57,414 research outputs found

    Coordinated Local Metric Learning

    Get PDF
    International audienceMahalanobis metric learning amounts to learning a linear data projection, after which the L2 metric is used to compute distances. To allow more flexible metrics, not restricted to linear projections, local metric learning techniques have been developed. Most of these methods partition the data space using clustering, and for each cluster a separate metric is learned. Using local metrics, however, it is not clear how to measure distances between data points assigned to different clusters. In this paper we propose to embed the local metrics in a global low-dimensional representation, in which the L2 metric can be used. With each cluster we associate a linear mapping that projects the data to the global representation. This global representation directly allows computing distances between points regardless to which local cluster they belong. Moreover, it also enables data visualization in a single view, and the use of L2 based efficient retrieval methods. Experiments on the Labeled Faces in the Wild dataset show that our approach improves over previous global and local metric learning approaches

    Local structure order parameters and site fingerprints for quantification of coordination environment and crystal structure similarity

    Get PDF
    Structure characterization and classification is frequently based on local environment information of all or selected atomic sites in the crystal structure. Therefore, reliable and robust procedures to find coordinated neighbors and to evaluate the resulting coordination pattern (e.g., tetrahedral, square planar) are critically important for both traditional and machine learning approaches that aim to exploit site or structure information for predicting materials properties. Here, we introduce new local structure order parameters (LoStOPs) that are specifically designed to rapidly detect highly symmetric local coordination environments (e.g., Platonic solids such as a tetrahedron or an octahedron) as well as less symmetric ones (e.g., Johnson solids such as a square pyramid). Furthermore, we introduce a Monte Carlo optimization approach to ensure that the different LoStOPs are comparable with each other. We then apply the new local environment descriptors to define site and structure fingerprints and to measure similarity between 61 known coordination environments and 40 commonly studied crystal structures, respectively. After extensive testing and optimization, we determine the most accurate structure similarity assessment procedure to compute all 2.45 billion structure similarities between each pair of the ≈70000 materials that are currently present in the Materials Project database

    A Cooperative Emergency Navigation Framework using Mobile Cloud Computing

    Full text link
    The use of wireless sensor networks (WSNs) for emergency navigation systems suffer disadvantages such as limited computing capacity, restricted battery power and high likelihood of malfunction due to the harsh physical environment. By making use of the powerful sensing ability of smart phones, this paper presents a cloud-enabled emergency navigation framework to guide evacuees in a coordinated manner and improve the reliability and resilience in both communication and localization. By using social potential fields (SPF), evacuees form clusters during an evacuation process and are directed to egresses with the aid of a Cognitive Packet Networks (CPN) based algorithm. Rather than just rely on the conventional telecommunications infrastructures, we suggest an Ad hoc Cognitive Packet Network (AHCPN) based protocol to prolong the life time of smart phones, that adaptively searches optimal communication routes between portable devices and the egress node that provides access to a cloud server with respect to the remaining battery power of smart phones and the time latency.Comment: This document contains 8 pages and 3 figures and has been accepted by ISCIS 2014 (29th International Symposium on Computer and Information Sciences

    From chunks to function-argument structure : a similarity-based approach

    Get PDF
    Chunk parsing has focused on the recognition of partial constituent structures at the level of individual chunks. Little attention has been paid to the question of how such partial analyses can be combined into larger structures for complete utterances. Such larger structures are not only desirable for a deeper syntactic analysis. They also constitute a necessary prerequisite for assigning function-argument structure. The present paper offers a similaritybased algorithm for assigning functional labels such as subject, object, head, complement, etc. to complete syntactic structures on the basis of prechunked input. The evaluation of the algorithm has concentrated on measuring the quality of functional labels. It was performed on a German and an English treebank using two different annotation schemes at the level of function argument structure. The results of 89.73% correct functional labels for German and 90.40%for English validate the general approach

    Multiparty Dynamics and Failure Modes for Machine Learning and Artificial Intelligence

    Full text link
    An important challenge for safety in machine learning and artificial intelligence systems is a~set of related failures involving specification gaming, reward hacking, fragility to distributional shifts, and Goodhart's or Campbell's law. This paper presents additional failure modes for interactions within multi-agent systems that are closely related. These multi-agent failure modes are more complex, more problematic, and less well understood than the single-agent case, and are also already occurring, largely unnoticed. After motivating the discussion with examples from poker-playing artificial intelligence (AI), the paper explains why these failure modes are in some senses unavoidable. Following this, the paper categorizes failure modes, provides definitions, and cites examples for each of the modes: accidental steering, coordination failures, adversarial misalignment, input spoofing and filtering, and goal co-option or direct hacking. The paper then discusses how extant literature on multi-agent AI fails to address these failure modes, and identifies work which may be useful for the mitigation of these failure modes.Comment: 12 Pages, This version re-submitted to Big Data and Cognitive Computing, Special Issue "Artificial Superintelligence: Coordination & Strategy

    Nonhuman primates as models of hemispheric specialization

    Get PDF
    The present chapter concerns the issue of hemispheric specialization for perceptual and cognitive processes. In spite of a long-lasting view that only humans are lateralized (e.g., Warren, 1980), there is now strong documentation for anatomical lateralizations, functional lateralizations, or both in several animal taxa, including birds, rodents, and nonhuman primates (see Bradshaw & Rogers, 1993; Hellige, 1993). We selectively report demonstrations from studies of nonhuman primates. After a short review of the evidence for structural (anatomical) lateralization, we describe..
    corecore