware system for distributed workflow coordination over web services.

Requirements: The composed web process needs to encapsulate numerous functionalities

ranging from application logic to transaction management. Following major

(a): Web
server
applications

APPL

(b): 1 -Tire
Web service
applications

APPL

WSDL
WSCMS: Web
Service
Coordination
Management
System
WSMS: Web
Service
Management
System

(d): 3 - Tire
web service
applications

Web Process
WSMS

APPL

Web
Coordination

WSCMS

Web ServiceWeb serviceWeb server

(a): Web
server
applications

APPL APPL

(b): 1 -Tier
Web service
applications

APPL

WSDL

APPL

WSDL
WSCMS: Web
Service
Coordination
Management
System
WSMS: Web
Service
Management
System

(d): 3 - Tier
web service
applications

Web Process
WSMS

APPL

Web
Coordination

WSCMS

Web ServiceWeb serviceWeb server

106

functionalities are being encapsulated by the composed web process to implement such

requirements [Alo04, Jor05, Pra05, Bar05, Ver05].

1. Modeling execution control (internal coordination): Integrate autonomous web

services together to encapsulate the application logic. In literature this also is referred as

the abstract process [Bar05].

2. Modeling external coordination among constituent web services: Enforcing

dependencies and constrains among participating web services. The entails ensures proper

communication context, representing the role of each participant and reliable messaging.

This also requires proper sequencing of messages and correlation.

3. Remote service invocation: In SOA, services expose services available as public

available methods so that requesters can invoke and get the service done. Theoretically,

the concept is as same as java RMI or CORBA remote method invocation. However, the

difference is that services are autonomous entities and service requesters do not have

details of service implementations.

4. Context information handling: Long running collaborative applications need context

(state) information to be stored and processed.

5. Event handling: Web service communication is message based and events are notified

using messages. Event notification may imply an invocation (triggering) of some

functionality.

6. Transaction support: Inter-organizational collaborative applications may have some

transactional context. Such applications need to ensure rigid or relaxed ACID properties.

Moreover, they need to support compensation and error handling.

107

 Based on above functionalities we extract three key layers of functionality

encapsulated by the composite web process (Figure 5.4). Top layer encapsulates the

abstract workflow process defined using high-level constructs. Middle layer represents

the code that enforces workflow dependencies (implements based on underline language

constructs). Last layer implements actual communication with individual web services

that are participants of the workflow. For each workflow, all three layers need to be

implemented from the stretch. However, 2nd layer and 3rd layers represent significant

amount of generic functionalities such as enforcing basic workflow coordination logic,

Web service invocations, message handling and storing corresponding state information.

Therefore, generic functionalities of these two layers can be extracted and provide as a

middleware layer for distributed workflow coordination. We identify following three

categories of functionalities for a middleware system for distributed workflow

coordination over web services.

Figure 5.4: Functional decomposition of composite web process

Implications on Functionality:

Stateless Web ServicesStateless Web Services

Composite Web Process
Code

Code to handle Interaction with web
services

(Message Handling, Correlation,
Sequencing, Web service method

Invocations)

Code to Enforce dependencies
(Coordination context, Workflow

Coordination, Transaction
management)

Code that defines the abstract
process

(High-level application logic)

108

1. Enforce dependencies: Workflow activities need to satisfy various kinds of constraints

in order to accomplish the task successfully. For example, before initiating the activity, it

may need to satisfy application specific data, control and resource dependencies and once

activity is completed activity may need to inform results and pass control to other

activities if the workflow based on various conditions. In a distributed coordination

environment, each web services needs to maintain its own dependencies and enforce

them locally.

2. Preserve state information: Long-lived workflow applications require state of

method invocations (success or failure) and intermediate results to be stored and

make global decisions. Such state information needs to be maintained and correlated

with proper application context.

3. Process messages: Web services communicate exchanging messages. Therefore, in

order to become live participants in distributed applications, web services should bear

enough capabilities to process messages and make decision accordingly. This entails

maintaining proper communication context for each application, message correlation

and sequencing, and reliable messaging.

 In our middleware, functionalities pertaining to workflow dependency are carried

out by WSCMS layer. Processing messages and maintaining state information is

handled by WSMS. Next section discusses these components in detail.

109

5.4 Web Service Coordination Management Middleware Architecture: An
Overview

This section starts with a generic description of our web WSCMM architecture, its

components and related issues. Then we discuss each component in detail. The web

coordination middleware consists of two main components: Web service management

system (WSMS) and the Web service coordination management system (WSCMS). Note

that our middleware clearly distributes the workflow among three distinct functional

layers (Figure 5.5). These two components are attached to the service provider, i.e. a layer

between the SOAP (any other communication) and WSDL enhancing the internal

architecture of web services (Figure 5) [Alo04].

Figure 5.5: Web Service Coordination Middleware Overview

Communication Protocol (eg: SOAP)

 Workflow
Applic a tion i

Message Handler

 State/Instance
handler

 WSCMS

Coordinator objects for each
application

i
 KJ

J K

Coordination Context for

i

 Workflow
Application j

 Workflow
Applic a tion k

Stateless Web Service (WSDL Interface)

 WSMS

110

Web Service Management System (WSMS): WSMS handles two functionalities; Preserve

state information for long-live interactions and process messages locally and initiate

appropriate actions.

Stateful view: State/instance handler instantiate a coordinator object based on WSDL

description for each such application. Coordinator object has a binding to the original

web service method calls. Moreover, each coordinator object has a corresponding status

context stored in the persistent storage. WS method invocations go through the

coordinator object. Each method invocation has series of steps including enforcing

dependencies and updating state information.

Message handling: Message handler of the WSMS handles the inter-web service

communication and keeps the state information of interactions. Upon an arrival of a

message, communication server (SOAP server) passes it to the message handler. Message

header conations a unique identification for each message (ConvID). ConvID consists of

a reference to the application, method being invoked, parameter set, status of tag of the

invocation such as ”Ready”, “Commit” in transaction processing. Based on this

information, message handler resolves the message and takes appropriate actions.

Web Service Coordination Management System (WSCMS): Keeps the coordination

(dependency) information (coordination context) for each application and enforces

dependencies. Since coordination and dependency enforcement is local to each

participating web service, WSCMS maintains coordination context for each applications

locally to reflect dependencies. Web services coordination management system supports

two types of dependencies: pre method execution dependencies and post method

execution dependencies. In addition it supports two types of long-lived interactions:

111

transaction-oriented and non-transaction oriented coordination. Transaction oriented

coordination requires participants to perform some sort of a commit processing while non-

transaction oriented coordination requires only all dependencies to be fulfilled before and

after the execution of a particular method global or group decision may not be needed.

5.5 Web Service Coordination Management System

In web service based workflow applications, individual web service represents a particular

workflow activity. Activity performs its operation by invoking web service method calls.

Workflow dependencies need to be associated with WS method invocations. Typically,

workflow activities enforce two types of dependencies. Before initiating the activity

(trigged by the workflow engine) it needs to make sure that all the dependencies

(including data, control and resource) have been satisfied. If not, activity waits until it

receives all the control and data items or it can start fulfilling these requirements. These

kinds of dependencies can be characterized as “pre execution dependencies. “ Other type

of dependency arises once workflow activity is completed. Upon completion of the

activity, it may require to pass control/data to other entities in the workflow based on

workflow specific constraints. These kinds of dependencies are characterized as “post

execution dependencies.”

112

Pre Execution Dependencies (join dependencies): Pre execution dependency for

workflow j, defined over the method mi of web service wi with parameter set k can be

represented as Jj.wi.mi(paramk)={D, constraints}, where D is the set of destination

methods, and constraints are workflow constraints such as AND-join and Sync-Merge.

Figure 5.6: Enforcing Pre Execution Dependencies

WSCMS ensures that join-dependencies are met before making the web service method

call. Series of events take place in local WSCMS as well as destination WS’s coordination

management systems while enforcing join-dependencies. Figure 5.6 illustrates the

interaction among WSCMM components while enforcing join-dependency constraints.

Message handlers maintain an inbox and outbox for each workflow application. Both

inbox and outbox has entries for each join-dependency point. When it receives

control/data from destination entities message handler direct them for the appropriate

Coordination
Manager

Message handler

WS

5. WS Method call

4.sendMsgTo(B,C)

Web Service A

Destination
Web Service B

4 .Enforce Dependencies

Coordination
Context

3. hasBonds()
Join-Dependency
on B,C

State
Handler

Destination
Web Service C

0. Invocation
Request

2. Check
Dependencies

1. Call to the
coordinator object

113

inbox. Once the activity receives trigger (control) to perform the method call (step 0), it

sends a message to the WSCMS for dependency check (step 1, 2, and 3). If all the

dependencies are met web service method get invoked and state information is updated

(step 5). Otherwise, WSCMS sends messages to all the remaining destination entities for

dependency check (step 4). Dependency check performs two operations. First, it request

states information from the state handler of the destination web service related to this

particular application join-point. If status information is available respond is sent.

Otherwise, it tries to invoke the remote method and send the response to the requester web

service. This invocation requires similar dependency check.

Post Execution Dependencies (split dependency): Split dependency for workflow j,

method mi of web service wi with parameter set k can be represented as

Sj.wi.mi(paramk)={D, constraints}, where D is the set of destination methods and

constraints are workflow constraints such as AND-Split, XOR Split.

 Enforcing split dependencies require web service to trigger set of remote web services

depending on the workflow constraints specifies for the split-point. Figure 5.7 illustrates

the interaction among WSCMM components while enforcing split-dependency

constraints. As shown in Figure 5.7, WSCMS requests the message handler to send

data/control to remote web services according the workflow split criteria. Message

handler places remote invocations to the outbox (dispatcher) and triggers remote web

service methods (step 6). At the same time coordination management system updates

state information (step 5).

114

 Figure 5.7: Enforcing Post Execution Dependencies

 To enforce join-dependencies and split-dependencies WSCMS support two types of

coordination mechanisms: transaction-oriented coordination and non-transactional

oriented coordination.

Transaction-oriented Coordination: In order to support transactional behavior i.e., an

ability to partially execute the triggered method and go to “ready to commit” state, which

can either be committed or aborted subsequently by the triggering entity. Alternatively, a

reservation/locking facility on methods with specified parameters (thus indirectly

reserving certain changes on specific data components) are needed. In order to support

such behaviors, WSCMS should provide two kinds of method invocations. Assume a

method/service S at a Web Service. One can normally execute method S (invoke(S)) or, to

support the dependency behavior of a transactions, partially execute S and reserve/lock it

Coordination
Manager

Message handler

WS

1 . WS Method call

4.sendMsgTo(B,C)

Web Service A

Destination
Web Service B

6 .Enforce Dependencies

Coordination
Context

3 . hasBonds() Split-Dependency
on B,C

State
Handler

5. Update State

Destination
Web Service C

2. Check
Dependencie
s

115

(Mark(S)) and, subsequently based on group decision, complete execution of S

(Change(S)) or abort its execution (Abort(S)). The generic semantics operations described

below may be implemented in various ways.

Semantics: (may not be implemented this way)

This kind of behavior is required in DBMS transaction manager.

Non-Transaction-based Coordination: For non-transactional coordination WSCMS needs

to have the capability to trigger methods in other Web services and enforce simple data

and control dependencies. Most of the split-dependency enforcements require non-

transactional behavior. Consider that S1, S2, and S3 are different web service methods.

After executing S1, S 2 and S3 need be executed (control/data dependency, S1 triggers S2

and S3). Functionality for simple trigger can be described as follows

Semantics (may not be implemented this way): Mark S1; If successful Change S1 then Try:

Change S2 and Change S3. Note that the ``try" may not succeed. And there may be timeout

mechanisms to avoid deadlocks.

I n v o k e (S)
E x e c u t e (S)
R e t u r n r e s p o n s e

M a r k (S)
L o c k (S)
P a r t i a l l y E x e c u t e S

I f s u c c e s s f u l
R e s p o n s e Y e s

E l s e
U n l o c k (S)
R e s p o n s e N o

C h a n g e (S)
C o m p l e t e t h e e x e c u t i o n o f S
U n l o c k (S)

A b o r t (S)
R e s t o r e (S)
U n l o c k (S)

116

5.6 Web Service Management System

WSMS consists of a message handler, state/instance manager and application context

manager (Figure 5.8). The core functionality of the web service management system is to

transform the stateless web service into a state preserving self-coordinating entity.

WSMS performs this transformation by generating a coordinator object to represent the

web service, which encompasses all the coordination capabilities of the underline

WSCMS implementation. Figure 5.9 illustrates the architecture of the coordinator object.

The coordinator object provides the same interface as the web service provides to the

outer world. Web service method invocations of the workflow take place through the

coordinator object and the web bond coordination layer ensures that pre and post method

invocation dependencies are satisfied. This indirection allows us to bring transparency to

the system and hide the necessary coordination and communication logic behind it. As

shown in Figure 5.10, each web service method call is encapsulated by join-dependency

and split-dependency check. This logic ensures that workflow dependencies are satisfied

with associated WS invocation.

 Figure 5.8: Web service management System

Message
handler

State/instance handler
(Maintains live communication

with the application)

Workflow Context Manager
(Maintains runtime time
information per workflow

application basis)

117

 Figure 5.9: Coordinator Proxy Object Architecture

The idea of Web service coordinator proxy object together with underline bonding

(workflow dependency modeling) primitives encapsulates the workflow coordination

layer. This simple, but powerful idea empowers web services and makes workflow

configuration less programming intensive. We believe this concept carries enough

potential to lead a fundamental shift in workflow development over web services.

Instance/state handler implements coordinator object functionalities.

Runtime
data

Coordination
Context

WSCP object
kernel

Method Calls to
embedded
web service.

Coordination
Logic

118

Figure 5.10: Typical Flow within a coordinator proxy object

Status and Status Information: State information reflects the current the snapshot of

method invocations (success or failure). State information is stored in a persistent storage.

This is required for long-lived interactions (duration of such interactions can be several

minutes to few weeks). Instantiated coordinator objects have a unique identifier and can

run few minutes to several weeks/months. They can be accessed asynchronously

(required by long lived transactions). The state information stored in the persistence

storage includes method invocation details (e.g: transactional oriented coordination) and

intermediate results.

Workflow Context Manager: Workflow context manager allows multiple workflows to

be defined over same web service concurrently. Application context manager stores state

information based on the application ID. Each workflow in is assigned a unique ID.

119

State/Instance handler assigns a unique ID for each application and associates it with

application state, coordinator proxy object, and the coordination context of the

application. Each message is associated with this unique ID and the message handler

uses this ID together with other invocation related information to handle message

correlation.

Message Handler: Message handler receives method invocation and other workflow

related messages (data, control, and triggers). Message handler keeps separate

communication contexts for each application. Communication context consists of two

parts: Inbox and Outbox. Inbox is the placeholder for incoming requests and out put is the

placeholder for out going messages. Upon receipt of the message, message handler

determine appropriate message box and take appropriate action. This architecture enables

message handler to perform message correlation and message sequencing.

Message Correlation and Sequencing: The conversation controller handles message

correlation and message sequencing. Message correlation is the process of coordinating

first invocation and subsequent invocations to the same web service method(s) in the

context of some application scenario. In order to do this each message is augmented with

a unique conversation id (ConvID) and the requester’s method name and the parameter set

(<MessageContext:A:I:Mi:Covnid:Tag: RequesterMethodName >). This information is

passed to each coordinating entity with the message. Also, due to the network delays and

the distributed nature of the application execution environment web service may receive

messages in the different order compared to the order of invocation. It is the responsibility

of the message controller to direct them to the proper inbox regardless of their arrival

120

sequence. This resolution can be done using the ConvID and method names

(requester/supplier).

5.7 Summary

In this chapter we argued that web services infrastructure need to be enhanced for

effective distributed coordination over web objects including web services. Towards this

goal we presented the WSCMM architecture, a simple but powerful enhancements to the

current web services infrastructure that transform passive stateless web services we know

today into conversation aware, stateful web objects. Key to this transformation is the

introduction of coordinator proxy object that lively participates in the workflow on behalf

of the web service. Coordinator proxy object is stateful and is capable of enforcing and

maintaining workflow dependencies. Chapter 6 presents simulation details and a

comparison of our middleware with other similar architectures Chapter 7 discussed the

prototype implementation details.

121

CHAPTER 6

SIMULATION AND VERIFICATION OF WEB SERVICE COORDINATION

MANAGEMENT MIDDLEWARE

In chapter 5, we have discussed our Web Service Coordination Management Middleware

(WSCMM) in detail. The primary objective of the WSCMM system is to distribute the

workflow coordination responsibilities among participating web services. Subsequently, it

simplifies the workflow development process. As we have illustrated in the previous

Chapter, WSCMM consists of two components: Web Service Management System

(WSMS) and Web Service Coordination Management System (WSCMM). WSCMS

maintains and enforces workflow dependencies while WSMS transforms the stateless web

service into a stateful entity through the coordinator proxy object. Web service method

invocations go through this object, which enforces pre and post web service method

invocation dependencies using the functionality of WSCMS.

 In our system, we have employed web coordination bonds to model dependencies.

Therefore, WSCMS essentially maintains web coordination bonds and manipulate them in

order to enforce workflow dependencies. Dependencies are stored in a “Bond

Repository“. Bond repository is a persistent storage where each workflow has a

corresponding bond store. Modeling various workflow and other dependencies using web

coordination bonds have been presented in chapter 3 and chapter 4.

 In this chapter first we discuss the realization of WSCMM using web coordination

bonds. Then, we define the simulation model to verify the correctness of our architecture.

We believe that WSCMM is a generic architecture and does not tight to any technology.

122

Thus, we discuss a possible realization of our middleware using other web service

standards. Finally, we compare and contrast our approach with other similar efforts.

6.1 Realization of WSCMM Using Web Coordination Bonds

Figure 6.1: Enforcing Dependencies Using Web Coordination Bonds

Consider a situation where web service Wi, Wj and Wk participate in a workflow and the

execution sequence is Wj, Wi and Wk respectively. In this case, before executing the

appropriate method in web service Wi, it has to make sure that Wj has already being

executed. Also, it needs to receive control/data from Wj. Then, Wi has to make sure that it

passes required data and control to Wk after the execution. First two dependencies

represent pre execution dependency and third one represents the post execution

dependency for Wi. Having a negotiation bond from Wi to Wj and a subscription bond

from Wj to Wi enforce the first dependency. Having a subscription bond from Wi to Wk

enforces the second dependency.

 When we model and execute such dependencies using our middleware platform. It is the

responsibility of the coordination management system of each web service to store these

bonds and enforce them. Messages are being sent and received using web bonds to

enforce these dependencies. Therefore, the message handler of the web service

management system should be capable of receiving messages from bonds, resolving them,

and directing them to appropriate components for further processing.

123

 The message handler receives messages from subscription bonds with date/control or for

method invocations. It also receives messages from negotiation bonds to enforce pre

execution dependencies (eg: Wi to Wj). Once a web service receives these messages it

resolves the message and takes appropriate actions. Components of the middleware

interact internally during this process. Table 6.1 summarizes the external messages when

modeling dependencies using web coordination bonds. Each message has a tag, and the

message tag indicates the purpose of the message.

Table 6.1: External Messages among Web Services When Enforcing Dependencies Using
Web Coordination Bonds

Message Type Source Tag

Method Invocations from Remote web services (SB) 0

Data/control from remote subscription bonds (SB) 1

Incoming

Method Invocations (enforce dependencies) from Remote web
services (NB)

2

Method Invocations to remote web services 0

Data/control to remote web services 1

Outgoing

Method Invocations (enforce dependencies) to Remote web
services (NB)

2

We simulate the following scenario (Figure 6.2) to verify our architecture. First, negotiation bond

based pre execution dependencies have been simulated. Then, subscription bond based post

execution dependencies are modeled. We have used Discrete Event System Specification

(DEVS) model tool. In the next section we describe the DEVS environment briefly.

124

Figure 6.2: Simulation Scenario

6.2 Background: Discrete Event System Specification (DEVS)

Discrete Event System Specification (DEVS) provides formal framework that facilitates

simulation and verification of distributed systems. DEVS is derived from mathematical

dynamical system theory [DEVSJava]. It supports hierarchical modular composition and

object oriented implementation. There are two primary modules: atomic model and

coupled model. One can combine these models to specify complex simulations. Figure

6.3 shows the hierarchical modular composition of DEVS system.

N e g o tia t io n
B o n d s (N B)?

S u b s c r ip t io n
B o n d s (S B)?

E n fo rc e N B
C o n s tra in ts

W e b S e rv ic e
In v o c a tio n

E n fo rc e S B
c o n s tra in ts

Y

N

Y

N

125

 Figure 6.3: DEVS simulation model

Atomic models have input events, output events, state variables, state transition

functions, external transition, internal transition, time advance function, computing

function, and transitions. Current state can be specified using state variables and input

and output functions are computed based on the current state and the computing

function. Coupled model has components, interconnections, internal couplings,

external input couplings, and external output couplings.

DEVS Hierarchical Modular Composition

Atomic: lowest level model,
contains structural
dynamics -- model level
modularity

Atomic

Atomic

Atomic

Atomic Atomic

Atomic Atomic

Atomic

Atomic

Coupled: composed of
one or more atomic
and/or coupled
models hierarchical

construction

126

6.3 Simulating WSCMM Architecture

The main purpose of the simulation is to verify the correctness of our middleware and to

identify design issues. In order to do that, we simulate the interactions among components

of the middleware for different incoming messages including pre and post method

invocation dependencies. We also simulate a simple sequential workflow and verify the

correctness of our architecture.

Figure 6.4 shows our simulation model for the middleware. It consists of three main

modules: message handler (msgHandler), web service coordination management system

wsCoMys), and web service management system (wsMgtSys). Here, we briefly describe

each component of the simulation model. Then we present the simulation results for

following four scenarios for the correctness of our architecture. In particular, we illustrates

that the web bond based realization of the WSCMM behaves correctly while enforcing

workflow control flow dependencies.

Simulation Scenarios

1. Enforcing workflow dependencies using subscription bonds (post conditions)

2. Enforcing workflow dependencies using negotiation bonds (precondition)

6.3.1 Message Handler

The message handler consists of three components, two incoming ports to receive

messages and three outgoing ports to send messages. Message receiver (mercy), receives

messages from remote services (Figure 6.4). Upon receipt of the message, it places the

message in a FIFO queue. Then, mrec passes messages to the message revolver (mres).

Message revolver’s job is to identify the type of message (Table 6.1). Based on the

127

message type, the message is directed to the appropriate component. For our simulation,

we have used the following format of the message.

Figure 6.4 : WSCMM Simulation Model

128

Message format

 Workflowid:fromwebservice:method:parameterset:tag

The first portion is to identify the workflow because any web service can participate in

different workflows at a given time. Second portion is to identify the message sender.

Third and forth portions contain method details and parameters. Finally, the tag is to

identify the type of message. For example, suppose web service w1 receives the message,

wf1:ws2:m2:p2:0. This means that the message belongs to workflow 1. Sender is web

service 2 and the tag is 0. Tag 0 means the message is a method invocation. In this case,

invocation of method m2 with parameter set p2. Once, the resolver receives this type of

message it resolves the message using the tag and direct it to the appropriate output port.

Table 6.2 shows the relationship between tag and the outgoing message port.

Table 6.2: Message tag and the outgoing message ports at the Message Handler

Tag Outgoing port

0 -Method invocation Send the message to wsms through
“outwsms” port.

1-data/control from subscription bonds Send the message to wscms through
“outwscms” port.

2-enforce dependency (method invocation),
negotiation bond

Send the message to wsms through
“outwsms” port.

6-Enforce post method execution
dependencies (data/control through
outgoing subscription bonds)

Send the message to dispatcher through
“outdispatcher” port.

Other possible functionalities of the message receiver of the message handler are checking

appropriate security and enforcing QoS requirements. We have not considered them in our

implementation. This simulation can be extended to accommodate such situations.

Dispatcher of the message handler sends outgoing messages to remote web services. We

129

have modeled it using FIFO queue. However, the efficiency of this can be improved using

multi-threaded dispatcher.

Figure 6.5: Message Handler

6.3.2 The Web Service Management System

The web service management system receives messages from three ports: infrommsg,

infromws, and infromwscms (Figure 6.6). First, WSMS receives method invocation (tag 0

or 2) messages from the message handler. Then, it identifies proper web service through

websericeid tag of the message. Upon identification of the workflow, it sends the message

to web service coordination management system to check/enforce pre workflow execution

dependencies. If dependencies are successfully met, then WSCMS changes the tag of the

message from 0 or 2 to 5 and sends back to WSMS. Upon receipt of a message with tag 5,

WSMS (wsmsoh), invokes the web service method. Web service invokes method and

sends the results back to WSMS.

130

Figure 6.6: Web Service Management System

 This time tag is 6. Tag 6 indicates that the method invocation happens (success or fail)

and it need to update the state information with partial date or failure message. This is

done by passing this data to the wsmsssh (state handler). It stores these data in a file. In

our simulation, this operation has been simulated by accessing a file having the same

name as the workflow. Unavailability of such a file indicates and error. It also needs to

send a message to the WSCMS to enforce post method invocation dependencies. Table 3

shows different incoming messages to WSMS and actions it takes.

131

 Table 6.3: Actions taken at WSMS

Tag Action Outgoing port

0 or 2- Method invocation
from msgHandler

Check for workflow date
(file access) and send the
message to WSCMS to
enforce pre execution
dependencies

Send the message to wscms
through “outtowscms” port.

5- From WSCMS after
enforcing pre method
execution dependencies.

Invoke the WS method Send the message to ws
through “outtows” port.

6- Results after method
invocation from WS

Update state information
and send the message to
WSCMS to enforce post
execution dependencies.

Send the message to wscms
through “outtowsms” port.

6.3.3 The Web Service Coordination Management System (WSCMS)

Figure 6.7: Web Service Coordination Management System

Similar to the message handler, WSCMS also consists of three components: a message

receiver (cmsrec), a bond repository (cmsbr), and a message dispatcher (cmsdis) (Figure

132

6.6). Main component of the WSCMS is the bond repository. Each workflow, maintains

its own dependencies in a file. Message receiver receives messages and puts them in a

FIFI queue. Then it passes messages to the “Bond Repository” to take appropriate actions.

In our system, we have employed web coordination bonds to model dependencies.

Therefore, WSCMS essentially maintains web coordination bonds and manipulate them in

order to enforce workflow dependencies. Dependencies are stored in the Bond Repository.

Bond Repository is a persistent storage where each workflow has a corresponding bond

store. Table 4 shows different messages it receives and corresponding actions of the bond

repository. Upon completion of the action, it sends the message to the dispatcher and

dispatcher directs the message to the appropriate component.

Table 6.4: Actions Taken at WSCMS

Tag Action Outgoing port

0 or 2- Method invocation
from wsms

Check for workflow
dependencies, change
the tag to 5 (file
access) and send the
message back to
WSMS

Send the message to wscms
through “outtowscms” port.

1- From megHandler to
update dependencies
(SB data)

Update the bond
repository

6- Results after method
invocation from WSCMS

Check for workflow
dependencies (post)
(file access) and send
the message to
msgHandler

Send the message to
msgHandler through
“outmsg” port.

6.3.4 Web Service

A web service receives messages and invokes appropriate methods. After invoking the

method, it changes the tag from 5 to 6 and sends the result back to WSMS. Method

133

invocation has been implemented as a “holdIn” time in the simulator. HoldIn method of

the simulator allows us to wait for a particular time period at a defined state. For example,

when a method is being executed, web service changes its state from “no-invocations” to

“invoking” state. Table 6.5 shows different states of each component.

 Table 6.5: Different states of Middleware Components

Module Component Initial State State while

processing
mrec (message receiver) active active

mres (message resolver) waiting resolving

megHandler

mdisp (message dispatcher) waiting dispatching

wcmsoh (object handler) idle active

wsMgt wcmsssh (state handler) idle updating

cmsrec (message receiver) recmsg recmsg

cmsbr (bond repository) idle updating/checking

wsCoMgtSys

cmsdis (message dispatcher) waiting dispatching

Web Servive Web_Service no_invocations invoking

134

6.4 Simulation Scenarios

The first set of simulations has been carried out to verify following two scenarios.

1. Enforcing workflow dependencies using subscription bonds (post conditions)

3. Enforcing workflow dependencies using negotiation bonds (precondition)

 Figure 6.8: Simulation Architecture

Figure 6.8, further elaborates our simulation architecture. As we have explained in

chapter 5, WSCMS ensures that pre-execution dependencies are met before making the

web service method call. Series of events take place in local WSCMS as well as

destination WS’s coordination management systems while enforcing pre-execution

dependencies. Figure 5.6 illustrates the interaction among WSCMM components while

enforcing join-dependency constraints. Message handlers maintain an inbox and outbox

for each workflow application. Both inbox and outbox has entries for each join-

dependency point. When it receives control/data from destination entities message

handler direct them for the appropriate inbox. Once the activity receives trigger (control)

to perform the method call (step 0), it sends a message to the WSCMS for dependency

check (step 1, 2, and 3). If all the dependencies are met web service method get invoked

Web Service C

Web Service EWeb Service D

Web Service A

Web Service B
Negotiation bonds

Subscription
bonds

135

and state information is updated (step 5). Otherwise, WSCMS sends messages to all the

remaining destination entities for dependency check (step 4). Then, the remote web

service invokes the corresponding method and sends the response to the requester web

service.

 Similarly, enforcing post execution dependencies require web service to trigger set of

remote web services depending on the workflow constraints specified. Figure 5.7

illustrates the interaction among WSCMM components while enforcing post execution

dependency constraints. As shown in Figure 5.7, WSCMS requests the message handler

to send data/control to remote web services according the workflow split criteria.

Message handler places remote invocations to the outbox (dispatcher) and triggers remote

web service methods (step 6). At the same time coordination management system updates

state information (step 5). We have simulated these two scenarios based on a method

invocation in web service A as shown in figure ….

 Simulation results in Table 6.2, show that middleware components behave in the

correct order while running all of the above scenarios simultaneously. This indicates that

our WSCMM middleware components successfully enforce negotiation and subscription

bond dependencies.

136

Figure 6.9: Message Routing in WSCMM Simulation

137

6.4.1 Simulating Pre-Execution Dependencies

Input: message : w1:ws1:m1:p1:0 (Method invocation to A)

The first message belongs to workflow 1. It is from web service 1. Request web service A

to execute method m1 with parameter set p1. Here, ‘0’ indicated a method invocation.

Figure 6.10 is a snapshot of pre-execution dependency simulation and the figure 6.11 is a

snapshot at post-execution dependency simulation.

Output of the Simulation

Table 6.6: Simulation Output for Incoming Messages

Message Sequence

Description

sending message to the resolver msgHandler:
w1:ws1:m1:p1:0

message received resolver: w1:ws1:m1:p1:0

resolving the message: w1:ws1:m1:p1:0

Case 1 at message handler to
resolve the message.

message received resolver: w1:ws1:m1:p1:0

Method invocation, resolver: w1:ws1:m1:p1:0

Message Received at WSMS: w1:ws1:m1:p1:0

Case 1 at WSMS, identify as a
method invocation

check dependencies before invocation, WSMS:
w1:ws1:m1:p1:0

message received at Coordination Management
System: w1:ws1:m1:p1:0

message received at Bond Repository:
w1:ws1:m1:p1:0

Case 1 at WSCMS, identify as
a method invocation and check
pre execution dependencies
(Figure 6.4)

Dispatch the message, resolver:
wfsqu:App:m1:p1:2 (WS B)
dispatch the message to remote WSs:
wfsqu:App:m1:p1:2 (WS C)

B and C receives messages

Send Messages to B and C to
enforce pre-execution
dependencies

138

message received msgHandler: wfsqu:App:m1:p1:2
message received msgHandler: wfsqu:App:m1:p1:2
B and C send results to A
dispatch the message to remote WSs:
wfsqu:App:m1:p1:1

dispatch the message to remote WSs:
wfsqu:App:m1:p1:1

A Receives results from B and C
message received msgHandler: wfsqu:App:m1:p1:1

message received msgHandler: wfsqu:App:m1:p1:1

Receive response from B and
C regarding pre-execution
dependencies

Dependencies are met: case 0 w1:ws1:m1:p1:5

Bond repository updated:w1:ws1:m1:p1:0

WSCMS, pre execution
dependencies are met and
change the tag to 5

Message Received at WSMS: w1:ws1:m1:p1:5

Invoke WS Method, WSMS w1:ws1:m1:p1:5

WSMS, pre execution
dependencies are met. Invoke
the web service (Figure 6.5)

Message Received at WSMS: w1:ws1:m1:p1:6 WSMS after method
invocation

Update state and post method invocation
dependencies, WSMS w1:ws1:m1:p1:6

message received at Coordination Management
System: w1:ws1:m1:p1:6

message received at Bond Repository:
w1:ws1:m1:p1:6

WSCMS to enforce post
method execution
dependencies. Also, update the
state information at WSMS

Send post method execution dependencies to D and
E

Dispatch the message, resolver:
wfsqu:App:m1:p1:3
Terminated Normally before ITERATION 2 ,time:
128.0
Terminated Normally before ITERATION 2 ,time:
129.0
Terminated Normally before ITERATION 2 ,time:
130.0
dispatch the message to remote WSs:
wfsqu:App:m1:p1:3
message received msgHandler: wfsqu:App:m1:p1:3
message received msgHandler: wfsqu:App:m1:p1:3

WSCMS, enforcing post
method execution
dependencies.

D and E receive message from A D and E get subscription bond

139

message received msgHandler: wfsqu:App:m1:p1:3

message received msgHandler: wfsqu:App:m1:p1:3

based method invocations

Figure 6.10: Enforce Pre – Execution Dependencies

140

Figure 6.11: Enforce Post- Execution Dependencies

141

6.5 WSCMM: Compatibility with other Standards

In this chapter we proposed enchantments to the web services infrastructure which are

analogous to the evolution of database application development and workflows. Our

architecture consists of a management system and a coordination management system for

web services. In fact, such an evolution is natural and verified due to the fact that current

web service composition is a collection of several separate protocols to handle each

functionality layer. For example, BPEL and WS-Coordination protocols handle

application logic and coordination layers while WS-Transaction takes care of transaction

management. Auxiliary protocols such as WS-Conversation and WS-Addressing have

added capabilities to handle conversation (messaging) among participant entities and

proper binding to web service ports (methods) effectively and efficiently. With these

developments, currently there are two trends in web services composition.

i) Develop the composite web process using a language such as BPEL. The use

auxiliary protocols such as WS-Transaction, WS-Coordination, and WS-

Addressing to add more functionality such as transaction management [Dus04,

Tai04, Hul04]. This methodology results in heavily loaded composite web

process having central coordination. Such code is difficult to manage and debug.

Central coordination is also not desirable.

ii) In contrast, one can develop the basic code required for the application using a

language such as BPEL and use infrastructure support to handle coordination (

Middleware) , conversation (Conversation controllers) and transaction (TP-

Monitors, Middleware) [Alo04].

142

Figure 6.12: Web process architecture: Compatibility with other standards

We believe that the second methodology will have real impact on web services

technology and help the evolution in more positive direction due to several reasons: i)

distributed coordination, ii) scalability, and iii) lightweight application development. In

our architecture we have taken this path. Earlier, we have described realization of our

architecture using web coordination bonds. However, our architecture nicely fits into

current web service composition and coordination protocols. As we have mentioned

earlier, our middleware components have interfaces and interactions among components

WS

Message handler

SOAP Server

Lightweight BPEL
Applicati on

WSCMS

 WSMS

Receive_Message() Dispatch_Message()

Create_Message _Context ()

Invoke()

Updare_State ()
Get_State ()
Store_State ()

Invoke_ws_method()

Update _ Deoendency _Contex
t ()

Create _dependency_Context ()

Check _ Depedency _Context()

Verify _ Depedency _Context() WS - Coordination :
 CoodinationConte xt

WS- Conversation

WS- Transaction

Lightweight BPEL
Application

143

happen through API’s. However, the internal implementation, algorithms and data

structures will be different based on the underline protocol being implemented. Figure

6.12 shows possible generic API’s and interaction among components using current web

service standards and protocols (BPEL, WS-Transaction, WS-Coordination).

As shown in Figure 6.12, the application logic can be coded using BPEL and all

coordination, transaction, message handling, and state information are stored locally and

managed locally. Here, BPEL code needs to trigger (start) transactions, but it does not

need to handle coordination and workflow management functions. For example,

“<scope> </scope>” construct will become simple and light weight. In our architecture,

coordination context is an XML file containing all bond related information. Similarly,

WS-Coordination creates the coordination context for each application using

“Cretate_Coordination_Context()” method and manage it. Akin to the State Information,

WS-Transaction creates TransactionContext for each transaction. WS-Conversation

together with BPEL manages message correlation and sequencing similar to inbox and

outbox in our conversation controller. Thus, the modules and our architecture are generic

enough to accommodate current technologies. However, the internal implementation as

well as the SOAP messages are being passed is different. Based on the protocol being

implemented, it is necessary to have plug-ins and converters for inter operability.

However, such plug-ins and converters will be light and simple because all these protocols

use XML message data representation and SOAP messages for communication.

Therefore, they are simple and much easier than RMI to CORBA or CORBA to DCOM

conversion (Inter-operability).

144

6.6 Discussion and Related Work

Here, we critically discuss relevant important developments on web service composition,

coordination, and enhancements to the basic web service infrastructure (Invoke/Response)

in order to support proper coordination and composition without attempting to be

exhaustive. Web services have become increasingly promising to solve barriers that the

EAI (Enterprise Application Integration) communality faced for decades In [9] authors

have argued that Web services will play a major role in electronic data exchange and

transaction processing systems. In [Ley02], authors illustrate how existing WSs are

tailored to develop business processes over the Internet. Due to the service oriented nature

of web services such applications need several web services to be integrated together to

form a composed web process, in other words web service composition. Web services

composition implies proper coordination (in particular control flow and dataflow) among

participating web services to accomplish the business logic efficiently. Web service

composition enables inter-organizational collaboration and coordination. Those

coordinated activities are long running (workflows, transactions) and require much more

functionality beyond just invoke-response protocols [Ley02]. In [Mue05], authors have

pointed out the importance of integrating Web services in to workflow management

systems. In [Men04], authors describe possible workflow application domains over the

Internet. Application of workflow management systems (WFMS’s) spans large number of

application domains including business process models, scientific applications, and health

care systems.

However, currently individual WSs are stateless and have no capability to store

state information for long-lived transactions/workflows [Alo04, Bal05]. Participant Web

145

services are passive entities. Composition language and standards need to take care of

application logic to transaction management. This resulted in heavy programming and will

have negative effects towards the progression of web services technologies. Instead of

having heavily loaded composition and coordination standards it is desirable to enhance

the basic web service infrastructure (Invoke/Response) to support coordination and

composition at web service level [Sch05, Jor05, Dou03]. Significant amount of research is

being carried out towards this goal [Tai04, Ard03]. Table 3 presents a cross section of

some of these technologies highlighting their goals. The last row illustrates our solution,

web coordination bond-enabled web services which is discussed in section 5.

Table 6.7: Architectural Enhancements to Web Services

* Web service to Web Service invocations, ** Use WSDL, *** Some state information
only for supported features.

 Basic
Service
Descrip
tion

Define
Stateful
Web
Service

Transact
ion
Aware

Communica
tion
Handling-
Conversatio
n
controllers

Coordination
Awareness
(enforcing
control flow/
data flow ..etc)

Session
Manageme
nt with
service
requesters

Peer to Peer
communication
(Distributed) *

WSDL [WSDL05] Yes No No No No No No
WSCL [WSCL02] Enhanc

es
WSDL

No No Yes Not-Specified Not-
Specified

No

WSCI [WSCI02] ** Partial**
*

Yes Yes Not-Specified Yes Yes

WS-Transaction
[Lan03b, WST02]

** Partial Yes Yes No Yes Yes

WS-
Coordination[Lan03
b]

** Partial Yes Yes No Yes Yes

Self-Serv [Ben03] ** Yes Not-
Specifie
d

Yes Partial Yes Yes

ServiceGlobe
[Kei02]

** Partial Not-
Specifie
d

Yes Not-Specified Partial Yes

WSTPM [Tai04] ** Yes Yes Not-
Specified

Yes Not-
Specified

Yes

Conversation Aware
WS [Ard03]

Yes Partial Not-
Specifie
d

Yes Partial- With
the client not
p2p

Yes Not-Specified

Web Coordination
Bond Enabled
[Bal05a-b, Pra05]

Yes Yes Yes Yes Yes Yes Yes

146

The web service description language (WSDL) [WSDL] describes the web service in

terms of the operations it can support and of the protocols bound to such operations.

However, even if the latest version of WSDL (2.0) specification has some improvements

such as different interaction types defined, it lacks message sequencing and correlation

capabilities. The Web Service Choreography Interface (WSCI) [WSCI] is an XML-based

language, which starts from where WSDL (1.0) stops. WSCI describes the flow of

messages exchanged by a Web service in the context of a process. WSCL [WSCL]

provides a state-transition model for organizing the sequence of WSDL operations.

However, it does not support context information, transactions, exception handling,

message correlation, etc. However, WSCI provides a set of useful and necessary additions

to WSCL. Another popular technology is WS-Coordination. The primary goal of WS-

Coordination [Lan03] is to create a framework for supporting coordination protocol. This

is achieved by standardizing a) A method for passing unique identifier between interacting

Web Services (coordination context), b) A method for informing a protocol handler about

port of web service that participates in conversation (registration), and c) A method for

informing a protocol handler about the role it should assume in a conversation. WS-

Coordination provides specifications for both centralize and distributed coordination.

Conventional transactions and WS-based transactions are different in several perspectives.

They have to work in a distributed setting resulting in often long-running. As lengthy

business processes have to be executed, rigid ACID properties (atomicity and isolation

constraints are relaxed) need to be relaxed. If the transaction is aborted, the web services

execute a compensation operation rather than rollback. In order to tackle these issues WS-

Transaction [Lan03] provides two types of protocols: a) Business activities for long-

147

running transactions, and b) Atomic transactions for short-duration transactions with strict

ACID properties

The SELF-SERV [Ben03] project aims at providing tool support and middleware

infrastructure for the definition and execution of composite Web services. They have

prototyped a system in which Web services are declaratively composed, and the resulting

composite services can be orchestrated either in a peer-to-peer or in a centralized way

within a dynamic environment. The ServiceGlobe [Kie02] system provides a platform on

which e-services (also called services or Web services) can be “implemented, stored,

published, discovered, deployed, and dynamically invoked at arbitrary Internet servers

participating in the ServiceGlobe federation” [Kie02]. One significant feature of

ServiceGlobe is that constraints can be specified how many services should be invoked

and how they should be invoked. Constraints may be specified directly when invoking

Web services, but they may also be stored in a service's context. In [Ard03] authors

propose to augment web services with message handling capabilities. They propose that

each participant should store the conversation context and messages should be correlated

and sequenced locally. Such conversation aware web services become active participants

of the collaboration. Importance of adding autonomous behavior and self-manageability

to web services has been highlighted in [Tai04]. Web service Transaction Middleware

(WSTMW) [Tai04], is one such platform developed by IBM to carry out transaction over

Web services. WSTMW resides in both Web service side as well as the client (mediator)

side. They have employed WS-Transaction, WS-Policy and BPEL4WS to prototype the

system. Also, the semantic web community has proposed an ontology-based framework

OWL-S (DAML-S) to enhance the web service infrastructure [Ave02, Ver05, Bra03].

148

OWL-L proposes a new layer of metadata on top of WSDL so that it will add more

semantics to web services. Such enhancements should strengthen the integration and

composition and provide automatic verification mechanism [Hul04].

As we can see from Table 5, current systems are far from being complete. They

propose many techniques (ad-hoc solutions). However, none of them are comprehensive

enough to handle all the issues. Furthermore, a key challenge is to identify a minimal yet

sufficient set of enhancements to web service architecture, both for reasons of efficiency

and for better adaptability by the existing standards. All aforementioned systems propose

different pieces of enhancements to the web services infrastructure. However, none of

them are comprehensive enough to handle all the issues. Such proposals are in very early

stage and warrant further extensive research.

6.7 Summary

In this chapter we argued that web services infrastructure need to be enhanced for

effective distributed coordination over web objects including web services. Towards this

goal we presented the web process architecture, a simple but powerful enhancement to the

current web services infrastructure that transform passive stateless web services into

conversation aware, stateful web objects. We strongly believe that such fundamental

treatment is needed for further development of web services infrastructure towards

achieving their original goal of seamless integration of autonomous web services for inter-

organizational collaboration.

149

CHAPTER 7

THE BONDFLOW SYSTEM

Web Services have become the building blocks based on which new distributed

applications will be created over Internet [9, Wee05]. Such applications span domains

many domains including commercial application, scientific applications, and bio-medical

applications. The enabling web services can be grouped into three broad categories

[Tsu01]: a) simple web services (stock quote, traffic condition, weather), b) collaborative

web services (decision making, hotel reservation), and c) transactional/B2B process

integration web services (workflow, supply chain, process control). Typically, Simple

web services are information providers. Interactions with simple web services are short-

lived and synchronous communication protocols suffice. Collaborative and transactional

web services provide building blocks to develop collaborative applications including

workflows that may span inter-organizational boundaries. Such interactions are typically

long-lived and require much more beyond just invoke/response protocols [Sch05].

Efficient technologies are required to rapidly develop and deploy robust collaborative

applications leveraging off the existing web services. Three categories of users are

envisioned who would be uses of the web services technology.

 For example, travel reservation application and simple book purchase order workflow

illustrate scenarios a common user will perform. Currently, these services are available as

web portals. However, web portals are strict template level services where users are

confined to predefined configurations. Ideally, more flexibility is desirable to select

suitable services and configure them as per user’s requirements. Using web service

150

technologies in scientific computing environments is increasingly becoming popular.

Domains such as scientific biomedical applications (biomedical data, tool integration, and

workflows) [Sin04, Var05], grid computing and even aerospace design and engineering

use web service technologies [Alo04]. It is highly desirable for scientists to configure

their workflows rapidly with minimum programming easily and effectively. Finally,

expert commercial application developers (supply chain and manufacturing workflow)

require modeling more complex control and dataflow dependencies that ensure

transactional properties [Sch05]. Thus, such methodologies should empower common

users, scientists and decision makers, and expert developers.

7.1 Limitations of Current Technology

Configuration: Common users and non-computer experts desire their workflows to be

developed with minimum or no programming whilst having provisions for expert users to

add more customizations. We denote the former as high-level configurability and latter as

high-level programmability. Current technology lacks both of these features and they are

either template level [Aal04] or detailed programming level [Wee05] systems. Template

level tools lack flexible configurability while detailed level programming tools require

the designer to model the workflow from scratch (ensure communication, workflow

coordination, application logic, and transaction properties). Thus, intricate programming

is required. In [Bar05], authors have pointed out the difficulty of using BPEL and WSDL

especially for non-programmers and even with considerable efforts in web service

standards still it is challenging to build non-trivial applications.

151

Deployment and execution platforms: World Wide Web became so popular due to its

simplicity and easy accessibility. In contrast, CORBA, RMI and DECOM did not

succeed as their proponents expected mainly due to the complexity of these technologies

despite great features they carry [Wee05, Dus04]. Web services are to bridge the gap

between two technologies. Therefore, ideally, applications that we configure using web

services should be able to deploy and execute in web-like (preferably over Internet)

infrastructure enabling them to be executed on both wired and wireless devices including

servers, PCs, handhelds, and even on cell phones. Executing workflows over wireless

devices has significant benefits [Dus04-Haw05]. Portions of long-running workflows can

reside on handheld device providing monitoring and controlling capabilities as well as

hosting services. Current web service workflow deployment platforms are difficult to

interact with and confined only to expert users. Additionally, current platforms consume

significant amount of resources and are difficult to deploy on limited resource wireless

devices. Some of current web service composition and coordination architectures

inherently assume that services are resident on the wired infrastructure. However, there is

an increasing interest in both industry and academia to empower mobile devices. In

[Cha04], authors describe issues related to service composition in mobile environments

and evaluate criteria for judging protocols that enable such composition. A distributed

architecture and associated protocols for service composition in mobile environments that

take into consideration mobility, dynamic changing service topology and device

resources are presented in [Cha04]. The composition protocols are based on distributed

brokerage mechanisms and utilize a distributed service discovery process over ad-hoc

network connectivity. In [Dus04] authors present architecture for mobile device

152

collaboration using web services. In [Mna04], authors present a rapid application to

development environment for mobile web services. [Ste03, Haw05] present web service

based mobile application integration framework. However, most of these technologies

treat handheld devices as clients.

 We designed the BondFlow system as a solution to the above problems. Underpinnings

of the BondFlow systems are web coordination bonds and the WSCMM concepts.

7.2 The BondFlow Solution

Contributions of the BondFlow system are threefold.

1. Provide high-level configurability for non-experts while maintaining the high-level

programmability for experts.

2. Distribute the coordination responsibilities among participating web services of the

workflow by providing two distinct layers of functionality: Application logic layer and

coordination layer.

3. Deploy and execute the workflow in platforms such as Internet using handheld devices

so that the handheld device becomes the controlling/monitoring agent and possible

service hosting entity.

Significance

Two layered workflow development methodology: Workflow coordination has been

encapsulated in the BondFlow system as a separate functional layer using web

coordination bonds. The web coordination bond is a fundamental underpinning of the

153

BondFlow system. Web bond coordination layer provide services to the application logic

layer. This encapsulation enables the BondFlow system to hide coordination complexity

from the developer. Developer’s responsibility is to configure the workflow using high

level constructs by linking web service appropriately and specifying constraints. Still

expert developers can integrate programs to reflect complex interactions and constraints

Distributed coordination: We distribute the workflow coordination among participant

web services by generating an “intelligent” web service coordinator proxy object

(WSCP) or coordinator object for short per web service. These coordinator objects are

stateful and enable encapsulated web services to be interconnected. An interconnected

coordinator object together with its dependency parameters represents a coordination

aware workflow node on behalf of the encapsulated web service.

Proof of concept working platform: The Bondflow system allows high-level

configurability, high-level programmability, and distributed workflow coordination. The

footprint of the BonFlow runtime is 24KB and the additional third party software

packages, SOAP client and XML parser, account for 115KB. Moreover, the footprint of

the coordinator object is small (~10KB) enabling them to reside on java-enable handheld

devices. The intermediate system generated files are less than 100 KB for a sufficiently

large workflow. The execution time workspace used by the BondFlow system is 5.4 MB

including JVM (Jeode 1.2 handled java version). We have tested the BondFlow system

on both wired and wireless infrastructure. We have used SOAP communication in wired

devices and our SyD middleware in wireless devices. SyD is our recently prototyped

154

middleware platform to develop and execute application over handheld devices [Pra04a].

Lightweight SyDListener enable handled devices to communicate among application

deployed on other peer devices.

7.3 Developer’s View of BondFlow System

The BondFlow system initiates its operation by web service lookup and discovery (Figure

7.2). The web service (WS) interface module that contains WS locator helps discovering

the service of interest.

Figure 7.1 Flow within the Coordinator Object

The WSDL Parser parses the web service description and allows the service components

to be viewed in the form of summary of methods and parameter list. Users can choose to

save the viewed services for future reference. Instance of java-enabled web service

coordinator object is created when the user wishes to save the web service. Web

coordination bonds are created among the saved services to reflect workflow

N e g o tia t io n
B o n d s (N B)?

S u b s c r ip t io n
B o n d s (S B)?

E n fo rc e N B
C o n s tra in ts

W e b S e rv ic e
In v o c a tio n

E n fo rc e S B
c o n s tra in ts

Y

N

Y

N

155

dependencies. Dependency enforcement and entire operation of bond execution depends

on the type of the bond that has been created. Bond related information is stored in an

XML storage file. The CPO encompasses all the coordination capabilities of the web

bond artifacts.

Figure 7.2: Developers Perspective of the BondFlow System

As shown in Figure 7.1, each web service call is encapsulated by a negotiation bond and

subscription bond check. This logic makes sure that data and control dependencies are

met before making the actual WS invocation. It hides the heterogeneity of various objects

including legacy web services distributed among the network by enabling them to

Search web services (WS)

W SDL
Parser

Select suitable web
services for the workflow

W eb
service

summery

Select web service
pairs for bonding

Develop user-defined
class libraries and
integrate with the

system

Add more
constraints

Create bonds between
methods of selected

WS pairs and enforce
the workflow

dependencies

Execute the Workflow

Parsed WSDL
files

Generated Proxy
objects

Configured
workflow

156

coordinate using the BondFlow system. The bond coordination logic that the CPO

contains is transparent to the user at all times. Once CPOs are created and bonded, the

basic skeleton of web service composition for BondFlow system is ready.

7.4 Two-Layered Workflow Software Architecture

As shown in Figure 7.3a, the architecture of the traditional workflow code is “single

layer” where developer needs to program the workflow from scratch (ensure

communication, workflow coordination, and intermediate data processing) (Figure 7.3a).

In contrast, in the BondFlow system, workflow coordination has been encapsulated as a

separate layer using web coordination bonds. In addition, the system generates Java-

based coordinator objects to represent participating web services in the workflow. The

coordinator object encompasses all the coordination capabilities of web bond artifacts

(Figure 7.3b). Coordinator proxy object communicates with the web service from method

invocations and is state preserving. Capabilities of web coordination bonds including

modeling workflow dependencies have been encapsulated in the upper layer (Figure

7.3b). Developer’s responsibility is to configure the workflow using high level constructs

by linking web service appropriately and specifying constraints (high-level

configurability).

157

Figure 7.3: Two-Layer Workflow Software Architecture

Web Service Coordinator Proxy Object (CPO): Figure 7.4 illustrates components of

the coordinator proxy object. The coordinator object provides the same interface as the

web service provides to the outer world. Web service method invocations of the

workflow take place through the coordinator object and the web bond coordination layer

ensures that pre and post method invocation dependencies are satisfied. As shown in

Figure 7.4, each coordinator object has a bond repository, a set of user-defined

constraints (if nay), and runtime information associated with it. The bond repository

consists of all the workflow dependences related to the coordinator object (participating

web service).

(a) Architecture of
workflow using
traditional systems.

(b) Architecture of
workflow using the
BondFlow system.

Complex
 Centralized

Workflow
Logic

Self Coordinating Distributed
Coordinator

Proxy Objects (State Information)

 High-Level Distributed
Coordination Logic

Stateless
Web Services (No Information)

Stateless
Web Services

158

Figure 7.4: Web Service Coordinator Proxy Object

This indirection allows us to bring transparency to the system and hide the necessary

coordination and communication logic behind it. It also maintains the status of method

invocations such as intermediate date and partial results. User defined constraints

represent the additional dependency conditions (dependencies not defined using web

bonds) needed to be satisfied while enforcing workflow dependencies. User defined

constraints have been discussed in section 7.2. As shown in Figure 7.5, each web service

method call is encapsulated by a negotiation and a subscription bond check. The

negotiation bonds enforce pre-method invocation dependencies while the subscription

bonds enforce post method invocation dependencies.

Runtime
data

Web bond
repository

User
defined

constraints

WSCP object
kernel

Method Calls to
embedded
web service.

Web bond
coordination

159

Figure 7.5: Flow within a Proxy Object

This logic ensures that workflow dependencies are satisfied with associated WS method

invocation. For example, upon receiving an invocation, CPO requests the “Execution

Module” to enforce pre-execution dependencies (enforce using a network of negotiation

bonds). Consequently, the “Web Bond Manager” checks the corresponding bond

repository and informs other coordinator objects to enforce the dependency (Figure 7.5).

Here, enforcing dependency implies successful invocation of corresponding web service

methods. Upon receiving the request, other objects check its runtime information (status

of the method invocation - success or failure and intermediate data) and notify the status

of the negotiation bond dependencies. The “Web Bond Manager” collects all the

responses and informs the proxy about the outcome. Subsequently, the proxy object

invokes the actual web service method; updates its runtime state information, and

N e g o tia t io n
B o n d s (N B)?

S u b s c r ip tio n
B o n d s (S B)?

E n fo rc e N B
C o n s tra in ts

W e b S e rv ic e
In v o c a tio n

E n fo rc e S B
c o n s tra in ts

Y

N

Y

N

160

enforces post-execution dependencies (enforce using a network of subscription bonds). In

this architecture, each proxy object maintains and enforces workflow dependencies

locally, allowing decentralized workflow coordination.

 The idea of Web service coordinator proxy object together with underlying web bond

primitives encapsulates the workflow coordination layer. This simple, but powerful idea

empowers web services and makes workflow configuration less programming intensive.

We believe this concept has enough potential to lead a fundamental shift in workflow

development over web services.

7.4.1 Web Bond layer and the Bond Repository

The workflow configuration process starts by creating bonds among methods of selected

web services to reflect dependencies (negotiation and subscription bonds). Bond

constrains are specified during the bond creation time and the bond configuration is

stored in a persistent storage in XML format.

Figure 7.6: Elements of a Typical “Bond” Figure 7.7: Sample Bond Repository

Repository

<Wrapper>
 <WSName> </WSName>
<!--Bond information is stored as follows
between <Bond> </Bond> tag, source
method name, destination web service and
method name are the important parameter
that are stored at bond creation along with
type of bond and presence of trigger -->
 <Bond bid=" ">
 <SrcMethod> </SrcMethod>
 <DestWS> </DestWS>
 <DestMethod> </DestMethod>
 <Type> </Type>
 <Trigger> </Trigger>
 </Bond>

Web bond information

Web service information
(URL, Name …etc)

Source and destination
methods

Workflow context
(Workflow ID… etc)

Triggers and constrains
associated with bonds

Web Bond Repository

161

Figure 7.6 shows the structure of a typical bond repository. The bond data store

(repository) consists of four elements. The first element is to identify the web service

(hence the coordinator objects) the repository belongs to. The second element identifies

the workflow/application to which the repository belongs. Source and destination

methods and associated constrains among bonds are in the next two elements. A sample

bond repository is shown in Figure 7.7.

7.4.2 Web Bond Layer

Here, we illustrate the workflow configuration using high-level web coordination bond

constructs using purchase order case study workflow. Figure 7.8 illustrates the modeling

of purchase order workflow using a network of web coordination bonds. Five web

services are involved in the workflow. The system generates coordinator proxy objects

for each web service. Then, a network of web bonds has been created among methods of

these coordinator objects to enforce the workflow constraints. For example, the “receive

purchase order” web service needs to pass control to “price calculation”, “find shipper”,

and “production and shipment web services” once it is completed. In order to model this

split-dependency, Receive_PO() method has three subscription bonds to each of

Initiate_PC(), Find_Shipper(), and Initiate_production() methods. Similarly, rest of the

dependencies has been modeled using other negotiation and subscription bonds.

162

Figure 7.8: Purchase Order Workflow

The configured workflow consists of five coordinator objects representing each web

service with bond repositories associated with them.

7.4.3 High-level Programmability

Simple workflow constraints such as AND-split can easily be enforced using web

coordination bonds [Bar05]. However, complex control patterns such as “Sync-merge”

and “Milestone” need developer designed selection criteria [Bar05]. Such customizations

can be incorporated by developing user-defined libraries (java classes) and integrating

them to the system library (typically complex workflow need such customizations). Then

the triggers/constraints portion of the bond repository refers to the user-defined library

(Figure 7.7). The BondFlow system is capable of extending the default web bond

constraints allowing a plug-in architecture that extends the scalability of the system.

Furthermore, it empowers the system’s ability not only to support the well known

workflow patterns but also any arbitrary patterns to be created and deployed.

Receive_PO()

Receive
Purchase

Price Calculation

Find Shipper

Production
and Shipment

Process
Invoice

Arrange_Logistics()

Find_Shipper()

Complete_production()

Initiate_production()

Process_Invoice()

Initiate_PC()

Complete_PC()

163

 The extended bond constraints (user defined constraints) define one or more “Roles.”

Each role performs a set of coordinating activities in order to enforce the semantics of the

role. Furthermore, these roles are to be assigned to specific web services (nodes) in the

workflow, thus allowing distributed coordination among this web services. The

BondFlow system provides a common interface where new web bond constraints can be

plugged-in. The extended bond constraints define a JAR file. This package contains: (i)

roles.xml: This file contains definition of all the roles and their binding to specific

constraints classes: (ii) Set of class files: These class files relate to each role defined in

roles.xml. There are no restrictions as to the name of the class files. After preparing the

JAR file, it is stored in the /plug-ins directory of the workflow configuration manager.

 Once the workflow has been configured, it can be deployed on a single device or it can

be distributed among several devices. They communicate with each other to enforce

workflow dependencies. If the workflow resides in a single device, then the

communication among coordinator objects is local in-memory calls. If the coordinator

objects are distributed in the network, then SOAP or other suitable communication

protocol can be employed to facilitate inter-object communication. We have implemented

SOAP based communication in wired infrastructure and SyD middleware based

communication in wireless infrastructure.

7.5 The BondFlow System Architecture: Design and Implementation

The BondFlow system consists of two sub-systems: workflow configuration manager and

the workflow execution module. Workflow configuration manager consists of web

164

service interface module, WSCP generator module, and workflow configuration module.

Workflow execution module consists of web bond runtime manager, SOAP or other

suitable communication layer, and JVM runtime.

Figure 7.9: BondFlow System Architecture Figure 7.10: Proxy object generation

Configuration module:

Web Service Interface Module: The WS Interface module is the system’s interface to the

web services. It deals with locating the web services of interest for the user and parsing

those web services for desired data. It consists of two components, Web Service Locator

and WSDL Parser as shown in Figure 7.9. The web service locator module locates the

service by contacting web service directory such as UDDI, gets the web service

description and passes it to the WSDL Parser module. We have used Apache- Axis

implementation of the web services. The WSDL parser uses WSDL4J API for WSDL

parsing. It parses the WSDL file for required components and methods and parameter list

is shown to the user for his reference. Parsed WSDL file is stored in the persistence

Proxy generator

Parsed WSDL file
Proxy generator

template

Web Service Coordinator
Proxy object

Proxy generator

Parsed WSDL file
Proxy generator

template

Web Service Coordinator
Proxy object

Web Service
Interface Module

WS Locatorr

WS Parser

Lookup for
Web services Web services

Registry (UDDI)

WSCP Generator
Module

Workflow
Configuration

Manager

Workflow
Execution Module

Web Bond
Runtime Manager

SOAP/SyD

JVM

165

storage if the user opts to save the web service. Data is stored in XML format according

to the bond repository schema.

Web Service Coordinator Proxy Generator Module: Upon selection of a particular WS

for the workflow a coordinator object is generated. Coordinator object code is generated

based on the parsed WSDL file of the selected WS and the proxy generator template

(how do we generate what API’s ...etc).

Workflow Configuration Module: the workflow configuration manager implements

operations of the workflow configuration module. The responsibility of the configuration

manager is twofold. First, it is responsible for all the bond related operations, such as

creation, deletion and updating of the web bonds and generating the bond repository for

each web service. Second, it allows expert users to add customized features to the

workflow. This is one of the key modules in our system that guarantees high-level

programmability for expert users. Collection of coordinator objects together with

corresponding bond repository represents a configured workflow (Figure 7.11).

High-level programmability for expert users: The BondFlow system is capable of

extending the default web bond constraints. Thus, allowing a plug-in architecture that

extends the scalability of the system. Furthermore, it empowers the system’s ability not

only to support the well known workflow patterns but also any arbitrary patterns to be

created and deployed.

 The extended bond constraints (user defined constraints) define one or more “Roles.”

Each role performs a set of coordinating activities in order to enforce the semantics of the

role. Furthermore, these roles are to be assigned to specific web services (nodes) in the

workflow thus allowing distributed coordination among this web services. The BondFlow

166

system provides a common interface where new web bond constraints can be plugged-in.

Moreover it also provides the developer with a set of APIs, which can be used to gain

access to the runtime of the system. These features of the system greatly reduce the

development time. This set of APIs and interface are defined by classes and interfaces

defined in Pattern package in the class hierarchy.

 In terms of implementation, the extended bond constraints define a JAR file. This

package contains:

roles.xml: This file contains definition of all the roles and their binding to specific

constraints classes.

Set of class files: These class files relate to each role defined in roles.xml. There are no

restrictions as to the name of the class files.

After preparing the JAR file, it is stored in the /plug-ins directory of the workflow

configuration manager.

Figure 7.11: The BondFlow Runtime Figure 7.12: Workflow configuration

BondFlow Runtime: The BondFlow runtime consists of two modules: web bond

runtime manager and the runtime information handler. The BondFlow runtime manager

enforces workflow constraints at runtime whilst runtime information handler stores

Proxy object
invocations

Configured Workflow (Code/Data)

BondFlow Runtime Manager

SOAP/RPC (PC based)

SyD Middleware (handheld based)

JVM

WS invocations

Proxy object
invocations

Configured Workflow (Code/Data)

BondFlow Runtime Manager

SOAP/RPC (PC based)

SyD Middleware (handheld based)

JVM

WS invocations

Workflow
Configuration

Manager
WSCP objects

WSCP object code
 + Constraints

Bond repositories

Configured workflow
Code + Data

167

method invocation information and other workflow related dynamic information for long-

lived workflows. The BondFlow runtime manager sits on JVM and uses SOAP or other

suitable communication technology to communicate among coordinator objects and web

services. Upon object invocation, it consults the workflow execution environment and

carries out series of operations depending upon the bond parameters specified at the bond

creation time. Checking of the type of bonds, getting bond parameters and executing the

actual bond are some of the major operations by the bond flow runtime manager. The

final call to the original web service is made using SOAP or any other suitable

communication standard. For example, if the coordinator object and the web service

reside in the same location web service calls are in-memory invocations. Upon receiving

an invocation, WSCP object request the “Web Bond Runtime Manager” to enforce pre-

execution dependencies (enforce using a network of negotiation bonds). Consequently,

the “Web Bond Manager” checks the corresponding bond repository and informs all

remote proxy objects to enforce the dependency. Upon receiving the request, remote

objects check its runtime information and notify the status of the negotiation bond

dependencies. The “Web Bond Manager” collects all the responses and informs the proxy

about the outcome. Subsequently, the proxy object invokes the actual web service

method, updates its runtime state information, and enforces post-execution dependencies.

Likewise, the coordination continues.

7.6 Handheld-Based Execution

The workflow applications have been executed on HP's iPAQ models 3600 and 3700

with 32 and Pra05 MB storage running Windows CE. There are two possible deployment

168

strategies. First, the entire workflow can reside in a single wireless device. In this case,

communication among coordinator objects is via local in-memory calls. Actual web

service call is made using SOAP (kSOAP). Second, the workflow can be distributed

among several iPAQ’s (Figure 7.13). This scenario is important in cases where some

portions of the workflow can be monitored and executed by a selected set of users on

specific devices and/or with specific security settings.

 In this case, coordinator objects need to communicate using a remote messaging

system to enforce dependences. We have employed the SyDListener of the SyD

middleware [Pra04a]. The SyDListener enables handheld devices to communicate among

applications deployed on other peer devices (Figure 7.10). SyDListener is a lightweight

module in our SyD middleware framework for enabling mobile devices to host server

objects. In order to communicate using SyD listener, first coordinator objects need to be

registered in the SyD directory. SyDDirectory maintains its own database to store

information about all the SyD application objects together with associated devices and

delivers location information of devices and services (methods) dynamically. SyD objects

can lookup remote objects through SyDDirectory. The SyDEngine facilitates the object to

actually invoke a remote object. SyDListener keeps listening for any connection requests

and delegates the control to the SyDEngine module.

169

iPAQ

Workflow
coordination

constraints for
Web service\n

iPAQ

Workflow
coordination

constraints for
Web service\n

iPAQ

Workflow
coordination

constraints for
Web service\n

SyD Call Using
SyD Listener

SOAP Call Using
kSOAP

Web Service

SyD Directory

Figure 7.13: Workflow Distributed among Several iPAQ’s

Coordinator Object Registration as a SyD Application Object [Pra04a]: The proxy

objects register all the method names along with the list of parameters (their data types)

with the registry. Initially, all the entities are converted into required XML format using

SyDDoc and then the registration process with SyDDirectory begins. Once bound in the

registry, these coordinator objects wait for invocation from other proxies. In this scenario,

the registered proxies act as servers waiting for invocation from clients.

Coordinator Object Invocation through SyD Engine [Pra04a]: When a workflow

containing SyD coordinator application object encounters the presence of web bonds with

other applications, it looks up the desired web service proxy in the SyDDirectory (Figure

7.9). SyDDirectory returns the list of parameters for the specified method. Depending

upon the parameters, required values are passed to the SyDEngine as an XML document.

The SyDEngine of the client (in this case the source web service) invokes its SyDListener

that in turn calls the server’s SyDListener by opening a socket connection. The result is

returned to the client as an XML document. In this architecture, each device can act as

170

both server and the client. They become capable of hosting server objects. As shown in

Figure 7.13, Actual web service call is made using SOAP (kSOAP).

7.7 System Evaluation

The BondFlow system has been prototyped using java 1.4 and the footprint of the

BonFlow runtime is 24KB. Additional third party software packages, SOAP client and

XML parser, account for 115KB. Non-device resident configuration module is 28.7 KB.

The footprint of the proxy object is small (~10KB) and typically increases by 0.3 KB per

additional operation (method) of the web service. Intermediate system generated files are

less than 100 KB for a sufficiently large workflow. Typically the footprint of the bond

repository increases 0.3 KB per each additional bond. The execution time workspace

used by the BondFlow system is 5.4 MB including JVM (jeode handled version).

 We have developed several workflows to evaluate the BondFlow system. We have

used real web services available in xmethods.com and few other service directories for

these workflows. Reminder of this section presents our system performance details.

Hardware software setup: We ran our experiments on a high performance SunOS 5.8

server. We built wrappers using JDK 1.4.2. The WSDL parser has been built using

WSDL4J API. WSLD4J API is an IBM reference implementation of the JSR-110

specification (JavaAPI’s for WSDL). NanoXML 2.2.1 is used as the XMLparser for

JAVA. Various publicly available web services including Xmethod’s SOAP based web

services (http://www.xmethods.net/) have been used for our experiments. For wireless

device experiments we have used HP's iPAQ models 3600 and 3700 with 32 and 64 MB

171

storage running Windows CE/Pocket PC OS interconnected through IEEE 802.11 adapter

cards and a 11 MB/s Wireless LAN. Jeode EVM personal Java 1.2 compatible has been

employed as the Java Virtual Machine.

Size of WSDL (number of methods) vs. Wrapper creation time: As Web bond

wrapper is central to our system it is important to analyze wrapper creation time and to

investigate how wrapper creation time varies with different size (number of methods) of

Web services. Table 7.1 shows that wrapper creation time is very small and wrapper size

is less than 10 KB even for a Web service with 17 methods. This is an advantage as these

wrappers can easily be placed in memory constrained small handheld devices. The bond

creation time for both types of bonds is less than 25ms. Also, note that once wrappers are

created and bonded, the basic skeleton of the workflow is ready. Developers can add

more logic into it if needed. This will reduce the programming effort considerably.

Table 7.1: Size of WSDL (number of methods) vs. Proxy Object Generation Time

Case study workflows: We have developed few simple and complex workflows to

evaluate the BondFlow system. Figure 7.14 and 7.15 show book price and traffic

condition workflows respectively. Both of these workflows enforce simple sequence. As

shown in Figure 7.14, there are subscription bonds from Barnes and Nobel web service to

Proxy Object
Footprint
(KB)

Number of
Methods

WSDL
Size (KB)

Proxy
Creation
Time(ms)

1 2 20 2.2

2 2.3 23 2.3

4 8 32 2.6

5 12 40 2.5

8 16 46 3.5

17 32 76 5.7

Proxy Object
Footprint
(KB)

Proxy Object
Footprint
(KB)

Number of
Methods

WSDL
Size (KB)

Proxy
Creation
Time(ms)

1 2 20 2.2

2 2.3 23 2.3

4 8 32 2.6

5 12 40 2.5

8 16 46 3.5

17 32 76 5.7

Number of
Methods
Number of
Methods

WSDL
Size (KB)
WSDL
Size (KB)

Proxy
Creation
Time(ms)

Proxy
Creation
Time(ms)

1 1 22 2020 2.22.2

22 2.32.3 2323 2.32.3

44 88 3232 2.62.6

55 1212 4040 2.52.5

88 1616 4646 3.53.5

1717 3232 7676 5.75.7

172

eBay web service and eBay to Amazon and Amazon to Currency web service. This chain

of subscription bonds enables them to exchange book price data and control. By having

negotiation bonds in reverse direction make sure they activate sequentially. For an

instance, Amazon can only be invoked if eBay has finished its activity. Similarly Figure

7.15 illustrates the bond structure for traffic condition workflow.

Figure 7.14: Book Price Workflow

Figure 7.15: Traffic Condition Workflow

Then have developed several workflows to evaluate the BondFlow system. Here, we

illustrates the online book purchase workflow and purchase order workflow.

BN CEeB

Barnes and
Noble Price
Quote
(http://www.x
methods.net/s
d/2001/BNQu
oteService.ws
dl)

eBay Price
Watcher
(http://www.x
methods.net/s
d/2001/EBay
WatcherServi
ce.wsdl)

Amazon
Query
Service
(http://majord
ojo.com/amaz
on_query/ama
zon_query.ws
dl)

Currency
(http://ww
w.atlaz.net/
webservice
s/GetCurre
ncyExchan
ge.wsdl)

AMBN CEeB

Barnes and
Noble Price
Quote
(http://www.x
methods.net/s
d/2001/BNQu
oteService.ws
dl)

eBay Price
Watcher
(http://www.x
methods.net/s
d/2001/EBay
WatcherServi
ce.wsdl)

Amazon
Query
Service
(http://majord
ojo.com/amaz
on_query/ama
zon_query.ws
dl)

Currency
(http://ww
w.atlaz.net/
webservice
s/GetCurre
ncyExchan
ge.wsdl)

AM

AFTP

Temperature
(http://www.x
methods.net/s
d/2001/Temp
eratureServic
e.wsdl)

Traffic
Condition
(http://www.x
methods.net/s
d/2001/CATr
afficService.
wsdl)

AddressFinder
(http://arcweb.esri
.com/services/v2/
AddressFinder.ws
dl)

TR EM

Email
(http://ww
w.cosme.nu
/services/s
mtpserver.p
hp?wsdl)

AFTP

Temperature
(http://www.x
methods.net/s
d/2001/Temp
eratureServic
e.wsdl)

Traffic
Condition
(http://www.x
methods.net/s
d/2001/CATr
afficService.
wsdl)

AddressFinder
(http://arcweb.esri
.com/services/v2/
AddressFinder.ws
dl)

TR EM

Email
(http://ww
w.cosme.nu
/services/s
mtpserver.p
hp?wsdl)

173

 Online book purchase workflow: As shown in Figure 7.16, “Start_Book_Purchase()”

method sends control to both BN and eBay web services to get book quote (parallel split).

Result is fed to the currency exchange web service where each quote is converted to the

local currency. Then if the user is online send an email. Note that the currency exchange

activity is invoked only if both BN and eBay book quotes have been completed and the

user is online. This is captured by three negotiation bonds from currency exchange

activity to each activity with AND logic.

Purchase order workflow: On receiving the purchase order the receive purchase order

initiates three concurrent tasks to initiate the price calculation, select a suitable shipper,

and scheduling the production and shipments. Once all three tasks are done, invoice

processing starts task is initiated. We have modeled and implemented this workflow

using the BondFlow framework. Figure 7.16 illustrates the modeling of purchase order

workflow using web coordination bonds. Similarly, we have modeled several other

workflows and carried out various performance measurements. Rest of this section

discusses results of performance measurement.

Figure 7.16: Purchase order workflow Figure 7.17: Online book purchase workflow

 Start_book_purchase()

BN bookstore
 Get_book_price()

eBay
 Get_book_price()

Currency Exchange
 Get_book_price()

Yahoo online
Online()

Email
Send email()

Receive PO()

Receive
Purchase

Price Calculation

Find Shipper

Production
and Shipment

Process
Invoice

Arrange_Logistics()

Find_Shipper()

Complete_production()

Initiate_production()

Process_Invoice()

Initiate_PC()

Complete_PC()

174

Table 7.2: Workflow execution timings

Workflow Total
execution
time (ms)

BondFlow
related

time (ms)

BondFlow related
(%) computation

Purchase order
of NB= 4, #of SB= 9

7820 1048 13.4

Online book purchase
of NB= 5 #of SB= 6

2483 102 4.1

Book Price
#of SB’s = 3, #of NB’s=

2 (book price)

5577

82 1.4

Traffic Condition
#of SB’s=4

6406

67 1.07

Table 7.3: Footprint of the workflow

We have deployed and executed case study workflows including the purchase order

workflow on both wired and wireless infrastructure. Table 7.2, shows that the workflow

execution timings for the two case study workflows for both wired and wireless settings.

Bond related time for both workflows are approximately ~10% of the time without the

BondFlow system. The bond related time accounts for times taken to check workflow

dependencies in bond repository and initiate appropriate method calls on remote web

services (coordinator objects). Table 7.3 shows the footprints of two workflows. The

coordinator objects and corresponding bond repositories accounts for ~25% and ~75%

Workflow Bond
repository

(KB)

Proxy
objects
(KB)

Total workflow
(KB)

 Purchase order 7.10 25.4 32.5
 Online book
 purchase

5.82 19.8 25.62

175

respectively. The footprint of the proxy object is small (~10KB) and typically increases

by 0.3 KB per additional operation (method) of the web service. Intermediate system

generated files are less than 100 KB for a sufficiently large workflow. Typically the

footprint of the bond repository increases 0.3 KB per each additional bond. Thus, we feel

that with in a very small amount of additional storage for the proxy objects, we have been

able to get substantial gains in the speed of the workflow.

Benchmark Workflow Patterns: Finally, Figure 7.18 shows the execution timings for

few different workflow benchmark patterns. Time taken in wireless setting is more

mainly due to limited processing power and other resources. Also, the execution time

rapidly increases with number of nodes. This is again due to the XML parsing.

Figure 7.18: Execution timings for sample workflow control flow patterns

Sequence Parallel Split Syn- Merge

0

5000

10000

15000

20000

2 3 4 2 3 4 2 3 4

Number of Services

Ex
ec

ut
io

n
Ti

m
e

(m
s

wired
wireless

176

7.8 Related Work and Discussion

Several approaches have been proposed toward distributed web service coordination and

peer-to-peer interaction among web services. Among such systems, IBM symphony

[Gir04] decentralizes the coordination by partitioning centralized workflow specification

into separate modules so that they can run in a distributed setting. However, there are

limitations to such efforts. First, it is necessary to develop the centralized BPEL code and

then partition and distribute it among participant entities. Second, usually, there are

problems partitioning the code in complex application scenarios such as long running

transactional applications without proper infrastructure support. Self-Serv project

presented in [Lan03], proposes a peer-to-peer orchestration model for web services. It

introduces a ”coordinator,” which can act as a scheduler for participating web services.

Several coordinators can control the execution of the workflow in peer-to-peer fashion. In

[Chr04] authors propose a distributed and decentralized process approach called OSIRIS

that allows peer-to-peer communication among participating web services. However,

their approach needs meta information to be stored in a central location. Also, in order to

enforce fork/join dependencies they introduce a new join node exclusive from workflow

nodes. In contrast to the Self-Serv and OSIRIS approaches, our coordinator proxy object

is dynamically generated based on the description of participating web service and it

encapsulates all the coordination capabilities. The proxy object enforces its own

dependencies. This enhances each web service facilitating more fine-grained

decentralization of the coordination. In [Sch02], authors propose a system to distribute

the execution of business applications using web services by adding business rules into

the SOAP messages. Business rules encoded in the SOAP header specify the order of

177

execution. Messages are decoded and processed by special processing units called SOAP

intermediaries. In [Ros05], authors propose a service-oriented distributed business rules

system and its implementation based on WS-Coordination. Web service Resource

framework is another proposal towards stateful web services. It provides standardization

representation to stateful resources and the web service interface provides functionalities

to access (read, update and query) state information. This state information is used to

process web service messages [Hum05]. Comparative study of various implementations

of WSRF is presented in [Cza04]. In contrast to WSRF approach, in the BondFlow

system maintains state information of workflow execution and processes messages. State

is attached to the coordinator proxy object. Web service interface need not be changed

and web service is relieved from state handling functionalities.

 In [Cha04, Jor05], authors describe issues related to service composition in mobile

environments and evaluate criteria for judging protocols that enable such composition.

The composition protocols are based on distributed brokerage mechanisms and utilize a

distributed service discovery process over ad-hoc network connectivity. In [Ran04],

authors present an architecture for mobile device collaboration using web services. In

[Mna04], authors present a rapid application development environment for mobile web

services. [Ste03, Haw05] present web service based mobile application integration

framework. However, a key limitation of most of these technologies is that they treat

handheld devices only as clients.

178

7.9 Summary

 In this Chapter, we have presented the design and a prototype implementation of our

BondFlow system, which is a platform to configure and execute distributed workflows

over web services. BondFlow system’s two-layered workflow software development

methodology greatly reduces the application development effort. The concept of the

coordinator proxy object is central to our decentralized architecture. A preliminary study

of implementation prototype shows that the bond related time is ~10% of the workflow

execution time. Also, the small footprint of coordinator proxy object (~10KB) enables

them to reside on java-enabled handheld devices. In contrast to other systems such as

Self-Serv, the idea of the coordinator proxy object enhances each web service facilitating

more fine-grained decentralization of the coordination. Our goal is to use this

infrastructure to model and implement actual workflows in typical biological and E-

commerce applications.

179

CHAPTER 8

BIOLOGICAL WORKFLOWS

Integration of data sources/tools and perform computations on them is on of the key areas

of experimental biology. Modern data sources and computational tools are diverse in

nature and many such sources are available. For example, according to [Hul06], there are

about 3000 publicly available services in molecular biology itself. Moreover, these

sources are geographically distributed and highly diverse in data format, representation,

and capabilities. Therefore, manual composition and analysis has become almost

impossible [Gua03]. Efficient and robust tools/methodologies are needed to automate the

biological data and tool integration. Recently, web service technology has gained

considerable recognition in both industry and academia as a possible solution to many

such problems. In this chapter we illustrate how the BondFlow system can use to

compose biological data sources and tools to create useful workflows. First, we discuss

challenges in biological data and tool integration in detail. Then, we present a detailed

discussion web services based tools for biological data and tool integration. Next, the

BondFlow based solutions is presented. Finally, we discuss strengths and weaknesses of

the BondFlow system and future directions.

8.1 Challenges in Biological and Data and Tool Integration

Modern biological data analysis requires the aggregation of many tools and data sources

developed by various independent organizations [Atl04]. Such analysis involves in data

exchanges among different tools and execution of these tool in a particular order. This

180

essentially creates a workflow among participating entities. For example, DNA sequence

analysis is one of the most popular workflows often biologists compose. In this

workflow, first, a BLAST query can be made to extract matching sequences and then a

query can be made to GetEntry data base to extract sequences of all the matching DNAs.

Finally, a query can be made to ClustalW for multiple alignments. Such a data and tool

integration differs from conventional commercial applications in several ways.

Significantly large number of tools and data sources data sources available representing

highly diverse and heterogeneous sources. Also, these data sources and tools are

autonomous and have different interfaces and querying capabilities. For example,

Genome research projects generate enormous quantities of data from a large number of

high quality sequence data of different species and variants due to the advent of new and

improved sequencing technologies [Att99]. There exist many standalone databases

including EMBL at the European Bioinformatics Institute (EBI), the DNA Data Bank of

Japan (DDBJ) at the Center for Information Biology (CIB) and GenBank at the National

Center for Biotechnology Information (NCBI), which harbor such sequenced data and are

goldmines for a biologist, especially for homology sequence comparisons and sequence

analysis [Ben03, Ben00]. Moreover, data being transferred from one tool to another can

be large and complex. Intermediate data conversion mechanisms are needed. Biological

workflows can be long running and require more resources than conventional commercial

applications. However, they may not require more complex workflow control flow

requirements. In general, scientific workflows are data flow driven.

 Currently, most common type of data and tool integration methodology for biologist is

web based tools. However, web portals require significant amount of manual interactions

181

such as manual copy and paste data from one source to another. Also, in cases where

large amount of data to be retrieved and analyzed this method is very inefficient if not

impossible. Another technique is to use scripting languages such as Perl to compose these

tools and data sources. They require expert knowledge of systems and skills. As many

researches have pointed out, web services provide solutions to some of these problems. In

the next section we explore web service based solutions to biological data and tool

integration.

8.1.1 Web service Enabled Biological Tools

As mentioned earlier, such enormous data crunching requires the integration and mining

of ever increasing heterogeneous bio-logical data sources into a desired configuration,

which is effectively setting up a workflow among these data sources. Such integration

and configuration needs to overcome the same issues that enterprise application

integration technologies are faced with for decades on a different scale with added

constrains such as data conversion and extracting most accurate data among different data

sources. Moreover, any such integration and data mining tool should be user friendly and

transparent to the user as much as possible. Web services have emerged as a capable

platform, which hides system and network heterogeneity issues making users as well as

the application developers life easier. In [Sha04] authors have mentioned several

advantages of using web services in biological data crunching.

1. They are universally interoperable because of language independent protocols

such as WSDL, SOAP, and XML.

182

2. They have a simple way of communication using loosely coupled SOAP

messages.

3. Developers, users do not need to perform any code or any installation

procedures. Web services are distributed across the network and users can build

their applications using well understood protocols such as HTML, and XML.

Currently, many web service based systems available for scientific workflow

composition and execution. One of the prominent objectives of all of these systems is to

facilitate non-computer experts with “some kind of” easy use graphical workflow

configuration environment. Among such systems, BioFlow has a well designed

architecture [Gua03]. The main objective of the BioFlow system is to facilitate seamless

integration of online distributed data sources and programs. BioFlow supports query

based workflow composition. It consists of five sub components. Its program integration

module facilitates inter-program communication. For example, if programs are running in

the same computer then the interaction is takes place through OS calls. Otherwise,

suitable Remote Procedure Call mechanisms need to be used. Its data integration module

supports inter-data source (DB) communication through a query language called HTQL.

Inter program data conversion is also handled by this module. However, the BioFlow

supports only centralized execution of workflows. Users need to learn BioFlow’s query

language. The inter-program interactions and data conversions need be specified

explicitly.

 Triana Problem Solving Environment (PSE) (http://www.trianacode.org/) is another

framework that supports graphical composition and distributed execution of web service

183

based scientific workflows [Maj04]. It supports dynamic services discovery, GUI based

workflow composition, and distributed execution of workflows. Currently, the workflow

composition is mapped to WS-BPEL code and can be executed on Triana Task

Controllers (TSC). TSC’s can be deployed on Grid based middleware platforms. One of

the interesting features of the Triana workbench is the data type conversion tool. It can be

dragged onto the canvas and connected among participation web services. However,

more customized data type conversions such as extracting specific fields from an output

of a service before feeding it to another need be programmed or manually performed by

the user. While Triana provides a generic web service based platform for scientific

workflows, Taverna (http://taverna.sourceforge.net/) provides a web service based

platform for integrating data sources and tools in molecular biology [Hul06]. It has a

comprehensive graphical user interface to compose and execute workflows. Unlike many

other systems, Taverna clients need less system resources and computing power (personal

computer). However, the system is very complex to learn. Taverna is build for Grid

services, but can be extended to non-Grid based services.

 Pegasus (http://pegasus.isi.edu/) is another comprehensive system for scientific

workflows over Grid (and Web) services [Pegasus]. The Pegasus also provides a GUI

based workflow composition. However, the Pegasus considers more on resource

allocation and workflow task scheduling for large, long running Grid based workflows.

GUI based workflow composition platform allows scientists to specify the workflow in

the abstract level. Then, at the execution-level, the abstract level workflow is mapped

onto more concrete workflow by specifying tasks to be executed, resource needed, and

possible scheduling. It also, supports partial scheduling. Activities that are likely to be

184

executed in near future are scheduled to optimize resources. Data transfers among

activities take place using GridFTP protocol. However, data transformations need be

done manually or programmatically by the workflow developer. Unlike, Taverna,

Pegasus is a bulky system and need considerable amount of expertise to develop

applications. Many other web based tools for biological data analysis including

MatchMiner [MatchMiner] from NIH, BioJava [BioJava], Bio-Perl [BioPerl] and

GenePath [GenePath] exists.

 These systems provide advanced features and almost all the platforms have graphical

user interfaces to configure workflows. However, specific data transformations and

conversions need to be done manually or programmatically by the developer. Moreover,

these platforms require user to install systems and configure them before using the

system. Also, accessibility is low in the sense that specially configured machines are

needed. In addition, handheld based coordination of scientific workflow has not been

supported or considered in any of these platforms. Handheld based monitoring will be

very useful and increase the accessibility. We envision a platform which is available via

web that allows scientists to configure, execute, and monitor their workflows with

minimum effort. Thus, we believe that integrating different resources as per application

requirement on the fly is still a distinct goal to achieve.

Section 8.2 presents few biological workflow examples that further illustrates

requirements and issues. Then, Section 8.3 discusses how we can use the BondFlow

system for biological workflows its strengths and weaknesses.

185

8.2 Motivating Example

Here we will discuss two biological workflow examples to illustrate the issues in the

domain. More such workflows can be found at [DDBJ].

Alignment Region Comparison Workflow: Figure 8.1 show a workflow developed by

(DNA Database of Japan) DDBJ to compare the alignment regions of high similar

sequences of a given DNA sequence [DDBJ]. Alignment of gene sequences reflects the

evolutionary relationship among genes. In a gene, genetic information is encoded using

four letters, A, G, C, T. RiboNucleicAcid (RNA) is a nucleic acid generated from coding

regions of a gene for further analysis. One of the common formats of representing

DNA’s and RNA’s is FASTA format. FASTA file starts from the symbol “>” followed

by a descriptive sequence of special identifies such as accession number. Rest of the file

consists of gene coding sequence. For this workflow, first we input the gene sequence

(RNA) of a “ ” in FASTA format.

 Here, we use three different biological tools namely, BLAST, GetEntry, and ClustalW.

First, we explain the functionality theses tools briefly and then we illustrate the operation

of the workflow in detail.

BLAST (Basic Local Alignment Search Tool): The BLAST provides methods for

searching of nucleotide and protein databases. Blast algorithm detects local as well as

global sequential alignment regions of similarity embedded in otherwise unrelated

proteins [DDBJ]. Sequence alignments provide a way to compare novel sequences with

previously characterized genes. Both functional and evolutionary information can be

inferred from well designed queries and alignments. The BLAST consists of about

186

twenty NCBI databases and six search programs [DDBJ]. The application developer

needs to select a suitable program and a database to search from. It accepts several data

formats as input such as FASTA.

GetEntry: GetEntry is another search tool developed by DDBJ (DNA Data Bank of

Japan). It supports several Protein and DNA data sources that contain experimentally

collected data. Users have to make a query based on one of the ID’s such as Accession

and Gene Name.

ClustalW: ClustalW is a general purpose multiple sequence alignment program for DNA

or proteins. It produces biologically meaningful multiple sequence alignments of

divergent sequences. ClustalW calculates the best match for the selected sequences, and

lines them up so that the identities, similarities and differences can be seen. Evolutionary

relationships can be seen. It supports about fifteen input formats and five output formats.

 Figure 8.1: Alignment Region Comparison Workflow [DDBJ]

Operation of the Workflow: First, a BLAST query is made with FASTA file consists of

16S RNA. As we have mentioned earlier RiboNucleicAcid (RNA) is a nucleic acid

187

generated from coding regions of a gene for further analysis. One of the common

formats of representing DNA’s and RNA’s is FASTA format. The BLAST query is made

to the “ddbjbct” database using blastn program. Blast query result consists of accession

numbers, beginning and ending cordons of similar sequences. Next step of the workflow

is to get alignments from the results. For that, we extract the accession numbers from the

BLAST query and feed them in to the GetEntry service. GetEntry service retrieves entries

from DDBJ database that retrieves actual sequence of similar sequences in FASTA

format. Then the output of the GetEntry will be sent to ClustalW for multiple sequence

alignment. Finally, similar sequences are matched using ClustalW service. Note that all

the web services and data sources for this workflow are provided by DDBJ. DDBJ

provides a Java application that implements this workflow. Here we presents the

summary of the effort required to develop above workflow using Java (or similar

programming language)

Estimated Development effort for non computer scientists (Java):

 Total number of program files - 6

 Line of Code Written - 407 lines (150 is reusable)

 Estimated time - 1 month (non computer scientist)

 Coordination - Centralized

 Execution time - ~ 4 minutes

 The next section demonstrates the implementation of the same workflow using the

BondFlow system and similar evaluation has been made.

188

 The above scenario demonstrates a typical set of operations or functions involving

data and tool integration that the biologists deal with during the processing Gene analysis.

In Section 8.3, we will revisit this scenario and illustrate how they can be accomplished

using our BondFlow framework. Note that this scenario is “showcase” application for our

infrastructure; the BondFlow system is not limited to only these scenarios but is capable

of supporting a wide range of workflows for biological applications provided data

sources and tools have web service interface.

8.3 Using the BondFlow System for Biological Workflows

Figure 8.2: The BondFlow system for Biological Workflows

Web Service
Interface
Module

WSDL Parser

WS Locator

 Proxy Object
Generator
Module

Workflow
Configuration

Module

Web Services
Registry (UDDI)

S
O
A

Lookup
f W b

WSDL

Parsed
WSDL

Workflow
Execution Module

SOAP/ SyD

Web Bond Runtime

JVM

Adaptor WS

189

The BondFlow system provides an environment for configuring and executing workflows

on the fly over heterogeneous web objects including web services [10]. We are planning

to add two more components into our BondFlow system to facilitate biological

workflows. First, an adaptor module that converts biological tools and data sources into

web services. Second, a data adaptor web service that allows data conversion and transfer

among biological tools and data sources. Currently, these components are in experimental

stage.

 Here, we exhibit development and deployment of the Alignment Region Comparison

Workflow using the BondFlow system. We further demonstrate how such simple

biological workflows can be created using this system using a stepwise methodology.

This involves (a) finding biological data sources and tools, and wrapping them into web

services; (b) generating data adaptor web services for each connector edge in the ad-hoc

workflow; (c) configure the workflow over web-enabled tools, data sources, and data

adaptors; (d) execute workflow. The current status of BondFlow system is as follows:

Step (b) It automatically generates data adaptor code if the input-output regular

expressions are specified, or if the data field selection and their permutation, if any, is

specified. Step (c) It allows configuring preliminary biological workflows by selecting

suitable web services and bonding them using our “web coordination bond” technology

to enforce data and control dependencies [Bal05, Har04]. The conventional web services

lack any bonding capabilities. Our system automatically generates coordinator proxy

objects to web-bond-enable them [Bal05a]. The footprints of the wrappers are small

enough to reside and executed on even on iPAQs. These bonding primitives are high-

level specifications. Step (d) The BondFlow system allows execution and coordination

190

of configured workflows, even if the individual data sources or tools are located in a

distributed fashion. The overhead introduced by the coordinator objects and by web

bonds are only a small percentage of the total execution time on a typical workflow.

Monitoring is currently limited to interacting with each workflow node individually.

Step (a) on converting a tool into a web service is being addressed by many vendors and

research groups, including, DDBJ, Microsoft (.net), and IBM (Websphere).

8.3.1 Workflow Development Methodology

 Here, we explain the workflow configuration and execution using the BondFlow system.

Step 1, Selecting suitable data sources: Users of the BondFlow system initiate the

workflow configuration by selecting suitable data sources/tools (Figure 8.4). The WSDL

Parser parses the WSDL and allows the service components to be viewed in the form of

summary of methods and parameter lists. Users can choose to save the viewed services

for future reference.

Step2, Generate data adaptors and coordinator proxy objects: Once suitable data sources

have been selected, users need to specify the data exchange requirements of data sources.

This can be done as either input-output regular expression or can be directed to a program

module to handle data transformation requirements. At this time, the system

automatically generates data adaptors and the web service interface is created. The

system also generates web bond enabled coordinator proxy objects (java object) for all

selected data sources and adaptors [Bal05a].

191

Figure 8.3: The BondFlow System: Users Perspective

Step 3, Configuring the workflow: Users of the system create web coordination bonds

among the chosen services (now each data source/tool has a web service view) at any

point of time to reflect data and control flow (using ``Subscription bonds"), and other

dependencies (using ``Negotiation bonds"). Bond creation is done by the user selecting

two data sources to be bonded and then specifying the bond type. The most important

information provided at the bond creation time is the type of the bond to be created.

Dependency enforcement and entire operation of bond execution depends on the type of

the bond that has been created. Bond related information is stored in an XML storage file.

The coordinator proxy object encompasses all the dependency modeling capabilities of

192

the web bond artifacts. Each web service method call is encapsulated by negotiation and

subscription bond check. This logic makes sure that data and control dependencies are

met before and after making the actual WS invocation [Bal05].

Step 4, Deployment of the workflow: Once any of the wrappers is invoked, the presence

of the web bond is initially checked and depending upon the presence and type of the

bond, coordination among components is carried out by enforcing the specified

constraints and dependencies. Subscription bonds are used to transfer data from once data

source/tool to another based on the constraints issue defined by the user.

8.3.2 Alignment Region Comparison Workflow using the BondFlow System

Here, we demonstrate our methodology for on-the-fly integration of the DNA alignment

region comparison workflow. For this workflow, we have not used the data adaptor web

service and data conversion has been accomplished manually. As shown in Figure 3, this

is a simple workflow and needs to enforce only a sequential control flow dependencies.

The BLAST and GetEntry web services have subscription bonds to GetEntry and

ClaustalW respectively. These subscription bonds make sure that data and control

transfer. Data conversions are attached to subscription bonds. For example, we need to

extract accession numbers from the Blast query results and feed them into the GetEntry

web service. Currently these conversions are done using a Java program. However, we

are extending our adaptor web service so that it handles automatic data conversion.

193

Figure 8.4 : Alignment Region Comparison Workflow using web coordination bonds

We have modeled this web service using our BondFlow system successfully.

Estimated Development effort using the BondFlow system:

Total number of program files - 3

Code Written – 142 lines for data conversion

Estimated time - 2 Weeks

Estimated if DA is available – few hours/few days

Execution time – ~ 4 min (~400 ms bond related)

Above figures clearly indicated that the BondFlow system provides platform that

supports rapid application development platform. Once our data adaptor become

functioning most of the data conversion requirements can also be automated providing

more capable and easy use platform to develop and deploy such aworkflows.

BLAST GetEntry ClaustalWDA DA

194

8.3.3 System Output

This section walks through the execution of the workflow using the BondFlow system.

The Screen Shot of the current menu driven system: Figure 8.6 shows the starting point

of the workflow. The query is a FASTA file to the BLAST web service

Figure 8.5: The BondFlow System Executing Alignment Region Comparison Workflow

Step 1: Invoke Blast web service

Input to Blast: FASTA file consists of 16S RNA of a Gene sequence. As we have

mentioned earlier RNA is a nucleic acid generated from coding regions of a gene for

further analysis.

[~/Code/ThesisCode][10:17am] java runtemp test.txt
Find:test.txt
Query:
>AACY01004374.1

195

taattgaagagtttgatcatggctcagattgaacgctggcggtaggcttaacacatgcaa
gtcgtgcgagaaagtatcttcggatatgagtagagcggcggacgggtgagtaacgcgtag
gaatctacctagtagaaggggatagcccggggaaactcggattaataccgtatacctcct
ttgggagaaagaaggcctctctttgaagctttcgctactagatgagcctgcgtaagatta

Execution time for checking bonds : 86

Blast Result: Blast query result consists of accession numbers, beginning and ending

cordons of similar sequences. For example, for the following output, accession number is

AB212806 and the beginning and ending cordon positions are 190 and 949 respectively.

AACY01004374.1 AB212806|AB212806.1 89.47 760 80 0 220
979 190 949 0.0 872

Step 2: Invoke the GetEntry web service

Input to the GetEntry:

Input to the GetEntry services is accession numbers and beginning and ending cordon

positions in the sequence. For example, for the above sequence, the GetEntry search

query will be AB212806 190 949. That fetches the gene sequence and other annotated

data from the GetEntry database.

GetEntry Output:

id:AF468388calling ws
Return Value:LOCUS AF468388 1436 bp DNA linear BCT 06-NOV-
2003
DEFINITION Arctic sea ice bacterium ARK10038 16S ribosomal RNA gene, partial
sequence.
ACCESSION AF468388 VERSION AF468388.1 KEYWORDS .
SOURCE Arctic sea ice bacterium ARK10038
 ORGANISM Arctic sea ice bacterium ARK10038
 Bacteria; Proteobacteria; Gammaproteobacteria; Pseudomonadales;
 Pseudomonadaceae; Pseudomonas.
REFERENCE 1 (bases 1 to 1436)
 AUTHORS Brinkmeyer,R., Knittel,K., Jurgens,J., Weyland,H., Amann,R. and
 Helmke,E.
 TITLE Diversity and Structure of Bacterial Communities in Arctic versus

196

 Antarctic Pack Ice
 JOURNAL Appl. Environ. Microbiol. 69 (11), 6610-6619 (2003)
 PUBMED 14602620
REFERENCE 2 (bases 1 to 1436)
 AUTHORS Brinkmeyer,R. and Helmke,E.
 TITLE Direct Submission
 JOURNAL Submitted (15-JAN-2002) Pelagic Oceanography,
 Alfred-Wegener-Institut fuer Polar und Meeresforschung, Am
 Handelshafen 12, Bremerhaven D-27570, Germany
FEATURES Location/Qualifiers
 source 1..1436
 /organism="Arctic sea ice bacterium ARK10038"
 /mol_type="genomic DNA"
 /isolate="ARK10038"
 /isolation_source="Arctic sea ice-melt pond"
 /db_xref="taxon:196822"
 rRNA <1..>1436
 /product="16S ribosomal RNA"
BASE COUNT 354 a 323 c 464 g 293 t
ORIGIN
 1 atgcagtcag cgcgaaaggc cttcgggttg agtagagcgg cggacgggtg agtaacgcgt
 61 aggaatctac ctggtagtgg gggataactt ggggaaactc aagctaatac cgcatacgcc
 121 ctaaggggga aagcggggga tcttcggacc tcgcgctatt ggatgagcct gcgtaggatt

Step 3: Invoke the ClaustalW web service

Input to ClaustalW:

Input to the ClustalW is the concatenated result from the GetEntry database. This

concatenated result will be used by the ClustalW for multiple sequence analysis.

>AB212806|g_proteobacterium_NEP68
gatgagcctgcgtaggattagcttgttggtgaggtaaaggctcaccaaggcgacgatccttagctggtctgagaggatgatcag
ccacactgggactgagacacggcccagactcctacgggaggcagcagtggggaatattgcgcaatgggcgaaagcctgacg
cagccatgccgcgtgtgtgaagaaggccttcgggttgtaaagcactttcaattgggaagaaaggttgtacgttaatagcgtgcaa
ctgtgacgttacctttagaagaagcaccggctaactccgtgccagcagccgcggtaatacggagggtgcgagcgttaatcgga
attactgggcgtaaagcgcgcgtaggcggtttgttaagtcggatgtgaaagccctgggctcaacctgggaactgcattcgatact
ggccgactagagtacgagagagggaggtagaattccacgtgtagcggtgaaatgcgtagatatgtggaggaataccggtggc
gaaggcggcctcctggctcgatactgacgctgaggtgcgaaagcgtgggtagcaaacaggattagataccctggtagtccacg
ccgtaaacgatgtctactagccgttgggagacttgatttcttagtggcgcagctaacgcactaagtagaccgcctggggagtacg
gccgcaaggttaaaactcaaatgaattgacgggggcccgcacaagcggtggagcatgtggtttaattcgatgcaacgcgaaga
accttacc>AY028196|m_bacterium_Tw-1

197

ClaustalW Output:

 CLUSTAL W (1.83) Multiple Sequence Alignments

Sequence format is Pearson
Sequence 1: AACY01004374.1 1535 bp
Sequence 2: AB212806|g_proteobacterium_NEP 759 bp
Start of Pairwise alignments
Aligning...
Sequences (1:2) Aligned. Score: 89
Guide tree file created: [/disk/xddbj/socket/clustalw/data/20060808233550908.dnd]
Start of Multiple Alignment
There are 1 groups
Aligning...
Group 1: Sequences: 2 Score:13347
Alignment Score 4719
CLUSTAL-Alignment file created
[/disk/xddbj/socket/clustalw/data/20060808233550908.aln]

20060808233550908.aln result

CLUSTAL W (1.83) multiple sequence alignment

AACY01004374.1
TAATTGAAGAGTTTGATCATGGCTCAGATTGAACGCTGGCGGTAGGCTTA
AB212806|g_proteobacterium_NEP --

Finally the above results shows the alignment For example, for the above sequence with

accession number AB212806, the alignment Score:13347 and the results is stores in the

/disk/xddbj/socket/clustalw/data/20060808233550908.aln file.

8.4 Conclusions and Future Work

A large amount of biological data sources and tools are available for various data analysis

purposes. However, a single tool or a data store could not serve all the requirements for

myriad data analysis requirements (~ 1 billion databases). Thus, these tools and data

sources need to be integrated in different ways. Among different approaches of data and

198

tool integration, web services provide better interoperability and scalability needed. Many

efforts are already underway to convert these tools and data sources into web services. In

this Chapter we have explored the usability of our BondFlow system as a platform for

designing and executing biological workflows. We have successfully developed and

deployed the Alignment Region Comparison Workflow using the BondFlow system. The

development effort is significantly small and these workflows can be deployed on

handheld devices giving more flexibility to users.

 Currently our system is preliminary. In the future, we plan to integrate an automatic

service adaptor that converts data sources and tools into web services on the fly. Also, we

plan to extend the functionality of our data adaptor web service so that it supports various

data conversions. Finally, we would like to publish our tool as a web based workflow

development platform so that developers can configure their workflows and execute them

on the web.

199

CHAPTER 9

CONCLUSIONS AND FUTURE WORK

Next generation Internet applications will be various kinds of collaborative applications

among heterogeneous, autonomous entities (Objects). There is a definite trend in both

industry and academia in adopting web based tools and technologies. Emergence of web

services made this process more attractive for both communities. Web services solve the

system and network heterogeneity issues. Such developments are transforming the web

from information repository to a huge distributed computational platform. Thus,

developing collaborative applications over Web has become increasingly important.

Therefore, finding methodologies to rapidly develop and deploy robust collaborative

applications is required.

 Web services are software services distributed across the network. Users develop

applications by integrating these software services into composite applications using

appropriate coordination techniques. However, the current status of web service (Object)

coordination and composition is a frenzied effort by many to shell out myriad of ever-

richer protocols and languages for web service collaboration, suitable only for domain

experts, without a substantial fundamental theoretical framework. Also, web services are

stateless, passive entities in such composite applications requiring a centralized

coordinator process. This makes such application development a tedious task. Also, this

solution is less scalable and tightly coupled, which is not desirable for WWW

applications. Therefore, in this dissertation we undertook the challenge of exploring (i) a

fundamental set of bonding artifacts for composing web services, which are necessary

200

and sufficient in expressiveness and semantics, (ii) enhancing web service infrastructure

to easily employ those core artifacts, and (iii) architecting a development and deployment

platform to configure web service applications.

9.1 A Platform to Configure and Deploy Distributed Workflows over Web Services

This dissertation yields several significant results:

1. Web Coordination Bonds: Web coordination bonds allow applications to establish

bonds among themselves to enforce dependencies. There are two types of web

bonds: subscription bonds and negotiation bonds. The subscription bond allows

automatic flow of information from a source entity to other entities that subscribe

to it. This can be employed for synchronization as well as for more complex

changes, needing data, control, or event flows. Negotiation bonds enforce

dependencies and constraints across entities and trigger changes based on

constraint satisfaction. Web bond primitives have sufficient modeling and

expressive capabilities to enforce workflow dependencies; a feat none of the

current dependency modeling technologies could accomplish comprehensively.

2. Web Service Coordination Management Middleware (WSCMM): The WSCMM

system transforms the current web services into state aware self-coordination

entities. We accomplish this transformation by generating an “intelligent” web

service coordinator proxy object (CPO) that represents a web service. These

coordinator objects are stateful and they encapsulate all the capabilities of web

coordination bonds enabling us to distribute workflow coordination among

201

participant web services (Figure 8.1). We have simulated our middleware

architecture using the DEVS java simulation tool. Simulation results show that the

middleware components behave accurately while enforcing workflow

dependencies.

Figure 9.1: Workflow Coordination Architectures of the BondFlow System

2. The BondFlow System: The Bondflow system is based on web coordination bonds

and our middleware platform. BondFlow is an easy to use platform to configure

and execute distributed workflows over web services.

9.2 Future Work

Web coordination bonds are a set of capable coordination primitives. We strongly believe

that these concepts have the formalism and rigor to become a “theory” for distributed

coordination. It is worthwhile expanding this research further towards finding a theory

for distributed coordination. We believe that the development of such a theory should

Composed
Web Service
with

 WS

 WS

 WS

Web
Bonds

WS

WS

WS

 9a: Traditional centralized
coordination

9b Distributed WS coordination in
the BondFlow System

202

proved in parallel with the classification of different dependency patterns. In this

dissertation we have investigated only control flow patterns and distributed

communication patterns.

 Another aspect of distributed coordination is enforcing QoS requirements. It will be a

valid research effort to investigate how to enforce QoS requirements using web

coordination bonds. It is highly likely that subscription bond has sufficient capabilities to

help in specifying and enforcing QoS requirements.

 Biological data and tool integration is one of the emerging research areas where web

services will have a major impact. These data sources are heterogeneous (data types, data

models, implementation technologies) in nature and the web service infrastructure is an

ideal platform to hide this heterogeneity. Typically, non-computer scientists would prefer

to compose their workflows (for any application in that matter) easily. Thus, the web is a

very attractive environment for them. Extending the BondFlow system as a web-based

tool to configure and execute biological (scientific) workflows is a very worthwhile

endeavor. Our preliminary work in this area made us believe that the BondFlow system

has sufficient capabilities to handle such applications.

203

BIBLIOGRAPHY

[Aal05] W.M.P. van der Aalst, “Pi Calculus Versus Petri Nets: Let Us Eat Humble Pie
Rather Than Further Inflate the Pi Hype,” BPTrends, Vol. 3 No. 5, pp. 1-11, May 2005

[Aal04] W.M.P. van der Aalst, L. Aldred, M. Dumas, and A.H.M. ter Hofstede, “Design
and Implementation of the YAWL system,” Proc. of The 16th Intel. Conf. on Advanced
Information Systems Engineering (CAiSE 04), Riga, Latvia, June 2004.

[Aal03a] W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede, “Web Service
Composition Languages: Old Wine in New Bottles?,” Proc. of the 29th EUROMICRO
Conference: New Waves in System Architecture, pp. 8-305. Los Alamitos, CA, 2003.

[Aal03b] W. M. P. van der Aalst, “Don't go with the flow: Web services composition
standards exposed,” TIEEE Intelligent Systems, vol. 18, No. 1, pp. 72-79, Jan/Feb 2003.

[Aal03c] Wil van der Aalst, Workflow patterns, http://tmitwww.tm.tue.nl/research/
patterns, 2003

[Atl04] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludäscher, S. Mock,, Kepler: An
Extensible System for Design and Execution of Scientific Workflows, 16th International
Conference on Scientific and Statistical Database Management (SSDBM'04), 21-23 June
2004, Santorini Island, Greece

[Att99]]MitBASE: a comprehensive and integrated mitochondrial DNA database.
Attimonelli M, Altamura N, Benne R, … et al. Nucleic Acids Res. 1999 Jan 1;27(1):128-
33.

[Aal02] W.M.P. van der Aalst and A.H.M. ter Hofstede, “Workflow Patterns: On the
Expressive Power of (Petri net-based) Workflow Languages,” Proceedings of the Fourth
Workshop on the Practical Use of Coloured Petri Nets and CPN Tools (CPN 2002), vol.
560 of DAIMI, pp. 1–20, Aarhus, Denmark, August 2002.

[Aal02b] Pattern-Based Analysis of BPML (and WSCI). W.M.P. van der Aalst, M.
Dumas, A.H.M. ter Hofstede, and P. Wohed. QUT Technical report,FIT-TR-2002-05,
Queensland University of Technology, Brisbane, 2002.

[Aal98] W. M. P. van der Aals, “The Application of Petri Nets to Workflow
Management,” Journal of Circuits, Systems and Computers, Vol. 8, No. 1, 1998, pp. 21-
66.

204

[Ard03] L. Ardissono, A. Goy, G. Petrone, “Enabling conversations with web services,”
Proc. of the second international joint conference on Autonomous agents and multiagent
systems,2003, Melbourne, Australia July 14 - 18, 2003, Pages: 819 – 826

[Alo96] G. Alonso, D. Agrawal, A. E. Abbadi, M. Kamath, R. Gunthor, and C. Mohan,
“Advanced transaction models in workflow contexts,” In Proc. 12th Intl. Conf. Data
Engineering, New Orleans, February 1996, IEEE Computer Society Press, pp. 574-583.

[And01] L. Andrade, J. Fiadeiro, “Coordination: The evolutionary dimension," In Proc.
8th Intl. Conf. Technology of Object-Oriented Languages and Systems (TOOLS’01)
Europe 2001, Zürich, Switzerland , March 12-14, 2001, IEEE Computer Society Press,
pp. 136-147.

[Age74] T. Agerwala, “A complete model for representing the coordination of
asynchronous processes, “ Hopkins Computer Research Report No. 32, Computer
Science Program, Johns Hopkins Univ., Baltimore, Md., 58 pp., July 1974.

[Age73] T. Agerwala, M. Flynn, ``Comments on capabilities, limitations and
`correctness' of Petri nets''; Proc. of the First Annual Symp. on Computer Architecture,
pp.81-86, 1973.

[Alo04] G. Alonso, F. Casati, H. Kuno, V. Machiraju, “Web Services Concepts,
Architectures and Applications Series Data-Centric Systems and Applications,”Springe ,
ISBN: 3-540-44008-9, 2004.

[Ark02]T A. Arkin. TBusiness Process Modeling Language (BPML), Version 1.0T.
BPML.org, 2002

[Ave02] Lerina Aversano, Aniello Cimitile, Pierpaolo Gallucci, Maria Luisa Villan,
“FlowManager: A Workflow Management System Based on Petri Nets,” In Proc. 26th
Intl. Computer Software and Applications Conference (COMPSAC’02), August 26-29,
2002, Oxford, England, IEEE Computer Society Press , pp. 1054-1059.

[BioJava] BioJava http://www.biojava.org/

[BioPerl] Bio-Perl, http://bio.perl.org/

[Ben03] Benson D..A., Karsch-Mizrachi I., Lipman D.J., Ostell J., Wheeler D.L.
GenBank. Nucleic Acids Res. 2003 Jan 1;31,1:23-7.

[Ben00] Benson, D..A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Rapp, B.A. and
Wheeler, D.L. Genbank. Nucleic Acids Res., 2000; 28, 1, 15-18.

[Bry01] Ois Bry F., Kr¨oger P. “A Molecular Biology Database Digest,” Institute for
Computer Science, University of Munich, Germany.http://www.pms.informatik.uni-
muenchen.de, 2001

205

[Ben05] Boualem Benatallah, Fabio Casati, Daniela Grigori, H. R. Motahari Nezhad and
Farouk Toumani. “Developing Adapters for Web Services Integration.” Procs of CAiSE
2005. Porto, Portugal. Jun 2005.

[Bal05a] Janaka Balasooriya, Mohini Padye , Sushil Prasad, and Shamkant B. Navathe
“BondFlow: A System for Distributed Coordination of Workflows over Web Services,”
In 14PthP HCW in conjunction with IPDPS 2005. Denver, Colorado, USA, April .

[Bal05b] Janaka Balasooriya and Sushil K. Prasad, “Toward Fundamental Primitives and
Infrastructure Enhancements for Distributed Web Object Coordination and Workflows,”
Proc. International Conf. on Web Services (ICWS’05), Orlando, July 2005.

[Bal05c] Janaka Balasooriya and Sushil K. Prasad, “A Middleware Architecture for
Conversation-aware Stateful Web Services for Distributed Coordination,” Tech Report,
CS-TR-05-03, Georgia State University, July 2005, 33 pages.
http://www.cs.gsu.edu/~cscjlbx/wscmsm.pdf

[Bar05] A. Barros, M. Dumas, and P. Oaks, “Standards for Web Service Choreography
and Orchestration: Status and Perspectives,” Proceedings of the Workshop on Web
Services Choreography and Orchestration for Business Process Management, Nancy,
France, September 2005.

[Bar05] A. Barros, M. Dumas, and P. Oaks. Standards for Web Service Choreography
and Orchestration: Status and Perspectives. To appear in Proc. of the Workshop on Web
Services Choreography and Orchestration for Business Process Management, Nancy,
France, September 2005.

[Bru05] J. de Bruijn, H. Lausen, R. Krummenacher, A. Polleres, L. Predoiu, M. Kifer, D.
Fensel. “The Web Service Modeling Language WSML,” WSML Deliverable D16.1v0.2,
2005. http://www.wsmo.org/TR/d16/d16.1/v0.2/

[Bal05] Janaka Balasooriya, Mohini Padye , Sushil Prasad, and Shamkanth B. Navathe,
“BondFlow: A System for Distributed Coordination of Workflows over Web Services,”
Proc. 14th Heterogeneous computing workshop in conjunction with IPDPS 2005.
Denver, Colorado, USA, April 4.

[Bou05] Boualem Benatallah, Marlon Dumas, Quan Z. Sheng, “Facilitating the Rapid
Development and Scalable Orchestration of Composite Web Services,” Distributed and
Parallel Databases Vol. 17 No. 1, pp. 5-3, 2005.

[Ben03] B. Benatallah, P. Chrzastowski-Wachtel, R. Hamadi, M. O'Dell, and A. Susanto,
``HiWorD: A Petri Net-based Hierarchical Workflow Designer,'' Proc. of the 3rd Intl.
Conf. on Application of Concurrency to System Design (ACSD 2003), IEEE Society,
Guimaraes, Portugal, June 2003.

206

[Eli05] Elisa Bertino, Alessandro Provetti, and Franco Salvetti, “Reasoning about RDF
statements with default rules.” Proc. of the Rule Languages for Interoperability Conf.,
Washington, April 2005.

[Ber03] Fran Berman, Geoffrey Fox and Tony Hey "Grid Computing: Making the Global
Infrastructure a Reality " Wiley, 2003

[Ben02] B. Benatallah, M. Dumas, M. C. Fauvet and F. A. Rabhi, “Towards Patterns of
Web Services Composition,” In Patterns and Skeletons for Parallel and Distributed
Computing, Springer Verlag (UK), 2002.

[Bic03] M Bichler, G Kersten and S. Strecker, “Towards a Structured Design of
Electronic Negotiations”, Group Decision and Negotiation, 2003, Vol. 12, No. 4, p. 311 -
335.

[Ben03] B. Benatallah, Q. Z. Sheng, and M. Dumas “The SELF-SERV Environment for
Web Services Composition,” IEEE Internet Computing 7(1):40-48, January/February
2003. IEEE Computer Society.

[Bra03] Brahim Medjahed , Athman Bouguettaya , Ahmed K. Elmagarmid, “Composing
Web services on the Semantic Web,” The VLDB Journal — The International Journal on
Very Large Data Bases, v.12 n.4, p.333-351, November 2003.

[Bru05] Bruni, Hernán Melgratti, and Ugo Montanari, “Theoretical foundations for
compensations in flow composition languages,” Proceedings of the 32nd ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, Vol. 40, Issue
1, January 2005.

[Bra03] Brahim Medjahed , Athman Bouguettaya , Ahmed K. Elmagarmid, “Com-posing
Web services on the Semantic Web,” The International Journal on Very Large Data
Bases, v.12 n.4, p.333-351, November 2003.

[Ben02] B. Benatallah, M. Dumas, M. C. Fauvet, F. A. Rabhi, and Quan Z. Sheng,
“Overview of Some Patterns for Architecting and Managing Composite Web Services,”
ACM SIGecom Exchanges, ACM Press, August 2002, pp. 9-1.

[Bru05] Theoretical foundations for compensations in flow composition languages
Roberto Bruni, Hernán Melgratti, Ugo Montanari, ACM SIGPLAN Notices , Proceedings
of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, Volume 40 Issue 1, January 2005 – Transactions.

[Bus05] N. Busi R. Gorrieri, C. Guidi, R. Lucchi, G. Zavattaro, “Towards a formal
framework for Choreography,” 3rd International Workshop on Distributed and Mobile
Collaboration (DMC 2005), IEEE Computer Society Press.

207

[Bus94] C. Bussler, and S. Jablonski, “Implementing agent coordination for workflow
management systems using active database systems,” Proc. of 4Pt0P Intl. Workshop on
TResearch Issues in Data Engineering: Active Database Systems,T Houston, Texas,
IEEE Computer Society Press, pp. 53 –59, February 1994.

[Bou05] Boualem Benatallah, Fabio Casati, Daniela Grigori, H. R. Motahari Nezhad and
Farouk Toumani. Developing Adapters for Web Services Integration. Procs of CAiSE
2005. Porto, Portugal. Jun 2005.

[Cas90] T.L. Casavant, J.G. Kuhl, “A Communicating Finite Automata Approach to
Modeling Distributed Computation and its Application to Distributed Decision-Making,”
IEEE trans. on computers, May 1990,Vol. 39, No. 5, pp. 628-639.

[Cru02] A. J. A. Cruz, A. B. Raposo, L. P. Magalhaes, “Coordination in Collaborative
Environments - A Global Approach,” 7th Intel. Conf. on Computer Supported
Cooperative Work in Design (CSCWD 2002),. Rio de Janeiro, Brazil, 2002, pp. 25 – 30

[Chr03] Christoph Bussler, “Semantic Web Services: The Future of Integration!”, 7PthP
East-European Conf. on Advances in Databases and Information Systems (ADBIS‘ 03) ,
Dresden, Germany, pp. 1-2, September 2003.

[Chr04] Christoph Schuler, Rogr Weber, Heiko Schuldt, Hans-Jörg Schek, “Scalable
Peer-to-Peer Process Management - The OSIRIS Approach.” ICWS 2004: 26-34

[Car99] L. Cardelli, and R. Davies, "Service Combinators for Web Computing,"IEEE
Transactions on Software Engineering, Vol. 25, No. 3, pp. 309-316, 1999.
[Cha04] Dipanjan Chakraborty, Anupam Joshi, Tim Finin, and Yelena Yesha, “Service
Composition for Mobile Environments,“ Journal on Mobile Networking and
Applications, Special Issue on Mobile Services, February, 2004

[Cur04] Val Curwen et al. The Ensembl Automatic Gene Annotation System. Genome
Res. 2004 14: 942-950.

[Cza04] K. Czajkowski., Ferguson, D., Foster, I …et al. The WS-Resource Framework.
http://www-106.ibm.com/developerworks /library/ws-resource/ws-wsrf.pdf , 2004

[Cha04] Dipanjan Chakraborty, Anupam Joshi, Tim Finin, and Yelena Yesha, “Service
Composition for Mobile Environments,” Journal on Mobile Networking and
Applications, Special Issue on Mobile Services, February, 2004

[Gir04] Girish Chafle, Sunil Chandra, Vijay Mann and Mangala G. Nanda,
“Decentralized Orchestration of Composite Web ServicesTTH,” T In TProceedings of
the Alternate Track on Web Services at the 13th International World Wide Web
Conference(WWW 2004)T, New York, NY, May 2004.

208

[Coo05] Dominic Cooney, Marlon Dumas, and Paul Roe “A Programming Language for
Web Service Development” Twenty-Eighth Australasian Computer Science Conference
(ACSC 2005) pp. 143-150, January 2005.

[Fra03] Francisco Curbera, Rania Khalaf, Nirmal Mukhi, Stefan Tai, Sanjiva
Weerawarana, “Service-oriented computing: The next step in Web services,”
Communications of ACM, Vol. 46 , No. 10, pp. 29 – 34, October 2003.

[Cza04] K. Czajkowski., Ferguson, D., Foster, I …et al. The WS-Resource Framework.
http://www-106.ibm.com/developerworks /library/ws-resource/ws-wsrf.pdf , 2004

[Dat02] A. Datta and S. H. Son, “A study of concurrency control in real-time, active
database systems,” IEEE Trans. on Knowledge and Data Engineering, Vol:14 Issue:3,
IEEE Computer Society Press, June 2002, pp. 465-484.

[Dus04] Schahram Dustdar, Harald Gall, Roman Schmidt, “Web Services for Groupware
in Distributed and Mobile Collaboration,” PDP 2004: 241-

[DiscoveryNet] http://www.discovery-on-the.net/
[DDBJ] http://xml.nig.ac.jp/wsdl/index.jsp

[DEVSJava] DEVS simulator, http://www.acims.arizona.edu/SOFTWARE

[Dou03] L. Doug and V. Steve “Introduction - middleware for web services,” IEEE
Distributed Systems Online, 1(4), 2003.

[Dou03] L. Doug and V. Steve, “Introduction - middleware for web services,” IEEE
Distributed Systems Online, Vol. 1 No. 4, 2003.

[Dou03] Doug Lea and Steve Vinoski “Introduction - Middleware for Web Services,”
IEEE Distributed Systems Online Vol. 4 No. 1 2003.

[Dus04] S. Dustdar, “Web Services Workflows - Composition, Coordination, and
Transactions in Service-Oriented Computing,” Concurrent Engineering: Research and
Applications, Sage Publications, p. 237-246, September 2004.

[ebXML02] ebXML,Business Process Specification Schema (Version 1.01).
http://www.ebxml.org/specs/ebBPSS.pdf, May 11 2002.

[FAT02]]Analysis of the mouse transcriptome based on functional annotation of 60,770
full-length cDNAs. The FANTOM Consortium and the RIKEN Genome Exploration
Research Group Phase I & II Team. Nature 420:563-573, 2002.

209

[Gri82] E. J. J. v. Griethuysen, "ISO- Concepts and Terminology for the Conceptual
Schema and the Information Base", N695, ISO/TC9/SC5/WG3, 1982.

[Gor05] R. Gorrieri, C. Guidi and R. Lucchi, "Reasoning about interaction patterns in
Choreography" In Proc. of 2nd International Workshop on Web Services and Formal
Methods (WS-FM '05). Volume 3070 of LNCS, pages 333-348. 2005.

[Gua03] Zhijie Guan and Hasan M. Jamil, “Streamlining biological data analysis. using
BioFlow,” In Proc. of the 3rd IEEE Symposium on Bioinformatics and BioEngineering,
2003
[GenePath] GenePath, http://www.genepath.org/

[Gri01] S. Gribble, M. Welsh, R. von Behren, E. Brewer, D. Culler, N. Borisov, S.
Czerwinski, R. Gummadi, J. Hill, A. Joseph, R. Katz, Z. Mao, S. Ross, and B. Zhao,
“The Ninja Architecture for Robust Internet-Scale Systems and Services,” Computer
Networks, Special Issue on Pervasive Computing, 2001.

[Gua98] Yang Guangxin, Shi Meilin, Xiang Yong, Wu Shangguang , “Wowww!
:managing workflow on the World Wide Web,” In Proc. Intl. Conf. Communication
Technology (ICCT '98), Oct 22-24, 1998, IEEE Computer Society Press, pp. 1- 5.

[Guo02] Jiang Guo, “Using Category Theory to Model Software Component
Dependencies,” Proc. 9th Annual IEEE Intl. Conf. and Workshop on the Engineering of
Computer-Based Systems (ECBS 2002) , April 08 - 11, 2002 ,Lund, Sweden, IEEE
Computer Society Press, pp. 185-194.

[Gre02] Paul Grefen, “Transactional workflows or workflow transactions,” In Proc. 13th
Intel. Workshop on Database and Expert Systems Applications (DEXA 2002), September
02-06, 2002, Aix-en-Provence, France, LNCS 2453, Springer-Verlag Berlin Heidelberg,
pp. 60-69.

[Hua98] S. H. S. Huang, “Building business processes using a state transition model on
World Wide Web Application-Specific Software Engineering Technology,” In Proc. 1st
IEEE Workshop on Application-Specific Software Engineering and Technology
(ASSET'98), Richardson, Texas, 26-28 Mar , 1998, IEEE Computer Society Press, pp.
2 –7

[Hof96] H. M. Arthur ter Hofstede, Maria E. Orlowska, Jayantha Rajapakse,
“Verification Problems in Conceptual Workflow Specifications,” Proc. of the 15th Intel.
Conf. on Conceptual Modeling, (ER’96), Cottbus, Germany, October 1996 , pp. 73-88.
[Hul06] Duncan Hull, Katy Wolstencroft, Robert Stevens, Carole Goble, Matthew
Pocock, Peter Li and Tom Oinn. Taverna: A tool for building and running workflows of
services. Nucleic Acids Research :34 (Web Server Issue), July, 2006.

210

[Her04] Thomas Hernandez and Subbarao Kambhampati, Integration of Bioinformatic
Sources: Current Approaches and Systems ASU CSE TR 03-005. July 2003. SIGMOD
Record, Vol 33, No 3 September 2004.

[Hum05] M. Humphrey, G. Wasson, K. Jackson … etal. “State and Events for Web
Services: A Comparison of Five WS-Resource Framework and WS-Notification
Implementations.” 14th IEEE Intl. Symposium on High Performance Distributed
Computing (HPDC-14), Research Triangle Park, NC, 24-27 July 2005

[Haw05] Hawryszkiewycz, I., Steele, R. “Extending Collaboration to Mobile
Environments,” In the Proceedings of the International Conference on Web
Technologies, Applications and Services, Calgary, Canada, July 4-6, 2005.

[Haw05] Hawryszkiewycz, I., Steele, R. “Extending Collaboration to Mobile
Environments,” In the Proc. of the International Conference on Web Technologies,
Applications and Services, Calgary, Canada, July 4-6, 2005.

[Har04]Arthi Hariharan, Sushil K. Prasad, Anu G. Bourgeois, Erdogan Dogdu, Sham
Navathe, Raj Sunderraman, and Yi Pan", A Framework for Constraint-Based
Collaborative Web Service Applications and a Travel Application Case Study " Proc. of
the 2004 International Symposium on Web Services and Applications (ISWS'04) June 21-
24, 2004, Las Vegas, Nevada, USA.

[Hum05] M. Humphrey, G. Wasson, K. Jackson … et. al. “State and Events for Web
Services: A Comparison of Five WS-Resource Framework and WS-Notification
Implementations.” 14th IEEE Intl. Symposium on High Performance Distributed
Computing (HPDC-14), Research Triangle Park, NC, 24-27 July 2005

[Hua02] P. C. K. Huang. and Ji-Ye Mao, “Modeling e-Negotiation Activities with Petri
Nets, Proceedings of the 35th Hawaii International Conference on System Sciences”,
HICSS 35. Hawaii. 2002.

[Hul04] R. Hull and J. Su. “Tools for Design of Composite Web Services,” ACM
SIGMOD International Conference on Management of Data, June 2004 .

[Hul04] Richard Hull, Michael Benedikt, Vassilis Christophides, Jianwen Su, “E-
Services: A Look Behind the Curtain,” Proc. of the twenty-second ACM SIGMOD-
SIGACT-SIGART symp.on Principles of database systems, San Diego, California, June 09
- 11, 2003, pp. 1-14.

[Jor05] Jørstad, I., Dustdar, S., van Do, T. “A Service Oriented Architecture Framework
for collaborative services,” 3rd International Workshop on Distributed and Mobile
collaboration (DMC), IEEE WETICE, 13 - 15 June 2005, Linköping, Swe-den, IEEE
Computer Society Press.

211

[Jon03] Johnson P Thomas, Mathews Thomas, George Ghinea,”Modeling of Web
Services Flow,” IEEE Intl. Conf. on E-Commerce, June 24 - 27, 2003 Newport Beach,
California , pp. 331-339.

[Jen87] K. Jensen. Coloured Petri Nets. “Advances in Petri Nets,” Lecture Notes in
Computer Science. Springer-Verlag, volume 254-255, Berlin-New York, 1987.

[Jor05] Jørstad, I., Dustdar, S., van Do, T. “Service-Oriented Architectures and Mobile
Services.” 3rd Intl. Workshop on Ubiquitous Mobile Information and collaboration
Systems (UMICS), co-located with CAiSE 2005, 13 - 14 June 2005, Porto, Portugal.

[Kim02] Ki-Chan Kim and Il Im, “The Effects of Electronic Supply Chain Design (e-
SCD) on Coordination and Knowledge Sharing: An Empirical Investigation”, Proc. of
the 35th Hawaii International Conference on System Sciences. HICSS 35. Hawaii. 2002.

[Kim02] Ki-Chan Kim and Il Im, “The Effects of Electronic Supply Chain Design (e-
SCD) on Coordination and Knowledge Sharing: An Empirical Investigation”,
Proceedings of the 35th Hawaii International Conference on System Sciences”. HICSS
35. Hawaii. 2002.

[Kie02] B. Kiepuszewski, “Expressiveness and Suitability of Languages for Control Flow
ModelingWorkflows,“ PhD thesis, Queensland University of Technology, Brisbane,
Australia, 2002.

[Ko03] In-Young Ko, R. Neches, “Composing Web Services for Large-Scale Tasks,”
Internet Computing, IEEE , Vol.7 No. 5 , Sept.-Oct. 2003 , pp. 52 –59.

[Lak94] C. A. Lakos “Object Petri Nets — Definition and Relationship to Coloured
Nets,” Technical Report R94-3, Department of Computer Science, University of
Tasmania, April 1994.

[Lak95] C. A. Lakos. “The Object Orientation of Object Petri Nets,” Proceedings of the
first international workshop on Object-Oriented Programming and Models of
Concurrency - 16th International Conference on Application and Theory of Petri Nets,
pages 1–14, June, 1995.

[Fra01] Frank Leymann, "Web Services Flow Language (WSFL 1.0)." IBM Software
Group, May 22, 2001.

[Jan03] Julian Jang, Alan Feteke, Paul Greenfield, Dean Kuo “Expressiveness of
Workflow Description Languages” proc. of ICWS’03 , June 23 - 26, 2003, Las Vegas,
Nevada, USA, pp. 104-110

[Ley02] F. Leymann, D. Roller, and M.-T. Schmidt, “Web services and business process
management,” IBM systems Journal, Vol 41, No 2, 2002.

212

[Lab] A. Labarga, M. Anderson, F. Valentin, R. Lopez WEB SERVICES AT THE
EUROPEAN BIOINFORMATICS INSTITUTE European Bioinformatics Institute,
Hinxton, United Kingdom.

[Lan03] D. Langworthy (ed.) Web Services Coordination (WS-Coordination). Published
online at http://www-106.ibm.com/developerworks/library/ws-coor/, 2003

[Lan03] D. Langworthy (ed.) Web Services Atomic Transaction (WS-AtomicTransaction).
Published online at http://www-106.ibm.com/developerworks/library/ws-atomtran/, 2003

[Lit03] Mark Little , “Service-oriented computing,” Transactions and Web services,
ACM, Vol. 46 , No.10 October 2003, pp. 49 – 54

[Lom01] A.R Lomuscio, M. Wooldridge and N. R Jennings, “A classification scheme for
negotiation in electronic commerce”. In: Agent-Mediated Electronic Commerce: A
European Agent Link Perspective, 2001, p. 19-33.

[Lim02] J. Lim, B. Gan and Ting-Ting Chang,“A Survey on NSS Adoption Intention”,
Proceedings of the 35th Hawaii International Conference on System Sciences, HICSS
35. Hawaii.2002.

[Ler02] Lerina Aversano, Aniello Cimitile, Pierpaolo Gallucci, Maria Luisa Villan,
“FlowManager: A Workflow Management System Based on Petri Nets,” In Proc. 26th
Intl. Computer Software and Applications Conference (COMPSAC’02), August 26-29,
2002, Oxford, England, IEEE Computer Society Press , pp. 1054-1059.

[Luc]R. Lucchi, and M. Mazzara. “A Foundational Mechanism for WS-BPEL Recovery
Framework,” Paper submitted to Journal of Logic and Algebraic Programming (JLAP),
Elsevier press.
[Lam98] M.D. Lambert, C. M. Cooper and D. J. Pagh, ”Supply Chain Management:
Implement Issues and Research Opportunities”, International Journal of Management
Logistics. Vol 9, N 2.1998.

[Lip96] E. Lippe, Arthur H. M. ter Hofstede, “A Category Theory Approach to
Conceptual Data Modeling’” Informatique Theorique et Applications,(ITA), 1996, vol.
30 No. 1 pp. 79

[Luc] R. Lucchi, M. Mazzara. “A Foundational Mechanism for WS-BPEL Recovery
Framework,” Paper submitted to Journal of Logic and Algebraic Programming (JLAP),
Elsevier press.

[Mna04] Adel Ben Mnaouer, Anand Shekhar, Zhao Yi-Liang, “A Generic Framework for
Rapid Application Development of Mobile Web Services with Dynamic Workflow
Management,” IEEE SCC 2004: 165-171

213

[Maj04] S. Majithia, M. S. Shields, I. J. Taylor, I. Wang: Triana: A Graphical Web
Service Composition and Execution Toolkit. Proceedings of the IEEE International
Conference on Web Services (ICWS'04), pp. 514-524. IEEE Computer Society, 2004

[Mna04] Adel Ben Mnaouer, Anand Shekhar, Zhao Yi-Liang, “A Generic Framework for
Rapid Application Development of Mobile Web Services with Dynamic Workflow
Management,” IEEE SCC 2004: 165-171

[MatchMiner] MatchMiner, http://discover.nci.nih.gov /matchminer/ index.jsp

[Mue05] zur Muehlen, Michael; Stohr, Edward A. “Internet-enabled Workflow
Management,” Editorial to the Special Issue of the Business Process Management Journal
11 (2005)
[MQs] “IBM MQSeries Workflow Concepts and Architecture Version 3. 1,” IBM
Danmark A/S GH12-6285-00 , July 1998.

[Mei96] J. Meidanis, G. Vossen, M. Weske, “Using workflow management in DNA
sequencing,” In Proc. 1st IFCIS Intl. Conf. Cooperative Information Systems
(CoopIS'96), June 19-21, 1996, Brussels, Belgium, IEEE Computer Society Press, pp.
114-123.

[Men04] Mendling, J., Strembeck, M., Neumann, G.: Extending BPEL4WS for Multiple
Instantiation. In Dadam, P., Reichert, M., eds.: INFORMATIK 2004 - Band 2,
Proceedings of the 34th Annual Meeting of German Informatics Society (GI), GPA 2004.
Volume 51 of Lecture Notes in Informatics (2004) 524--529

[Moh98a] C. Mohan, “Workflow Management in the Internet Age,” Proc. 2nd East-
European Symp. on Advances in Databases and Information Systems (ADBIS'98),
Poznan, Poland, September, 1998, LNCS, Vol. 1475, pp. 26-34.

[Moh98b] C. Mohan, “Recent Trends in Workflow Management Products, Standards and
Research,” NATO ASI Series, Series F: Computer and Systems Sciences, August 1998
,Volume 164, Springer Verlag, pp. 396-409.

[Mal94] T. W. Malone, and K. Crowston, “The interdisciplinary study of coordination,”
ACM Comput. Surv. Vol:26 Issue:1, 1994, pp. 87-120.T

[MaL02] T. McLaren, M. Head and Y. Yuan, “Supply chain collaboration alternatives:
understanding the expected costs and benefits,” Internet Research: Electronic Networking
Applications and Policy. 2002, V: 12, N 4.

[Mel04] M. Melise, Veiga de Paula, Jano M. de Souza, José R. Blaschek, Fernanda
Baião,T “A Cooperative System to Support Inventory Leveling Negotiations,” HICSS
2004, TPage: 70192.2

214

[Moo04] Aldo de Moor and Willem-Jan van den HeuvelT, “Web Service Selection in
Virtual Communities,” T Proc. 37th Hawai'i International Conference on System
Sciences, Big Island,Hawaii, January 5-8, 2004, pp. 70197

[Mur89] T. Murata, ``Petri nets: properties, analysis and applications''; Proceedings of
IEEE, vol.77, no.4, pp.541-580, 1989.

[Nek03] Nektarios Gioldasis, Nektarios Moumoutzis, Fotis G. Kazasis, Nikos Pappas,
Stavros Christodoulakis, “A Service Oriented Architecture for Managing Operational
Strategies,” ICWS-Europe, pp. 11-23, Germany, September 2003

[Nav04] Shamkant B. Navathe, Upen Patil, “Genomic and Proteomic Databases and
Applications: A Challenge for Database Technology,” DASFAA 2004: 1-24.

[Nor99] Norman W. Paton, Oscar Diaz, “Active Database Systems,” ACM Computing
Surveys, Vol. 31, No. 1, March 1999, pp 63 - 103.

[Orr03] B. Orriens, J. Yang, and M.P. Papazoglou, “A Framework for Business Rule
Driven Service Composition,” Proc. of the Fourth International Workshop on
Conceptual Modeling Approaches for e-Business Dealing with Business Volatility,
Chicago, United States, October 13-16, 2003.

[Pap05] M. P. Papazoglou and W.J. van den Heuvel, “Web Services Management: A
Survey,” IEEE Internet Computing Nov/Dec. 2005

[Pegasus] Pegasus: a Framework for Mapping Complex Scientific Workflows onto
Distributed Systems Scientific Programming Journal, January 2005.

[Pao05] Romano, Paolo; Marra, Domenico; Milanesi, Luciano (2005) " Web services and
workflow management for biological resources" BMC Bioinformatics 6 S24

[Pel03] Chris Peltz , “Web Services Orchestration and Choreography,” IEEE Computer,
Vol. 36, No. 10, October 2003, pp. 46-52.

[Pic99] G. Piccinelli, “TService Provision and Composition in Virtual Business
Communities,”T tech. report HPL-1999-84, Hewlett-Packard, TPalo Alto, Calif.,T1999,
http://www.hpl.hp.com/techreports/1999/HPL-1999-84.html.

[Pra05] Sushil K. Prasad and J. Balasoorya, 2005, “Fundamental Capabilities of Web
Coordination Bonds: Modeling Petri Nets and Expressing Workflow and
Communication Patterns over Web Services “, Proc. Hawaii Intl. Conf. in Syst. Sc.
(HICSS-38), Jan., Big Island, January 4-8.

[Pra04a] Sushil K. Prasad, V. Madisetti, et al. 2004. “System on Mobile Devices (SyD):
A Middleware Testbed for Collaborative Applications over Small Heterogeneous

215

Devices and Data Stores,” Procs. ACM/IFIP/USENIX 5th International Middleware
Conference, Toronto, Ontario, Canada, October 18th - 22nd.

[Pra04b] Sushil K. Prasad and Janaka Balasoorya, “Web Coordination Bonds: A Simple
Enhancement to Web Services Infrastructure for Effective Collaboration,” Proc. 37th
Hawai'i International Conference on System Sciences, Big Island,Hawaii, January 5-8,
2004, pp. 70192.1

[Pra04c] Sushil K. Prasad and J. Balasooriya. 2004. “Web Coordination Bonds: A Simple
and Theoretically Sound Framework for Effective Collaboration among Web Services,”
Technical Report CS-TR-04-01, Department of Computer Science, Georgia State
University, June, 36 pages. http://www.cs.gsu.edu/~cscjlbx/webond.pdf

[Pra03a] Sushil K. Prasad, et al. “Enforcing Interdependencies and Executing
Transactions Atomically Over Autonomous Mobile Data Stores Using SyD Link
Technology,” In Proc. Mobile Wireless Network Workshop held in conjunction with The
23rd Intl. Conf. Distributed Computing Systems (ICDCS'03), May 19-22 2003,
Providence, RhodeIsland, IEEE Computer Society Press, pp. 803 –811.

[Pra03b] Sushil K. Prasad, et al. “Implementation of a Calendar Application Based on
SyD Coordination Links,” In Proc. 3PrdP Intl. Workshop Internet Computing and E-
Commerce in conjunction with the 17th Annual Intl. Parallel &Distributed Processing
Symp. (IPDPS 2003) , 22-26 April, Nice, France, IEEE Computer Society Press, pp.
242.

[Pre02] Gunter Preuner and Michael Schrefl, “Integration of Web Services into
Workflows through Multi-Level Schema Architecture,” In Proc. 4PthP IEEE Intl.
workshop on Advanced issues of E-Commerce and Web-based Information Systems
(WECWIS’02), 26–28 June ,2002 , Newport Beach, CA, IEEE Computer Society Press,
pp. 51-60.

[Ros05] Rosenberg, F., Dustdar, S. “Towards a Distributed Service-Oriented Business
Rules System,” IEEE European Conference on Web Services (ECOWS), 14-16
November 2005, IEEE Computer Society Press

[Ran04] Anand Ranganathan , Scott McFaddin , “Using Workflows to Coordinate Web
Services in Pervasive Computing Environments,” Proc. of the IEEE International
Conference on Web Services (ICWS'04), June 6-9, 2004, San Diego, California, USA.
IEEE Computer Society 2004, 288-295

[Ran04] Anand Ranganathan , Scott McFaddin , “Using Workflows to Coordinate Web
Services in Pervasive Computing Environments,” Proc. of the IEEE International
Conference on Web Services (ICWS'04), June 6-9, 2004, San Diego, California, USA.
IEEE Computer Society 2004, 288-295

216

[Rap00] A. B. Raposo, L. P. Magalhaes, I. L. M. Ricarte, “Coordinating Activities in
Collaborative Environments: A High Level Petri Nets Based Approach,” SCI 2000 - 4th
World Muticonference on Systemics, Cybernetics and Informatics, Orlando,pp. 195-200.

[Ros05]Rosenberg, F., Dustdar, S. “Towards a Distributed Service-Oriented Business
Rules System,” IEEE European Conference on Web Services (ECOWS), 14-16
November 2005.

[Rap00] A. B. Rapso, L. P. Magalhaes, I. L. M. Ricarte, “Petri Nets Based Coordination
Mechanisms for Multi-Workflow Environments,” International Journal of Computer
Systems Science & Engineering, September 2000, vol.15, no .5, p.315 - 326,.

[RDF04]RDF/XML Syntax Specification (Revised) W3C Recommendation 10 February
2004, http://www.w3.org/ TR/2004/ REC-rdf-syntax-grammar-20040210/

[Sha02] R. P. Shankar and F. Armando 2002. “SWORD: A Developer Toolkit for Web
Service Composition”. In Proc. of the Eleventh International World Wide Web
Conference.

[Sch05] Schmit, B.A., Dustdar, S. (2005). Towards Transactional Web Services. 1st
IEEE International Workshop on Service-oriented Solutions for Cooperative
Organizations (SoS4CO '05), co-located with the 7th International IEEE Conference on
E-Commerce Technology (CEC 2005), 19 July 2005, Munich, Germany.

[Sta03] Steffen Staab, Wil van der Aalst, V. Richard Benjamins, Amit Sheth, John A.
Miller, Christoph Bussler, Alexander Maedche, Dieter Fensel, Dennis Gannon, “Web
Services: Been There, Done That?,” IEEE Intelligent Systems, Jan/Feb 2003, IEEE
Computer Society Press, pp. 72-85.

[Sch04] Christoph Schuler, Rogr Weber, Heiko Schuldt, Hans-Jörg Schek, “Scalable
Peer-to-Peer Process Management - The OSIRIS Approach.” ICWS 2004, 26-34

[Sch02] R. Schmidt. “Web services based execution of business rules.” Proc. of the Intl.
Workshop on Rule Markup Languages for Business Rules on the Semantic Web, 2002.

[Sch05] B.A. Schmit, S. Dustdar, (2005). “Towards Transactional Web Services,” 1st
IEEE International Workshop on Service-oriented Solutions for Cooperative
Organizations (SoS4CO '05), co-located with the 7th International IEEE Conference on
E-Commerce Technology (CEC 2005), 19 July 2005, Munich, Germany.

[Sin04] Elias Sinderson, Vish Magapu, and Ronald Mak, “Portal of NASAs Mars
Exploration Rovers Mission: Middleware and Web Services for the Collaboratiive
Information,” Invited paper, In Proc. ACM/IFIP/USENIX 5th International Middleware
Conference, Toronto, Ontario, Canada, October 18th - 22, 2004.

[Sha] Vijayalakshmi Shanmugam, Applications in Bioinformatics: Integration of Web
Services for Microarray. Analysis.

217

 [Sha04] Sohrab P Shah, David YM He, Jessica N Sawkins, Jeffrey C Druce, Gerald
Quon, Drew Lett, Grace XY Zheng, Tao Xu, BF Francis Ouellette. Pegasys: software for
executing and integrating analyses of biological sequences. BMC Bioinformatics 2004.

[Sch02] R. Schmidt. “Web services based execution of business rules.” In Proc. of the
Intl. Workshop on Rule Markup Languages for Business Rules on the Semantic Web,
2002.

[Ste03] Steele, R. A “Web Services-based System for Ad-hoc Mobile Application
Integration,” In Proc. of IEEE Intl. Conf. on Information Technology: Coding and
Computing '03, 2003.

[Ste03] Steele, R. A, “Web Services-based System for Ad-hoc Mobile Application
Integration,” In Proc. of IEEE Intl. Conf. on Information Technology: Coding and
Computing '03, 2003.

[Sha01] Shalom Tsur, “Are Web services the next revolution in E-commerce?”, Panel at
27th Very Large Scale Database (VLDB) conf,”. Roma, Italy 2001..

[Tal02] D. Talia, “The Open Grid Services Architecture: where the grid meets the
WebT”“ Internet Computing, IEEE , Volume: 6 Issue: 6 , Nov.-Dec. 2002 Page(s): 67 –
71

[Tsu01] halom Tsur, Serge Abiteboul, Rakesh Agrawal, Umeshwar Dayal, Johannes
Klein, Gerhard Weikum, “Are Web Services the Next Revolution in e-Commerce?”
(Panel), Proceedings of the VLDB Conference, Roma Italy, September 2001, Morgan
Kaufmann Publishers Inc, 614 – 617.

[Tai04] Stefan Tai, Rania Khalaf, and Thomas Mikalsen, “Composition of Coordinated
Web Services,” In Proceedings of the ACM/IFIP/USENIX International Conference on
Distributed Systems Platforms (Middleware 2004), Toronto, Canada, October 2004

[Tha01] S. Thatte, “XLANG: Web Services for Business Process Design,"
http://www.gotdotnet.com/team/xml wsspecs/xlang-c/default.htm, May 2001.

[Udi02] Z. M Udin. and M. K. Khan, “A Framework for Collaborative Supply Chain:
Level 1- Planning for Redesign”. Proc. of the Seventh Intl. Conf. on CSCCW in Design.
Rio de Janeiro, Brazil, 2002. p 325.

[Ver05] Kunal Verma, Kaarthik Sivashan-mugam, Amit Sheth, Abhijit Patil, Swapna
Oundhakar, and John Miller, “METEOR-S WSDI: A Scalable Infrastructure of Registries
for Semantic Publication and Discovery of Web Services, Journal of Information
Technology and Management,” Kluwer Academic Publishers, Special Issue on Universal
Global Integration, Vol. 6, No. 1 (2005) pp. 17-39.

218

[Ver05] METEOR-S WSDI: A Scalable Infrastructure of Registries for Semantic
Publication and Discovery of Web Services, Kunal Verma, Kaarthik Sivashanmugam,
Amit Sheth et.al J. Information Technology and Management, Special Issue on Universal
Global Integration, Vol. 6, No. 1, 2005 pp. 17-39.

[Var05]Indrakanti, S., Varadharajan, V. & Hitchens, M. “Authorization Service for Web
Services and its Application in a Health Care Domain,” International Journal of Web
Services Research, Vol. 2, Issue 4, September 2005, pp. 94 – 119

[WFMC] Workflow Management Coalition, http://www.wfmc.org

[WSC02] “Web Services Coordination” (WS-Coordination 1.0), 2002,
http://www.106.ibm.com/developerworks/ library/ws-coor/

[WSCL] “Web Service Conversation Language” (WSCL) , HP Submission to W3C,
http://www.w3c.org, 2002.T

[Wil00] S. Müller-Wilken, F. Wienberg, W. Lamersdorf , “ On Integrating Mobile
Devices into a Workflow Management Scenario,” In Proc. 11PthP Intl. Workshop on
Database and Expert Systems Applications (DEXA'00), September 06 - 08, 2000
,Greenwich, London, U.K., IEEE Computer Society Press, pp. 186-192.

[Woh02] P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede, “
Pattern based analysis of BPEL4WS”, Technical Report FIT-TR-2002-04, QUT,
Queensland University of Technology, 2002.

[Wee05] Sanjiva Weerawarana, Francisco Curbera, Frank Leymann, TonyStorey, et
al.”Web Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing,
WS-BPEL, WS-Reliable Messaging and More,” Prentice Hall, Paperback, Published
March 2005, 416 pages, ISBN 0131488740.

[Woh03] Petia Wohed, Wil M. P. van der Aalst, Marlon Dumas, and Arthur H. M. ter
Hofstede “Analysis of Web Services Composition Languages: The Case of BPEL4WS,”
Lecture Notes in Computer Science, Conceptual Modeling- ER 2003, pp. 200-215
[WorkflowPatterns] Workflow Patterns, Standard Evaluation
http://tmitwww.tm.tue.nl/research/ patterns/standards.htm, December, 2003.

[WSDL] Web Services Description Language (WSDL). W3C Working Draft 10 May
2005, http://www.w3.org/TR/2005/WD-wsdl20-20050510/

[WST] “Web Services Transaction” (WS-Transaction 1.0), August, 2002, http://www-
106.ibm.com/developerworks/ library/ws-transpec/.

219

[WSC] “Web Services Coordination” (WS-Coordination 1.0), 2002,
http://www.106.ibm.com/developerworks/ library/ws-coor/

[WSCL] “Web Service Conversation Language” (WSCL) , HP Submission to W3C,
http://www.w3c.org, 2002.

[WSCI] W3C “Web Service Choreography Interface (WSCI) 1.0,” http://
www.w3.org/TR/wsci/, November 2002.

[WSFL] IBM Corporation, “Web Services Flow Language (WSFL1.0)", http://www-
4.ibm.com/softwware/solutions/ WebServices/pdf/ WSFL.pdf, May 2001.

[WST] “Web Services Transaction” (WS-Transaction 1.0), August, 2002, http://www-
106.ibm.com/developerworks/ library/ws-transpec/.

[Wan05] Feng Wan; Munindar Singh, Enabling Persistent Web Services via
Commitments Information Technology and Management, January 2005, vol. 6, no. 1, pp.
41-60(20)

[You95] F. Yousfi, Bricon-Souf, N., Beuscart, R., Geib, J.M. “PLACO: a cooperative
architecture for solving coordination problem in health care,” In Proc. IEEE 17th Annual
Conf. Engineering in Medicine and Biology Society, Sep 20-25, 1995, Vol: 1 pp. 747 –
748.

[Yun98] Y.Yuan, Joseph B. Rose, and Norm Archer, “A Web-Based Negotiation Support
System,”, Electronic Markets, V. 8, N. 3, 1998.

[Yun98] Y.Yuan, Joseph B. Rose, Norm Archer, “A Web-Based Negotiation Support
System”, in: Schmid, Beat F.; Selz, Dorian; Sing, Regine: EM - Electronic Contracting.
EM – Electronic Markets, V. 8, N. 3, 1998.

[Zla03] Z. Zlatev, and P. Eck, “An Investigation of the Negotiation Domain for
Electronic Commerce Information Systems,” In Proc. of the 5th Intl. Conf. on Enterprise
Information Systems, ICEIS 2003, Angers, France, April 2003.

	Georgia State University
	ScholarWorks @ Georgia State University
	12-5-2007

	Distributed Web Service Coordination for Collaboration Applications and Biological Workflows
	Janaka Lalith Balasooriya
	Recommended Citation

	Microsoft Word - DissertationNov26numer.doc

