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Abstract

This paper proposes the unified cooperative multi-target tracking algorithm, which considers

the sensing range and communication in an urban environment. The objective function of the

proposed algorithm is composed of two terms. The first-term is formulated by using FIM.

Since Fisher information matrix can be utilized to quantify the information gathered by the

sensors, we can formulate an objective function that reflects the constraints like the sensor field

of view(FOV). Also, by reflecting parameters related to communication, communication with

the ground station can be considered. However, if the target is outside the sensing range or

occluded by the building continuously, UAVs cannot capture this target in the prediction step

of receding horizon method when the first-term is used only.

To solve this problem, the second-term, which is made up of relative distance between targets

and UAVs, is proposed. In this situation, the uncertainty increases because the target informa-

tion cannot be obtained. As the uncertainty increases, the increasing weight is multiplied by

the second-term to generate a path to reduce the distance to this target. If the distance to the

target is within the sensing range by using this term, the target can be tracked again by using

the first-term because the uncertainty decreases by the sensing.

The main contributions of this thesis are as follows. First, UAVs can create a path and a

gimbal command to get useful information by considering the limited sensing capability. Second,

by considering communication, the communication stability has been improved and the amount

of information in the ground station has been increased. Lastly, in the prediction step of the

receding horizon method, the target can be tracked even when information about the target is

not gathered.
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I Introduction

1.1 Background and Motivation

As over the past few decades, as computing power and sensor performance have improved,

unmanned aerial vehicles (UAVs) have been used for various applications. Examples of such

missions include police patrol [1], search and exploration for rescue [2–4], target tracking [5,

6], and persistent surveillance [7]. Although these missions require different requirements in

various environments, they aim to reduce the uncertainty of the information about a target

while collecting as much information as possible.

As technology advances, these ISR processes are being carried out using UAVs. In particular,

a small UAV equipped with a gimbal vision sensor and communication module can cover a wide

area with a small number of UAVs for these applications. Especially, interesting ISR missions

using multiple small UAV are target states estimation and tracking. Pixel coordinates for targets

obtained from the vision sensor, combined with position and attitude from UAV, can be used to

estimate the state of the target, which can be used to track the target persistently [8]. Various

studies have been conducted for a target tracking mission autonomously [9–13]. However, even

if performing the autonomous mission, we need to consider the communication between UAVs

and the ground station to judge if the mission is failed or plan the next mission based on UAVs’

information.

Two technical issues arise when multiple UAVs track multiple targets in a cooperative target

tracking mission considering communication with ground stations: (1) target state estimation

and (2) path planning.; In order to reduce the estimation error and the uncertainty of the

estimate, it is necessary to improve the performance of the estimator itself or to develop an

efficient method for fusing the target information obtained from multiple UAVs. Path planning;

It covers how to create a path to achieve specific goals such as maximizing information about

the target, persistent tracking, and maintaining communication.

In this work, we use the information form of the Extended Kalman filter to fuse the informa-

tion for target gathered by multiple UAVs. The planning algorithm is also proposed to achieve

a certain objective using receding horizon method considering various constraints.

1.2 Related Work

Target state estimation is one of the most important studies in the target tracking field. In

the target tracking application, the sensor of the UAV can acquire measurements like a range

or bearing angle to the UAV’s position. Kalman filter, which uses this type of measurement,

is developed in variety. In a cooperative mission, each UAV can communicate with each other

and exchange information about the target through the communication module. Information

filter is a common estimation method, which is another form of Kalman filter [14]. In the case

of IF, the information vector and information matrix are used for estimation instead of the
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state vector and covariance matrix. Also, since the measurement is reflected in the information

matrix, it has the advantage of being fused by simply adding the information matrix [15, 16].

For this reason, the information filter is widely used in data fusion problems using multi-sensors.

Not only this, various algorithms based on information filters have been developed. Ridley [17]

proposed a decentralized aerial data fusion system based on information filter to track multiple

ground moving target. He also covered hardware and software issues that may arise when

operating these systems. Casbeer [18] proposed a distributed information filtering method using

a consensus filter. The information consensus filter proposed in this work is a distributed filter,

and each UAV maintains a local estimation filter, but the consensus filter is responsible for

communication with neighbors. Kim [19] proposed an unscented information filter. To deal with

the nonlinear system, the linearization error is mitigated through the unscented transformation.

Through these studies, it is confirmed that information could effectively fuse measurements

obtained from multiple UAVs.

Path planning is another important area that is covered in this study. This issue focuses

on generating trajectories to achieve a certain objective. Various earlier research has developed

UAV path planning methods, including the gradient-based control law, standoff tracking, and

receding horizon optimization (RHO).

In the gradient-based method, in order to minimize the determinant or trace of the error

covariance matrix in each sensor platform, the gradient of a specific metric is calculated and

optimized using this. Yang [20] calculated the gradient of the determinant of the covariance

matrix in order to maximize the expected information from its sensor and then performed path

planning using this. Chung [21] proposed a method to minimize the cost function by using a

gradient-descent-based manner to reduce sensing uncertainty. Similarly, Schlotfeldt [22] consid-

ered the problem of reducing the estimation uncertainty of the team of robots. However, these

methods have the disadvantage that they can be easily trapped in local optima and kinematics

constraints are not considered.

Earlier studies using various methods have been conducted to perform standoff tracking.

First, a standoff tracking method using vector field is proposed [23–25]. Shin [23] proposed

a nonlinear disturbance observer-based standoff tracking method. Disturbances such as wind

and model uncertainty are compensated through a nonlinear disturbance observer. Chen [24]

provided target tracking and obstacle avoidance algorithm by combining Lyapunov vector field

guidance and tangent vector field guidance. Lim [25] proposed a modified vector field for multiple

UAVs that can consider various constraints. Park [26] proposed a standoff tracking algorithm

using the sidebearing angle. To obtain the sidebearing angle, the pixel coordinate in the image

plane and the state of the UAV are used. Wu [26] provided a standoff tracking guidance law

based on a sliding mode control. The finite-time convergence and robustness of the proposed

algorithm are verified using Lyapunov theory.

Finally, various planning techniques using the receding horizon method are proposed. Re-

ceding horizon control, also called Model predictive control (MPC), is a technique that creates
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a control action considering various constraints such as the dynamics of the UAV, information

about the environment, and future costs during the time to predict. Peng [27] proposed the

MPC-based target tracking algorithm that considers various constraints such as sensor coverage

and obstacles in urban environments. In order to solve the optimization problem, an improved

gray wolf optimizer(IGWO) were used. This algorithm generates both 2D and 3D paths are gen-

erated. Sharma [28] developed a cooperative sensor resource management (CSRM) technique

to geolocate multiple ground moving targets using a group of fixed-wing UAVs. An MPC-based

unified algorithm that generates the trajectory of the UAVs and the gimbal direction command

mounted on the UAV is proposed. Farmani [29] performed a similar study to [28], but the

planning is carried out by separating the path and gimbal direction. [28] and [29] deal with

the cooperative target tracking problem but do not consider the urban environment and com-

munication. Skoglar [30] proposed a target search and tracking algorithm considering FOV in

an urban environment. The search and tracking modes are switched according to the estima-

tion uncertainty, and at this time, an appropriate single UAV trajectory and gimbal direction

command are generated. Liu [31] proposed an algorithm for cooperative target tracking while

considering communication with the ground station. However, there is a limitation that the

urban environment and multi-target are not considered.

From these various previous studies, it can be seen that a unified cooperative multi-target

tracking algorithm is needed, which considers the urban environment, communication, and sens-

ing range. This paper proposes a unified algorithm that generates trajectory and gimbal di-

rection commands while maintaining communication between the ground station and UAV and

gathering useful information about the target.

1.3 Contribution of the Thesis

Based on the contents of the previous section, this thesis paper proposes the information-

theoretic receding horizon based algorithm that plans desired roll input and gimbal direction

input for UAVs. The main contributions of this thesis are as follows.

First, UAVs can create a path and a gimbal command to get useful information by considering

the limited sensing capability. The constraints may include the sensing range, camera FOV, and

occlusion by the buildings.

Second, by considering communication, the probability of the successful transmission between

the ground station and UAVs has been improved. As a result, the amount of information from

the ground station and the stability of communication between the ground station and UAVs

have increased, allowing the human operator at the ground station to understand the overall

situation.

Lastly, even when information cannot be obtained from any input in the prediction pro-

cess of the receding horizon method due to various constraints, the target can be continuously

tracked through the proposed algorithm. Unlike previous works that use the objective function

formalized using only the scalar metric of Fisher information matrix, the success rate of the
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cooperative multi-target tracking mission is improved by an additional objective function that

can consider this situation.

1.4 Outline of the Thesis

The structure of this paper is as follows. In chapter 2, the mission scenario, problem formulation,

and model are proposed. Section 3 discusses the various estimation algorithm. Since EKF

is used in this work, we formulate the EKF using bearing-only measurements. In addition,

this chapter will discuss the Fisher information matrix-based scalar metric used for planning.

Chapter 4 proposes the path and gimbal planning algorithm based on receding horizon method,

which considers both communication and sensing. To verify the proposed algorithm, MATLAB

numerical simulation is performed in chapter 5. Finally, the conclusion and future work is

provided in chapter 6.

4



II Problem Description

This chapter describes the problem of multi-target tracking guidance for multi fixed-wing UAVs.

By making the most of the information about the targets from each of UAVs, target states can

be estimated. For the goal of this thesis, we assume that image processing, which contains

identifying each target and finding the pixel coordinates of the centroid of the targets in the

image, is already done. Then, the pixel location can be transformed into the corresponding

bearing angle or relative unit vector by combining states of UAV.

Extended Kalman filter, which uses the bearing angle as measurements to estimate target

states, will be described in Section 3. One of the purposes of this thesis is to maximize the

information about targets. This purpose can be achieved by using information-theoretic meth-

ods. In order to plan the path and gimbal direction of UAVs that increase the information

about targets, we must define the model of vehicle, target, sensor, and communication at first.

Therefore, section 2.1 will summarize the scenario and the proposed algorithm in this thesis.

And then Section 2.3 provides details of each model.

2.1 Problem Formulation

Figure 1: The scenario covered in this paper

We consider an urban environment with multiple targets and UAVs. Each of the UAVs’

is equipped with a gimbal camera and a communication module. The camera provides pixel

coordinates for the target through image processing and is converted into a bearing angle by

combining with the UAV’s status information. Also, it is assumed that information about the

city is given in prior. Every target is road-bounded and has constant velocity.

The overall goal is to find the UAVs’ path and gimbal command to track the multiple targets

in urban environments with maintaining communication to the ground station. However, the

communication between the UAV and the ground station is influenced by shading, fading, noise,
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and other factors. It can seriously lessen the amount of received information. This paper

explains realistic communication by using a packet erasure channel model. By incorporating this

model into the plan, the UAV creates a path that acts as a communication relay to maintain

communication with ground stations.

2.2 Model Description

UAV Dynamics Model

The UAV dynamics in this paper is derived from the general fixed-wing UAV model. For

simplicity, the UAV is equipped with a flawless low-level flight controller, including the attitude

angles and angular rates controller. So each UAV can follow the guidance input. In this paper,

we assume that the UAVs flight on constant velocity and altitude. We use a constant altitude

and coordinated turn model, which uses a roll angle as input. The equation is given by

ṗn = Vg cos(χ) (1)

ṗe = Vg sin(χ) (2)

χ̇ =
g√
Vg

tanφ (3)

φ̇ = kroll(u1 − φ) (4)

where g is the gravitational acceleration constant, Vg is the ground speed of a UAV, χ and φ

are course angle and roll angle, respectively. The parameter kroll is the control gain, and u1 is

the desired roll command of each UAV, which is constrained by the following limits:

−φmax ≤ φ ≤ φmax (5)

This continuous dynamics model Equation 1-4 can be discretized by Euler integration method:

xu(k + 1) = xu(k) + Ts(fu(xu(k), u1(k))) (6)

where Ts is the sampling time.

Target Dynamics Model

The target is assumed to move on the road in an urban environment, and it is assumed that

one of three directions: forward, left, and right at each intersection is selected. Also, since the

target’s velocity is sufficiently lower than that of the UAV, the constant velocity model is used in

this paper. The process noise of this model follows the acceleration, which regards a zero-mean

Gaussian noise. The discrete model of target is given by:

xt(k + 1) = F (k)xt(k) +G(k)w(k) (7)
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where w(k) ∼ N(0, Q(k)) represents the white noise. The process covariance matrix Q(k)

is diag(σ2pn , σ
2
vn , σ

2
pe , σ

2
ve). σ is the standard deviation related to states of the target about each

axis. The state transition matrix F (k) and the process noise matrix G(k) are shown below:

F (k) =


1 Ts 0 0

0 1 0 0

0 0 1 Ts

0 0 0 1

 (8)

G(k) =


T 2
s /2 0

Ts 0

0 T 2
s /2

0 Ts

 (9)

Sensor Model

In this work, every UAV is equipped with a gimbaled camera to estimate the position of the

target. After identifying the target through image processing, pixel coordinates of the target

can be obtained, and the bearing angle between the UAV and the target can be obtained by

combining the coordinates with the state information of the UAV. In this paper, it is assumed

that image processing has already been performed. The sensor model used in this paper is

quoted from [32]. Three coordinate systems are used to obtain the NED coordinates from the

pixel coordinates of the target: camera frame, gimbal frame, and body frame. The rotation

matrix from the gimbal frame to the camera frame is given by

Rcg =


0 1 0

0 0 1

1 0 0

 (10)

The rotation matrix from the body frame to the gimbal frame is given by

Rgb =


cosαel cosαaz cosαel sinαaz − sinαel

− sinαaz cosαaz 0

− sinαel cosαaz sinαel sinαaz cosαel

 (11)

where αaz and αel are the azimuth and elevation angles of the gimbal in regard to the UAV’s

body frame. The last one is the rotation matrix from Inertial frame to the body frame is given

by

Rbi =


cθcψ cθsψ −sθ

sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ

cφsθcψ + sφsψ cφsθsψ − sφcψ cφsθ

 (12)
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where cφ ≡ cosφ and sφ ≡ sinφ. The φ, θ, and ψ are roll, pitch, and yaw angles of the UAV.

The geometry of the camera frame is shown in Figure 2, where f and P are the focal length and

scalar which converts pixel to units of Inertial frame. The position of the target in the camera

frame is indicated by lc. The projection of the target relative to the image plane is expressed in

epsilon. The pixel position (0, 0) corresponds to the center of the image, which is assumed to be

aligned with the optical axis. The distance to the target is L. ε and f is in pixels. l is in units

of Inertial frame. For simplicity, the image of the camera is assumed to be square. Therefore, if

it is assumed that the width of the size of the image is M in pixels and the FOV of the camera

is known as v, the focal length is calculated as follows:

f =
M

2 tan(v2 )
(13)

The relative position vector between the target and UAV is expressed as l, and the position

of the target in the camera frame can be expressed as follows.

lc =


lcx

lcy

lcz

 = RcgR
g
bR

b
i l (14)

The coordinates of the pixel (εx, εy) and the size εs of the target in the image plane can be

represented as

εx = f
lcx
lcz

εy = f
lcy
lcz

εs = f
S

lcz

(15)

where S is the size of the target in the camera frame. Then, the unit direction vector ľc in

the camera frame can be expressed as follows

ľc =
lc

L
=

1√
ε2x + ε2y + f2


εx

εy

f

 (16)

Here, L represents the distance between the target and the UAV in the inertial frame. Fi-

nally, using this relation and the rotation matrix, the azimuth and elevation between UAV and

8



Figure 2: The geometry of camera frame.

target, which are measurements used in the Extended Kalman filter, can be obtained. These

measurements can be obtained through the following equation.

ľi = (Rbi )
−1(Rgb )

−1(Rcg)
−1 ľc =


ľiN

ľiE

ľiD

 (17)

(
β

φ

)
=


tan−1(

liE
liN

)

tan−1(
liD√

(liN )2+(liE)
2
)

 (18)

where β and φ are azimuth and elevation, respectively. ľi is the unit vector in the Inertial

frame. This equation is used as the measurement equation in EKF.

Second part of sensor model is gimbal dynamics. In this paper, we used pan-tilt gimbal and

the equation of the gimbal motion is gien by

α̇az = uaz (19)

α̇el = uel (20)

where uaz and uel denote the control inputs for azimuth and elevation angles, respectively.

To align the optical axis of the camera with the desired relative position vector lid, we use the

desired body-frame unit vector l̂id as shown below

l̇id = pit − piu (21)
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l̂id = pit − piu (22)

Next, select the commanded gimbal angles αcaz and αcel by using the below relation

ľbd =


ľbxd

ľbyd

ľbzd

 = Rbg(α
c
az, α

c
el)R

g
c


0

0

1

 (23)

The Equation 23 means to rotate the focal axis from the camera frame to the body frame

using the commanded gimbal angle. Solving for αcaz and αcel gives the desired azimuth and

elevation angles as

α̇caz = tan−1

(
ľbyd

ľbxd

)
(24)

α̇cel = sin−1(ľbzd) (25)

Finally, the gimbal servo commands u can be selected as

uaz = kaz(α
c
az − αaz) (26)

uel = kel(α
c
el − αel) (27)

where kaz and kel are positive control gains.

Communication Model

To describe realistic communication links, this work uses the packet erasure channel model. The

packet erasure channel model is a model that assumes that all packets are dropped when the

signal-to-noise-ratio(SNR) Γ is less than a predefined threshold, and packets can be delivered

only when the SNR Γ is above a predefined threshold. The SNR Γij between UAV i and j is

given by

Γij =
PiGij
Nj

(28)

where Pi > 0 is the power provided to the antenna of communication module mounted in

UAV i; Nj > 0 is the average power noise of a receiver, and Gij is the channel gain. Gij can be

described by using the Rayleigh model.

Gij =
Cij |hij |2

dαij
(29)
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where Cij is a parameter that determines the effect of antenna gain and shading. hij means the

multi-path fading. dij is the distance between UAV i and j . α is the propagation loss factor.

If the threshold of SNR is defined as γ, the successful communication probability between two

UAVs is given by

P ijr (Γij ≥ γ) = e
−
Njγd

α
ij

CijPi (30)

Equation 30 describes a realistic communication model. As explained above, when Γ < γ,

packets between two UAVs are considered to be disconnected due to the dropping of each other.

Contrariwise, when Γ ≤ γ, the packet is considered to be transmitted according to Equation 30.

If a packet has been transmitted, UAVs i and j are said to be connected to each other. Figure

3 shows the relationship between distance and probability Pij .

Given some multihop path, the probability of successful transmission, Pr(pathk), is obtained

by assuming that each communication between UAV or ground station has an independent

probability distribution, resulting in the following equation:

Pr(pathk) =
∏

(i,j)∈pathk

P ijr (31)

Figure 3: The relation between a successful transmission and distance according to Equation 30

In this paper, the communication routing algorithm selects the communication path with

the most elevated probability of successful communication(Pr(pathk)) between UAVs and the

fixed ground station, path∗0,k. This is formulated with the following equation. This optimization

11



problem can be solved by Dijkstra algorithm.

path∗0,k = argmax

 ∏
(i,j)∈pathk

P ijr

 (32)

Equation 32 can be rewritten as

path∗0,k = argmin

 ∑
(i,j)∈pathk

−lnP ijr

 (33)

where k represents the order of each UAV. In Equation 33, −lnP ijr means each edge’s weight,

so this problem represents the shortest-path problem.

Figure 4: Example of communication path which maximizes the transmission probability be-

tween the UAVs and the ground station.

The example of the simulation result of Equation 33 is shown in Figure 4. The blue line

represents every path between each UAV, and the red line represents the path that maximizes

the transmission probability. The number under each UAV shows the transmission probability

between the UAV and the ground station. This probability is used for planning purposes in the

algorithms that will be introduced in Chapter 4.
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III Target States Estimation

In order to generate the unmanned aerial vehicle’s roll and gimbal commands, an algorithm is

needed to estimate the state of the target. However, it is not easy to estimate the state of the

target using bearing-only measurement. If the process contains nonlinearity and the parameter

changes over time or there is a bias, the filtering algorithm may diverge.

Common algorithms used for target state estimation include KF, EKF, and particle filtering.

In this chapter, the overall filtering algorithm will be briefly described, and the filtering algorithm

used in this paper, Extended Kalman Filter, will be described in more detail. Finally, we will

present the criteria for judging the estimated performance using the Fisher Information Matrix

and explain how to use it for guidance.

3.1 Review of Estimation Algorithm

This chapter briefly describes some of the commonly used estimation algorithms. The algorithms

considered are least squares estimation, Extended Kalman filter, and Particle filter. Kalman

filter is considered for optimal estimation when dealing with LTI systems. When the system

is nonlinear, Extended Kalman filter is used instead of the traditional KF. However, unlike a

linear Kalman filter, if the state’s initial estimation is incorrect or the process is misdesigned, the

filter may diverge due to the nonlinearity of the system. Despite these weakness, the Extended

Kalman filter is widely used because it can produce an appropriate estimation result.

Particle filter is more suitable for dealing with nonlinear systems, including non-Gaussian

noise. The particle filter can be used instead of EKF, and optimal estimation can be made to

increase the number of particles. However, as the number of particles increases, the computation

time increases, and if the number of particles is too small, there may be problems in estimation.

The following section describes the KF, EKF, and PF algorithms.

Least Squares Estimation

The least squares estimation algorithm operates to minimize the estimation error’s square error

for all parameters that need to be estimated. There are several types of the algorithm in LS,

such as the traditional Batch least squares, Recursive least squares, and Extended least squares.

The BLS algorithm is a widely used algorithm for states estimation. The main drawback of

this algorithm is that it recalculates the ultimate estimate considering every prior data. This

means that as the number of data increases, the computational complexity increases. The RLS

algorithm improves this problem and shows more improved performance than the BLS algorithm

using only the data in the current step at each time-step. However, since both algorithms do

not work well in time-varying systems, ELS algorithms solve this problem.
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Kalman Filter

Kalman filter is a recursive filter that estimates the state of a linear dynamics system based

on measurements including noise, developed by Rudolf Kalman. Kalman filter is used in sev-

eral fields, including computer vision, robotics, and radar. Kalman filter estimates the joint

distribution of the current state variables based on current measurements.

The algorithm consists of two steps: prediction and update. In the prediction step, the

value and accuracy of the current state variable are predicted. After the current state variable

is measured, the current state variable is updated in the update step by reflecting the differ-

ence between the predicted measurement and the actual measurement based on the previously

estimated state variable.

The traditional Kalman filter proposed by Rudolph Kalman can estimate the optimal state of

a linear dynamics system. However, most practical systems have nonlinearity and may produce

poor results in some systems. An Extended Kalman filter is developed to deal with this nonlinear

system. However, unlike traditional KF, EKF is not an optimal estimation. If the initial

estimation is incorrect or the process is misdesigned, it can be quickly diverged due to the

nonlinearity of the system. Despite these drawbacks, EKF can perform well in many applications.

However, if the system is highly nonlinear, many errors may occur in the linearization process

of the nonlinear system, and the EKF may exhibit poor performance.

To solve this problem, Unscented Kalman filter (UKF), which can minimize linearization

error by using a nonlinear equation as it is without a linearization process, is developed. To

use the nonlinear equation as it is, Unscented Kalman filter uses an unscented transformation.

The unscented transformation is a transformation that approximates the mean and variance

of the posterior probability distribution by applying samples obtained through the mean and

variance extraction of the prior probability distribution function to the transformation equation

of the nonlinear probability distribution function. These samples are called sigma points, and

the sigma points are selected by a deterministic method, unlike particle filters. Details on the

Extended Kalman filter used in this paper will be described in Section 3.2.

Particle Filter

Kalman filter is an optimal estimation technique only when the probability distribution function

of the system model and observation model is Gaussian, but it cannot be applied when non-

Gaussian. Particle filter is developed for estimation when it is non-Gaussian, and particle filters

are a technique that can be applied even when the probability distribution function does not

follow a normal distribution.

Particle filter has the advantage of reducing linearization errors and not requiring complex

Jacobian calculations such as EKF because there is no process for linearization nonlinear system

functions. However, if the measurement has a singular value, the number of particles for accurate

estimation may increase, and if the operation of extracting particles is not appropriate, it can
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quickly diverge. Also, as the number of particles increases, the computation time may increase.

3.2 EKF for Vision-based Target States Estimation

Kalman filter is the most widely used and popular estimation algorithm and estimates the state

of the LTI system based on measurements, including noise. This algorithm can produce optimal

estimation results for the LTI system and is computationally efficient due to its recursive nature.

Kalman filter assumes the linearity of the system model, but in reality, most of the models have

nonlinearity. In this case, if Kalman filter is approximated and applied as it is, the result is

not good. To solve this problem, an Extended Kalman filter is used. Extended Kalman filter,

instead of the model’s linearity assumption, assume the differentiability of the state transition

function.

xk+1 = Fk+1,kxk + wk, (34)

zk = h(xk) + vk (35)

where F is the state transition matrix of the system from k to k + 1 and h is measurement

model, respectively. Moreover, wk and vk denote the noise which is uncorrelated, Gaussian with

zero-mean process and measurement and covariance Qk and Rk respectively(i.e. wk ∼ N(0, Qk)

and vk N(0, Rk)). Kalman filter algorithm consists of two steps: prediction and update. In

the prediction step, the value and accuracy of the current state variable are predicted. After

the value of the current state variable is actually measured, in the update step, the current

state is updated by reflecting the difference between the predicted measurement and the actual

measurement based on the previously estimated state variable.

The prediction step of Kalman filter is shown below.

Prediction:

x̂k|k−1 = Fk,k−1xk + wk, (36)

ẑk|k−1 = h(x̂k|k−1) (37)

Pk|k−1 = Fk,k−1Pk−1|k−1F
T
k,k−1 +Qk (38)

We perform the update step in the information form of Extended Kalman filter which is is

shown below.

Update:

P−1k|k = P−1k|k−1 +

nu∑
j=1

HT
j,kR

−1Hj,k (39)

ŷk|k = P−1k|k−1x̂k|k−1 +

nu∑
j=1

HT
j,kR

−1(zk − ẑk|k−1 +Hj,kx̂k|k−1) (40)
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x̂k|k = Pk|k−1ŷk|k (41)

where Hj is the measurement Jacobian. By combining the pixel coordinates of the target

obtained using the gimbaled camera and the state information of the UAV, the bearing angle

between the target and the vehicle can be obtained. The measurement model is given by

β = tan−1
pe − te
pn − tn

= tan−1
re
rn

(42)

φ = tan−1
pd − td√

(pn − tn)2 + (pe − te)2
= tan−1

rd√
(rn)2 + (re)2

(43)

where pk = [pn pe pd]
T
k is the position of the UAV, tk = [tn te td]

T
k is the position of the target

and rk = [rn re rd]
T
k is the relative position vector between the UAV and the target. Then, its

Jacobian with respect to the target states is

H =
∂h

∂x
=

 re
r2n+r

2
e

0 rn
r2n+r

2
e

0
rerd

r2(r2n+r
2
e)

0 rnrd
r2(r2n+r

2
e)

0

 (44)

(a) UAV and Target Position - 3D View (b) Fisher Information

Figure 5: Results of EKF about the stationary target

Two cases of target tracking using EKF is considered in this chapter, containing stationary

and constant velocity model. This section shows the results of EKF for these different cases. A

3-D simulation of the target estimation problem is used to test the result of Extended Kalman

filter. The UAV path is selected to be circular above the target and the altitude is constant. The

initial position of the target is initialized to (0,0), the camera FPS is set to 5 and the sensor’s

standard deviation is set to 5 deg. The results of EKF about the stationary target are shown
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Figure 6: Error of stationary target states estimation results.

in Figure 5-6. In Figure 5a, UAV and target paths are shown in 3D view. The red dot and

circular curve represent the UAV’s initial position and trajectory, and the cyan curve represents

the estimated target position. Also, the blue star mark indicates the true position of the target.

In the first case, it is assumed that the target is stationary at [0, 0]. The UAV’s initial position

is P0=[0, 100] and its heading is pointing north.

The UAV is flying on the target in a circular trajectory, and except for the initial error, it

can be seen that the estimated states of the target converge to the actual position [0,0] well.

Figure 5b shows Fisher information about the position in the N and E directions. Through this

graph, by following the circular path and obtaining continuous information about the target,

it can be seen that the information about the position of the target in the N and E directions

is continuously increasing. The results of estimation reflecting this result is shown in Figure

6. Figure 6 shows the estimation error of target states. Here, the red straight line represents

the 3-σ error bound and the blue line represents the error of states. As can be seen from these

graphs, it can be seen that the actual target state is estimated well. The uncertainty increases

or is maintained at regular intervals because the sampling time of EKF is faster than the FPS

of the sensor, so that only prediction is made in the absence of measurement. Also interesting is

that the velocity of the target is estimated even though there is no measurement of the target’s

velocity. This is an advantage of Kalman filter, and it is possible to estimate the velocity

because it is reflected in the estimation using the system model rather than merely using the

previous estimate and measurement. In the case of the error bound of Figure 6, except when the
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initial uncertainty is large, the sinusoidal pattern can be seen. This is because the measurement

Jacobian is a function ofthe position of the UAV and the target, and the UAV is flying in a

circular trajectory.

(a) UAV and Target Position - 3D View (b) Fisher Information

Figure 7: Results of EKF about the moving target

The second case is a simulation for a target moving upwards to the right. The flight path of

the UAV is the same circular trajectory as the first case. Figure 7a shows the trajectory of the

UAV and target. The blue line represents the true trajectory of the target. Other graphs use the

same notation as the graph in the first case. As can be seen from the simulation results, it can

be confirmed that the estimation is comparatively good except when the initial error is large.

However, it can be seen that the estimation error increases compared to the first case, which is a

phenomenon that occurs because the target gradually moves away from the circular trajectory of

the UAV. In fact, as shown in Figure 7b, it can be seen that Fisher information is reduced than

the first case because measurement Jacobian is also a function of the relative distance between

UAV and target. Therefore, as the distance increases, the information obtained about the target

decreases relatively, and the estimation error also increases.
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Figure 8: Error of moving target states estimation results.

3.3 Estimation Quality Metric

In this section, we will describe the scalar metric that can be used for planning. As mentioned in

the previous section, since the measurement Jacobian of EKF is a function of the relative position

between the UAV and the target, the estimation performance depends on the trajectory of the

UAV and the target. Therefore, it is necessary to create an appropriate trajectory to increase

estimation performance. This work aims to create a path and gimbal command that maximize

information about the target while maintaining communication with the ground station. It is

an important issue to select a proper quality metric to achieve the goal.

As stated by the Cramer-Rao lower bound theorem, the error covariance denotes the uncer-

tainty correlated with the estimated states. Therefore, it should be minimized. In this case, the

CRLB provides a lower bound for the uncertainty of a certain estimator. This can be expressed

as follows

Pk|k = E[(x̂k − xk)(x̂k − xk)T ] ≥ Ck = Y −1k
(45)

where xk is the true target states to be estimated, x̂k is the estimated target states, and Pk|k
is the error covariance matrix at time step k. The CRLB is denoted by Ck, and its inverse Yk is

the Fisher information matrix(FIM).
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Since CRLB is formed founded on the physical characteristics of the system or the geometry

related with the estimation, it provides a theoretical lower bound that any estimator can achieve.

Therefore, by minimizing CRLB, the error covariance of the estimator can be minimized. Since

FIM is the inverse of CRLB, this goal can be achieved by maximizing FIM.

FIM can be predicted by using the estimated target states and target motion model. From

EKF, which is introduced in the previous section, we can compute the prediction of FIM through

the following recursive form

Ŷk+l|k+l = (Fk+lŶ
−1
k+l|k+l−1F

T
k+l +Qk)

−1 + Îk+l|k+l (46)

where l is future step to be predicted and Îk+l is the prediction of the information matrix.

The information matrix contains information about the target of all UAVs. Since this study

considers camera LOS interference by buildings and communication with ground stations, the

information matrix can be predicted by reflecting this through the equation as follows:

Îk+l|k+l =

nu∑
j=1

αi,jβ0,jĤ
T
j,k+lR

−1Ĥj,l (47)

Ĥk+l = ∇x̂k+lh(xu,k+l, x̂k+l) (48)

where xu is predicted UAV’s states in future step k + l, α is the binary variable to check

if the target is in the FOV. β is the probability of transmission to the ground station. The

predicted states of target and UAV are computed by using the model introduced in section 2.2.

It can be reflected in the planning process while considering the constraints through Equation

47. For example, if there is no target in the image plane of the camera because it is obscured

by a building, αi,j becomes 0 and the information of the target becomes 0. Also, even if there is

information, if β0,j is too low, it is multiplied like a gain to obtain a small amount of information.

However, since it is difficult to maximize FIM directly, it is requisite to define a scalar

metric based on FIM and then perform optimization using it. One of the popular criterion is

D-optimality criterion, which maximizes the determinant of FIM. The second criterion is A-

optimality criterion. This criterion pursues minimize the trace of the inverse of the information

matrix. The last criterion maximizes the minimum eigenvalue of the information matrix. And

this criterion is called E-optimality.
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IV Path and Gimbal Planning Algorithm Based on Receding

Horizon

In this chapter, an information-theoretic multi-target tracking guidance algorithm that considers

communication between the ground station and UAVs in an urban environment will be described.

This study aims to create a roll command and a gimbal direction command for the UAV that

maximize target information while maintaining communication with ground stations in an urban

environment. To achieve this goal, several processes are run distributedly on each UAV. This

chapter is organized as follows.

First, an overview of the proposed algorithm is shown. The overall operation of the algorithm

and the shape of the objective function will be briefly described. In the second section, the

objective function used in the proposed algorithm is formulated in detail. In the third and

fourth sections, cluster allocation and weight calculation using DBSCAN clustering results will

be described. And in the last section, we will discuss how to consider communication with

ground stations.

4.1 Overview

Figure 9: Overall process of the proposed algorithm.

In this section, a brief description of the receding horizon technique and the overall process

of the algorithm is described. The receding horizon method is one of the methods to control

the system while considering a series of constraints. First, a time to be predicted is set, and

a control action is created by taking into account the future cost and various constraints such

as the dynamics of the UAV during this time and information on the environment. The best

advantage of this technique is that it optimizes using information from the current time step

and considers the future time step. It can continue planning by recursively optimizing while

considering a finite time horizon.
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In this study, based on the information on the UAV and target dynamics and the urban envi-

ronment for a specific time to be predicted, the UAV roll angle and gimbal direction commands

are generated to maximize the information about the target while maintaining communication

with the ground station. The objective function for this is proposed, and the receding horizon

technique is used to maximize this. We will discuss in detail the objective function proposed

in Section 4.2. In addition, the input command is discretized to reduce the computation time,

and the control is repeatedly at each control cycle performed using the first value of the planned

series of inputs. The proposed algorithm using the receding horizon technique is distributed

in each unmanned aerial vehicle, and for this purpose, the state information of each unmanned

aerial vehicle and the measurements of the target are exchanged throug a communication module

between the UAVs. The proposed algorithm follows the process shown in Figure 9. First, each

target is clustered through the DBSCAN algorithm using the current estimated target location.

Second, using the clustering result, the cluster is allocated to each UAV, and the weight of each

cluster is calculated. At this time, the error covariance matrix of the estimation result is used to

give priority to clusters with high uncertainty and based on this, the traveling distance between

the current location of UAV and the cluster’s central location is minimized. Finally, planning

based on the receding horizon method is performed based on other UAVs’ status information

and the planned input. Also, during the estimation process, the measurements are transmitted

from other UAVs and reflected in the estimation, and then this process is recursively performed.

4.2 Objective Function

To achieve the goal of this study, the following objective function is proposed that can reflect

information such as communication with ground stations and urban environment.

J =
m∑
k=1

(w1J1,k + w2J2,k)

w1 + w2 = 1

(49)

J1 is a sensing and communication part, and J2 is a part to approach a target that cannot

be sensed. The variable m represents the time horizon step of the receding horizon method, and

the objective function of each step is summated to consider multi-steps. w1 and w2 represent

the weights reflecting the current uncertainty and determine which objective function to focus

on between J1 and J2. J1 is formulated using Fisher information matrix to reflect sensing and

communication, and J2 allows UAVs to approach targets with high uncertainty as quickly as

possible. The weight is multiplied in front of each term, and it is variable to reflect the current

situation. In general, J2 is not used for path planning using FIM. However, if the measurement

for the target is not obtained during the prediction process of receding horizon planning, that

target will be missed. Therefore, J2 is introduced to solve this problem. By introducing J2, the

UAVs can reach the target and keep track of it before the uncertainty becomes too high. J1 and

J2 are composed as follows.
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J1 = −
nt∏
i=1

P−1k+1|k +

nu∑
j=1

(αi,jβ0,jH
T
ijR
−1Hij))

−1
αi,j : Binary variable to check FOV

β0,j : Probability of successful transmission between ground station

(50)

J2 =
1

Dk

Dk : Distance between UAV and selected target
(51)

In Equation 50, nt and nu represent the number of targets and UAVs, respectively. J1 is

formulated using the trace of the inverse of Fisher information matrix. In order to reflect the

measurement of all UAVs for a certain target, the information matrix of each UAV is calculated

and added together. In addition, αi,j and β0,j multiplied in front of each UAV’s information term

are terms that consider the FOV between the UAV and the target and communication with the

ground station, respectively. For αi,j , it is 0 if the target is outside the sensing range or is not in

the FOV by a building, and 1 otherwise. By using this term, sensing in an urban environment

can be considered. In the β0,j , it represents the probability of successful transmission between

the ground station and the each UAV obtained using the packet erasure channel model and is

multiplied like a weight to reflect communication. The communication successful probability

between the ground station and UAV, β0,j , is calculated is described in detail in Section 2.2.

The second term, J2, is formulated using the relative distance to the target with high un-

certainty within the assigned cluster. In the prediction step of receding horizon, the relative

position is calculated for each step, and the command to minimize the distance to the target

is generated using this. This term does not always work. It works according to w2 which is

calculated according to the current target uncertainty. For example, if the target’s uncertainty

remains below the threshold, w2 is kept at 0, and a command is generated that considers sensing

and communication without J2. In this case, the uncertainty of the target increases, and the

target can be considered by J2. In general, in a study related to path planning using Fisher

information, only J1 is used. However, if the measurement of a target cannot be obtained in the

prediction step of the receding horizon with the only use of J1, a situation in which the target

is missed may occur. J2 is introduced to solve this problem.

4.3 Optimization Strategy

Using the proposed objective function in section 4.2 to plan trajectory and gimbal command of

UAV over the finite time horizon, the solution of the following optimization problem is required.

(u∗1,k+1:k+m,u
∗
2,k+1:k+m) = argmaxJ (52)

where u∗1,k+1:k+m and u∗2,k+1:k+m is the desired roll angle command and gimbal direction

command, respectively, and are series of inputs during the future time that maximizes the

objective function.
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The optimization is performed with receding horizon method over the control frequency.

Future cost is calculated over the finite time horizon step m to relax the computational burden

in each UAV. This time step can be set to fit the hardware specification of the UAV.

This algorithm is done in a distributed fashion. Each UAV independently performs this

algorithm and plans based on the planned path and the acquired information by other UAVs.

Through this algorithm, a series of inputs are generated during finite time steps that improve

communication and sensing performance. And use the first value of this input during the control

frequency.

4.4 DBSCAN Clustering

In this study, DBSCAN algorithm is used for efficient UAV path planning. DBSCAN Cluster-

ing (Density-Based Spatial Clustering of Applications with Noise) is a density-based clustering

algorithm that performs clustering based on the density of a given data set. In this work, the

data to be considered is position information of randomly moving targets. Therefore, the shape

of the cluster depends on the path of the target and the number of clusters is also variable, so

the density-based DBSCAN algorithm is more suitable than the K-means clustering algorithm.

(a) Original Data (b) Results of DBSCAN cluster-
ing

(c) Result of K-means clustering

Figure 10: Comparison of results between DBSCAN and k-means clustering

The advantage of this algorithm is that, unlike K-means clustering, this algorithm does

not need to specify the number of clusters and automatically finds the number of clusters.

In addition, since noisy data can be classified while performing clustering, the degradation of

clustering performance due to outliers can be mitigated. In addition, clustering is performed

based on density, so we can find clusters that have no shape. On the downside, it has quadratic

time complexity, unlike K-means clustering, which has linear time complexity in the number of

data. In addition, the clustering result varies according to the order in which data is input and

the distance measurement method used by the algorithm. Finally, if the characteristics of the

data are not known, it is difficult to set an appropriate hyper-parameter of the algorithm.

In this study, the location of the target is used as data, and the target moving along the road
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is assumed, so if the distance between the data is less than one block of the city, the target is set

to belong to the same cluster. In addition, since the number of targets is small, the calculation

time is not large even when the DBSCAN algorithm is used.

The objective function proposed in Section 4.2 creates a path to the target when the uncer-

tainty of a target becomes too large. In this case, if a target with high uncertainty is gathered on

one side, an inefficient path is formed because all UAVs move to the target. In order to alleviate

this phenomenon, DBSCAN algorithm is introduced and using this clustering result, each UAV

is allocated and w2 is calculated.

4.5 Cluster Allocation and w2 Calculation

This section describes a method of allocating a cluster to each unmanned aerial vehicle and

calculating w2 based on the clustering result. First, in order to designate the priority of the

cluster, the uncertainty of the cluster is obtained by using the error covariance matrix of targets

belonging to each cluster. The covariance matrix of each target can be obtained using Extended

Kalman filter introduced in Section 3 and quantified using determinant, one of the scalar metrics

of this value. After sum all of the scalar metrics of each target, priorities are determined based

on the result. The higher priority of the cluster, the more likely it is that UAVs will be allocated.

Finally, each UAV is allocated in order of priority and is allocated to each UAV in a combination

that satisfies the minimum traveling distance between the centers of the cluster. At this time,

because the DBSCAN clustering algorithm returns only the cluster and the targets included

in the cluster, the center of the cluster is calculated using the average of the target positions.

The pseudo-code of the allocation algorithm is shown in Algorithm 1 and Algorithm 2. This is

similar to [29].

Algorithm 1 shows the overall algorithm process, and Algorithm 2 shows each function of

Algorithm 1. First, calculate Info and w2 of each cluster in lines 1 2 of Algorithm 1. Nc and

Nu are the number of clusters and UAVs, respectively, and Pi,j represents the covariance matrix

of the target i belonging to the j-th cluster. Calcul_Information uses the covariance matrix of

each target as input and returns Info. Info represents the amount of information in each cluster.

And Calcul_Weight2 function uses Info as input and calculates w2 through Equation 53. In

order to distribute the load when several UAVs are allocated to the cluster, the summation of

the determinant of an error covariance matrix is divided by the number of UAVs in each cluster,

N c
n.

The form of this function is like a sigmoid. The variable ’a’ is a design parameter that

determines the sensitivity of uncertainty change. Depending on this value, it is possible to set

whether w2 changes rapidly or gradually. Since the input of this function is a determinant of

an error covariance matrix, the weight is changed depending on the uncertainty. The lower and

upper limits of the function is specified as 0 and 0.9, respectively. In addition, the uncertainty

and w2 of each cluster are calculated through Equation 53 and reflected in the planning. If the

overall target uncertainty is low, w2 is maintained at 0, and the planning proceeds by J1. On
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Algorithm 1 Cluster Allocation Algorithm.
Calcul_Info_Weight2

if Nc ≥ Nu

NoC_Greater_NoU

else

NoC_Less_NoU

res = Nu −Nc

if res == 1

Assign the cluster with higher uncertainty to UAV.

else

while Every UAV have not been assigned

if Nc > res

NoC_Greater_NoU

else

NoC_Less_NoU

end

end

end

end

Algorithm 2 Each function for Algorithm 1
function Calcul_Info_Weight2(Pi,j)

for i = 1 : Nc

Info(i) = 0;

for j = 1 : N c
t

Info(i)=Info(i)+det(Pi,j)

end

Calculate w2 through Equation 53

end

return Info, w2

end

function NoC_Greater_NoU(pc, pnau , Nna
u , Info)

Select the top Nna
u clusters with larger uncertaisnty

v = permutations(Center of clusters)

for i = 1 :size(v)

Average of traveling distance of the UAVs to the center of clusters

end
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Select a permutation that satisfies the minimum traveling distance

return Assigned cluster for UAVs

end

function NoC_Less_NoU(pc, pnau , Nna
u , Info)

v = permutations(Nna
u , Nc)

for i = 1 :size(v)

Average of traveling distance of the UAVs to the center of clusters

end

Select a permutation that satisfies the minimum traveling distance

return Assigned cluster for UAVs

end

the contrary, if the uncertainty of the target is high, w2 will gradually increase depending on

uncertainty, and planning is dominant by J2. At this time, since the upper limit is 0.9, sensing

and communication are also being considered by J1 with other weight. Based on this, the path

is selected by J2, and the gimbal direction command is selected by J1. Since the calculation

of w2 is performed before the receding horizon based planning begins, it is always possible to

calculate the weight that reflects the current situation. Therefore, using this method, even if

information about a specific target is not obtained in the prediction step, targets with too high

uncertainty can also be considered.

w2 =
0.9

1 + ea(Info/Nc
u))

(53)

Figure 11: w2 calculation function. The upper bound is limited to 0.9 for gimbal planning.
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Lines 4 to 20 show the process of allocating each UAV to each cluster. The algorithm

proceeds until all UAVs are assigned to a cluster. When Nc is greater than or equal to Nu,

NoC_Greater_NoU function is used, and NoC_Less_NoU is used otherwise. The inputs of

the two functions are the center coordinates of the cluster (pc), the locations of unallocated

UAVs (pnau ), the number of unallocated UAVs (Nna
u ), and the amount of information in each

cluster(Info). Basically, both functions select the combination that minimizes the traveling

distance. However, there are some differences in the way the possible allocation combinations

are calculated. The former function finds a combination that selects as many clusters as the

number of unallocated UAVs. The latter function finds a combination that selects unallocated

UAVs as many as the number of clusters.
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V Numerical Simulation

Numerical simulations of various cases are performed to evaluate the proposed algorithm. First,

we will show the results with and without β and J2 in various environments in order to check

the role of each part of the objective function.

Two main scenarios are considered in this chapter. The first scenario will show the simulation

results of the generally widely used FIM-based planning scheme and its problems. Moreover, we

tested the features of J2 that we introduced to solve this problem. Second, it shows the result

according to the presence or absence of β, which is introduced to consider communication.

Figure 12: Example of simulation environments.

The overall simulation environment is as follows. First, in the case of the UAV, a fixed-wing

UAV equipped with a gimbaled camera is used. The camera’s sensing range is 200 meters, and

each UAV maintains a constant velocity and altitude. In addition, to prevent a collision, it

is assumed that each UAV has a different altitude and flies above the maximum height of the

building. Also, it is assumed that the target moves at a constant velocity on the road, and the

velocity of each target is randomly distributed between 2 and 5 m/s. In addition, it is assumed

that the initial position of the target is known and that uncertainty is large enough. In the case

of an urban environment, a square map of 500m width with 25 buildings is used, and the height

of each building has a random value between 10 and 70m. The standard deviation of system

noise and measurement noise is set to 2.5m/s2 and 5 deg. Finally, since the target search is not

considered in this paper, it is assumed that the number and the initial position of the target are

known and its uncertainty is high.
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5.1 Scenario I : Effect of J2

In this section, the simulation result with and without J1 in the proposed algorithm is shown.

This result is divided into three cases. The first and second cases consider a single UAV and a

single stationary target. These cases compare the results of introducing J2 in a special situation

where target tracking is not possible when only J1 is used. In the third case, the number of

UAVs and targets is 2 and 3, respectively, and the urban environment is considered. Also, in

this section, it is assumed that a flawless communication module is mounted on the UAV in

order to analyze the problem when only J1 is used from the point of view of sensing.

Figure 13: Target visibility area and trajectory of UAV without J2

Figure 13 shows the simulation results of the first case. In Figure 13, the red curves and

points represent the UAV’s trajectory and initial position. Also, the cyan point represents the

target’s location, and the green circle represents the visibility area of the target. So, if the UAV

is in this green circle and a building does not obstruct the camera’s line-of-sight, UAV can get

information about the target from the camera.

As can be seen from the simulation results, the circular trajectory is generated in this sit-

uation. In this situation, UAV always chooses the first input because no matter what input is

used in the receding horizon method’s prediction process, information about the target cannot

be obtained. Also, since information about the target cannot be obtained, the uncertainty of

estimates continues to increase. This is a problem that occurs when using only FIM.

The second case shows the role of J2 introduced to solve this problem. Simulation is per-

formed under the same conditions as the environment shown in the first case, and the results

are shown in Figure 14.

Figures 14a and 14b show the UAV path and urban environment in 3D and top view. Unlike

the result of the first case, by introducing J2, it is confirmed that the UAV tracks the target
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(a) Trajectory - 3D View (b) Trajectory - Top View

Figure 14: UAV trajectory with J1 + J2

even in situations where uncertainty continues to increase because it is outside the sensing range

or is obstructed by a building. Figure 15 shows the w2. As shown in the graph, since the UAV

enters the green circle area from 18 seconds and acquires the measurement of the target, it can

be seen that the uncertainty is rapidly decreased. As a result, w2 rapidly converges to 0, and a

path for obtaining more information is created using only J1 within the green circle area where

the information of the target can be obtained.

Figure 15: w2 graph with J1 + J2

The third case shows the results of numerical simulation in 70 different environments to

confirm the advantages of the proposed algorithm. The situation in which two UAVs track three

targets in an urban environment is considered, and the mission success rate is compared for

each camera sensing range. The initial location of the target is randomly selected from one of

36 intersections, and each UAV is initialized at a random location near the target. It is also
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Parameter Value Parameter Value

NUAV 2 Building Heights 10∼70 (m)

NTarget 3 Sensing Range 150∼300 (m)

VUAV 15 (m/s) Control Freq 2 (sec)

VTarget 2 (m/s) Camera FPS 0.1 (sec)

NBuilding 25 Camera FOV 50 (deg)

Table 1: Parameter List

assumed that the initial position of the target is known. The main parameters used in the

simulation are summarized in Table 1.

Figure 16: Comparison of success rate

Figure 16 shows the success rate of the target tracking mission according to the sensing

range in the 70 numerical simulations. If the maximum value of uncertainty exceeded 500

meters, which is the width of the city map, it was judged as a failure. The red line is the result

of using the objective function J1 formulated by using FIM, and the blue line is the result of

J1 + J2(Proposed).

As shown in Figure 16, it can be seen that the success rate is much higher when the proposed

objective function is used than when only J1 is used. Since the location of the target is entirely

randomly distributed, in the case of the objective function using only FIM, it can be seen that

the shorter sensing range, the drastically lower the success rate. However, in the case of using

the proposed algorithm, since a path to the target’s estimated position with high uncertainty is

generated when the uncertainty is greater than the threshold, it is confirmed that the success

rate increases even in such challenging environments.
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5.2 Scenario II : Communication

This section will show the difference between the presence and absence of the parameter β

considering the communication between the fixed ground station. This section is divided into

three parts. First, the results when communication is considered or not considered for two UAVs

and a single target in an urban environment are compared in case 1 and 2. Second, to evaluate

the performance of the algorithm proposed in Chapter 4, the results of 70 numerical simulations

will be shown. In this simulation, 5 UAVs were used to maintain communication with the ground

station far from the city while tracking 9 targets distributed throughout the map.

(a) Trajectory - 3D View (b) Trajectory - Top View

Figure 17: Trajectory without considering Comm.

(a) Exchanged packets between the ground station (b) Trace of Fisher information at the ground station

Figure 18: MATLAB simulation results without considering Comm.
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In this section, the simulation results will be shown when communication with ground sta-

tions is not considered. The initial positions of UAVs are [250, 0] and [490, 0], respectively, and

the initial positions of the target are [490, 0]. The target is moving to the right at a constant

velocity of 2.5m/s. The ground station is also located at [-275, 250] to consider the target far

from the ground station. It is also assumed that the location of the initial target is known, and

the uncertainty is high.

Figure 17 and 18 show the simulation results. Figure 17 shows that the red, green, and

cyan lines represent UAVs’ trajectories and targets, respectively. Also, the blue triangle means

the location of the ground station. Also, it shows that the trajectory of every UAV is formed

around the target because communication with the ground station is not considered. Initially,

since the uncertainty of the target’s estimates is high, a trajectory is created to get as close

to the target as possible. When the uncertainty is lowered by sensing the target, a trajectory

to obtain the maximum information is created by J1. Figure 18a shows the packets exchanged

between the ground station and each UAV. The value 1 means that packets are exchanged, and

0 means that packets are not exchanged. Figure 18b appears the cumulated sum of trace of the

Fisher information over every time step. In this case, it can be confirmed that communication

is not possible because the distance to the ground station is far(See Figure 18a). Therefore,

since the information about the target is not transmitted to the ground station, it can be seen

that the Fisher information does not increase. Therefore, it can be seen that Fisher information

continues to accumulate. At this time, we can see that Fisher information increases rapidly at

an instant because the information increases rapidly when the UAV is directly above the target.

(a) UAV and target trajectory - 3D View (b) Trajectory - Top View

Figure 19: UAV and target trajectory with communication

Next case shows the simulation results when communication is considered in the same en-

vironment as Case 1 (See Figures 19 and 20). Figures 19a and 19b show the trajectory of each

UAV. It can be seen as different from Case 1 because UAV 2 goes down and creates a trajectory
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Figure 20: Trace of Fisher information at the ground station

acting as a relay by considering communication with the ground station using β. Therefore, it

is possible to track the target while maintaining communication between UAVs and the ground

station. Figures 20 shows the cumulated sum of trace of the Fisher information of the ground

station over every time step. Unlike Case 1, since communication with the ground station is

maintained continuously, the ground station can receive information about the target.

The third case performs MATLAB numerical simulation in 70 different environments to verify

that the goal of this paper which is "find the UAVs’ path and gimbal command to track the

multiple targets in urban environments with maintaining communication to the ground station".

Basically, a scenario is tracking nine targets in an urban environment using five UAVs. Also, to

check whether communication with the ground station is appropriately considered, the target

is initialized at a location far from the ground station. Again, it is assumed that the initial

location of the target is known and the uncertainty is high.

This case is divided into two parts. First, in order to confirm the process of the proposed

algorithm, one of the 70 simulations will be divided by a major timeline and explained. And

secondly, we will analyze the performance of the proposed algorithm through the results of 70

simulations.

Figure 21-23 show the process of one of the 70 simulation results. The situation at 0, 12,

and 30 seconds and the generated path will be discussed. Each figure consists of two parts.

The figure on the left shows the current location of UAVs and targets. Cyan triangles represent

UAV, and dots of various colors represent the targets. Each color means the cluster in which

the target is contained. A blue triangle indicates the ground station, and its location is fixed

outside the city. The figure on the right shows the estimation of UAV 1. Like the picture on the

left, UAVs are represented by cyan triangles. In the case of targets, the blue circle represents

the true position of the target, and the green circle represents the estimated target position.
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Figure 21: Simulation process at 0 sec

Also, the red ellipse around the estimated target position indicates the uncertainty of the tar-

get. As explained above, it was assumed that the initial position of the targets is known, and

the uncertainty of estimate is high. Figure 21 shows the initial states of the simulation. Since

the uncertainty of targets is high, the path to get as close to the target as possible is formed by J2

Figure 22: Simulation process at 12 sec

If the UAV follows the generated input for about 10 seconds, it can be seen that the overall

target’s uncertainty decreases, as shown in Figure 21. Thus, a trajectory that considers both

communication and sensing is formed. At this time, UAV 2 in the red circle is going down in
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the direction of the arrow to act as a communication relay.

Figure 23: Simulation process at 30 sec

Figure 21 shows the simulation result at 30 seconds. As illustrated in Figure 20, a trajectory

for UAV 2 to approach and fly around the ground station is established. It can also be seen that

the uncertainty about the target continues to remain low. In this way, it is confirmed that UAV

2 continuously acts as a relay or, depending on the situation, another UAV also acts as a relay

while maintaining communication with the ground station and tracking targets continuously.

Figure 24: Average communication probability between the ground station and each UAVs

Finally, the results of 70 simulations are shown. Figure 24 shows the average probability of

successful communication from each UAV to the ground station. The red line and blue line are

the results of considering and not considering communication, respectively. If communication is
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Figure 25: Trace of Fisher information at the ground station

not considered, the UAV’s trajectory is dependent on the target’s path, so on average, it has a

communication success rate of 55% and a standard deviation of about 15%. However, if commu-

nication with the ground station is considered through the proposed algorithm, communication

with the ground station is maintained by UAV acting as a communication relay, as shown in

Figures 21-23. This can also be seen in Figure 24. As shown in Figure 24, it can be seen that

there is an average performance improvement of about 30% in the red graph compared to the

blue graph and the standard deviation is also greatly reduced.

As the overall communication performance improved, the estimation result at the ground

station also improved. This can be seen in Figure 25. This figure shows the results of one of

70 simulations. Since the simulation was conducted in 70 random environments, the amount of

information that can be theoretically obtained is different for each environment. Therefore, in

this paper, one of the simulation results is shown as an example, and it is confirmed that Fisher

information tends to be higher when communication is considered in other environments. The

red and blue lines represent the cumulated sum of trace of Fisher information of every target

when communication is considered and not considered, respectively. Here, traces of Fisher

information for each target are obtained and compared using the summation of the trace. When

communication is not considered, total Fisher information is low because there are many packet

lost during communication with the ground station.
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VI Conclusion and Future work

This paper proposes a cooperative multi target tracking algorithm that uses multiple UAVs

while considering communication with ground stations in an urban environment. The proposed

algorithm generates not only the trajectory of UAV but also the gimbal direction command. In

addition, this method solved the problem of the previous work, planning the input when there

is no predicted information in the prediction process of the receding horizon.

Numerical simulation through MATLAB environment is carried out in various initial condi-

tions to verify the performance of the proposed algorithm. As a result, the mission success rate

was improved by 30∼40%, and the average successful transmission probability and the standard

deviation is improved by 30% and 10%, respectively, compared to the previous work.

Future work is to test a broad map or more agile targets. Also, since the target motion model

is too simple, there was a problem that the estimation error is increased in the intersection. To

solve this, a constrained Kalman filter or IMM will be applied. In addition, to secure real-time

performance, research is also needed to reduce computation time through model simplification

used inside the receding horizon controller. Finally, after solving these problems, we will also

proceed with flight tests.
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