66 research outputs found

    Coordinated standoff tracking of in- and out-of-surveillance targets using constrained particle filter for UAVs

    Get PDF
    This paper presents a new standoff tracking framework of a moving ground target using UAVs with a limited sensing capability such as sensor field-of-view and motion constraints. To maintain persistent track of the target even in case of target loss (out of surveillance) for a certain period, this study predicts the target existence area using the particle filter, and produces control commands to ensure that all predicted particles can be covered by the field-of-view of the UAV sensor at all times. To improve target prediction/estimation accuracy, the road information is incorporated into the constrained particle filter where the road boundaries are modelled as nonlinear inequality constraints. Both Lyapunov vector field guidance and nonlinear model predictive control methods are applied for the standoff tracking and phase angle control, and the advantages and disadvantages of them are compared using numerical simulation results

    Communication-Aware Multi-Target Tracking Guidance for Cooperative UAVs with Gimbaled Vision Sensors in Urban Environments

    Get PDF
    Department of Mechanical Enginering (Mechanical Engineering)This paper proposes the unified cooperative multi-target tracking algorithm, which considers the sensing range and communication in an urban environment. The objective function of the proposed algorithm is composed of two terms. The first-term is formulated by using FIM. Since Fisher information matrix can be utilized to quantify the information gathered by the sensors, we can formulate an objective function that reflects the constraints like the sensor field of view(FOV). Also, by reflecting parameters related to communication, communication with the ground station can be considered. However, if the target is outside the sensing range or occluded by the building continuously, UAVs cannot capture this target in the prediction step of receding horizon method when the first-term is used only. To solve this problem, the second-term, which is made up of relative distance between targets and UAVs, is proposed. In this situation, the uncertainty increases because the target information cannot be obtained. As the uncertainty increases, the increasing weight is multiplied by the second-term to generate a path to reduce the distance to this target. If the distance to the target is within the sensing range by using this term, the target can be tracked again by using the first-term because the uncertainty decreases by the sensing. The main contributions of this thesis are as follows. First, UAVs can create a path and a gimbal command to get useful information by considering the limited sensing capability. Second, by considering communication, the communication stability has been improved and the amount of information in the ground station has been increased. Lastly, in the prediction step of the receding horizon method, the target can be tracked even when information about the target is not gathered.ope

    Motion Coordination of Multiple Autonomous Vehicles in a Spatiotemporal Flowfield

    Get PDF
    The long-term goal of this research is to provide theoretically justified control strategies to operate autonomous vehicles in spatiotemporal flowfields. The specific objective of this dissertation is to use estimation and nonlinear control techniques to generate decentralized control algorithms that enable motion coordination for multiple autonomous vehicles while operating in a time-varying flowfield. A cooperating team of vehicles can benefit from sharing data and tasking responsibilities. Many existing control algorithms promote collaboration of autonomous vehicles. However, these algorithms often fail to account for the degradation of control performance caused by flowfields. This dissertation presents decentralized multivehicle coordination algorithms designed for operation in a spatially or temporally varying flowfield. Each vehicle is represented using a Newtonian particle traveling in a plane at constant speed relative to the flow and subject to a steering control. Initially, we assume the flowfield is known and describe algorithms that stabilize a circular formation in a time-varying spatially nonuniform flow of moderate intensity. These algorithms are extended by relaxing the assumption that the flow is known: the vehicles dynamically estimate the flow and use that estimate in the control. We propose a distributed estimation and control algorithm comprising a consensus filter to share information gleaned from noisy position measurements, and an information filter to reconstruct a spatially varying flowfield. The theoretical results are illustrated with numerical simulations of circular formation control and validated in outdoor unmanned aerial vehicle (UAV) flight tests

    A Distributed ADMM Approach to Non-Myopic Path Planning for Multi-Target Tracking

    Full text link
    This paper investigates non-myopic path planning of mobile sensors for multi-target tracking. Such problem has posed a high computational complexity issue and/or the necessity of high-level decision making. Existing works tackle these issues by heuristically assigning targets to each sensing agent and solving the split problem for each agent. However, such heuristic methods reduce the target estimation performance in the absence of considering the changes of target state estimation along time. In this work, we detour the task-assignment problem by reformulating the general non-myopic planning problem to a distributed optimization problem with respect to targets. By combining alternating direction method of multipliers (ADMM) and local trajectory optimization method, we solve the problem and induce consensus (i.e., high-level decisions) automatically among the targets. In addition, we propose a modified receding-horizon control (RHC) scheme and edge-cutting method for efficient real-time operation. The proposed algorithm is validated through simulations in various scenarios.Comment: Copyright 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    UAV Optimal Cooperative Obstacle Avoidance and Target Tracking in Dynamic Stochastic Environments

    Get PDF
    Cette thèse propose une stratégie de contrôle avancée pour guider une flotte d'aéronefs sans pilote (UAV) dans un environnement à la fois stochastique et dynamique. Pour ce faire, un simulateur de vol 3D a été développé avec MATLAB® pour tester les algorithmes de la stratégie de guidage en fonctions de différents scénarios. L'objectif des missions simulées est de s'assurer que chaque UAV intercepte une cible ellipsoïdale mobile tout en évitant une panoplie d'obstacles ellipsoïdaux mobiles détectés en route. Les UAVs situés à l'intérieur des limites de communication peuvent coopérer afin d'améliorer leurs performances au cours de la mission. Le simulateur a été conçu de façon à ce que les UAV soient dotés de capteurs et d'appareils de communication de portée limitée. De plus, chaque UAV possède un pilote automatique qui stabilise l'aéronef en vol et un planificateur de trajectoires qui génère les commandes à envoyer au pilote automatique. Au coeur du planificateur de trajectoires se trouve un contrôleur prédictif à horizon fuyant qui détermine les commandes à envoyer à l'UAV. Ces commandes optimisent un critère de performance assujetti à des contraintes. Le critère de performance est conçu de sorte que les UAV atteignent les objectifs de la mission, alors que les contraintes assurent que les commandes générées adhèrent aux limites de manoeuvrabilité de l'aéronef. La planification de trajectoires pour UAV opérant dans un environnement dynamique et stochastique dépend fortement des déplacements anticipés des objets (obstacle, cible). Un filtre de Kalman étendu est donc utilisé pour prédire les trajectoires les plus probables des objets à partir de leurs états estimés. Des stratégies de poursuite et d'évitement ont aussi été développées en fonction des trajectoires prédites des objets détectés. Pour des raisons de sécurité, la conception de stratégies d'évitement de collision à la fois efficaces et robustes est primordiale au guidage d'UAV. Une nouvelle stratégie d'évitement d'obstacles par approche probabiliste a donc été développée. La méthode cherche à minimiser la probabilité de collision entre l'UAV et tous ses obstacles détectés sur l'horizon de prédiction, tout en s'assurant que, à chaque pas de prédiction, la probabilité de collision entre l'UAV et chacun de ses obstacles détectés ne surpasse pas un seuil prescrit. Des simulations sont présentées au cours de cette thèse pour démontrer l'efficacité des algorithmes proposés

    Optimal Control and Coordination of Small UAVs for Vision-based Target Tracking

    Get PDF
    Small unmanned aerial vehicles (UAVs) are relatively inexpensive mobile sensing platforms capable of reliably and autonomously performing numerous tasks, including mapping, search and rescue, surveillance and tracking, and real-time monitoring. The general problem of interest that we address is that of using small, fixed-wing UAVs to perform vision-based target tracking, which entails that one or more camera-equipped UAVs is responsible for autonomously tracking a moving ground target. In the single-UAV setting, the underactuated UAV must maintain proximity and visibility of an unpredictable ground target while having a limited sensing region. We provide solutions from two different vantage points. The first regards the problem as a two-player zero-sum game and the second as a stochastic optimal control problem. The resulting control policies have been successfully field-tested, thereby verifying the efficacy of both approaches while highlighting the advantages of one approach over the other. When employing two UAVs, one can fuse vision-based measurements to improve the estimate of the target's position. Accordingly, the second part of this dissertation involves determining the optimal control policy for two UAVs to gather the best joint vision-based measurements of a moving ground target, which is first done in a simplified deterministic setting. The results in this setting show that the key optimal control strategy is the coordination of the UAVs' distances to the target and not of the viewing angles as is traditionally assumed, thereby showing the advantage of solving the optimal control problem over using heuristics. To generate a control policy robust to real-world conditions, we formulate the same control objective using higher order stochastic kinematic models. Since grid-based solutions are infeasible for a stochastic optimal control problem of this dimension, we employ a simulation-based dynamic programming technique that relies on regression to form the optimal policy maps, thereby demonstrating an effective solution to a multi-vehicle coordination problem that until recently seemed intractable on account of its dimension. The results show that distance coordination is again the key optimal control strategy and that the policy offers considerable advantages over uncoordinated optimal policies, namely reduced variability in the cost and a reduction in the severity and frequency of high-cost events

    Fixed-wing UAV tracking of evasive targets in 3-dimensional space

    Get PDF
    In this thesis, we explore the development of autonomous tracking and interception strategies for single and multiple fixed-wing Unmanned Aerial Vehicles (UAVs) pursuing single or multiple evasive targets in 3-dimensional (3D) space. We considered a scenario where we intend to protect high-value facilities from adversarial groups employing ground-based vehicles and quadrotor swarms and focused on solving the target tracking problem. Accordingly, we refined a min-max optimal control algorithm for fixed-wing UAVs tracking ground-based targets, by introducing constraints on bank angles and turn rates to enhance actuator reliability when pursuing agile and evasive targets. An intelligent and persistent evasive control strategy for the target was also devised to ensure robust performance testing and optimisation. These strategies were extended to 3D space, incorporating three altitude control algorithms to facilitate flexible UAV altitude control, leveraging various parameters such as desired UAV altitude and image size on the tracking camera lens. A novel evasive quadrotor algorithm was introduced, systematically testing UAV tracking efficacy against various evasive scenarios while implementing anti-collision measures to ensure UAV safety and adaptive optimisation improve the achieved performance. Using decentralised control strategies, cooperative tracking by multiple UAVs of single evasive quadrotor-type and dynamic target clusters was developed along with a new altitude control strategy and task assignment logic for efficient target interception. Lastly, a countermeasure strategy for tracking and neutralising non-cooperative adversarial targets within restricted airspace was implemented, using both Nonlinear Model Predictive Control (NMPC) and optimal controllers. The major contributions of this thesis include optimal control strategies, evasive target control, 3D target tracking, altitude control, cooperative multi-UAV tracking, adaptive optimisation, high-precision projectile algorithms, and countermeasures. We envision practical applications of the findings from this research in surveillance, security, search and rescue, agriculture, environmental monitoring, drone defence, and autonomous delivery systems. Future efforts to extend this research could explore adaptive evasion, enhanced collaborative UAV swarms, machine learning integration, sensor technologies, and real-world testing
    corecore