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Abstract

Classification is a fundamental problem in the field of statistical machine learning.

In classification, issues of nonlinear separability and multimodality are frequently

encountered even in relatively small data sets. Distance-based classifiers, such as

the nearest neighbour (NN) classifier which classifies a new instance by computing

distances between this instance and the training instances, have been found useful

to deal with nonlinear separability and multimodality. However, the performance of

distance-based classifiers heavily depends on the underlying distance metric, so it

is valuable to study metric learning, which enables the algorithms to automatically

learn a suitable metric from available data.

In this thesis, I discuss the topic of metric learning with Lipschitz continuous

functions. The classifiers are restricted to have certain Lipschitz continuous proper-

ties, so that the performance guarantee of classifiers, which could be described by

probably approximately correct (PAC) learning bounds, would be obtained.

In Chapter 2, I propose a framework in which the metric would be learned

with the criterion of large margin ratio. Both inter-class margin and intra-class

dispersion are considered in the criterion, so as to enhance the generalisation ability

of classifiers. Some well-known metric learning algorithms can be shown as special

cases of the proposed framework.

In Chapter 3, I suggest that multiple local metrics would be learned to deal

with multimodality problems. I define an intuitive distance with local metrics and

influential regions, and subsequently propose a novel local metric learning method

for distance-based classification. The key intuition is to partition the metric space

into influential regions and a background region, and then regulate the effectiveness
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of each local metric to be within the related influential regions.

In Chapter 4, metric learning with instance extraction (MLIE) is discussed.

A big drawback of the NN classifier is that it needs to store all training instances,

hence it suffers from problems of storage and computation. Therefore, I propose

an algorithm to extract a small number of useful instances, which would reduce the

costs of storage as well as the computation costs during the test stage. Furthermore,

the proposed instance extraction method could be understood as an elegant way to

do local linear classification, i.e. simultaneously learn the positions of local areas

and the linear classifiers inside the local areas.

In Chapter 5, based on an algorithm-dependent PAC bound, another algorithm

of MLIE is proposed. Besides the Lipschitz continuous requirement with respect to

the parameter, the Lipschitz continuous requirement with respect to the gradient of

parameter will also be considered. Therefore, smooth classifiers and smooth loss

functions are proposed in this chapter.

The classifiers proposed in Chapter 2 and Chapter 3 have bounded values of

lip(h← x) with a PAC bound, where lip(h← x) denotes the Lipschitz constant of

the function with respect to the input spaceX . The classifiers proposed in Chapter 4

enjoys the bounded value of lip(h ← θ) with a tighter PAC bound, where lip(h ←

θ) denotes the Lipschitz constant of the function with respect to the input space Θ.

In Chapter 5, to consider the property of the optimisation algorithm simultaneously,

an algorithm-dependent PAC bound based on Lipschitz smoothness is derived.
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Chapter 1

Introduction

Over the past few decades, classification has always been one of the most funda-

mental problems in the field of statistical machine learning. In this chapter, the

thesis starts by reviewing the definition of classification in Section 1.1. The issues

with respect to learnability are discussed in Section 1.2, which illustrates whether or

not an algorithm is able to learn the optimal classifier inside a hypothesis set H. In

Section 1.2.1, the definitions of PAC learnability and agnostic PAC learnability are

introduced. In Section 1.2.2, uniform convergence, which is a sufficient condition

for (agnostic) PAC learnability is reviewed. In Section 1.2.3, some examples of PAC

learning bounds based on uniform convergence are illustrated. In Section 1.2.4, we

explain how to control the generalisation ability of a learnable algorithm by adding

the regularisation terms based on union convergence bounds. Then, the definition

and some examples of metric learning are illustrated in Section 1.3. After that, the

definitions and some concepts with respect to Lipschitz functions are reviewed in

Section 1.4. Finally, the structure of the thesis is presented in Section 1.5.

1.1 Classification
Learning is the process of summarising general rules from given examples. Statis-

tical machine learning, as defined by Arthur Samuel, is a “field of study that gives

computers the ability to learn without being explicitly programmed” [60]. Based on

the feedback information provided, machine learning tasks are mainly divided into

three categories [54]:
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• Supervised Learning. The system would supply the algorithm with the de-

sired outputs of some input instances. Then the algorithm learns a general

rule that maps inputs to outputs.

• Unsupervised Learning. No desired outputs are given and the algorithm

should find the rule from the input data itself.

• Reinforcement Learning. In a dynamic environment, the algorithm learns to

take sequential actions so as to maximise the reward of achieving a goal.

In this thesis, I will primarily focus on a supervised learning problem: classifi-

cation.

The problem of classification is about predicting to which set of categories a

new observation belongs, based on a given set of instances whose category informa-

tion is known. In classification problems, an input (xi ∈ X ) and its corresponding

output/label (yi ∈ Y) form a training pair (zi = (xi, yi) ∈ Z). The set which con-

sists of all training pairs is called the training set zn, where zn = {z1, . . . ,zn} and

n denotes the number of training instances. During the training process, a learner

Zn → G seeks an optimal function g ∈ G based on all training pairs, where G is the

set containing all candidate functions of X → Y . After that, during the test process,

a new input instance x is mapped to the output space via g(x).

Throughout the thesis, unless specified otherwise, the set of categories is as-

sumed to be the binary set {−1, 1}. Meanwhile, I assume X ⊆ RD, where D

denotes the dimension of the input space. In binary classification, the function g

is usually based on another function h : X → R which maps x to a real value,

where h ∈ H and H is called the hypothesis set. The relationship between g and h

is defined as follows:

g(x) = sign[h(x)] =

 1 if h(x) ≥ 0

−1 if h(x) < 0
,

where sign[·] denotes the sign function and returns the sign of a real number.

The risk/loss/error of a classifier h for a training pair z could be measured
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by a risk function r(z, h) or be equivalently written as a loss function l(h(x); y).

Then Rn(zn, h) := 1
n

∑
i r(zi, h) := 1

n

∑
i l(h(xi); yi) is called the training error

or empirical risk, which indicates the training loss given the classifier h for a set of

training instances xn. Similarly, R(h) := Ez′r(z
′, h) := Ez′l(h(x′); y′) is called

the test error or expected risk, which indicates the expected value of test loss given

a test input pair z′ = (x′, y′) into the classifier h. The gap between the training

error and the test error, i.e. R(h)−Rn(zn, h), is called the generalisation gap.

1.2 Learnability

1.2.1 PAC and Agnostic PAC Learnability

Definition 1. [57, 65] A hypothesis class H is Probably Approximately Correct

(PAC) learnable if there exist a function nLH : (0, 1)2 → N and a learning algorithm

with the following property: For every ε, δ ∈ (0, 1), for every distribution DX over

X , and for every target function g ∈ G, if there exists an h∗ ∈ H which returns

the same classification result as g, then when running the learning algorithm on

n ≥ nLH(ε, δ) independent and identically distributed (i.i.d.) instances generated

by DX and labelled by g, the algorithm returns a hypothesis ĥ, such that, with

probability at least 1− δ, R(ĥ) ≤ ε, which can be equivalently written as

Pxn
(
R(ĥ) ≤ ε

)
≥ 1− δ,

or

Pxn
(
Ex′
[
l
(
ĥ(x′); g(x′)

)]
≤ ε
)
≥ 1− δ,

where the probability is over xn and ĥ is a random variable related to xn.

In the definition of PAC learnability, training and test instances should come

from the same distribution, but this distribution is unknown to the learner and could

be any distribution D over X . PAC contains two kinds of approximations: 1) Ap-

proximately correct: ε denotes the difference between the output classifier and the

optimal one, which indicates that we cannot expect a learner to learn a concept ex-

actly; and 2) Probably correct: 1 − δ denotes how likely the event of R(ĥ) ≤ ε
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happens, which indicates that we cannot always expect a close approximation to

happen. An expectation for a good classifier is that with high probability (1 − δ) it

will learn a close approximation (R(ĥ) ≤ ε) to the target.

The function nLH : (0, 1)2 → N is a function of ε and δ. It determines how

many training pairs are required to guarantee a (ε, 1−δ)-solution, that is, the sample

complexity of learningH.

Two strong assumptions are imposed in the definition of PAC learnability.

First, the target function g indicates yi is determined given xi. However, label noise

exists in real cases. In other words, for the same xi, there is a positive probability

for both yi = 1 and yi = −1 to happen. Second, the existence of an optimal hy-

pothesis, that is ‘an h∗ ∈ H which returns the same classification result as g’, may

require H to be very large. To solve these problems, agnostic PAC learnability has

been proposed.

Definition 2. [57, 23] A hypothesis class H is agnostic PAC learnable or has ag-

nostic PAC learnability if there exist a function nALH : (0, 1)2 → N and a learning

algorithm with the following property: For every ε, δ ∈ (0, 1) and for every dis-

tribution DZ over Z , when running the learning algorithm on n ≥ nALH (ε, δ) i.i.d.

instances generated by DZ , the algorithm returns a hypothesis ĥ which satisfies the

following agnostic PAC learning bound: with probability at least 1− δ,

R(ĥ)−min
h∈H

R(h) ≤ ε.

The above agnostic PAC learning bound can be equivalently written as

Pzn
(
R(ĥ)−min

h∈H
R(h) ≤ ε

)
≥ 1− δ,

or more explicitly

Pzn
(
Ez′
[
l
(
ĥ(x′); y

)]
−min

h∈H
Ez′
[
l
(
h(x′); y

)]
≤ ε
)
≥ 1− δ.

where the probability is over zn and ĥ is a random variable related to zn.



1.2. Learnability 16

Unless specified otherwise, the discussion of learnability in the thesis would be

restricted to agnostic PAC learnability. In the following discussion, PAC learnabil-

ity, PAC learnable and PAC learning bound will represent agnostic PAC learnability,

agnostic PAC learnable and agnostic PAC learning bound respectively.

1.2.2 Uniform Convergence

Uniform convergence is a widely used sufficient condition for (agnostic) PAC learn-

ability. In this section, the definition of uniform convergence is introduced first.

Then, the relationship between uniform convergence and learnability is illustrated.

Definition 3. [57] A hypothesis class H has the uniform convergence property if

there exists a function nUCH : (0, 1)2 → N with the following property: For every

ε, δ ∈ (0, 1) and for every probability distribution DZ over Z , if zn is a sample of

n ≥ nUCH (ε, δ) i.i.d. instances drawn from DZ , then the following uniform conver-

gence bound holds: with probability at least 1− δ,

max
h∈H
|R(h)−Rn(zn, h)| ≤ ε,

or

∀h ∈ H, |R(h)−Rn(zn, h)| ≤ ε,

which can be equivalently written as

Pzn
(

max
h∈H
|R(h)−Rn(zn, h)| ≤ ε

)
≥ 1− δ.

Lemma 1. [57] If a hypothesis set H has the uniform convergence property with a

function nUCH , then H is agnostic PAC learnable with the sample complexity func-

tion nALH (ε, δ) ≤ nUCH (ε/2, δ). Furthermore, in this case, ERMH is a successful

agnostic PAC learner for H, where ERMH denotes the empirical risk minimisation

strategy inside the set ofH that ĥ ∈ argminh∈HRn(zn, h).

Proof. For a sample zn, the relationship between maxh∈H |R(h) − Rn(zn, h)| ≤

ε/2 and R(ĥ) ≤ minh∈HR(h)+ ε will be illustrated as follows, where ĥ is obtained
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with ERMH:

∀zn, max
h∈H
|R(h)−Rn(zn, h)| ≤ ε/2

⇒ ∀h ∈ H, R(ĥ) ≤(a) Rn(zn, ĥ) + ε/2 = min
h∈H

Rn(zn, h) + ε/2

≤(b) Rn(zn, h) + ε/2 ≤(c) R(h) + ε,

where inequality (a) is due to maxh∈H |R(h) − Rn(zn, h)| ≤ ε/2; inequality (b)

is due to ĥ is obtained by ERMH, so that Rn(zn, ĥ) = minh∈HRn(zn, h) ≤

Rn(zn, h); inequality (c) is again due to maxh∈H |R(h)−Rn(zn, h)| ≤ ε/2. There-

fore

1− δ ≤ Pzn
(

max
h∈H
|R(ĥ)−Rn(zn, h)| ≤ ε/2

)
≤ Pzn

(
R(ĥ) ≤ min

h∈H
R(h) + ε

)
.

Since uniform convergence is a sufficient condition for PAC learnability, in

the following discussion, we will refer to the uniform convergence bound as a PAC

learning bound.

1.2.3 PAC Learning Bounds based on Uniform Convergence

As illustrated in lemma 1, H is (agnostic) PAC learnable with the learner ERMH

as long as it has the uniform convergence property. We will now use the uniform

convergence property to obtain PAC learning bounds in the following cases.

1.2.3.1 Finite Hypothesis Set Bounds

We can use the Hoeffding’s inequality, one of concentration inequalities, to obtain

the PAC learning bounds of finite hypothesis sets directly. LetH = {h1, . . . , hK} be

a hypothesis set with K functions and suppose the risk function r(z, h) is bounded
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by the interval [0, Cr],

Pzn [max
h∈H
|R(h)−Rn(zn, h)| > ε]

=Pzn [∃h ∈ {h1, . . . , hK}, |R(h)−Rn(zn, h)| > ε]

≤
K∑
i=1

Pzn [|R(hi)−Rn(zn, hi)| > ε]

≤2K exp(−2nε2

C2
r

).

where the first inequality is based on the probability of the union of events and the

second inequality is based on the Hoeffding’s inequality, as illustrated in Appendix

1.6.1. Set δ = 2K exp(−2nε2

C2
r

). The obtained PAC learning bound is equivalently

written as follows: with probability at least 1− δ

∀h ∈ H, R(h) ≤ Rn(zn, h) + Cr

√
ln 2K + ln(1/δ)

2n
.

1.2.3.2 Vapnik-Chervonenkis Bounds

In practical algorithms, the hypothesis sets have infinite elements. The Vapnik-

Chervonenkis (VC) dimension [66] is a complexity measure for infinite hypothesis

sets.

Definition 4. [66] The VC dimension of a classH is the largest integer V such that

SH(V ) = 2V ,

and

SH(V ) = max
x1,...,xV

card
(
{(sign[h(x1)], . . . , sign[h(xV )]) : h ∈ H}

)
,

where card(·) denotes the cardinality of a set.

In other words, the VC dimension of a hypothesis set H is the largest number

of training instances that H can correctly classify whatever the labels of these in-

stances are. With the VC dimension V ofH, the VC bound could be represented as
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follows [66]: with probability at least 1− δ,

∀h ∈ H, R(h) ≤ Rn(h) + 2

√
2
V log 2en

V
+ 2 log 2

δ

N
.

1.2.3.3 Rademacher Complexity Bounds

For general hypothesis sets, the VC dimension is relatively hard to compute. A

practically common complexity measure is the Rademacher complexity.

Definition 5. [46] Let εn = {ε1, . . . εn} be i.i.d. ±1-valued random variables with

P (εi = +1) = P (εi = −1) = 1
2
. zn = {z1, . . . ,zn} are i.i.d. samples. The

empirical Rademacher complexity is defined as

ˆRadn(H) = Eεn
[

max
h∈H

1

n

∑
i

εih(zi)
∣∣∣zn];

and the Rademacher complexity is defined as

Rad(H) = Ezn
[

ˆRadn(H)
]
.

Theorem 1. [46] With probability at least 1− δ the following bounds hold:

∀h ∈ H, R(h) ≤ Rn(zn, h) + 2 Rad(φ ◦ H) +

√
ln 1

δ

2n
,

and

∀h ∈ H, R(h) ≤ Rn(zn, h) + 2 ˆRadn(φ ◦ H) + 3

√
ln 2

δ

2n
,

where φ : R → R denotes the loss function l(h(x); y); ◦ denotes the composition

of functions.

1.2.4 Regularisation as a Practical Strategy

Based on Lemma 1, if a hypothesis set H has the uniform convergence property,

then ERMH is a successful agnostic PAC learner. In addition, we could control

the generalisation ability of the hypothesis setH through some regularisation terms
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derived from the uniform convergence bound.

ERMH has the following optimisation function:

min
h

Rn(zn, h)

s.t. h ∈ H.

For parametric functions, it is equivalent to

min
θ

Rn(zn, hθ)

s.t. θ ∈ Θ.

After we obtain the uniform convergence PAC bound, suppose the generalisation

gap is related to the parameter θ and there exists a function P : Θ → R such

that controlling P(θ) could efficiently control the upper bound of the gap, then the

optimisation function could be set as follows:

min
θ

Rn(zn, hθ)

s.t. P(θ) ≤ C,
(1.1)

where C is a constant and the restriction P(θ) ≤ C is imposed in order for the

hypothesis set to have a relatively good generalisation ability. A smaller P(θ) will

result in a smaller generalisation gap. Problem (1.1) is a (agnostic) learnable algo-

rithm inside the hypothesis set ofHθ = {hθ;P(θ) ≤ C} and it can be equivalently

written as follows1:

min
θ

Rn(zn, hθ) + λP(θ), (1.2)

where λ is a trade-off parameter between the empirical risk Rn(zn, hθ) and the

generalisation ability P(θ). A detailed discussion on the equivalence between the

two optimisation problems is provided in Appendix 1.6.2.

Based on the discussion above, adding a regularisation term in (1.1) is a practical

way to control the generalisation ability of the learner ERMH. One critical issue

here is to determine the form of P(θ) based on a PAC learning bounds.

1 ‘Equivalent’ here denotes the equivalent necessary condition for the optimal θ.
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1.3 Metric Learning Classifiers
A large number of classifiers have been proposed over the past few decades. Among

those, the nearest neighbour (NN) classifier is one of the oldest and simplest meth-

ods. For a new instance, NN calculates distances to all training instances and returns

the label of its nearest neighbour. The performance of NN depends on the distance

or similarity metrics and handcrafting these metrics is generally difficult. Therefore,

metric learning has been proposed and it enables the algorithms to learn a metric

from the data automatically.

1.3.1 Nearest Neighbour

The nearest neighbour (NN) classifier, based on non-parametric estimation, is one of

the most intuitive classifiers. In NN classifier, it remembers all the training instances

and labels {zi = (xi, yi), i = 1, . . . , n}. At the same time, the space X is endowed

with a distance metric ρX (xi,xj). Given a test instance x, NN would assign the

test instance with the same label as its nearest neighbour xk in the training set:

y = yk, where k = argmin
i

ρX (x,xi), i = 1 . . . n.

The conventional NN is a type of the so-called ‘lazy learning’ because it does

not learn any parameter.

1.3.2 Metric Learning

We start by reviewing the basic terminology of metric [76].

Definition 6. A mapping function ρ : X × X → [0,∞) is called a metric if for all

vectors xi,xj,xk ∈ X , it satisfies the following properties:

• ρ(xi,xj) + ρ(xj,xk) ≥ ρ(xi,xk) (triangle inequality);

• ρ(xi,xj) ≥ 0 (non-negativity);

• ρ(xi,xj) = ρ(xj,xi) (symmetry);

• ρ(xi,xj) = 0⇔ xi = xj (identity of indiscernibles).
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If a mapping only satisfies the first three properties, that is the distance be-

tween two distinct points could be zero, it is called pseudometric. In classification

tasks, we mainly deal with pseudometric and refer to pseudometric as metric in the

following discussion for simplicity 2.

A frequently adopted metric is the Mahalanobis distance:

dM (xi,xj) =
√

(xi − xj)TM(xi − xj), M ∈M+,

whereM+ denotes the set of positive semi-definite matrices. The Mahalanobis dis-

tance is equivalent to computing the Euclidean distance after a linear transformation

x′ = Lx:

dM (xi,xj) = ‖L(xi − xj)‖2 = d(x′i,x
′
j), M = LTL,

where d(x′i,x
′
j) denotes the Euclidean distance between x′i and x′j .

Learning the metric with a convex optimisation problem was first proposed

in [78], where the metric is found through the following optimisation problem with

a convex objective function:

max
M

∑
ij(1− yij)dM (xi,xj)

s.t.
∑

ij yijd
2
M (xi,xj) ≤ 1

M ∈M+,

(1.3)

where yij = 1 if yi = yj and yij = 0 otherwise.

The algorithm aims to learn a metricM such that the distances between the instance

pairs with the same label would be equal to or less than 1 (
∑

ij yijd
2
M (xi,xj) ≤ 1)

and the distances between instance pairs with different labels would be as large as

possible (maxM
∑

ij(1−yij)dM (xi,xj)). In the optimisation problem, the squared

Mahalanobis distance is used to guarantee the constraint to be a convex one. This

metric learning strategy has improved the performance of NN significantly [78, 76].

2In local metric learning problems, a function ρ without triangle inequality or even symmetry
property may be called a ‘metric’ following the local metric learning references, such as [70, 5].
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After that, in [56], the hinge loss and Frobenius regularisation have been intro-

duced into the research of metric learning:

min
W ,ξ

‖M‖2
F + λ

∑
ijk ξijk

s.t. d2
M (xi,xk)− d2

M (xi,xj) ≥ 1− ξijk
ξijk ≥ 0,M = ATWA,W ≥ 0

i = 1, . . . , n, j → i, k 9 i,

(1.4)

where d2
M (xi,xj) = (xi−xj)TM(xi−xj) = (xi−xj)TATWA(xi−xj),A is

a fixed matrix determined via prior knowledge, W is a diagonal matrix which will

be optimised andW ≥ 0 denotes all elements ofW should be greater than or equal

to 0; ξ = {ξijk} and ξijk denotes the value of max[d2
M (xi,xj)+1−d2

M (xi,xk), 0],

which indicates that if d2
M (xi,xk) is not larger than d2

M (xi,xj) + 1, there will be a

loss of d2
M (xi,xj) + 1 − d2

M (xi,xk); ‖M‖2
F is the square of the Frobenius norm

of M ; λ is a constant which controls the trade-off between the two terms of the

objective function; j → i indicates xj is the target neighbour of xi and k 9 i

indicates xk is xi’s impostor neighbour.

A heuristic strategy for choosing target neighbours is to pick xi’s C nearest neigh-

bours from the same class measured via the Euclidean metric, that is,

j ∈
{
b | d(xb,xi) ≤ U(C),U = {d(xa,xi) | xa ∈ xn, ya = yi,xa 6= xi}

}
,

where xn denotes the set of training instances, each element of the set U is the

distance between xi and a training instance with the same label, U(C) denotes the

Cth smallest element of U . Similarly, a heuristic strategy for choosing impostor

neighbours is to pick xi’s C nearest neighbours from the different class measured

via the Euclidean metric, that is,

k ∈
{
b | d(xb,xi) ≤ V(C),V = {d(xa,xi) | xa ∈ xn, ya 6= yi}

}
,

where each element of the set V is the distance between xi and a training instance
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with the different label.

Another similar and widely cited metric learning algorithm is the large margin

nearest neighbour (LMNN) [76] and it solves the following optimisation problem:

min
M ,ξ

∑
ij d

2
M (xi − xj) + λ

∑
ijk ξijk

s.t. d2
M (xi − xk)− d2

M (xi − xj) ≥ 1− ξijk
ξijk ≥ 0,M ∈M+

i = 1, . . . , n, j → i, k 9 i,

(1.5)

where M is the metric to be optimised. The fundamental difference between (1.5)

and (1.4) is the regularisation term. In (1.4), the authors adopted the matrix Frobe-

nius norm. In (1.5), the authors adopted

∑
ij

d2
M (xi,xj)

to bring target neighbours closer. From the above discussion, we can see that the

regularisation term is critical for metric learning.

1.4 Lipschitz Functions

Most of the hypothesis set H enjoys the Lipschitz continuous property. In this sec-

tion, the definition of Lipschitz functions is reviewed and two kinds of Lipschitz

constant, which are frequently used in the thesis, are defined. After that, we dis-

cuss some properties relating to classification, such as how we can construct more

sophisticated Lipschitz functions from basic Lipschitz functions.

1.4.1 Definition of Lipschitz Functions

Definition 7. [74] Let (U , ρU), (V , ρV) be two metric spaces. A function h : U → V

is called Lipschitz continuous if ∃L <∞,∀u1,u2 ∈ U ,

ρV(h(u1), h(u2)) ≤ LρU(u1,u2).
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The Lipschitz constant of a Lipschitz function h is

lip(h;V ← U) = min{L ∈ R|∀u1,u2 ∈ U ,u1 6= u2,

ρV(h(u1), h(u2)) ≤ LρU(u1,u2)}

= max
u1,u2∈U :u1 6=u2

ρV(h(u1), h(u2))

ρU(u1,u2)
.

lip(h;V ← U) is written as lip(h ← u) if V and U are clear from the context. The

function h is called a L-Lipschitz function if its Lipschitz constant is L.

The definition states that Lipschitz functions are a family of functions, where

a ‘small’ change in u will not cause a very large change in h(u).

In classification tasks, with the classifier h(x;θ), the following two kinds of

Lipschitz constant are defined which differ in the input space:

(1) Treat X as the input space and consider lip(h← x).

A metric ρ is defined as

ρH(x)(h(x1; ·), h(x2; ·)) = max
θ∈Θ
|h(x1;θ)− h(x2;θ)|,

and lip(h← x) is

lip(h← x) = max
x1,x2∈X ,x1 6=x2

ρH(x)

(
h(x1; ·), h(x2; ·)

)
ρX (x1,x2)

= max
x1,x2∈X ,x1 6=x2,θ∈Θ

|h(x1;θ)− h(x2;θ)|
‖x1 − x2‖

.

(2) Treat Θ as the input space and consider lip(h← θ).

A metric ρH(θ) in the parametric function space is defined as

ρH(θ)(h(·;θ1), h(·;θ2)) = max
x∈X
|h(x;θ1)− h(x;θ2)|.



1.4. Lipschitz Functions 26

and lip(h← θ) is

lip(h← θ) = max
θ1,θ2∈Θ,θ1 6=θ2

ρH(θ)

(
h(·; ·θ1), h(·; ·,θ2)

)
ρΘ(θ1,θ2)

= max
θ1,θ2∈Θ,θ1 6=θ2,x∈X

|h(x;θ1)− h(x;θ2)|
‖θ1 − θ2‖

,

where ‖·‖ is restricted to the L2-norm for vectors or the Frobenius norm for matrices

in this thesis.

1.4.2 Bounding the Lipschitz Constant

The Lipschitz constant could be obtained based on the gradient of differentiable

functions.

Theorem 2. [28] Let U ∈ Rn be open, h : U → R be differentiable and the line

segment [u1,u2] ∈ U , where [u1,u2] = {v | v = u1 + t(u2−u1), t ∈ [0, 1]} joins

u1 to u2. Based on the Mean Value Theorem, there exists a u ∈ [u1,u2]

f(u2)− f(u1) = f ′(u)T (u2 − u1).

Applying the mean value theorem, we could bound the Lipschitz constant via

the gradient.

Corollary 1. Let U ∈ Rn be open and convex, function h : U → R be differentiable

inside U , then the following inequality holds:

lip(h← u) = max
u1,u2∈U,u1 6=u2

|h(u2)− h(u1)|
‖u2 − u1‖

≤ max
u∈U
‖h′(u)‖.

Proof. Since U is convex, ∀u1,u2 ∈ U,u1 6= u2, the line segment [u1,u2] =

{v | v = u1 + t(u2 − u1), t ∈ [0, 1]} ∈ U .

|h(u2)−h(u1)| =(a) |h′(u)T (u2−u1)| ≤(b) ‖h′(u)‖‖u2−u1‖ ≤(c) max
u∈U
‖h′(u)‖‖u2−u1‖,

where equality (a) is due to Theorem 2; inequality (b) is due to the Cauchy-Schwarz

inequality; inequality (c) is due to ‖h′(u)‖ ≤ maxu∈U ‖h′(u)‖.
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Lipschitz constant can also be obtained based on the basic ones using the fol-

lowing lemma.

Lemma 2. [44, 74] Let h1, h2 ∈ lip(h← u). Then

(a) lip(ah1 ← u) ≤ |a| lip(h1 ← u), where a is a constant;

(b) lip(h1 + h2 ← u) ≤ lip(h1 ← u) + lip(h2 ← u),

lip(h1 − h2 ← u) ≤ lip(h1 ← u) + lip(h2 ← u);

(c) lip(min(h1, h2)← u) ≤ max{lip(h1 ← u), lip(h2 ← u)},

lip(max(h1, h2)← u) ≤ max{lip(h1 ← u), lip(h2 ← u)},

where max(h1, h2) or min(h1, h2) denotes the pointwise maximum or minimum of

functions h1 and h2;

(d) lip(h2◦h1 ← u) ≤ lip(h2 ← h1) lip(h1 ← u), where ◦ denotes the composition

of functions.

This lemma illustrates that after the operations of multiplication by constant,

addition, subtraction, minimisation, maximisation and function composition, the

functions are still Lipschitz continuous.

Lemma 3. [44, 74] Let lip(h1 ← u) and lip(h2 ← u) be finite and h1, h2 are

bounded real-valued functions. Then the product of two functions3 h1h2 is again

Lipschitz continuous and

lip(h1h2 ← u) ≤ ‖h1‖∞ lip(h2 ← u) + ‖h2‖∞ lip(h1 ← u),

where ‖h‖∞ = maxu h(u).

This lemma illustrates that after the operation of function multiplication, the

result is a Lipschitz function if the basic Lipschitz functions are bounded.

1.5 Structure of the Thesis
The structure of the thesis is illustrated in Figure 1.1. The thesis is organised

as follows. All classifiers used in the thesis are restricted to have certain kinds
3The product of two functions is defined as (h1h2)(u) = h1(u)h2(u).
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Figure 1.1: The structure of the thesis. h denotes a distance-based classifier; zn denotes
the set of training instances; θ denotes the parameters of the classifier; r de-
notes a risk function. The relationship between these concepts can be linked
with certain kinds of Lipschitz properties. In the thesis, the loss function with
bounded lip(r ← h) is selected. In Chapters 2 and 3, the classifiers have
bounded lip(h ← x); In Chapter 4, the classifier has bounded lip(h ← θ); In
Chapter 5, the classifier has bounded lip(h← θ) and lip(∂h∂θ ← θ).

of Lipschitz continuous properties. In Chapters 2 and 3, functions with bounded

lip(h ← x) are used for metric learning with large margin ratio and local metrics,

respectively. In Chapter 4, functions with bounded lip(h ← θ) are used for metric

learning with instance extraction. In Chapter 5, functions with bounded lip(h← θ)

and lip( ∂h
∂w
← θ) are used and the resultant PAC bound takes into account some

terms appeared in the optimisation algorithm. Generally speaking, the restrictions

on the functions used become increasingly stronger from chapter to chapter. The

main contributions of this thesis are covered in Chapters 2–5 led to the following

four submissions or working papers:

• Mingzhi Dong, Xiaochen Yang, Yang Wu, Jing-Hao Xue. Metric Learning

via Maximizing the Lipschitz Margin Ratio. Working paper (based on Chap-

ter 2).

• Mingzhi Dong, Yujiang Wang, Xiaochen Yang and Jing-Hao Xue. Learning

Local Metrics and Influential Regions for Classification. IEEE Transactions

on Pattern Analysis and Machine Intelligence, under revision (based on Chap-

ter 3).

• Mingzhi Dong, Rui Zhu, Yujiang Wang and Jing-Hao Xue. Metric Learning
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with Instance Extraction. Working paper (based on Chapter 4).

• Mingzhi Dong, Xiaochen Yang, Yujiang Wang and Jing-Hao Xue. Smooth

Metric Learning with Instance Extraction. Working paper (based on Chapter

5).

1.6 Appendix

1.6.1 Some Useful Properties of Probability and Set

Lemma 4. Let un = {ui, i = 1, . . . , n} denote the set of n independent random

variables and ui is bounded by the interval [ai, bi]. Let u =
∑n
i=1 ui
n

, then Hoeffd-

ing’s inequality indicates

Pun(u− Eun [u] ≥ ε) ≤ exp
(
− 2n2ε2∑n

i=1(bi − ai)2

)
;

Pun(|u− Eun [u]| ≥ ε) ≤ 2 exp
(
− 2n2ε2∑n

i=1(bi − ai)2

)
.

Proposition 1. Probability of the Union of Sets:

P(A ∪B) ≤ P(A) + P(B).

1.6.2 Equivalence between Optimisation Problems (1.1) and

(1.2)

Let us review the two optimisation problems.

Problem 1:
min
θ

Rn(zn, hθ)

s.t. P(θ) ≤ C;

Problem 2:

min
θ

Rn(zn, hθ) + λP(θ).

The Lagrange function of Problem 1 is

L(θ, u) = Rn(zn, hθ) + u(P(θ)− C), u ≥ 0,
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where u is the Lagrangian multiplier.

For Problem 1, the (KKT) necessary conditions imply

Condition 1
∂Rn(zn, hθ)

∂θ
+ u

∂P(θ)

∂θ
= 0;

Condition 2 u(P(θ)− C) = 0.

For Problem 2, the necessary condition implies

∂Rn(zn, hθ)

∂θ
+ λ

∂P(θ)

∂θ
= 0.

Suppose θ∗1 and µ∗ satisfy the necessary condition of Problem 1. Setting λ = µ∗, we

can see θ∗1 satisfies for the necessary condition of Problem 2. Suppose θ∗2 satisfies

the necessary condition of Problem 2. Setting µ = λ and C = P(θ∗2), we can see

Condition 1 and Condition 2 of Problem 1 are satisfied, so θ∗2 satisfies the necessary

condition of Problem 1 as well. Based on the above results, the necessary conditions

of Problem 1 and Problem 2 are equivalent.

Meanwhile, when the regularisation term in Problem 2 is a convex function,

the equivalent Problem 1 constrains θ inside the set of {θ|P(θ) ≤ C}, which is a

convex set [7].



Chapter 2

Metric Learning with Margin Ratio

2.1 Introduction

Classification is a fundamental research question in the field of machine learning.

For distance-based classifiers, it is crucial to appropriately measure the distance be-

tween instances. The nearest neighbour classifier, a classical distance-based classi-

fier, classifies a new instance into the class of the training instance with the shortest

distance.

In practice, it is often difficult to handcraft a well-suited and adaptive distance

metric. To mitigate this issue, metric learning has been proposed to enable learning

a metric automatically from the data available. Metric learning with a convex objec-

tive function was first proposed in the pioneering work of [78]. The large margin in-

tuition was introduced into the research of metric learning by the seminal researches

of “large margin metric learning” (LMML) [56] and “large margin nearest neigh-

bor” (LMNN) [76]. Besides the large margin approach, other inspiring metric learn-

ing strategies have been developed, such as nonlinear metrics [34, 24], localised

strategies [12, 71, 49] and scalable/efficient algorithms [58, 53]. Metric learning

has also been adopted by many other learning tasks, such as semi-supervised learn-

ing [82], unsupervised-learning [32], multi-task/cross-domain learning [41, 72],

AUC optimisation [30] and distributed approaches [37].

On top of the methodological and applied advancement of metric learning,

some theoretical progress has also been made recently, in particular on deriving
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Figure 2.1: An illustration of the margin ratio. Each ball indicates a metric space. The
red area indicates the area of positive class instances; the blue area indicates
the area of negative class instances. Although the margins between the two
classes in different metric spaces are the same, it is clear that the difficulties of
classification are distinct between them.

different types of generalisation bounds for metric learning [33, 20, 67, 8]. These

developments have theoretically justified the performance of metric learning algo-

rithms. However, they generally lack a geometrical link with the classification mar-

gin, not as interpretable as one may expect (e.g. like the clear relationship between

the margin and 1/|w| in the support vector machine (SVM)).

Besides the inter-class margin, the intra-class dispersion is also crucial to clas-

sification [13, 11, 31]. The intra-class dispersion is especially important for metric

learning, because different metrics may lead to similar inter-class margins and quite

different intra-class dispersion. As illustrated in Figure 2.1, although the margins in

these metric spaces are exactly the same, the classification becomes more difficult

as the margin ratio decreases. Therefore, the seminal work of [78] and many later

work made efforts to consider the inter-class margin and the intra-class dispersion

at the same time.

In this chapter, we aim to propose a new concept, the Lipschitz margin ratio,

to integrate both inter-class and intra-class properties, and through maximising the

Lipschitz margin ratio we aim to propose a new metric learning framework to enable

the enhancement of the generalisation ability of a classifier. These two novelties are

our main contributions to be made in this work.
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To achieve these two aims and present our contributions in a well-structured

way, we organise the rest of this chapter as follows. Firstly, in Section 2.2 we dis-

cuss the relationship between the distance-based classification, metric learning and

Lipschitz functions. We show that a Lipschitz extension, which is a distance-based

function, can be regarded as a generalised nearest neighbour model, enjoying great

representation ability. Then, in Section 2.3 we introduce the Lipschitz margin ra-

tio, and we point out that its associated learning bound indicates the desirability of

maximising the Lipschitz margin ratio, for enhancing the generalisation ability of

Lipschitz extensions. Consequently in Section 2.4, we propose a new metric learn-

ing framework through maximising the Lipschitz margin ratio. Moreover, we prove

that many well-known metric learning algorithms are special cases of the proposed

framework. Then for illustrative purposes, we implement the framework to learn

the squared Mahalanobis metric. The method is presented in Section 2.4.3, and the

experiment results are reported in Section 2.5, which demonstrate the superiority of

the proposed method. Finally, we draw conclusions and discuss future work in Sec-

tion 2.6. For the convenience of readers, some proofs are deferred to the Appendix

2.7.

2.2 Lipschitz Functions and Distance-based Classi-

fiers

2.2.1 Definition of Lipschitz Functions

To start with, we will review the definitions of Lipschitz functions, the Lipschitz

constant and the Lipschitz set.

Definition 8. [74] Let (X , ρX ) be a metric space. A function f : X → R is called

Lipschitz continuous (with respect to input x) 1 if ∃C <∞,∀x1,x2 ∈ X ,

|f(x1)− f(x2)| ≤ CρX (x1,x2).

1Without further clarification, the Lipschitz constant considered in this chapter is restricted to be
with respect to the input x.
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The Lipschitz constant lip(f ← x) of a Lipschitz function f is

lip(f ← x)

= min{C ∈ R|∀x1,x2 ∈ X , |f(x1)− f(x2)| ≤ CρX (x1,x2)}

= max
x1,x2∈X :x1 6=x2

|f(x1)− f(x2)|
ρX (x1,x2)

,

and function f is also called a L-Lipschitz function if its Lipschitz constant is

bounded by L. Meanwhile, all L-Lipschitz functions construct the L-Lipschitz set

L-Lip(X ) = {f : X → R; lip(f ← x) ≤ L}.

From the definitions, we can observe that the Lipschitz constant is fundamen-

tally connected with the metric ρX ; and that the Lipschitz functions have specified a

family of functions whose change of output values can be bounded by the distances

in the input space.

2.2.2 Lipschitz Extensions and Distance-based Classifiers

Distance-based classifiers are the classifiers that are based on certain kinds of dis-

tance metrics. Most of distance-based classifiers stem from the nearest neighbours

(NN) classifier. To decide the class label of a new instance, the NN classifier com-

pares the distances between the new instance and the training instances.

In binary classification tasks, a Lipschitz function is commonly used as the

classification function f and the instance x is then classified according to the

sign of f(x). Using Theorem 3, we shall present a family of Lipschitz functions,

called Lipschitz extensions. We shall also show that Lipschitz extensions present

a distance-based classifier, and that a special case of Lipschitz extensions returns

exactly the same classification result as the NN classifier.

Theorem 3. [43, 77, 74, 42] (McShane-Whitney Extension Theorem) Given a func-

tion u defined on a finite subset A = {x1, . . . ,xn}, there exist a family of functions

which coincide with u on x1, . . . ,xn, are defined on the whole space X , and have

the same Lipschitz constant as u. Additionally, it is possible to explicitly construct
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functions Uα(x) with Lipschitz constant u in the following form and they are called

L-Lipschitz extensions of u:

Uα(x) = αU1(x) + (1− α)U2(x),

where α ∈ [0, 1],

U1(x) = u(x) = min
a∈A
{u(a) + Lρ(x,a)},

U2(x) = u(x) = max
a∈A
{u(a)− Lρ(x,a)}.

Theorem 3 can be readily validated by calculating the values of U1(x) and

U2(x) on the finite points x1, . . . ,xn. The bound of the Lipschitz constant of u(x)

and u(x) can be proved on the basis of the Lemmas in Appendix.

Theorem 3 clearly shows that Lipschitz extensions are based on certain kind

of distance function ρ and hence are distance-based functions. Moreover, we can

illustrate the relationship between Lipschitz extension functions and empirical risk

as follows.

Assume A is the set of training instances of a classification task A =

{x1, . . . ,xN}. If there are no xi,xj such that ρ(xi,xj) = 0 while their labels

ti 6= tj (i.e. no overlap between training instances from different classes), setting

u(xi) = ti would result in zero empirical risk, and u(xi) would be a Lipschitz

function with Lipschitz constant L0,

L0 = max
i,j

|ti − tj|
ρ(xi,xj)

,

where the existence of such a function u, i.e. the Lipschitz extensions, is guaranteed

by Theorem 3.

That is, when doing classification, if we set L of Lipschitz extension to be

larger than L0, zero empirical risk could be obtained. In other words, as distance-

based functions, Lipschitz extensions enjoy excellent representation ability for clas-
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sification tasks.

Moreover, if we set α as 1/2, Lipschitz extensions will have exactly the same

classification results as the NN classifier:

Proposition 2. [42] The function U1/2(x) defined above has the same sign, i.e. has

the same classification results, as that of the NN classifier.

2.3 Lipschitz Margin Ratio
In the previous section, we show that Lipschitz extensions can be viewed as a

distance-based classifier, and its representation ability is so strong that zero em-

pirical error can be obtained under mild conditions. In this section, we shall pro-

pose the Lipschitz margin ratio to control the model complexity of the Lipschitz

functions and hence improve its generalisation ability. To start with, we propose

an intuitive way to understand the Lipschitz margin and the Lipschitz margin ratio.

Then, learning bounds of the Lipschitz margin ratio will be presented.

2.3.1 Lipschitz Margin

We define the training set of class k as Sk = {xi|ti = k,xi ∈ S}, where

k ∈ {1,−1}; the decision boundary of classification function f as Hf = {h|h ∈

X , f(h) = 0}. The margin used in [42] is equivalent to the Lipschitz margin de-

fined below.

Definition 9. The Lipschitz margin is the distance between the training sets S1 and

S−1:

L-Margin = D(S1,S−1) = min
xi∈S−1,xj∈S1

ρ(xi,xj). (2.1)

The relationship between the Lipschitz margin and the Lipschitz constant is

established as follows.

Proposition 3. For any L-Lipschitz function f satisfying ∀xi ∈ S1, f(xi) ≥ 1 and

∀xj ∈ S−1, f(xj) ≤ −1,

L-Margin ≥ 2

L
. (2.2)
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Figure 2.2: An illustration of the Lipschitz margin. Green triangles are instances from the
positive class, and purple squares are from the negative class. Data points with
red circles around them are the nearest instances from different classes. The
length of the blue line indicates the value of the Lipschitz margin.

Proof. Let xn and xm denote the nearest instances from different classes, i.e.

ρ(xn,xm) = D(S1,S−1) = min
xi∈S−1,xj∈S1

ρ(xi,xj).

It is straightforward to see

2

L
≤ 2

|f(xn)− f(xm)|/ρ(xn,xm)

≤ ρ(xn,xm)

= D(S1,S−1),

where the first inequality follows from the definition of the Lipschitz constant;

and the second inequality is for the reason that ∀xi ∈ S1, f(xi) ≥ 1 and

∀xj ∈ S−1, f(xj) ≤ −1, then |f(xi)− f(xj)| ≥ 2.

The proposition shows that the Lipschitz margin can be lower bounded by the

multiplicative inverse Lipschitz constant.

The Lipschitz margin is closely related to the margin adopted in SVM (the
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distance between the hyperplaneHf and the training instances S),

D(S,Hf ) = min
xi∈S,h∈Hf

ρ(xi,h),

As illustrated in Figure 2.2, the Lipschitz margin is also suitable for the classifica-

tion of non-linearly separable classes. The relationship between these two types of

margins are described via the following proposition.

Proposition 4. In the Euclidean space, let f be any continuous function which

correctly classifies all the training instances, i.e. ∀xi ∈ S, tif(xi) ≥ 1, then

D(S1,S−1) ≥ 2D(S,Hf ).

Proof. In the Euclidean space,

D(S1,S−1) = min
xi∈S−1,xj∈S+1

ρE(xi,xj),

D(S,Hf ) = min
xi∈S,h∈Hf

ρE(xi,h),

and ρE(xi,xj) =
√

(xi − xj)T (xi − xj) is the Euclidean distance.

Let xn and xm denote the nearest instances from different classes, i.e.

ρE(xn,xm) = D(S1,S−1) = min
xi∈S−1,xj∈S+1

ρE(xi,xj),

where xn ∈ S−1,xm ∈ S+1.

We define a connected setZ = {axn+(1−a)xm|0 ≤ a ≤ 1}, which indicates

the line segment between xn and xm. Because f(xn) ≤ −1, f(xm) ≥ 1 and for

any continuous function f , it maps connected sets into connected sets, there exists

z ∈ Z, such that f(z) = 0. According to the definition ofHf , we can see z ∈Hf .
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Therefore,

D(S,Hf ) = min
xi∈S,h∈Hf

ρE(xi,h)

≤ min
xi∈S

ρE(xi, z)

≤ ρE(xn, z) + ρE(xm, z)

2

=
ρE(xn,xm)

2

=
D(S1,S−1)

2
,

where the second equality follows from the connectedness property of Z.

2.3.2 Lipschitz Margin Ratio

The Lipschitz margin discussed above effectively depicts the inter-class relation-

ship. However, as we mentioned before, when we learn the metrics, different met-

rics will result in different intra-class dispersion and it is also important to consider

intra-class properties. Hence we propose the Lipschitz margin ratio to incorporate

both the inter-class and intra-class properties into metric learning.

We start with defining the diameter of a metric space:

Definition 10. [74] The diameter of a metric space (X , ρ) is defined as

diam(X , ρ) = sup
xi,xj∈X

ρ(xi,xj).

The Lipschitz margin ratio is then defined as the ratio between the margin and

diam(X ) (i.e. the diameter) or diam(S1) + diam(S−1) (i.e. the sum of intra-class

dispersion), as follows.

Definition 11. The Diameter Lipschitz Margin Ratio (L-RatioDiam) and the Intra-

Class Dispersion Lipschitz Margin Ratio (L-RatioIntra) in a metric space (X , ρ) are
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defined as

L-RatioDiam =
D(S1,S−1)

diam(X , ρ)

=

min
xi∈S−1,xj∈S1

ρ(xi,xj)

max
xi,xj∈X

ρ(xi,xj)
,

L-RatioIntra =
D(S1,S−1)

diam(S1, ρ) + diam(S−1, ρ)

=

min
xi∈S−1,xj∈S1

ρ(xi,xj)

max
xi,xj∈S1

ρ(xi,xj) + max
xi,xj∈S−1

ρ(xi,xj)
.

The relationship between L-RatioDiam and L-RatioIntra can be established via

the following proposition.

Proposition 5. In a metric space (X , ρ),

diam(X , ρ) ≤ diam(S1, ρ) + diam(S−1, ρ) +D(S−1,S1)

and

1

L-RatioDiam
≤ 1

L-RatioIntra
+ 1.

Proof. : See Appendix 2.7.1

In this inequality, diam(S1, ρ) and diam(S−1, ρ) indicate the maximum intra-

class distances, and D(S1,S−1) indicates the inter-class margin. Therefore, this

inverse margin ratio regularisation will push the learner to select a metric ρ which

pulls the instances from the same class closer (small
∑

t=1,−1 diam(St, ρ)) and en-

larges the margin between the instances from different classes (large D(S1,S−1)).

In a very simple (linearly separable one-dimensional) case, as illustrated in Fig-

ure 2.3, diam(X , ρ) can be decomposed into intra-class dispersion (diam(S−1, ρ),

diam(S−1, ρ)) and inter-class margin (D(S1,S−1)) directly.
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Figure 2.3: An illustration of the relationship between the margin ratio and the intra-/inter-
class properties. A linearly separable one-dimensional case is used as an ex-
ample. The red solid circles indicate the positive class instances; the blue solid
circles indicate the negative class instances.

Then we can bound the Lipschitz margin ratio using the Lipschitz constant and

the diameter of metric space:

Proposition 6. For any L-Lipschitz function f satisfying ∀xi ∈ S1, f(xi) ≥ 1 and

∀xj ∈ S−1, f(xj) ≤ −1,

L-RatioDiam ≥ 2

L diam(X , ρ)
,

L-RatioIntra ≥ 2

L diam(S1, ρ) + L diam(S−1, ρ)
.

Proof. The inequalities can be obtained by substituting the result of Proposition

3.

Based on this proposition, although it is not possible to calculate the ex-

act value of the Lipschitz margin ratio in most cases, we can use 1
Ldiam(X ,ρ)

or 1
L diam(S1,ρ)+L diam(S−1,ρ)

as a surrogate. For example, in the objective func-

tion of metric learning by maximising Lipschitz margin ratio, we can maximise
1

Ldiam(X ,ρ)
or 1

Ldiam(S1,ρ)+Ldiam(S−1,ρ)
or equivalently minimise L diam(X , ρ) or

L(diam(S1, ρ) + diam(S−1, ρ)).

Furthermore, in some cases we may be more interested in the local properties

rather than the global ones (see also Section 4.2). In those cases we can define the

local Lipschitz margin ratio as follows.
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Definition 12. The local Lipschitz margin ratio with subset Sl ⊆ S and metric

ρl ∈ D is defined as

Local-RatioDiam =
L-Margin

diam(Sl, ρl)
=

D(Sl1,S
l
−1)

diam(Sl, ρl)
,

Local-RatioIntra =
L-Margin

diam(S1, ρ) + diam(S−1, ρ)

=
D(Sl1,S

l
−1)

diam(Sl1, ρ
l) + diam(Sl−1, ρ

l)
,

where Slk = {xi|ti = k,xi ∈ Sl} indicates the local training set of class k and

k ∈ {1,−1}.

2.3.3 Learning Bounds of the Lipschitz Margin Ratio

In the section above, we have defined the Lipschitz margin ratio, which is a measure

of model complexity. In this section, we shall establish the effectiveness of the

Lipschitz margin ratio through showing the relationship between its lower bound

and the generalisation ability.

Definition 13. [18] For a metric space (X , ρ), let λ be the smallest number such

that every ball in X can be covered by λ balls of half the radius. Then λ is called

the doubling constant of X and the doubling dimension of X is ddim(X ) = log2 λ.

As presented in [18], a low Euclidean dimension implies a low doubling di-

mension (Euclidean metrics of dimension d have doubling dimension O(d)); a low

doubling dimension is more general than a low Euclidean dimension and can be

utilised to measure the ‘dimension’ of a general metric space.

Definition 14. We say that F γ-shatters x1, . . . ,xn, if there exists s1, . . . , sn, such

that, for every ε ∈ {±1}n, there exists f ∈ F such that ∀t ∈ {1, . . . , n}

εt(fε(xt)− st) ≥ γ
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Fat-shattering dimension is defined as follows

fatγ(F) = max{n;∃x1, . . . ,xn ∈ X ,

s.t. F γ -shatters x1, . . . ,xn}.

Theorem 4. [18] Let F be the collection of real valued functions over X with the

Lipschitz constant at most L. Define D = fat1/16(F) and let P be some probability

distribution on X × {−1, 1}. Suppose that (xi, ti), i = 1, . . . , n are drawn from

X × {−1, 1} independently according to P . Then for every f ∈ F that classifies a

sample of size n correctly, we have with probability at least 1− δ

P{(x, t) : sign[f(x)] 6= t}

≤ 2

n
(D log2(34en/D) log2(578n) + log2(4/δ)).

Furthermore, if f is correct on all but k examples, we have with probability at least

1− δ

P{(x, t) : sign[f(x)] 6= t}

≤ k

n
+

√
2

n
(D log2(34en/D) log2(578n) + log2(4/δ)).

(2.3)

Proposition 7. In classification problems, ∀xi ∈ S1 and ∀xj ∈ S−1, L =

maxi,j
2

ρ(xi,xj)
, where i and j indicate the index of positive and negative class in-

stances respectively. Then D = fat1/16(F) can be bounded by the surrogate of

Lipschitz Margin Ratio as follows:

D ≤
(

16L diam(X , ρ)
)ddim(X )

≤
(

16L(diam(S1, ρ) + diam(S−1, ρ)) + 32
)ddim(X )

.

(2.4)

Proof. The first inequality has been proved in [18]. We prove the second inequality

here. Because L = maxi,j
2

ρ(xi,xj)
= 2

D(S−1,S1)
, we have

LD(S−1,S1) = 2.
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It follows that

L diam(X , ρ) ≤ L(diam(S1, ρ) + diam(S−1, ρ) +D(S−1,S1))

= L((diam(S1, ρ) + diam(S−1, ρ)) + 2,

where the first inequality is based on Proposition 5. Meanwhile, because

ddim(X ) ≥ 1, the second inequality holds.

Corollary 2. Under the condition that n ≥ D
34e

, the following bounds for the sur-
rogate margin ratios holds. If f is correct on all but k examples, we have with
probability at least 1− δ

P{(x, t) : sign[f(x)] 6= t} ≤ k

n
+√

2

n
((16C)ddim(X ) log2(34en/(16C)ddim(X )) log2(578n) + log2(4/δ)),

(2.5)

where C = L diam(X , ρ) or C = L(diam(S1, ρ) + diam(S−1, ρ)) + 2.

Proof. Substitute the inequalities of Proposition 7 into Theorem 4.

The above learning bound illustrates the relationship between the generalisa-

tion error (i.e. the difference between the expected error P{(x, t) : sign[f(x)] 6=

t} and the empirical error k
n

) and the surrogate inverse Lipschitz margin ratio

L diam(X , ρ) or L(diam(S1, ρ) + diam(S−1, ρ)). Therefore, reducing the value

of surrogate inverse Lipschitz margin ratio would help reduce the gap between the

empirical error and the expected error, which implies an improvement in the gen-

eralisation ability of the model. In other words, the learning bound indicates that

minimising inverse Lipschitz margin ratio would be an effective way to enhance the

generalisation ability and control model complexity.

2.4 Metric Learning via Maximising the Lipschitz

Margin Ratio
From previous sections, we have seen that Lipschitz functions have the following

desirable properties relevant to metric learning:
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• (Close relationship with metrics) The definitions of the Lipschitz constant,

Lipschitz functions and Lipschitz extensions have natural relationship with

metrics.

• (Strong representation ability) Lipschitz functions, in particular Lipschitz ex-

tensions, could obtain small empirical risks, and hence illustrate the represen-

tational capability of Lipschitz functions.

• (Good generalisation ability) Complexity of Lipschitz functions could be con-

trolled by penalising the Lipschitz margin ratio.

Therefore, it is reasonable for us to conduct metric learning with the Lipschitz

functions and control the model complexity by maximising (the lower bound of) the

Lipschitz margin ratio.

2.4.1 Learning Framework

Similarly to other structure risk minimisation approaches, we minimise the em-

pirical risk and maximise (the lower bound of) the Lipschitz margin ratio in the

proposed framework. To estimate (the lower bound of) the Lipschitz margin ratio,

we may either

• use training instances to estimate the Lipschitz constant lip(f ← x) and the

diameters diam(X , ρ), and obtain L̂ and ˆdiam; or

• adopt the upper bounds of lip(f ← x) and diam(X , ρ) by applying the prop-

erties of the classifier f and metric space (X , ρ), and obtain Ls and diams.

The optimisation problem could be formulated as follows:

min
ξ,a,ρ

1/L-Ratio + α
∑N

i=1 ξi

s.t. tif(xi;a, ρ) ≥ 1− ξi
ξi ≥ 0

i = 1, . . . , N,

(2.6)

whereN indicates the number of training instances; a denotes the parameters of the

classification function f ; ξ = {ξi} is the hinge loss; α > 0 is a trade-off parameter
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which balances the empirical risk term
∑N

i=1 ξi and the generalisation ability term

1/L-Ratio. lip(f ← x) and diam(X , ρ), diam(S1, ρ) and diam(S−1, ρ) from the

L-Ratio term, will be replaced by either the empirically estimated values L̂ and

ˆdiam or the theoretical upper bounds Ls and diams.

Empirical estimates of L̂ and ˆdiam can be added as constraints

f(xi;a, ρ)− f(xj;a, ρ)

ρ(xi,xj)
≤ L̂,

ρ(xi,xj) ≤ ˆdiam(X , ρ), where xi ∈ S, xj ∈ S,

ρ(xi,xj) ≤ ˆdiam(S1, ρ), where xi ∈ S1, xj ∈ S1,

ρ(xi,xj) ≤ ˆdiam(S−1, ρ), where xi ∈ S−1, xj ∈ S−1.

Then the objective function of minimising 1/L-RatioDiam becomes

min
ξ,a,ρ,L̂, ˆdiam

L̂ ˆdiam(X , ρ) + α
∑N

i=1 ξi, (2.7)

where the penalty term L̂ ˆdiam(X , ρ) tries to maximise the inter-class margin (via

minimising L̂) and minimise the overall diameter (via minimising ˆdiam(X , ρ)).

The objective function to minimise 1/L-RatioIntra becomes

min
ξ,a,ρ,L̂, ˆdiam

L̂( ˆdiam(S1, ρ) + ˆdiam(S−1, ρ)) + α
N∑
i=1

ξi,

or we can minimise an upper bound of 1/L-RatioIntra as

min
ξ,a,ρ,L̂, ˆdiam

2L̂max( ˆdiam(S1, ρ), ˆdiam(S−1, ρ)) + α
N∑
i=1

ξi, (2.8)

where the penalty termL( ˆdiam(S1, ρ)+diam(S−1, ρ)) or L̂max( ˆdiam(S1, ρ), ˆdiam(S−1, ρ))

tries to maximise the inter-class margin (via minimising L̂) and minimise

the intra-class dispersion (via minimising ˆdiam(S1, ρ) + ˆdiam(S−1, ρ) or

max( ˆdiam(S1, ρ), ˆdiam(S−1, ρ))) at the same time.
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2.4.2 Relationship with other Metric Learning Methods

Some widely adopted metric learning algorithms can be shown as special cases of

the proposed framework.

As presented in Appendix 2.7.3, based on our framework, the regularisation

term of Large Margin Metric Learning (LMML) [56] could be interpreted as an

upper bound of 1/L-RatioDiam margin ratio; and this framework could suggest a

reasonable strategy for choosing the target neighbours and the imposter neighbours

in LMML. Also as discussed in Appendix 2.7.4, we can see that the regularisation

term of LMNN [76] could be interpreted as an upper bound of 1/Local-RatioIntra.

2.4.3 Applying the Framework for Learning the Squared Ma-

halanobis Metric

We now apply the proposed framework to learn the squared Mahalanobis metric,

ρM (xi,xj) = (xi − xj)TM (xi − xj),M ∈M+,

whereM+ denotes the set of positive semi-definite matrices. A Lipschitz extension

function is selected as the classifier:

f(x;a, ρ) =U1/2(x)

=
1

2
min

i=1,...,N
(ai + LρM (x,xi))+

1

2
max

i=1,...,N
(ai − LρM (x,xi)).

(2.9)

In binary classification tasks, let ti ∈ {−1,+1} indicate the label of xi, i =

1, . . . , N .

Based on the framework of (2.6) and (2.7), firstly we propose an optimisation
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formula which penalises the L-RatioDiam:

min
a,ξ,M , ˆdiam,L̂

L̂ ˆdiam + α
∑N

i=1 ξi

s.t.
|ai−aj |

ρM (xi,xj)
≤ L̂

ρM (xi,xj) ≤ ˆdiam

tiai = 1− ξi
ξi ≥ 0,M ∈M+

xi ∈ S,xj ∈ S.

(2.10)

At first glance, the optimisation problem seems quite complex. However, based

on the smoothness assumption, balanced class assumption (|S1| = |S2|) and some

equivalent transformations, as illustrated in Appendix 2.7.5, the following optimi-

sation problem can be obtained:

min
ξ,M ′,d

cd+
∑
ξij

s.t. ρM ′(xi,xj) ≥ 2− ξij
xi and xj are instance pairs with different labels

ρM ′(xm,xn) ≤ d

ξij ≥ 0,M ′ ∈M+

xm,xn ∈ S.

(2.11)

Intuitively speaking, the first set of inequality constraints indicate that the distances

between samples from different classes should be large; and the third set of inequal-

ity constraints indicate that the estimated diameter should be small.

Based on the framework in (2.6) and (2.8), we can also propose an optimisation
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formula which penalises the upper bound of 1/L-RatioIntra:

min
a,ξ,M , ˆdiam,L̂

L̂ ˆdiam + α
∑N

i=1 ξi

s.t.
|ai−aj |

ρM (xi,xj)
≤ L̂

ρM (xm,xn) ≤ ˆdiam

xm and xn are instance pairs with the same label

tiai = 1− ξi
ξi ≥ 0,M ∈M+

xi,xj ∈ S.

(2.12)

The only difference between (2.10) and (2.12) lies on the selected instance pairs to

estimate ˆdiam: (2.10) utilises all instance pairs to estimate the diameter of all the

training instances, while (2.12) utilises the instances pairs with the same label to

estimate the maximum intra-class dispersion. Similarly to the transformations from

(2.10) to (2.11), the following optimisation problem can be obtained:

min
ξ,M ′,d

cd+
∑
ξij

s.t. ρM ′(xi,xj) ≥ 2− ξi − ξj
xi and xj are instance pairs with different labels

ρM ′(xm,xn) ≤ d

xm and xn are instance pairs with the same label

ξi ≥ 0,M ′ ∈M+.

(2.13)

In order to solve (2.11) and (2.13) more efficiently, alternating direction meth-

ods of multipliers (ADMM) have been adopted (see Algorithm 1), and the detailed

derivation of the ADMM algorithm is presented in Appendix 2.7.6.

2.5 Experiments

To evaluate the performance of our proposed methods, we compare them with

four widely adopted distance-based algorithms: nearest neighbor (NN), large

margin nearest neighbor (LMNN) [76], maximally collapsing metric learning
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Algorithm 1 ADMM for (2.11)
Input:
A1,A2

Initialise:
M = I,m1 = m2 = vector(M),p = 2−A1m1,
q = 2−A2m2,α1,2,3,4 = 0

while not converged do
1. Update pt+1

ij using (2.18)
2. Update qt+1

ij using bisection search for t∗ and Equation 2.19
3. Updatemt+1

1 using (2.20)
4. Updatemt+1

2 using (2.21)
5. Updatemt+1 using (2.22)
6. Update the Lagrangian multipliers αt+1

1 , αt+1
2 , αt+1

3 , αt+1
4 using (2.23)

end while
Output: M

(MCML) [15] and neighborhood Components Analysis (NCA) [17]. Under our

framework, we have implemented LipD (based on the diameter Lipschitz margin ra-

tio), LipI (based on the intra-class Lipschitz margin ratio), LipD(P) (ADMM-based

fast LipD), LipI(P) (ADMM-based fast LipI).

Our proposed LipD, LipI are implemented using the cvx toolbox2 in MATLAB

with the solver of SeDuMi [63]. The C in our algorithm is fixed at 1 and the λ in

the ADMM algorithm is fixed at 1. The LMNN, MCML and NCA are from the

dimension reduction toolbox3.

In the experiments, we focus on the most representative task, binary classi-

fication. Eight publicly available data sets from the websites of UCI4 and Lib-

SVM5 are adopted to evaluate the performance, namely Statlog/LibSVM Aus-

tralian Credit Approval (Australian), UCI/LibSVM Original Breast Cancer Wis-

consin (Cancer), UCI/LibSVM Pima Indians Diabetes (Diabetes), UCI Echocardio-

gram (Echo), UCI Fertility (Fertility), LibSVM Fourclass (Fourclass), UCI Haber-

man’s Survival (Haberman) and UCI Congressional Voting Records (Voting). For

each data set, 60% instances are randomly selected as training samples, the rest as

2http://cvxr.com/
3https://lvdmaaten.github.io/drtoolbox/
4https://archive.ics.uci.edu/ml/datasets.html
5https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html
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Table 2.1: Experiment results of large margin ratio metric learning. Mean accuracy (per-
centage) and standard deviations are reported with the best ones in bold and
underlined.

data sets LipD LipD(P) LipI LipI(P)
Australian 79.64± 2.27 80.04± 1.92 80.90± 1.74 80.29± 2.15

Cancer 95.30± 1.12 94.84± 0.95 95.27± 1.01 94.84± 0.95
Diabetes 69.42± 2.03 69.38± 1.59 69.64± 2.62 68.80± 1.29

Echo 68.00± 5.49 69.00± 6.30 68.67± 8.64 68.67± 5.92
Fertility 79.02± 4.48 81.46± 5.04 78.05± 6.60 80.98± 3.78

Fourclass 99.91± 0.14 99.91± 0.14 99.86± 0.15 99.88± 0.15
Haberman 66.42± 2.20 66.26± 3.12 66.42± 2.27 65.77± 2.83

Voting 93.37± 2.29 92.40± 1.90 93.83± 1.26 92.40± 1.90
# of best 2 2 3 0

data sets NN LMNN MCML NCA
Australian 79.89± 1.31 79.96± 2.61 79.89± 2.30 79.89± 1.18

Cancer 95.61± 0.68 95.41± 0.66 95.37± 1.14 94.95± 1.17
Diabetes 69.46± 1.22 69.90± 1.79 70.03± 1.34 68.44± 2.69

Echo 65.36± 2.43 62.00± 10.56 66.33± 2.92 66.33± 4.97
Fertility 83.21± 2.79 84.39± 2.36 83.17± 5.69 83.66± 2.31

Fourclass 99.87± 1.14 99.68± 0.42 99.88± 0.20 99.68± 0.62
Haberman 66.25± 1.74 66.26± 3.12 66.42± 2.24 63.66± 3.93

Voting 92.85± 0.79 93.31± 0.72 92.40± 1.66 93.37± 1.50
# of best 0 2 2 0

test samples. This process is repeated 10 times and the mean accuracy is reported.

As shown in Table 2.1, the proposed algorithms Lip achieve the best mean

accuracy on four data sets and equally best with MCML on one data set. The Lip

outperforms 1-NN and NCA on seven data sets and LMNN and MCML on five data

sets. The only dataset that the Lip performs worse than all other methods is Fertility,

in which our method potentially suffers from within-class outliers and hence has a

large intra-class dispersion. Apart from this data set, LMNN or MCML outperforms

the Lip by only a small performance gap, less than 0.5%. Such encouraging results

demonstrate the effectiveness of the proposed framework.

2.6 Conclusion
In this chapter, we have presented that the representation ability of Lipschitz func-

tions is very strong and the complexity of the Lipschitz functions in a metric space
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can be controlled by penalising the Lipschitz margin ratio. Based on these desirable

properties, we have proposed a new metric learning framework via maximising the

Lipschitz margin ratio. An application of this framework for learning the squared

Mahalanobis metric has been implemented and the experiment results are encour-

aging.

The diameter Lipschitz margin ratio or the intra-class Lipschitz margin ratio in

the optimisation function is equivalent to an adaptive regularisation. In other words,

since we encourage samples to stay close within the same class, samples which

locate near the class boundary are valued more than those in the centre. Therefore,

the performance of our method may deteriorate under the existence of outliers and

this problem has been reported on the data set Fertility. We aim to develop more

robust methods in our future work.

The local property within a data set could vary dramatically, and hence it is

worthwhile to develop an algorithm based on local Lipschitz margin ratio. One

option is to follow the idea of LMNN, learning a general metric but considering

different local Lipschitz margin ratio; or we can learn a separate metric on each

local area.

2.7 Appendix

2.7.1 Proof on Proposition 5

Proof. In any metric space (X , ρ), let xa and xb denote the training instances which

satisfy

ρ(xa,xb) = diam(S, ρ) = argmax
xa,xb∈S

ρ(xa,xb).

(1) If ta = tb,

diam(S, ρ) = ρ(xa,xb)

= diam(Sta , ρ)

≤ diam(S1, ρ) + diam(S−1, ρ) +D(S−1,S1).
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(2) If ta 6= tb, let xn and xm denote the nearest instances from different classes, i.e.

ρ(xn,xm) = D(S1,S−1) = min
xi∈S−1,xj∈S+1

ρ(xi,xj),

where xn ∈ Sta ,xm ∈ Stb . We can see

diam(X , ρ) = ρ(xa,xb)

≤ ρ(xa,xn) + ρ(xn,xm) + ρ(xm,xb)

≤ diam(S1, ρ) +D(S−1,S1) + diam(S−1, ρ).

Take the definition of L-RatioDiam and L-RatioIntra:

1

L-RatioDiam
=

diam(X , ρ)

D(S1,S−1)

≤ diam(S1, ρ) +D(S−1,S1) + diam(S−1, ρ)

D(S−1,S1)

=
diam(S1, ρ) + diam(S−1, ρ)

D(S−1,S1)
+ 1

=
1

L-RatioIntra
+ 1.

2.7.2 Properties of Lipschitz Functions

Lipschitz constant can also be obtained based on the basic ones using the following

lemma.

Lemma 5. [44, 74] Let h1, h2 ∈ lip(h← u). Then

(a) lip(h1 + h2 ← u) ≤ lip(h1 ← u) + lip(h2 ← u),

lip(h1 − h2 ← u) ≤ lip(h1 ← u) + lip(h2 ← u);

(b) lip(ah1 ← u) ≤ |a| lip(h1 ← u), where a is a constant;

(c) lip(min(h1, h2)← u) ≤ max{lip(h1 ← u), lip(h2 ← u)},

lip(max(h1, h2)← u) ≤ max{lip(h1 ← u), lip(h2 ← u)},

where max(h1, h2) or min(h1, h2) denotes the pointwise maximum or minimum of

functions h1 and h2;
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(d) lip(h2◦h1 ← u) ≤ lip(h2 ← h1) lip(h1 ← u), where ◦ denotes the composition

of functions.

This lemma illustrates that after the operations of multiplication by constant,

addition, subtraction, minimisation, maximisation and function composition, the

functions are still Lipschitz continuous.

Lemma 6. [44, 74] Let lip(h1 ← u) and lip(h2 ← u) be finite and h1, h2 are

bounded real-valued functions. Then the product h1h2
6 is again Lipschitz continu-

ous and

lip(h1h2 ← u) ≤ ‖h1‖∞ lip(h2 ← u) + ‖h2‖∞ lip(h1 ← u),

where ‖h‖∞ = maxu h(u).

This lemma illustrates that after the operation of function multiplication, the

result is a Lipschitz function if the basic Lipschitz functions are bounded.

2.7.3 Relationship between Lipschitz Margin Ratio and LMML

[56]

The large margin metric learning (LMML) algorithm [56] has a close relationship

with the proposed framework (2.6). Based on our proposed framework, the reg-

ularisation term of LMML could be interpreted as an upper bound of the inverse

Lipschitz margin ratio. At the same time, the proposed framework could suggest a

reasonable strategy for choosing the target neighbours and the imposter neighbours

in LMML.

LMML uses the Mahalanobis metric DM , and the classification function of

NN is equivalent to the following f(x):

f(x) = DM (x,S−1)−DM (x,S1)

= min
a
{ρM (x,xa)} −min

b
{ρM (x,xb)},

(2.14)

where xa ∈ S−1, xb ∈ S1.
6The product of two functions f, g is the componentwise multiplication: (fg)(x) = f(x)g(x).
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Then LMML adopts an upper bound of 1/L-RatioDiam ≤ lip(f ←

x) diam(X , DM ) as the regularisation term. Because lip(ρM(x,xa) ← x) = 1,

according to Lemma 5(c), lip(min
a
{ρM (x,xa) ← x}) ≤ 1. Then according to

Lemma 5(a), lip(f ← x) is bounded by 2 and

lip(f ← x) max
n,m

(xn − xm)TM(xn − xm)

= lip(f ← x) max
n,m
‖(xn − xm)TM (xn − xm)‖2

≤ lip(f ← x) max
n,m
‖xn − xm‖2

2‖M‖F

≤ C‖M‖F ,

where C = 2 maxn,m ‖xn − xm‖2
2 and xn,xm ∈ X . The first inequality holds be-

cause the matrix Frobenius norm is consistent with the vector L2-norm. Therefore,

the Frobenius norm or the squared Frobenius norm may be used as the regularisation

term.

Based on the above discussion, in this special case, the proposed framework

(2.6) could be represented as

min
M ,ξ

‖M‖2
F + α

∑N
i=1 ξ

o
i

s.t. tif(xi;a) ≥ 1− ξoi
ξoi ≥ 0,M ∈M+.

(2.15)

Then, the constraints of ρM (xi,xk) − ρM (xi,xj) ≥ 1 − ξi, j → i, k 9 i in the

optimisation problem of LMML serve as a heuristic approximation of tif(xi;a) ≥

1− ξi.

In fact, by choosing the target neighbour xj of xi as the nearest neigh-

bour within the same class measured via the Euclidean metric and the im-

poster neighbours xk as all the instances within the different class, i.e. j =

argminu ρM=I(xi,xu) and k ∈ {u|xu ∈ S−ti}, min
k
{ρM (xi,xk)} − ρM (xi,xj)
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would be an upper bound of tif(xi). This is because

tif(xi) = DM (xi,S−ti)−DM (xi,Sti)

= min
k
{ρM (xi,xk)} −DM (xi,Sti)

≥ min
k
{ρM (xi,xk)} − ρM (xi,xj),

where the last inequality holds since xj is xi’s nearest neighbour within the same

class measured via the Euclidean metric and cannot be guaranteed to be the neigh-

bour with in the same class with metric M , but −DM (xi,Sti) ≥ −ρM (xi,xj)

always holds.

Let tig(xi) = min
k
{ρM (xi,xk)} − ρM (xi,xj), then the hinge loss of tig(xi),

i.e. max[1−tig(xi), 0], is the upper bound of the hinge loss of tif(xi), i.e. max[1−

tif(xi), 0], because

tig(xi) = min
k
{ρM (xi,xk)} − ρM (xi,xj) ≤ tif(xi)

⇒1− tig(xi) ≥ 1− tif(xi)

⇒max[1− tig(xi), 0] ≥ max[1− tif(xi), 0].

Therefore, the hinge loss ξi obtained by the following optimisation problem is the

upper bound of ξoi in (2.15):

min
M ,ξ

‖M‖2
F + α

∑N
i=1 ξi

s.t. tig(xi;a) ≥ 1− ξi
ξi ≥ 0,M ∈M+.

The above optimisation problem is equivalent to the following one:

min
M ,ξ

‖M‖2
F + α

∑N
i=1 ξi

s.t. ρM (xi,xk)− ρM (xi,xj) ≥ 1− ξi
ξi ≥ 0,M ∈M+,

wherexj isxi’s nearest neighbour within the same class measured via the Euclidean
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metric and xk are all the instances within the different class. This is a special case of

the optimisation problem of LMML. Instead of using a heuristic approximation of

the empirical risk, this setting of the target neighbour and the imposter neighbours

could guarantee that ξi is the upper bound of ξoi .

2.7.4 Relationship between Lipschitz Margin Ratio and LMNN

[76]

The large margin nearest neighbor (LMNN) [76] also has a close relationship with

the proposed framework. Similarly to that for LMML, the proposed framework

could provide a reasonable strategy for choosing the target neighbours and the

imposter neighbours in LMNN. In the following discussion, let xj be xi’s near-

est neighbour within the same class measured via the Euclidean metric and let

{xk} be the set of all instances within the different class of xi. We shall show

that the regularisation term of LMNN could be interpreted as an upper bound of

1/Local-RatioIntra and ξi is also an upper bound of the empirical loss of xi.

LMNN uses the Mahalanobis metric ρM , and the classification function is the

same as that of LMML (2.14).

When the local margin of xi with metric ρM is considered, the ideal subset

Sl around xi is {xi,xm,xn}, where xm is xi’s nearest neighbour within the same

class measured via the metric ρM and xn is xi’s nearest neighbour within the dif-

ferent class measured via the metric ρM . This subset is important for xi because

it determines the classification function of xi. Based on Definition 12, the local

inverse Lipschitz margin ratio could be expressed as

diam(Sl, ρM )

L-Margin
,
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and based on Proposition 5, it could be bounded as

1

Local-RatioIntra
=

diam(Sl1, ρ
l) + diam(Sl−1, ρ

l)

L-Margin

≤ 1

2
lip(f ← x){diam(Slti , ρM ) + diam(Sl−ti , ρM )}

=
1

2
lip(f ← x)ρM (xi,xm),

where the last equality holds because Sl = {xi,xm,xn}, so Slti = {xi,xm},

Sl−ti = {xn} and diam(Slti , ρM ) = ρM (xi,xm), diam(Sl−ti , ρM ) = 0. Because

lip(f ← x) ≤ 2, we can see

1

Local-RatioIntra
≤ ρM (xi,xm) ≤ ρM (xi,xj),

where the second inequality holds because xj is defined as xi’s nearest neighbour

within the same class measured via the Euclidean metric and xm may not be the

same as xj , thus

ρM (xi,xm) = DM (xi,Sti)

= min
xu∈Sti

ρM (xi,xu)

≤ ρM (xi,xj), ∀xj ∈ Sti .

Therefore, it is reasonable to penalise the sum of the upper bound of the local inverse

Lipschitz margin ratios via ∑
i

ρM (xi,xj).

Similarly to the discussion of LMML, the strategy of choosing target and im-

poster neighbours could guarantee that ξi is the upper bound of the empirical risk

of xi.

The optimisation problem based on the proposed framework (2.6) could be
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rewritten as
min
M ,ξ

∑
i ρM (xi,xj) + α

∑
i ξi

s.t. ρM (xi,xj)− ρM (xi,xk) ≥ 1− ξi
ξi ≥ 0,M ∈M+,

(2.16)

where xj is xi’s nearest neighbour within the same class measured via Euclidean

metric and xk are all the instances within the different class of xi. This is an optimi-

sation problem of LMNN with a special strategy for choosing the target neighbour

and imposter neighbour. This strategy could guarantee that ξi is the upper bound of

the empirical risk.

2.7.5 From (2.10) to (2.11)

To start with, we assume that the intra class area is relatively smooth and L̂ is always

determined by instance pairs with different labels, then the optimisation problem

(2.10) can be written as

min
a,ξ,M , ˆdiam,L̂

L̂ ˆdiam + α
∑N

n=1 ξi

s.t.
|ai−aj |

ρM (xi,xj)
≤ L̂

xi and xj are instance pairs

with different labels.

ρM (xm,xn) ≤ ˆdiam

tmam = 1− ξm
ξi ≥ 0,M ∈M+

xm,xn ∈ S.

(2.17)

For the squared Mahalanobis metric, we have the following property:

∀C, CρM (xi,xj) = ρCM (xi,xj),

where C is any constant.

Based on this property, the optimisation problem (2.17) is equivalent to the
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following one:

min
a,ξ,M ,L̂, ˆdiam

L̂ ˆdiam + α
∑N

n=1 ξi

s.t. |ai − aj| ≤ ρL̂M (xi,xj)

xi and xj are instance pairs with different labels

ρL̂M (xm,xn) ≤ L̂ ˆdiam

tmam = 1− ξm
ξi ≥ 0,M ∈M+

xm,xn ∈ S.

Take tmam = 1 − ξm into the first constraint, because xi and xj are from different

classes, we have

|ai − aj| = |1− ξi − (ξj − 1)| = |2− ξi − ξj|.

Therefore, the objective function becomes

min
ξ,M ,L̂, ˆdiam

L̂ ˆdiam + α
∑N

n=1 ξn

s.t. ρL̂M (xi,xj) ≥ |2− ξi − ξj|

xi and xj are instance pairs with different labels

ρL̂M (xm,xn) ≤ L̂ ˆdiam

ξi ≥ 0,M ∈M+

xm,xn ∈ S,
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which is equivalent to the following optimisation problem:

min
ξ,M ,L̂, ˆdiam

L̂ ˆdiam + α
∑N

n=1 ξn

s.t. ρL̂M (xi,xj) ≥ 2− ξi − ξj
ρL̂M (xi,xj) ≥ ξi + ξj − 2

xi and xj are instance pairs with different labels

ρL̂M (xm,xn) ≤ L̂ ˆdiam

ξi ≥ 0,M ∈M+

xm,xn ∈ S.

To simplify the notation, we denote ξij = ξi + ξj . With the assumption of balanced

class, i.e. |S1| = |S2| = N
2

, we have
∑

ti 6=tj ξij = N
∑N

n=1 ξn. Let d = L̂ ˆdiam,

M ′ = L̂M , and c = 1
αN

. This turns the optimisation problem into:

min
ξ,M ′,d

cd+
∑N

i,j=1 ξij

s.t. ρM ′(xi,xj) ≥ 2− ξij
ρM ′(xi,xj) ≥ ξij − 2

xi and xj are instance pairs with different labels

ρM ′(xm,xn) ≤ d

ξij ≥ 0,M ′ ∈M+

xm,xn ∈ S.

The constraints with respect to ξij are (i)ξij ≥ 2 − ρM ′(xi,xj), (ii)ξij ≤ 2 +

ρM ′(xi,xj) and (iii)ξij ≥ 0. The objective function is to minimise ξij , based on

the objective function, constraints (iii), constraints (i) and the fact ρM ′(xi,xj) ≥ 0,

the maximal value of ξij would be smaller or equal to 2. Thus constraints (ii) would

always be satisfied. Thus constraints (ii) could be deleted and the optimisation

problem could be formulated as (2.11).

2.7.6 ADMM Algorithm for (2.11) and (2.13)

The only difference between (2.11) and (2.13) lies on the selected instance pairs to

estimate ˆdiam. For simplicity, only the derivation process of ADMM for (2.11) is



2.7. Appendix 62

illustrated here.

To start with, (2.11) is as follows

min
ξ,M ′,d

cd+
∑N

i,j=1 ξij

s.t. ρM ′(xi,xj) ≥ 2− ξij for ti 6= tj

ρM ′(xm,xn) ≤ d

ξij ≥ 0,M ′ ∈M+.

Apply the definition of the squared Mahalanobis directly into the constraint:

min
ξ,M ′,d

cd+
∑N

i,j=1 ξij

s.t. (xi − xj)(xi − xj)T ⊗M ′ ≥ 2− ξij for ti 6= tj

(xm − xn)(xm − xn)T ⊗M ′ ≥ d

ξij ≥ 0,M ′ ∈M+,

where we defineA⊗B =
∑

i,jAij ·Bij .

We now stack the columns of M ′ into a vector and call this vector m. Simi-

larly, we take the vectorization of (xi−xj)(xi−xj)T and (xm−xn)(xm−xn)T ,

take their transpose and name them asA1,ij andA2,mn, respectively. The optimisa-

tion problem is then equivalent to

min
ξ,M ′,d

cd+
∑N

i,j=1 ξij

s.t. ξij ≥ 2−A1,ijm for ti 6= tj

d ≥ A2,mnm

ξij ≥ 0,M ′ ∈M+,

where

m = vector(M ′) ∈ R(p×p)×1,

A1,ij = [vector((xi − xj)(xi − xj)T )]T ,

A2,mn = [vector((xm − xn)(xm − xn)T )]T ,

p = dim(M ′) and v = vector(V ) reshapes any matrix V ∈ Ra×b into a vector
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v ∈ R(a×b)×1.

Transform this problem into the consensus form [51]:

min
ξ,M ′,d

cmax
i,j

(qij) +
∑N

i,j=1 max
i,j

(0, pij) + ĨM+(M ′)

s.t. p = 2−A1m1, p ∈ R(N1×N2)×1

q = A2m2, q ∈ R(N×N)×1

m1 = m2 = m, m1,m2,m ∈ R(p×p)×1,

where A1 ∈ R(N1×N2)×(p×p) consists of (N1 × N2) blocks of A1,ij and A2 ∈

R(N×N)×(p×p) consists of (N×N) blocks ofA2,mn. HereN1 andN2 are the number

of instances in class 1 and 2 respectively. ĨC(x) =

0, x ∈ C

∞, x 6∈ C
.

The Augmented Lagrangian function of the above optimisation problem be-

comes

Lµ(α1,α2,α3,α4,p, q,m1,m2,M
′)

=cmax
i,j

(qij) +
N∑

i,j=1

max
i,j

(0, pij) + ĨM+(M ′)+

αT1 (m1 −m) +αT2 (m2 −m)+

αT3 (p+A1m1 − 2) +αT4 (q −A2m2)+

µ

2
||m1 −m||22 +

µ

2
||m2 −m||22+

µ

2
||p+A1m1 − 2||22 +

µ

2
||q −A2m2||22,

where α1 ∈ R(p×p)×1, α2 ∈ R(p×p)×1, α3 ∈ R(N1×N2)×1, α4 ∈ R(N×N)×1 are the

Lagrangian multipliers and µ ∈ R1 is the regularisation parameter.

We apply the Alternating Direction Method of Multipliers algorithm (ADMM)

to solve this problem. Specifically, we minimise p, q,m1,m2,M
′ respectively by

fixing other variables and then update α1,α2,α3,α4.

(1) Update pij

argminpij Lµ = argminpij

{
max(0, pij) +αT3 pij +

µ

2
||pij +A1,ijm1 − 2||22

}
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According to the proposition in [81],

Sλ(ω) = argminx

{
λmax(0, x) +

1

2
||x− ω||22

}
has the solution

Sλ(ω) =


ω − λ if ω > λ

0 if 0 ≤ ω ≤ λ

ω if ω < 0.

Our minimisation function can thus be formulated as

argminpij Lµ = argminpij

{
max(0, pij) +

µ

2
||pij − (2−A1,ijm1 −

α3,ij

µ
)||

2

2

}
= S 1

µ
(2−A1,ijm1 −

α3,ij

µ
)

Hence we have

pt+1
ij =


2−A1,ijm

t
1 −

αt
3,ij+1

µ if 2−A1,ijm
t
1 −

αt
3,ij

µ > 1
µ

0 if 0 ≤ 2−A1m
t
1 −

αt
3

µ ≤
1
µ

2−A1,ijm
t
1 −

αt
3,ij

µ if 2−A1,ijm
t
1 −

αt
3,ij

µ < 0

(2.18)

(2) Update qij

argminqij Lµ = argminqij

{
cmax

i,j
(qij) +αT4 qij +

µ

2
||qij −A2,ijm2||22

}
.

According to [51], the optimisation function

min
x

max
i
xi +

1

2λ
||x− v||22

can be written as
minx t+ 1

2λ
||x− v||22

s.t. xi ≤ t i = 1, · · · , n.

According to Section 6.4.1 of [51], the optimal value t? needs to satisfy the condi-
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tion
n∑
i=1

1

λ
max(0, vi − t?) = 1,

and this equation can be solved by bisection. Then, the optimal x? can be obtained

as

x?i = min(t?, vi).

Therefore, we rewrite our objective function as follows:

min
qij

Lµ ⇔ min
qij

max(qij) +
µ

2c
||qij − (A2,ijm2 −

α4,ij

µ
)||

2

2

.

Hence

qt+1
ij = min(t?,A2,ijm

t
2 −

αt4,ij
µ

), (2.19)

and t? satisfies
N∑

i,j=1

µ

c
(A2,ijm

t
2 −

αt4,ij
µ
− t?) = 1.

(3) Updatem1

min
m1

Lµ ⇔ min
m1

αT1m1 +αT3A1m1+

µ

2
||m1 −m||22 +

µ

2
||p+A1m1 − 2||22.

Take the derivative with respect tom1, we get

µ(AT
1A1 + I)m?

1 +α1 +AT
1α3 − µm+ µAT

1 p− 2µAT
1 1 = 0,

where I is the identity matrix and 1 is the vector with all components being 1.
Hence, we updatem1 as follows:

mt+1
1 = (AT

1A1 + I)−1(mt − α
t
1 +AT

1 α
t
3 + µAT

1 p
t+1 − 2µAT

1 1

µ
). (2.20)

We can save (AT
1A1 + I)−1 in the memory so as to improve the computational

efficiency.

(4) Updatem2
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min
m2

Lµ ⇔ min
m2

αT2m2 −αT4A2m2+

µ

2
||m2 −m||22 +

µ

2
||q −A2m2||22.

Take the derivative with respect tom2, we get

µ(AT
2A2 + I)m?

2 +α2 −AT
2α4 − µm− µAT

2 q = 0.

Updatem2 as follows:

mt+1
2 = (AT

2A2 + I)−1(mt +
AT

2α
t
4 + µAT

2 q
t+1 −αt2

µ
). (2.21)

(5) UpdateM ′ (and hencem)

min
M ′/m

ĨM+(M ′) +αT1 (m1 −m) +αT2 (m2 −m)

+µ
2
||m1 −m||22 + µ

2
||m2 −m||22.

Hence, updatem as

mt+1 =
∏

M+

(
matrix(

mt+1
1 +mt+1

2

2
+
αt1 +αt2

2µ
)+

matrix(
mt+1

1 +mt+1
2

2
+
αt1 +αt2

2µ
)′
)
/2,

(2.22)

where V = matrix(v) is the reverse operation of v = vector(V ) and it reshapes

a vector v ∈ R(p×p)×1 into a matrix V ∈ Rp×p.
∏
M+

denotes the projection of a

symmetric matrix onto the positive semi-definite coneM+.

(6) Update α

αt+1
1 = αt1 + µ(mt+1

1 −mt+1)

αt+1
2 = αt2 + µ(mt+1

2 −mt+1)

αt+1
3 = αt3 + µ(pt+1 +A1m

t+1
1 − 2)

αt+1
4 = αt4 + µ(qt+1 −A2m

t+1
2 ).

(2.23)



Chapter 3

Metric Learning with Local Metrics

3.1 Introduction

Classification is a long-standing area of machine learning. While deep learning clas-

sifiers have obtained superior performance on numerous applications, they generally

require a large amount of labelled data. For small data sets, traditional classification

algorithms remain valuable.

The nearest neighbour (NN) classifier is one of the most commonly used meth-

ods for classification, which determines the class label based on the distances be-

tween a new instance and the training instances. However, with different metrics,

the performance of NN could be quite different. Hence it is very beneficial to find a

well-suited and adaptive distance metric for specific applications. To this end, met-

ric learning is an appealing technique. It enables the algorithms to automatically

learn a metric from available data. Metric learning with a convex objective function

was first proposed in the seminal work of Xing [78]. After that, many other metric

learning methods have been developed and widely adopted, such as the large margin

nearest neighbour (LMNN) [76] and the information theoretic metric learning [9].

Some theoretical work has also been proposed for metric learning, especially on de-

riving different generalisation bounds [33, 8, 20, 67], and deep networks have been

used to represent nonlinear metrics [24, 40]. In addition, metric learning methods

have been developed for specific purposes, including multi-output tasks [39], multi-

view learning [25], medical image retrieval [80], kinship verification tasks [79], face
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Figure 3.1: An example of calculating the distance between points xi and xj with local
metrics. A1 and A2 are different influential regions with metrics M(A1) and
M(A2) and B is the background region with metric M(B). The distance be-
tween xi and xj equals to the sum of three line segments’ local distances,
namely l(xixj ∩A1;M(A1)), l(xixj ∩A2;M(A2)) and l(xixj ∩B;M(B)).

recognition tasks [27], tracking problems [69] and so on.

Most aforementioned methods use a single metric for the whole metric space

and thus may not suit well for data sets with multimodality. To solve this problem,

local metric learning algorithms have been proposed [14, 76, 70, 26, 5, 59, 55, 62,

49].

Most of these localised algorithms could be categorised into two groups: 1)

Each data point or cluster of data points has a local metric M(xi). This, how-

ever, results in an asymmetric distance as illustrated in [70], i.e. M(xi) 6= M(xj)

may lead to an unequal distance ρ(xi,xj;M(xi)) 6= ρ(xj,xi;M(xj)). 2) Each

line segment or cluster of line segments has a local metric M(xi,xj). The def-

initions of M(xi,xj), such as
∑

k wk(xi,xj)Mk in [5] where wk is defined as

P (k|xi) + P (k|xj) to guarantee the symmetry and P (k|xi) or P (k|xj) is the pos-

terior probability that x belongs to the kth component in the Gaussian mixture

model(GMM), are nonetheless not very intuitive.

In this chapter, an intuitive, symmetric distance and a novel local metric learn-

ing method are proposed. By splitting the metric space into influential regions and

a background region, the distance between any two points is defined as the sum of
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Figure 3.2: An illustration of the benefits of learning local influential regions. The distance
between the adjacent vertical/horizontal grids is one unit. The multimodality
issue is solved by dividing positive samples into two local regions. A suitable
local metric helps increase the class separability, such as increasing l(N1P1)
and l(N2P3) while decreasing l(P1P2) and l(P3P4).

lengths of line segments in each region, as illustrated in Figure 3.1. Building mul-

tiple influential regions solves the multimodality issue and learning a suitable local

metric in each influential region improves class separability, as shown in Figure 3.2.

To establish the proposed new distance and local metric learning method, the

rest of this chapter is organised as follows. First, in Section 3.2, some key concepts

are introduced, namely influential regions, local metrics and line segments, which

lead to a new definition of the distance. Next, in Section 3.3, we calculate the dis-

tance by discussing the geometric relationship between line segment and influential

regions. Then, in Section 3.4 we build a novel classifier based on the proposed local

metric and its learnablity is studied in Section 3.4.2. After that in Section 3.5, we

formulate a non-convex optimisation problem using the empirical hinge loss and

regularisation terms from the derived learning bound and solve it via the gradient

descent algorithm. In Section 3.6, the proposed local metric learning algorithm is

tested on 14 publicly available data sets. It achieves the best performance on eight of

these data sets, much better than state-of-the-art competitors. Section 3.7 presents
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some concluding remarks and future work.

3.2 Definitions of Influential Regions, Local Metrics

and Distance
In this section, influential regions As, s = 1, . . . , S, and the background region B

will be defined first. Next, the distance between xi and xj will be defined as the

sum of lengths of line segments in each influential region and the background region

with corresponding local metrics M (As) and M (B), as illustrated in Figure 3.1.

Since the metric is defined with respect to line segments, the distance is symmetric,

that is ρ(xi,xj) = ρM(xixj)(xi,xj) = ρM(xjxi)(xj,xi) = ρ(xj,xi).

To simplify later calculations, the shape of each influential region is restricted

to be a ball.

Definition 15. Influential regions are defined to be any set of balls or hyperspheres

inside the metric space:

A = {As, s = 1, . . . , S},

where S denotes the number of influential regions; As = Ball(os, rs), in which

Ball(os, rs) denotes a ball with the centre at os and radius of rs; the location of

each influential region is determined by the Euclidean distance; and points x ∈ As
form a set with the following form

{x|(os − x)T (os − x) ≤ r2
s}. (3.1)

Definition 16. Background region is defined to be the region excluding influential

regions:

B = U −
⋃

s=1,...,S

As,

where U denotes the universe set.

Throughout this chapter, the distance between two points xi and xj is equiv-

alent to the length of line segment xixj , i.e. ρ(xi,xj) = l(xixj). Length l(xixj)
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in influential regions and the background region will be defined separately with

respective metrics.

Definition 17. Each influential region As has its own local metric M (As). The

length of a line segment xixj inside an influential region As is defined as1

l(xixj;M (As)) =ρM(As)(xi,xj)

=
√

(xi − xj)TM (As)(xi − xj).
(3.2)

To make illustrations more intuitive, the distance adopted in this chapter would be

based on the Mahalanobis distance2.

Definition 18. The background region B has a background metricM(B). For any

two points xi,xj ∈ B and xixj ⊆ B, the length of a line segment is defined as

l(xixj;M (B)) = ρM(B)(xi,xj)

=
√

(xi − xj)TM (B)(xi − xj).

Two remarks are made here:

1. While the metrics M (As) and M (B) will be learned inside influential re-

gions and the background region, the Euclidean distance is used to determine

the location of influential regions.

2. For xi,xj ∈ B and xixj * B, the distance between xi and xj is generally

different from ρM(B)(xi,xj). This is because some parts of the line segment

xixj may lie in influential regions so their lengths should be calculated via

the related local metrics.

To calculate the distance between any xi ∈ U and xj ∈ U , the relationship

between the line segment xixj and influential regions needs to be considered, which

1Since influential regions are restricted to be ball-shaped and a ball is a convex set, the line
segment xixj lies in the ball for any two point xi and xj inside the ball.

2This is different from the widely adopted squared Mahalanobis distance and enjoys convenience
when solving the optimisation problem.
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can be simplified to one of the following three cases: no-intersection, tangent and

with-intersection.

Definition 19. The intersection of a line segment xixj and an influential region As

is denoted as As ∩ xixj . In the case of no-intersection, As ∩ xixj = ∅; in the case

of tangent, As ∩ xixj = tsij , where tsij is the tangent point; in the case of with-

intersection, As ∩xixj = psijq
s
ij , where psijqsij is the maximum sub-line segment of

xixj inside As, psij is the point which lies closer to xi and qsij is the point which lies

closer to xj . The intersection of a line segment xixj and the background region B

is defined as

B ∩ xixj = xixj −
⋃

s=1...S

(As ∩ xixj), (3.3)

where
⋃
s=1...S(As ∩ xixj) is the union of intersections between the line segment

and all influential regions. It can also be understood as a set of non-overlapping line

segments3.

Accordingly, the length of line segment xixj can be calculated through the

length of intersection.

Definition 20. The length of intersection of a line segment xixj and an influen-

tial region As is defined as l(As ∩ xixj;M(As)). In the case of tangent or no-

intersection, l(As ∩ xixj;M (As)) , 0; in the case of with-intersection, it is de-

fined to be the length of psijqsij , i.e. l(As ∩xixj;M(As)) = l(psijq
s
ij;M (As)). The

length of the intersection of a line segment xixj and the background region B is

defined as

l(B ∩ xixj;M (B)) = l(xixj;M(B))

− l(
⋃

s=1...S

(As ∩ xixj);M (B)).
(3.4)

3This can be easily proved by recursively combining any overlapping line segments until no
overlapping one is found.
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Table 3.1: A summary of the notations in Chapter 2.

Notation Detail
a (xj − xi)T (xj − xi)
b 2(xj − xi)T (xi − os)
c (xi − os)T (xi − os)− r2

s

∆ b2 − 4ac

λu
−b−
√

∆
2a

λv
−b+
√

∆
2a

u xi + λu(xj − xi)
v xi + λv(xj − xi)
p xi + λp(xj − xi)
q xi + λq(xj − xi)
γ λq − λp

Definition 21. The length of line segment is defined as

l(xixj;M (xixj)) =
√

(xi − xj)TM (xixj)(xi − xj)

= l(B ∩ xixj;M (B))

+
∑
s

l(As ∩ xixj;M (As)),

(3.5)

where M(xixj) is the metric of the line segment xixj . M(xixj) is simplified to

M afterwards.

3.3 Calculation of Distances

3.3.1 Length of Intersection with Influential Regions

We first give an intuitive explanation on calculating the length of intersection with

influential regions, as illustrated in Figure 3.3. If the line xixj does not intersect

with or is the tangent to the influential ball, the length is zero. This is equivalent to

identifying the start and end points of line xixj and the ball, u,v, via one variable

quadratic equation. If the line intersects with the ball, the length would be calcu-

lated by considering the relationship between the intersection of the line xixj and

the influential ball, i.e. uv, and the intersection of the line segment xixj and the

influential ball, i.e. pq. p, q can be obtained based on points u,v and the constraint
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Figure 3.3: An illustration of the relationship between u,v and p, q. The positions of
u,v (intersection points between line xixj and the influential region A) and
p, q (intersection points between line segment xixj and A) under different
situations.
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Table 3.2: The intersection of line segment and influential region under different cases.
The column of ‘Line xixj’ indicates the relationship between the line xixj
and the influential region, which is determined by the value of ∆; ‘no-inter’
stands for no-intersection and ‘inter’ stands for with-intersection. The column of
‘pq’ indicates the relationship between the line segment pq and the influential
regions, which is determined by the values of λu and λv. The column ‘case’
refers to the corresponding case in Figure 3.3.

∆ Line xixj Values of λu λv pq Values of λp λq l = l(As ∩ xixj;M (As)) Case
∆ < 0 no-inter 0 1
∆ = 0 tangent 0 2

λu < 0, λv < 0 ∅ λp, λq , 0 3
λu < 0, 0 ≤ λv ≤ 1 xiv λp = 0, λq = λv 4

∆ > 0 inter λu < 0, λv > 1 xixj λp = 0, λq = 1 γ
√

(xi − xj)TM (As)(xi − xj), 5
0 ≤ λu, λv ≤ 1 uv λp = λu, λq = λv where γ = λq − λp 6

0 ≤ λu ≤ 1, λv > 1 uxj λp = λu, λq = 1 7
λu > 1, λv > 1 ∅ λp, λq , 1 8

that the start and end points should be on the line segment xixj .

Definition 22. The intersection points of the line xixj and the influential region

As are represented as u = xi + λu(xj − xi) and v = xi + λv(xj − xi), where

λu, λv ∈ R, λu ≤ λv and λu, λv are called the intersection coefficients between

the line xixj and As. The intersection points of the line segment xixj and the

influential region are represented as p = xi+λp(xj−xi) and q = xi+λq(xj−xi),

where 0 ≤ λp ≤ λq ≤ 1 and λp, λq are called the intersection coefficients between

the line segment xixj and As. γ = λq − λp is called the intersection ratio.

Proposition 8. The length of intersection between line segment xixj and the in-

fluential region As, with the intersection points p, q and intersection coefficients

λp, λq, is

l(A ∩ xixj;M (As)) =
√

(q − p)TM(As)(q − p)

= γ
√

(xi − xj)TM(As)(xi − xj).
(3.6)

As shown in the above proposition, the length of intersection can be calculated

given the local metricM (As) and γ, where the latter term can be obtained from λq

and λp.

The computation of γ consists of two steps.
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1) Calculate the intersection points of the line xixj and the ball: u and v,

i.e. xi + λu(xj − xi) and xi + λv(xj − xi).

The coefficients λu and λv could be easily solved through the following

quadratic equation with one variable:

‖xi + λ(xj − xi)− os‖2
2 = r2

s , (3.7)

with ∆ = b2 − 4ac = [2(xj − xi)T (xi − os)]2 − 4[(xj − xi)T (xj − xi)][(xi −

os)
T (xi − os) − r2

s ]; and when ∆ > 0, the solutions λsu,ij ≤ λsv,ij to the above

equation are

λsu,ij =
−b−

√
∆

2a
=
−2(xj − xi)T (xi − os)−

√
∆

2(xj − xi)T (xj − xi)
,

λsv,ij =
−b+

√
∆

2a
=
−2(xj − xi)T (xi − os) +

√
∆

2(xj − xi)T (xj − xi)
.

Hence the two intersection points between the ball and the line become

usij = xi + λsu,ij(xj − xi),

vsij = xi + λsv,ij(xj − xi).

For simplicity, the superscript s and subscript ij for λ, u, v, p and q would be

discarded if no confusion is caused.

2) Calculate the intersection points of the line segment xixj and the ball: p

and q, i.e. xi + λp(xj − xi) and xi + λq(xj − xi).

The number of solutions to (3.7) would be checked. If (3.7) has 0 or 1 so-

lution, the line has no intersection or is tangent to the region, and thus l(A ∩

xixj;M (As)) = 0. If it has two solutions, the intersection between the line and

the ball As is a line segment uv. Based on the value of λu, λv4, The relationship be-

tween uv and pq could be obtained and the values of λp and λq could be calculated

4If and only if the value of λu or λv lies in the range of [0, 1], the corresponding point lies inside
the line segment xixj .
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from

λp = min(max(λu, 0), 1),

λq = min(max(λv, 0), 1).

A summary of the notation used in this section is listed in Table 3.1; the details

of the distance calculation are illustrated in Figure 3.3 and Table 3.2.

3.3.2 Length of Intersection with Local Metrics

Proposition 9. In the case of non-overlapping influential regions, i.e. Ai ∩ Aj =

∅,∀i 6= j,

ρM (xixj) , l(xixj;M(xixj))

= γb

√
(xi − xj)TM(B)(xi − xj)

+
∑
s

γs

√
(xi − xj)TM(As)(xi − xj)

= (1−
∑
s

γs)
√

(xi − xj)TM(B)(xi − xj)

+
∑
s

γs

√
(xi − xj)TM(As)(xi − xj),

(3.8)

where γb is defined as the intersection ratio of the background region, and in the

non-overlapping case γb = 1−
∑

s γs.

Proposition 9 suggests that the distance can be obtained once metrics (M (As),

M (B)) and the intersection ratio γs are known. As all calculations are in closed

form, the computation is efficient.

In the case of overlapping influential regions, the following formula is the same

as (3.8)

ρM (xixj) , l(xixj;M(xixj))

= γb

√
(xi − xj)TM (B)(xi − xj)

+
∑
s

γs

√
(xi − xj)TM (As)(xi − xj).

(3.9)
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The calculation of γb in (3.9) is slightly different from that in (3.8). In the following

sections, an approximation of γb is used for simplicity: γb = max(1−
∑

s γs, 0).

3.4 Learnability of the Classifier
In this section, we select Lipschitz continuous functions as the classifiers. Based on

the resultant learning bounds, we obtain the regularisation terms in order to improve

the generalisation ability.

3.4.1 Classifier

In the Euclidean space, it is intuitive to see the following classifier gives the same

classification results as 1-NN:

h(x) = min ρset(x,X
−)−min ρset(x,X

+),

where h(x) < 0 indicates that x belongs to negative class and h(x) > 0

indicates that x belongs to positive class; ρset(x,X−/+) = {ρ(x,xt)|∀xt ∈

negative class / positive class} is the set that contains the Euclidean distance values

between x and any instance of the negative or positive class, and ρ(xi,xj) indicates

the Euclidean distance between xi and xj .

Similarly, we extend the above equation to consider more nearby instances as

follows:

h(x) =
1

K
sumKmin ρset(x,X

−)− 1

K
sumKmin ρset(x,X

+), (3.10)

where sumKmin denotes the sum of the K minimal elements of the set. This func-

tion is used as the classifier in our algorithm.

3.4.2 Learnability of the Classifier with Local Metrics

We will discuss learnability of functions based on the Lipschitz constant, which

characterises the smoothness of a function. The smaller the Lipschitz constant is,

the more smooth the function is.

Definition 23. ([74]) The Lipschitz constant of a function f with respect to input x
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is

lip(f ← x) = min{C ∈ R|∀xi,xj ∈ X , ρY(f(xi), f(xj)) ≤ CρX (xi,xj)}

= max
xi,xj∈X :xi 6=xj

ρY(f(xi), f(xj))

ρX (xi,xj)
.

Proposition 10. ([74]) Let lip(f ← x) ≤ Lf and lip(g ← x) ≤ Lg , then

(a) lip(f + g ← x) ≤ Lf + Lg;

(b) lip(f − g ← x) ≤ Lf + Lg;

(c) lip(af ← x) ≤ |a|Lf , where a is a constant.

Proposition 11. Let lip(fk ← x) ≤ Lk, k = 1, . . . , K, then lip(sumKmin fk ←

x) is bounded by K maxk Lk, where sumKmin fk denotes the function of

sumKmin{fk(x), k = 1, . . . , K}.

Proof. ∀xi,xj ∈ X , k ∈ {1, . . . , K}

sumKmin{fk(xi)}

= sumKmin{fk(xj + (xi − xj))}

≤ sumKmin{fk(xj) + Lk‖xi − xj‖}

≤ sumKmin{fk(xj) + (max
k
Lk)‖xi − xj‖}

= sumKmin{fk(xj)}+K(max
k
Lk)‖xi − xj‖.

Therefore,

sumKmin{fk(xi)} − sumKmin{fk(xj)} ≤ K(max
k
Lk)‖xi − xj‖.

Based on the definition of Lipschitz constant, the proposition is proved.

Lemma 7. With the distance defined in (3.9), the Lipschitz constant of the classifier

specified in (3.10) is bound by 2(
∑

s

√
‖M(As)‖F +

√
‖M(B)‖F ) , where ‖ · ‖F

denotes the matrix Frobenius norm.
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Proof. Let dM (x,xk) denote the Mahalanobis distance with metricM , that is

dM (x,xk) =
√

(x− xk)TM(x− xk),

and dI(x,xk) denote the Euclidean distance.

lip(f1 ← x), where f1 = dM (x,xk), is bounded by ‖M‖F as follows:

lip(f1 ← x) = max
xa,xb∈X ,xa 6=xb

f1(xa)− f1(xb)

dI(xa,xb)

≤ max
xa,xb∈X ,xa 6=xb

dM (xa,xb)

dI(xa,xb)

≤ max
xa,xb∈X ,xa 6=xb

dI(xa,xb)
√
‖M‖F

dI(xa,xb)

=
√
‖M‖F ,

where the first inequality follows the triangle inequality of distance, and the second

inequality is based on the fact that matrix Frobenius norm is consistent with the

vector L2-norm5, i.e.

dM (xa,xb) =
√
‖(xa − xb)TM (xa − xb)‖2

≤
√
‖xa − xb‖2

2‖M‖F

= ‖xa − xb‖2

√
‖M‖F

= dI(xa,xb)
√
‖M‖F .

According to the definition of distance in (3.9), we have

ρM(x,xk) =
∑
s

dM(As)(x,xk) + dM(B)(x,xk);

and it follows Proposition 10 that,

lip(ρM ,k ← x) = γs
√
‖M (As)‖F +

√
‖M(B)‖F

≤
∑
s

√
‖M (As)‖F +

√
‖M(B)‖F

5The consistence between a matrix norm ‖ · ‖M and a vector norm ‖ · ‖v indicates ‖Ab‖v ≤
‖A‖M‖b‖v , whereA is a matrix and b is a vector.
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where ρM ,k denotes ρM(x,xk).

Based on the composition property illustrated in Proposition 11,

lip(sumKmin ρM,k ← x})

≤K

{∑
s

√
‖M (As)‖F +

√
‖M(B)‖F

}
,

where ρM,k denotes the function of sumKmin ρset(x,X
−) or sumKmin ρset(x,X

+).

Finally, based on Proposition 10, f(x) in (3.10) is bounded by 2(
∑

s

√
‖M (As)‖F+√

‖M (B)‖F ).

Definition 24. [74] The diameter of a metric space (X , ρ) is defined as

diam(X , ρ) = sup
xi,xj∈X

ρ(xi,xj).

Definition 25. [18] For a metric space (X , ρ), let λ be the smallest number such

that every ball in X can be covered by λ balls of half the radius. Then λ is called

the doubling constant of X and the doubling dimension of X is ddim(X ) = log2 λ.

As presented in [18], a low Euclidean dimension implies a low doubling di-

mension (Euclidean metrics of dimension d have doubling dimension O(d)); a low

doubling dimension is more general than a low Euclidean dimension and can be

utilized to measure the ‘dimension’ of a general metric space.

By combining the results of Proposition 7 and the Corollary 6 of [18], we can

obtain the following Corollary.

Corollary 3. Let the metric space (X , ρ) have doubling dimension ddim(X ) and

let F be the collection of real-valued functions over X with the Lipschitz constant

at most L. Then for any f ∈ F , if f is correct on all but k training instances, we

have with probability at least 1− δ

P{sign[f(x)] 6= t}

≤ k

n
+

√
2

n
(c log2(34en/c) log2(578n) + log2(4/δ)),

(3.11)
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Table 3.3: Calculation of partial derivatives ∂γ
∂o and ∂γ

∂r in different cases.

∆ λu, λv γ partial derivatives
∆ ≤ 0 ∂γ

∂o
= 0, ∂γ

∂r
= 0

λu < 0, λv < 0 0
∆ > 0 λu < 0, λv > 1 1 ∂γ

∂o
= 0, ∂γ

∂r
= 0

λu > 1, λv > 1 0
∆ > 0 0 ≤ λu ≤ 1 λv − λu ∂γ

∂o
= 4∆−

1
2 [xi + −b

2a
(xj − xi)− o]

0 ≤ λv ≤ 1 ∂γ
∂r

= 4∆−
1
2 r

∆ > 0 λu < 0 λv
∂γ
∂o

= 1
a

[
(xj − xi)−∆−

1
2

(
b(xj − xi) + 2a(o− xi)

)]
0 ≤ λv ≤ 1 ∂γ

∂r
= 2∆−

1
2 r

∆ > 0 0 ≤ λu ≤ 1 1− λu ∂γ
∂o

= 1
a

[
(xi − xj)−∆−

1
2

(
b(xj − xi) + 2a(o− xi)

)]
λv > 1 ∂γ

∂r
= 2∆−

1
2 r

where

c =
(

16(
∑
s

√
‖M (As)‖F +

√
‖M (B)‖F ) diam(X , ρ)

)ddim(X )+1

.

The above learning bound illustrates the generalization ability, i.e. the differ-

ence between the expected error P{(x, t) : sign[f(x)] 6= t} and the empirical error

k/n. Based on the bound, reducing the value of
∑

s

√
‖M(As)‖F +

√
‖M(B)‖F

would help reduce the gap between the empirical error and the expected error. For

the reason that for each term
√
‖M(As)‖F , reducing the value of ‖M(As)‖F would

reduce
√
‖M(As)‖F .

∑
s

√
‖M(As)‖F +

√
‖M(B)‖F would be used as the regu-

larization term to improve the generalization ability of the classifier.

3.5 Optimisation

3.5.1 Objective Function

Based on the discussion in previous sections, in order to obtain low training error

and good generalisation ability, the objective function of the optimisation prob-

lem would be the sum of hinge loss and the regularisation term
∑

s ‖M(As)‖F +
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‖M(B)‖F :

min
Θ,ξ

1
N1

∑
(i,j) ξij + 1

N2

∑
(m,n) ξmn + α‖M (B)‖F + α

∑
s ‖M (As)‖F

s.t. ρM (xi,xj) ≤ 1− C + ξij

ρM (xm,xn) ≥ 1 + C − ξmn
ξij, ξmn ≥ 0,M ∈M+

i, n = 1, . . . , N, j → i,m9 n,

(3.12)

where Θ = {M(As),M (B),o, r} denotes the set of parameters to be optimised;

j → i indicates that xj is xi’s K nearest neighbour comparing against all instances

in the same class; m9 n indicates that xm is xn’s K nearest neighbour comparing

against all instances in the different class; and ξij and ξmn indicates the errors. α is

a trade-off parameters; and C is a constant which has the intuition of margin; M+

denotes the set of positive semi-definite matrices.

The parameters to be optimised include local metrics M (As), background

metric M (B), centers of influential regions os and radius of influential regions

rs. Thus in the proposed algorithm, the locations of influential regions (os, rs) and

the metrics of influential/background regions (M(B),M (As)) would be learned

under the same framework.

3.5.2 Gradient Descent

With ρM(As) and ρM(B) being the Mahalanobis distances, the optimisation problem

is not a convex problem even when o, r is fixed andM(As) andM (B) are updated.

Thus the gradient descent algorithm is used:

Θt+1 = Θt − β ∂g
∂Θ
|Θt ,

where β is the learning rate, and the superscript t denotes the time step during

optimisation.
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The objective function g is

g =
1

N2

[1 + C − ρM (xm,xn)]+ +
1

N1

[ρM (xi,xj)− (1− C)]+

+ α
∑
s

‖M (As)‖F + α‖M (B)‖F ,

where the distance is

ρM (xi,xj) = [1−
∑
s

γs(os, rs)]+ρM(B)(xi,xj) +
∑
s

γs(os, rs)ρM(As)(xi,xj).

Here, γs is written as γs(os, rs) to remind us that γs is a function of the location

parameters os and rs; [x]+ = max(x, 0).

The gradient with respect to each set of parameters is

∂g

∂Θ
|Θt =

1

N1

∑
(i,j)

1[ρM t(xi,xj)− (1− C) > 0]
∂ρM (xi,xj)

∂Θ
|Θt

− 1

N2

∑
(m,n)

1[1 + C − ρM t(xm,xn) > 0]
∂ρM (xm,xn)

∂Θ
|Θt .

If the gradient is with respect toM (B) andM(As), then another shrinkage term of
αM(B)
‖M(B)‖ or αM(As)

‖M(As)‖ from the Frobenius norm regularisation term needs to be added

into the above formula.

Now ∂ρM (xi,xj)

∂Θ
|Θt will be calculated separately for the parameters M (A),

M (B), os, rs:

∂ρ(xi,xj)

∂M (B)
|Θt =1[γb(o

t
s, r

t
s) > 0]γb(o

t
s, r

t
s)[(xi − xj)TM t(B)(xi − xj)]−1/2

(xi − xj)(xi − xj)T ,

where γb(ots, r
t
s) = 1−

∑
s γs(o

t
s, r

t
s);

∂ρ(xi,xj)

∂M (As)
|Θt = γs(o

t
s, r

t
s)[(xi − xj)TM t(As)(xi − xj)]−1/2(xi − xj)(xi − xj)T ;

∂ρ(xi,xj)

∂os
|Θt =ρM t(As)(xi,xj)

∂γs
∂os
− 1[1−

∑
s

γs(o
t
s, r

t
s) > 0]ρM t(B)

∂γs
∂os

,
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where ∂γ
∂o

could be obtained as illustrated in Table 3.3;

∂ρ(xi,xj)

∂rs
|Θt =ρM t(As)(xi,xj)

∂γs
∂rs
− 1[1−

∑
s

γs(o
t
s, r

t
s) > 0]ρM t(B)

∂γs
∂rs

,

where ∂γ
∂r

could be obtained as illustrated in Table 3.3.

In this way, all of the gradients with respect to each set of parameters could be

obtained and gradient descent could be used to solve the optimisation problem.

Initial values are very important for non-convex optimisation problems. A

heuristic method is adopted to initialise the parameters as follows. 1) Extract local

discriminative direction e(x) ∈ RD for each training instance x, where D indicates

the number of features of x:

e(xi)[d] =
∑
k9i

|xk[d]− xi[d]| −
∑
j→i

|xj[d]− xi[d]|,

where x[d] indicates the dth dimension of vector x; j → i indicates xj is xi’s K

nearest neighbour comparing against all instances in the same class; k 9 i indicates

xk is xi’sK nearest neighbour comparing against all instances in the different class.

2) Cluster with augmented features: [x, e(x)] are used as features and the K-means

clustering algorithm with random initial points is adopted to divide all instances

into K clusters. 3) Initialise the parameters: Cluster centres are initialised as os;

the distance between 80 percentiles and the cluster centre is set as initial value of

rs; the local metric is set asM (As) = I + 0.1× diag(mean(e(x),x ∈ cluster s)),

where diag is an operation which returns a square diagonal matrix with elements of

the input vector on the main diagonal.

3.6 Experiments
The proposed algorithm is compared with nine established metric learning algo-

rithms from two categories: 1) The most cited algorithms, including large Margin

nearest neighbor (LMNN) [76], information theoretic metric learning (ITML) [9],

neighborhood Component Analysis (NCA) [17] and metric learning by collaps-

ing classes (MCML) [16]; (2) the most state-of-the-art algorithms, including ge-
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Table 3.4: Characteristics of the data sets. The total number of instances (and the numbers
of instances in each class in brackets) and the number of features.

Instances Features
Australian 690 (383, 307) 14
Breastcancer 683 (444, 239) 10
Diabetes 768 (268, 500) 8
Fourclass 862(555, 307) 2
German 1000 (700, 300) 24
Haberman 206(81, 125) 3
Heart 270 (150, 120) 13
ILPD 583(167, 416) 10
Liverdisorders 345(145, 200) 6
Pima 768(268, 500) 8
Vote 435 (168, 267) 16
WDBC 569 (357, 212) 30

ometric mean metric learning (GMML) [83], regressive virtual metric learning

(RVML) [52], stochastic neighbor compression (SNC) [35], sparse compositional

metric learning (SCML) [59] and reduced-rank local distance metric learning

(R2LML) [26]. LMNN and ITML are implemented with metric-learn toolbox6;

NCA and MCML are implemented with the drToolbox7; and GMML, RVML,

SCML, R2LML and SNC are implemented by using the authors’ code.

The experiment is focused on binary classification of 12 publicly available data

sets from the websites of UCI8 and LibSVM9, namely Australian, Breastcancer, Di-

abetes, Fourclass, Germannumber, Haberman, Heart, ILPD, Liverdisorders, Pima,

Voting and WDBC. All data sets are pre-processed by firstly subtracting the mean

and dividing by the standard deviation, and then normalising the L2-norm of each

instance to one.

For each data set, 60% instances are randomly selected as training sam-

ples and the rest for testing. This process is repeated 10 times and the mean

accuracy and the standard deviation are reported. 10-fold cross-validation is

6https://all-umass.github.io/metric-learn/
7https://lvdmaaten.github.io/drtoolbox/
8https://archive.ics.uci.edu/ml/datasets.html
9https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html
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Table 3.5: Experiment results of local metric learning. Mean accuracy (percentage) and
standard deviation are reported with the best ones in bold; ‘# of best’ indicates
the number of data sets that an algorithm performs the best.

Dataset LMNN ITML MCML NCA RVML
Australian 78.8 ±2.57 77.17 ±1.94 78.77 ±1.70 79.96 ±1.63 83.01 ±1.58

Breastcancer 95.91 ±0.69 96.39 ±1.04 96.35 ±0.77 95 ±1.52 95.77 ±1.09
Diabetes 69.16 ±1.44 69.09 ±1.24 69.19 ±1.18 68.47 ±2.46 71.04 ±2.60
Fourclass 72.06 ±2.31 72.09 ±2.22 72.06 ±2.43 72.06 ±2.46 70.46 ±1.40
German 67.85 ±1.54 66.95 ±2.05 67.67 ±1.48 69.95 ±2.88 71.65 ±1.78

Haberman 67.89 ±3.34 67.97 ±4.05 67.56 ±2.75 67.4 ±3.33 66.67 ±2.30
Heart 76.2 ±3.82 76.94 ±3.30 77.22 ±3.66 75.56 ±2.01 77.69 ±4.05
ILPD 66.97 ±2.13 68.67 ±2.83 67.48 ±2.58 66.8 ±1.19 67.95 ±2.90

Liverdisorders 61.01 ±4.80 57.17 ±4.01 60.65 ±5.12 59.78 ±3.44 64.64 ±3.93
Pima 68.54 ±1.64 67.95 ±2.01 68.31 ±2.33 65.91 ±3.04 69.45 ±1.68

Voting 94.83 ±0.77 90.75 ±1.44 92.64 ±1.58 94.77 ±0.92 95.75 ±1.26
WDBC 96.58 ±1.12 94.91 ±0.92 95.7 ±0.90 96.58 ±0.85 96.58 ±1.34
# of best 0 0 0 0 0

Dataset GMML SCML R2LML SNC local
Australian 84.35 ±1.04 82.25 ±1.40 84.67 ±1.32 81.78 ±8.8 84.78 ±1.93

Breastcancer 97.26 ±0.81 97.01 ±0.91 97.01 ±0.66 96.65 ±0.69 97.15 ±1.32
Diabetes 74.16 ±2.58 71.49 ±2.21 73.8 ±1.37 75.32 ±2.74 75.19 ±3.59
Fourclass 76.12 ±1.87 75.54 ±1.42 76.12 ±1.91 73.39 ±8.7 79.71 ±1.73
German 71.55 ±1.12 70.9 ±2.65 72.9 ±1.83 70.13 ±3.33 72.45 ±2.2

Haberman 71.22 ±3.35 69.19 ±2.47 71.06 ±3.39 71.98 ±5.2 74.06 ±3.25
Heart 81.2 ±2.69 78.98 ±3.24 82.04 ±3.81 77.04 ±5.32 81.66 ±3.09
ILPD 67.14 ±2.17 68.03 ±2.90 65.85 ±2.22 68.91 ±2.67 69.27 ±2.58

Liverdisorders 63.84 ±5.43 61.74 ±4.57 66.81 ±3.68 63.31 ±5.18 65.28 ±3.99
Pima 72.95 ±1.84 71.14 ±2.64 72.34 ±1.54 73.99 ±2.59 74.31 ±2.68

Voting 95.17 ±1.88 95 ±1.30 96.32 ±1.19 94.45 ±1.2 95.74 ±1.48
WDBC 96.71 ±0.78 96.97 ±0.89 96.93 ±1.67 96.93 ±0.85 97.28 ±1.37
# of best 1 0 4 1 6

used to select the trade-off parameters in the compared algorithms, namely

the regularisation parameter of LMNN (from {0.1, 0.3, 0.5, 0.7, 0.9}), γ in

ITML (from {0.25, 0.5, 1, 2, 4}), t in GMML (from {0.1, 0.3, 0.5, 0.7, 0.9}),

λ in RVML (from {10−5, 10−4, 10−3, 10−2, 10−1, 1, 10}), Ratio in SNC (from

{0.01, 0.02, 0.04, 0.08, 0.16}). All other parameters are set as default. For the

proposed algorithm, the parameters are set as follows: α and C in the optimisation

formula are 0.1 and 0.5 respectively; K in the classifier is 10; and the number of

clusters when initialising the parameters is 4.
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As shown in Table 5.1, the proposed algorithm achieves the best accuracy on

6 data sets out of the 12 data sets. None of the other algorithms performs the best

in more than 4 data sets. In cases where our algorithm is not leading, it performs

quite nice and stays close to the best one. Such encouraging results demonstrate the

effectiveness of our proposed method.

3.7 Conclusion
In this chapter, a very intuitive distance is defined through the introduction of influ-

ential regions and the background region. The distance can be computed efficiently

and encouraging results are obtained on publicly available data sets. It is straight-

forward to extend the proposed algorithm to the multi-class case and use more ad-

vanced optimisation techniques. Other metrics or types of influential regions can

also be adopted for specific tasks. Domain knowledge can facilitate the partition of

regions.



Chapter 4

Metric Learning with Instance

Extraction

4.1 Introduction

As we know, the nearest neighbour (NN) classifier is one of the oldest and simplest

methods for classification, which compares the distances between a new instance

and training instances and assigns the new instance to the class of its nearest training

instance. Although it has been used as a benchmark tool, NN suffers from the

following two problems. First, the performance of NN is highly affected by the

distance metric used in the algorithm. Due to the difficulty in handcrafting a well-

suited and adaptive distance metric, metric learning has been proposed to enable

the algorithms to automatically learn a metric from available data. Metric learning

with a convex objective function was first proposed in the pioneering work of Xing

et al. [78]. After that, many other metric learning methods have been developed

and widely adopted, such as the large margin nearest neighbour (LMNN) [75] and

the information theoretic metric learning [9]. Some theoretical work has also been

proposed for metric learning, in particular on deriving different kinds of learning

bounds [33, 4, 20, 8, 67].

Second, NN suffers from storage and computation problems. In order to clas-

sify a test instance, NN has to store all training instances and calculate its distances

to all training instances. The high time and space complexity makes computing the
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decision rule impracticable for resource-constraint or real-time applications. Some

work has been conducted on NN compression, such as [21, 35, 19, 73].

In this chapter, we propose a metric learning with instance extraction (MLIE)

classifier to solve the above two problems in NN. First, to solve the storage and

computation problem of NN, MLIE extracts several training instances from each

class and then calculates the distances between the test instance and the extracted

training instances. When the number of extracted training instances is much less

than the total number of training instances, the storage and computation costs can

be largely reduced by MLIE. Second, MLIE learns a tailored distance metric from

the training data automatically and would be suitable for specific data sets.

Moreover, we also illustrate the intuitive and theoretical properties of MLIE

in this chapter. First, to make deep insight into the classification mechanism of

MLIE, we discuss the relationship between the proposed MLIE and the local linear

classifier (LLC). LLC divides the feature space to several local regions and uses a

linear classifier within each region. Here we show that MLIE is a special case of

the local linear classifier, which can simultaneously learn the local regions and their

associated linear classifiers. Second, the PAC learning bound of MLIE has been

discussed. The regularisation term used in the learning algorithm of MLIE is pro-

posed based on the learning bound of MLIE, which guarantees the test performance

of MLIE.

The proposed algorithm has been tested on 12 benchmark real data sets and the

experiment results demonstrate the superior performance of MLIE to state-of-the-

art metric learning algorithms.

4.2 Metric Learning with Instance Extraction

In this section, we first define the notations used in this chapter. We then propose the

metric learning with instance extraction (MLIE) classifier to solve the two problems

in NN. MLIE can learn the tailored distance metric from data automatically and can

also save the storage and computational costs by extracting informative training in-

stances and calculating fewer distances than NN. Lastly, we discuss the relationship
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between MLIE and the local linear classifier (LLC) for better understanding the

classification mechanism of MLIE.

4.2.1 Notations

In this chapter, we focus on binary classification. Let xn = {xi, i = 1, . . . , n}

denote the set of training instances, where xi ∈ X ⊆ RD and n denotes the number

of training instances. Let yn = {yi, i = 1, . . . , n} denote the corresponding labels,

where yi ∈ {−1,+1}. yi = +1 and yi = −1 indicate that xi belongs to the positive

and negative class, respectively. The number of positive and negative class training

instances are defined as n+ and n−, respectively. Let xn+

+ = {x+
i , i = 1, . . . , n+}

and xn−− = {x−i , i = 1, . . . , n−} denote the set of positive and negative training

instances, respectively. Let xixj denote the line segment connecting xi and xj and

xixj denote the line passing through xi and xj when xi 6= xj .

Let rm−− = {r−i , i = 1, . . . ,m−} and rm+
+ = {r+

j , j = 1, . . . ,m+} denote

the set of extracted positive and negative instances, respectively, where m+ and

m− denote the number of extracted positive and negative instances, respectively.

Let rm = {r−i , r+
j ; i = 1, . . . ,m+, j = 1, . . . ,m−} denote the set of all extracted

instances.

Let d(xi,xj) =
√

(xi − xj)T (xi − xj) denote the Euclidean distance be-

tween xi and xj . Let dM (xi,xj) =
√

(xi − xj)TM (xi − xj) denote the Ma-

halanobis distance between xi and xj , where M ∈M+ is the parameter matrix of

dM (xi,xj) and M+ denote the set of positive semi-definite matrices. In this chap-

ter, we aim to learn a Mahalanobis distance metric, which is the mostly adopted

distance metric in metric learning.

4.2.2 Metric Learning with Instance Extraction (MLIE)

NN classifies a test instance to the class of its nearest training instance. Therefore,

NN has to calculate the distances between the test instance and all the training

instances. When the number of training instances is large, NN suffers from the

storage and computational problems. Therefore, NN is not suitable for situations

when the computational resource is limited and also for real-time applications when
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the computation time is restricted.

To solve this problem, several informative training instances may be extracted

and we only need calculate the distances between the test instance and the extracted

training instances. In this way, the computational cost can be reduced. The ex-

tracted training instances are automatically learned from the available data. The

test instance is then classified to the class of its nearest extracted training instance.

The distance metric used in this method is also automatically learned from data.

This kind of classifiers is named metric learning with instance extraction (MLIE)

and one example is defined as follows1:

h(x; rm,M ) = min
i
d2
M (x, r−i )−min

j
d2
M (x, r+

j )

= min
i

(x− r−i )TM(x− r−i )−min
j

(x− r+
j )TM(x− r+

j ),
(4.1)

where r−i ∈ r
m−
− denotes the ith extracted negative instance in the same space

of X , r+
i ∈ r

m+

+ denotes the jth extracted positive instance in the same space of

X and M is the parameter matrix of the distance metric. mini d
2
M (x, r−i ) and

minj d
2
M (x, r+

j ) indicate the distances between x and the negative and positive

classes, respectively, which are represented by the minimum distances between x

and the associated extracted training instances. Thus the test instance x is classi-

fied to the positive class when h(x; rm,M ) ≥ 0 and to the negative class when

h(x; rm,M ) < 0.

Note that learning the parameter matrix M in (4.1) is equivalent to learning a

linear mapping L for the instances. This is because (4.1) can be written as

h(x; rm,L) = min
i
d2(Lx,Lr−i )−min

j
d2(Lx,Lr+

j )

= min
i

(x− r−i )TLTL(x− r−i )−min
j

(x− r+
j )TLTL(x− r+

j ),

(4.2)

where L ∈ RD×D denotes a linear mapping and LTL = M .

From (4.2), we can also learn the extracted instance in the mapped space di-

1In this chapter, all discussions are limited to learn a squared Mahalanobis distance.
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Figure 4.1: An illustrative example of nearest neighbour with instance extraction (extract
one instance per class). It is equivalent to learn one representative points (RP)
per class and find a linear classifier based on the two representative points.

rectly as follows:

h(x; rm,L) = min
i
d2(Lx, r−i )−min

j
d2(Lx, r+

j )

= min
i

(Lx− r−i )T (Lx− r−i )−min
j

(Lx− r+
j )T (Lx− r+

j ),
(4.3)

where r−i ∈ r
m+

− and r+
j ∈ r

m+

+ denote the ith extracted negative instance and the

jth extracted positive instance in the mapped space after liner mapping L, respec-

tively.

In MLIE, the extracted instances rm and the parameter matrix M of the dis-

tance metric are automatically learned from data. We will introduce the learning

algorithm in Section 4.4, after showing the learning bound of MLIE in Section 4.3.

In the rest of this section, we will focus on discussing the classification mechanism

of MLIE, by showing its relationship with the local linear classifier (LLC).
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Figure 4.2: An illustrative example of nearest neighbour with instance extraction (extract
two instances per class). A and B are the extracted instances for the triangle
class and C and D are the extracted instances for the circle class. We can then
find the equivalent Local Linear Classifier (LLC) based on A, B, C and D.
The red dashed lines indicates the inter-class perpendicular line. For example,
LAC indicates the perpendicular line for the line segment AC, where A comes
from triangle class and C comes from circle class. The black dashed lines
indicates the perpendicular line for extracted instances from the same class.
The intra-class perpendicular lines (for points A,B and points C,D) segment the
coordinate system into four local regions. Inside each local region, the inter-
class perpendicular line acts as the linear classifier. For example, for points
falling into region 1, since they are closest to points A and C, the perpendicular
line for points AC, i.e. LAC , acts as the classification boundary.
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4.2.3 Classification Mechanism of MLIE

In this section, we discuss the classification mechanism of MLIE by showing its

relationship with local linear classifier (LLC). We start with a simple and special

case of MLIE for illustrative purpose: MLIE with the Euclidean distance metric and

extracting two instances per class. Then we discuss the classification mechanism of

the general case of MLIE and show its relationship with LLC.

4.2.3.1 Local Linear Classifier

Local linear strategies has been adopted in machine learning society to solve the

classification problems [38, 36, 10]. In this thesis, local linear classifier is defined

as follows.

Definition 26. A classifier is called a Local Linear Classifier (LLC) if (1) it could

be represented by a continuous function and (2) there exists a set of local regions C

C = {Cs, s = 1, . . . , S} and
⋃
s

Cs = X ,

such that the classification boundary inside each local region is specified by a linear

function.

Besides linear inside each local regions, in the above definition, LLC should

be continuous at the boundary. Different partitions of the local regions and different

local linear classifiers make LLC a powerful tool to fit data. At the same time, the

local linear property, as well as the continuity property at the boundary, constrain

the complexity of LLC and hence make it learnable in certain cases.

4.2.3.2 Nearest Neighbour with Instance Extraction

We first provide a special case of MLIE to illustrate the mechanism of MLIE and

its relationship with LLC: MLIE with the Euclidean distance metric and extracting

one instance per class. We call this classifier as the nearest neighbour with instance

extraction (NNIE) and define it as follows:

h(x; rm) = min
i
d2(x, r−i )−min

j
d2(x, r+

j ).
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In the case of extracting one instance per class, NNIE is a linear classifier, as

illustrated in Figure 4.1. The grey triangle and the grey circle are the two extracted

training instances from the two classes, respectively. The decision boundary is the

red solid line.

In the case of extracting multiple instances per class, NNIE is a LLC, as il-

lustrated in Figure 4.1. With two extracted instances for each class, the two bisec-

tors between intra-class line segment can divide the space into four regions. Then

based on the bisectors of the related inter-class line segment, the instances inside

each class can be classified. Because the classification function is continuous, the

classification boundary is continuous and the overall classification boundary is a

piece-wise linear function, which would be illustrated intuitively in two dimension

case. The relationship between NNIE and LLC is illustrated in Proposition 12.

Proposition 12. NNIE with the following classifier is an LLC.

h(x; rm) = min
a
d2(x, r−a )−min

b
d2(x, r+

b ).

Proof. Based on the definition of the classifier, X can be divided into (at most)

n−n+ local regions C(i,j) = {x|i = argmina d(x, r−a ), a = 1, . . . , n−; j =

argminb d(x, r+
b ), b = 1, . . . , n+}. For x ∈ C(i,j), the nearest neighbour in-

side the negative class is i and the nearest neighbour inside the positive class is

j. The bisector hyperplane of line segment rirj is the classification boundary

inside the local region C(i,j) because the local classification function is h(x) =

d2(x, r−i ) − d2(x, r+
j ) = 2(r+

j − r−i )Tx + (r−Ti r−i − r+T
j r+

j ), which is a linear

classifier. Meanwhile, the classifier is a continuous function. Therefore, it is an

LLC.

4.2.3.3 Metric Learning with Instance Extraction (MLIE)

Here we show the general case of MLIE: MLIE with extracting multiple instances

per class and the Mahalanobis distance metric is an LLC. Thus MLIE can be under-

stood as a way to simultaneously learn a partition of the local regions and the local

classifier.
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Proposition 13. MLIE with the following classifier is an LLC,

h(x; rm,M) = min
a
d2
M (x, r−a )−min

b
d2
M (x, r+

b ).

Proof. Based on the definition of the classifier, X can be divided into (at most)

n−n+ local regions C(i,j) = {x|i = argmina dM (x, r−a ), a = 1, . . . , n−; j =

argminb dM (x, r+
b ), b = 1, . . . , n+}. For x ∈ C(i,j), the nearest neighbour inside

the negative class is i and the nearest neighbour inside the positive class is j. A

linear classifier would classifier the instances inside C(i,j) because the local clas-

sification function is h(x) = d2
M (x, r−i ) − d2

M (x, r+
j ) = 2(r+

j − r−i )TMx +

(r−Ti Mr−i − r+T
j Mr+

j ) and it is a linear classifier. Meanwhile, the classifier is a

continuous function. Therefore, it is an LLC.

Proposition 14. MLIE with the following classifier is an LLC,

h(x; rm,L) = min
a
d2(Lx, r−a )−min

b
d2(Lx, r+

b ).

Proof. Based on the definition of the classifier, X can be divided into (at most)

n−n+ local regions C(i,j) = {x|i = argmina d(Lx, r−a ), a = 1, . . . , n−; j =

argminb d(Lx, r+
b ), b = 1, . . . , n+}. For x ∈ C(i,j), the nearest neighbour inside

the negative class is i and the nearest neighbour inside the positive class is j. A

linear classifier would classifier the instances inside C(i,j) because the local classifi-

cation function is h(x) = d2(Lx, r−i )−d2(Lx, r+
j ) = 2(r+

j −r−i )TLx+(r−Ti r−i −

r+T
j r+

j ) and it is a linear classifier. Meanwhile, the classifier is a continuous func-

tion. Therefore, it is an LLC.

As we have discussed before, learning the parameter M of Maha-

lanobis/squared Mahalanobis distance is the same as learning a linear mapping

L, where LTL = M . Then x is mapped into another space x′ = Lx and Eu-

clidean distance is used in the new space. The learned M (or equivalent L) will

map the data into another space which would be easier for the data to be classified.

At the same time, the learned extracted instances would determine a partition of
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Table 4.1: Relationship between metric learning with instance extraction (MLIE) and the
related classifiers. LC denotes linear classifier, LM denotes linear mapping, LLC
denotes Local linear classifier.

Instance Extraction Metric Learning Equivalent
Extract one instance per class none LC

m+ = m− = 1 M of Mahalanobis LM + LC
Extract more than one instance none LLC

m+ or m− ≥ 2 M of Mahalanobis LM+LLC

local regions and the local classifiers inside each region. Table 4.1 summarises the

relationships between the discussed algorithms.

4.3 Learnability of MLIE

4.3.1 Notations and Assumptions

Let h(x,θ) denote a function with input x and parameter θ. The output of h(x,θ)

is a real value for binary classification. Let x ∈ X ⊆ RD, where X denotes a set

which contains all possible values of x. Let θ = (θ[1], . . . , θ[Q]) ∈ Θ ⊆ RQ be the

parameter vector of the classifier, where Θ denotes a set which contains all possible

values of θ. y = sign
[
h(x,θ)

]
returns the classification result of input x given

parameter w, where y ∈ Y = {−1, 1} and sign[·] is the sign function: sign[a] = 1

if a ≥ 0 and sign[a] = −1 if a < 0, where a ∈ R.

Suppose the input x is a random variable distributed according to an unknown

distribution with probability density function (PDF) f(x). Let xn = {xi, i =

1, . . . , n} denote a set of n independent and identically (i.i.d.) distributed instances

sampled from f(x). Let yn = {yi, i = 1, . . . , n} denote the label set, where yi

denotes the corresponding label of xi. P (y|x) follows an unknown underlying dis-

tribution. Let zn = { (xi, yi), i = 1, . . . , n} denote the set of training instance and

label pairs, based on the assumptions of f(x) and P (y|x), zn are n i.i.d. training

pairs sampled from p(z) = p(x, y) and p(z) is unknown.

Rn(zn, hθ) := 1
n

∑
i r(zi, hθ) := 1

n

∑
i l(h(xi,θ); yi) is called the training

error or empirical risk and it indicates the training loss given parameter θ for train-

ing instances xn, where r and l denote the risk function and the loss function re-
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spectively. R(hθ) := Ez′r(z
′, hθ) := Ez′l(h(x′,θ); y′) is called the test error or

expected risk and it indicates the expected value of test loss given a test input pair

z′ = (x′, y′) and the parameter θ. The gap between the training error and test error,

i.e. R(hθ)−Rn(zn, hθ), is called the generalisation gap.

Let ‖v‖ denote the L2-norm of a vector v. Let ‖M‖ or ‖M‖F denote the

matrix Frobenius norm of a matrix M . Unless they are clear from context, the

random variables over which we take expectation and probabilities are specified in

subscript, i.e. Ez and Pz denote the expectation and probability with respect to the

random variable of z, respectively.

4.3.2 The Learning Bound of MLIE

In this section, we will discuss the learning bound of MLIE based on the diameter

of the parameter space and the Lipschitz constant. To start with, we define the

pseudometric space, the diameter of a parameter space and the Lipschitz constant

as follows.

Definition 27. A pseudometric space2 (V , ρ) is a set V and a function ρ: V × V →

[0,∞) satisfying: (1)ρ(x,y) ≥ 0; (2) ρ(x,y) = ρ(y,x); (3) ρ(x, z) ≤ ρ(x,y) +

ρ(y, z).

Definition 28. Let U ∈ V and (V , ρ) be a metric space. The diameter of a set U is

defined as

diam(U , ρ) = max
ui,uj∈U

ρ(ui,uj).

Definition 29. [74] Let (U , ρU), (V , ρV) be two metric spaces. A function h : U →

V is called Lipschitz continuous if ∃L <∞, ∀u1,u2 ∈ U ,

ρV(h(u1), h(u2)) ≤ LρU(u1,u2).

2To simplify the discussion, we refer to pseudometrics as metrics, pointing out the distinction
only when necessary.
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The Lipschitz constant of a Lipschitz function h is

lip(h;U → V) = min{L ∈ R|∀u1,u2 ∈ U ,u1 6= u2,

ρV(h(u1), h(u2)) ≤ LρU(u1,u2)}

= max
u1,u2∈U :u1 6=u2

ρV(h(u1), h(u2))

ρU(u1,u2)
,

lip(h;U → V) will be written as lip(h← u) if U and V are clear from the context.

Theorem 5. Let h(z;θ) be a parameterised function and θ ∈ RQ. Suppose lip(h←

θ) ≤ L1, lip(r ← h) ≤ L2, and diam(Θ, ‖ · ‖) ≤ B, then ∀θ ∈ Θ, with probability

at least 1− δ, the following bound holds

R(hθ) ≤ Rn(zn, hθ) + CL1L2B

√
Q

n
+

√
ln 1/δ

2n
,

where C is a universal constant.

The proof procedure of Theorem 5 mainly follows Peter Bartlett’s notes on

covering numbers, chaining and Dudleys integral [2] and the details are shown in

Appendix 4.7.1. Based on Theorem 5, controlling lip(h ← θ) and diam(Θ) is an

efficient way to control the generalisation gap. In this way, we can improve the

generalisation ability of a classifier.

Suppose a parameterised function set has k sets of parameters θ =

(θ[1], . . . ,θ[K]) and lip(h ← θ) may not be easily calculated by using the k sets

together. In this case, we propose to calculate lip(h ← θ) with k sets separately.

We then show the extension of Theorem 5 with k parameter sets as follows.

Definition 30. Suppose a function with multiple parameter vectors h(·;θ[1], . . . ,θ[K])

maps z into a real value, where θ[k] denotes the kth parameter vector, θ[k] ∈ Θ[k] ⊆

RQk , andK denotes the total number. Given h(·; ·,θ[k]) ∈ Hθ[k] , the metric in space
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Hθ[k] is defined as follows: ∀θ[k],1,θ[k],2 ∈ Θ[k]

ρHθ[k]

(
h(·; ·,θ[k],1), h(·; ·,θ[k],2)

)
= max
z,θ[i],i∈[K]\k

∣∣∣h(z;θ[1], . . . ,θ[k−1],θ[k],1,θ[k+1], . . . ,θ[K])

− h(z;θ[1], . . . ,θ[k−1],θ[k],2,θ[k+1], . . . ,θ[K])
∣∣∣

(4.4)

where θ[i] ∈ Θ[i], i ∈ [K]\k and [K] = {1, 2, . . . , K}, [K]\k denotes the integers

from 1 to K without k.

Based on the definition, ρHθ[k] satisfies all conditions of pseudometric. The

non-negativity and symmetry properties could be easily verified. The triangle in-

equality is proved as follows:

ρHθ[k]

(
h(·; ·,θ[k],1), h(·; ·,θ[k],2)

)
= max
z,θ[K]\k

|h(z,θ[K]\k,θ[k],1)− h(z,θ[K]\k,θ[k],3) + h(z,θ[K]\k,θ[k],3)− h(z,θ[K]\k,θ[k],2)|

≤ max
z,θ[K]\k

(
|h(z,θ[K]\k,θ[k],1)− h(z,θ[K]\k,θ[k],3)|+ |h(z,θ[K]\k,θ[k],3)− h(z,θ[K]\k,θ[k],2)|

)
≤ max
z,θ[K]\k

|h(z,θ[K]\k,θ[k],1)− h(z,θ[K]\k,θ[k],3)|+ max
z,θ[K]\k

|h(z,θ[K]\k,θ[k],3)− h(z,θ[K]\k,θ[k],2)|

=ρHθ[k]

(
h(·; ·,θ[k],1), h(·; ·,θ[k],3)

)
+ ρHθ[k]

(
h(·; ·,θ[k],3), h(·; ·,θ[k],2)

)
where θ[K]\k denotes θ[i] ∈ Θ[i], i ∈ [K]\k and the triangle inequality has been

proved.

lip
(
h; Θ[k] → Hθ[k]

)
will be written as lip(h← θ[k]) if Θ[k] andHθ[k] are clear

from the context. Using the Euclidean distance in the space Θ[k], lip(h← Θ[k]) has

the following formula

lip(h← θ[k]) = max
θ[k],1,θ[k],2∈Θ[k],θ[k],1 6=θ[k],2

ρH(θ[k])

(
h(·; ·θ[k],1), h(·; ·θ[k],2)

)
‖θ[k],1 − θ[k],2‖

. (4.5)

Theorem 6. The relationship between L[k] = lip(h ← θ[k]) and L = lip(h ← θ)
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can be written as

L ≤

√√√√ K∑
k=1

L2
[k].

Thus let L = (L[1], . . . , L[K]) ∈ RK ,

L ≤ ‖L‖2.

The detailed proof of Theorem 6 is shown in Appendix 4.7.2.

Corollary 4. Let h(z;θ) be a parameterised function and θ = (θ[1], . . . ,θ[K]).

Suppose lip(r ← h) ≤ Ll, lip(h ← θk) ≤ L[k] and diam(Θ[k], ‖ · ‖2) ≤ B[k]. Let

L = (L[1], . . . , L[K]) and B = (B[1], . . . , B[K]). Then ∀θ ∈ Θ, with probability

1− δ, the following bound holds

R(hθ) ≤ Rn(zn, hθ) + CLl‖L‖‖B‖
√
Q

n
+

√
ln 1/δ

2n
,

where C is a universal constant.

Proof. Substitute the result of Theorem 6 into Theorem 5 and check the definition

of B, the result is obtained.

Based on Corollary 4, the three components, Ll, ‖L‖ and ‖B‖ can affect the

bound of the expected risk. In MLIE, the set of parameters is θ = {rm,M}. To

guarantee the generalisation ability of MLIE, the following factors are considered:

1. Ll: The loss function with smaller lip(r ← h) is preferred. Therefore, Hinge

loss with Ll = 1 is selected.

2. ‖B‖: Based on the definition ofB, the parameters are considered separately.

The space of r−i /r
+
j in (4.1), (4.2) and (4.3) is bounded when L2-norm regu-

larisation is used. The space of L or M can be bounded when matrix Frobe-

nius norm regularisation is used.
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3. ‖L‖: With a convex regularisation term, as illustrated in Section 1.6.2, the pa-

rameter is restricted to be inside a convex set. Based on Corollary 1 in Chapter

1, the Lipschitz constant with respect to each parameter can be bounded by

maxz,θ ‖∂h(z;θ)
∂θ[i]
‖. The partial gradients of the classifier (4.3) can be bounded

so long as X is bounded, which would be illustrated in Section 4.4.2. Here

we use Gmax to denote the bound of ‖L‖.

Then the learning bound of the algorithm can be written as follows: ∀θ ∈ Θ, with

probability at least 1− δ, the following bound holds

R(hθ) ≤ Rn(zn, hθ) + CGmaxB

√
Q

n
+

√
ln 1/δ

2n
,

where B ≤
√∑

i diam(r−i )2 + diam(r+
j )2 + diam(M)2 or

B ≤
√∑

i diam(r−i )2 + diam(r+
j )2 + diam(L)2, where diam(r−i ), diam(r+

j ),

diam(M ) and diam(L) denote the diameters of the space restricted by vector L2-

norm or matrix Frobenius norm regularisation.

4.4 Algorithm of MLIE

4.4.1 Objective Function

Based on the discussion in previous sections, with the classifier of (4.3), hinge loss

and the regularisation term
∑

i ‖r
−
i ‖2

2 + ‖r+
j ‖2

2 + ‖L‖2
F , the following optimisation

problem is proposed:

min
Θ,ξ

1
n

∑
i ξi + λ

(∑
i ‖r

−
i ‖2

2 + ‖r+
j ‖2

2 + ‖L‖2
F

)
s.t. yih(xi; r

m,M) ≥ 1− ξi
ξi ≥ 0

i = 1, . . . , n,

(4.6)

where h(x; rm,M ) = mini(Lx− r−i )T (Lx− r−i )−minj(Lx− r−j )T (Lx− r−j )

denotes the classifier; Θ = {rm,L} denotes the set of parameters to be optimised;

L denotes the linear mapping to be learned and the learning of L is equivalent to
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the learning of M of Mahalanobis distance; rm = {r−i , r+
j ; i = 1, . . . ,m+, j =

1, . . . ,m−} denotes the set of all extracted instances; α is a trade-off parameter

which balances the loss term and the regularisation term.

4.4.2 Gradient Descent

For the reason of the non-convexity of h(x; rm,M ), the optimisation problem is

not a convex one. Thus the gradient descent algorithm is used:

Θt+1 = Θt − α ∂g
∂Θ
|Θt ,

where β is the learning rate; the superscript t denotes the time step during optimi-

sation; g denotes the objective function.

The partial derivative of the objective function g with respect to each set of

parameters is

∂g

∂Θ
|Θt =

( 1

n

∑
i

yi
∂l

∂h(xi; Θ)

∂h

∂Θ
− 2λΘ

)
|Θt ,

where l indicates the Hinge loss function;

∂h(xk; Θ)

∂r−a
|Θt = 1

[
a = argmini d

2(Lxk, r
−
i )
]
(2r−a − 2Lxk)|Θt ;

∂h(xk; Θ)

∂r+
b

|Θt = −1
[
b = argminj d

2(Lxk, r
−
j )
]
(2r+

b − 2Lxk)|Θt ;

∂h(xk; Θ)

∂L
|Θt =

∑
a

1
[
a = argmini d

2(Lxk, r
−
i )
]
2(Lxk − r−a )xTk |Θt

−
∑
b

1
[
b = argminj d

2(Lxk, r
−
j )
]
2(Lxk − r+

b )xTk |Θt ;

1(·) denotes the indicator function, its value is 1 when the condition is satisfied and

its value is 0 otherwise.

Based on the equation, ∂h(xk;Θ)

∂r−a
|Θ and ∂h(xk;Θ)

∂r+b
|Θ are bounded by 2 diam(r−a ) +

2 diam(L) diam(x) and 2 diam(r+
b )+2 diam(L) diam(x) respectively; ∂h(xk;Θ)

∂L
|Θ

is bounded by 4(diam(r−a ) + diam(L) diam(x)) diam(x). Therefore, as long as
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the regularisation terms are convex, the related lip(h← θ) is bounded in Corollary

4. The gradient of hinge loss l(a) is −1 when a ≤ 1 and 0 when a > 1 and the final

updating equation is as follows:

r−,t+1
a = r−,ta − 2λαr−,ta

+
α

n

n∑
k=1

yk1
[
ykh(xk; Θ) ≤ 1

]
1
[
a = argmini d

2(Lxk, r
−
i )
]
(2r−a − 2Lxk)|Θt ;

r+,t+1
b = r+,t

b − 2λαr−,tb

− α

n

n∑
k=1

yk1
[
ykh(xk; Θ) ≤ 1

]
1
[
b = argminj d

2(Lxk, r
−
j )
]
(2r+

b − 2Lxk)|Θt ;

Lt+1 = Lt − 2λαLt

+
α

n

n∑
k=1

yk1
[
ykh(xk; Θ) ≤ 1

]∑
a

1
[
a = argmini d

2(Lxk, r
−
i )
]
2(Lxk − r−a )xTk |Θt

− α

n

n∑
k=1

yk1
[
ykh(xk; Θ) ≤ 1

]∑
b

1
[
b = argminj d

2(Lxk, r
−
j )
]
2(Lxk − r+

b )xTk |Θt .

4.5 Experiments
The proposed algorithm is compared with nine established metric learning algo-

rithms from two categories: 1) the most cited algorithms, including large margin

nearest neighbor (LMNN) [76], information theoretic metric learning (ITML) [9],

neighbourhood component analysis (NCA) [17] and metric learning by collaps-

ing classes (MCML) [16]; (2) the most state-of-the-art algorithms, including ge-

ometric mean metric learning (GMML) [83], regressive virtual metric learning

(RVML) [52], stochastic neighbour compression (SNC) [35], sparse composi-

tional metric learning (SCML) [59] and reduced-rank local distance metric learning

(R2LML) [26]. LMNN and ITML are implemented by using the metric-learn tool-

box3; NCA and MCML are implemented by using the drToolbox4; and GMML,

RVML, SCML, R2LML and SNC are implemented by using the authors’ code.

The experiment is focused on binary classification of 12 publicly available data

3https://all-umass.github.io/metric-learn/
4https://lvdmaaten.github.io/drtoolbox/
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Table 4.2: Experiment results of metric learning with instance extraction. Mean accuracy
(percentage) and standard deviations are reported with the best ones in bold; ‘#
of best’ indicates the number of data sets that an algorithm performs the best.

Data set LMNN ITML MCML NCA RVML
Australian 78.8 ±2.57 77.17 ±1.94 78.77 ±1.70 79.96 ±1.63 83.01 ±1.58

Breastcancer 95.91 ±0.69 96.39 ±1.04 96.35 ±0.77 95 ±1.52 95.77 ±1.09
Diabetes 69.16 ±1.44 69.09 ±1.24 69.19 ±1.18 68.47 ±2.46 71.04 ±2.60
Fourclass 72.06 ±2.31 72.09 ±2.22 72.06 ±2.43 72.06 ±2.46 70.46 ±1.40
German 67.85 ±1.54 66.95 ±2.05 67.67 ±1.48 69.95 ±2.88 71.65 ±1.78

Haberman 67.89 ±3.34 67.97 ±4.05 67.56 ±2.75 67.4 ±3.33 66.67 ±2.30
Heart 76.2 ±3.82 76.94 ±3.30 77.22 ±3.66 75.56 ±2.01 77.69 ±4.05
ILPD 66.97 ±2.13 68.67 ±2.83 67.48 ±2.58 66.8 ±1.19 67.95 ±2.90

Liverdisorders 61.01 ±4.80 57.17 ±4.01 60.65 ±5.12 59.78 ±3.44 64.64 ±3.93
Pima 68.54 ±1.64 67.95 ±2.01 68.31 ±2.33 65.91 ±3.04 69.45 ±1.68

Voting 94.83 ±0.77 90.75 ±1.44 92.64 ±1.58 94.77 ±0.92 95.75 ±1.26
WDBC 96.58 ±1.12 94.91 ±0.92 95.7 ±0.90 96.58 ±0.85 96.58 ±1.34
# of best 0 0 0 0 0

Data set GMML SCML R2LML SNC MLIE
Australian 84.35 ±1.04 82.25 ±1.40 84.67 ±1.32 81.78 ±8.8 84.71 ±1.93

Breastcancer 97.26 ±0.81 97.01 ±0.91 97.01 ±0.66 96.65 ±0.69 96.18 ±1.32
Diabetes 74.16 ±2.58 71.49 ±2.21 73.8 ±1.37 75.32 ±2.74 73.42 ±3.59
Fourclass 76.12 ±1.87 75.54 ±1.42 76.12 ±1.91 73.39 ±8.7 77.02 ±1.73
German 71.55 ±1.12 70.9 ±2.65 72.9 ±1.83 70.13 ±3.33 73.63 ±2.2

Haberman 71.22 ±3.35 69.19 ±2.47 71.06 ±3.39 71.98 ±5.2 72.56 ±3.25
Heart 81.2 ±2.69 78.98 ±3.24 82.04 ±3.81 77.04 ±5.32 80.83 ±3.09
ILPD 67.14 ±2.17 68.03 ±2.90 65.85 ±2.22 68.91 ±2.67 69.63 ±2.58

Liverdisorders 63.84 ±5.43 61.74 ±4.57 66.81 ±3.68 63.31 ±5.18 61.44 ±3.99
Pima 72.95 ±1.84 71.14 ±2.64 72.34 ±1.54 73.99 ±2.59 73.78 ±2.68

Voting 95.17 ±1.88 95 ±1.30 96.32 ±1.19 94.45 ±1.2 94.91 ±1.48
WDBC 96.71 ±0.78 96.97 ±0.89 96.93 ±1.67 96.93 ±0.85 95.17 ±1.37
# of best 1 1 3 2 5

sets from the websites of UCI5 and LibSVM6, namely Australian, Breastcancer, Di-

abetes, Fourclass, Germannumber, Haberman, Heart, ILPD, Liverdisorders, Pima,

Voting and WDBC. All data sets are pre-processed by firstly subtracting the mean

and dividing by the standard deviation, and then normalizing the l2-norm of each

instance to one.

For each data set, 60% instances are randomly selected as training sam-

ples and the rest for testing. This process is repeated 10 times and the mean

5https://archive.ics.uci.edu/ml/datasets.html
6https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html
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accuracy and the standard deviation are reported. 10-fold cross-validation is

used to select the trade-off parameters in the compared algorithms, namely

the regularisation parameter of LMNN (from {0.1, 0.3, 0.5, 0.7, 0.9}), γ in

ITML (from {0.25, 0.5, 1, 2, 4}), t in GMML (from {0.1, 0.3, 0.5, 0.7, 0.9}), λ

in RVML (from {10−5, 10−4, 10−3, 10−2, 10−1, 1, 10}), and ratio in SNC (from

{0.01, 0.02, 0.04, 0.08, 0.16}). All other parameters are set as default. For the pro-

posed algorithm, the parameters are set as follows: the initial weight of L is set as

the identity matrix I; the initial values of rm are set as the k-means clustering (Mat-

lab kmeans function with random initial values) centres of the positive and negative

classes; the number of extracted instances for each class is set as 2; the trade-off

parameter λ is set as 1 and the learning rate α is set as 0.001. The maximum number

of iterations is set as 5000 and the final result is based on the parameters at time t,

which is the earliest time when the smallest training error is obtained.

As shown in Table 5.1, MLIE achieves the best accuracy on 5 data sets out

of the 12 data sets. None of the other algorithms performs the best in more than

3 data sets. These experiment results show that MLIE enjoys competitive perfor-

mance against state-of-the-art metric learning algorithms. Furthermore, based on

the intuitive of LLC, in the bench mark experiment, only two instances from each

class are extracted, which would result into four local regions. MLIE has provided

an effective way to conduct instance compression for NN classifier.

4.6 Conclusion

In this chapter, a MLIE classifier is proposed and the classification mechanism of

MLIE is illustrated by showing its relationship with LLC. Meanwhile, the learning

bound of MLIE has been obtained, which guarantees the generalisation ability of

MLIE. The experiments on benchmark data sets show the competitive classification

and compression performance of MLIE.
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4.7 Appendix

4.7.1 Proof of Theorem 5

First, the definitions of Rademacher complexity, uniform convergence and covering

number are introduced. Dudley’s Integral Theorem that uses covering number to

bound Rademacher complexity is also introduced. Then, the Lipschitz constant is

shown to bound the covering number of functional space by the covering number

of parameter space. Finally, based on Dudley’s Integral Theorem, Theorem 5 is

shown.

4.7.1.1 Preliminary

Definition 31. [46] Let εn = {ε1, . . . εn} be i.i.d. ±1-valued random variables with

P (εi = +1) = P (εi = −1) = 1
2
. zn = {z1, . . . ,zn} are i.i.d. samples. The

empirical Rademacher complexity is defined as

ˆRadn(H) = Eεn
[

max
h∈H

1

n

∑
i

εih(zi)
∣∣∣zn];

and the Rademacher complexity is defined as

Rad(H) = Ezn
[

ˆRadn(H)
]
.

Theorem 7. [46] With probability at least 1− δ the following bounds hold

R(h)−Rn(zn, h) ≤ 2 ˆRadn(φ ◦ H) + 3

√
ln 2

δ

2n
,

where φ : R → R denotes the loss function l(h(x); y); ◦ denotes the composition

of functions.

Lemma 8. [46] Let φ : R → R be an L-Lipschitz. Then, for any hypothesis set

H of real-valued functions, Talagrands Lemma indicates the following inequality

holds:

ˆRadn(φ ◦ H) ≤ L ˆRadn(H).
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Corollary 5. Suppose lip(r ← h) ≤ L, then with probability at least 1 − δ the

following bound holds

R(h)−Rn(zn, h) ≤ 2L ˆRadn(H) + 3

√
ln 2

δ

2n

Proof. Substitute the result of Lemma 8 into Theorem 7, the result can be obtained.

Definition 32. [68] An ε-cover of a subset U of a metric space (V , ρ) is a set

Û ⊆ U such that for each u ∈ U there is a û ∈ Û such that ρ(u, û) ≤ ε. The

ε-cover number of U is

N(ε,U , ρ) = min{|Û | : Û is an ε-cover of U}.

The following theorem illustrates how to bound the covering number.

Theorem 8. [68] Let U ⊆ V = RD. Then

(1

ε

)D vol(U)

vol(B)
≤ N(ε,U , ‖ · ‖) ≤

(vol(U + ε
2
B)

vol( ε
2
B)

)
where + is the Minkovski sum, B is the unit norm ball and vol indicates the volume

of the set.

Remark: Consider U ∈ RD with diameter diam(U), then based on the last

inequality, we have

N(ε,U , ‖ · ‖) ≤
(vol(U + ε

2
B)

vol( ε
2
B)

)
≤
(diam(U) + ε

ε

)D
=
(

1 +
diam(U)

ε

)D
.

Definition 33. Let ∀h1, h2 ∈ H be two functions mapping z ∈ Z into real value,

ρH|zn is defined as follows:

ρH|zn(h1, h2) =

√√√√ 1

n

n∑
i=1

(h1(zi)− h2(zi))2.
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Theorem 9. [61] With metric ρH|zn onH, Dudley’s integral indicates

ˆRadn(H) ≤ 12

∫ ∞
0

√
logN(ε,H, ρH|zn)

n
dε.

Dudley’s integral bounds the empirical Rademacher complexity by the cov-

ering number of the function space (with a metric based on the difference of the

function value on n inputs).

4.7.1.2 Learning Bounds with B and Lipschitz constant

To start with, another definition of metric in function space is given as follows.

Definition 34. A metric ρHθ in parametric function space is defined as follows:

ρHθ(h(·;θ1), h(·;θ2)) = max
x∈X
|h(x;θ1)− h(x;θ2)|. (4.7)

lip(h; Θ→ Hθ) can be written as lip(h← θ) because Θ andHθ is clear from

the context:

lip(h← θ) = max
θ1,θ2∈Θ,θ1 6=θ2

ρHθ

(
h(·; ·,θ1), h(·; ·,θ2)

)
ρΘ(θ1,θ2)

= max
θ1,θ2∈Θ,θ1 6=θ2,x

|h(x;θ1)− h(x;θ2)|
‖θ1 − θ2‖

.

Proposition 15. For all spaces of parametric functionsHθ, ∀ε,∀H,

N(ε,H, ρH|zn) ≤ N(ε,H, ρHθ), (4.8)

where θ denotes all parameters of the function, ρH|zn is defined in Definition 33

and ρHθ is defined in Definition 34.

Proof. Let {ĥ1, . . . , ĥN} be an ε-covering set inHθ with metric ρHθ , then based on

the definition of covering set,

∀h ∈ H,min
i
ρHθ(h, ĥi) ≤ ε.
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Based on the definitions of ρH|zn and ρHθ , we have

ρH|zn(h, ĥi) =

√√√√ 1

n

n∑
i=1

(h(zi)− ĥi(zi))2

≤

√√√√ 1

n

n∑
i=1

(max
z
|h(z)− ĥi(zi)|)2

=

√
1

n
× n× ρHθ(h, ĥi)

= ρHθ(h, ĥi)

≤ ε.

Therefore, {ĥ1, . . . , ĥN} is also an ε-covering set ofHθ with metric ρH|zn and

N(ε,H, ρH|zn) ≤ |{ĥ1, . . . , ĥN}| = N(ε,H, ρHθ).

Corollary 6. The empirical Rademacher complexity can be bounded by the cover-

ing number with metric ρHθ as follows:

ˆRadn(H) ≤ 12

∫ ∞
0

√
logN(ε,H, ρHθ)

n
dε.

Proof. Substitute the result of Proposition 15 into Theorem 9.

Proposition 16. Let h(z;θ) be a parameterised function and θ ∈ Θ ∈ RQ. Suppose

lip(h← θ) ≤ L, i.e.

∀θ1,θ2 ∈ Θ,θ1 6= θ2 ρHθ

(
h(·;θ1), h(·;θ2)

)
≤ LρΘ(θ1,θ2),
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then

N(ε,Hθ, ρHθ)

(a) ≤N(ε/L,Θ, ρΘ)

(b) ≤
(

1 +
diam(Θ)L

ε

)Q
.

Proof. Let {θ̂1, . . . , θ̂N} be an (ε/L)-covering set in Θ, then based on the definition

of covering set,

∀θ ∈ Θ,min
i
ρΘ(θ, θ̂i) ≤ ε/L

Based on the Lipschitz continuous property

∀h(·;θ) ∈ Hθ,min
i
ρHθ

(
h(·;θ), h(·; θ̂i)

)
≤ Lmin

i
ρΘ(θ, θ̂i) ≤ ε,

Therefore, {h(·; θ̂1), . . . , h(·; θ̂N)} is a ε-covering set ofH and

N(ε,H(θ), ρHθ)

(c) ≤|{h(·; θ̂1), . . . , h(·; θ̂N)}|

(d) ≤|{θ̂1, . . . , θ̂N}|

(e) =N(ε/L,Θ, ρΘ).

where the inequality (c) is based on the definition of covering number and the in-

equality (d) is due to the fact that h is a function. Therefore, inequality (a) of Lemma

16 is proved. inequality (b) of Lemma 16 is based on Theorem 8.

Finally, Theorem 5 can be proved as follows.
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Proof. Based on the result of Corollary 6,

ˆRadn(H) ≤ 12

∫ ∞
0

√
logN(ε,H, ρHθ)

n
dε

(a) = 12

∫ LB

0

√
logN(ε,H, ρHθ)

n
dε

(b) =
12√
n

∫ LB

0

√
log
(

1 +
LB

ε

)Q
dε

(c) =
12LB√

n

∫ 1

0

√
Q log

(
1 +

1

ε′

)
dε′

(d) ≤ 12LB

√
Q

n

∫ 1

0

√
log(2/ε′)dε′

(e) = 24LB

√
Q

n

∫ 1/2

0

√
log(1/ε)dε.

Here equality (a) is because the value of h is bounded by LB. If ε > LB, then

logN(ε,H, ρHθ) = 0, equality (b) is based on Proposition 16, equality (c) can be

shown by variable substitution ε′ = ε
LB

, inequality (d) is due to ε ∈ [0, 1] and

equality (e) is due to variable substitution ε = ε′

2
.

Then we calculate the integral

∫ 1/2

0

√
log(1/ε)dε

(a) =

∫ √log2
∞

yd(e−y
2

)

(b) =e−y
2

y|
√

log 2
∞ −

∫ √log 2

∞
e−y

2

dy

=e−y
2

y|
√

log 2
∞ +

∫ ∞
√

log 2

e−y
2

dy

≤e−y2y|
√

log 2
∞ +

∫ ∞
0

e−y
2

dy

=

√
log 2

2
+

√
π

2
,

where equality (a) is based on variable substitution y =
√

log(1/ε), i.e. ε = e−y
2

and equality (b) is based on integral by part.
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Therefore,

ˆRadn(H) ≤ 24LB

√
Q

n

∫ 1/2

0

√
log(1/ε)dε

≤ 24(

√
log 2

2
+

√
π

2
)LB

√
Q

n

= CLB

√
Q

n

where C = 24(
√

log 2
2

+
√
π

2
).

Finally, substitute the above bound of empirical Rademacher complexity into Corol-

lary 5, Theorem 5 is shown.

4.7.2 Proof of Theorem 6

Proof. Let∇hij = ρHθ(h(·;θi), h(·;θj)),∇θij = ‖θi−θj‖2 and∇θij,[k] = ‖θi,[k]−

θj,[k]‖2, θi = (θi,[1], . . . , θi,[K]). Then

∀θi,θj ∈ Θ,θi 6= θj L =
∇hij
∇θij

≤
∑

k L[k]∇θij,[k]

∇θij
=

∑
k L[k]∇θij,[k]√∑
k(∇θij,[k])2

,
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where the first inequality is based on the definition of Lk. This is because

∇hij = max
z

(
h(z; θ1,[1], . . . , θ1,[K])− h(z; θ2,[1], . . . , θ2,[K]

)
(a) = max

z

∣∣∣(h(z; θ1,[1], θ1,[2], . . . , θ1,[K])− h(z; θ2,[1], θ1,[2], . . . , θ1,[K])+

(h(z; θ2,[1], θ1,[2], . . . , θ1,[K])− h(z; θ2,[1], θ2,[2], θ1,[3] . . . , θ1,[K])+

...

(h(z; θ2,[1], . . . , θ2,[K−1], θ1,[K])− h(z; θ2,[1], . . . , θ2,[K])
∣∣∣

(b) ≤ max
z

∣∣∣(h(z; θ1,[1], θ1,[2], . . . , θ1,[K])− h(z; θ2,[1], θ1,[2], . . . , θ1,[K])
∣∣∣+

max
z

∣∣∣(h(z; θ2,[1], θ1,[2], . . . , θ1,[K])− h(z; θ2,[1], θ2,[2], θ1,[3] . . . , θ1,[K])
∣∣∣+

...

max
z

∣∣∣(h(z; θ2,[1], . . . , θ2,[K−1], θ1,[K])− h(z; θ2,[1], . . . , θ2,[K])
∣∣∣

(c) ≤ max
z,θ[i],i∈[K]\1

∣∣∣(h(z; θ1,[1], θ[2], . . . , θ[K])− h(z; θ2,[1], θ[2], . . . , θ[K])
∣∣∣+

max
z,θ[i],i∈[K]\2

∣∣∣(h(z; θ[1], θ1,[2], θ[3], . . . , θ[K])− h(z; θ[1], θ2,[2], θ[3], . . . , θ[K])
∣∣∣+

...

max
z,θ[i],i∈[K]\K

∣∣∣(h(z; θ[1], . . . θ[K−1], θ1,[K])− h(z; θ[1], . . . , θ[K−1]θ2,[K])
∣∣∣

(d) =
∑
k

L[k]∇θij,[k],

where equality (a) is because we add and delete the same terms; inequality (b)

is because |a + b| ≤ |a| + |b| and maxz(a(z) + b(z)) ≤ maxz a(z) + maxz b(z);

inequality (c) is due to the definition of max; and equality (d) is due to the definition

of L[k], that is, (4.5).

The maximum value of
∑
k L[k]∇θij,[k]√∑
k(∇θij,[k])2

can be solve by the following optimisation

problem

max
∇θ[k],k=1,...,K

∑
k L[k]∇θ[k]

s.t.
√∑

k(∇θ[k])2 ≤ 1
(4.9)
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Let s[k] = ∇θ[k], the above optimisation problem is the same as

max
s[k]

∑
k L[k]s[k]

s.t.
∑

k(s[k])
2 ≤ 1

(4.10)

By introducing the Lagrange multiplier α, we have

L =
∑
k

L[k]s[k] − α(
∑
k

(s[k])
2 − 1).

Based on the stationary condition

∂L
∂si

= L[k] − αs[k] = 0, k ∈ [K],

we obtain

α =
L[k]

s[k]

, k ∈ [K].

Based on the above equation and the constraint of
∑

k(s[k])
2 ≤ 1, we obtain the

solution

∇θ[k] = s[k] =
L[k]√∑
k L

2
[k]

.

Thus, ∑
k L[k]∇θij,[k]√∑
k(∇θij,[k])2

= max
∇θ[k]

∑
k

L[k]∇θ[k] s.t
√∑

k

(∇θij,[k])2 ≤ 1

=

√∑
k

L2
[k] = ‖L‖2.



Chapter 5

Smooth Metric Leaning with

Instance Extraction

5.1 Introduction

As we have presented in Section 4.1, the nearest neighbour (NN) classifier needs

appropriate distance metrics and is better to be combined with instance compres-

sion for model learning. Hence in Chapter 4, we propose the metric learning with

the instance extraction algorithm and discuss its learnability.As illustrated in the

references, such as [22, 47, 48], it is important for the final learning bound to cover

the factors related to the optimisation algorithms, because the generalisation ability

is closely linked with the optimisation algorithm. The complexity measure could

help explain some observations with respect to the optimisation problem, such as

the effect of the training time [22], the effect of the smoothness of the operator [22]

and the effect of the number of parameters [48].

The rest of this chapter is organised as follows. In section 5.2, we discuss the

learnability of the classifier based on the generalisation PAC bound. The generalisa-

tion PAC bound is defined and proved to be a sufficient condition for agnostic PAC

learnablility in Section 5.2.2. We explain how to obtain this bound in Section 5.2.3

and give a detailed example on the learnability of the gradient descent algorithm

in Section 5.2.4. The generalisation PAC bound covers factors in the optimisation

algorithm and suggests that the Lipschitz smooth property, that is Lipschitz contin-
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uous for the gradient, is important to the generalisation ability. Consequently, in

Section 5.3, we propose a smooth metric learning with instance extraction (MLIE)

algorithm using the Lipschitz smooth classifier and loss function. In Section 5.4,

the proposed algorithm is compared with state-of-the-art competitors on 12 publicly

available data sets and shows encouraging results. The work is concluded in Section

5.5 and theoretical proofs are deferred to Appendix 5.6.

5.2 Learning Bounds

5.2.1 Notations

Let h(x,w) be a function with input x and parameterw and the output is restricted

to be a real value in the binary classification case. Let x ∈ X ⊆ RD, where X

denotes a set which contains all possible values of x. Let w = (w[1], . . . , w[Q]) ∈

W ⊆ RQ be the parameter of the classifier, whereW denotes a set which contains

all possible values ofw. y = sign
[
h(x,w)

]
returns the classification result of input

x given parameters w, where y ∈ Y = {−1, 1} and sign[·] is the sign function1.

Suppose the input x is a random variable distributed according to an unknown

distribution with probability density function (PDF) f(x). Let xn = {xi, i =

1, . . . , n} denote a set of n independent and identically (i.i.d.) distributed instances

sampled from f(x). Let yn = {yi, i = 1, . . . , n} denote the label set, where yi

denote the corresponding label of xi. P (y = 1|x) and P (y = 0|x) follow an un-

derlying distribution but is unknown. Let zn = { (xi, yi), i = 1, . . . , n} denote the

set of training instance and label pairs. Based on the assumptions on xn and yn, zn

are n i.i.d. training pairs sampled from p(z) = p(x, y) and p(z) is unknown.

During the training process of the classifier, given xn and yn, ĥ can be ob-

tained from optimisation algorithms, such as gradient descent (GD). Rn(zn, ĥ) :=

1
n

∑
i r(zi, ĥ) := 1

n

∑
i l(ĥ(xi); yi) is called the training error or empirical risk

and it indicates the training loss given the hypothesis returned by the algorithm,

where l(·; ·) denotes the loss function and r(·, ·) denotes the risk function. Let s

denote the fixed setting of the algorithm, such as the initial values, the number of

1 sign[a] = 1 if a ≥ 0 and sign[a] = −1 if a < 0, where a ∈ R.
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iterations and the step size. With a parametric classifier, ŵ will be used to repre-

sent ĥ. The relationship between w and xn,yn is represented as ŵ = m(zn; s),

where m : X × S → Θ denotes a function from x and s to the learned param-

eters θ. Since ŵ is a function of the random variables xn,yn, ŵ is also a ran-

dom variable. In the parametric case, the training error would be represented as

Rn(zn, ŵ) := 1
n

∑
i r(zi, ŵ) := 1

n

∑
i l(h(xi, ŵ), yi).

During the test process of the classifier, test pair z′ = (x′, y′) is sampled

from the same unknown distribution p(z). The predicted value h(x′, ĥ) would

be compared with the test label to evaluate the performance of the algorithm.

R(ĥ) := Ez′r(z
′, ĥ) := Ez′l(h(x′, ĥ); y′) is called the expected error or test error

and it indicates the expected value of test loss given the classifier ĥ. With a para-

metric classifier, the following notations would be used R(ŵ) := Ez′r(z
′, ŵ) :=

Ez′l(h(x′, ŵ); y′).

The gap between the training error and test error, i.e. R(ŵ) − Rn(zn, ŵ), is

called the generalisation gap. A good classifier should have small training error and

small generalisation gap so as to perform well on test instances.

5.2.2 Learnablility with the Generalisation PAC bounds

Definition 35. A hypothesis classH has the generalisation PAC bound if there ex-

ists a function nGH : (0, 1)2 → N such that for every ε, δ ∈ (0, 1) and for every

probability distribution DZ over Z , if zn is a sample of n ≥ nGH(ε, δ) i.i.d. exam-

ples drawn from DZ , the algorithm returns a hypothesis ĥ such that the following

inequality is satisfied

Pzn
(
R(ĥ)−Rn(zn, ĥ) ≤ ε

)
≥ 1− δ. (5.1)

Instead of the uniform bound of generalisation gap used in uniform con-

vergence, this definition considers the probability of a small generalisation gap

(R(ĥ) − Rn(zn, ĥ) ≤ ε) directly. It has been used in the research of stability [6].

The condition is weaker than the uniform convergence, as illustrated in Lemma 9,

but is still a sufficient condition for the agnostic PAC learnability, as illustrated in
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Theorem 10.

Lemma 9. The relationship between the proposed bound and the uniform conver-

gence bound is as follows:

Pzn
(
R(ĥ)−Rn(zn, ĥ) ≤ ε

)
≥ Pzn

(
max
h∈H

[R(h)−Rn(zn, h)] ≤ ε
)
. (5.2)

Theorem 10. Suppose ERMH exists for a class H, where ERMH denotes the em-

pirical risk minimisation strategy inside the set H. If H has the generalisation PAC

bound with a function nGH : (0, 1)2 → N, thenH is agnostic PAC learnable with the

sample complexity function nALH (ε, δ) ≤ max[nGH(ε/2, δ/2), 2C2
r

ε2
ln 4

δ
], where the

range of the risk function r(z, h) is bounded by [0, Cr]. Furthermore, in this case,

ERMH is a successful agnostic PAC learner forH.

5.2.3 Decomposition

In this section, we will discuss how to obtain the generalisation PAC bound for the

parametric hypothesis space, that is, h is specified by a set of parameters w. One

simple way is to use the uniform convergence bound in a much smaller set.

Theorem 11. (Decomposition Theorem) LetW denote the set of all possible values

of w and Ŵ ⊆ W; let δ1, δ2 ≥ 0. If

Pzn [m(zn) ∈ Ŵ ] ≥ 1− δ1 (5.3)

and

Pzn [max
w∈Ŵ

R(w)−Rn(zn,w) ≤ ε] ≥ 1− δ2, (5.4)

then, the following inequality holds

Pzn [R(ŵ)−Rn(zn, ŵ) ≤ ε] ≥ 1− δ1 − δ2. (5.5)

Theorem 11 decomposes the generalisation PAC bound, i.e. (5.5), into two

terms which are easier to consider, namely (1) A set Ŵ which includes 1− δ1 cases

ofm(zn), i.e. (5.3); (2) Uniform convergence of the generalisation error inside Ŵ ,
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i.e. (5.4). In the following section, we will (1) bound δ1 by considering the concen-

tration property ofm(zn); (2) bound δ2 with the uniform convergence results.

5.2.4 Analyse Learnability of the Gradient Descent Algorithm

5.2.4.1 Settings

In the following section, learnability of the gradient descent (GD) algorithm will

be discussed. The updating equation of the most conventional GD algorithm is as

follows:

ŵ(1) = w(0) − α(1)

n

n∑
i=1

∂r(zi,w)

∂w
|ŵ(0) ;

...

ŵ(T ) = ŵ(T−1) − α(T )

n

n∑
i=1

∂r(zi,w)

∂w
|ŵ(T−1) ;

where α(t) ≥ 0 denotes the learning rate at time t; ŵ(t) denotes the estimated param-

eters of the classifier obtained after t iterations; w(0) denotes the initial parameter

of the algorithm; r(zi,w) = l(h(xi,w), yi) indicates the training error of the ith

training instance given parameter w. Here the number of iteration T and the learn-

ing rate α(t) are treated as the setting parameters of the gradient descent algorithm

and determined in advance, i.e. s = {T, α(t), t = 1, . . . , T}. The initial weightw(0)

is assumed to be fixed.

Based on Theorem 11, we need δ1 and δ2 to obtain the final learning bound:

Pzn [m(zn) ∈ Ŵ ] ≥ 1− δ1,

Pzn [max
w∈Ŵ

R(w)−Rn(zn,w) ≤ ε] ≥ 1− δ2.

Based on Theorem 13 introduced in the Appendix, δ2 could be bounded so long as,

(i) the Lipschitz constant lip(h ← w) could be uniformly bounded in the whole

space of Ŵ and (ii) diam(Ŵ , ‖ · ‖2) could be bounded. (i) lip(h ← w) could

be bounded as long as h has a bounded gradient with respect to w ∈ Ŵ , which

is not a strict condition when diam(Ŵ , ‖ · ‖2) could be bounded. (ii) To bound
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diam(Ŵ , ‖·‖2), Ŵ is set as an Euclidean ball around Eznm(zn) and concentration

techniques will be applied to guarantee Pzn
[
m(zn) ∈ ball

(
Eznm

(T )(zn), ε
)]
≤

1− δ1, where δ1 will decrease to 0 when n→∞.

5.2.4.2 Concentration of ŵ(T )

In this section, the discussion holds for anyw(0). The mappings ofm(T )(zn; s) and

m
(T )
[q] (zn; s) are defined as follows:

m(T )(zn; s) := ŵ(T ) = w(0) −
T∑
t=1

α(t)
( n∑
j=1

1

n

∂r(zi,w)

∂w

)
|ŵ(t−1) ;

m
(T )
[q] (zn; s) := ŵ

(T )
[q] =

[
w(0) −

T∑
t=1

α(t)
( n∑
j=1

1

n

∂r(zi,w)

∂w

)
|ŵ(t−1)

]
[q]

; (5.6)

where v[q] denotes the qth value of a vector v. With a fixed setting s and fixed

w(0), given the value of zn, the value ofm(T )
[q] (zn; s) is determined. In other words,

m
(T )
[q] (zn; s) is a function from Zn to R. The McDiarmid’s inequality can be used

to obtain the concentration properties after a function mapping. Based on the Mc-

Diarmid’s inequality (Lemma 11 in the Appendix), we can obtain the concentration

property ofm(T )(zn; s) as shown in the lemma below.

Definition 36. A operator G :W →W is called η-expansive if

max
w1,w2∈W,w1 6=w2

‖G(w1)−G(w2)‖
‖w1 −w2‖

≤ η.

If η ≤ 1, then the operator G is non-expansive.

Lemma 10. The following bound holds for s and all value of a,

Pzn
[
‖m(T )(zn; s)− Eznm(T )(zn; s)‖ ≤ ε

]
≥ 1−Q exp(

−2ε2n

QC2
).

where C = 2
(∑T

t=1 η
T−tα(t)

)
lip (r ← w); η is the Lipschitz constant

of operator G with respect to w and G(m(t−1)(zn)) = m(t−1)(zn) +∑
j∈[n]/i

α(t)

n

∂r(zj ,w)

∂w
|m(t−1)(zn); [n]/i denotes the set which contains the integers

from 0 to n without i.
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5.2.4.3 Using the Decomposition Theorem

Corollary 7. Let ball(o, r) denote a ball with the centre at os and radius of rs. The

following inequality is satisfied for all ε > 0

Pzn
[
m(T )(zn) ∈ ball

(
Eznm

(T )(zn), B
)]
≥ 1−Q exp(

−2B2n

QC2
), (5.7)

where C = 2
(∑T

t=1 η
T−tα(t)

)
lip (r ← w), B > 0 is a positive constant.

Proof. Based on Lemma 10,

Pzn
[
‖m(T )(zn; s)− Eznm(T )(zn; s)‖ ≤ B

]
≥ 1−Q exp(

−2B2n

QC2
)

⇔ Pzn
[
m(T )(zn) ∈ ball

(
Eznm

(T )(zn), B
)]
≥ 1−Q exp(

−2B2n

QC2
)

Theorem 12. Suppose lip(h ← w) ≤ L1 and lip(r ← h) ≤ Ll , the following

inequality holds

Pzn [R(m(zn))−Rn(zn,m(zn)) ≤ ε] ≥ 1− δ1 − δ2,

where

ε =
C1C2L

2
1L

2
lQ
√

1
2

ln(Q/δ1)

n
+

√
1
2

ln(1/δ2)
√
n

and w ∈ RQ; C1 is a universal constant; C2 = 2
(∑T

t=1 η
T−tα(t)

)
; η is the Lips-

chitz constant of operator G with respect tow and G(m(t−1)(zn)) = m(t−1)(zn)−∑
j∈[n]/i

α(t)

n

∂r(zj ,w)

∂w
|m(t−1)(zn), [n]/i denotes the set which contains the integers

from 0 to n without i.

The above statement is equivalent to the follows: with probability at least 1−δ1−δ2,

the following bound holds

R(m(zn,a))−Rn(zn,m(zn,a)) ≤
C1C2L

2
1L

2
lQ
√

1
2

ln(Q/δ1)

n
+

√
1
2

ln(1/δ2)
√
n

.

(5.8)
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Based on Theorem 12, the following factors are considered:

(1) A small value of Q will give a tighter bound. In other words, the generalisation

gap will be smaller with less number of parameters;

(2) The Lipschitz constants lip(h ← w) and lip(r ← h) will affect the learning

bound. It is reasonable to select a loss function with smaller Ll and a classifier with

smaller L1.

(3) η, i.e. lip(G ← w), also appears in the bound. Based on the definition of G

and the addition property of Lipschitz functions, if the lipschitz constant of ∂r(zj ,w)

∂w

with respect to w is bounded by Ls, then lip(G ← w) is bounded by 1 + αLs.

lip(
∂r(zj ,w)

∂w
← w) is called (Lipschitz) smooth as illustrated by the following defi-

nition.

Definition 37. A risk function r(z,w) is called η-smooth2 (with respect to w), if

∀w1,w2 ∈ W , z ∈ Z ,

‖∂r(z,w)

∂w
|w1 −

∂r(z,w)

∂w
|w2‖ ≤ η‖w1 −w2‖.

Compared with Corollary 4 in Chapter 4, Theorem 12 has an additional

requirement that lip(G ← w) should be bounded. A sufficient condition for

η = lip(G← w) being bounded is lip( ∂r
∂w
← w) being bounded.

lip(
∂r

∂w
← w) = lip(

∂r

∂h

∂h

∂w
← w) = lip(gl ◦ gh ← w),

where ◦ denotes the composition of functions, gl = ∂r
∂h

and gh = ∂h
∂w

. Based on

the composition property of Lipschitz functions illustrated in Lemma 2(d), if the

Lipschitz constant of gl and gh are bounded, lip(gl ◦ gh ← w) would be bounded.

Therefore, as long as we have smooth loss, i.e. bounded lip( ∂r
∂h
← h), and smooth

classifier, i.e. bounded lip( ∂h
∂w
← w), lip(G← w) is bounded.

2Smooth is also called Lipschitz continuous gradient and Lipschitz smooth in some references.
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5.3 Classifier and Optimisation

5.3.1 Classifier

Based on the bounds in the previous section, smoothness is also an important con-

cept for generalisation and a smooth classifier with smooth loss function may enjoy

good generalisation performance. Therefore, a smooth classifier is proposed and

following Chapter 4, metric learning with instance extraction (MLIE) strategy has

been adopted in order to extract representative instances and learn a suitable dis-

tance metric from data at the same time:

h(x) =
∑
i

exp(−γd2
M (x, r+

i ))−
∑
j

exp(−γd2
M (x, r−j )), (5.9)

where dM (xi,xj) =
√

(xi − xj)TM(xi − xj) denotes the Mahalanobis distance

between xi and xj , M ∈M+ is the parameter matrix and M+ denotes the set of

positive semi-definite matrices; γ controls the rate of the decay of the influence of

the relatively far away distances; r+
i and r−i denote the ith extracted positive and

negative class instance respectively.

Based on the definition of the classifier, the extracted instances which lie closer

to x have a larger impact on the classification result. With an increase in the dis-

tance, the influence on the result decays at an exponential rate. In the above formula,

the parameter γ needs to be set in advance. To avoid this step, the following equiv-

alent formula will be used

h(x) =
∑
i

exp(−d2(Lx,Lr+
i ))−

∑
j

exp(−d2(Lx,Lr−i ))

=
∑
i

exp(−‖Lx−Lr+
i ‖2)−

∑
j

exp(−‖Lx−Lr−j ‖2),

where d(xi,xj) =
√

(xi − xj)T (xi − xj) denotes the Euclidean distance and ‖ · ‖

denotes the vector L2-norm. L denotes a linear mapping and LTL = M . If

we would like to learn the extracted instance after linear mapping, the following
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classifier may be used

h(x) =
∑
i

exp(−d2(Lx, r+
i ))−

∑
j

exp(−d2(Lx, r−j ))

=
∑
i

exp(−‖Lx− r+
i ‖2)−

∑
j

exp(−‖Lx− r−j ‖2).
(5.10)

For a classifier h with convex constraints on parameters, the parameter w will

be restricted to be inside a convex set, as illustrated in Section 1.6.2. Then based on

Corollary 1 in Chapter 1, a sufficient condition for bounded lip( ∂h
∂w
← w) is to have

finite values of the first and second partial derivatives. The first partial derivatives

of the classifier (5.10) are as follows:

∂h(x; Θ)

∂r+
i

=− exp(−‖Lx− r+
i ‖2)(2r+

i − 2Lx)

∂h(x; Θ)

∂r−j
= exp(−‖Lx− r−j ‖2)(2r−j − 2Lx)

∂h(x; Θ)

∂L[a,b]

=
∑
i

−2(Lx− r+
i )[a]x[b] exp(−‖Lx− r+

i ‖2)

+
∑
j

2(Lx− r−j )[a]x[b] exp(−‖Lx− r−j ‖2),

where L[i,j] denotes the ith row and jth column element of matrix L and x[j] de-

notes the jth element of the vector x; (Lx− r)[a] =
∑

kL[ak]x[k] − r[a] .
∂h(x;Θ)

∂r+i
and ∂h(x;Θ)

∂r−j
are bounded by 2 diam(r−a ) + 2 diam(L) diam(x), where

diam(V) = supvi,vj∈V ‖vi−vj‖ and vector-2 norm or Frobenius norm is used for a

set of vectors or a set of matrices respectively; ∂h(x;Θ)
∂L

is bounded by 4m(diam(r)+

diam(L) diam(x)) diam(x), where m denotes the number of extracted instances.

All first partial derivatives have finite values as long as diam(L),diam(x) and

diam(r) are bounded.
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The second partial derivatives are as follows:

∂2h(x; Θ)

∂r+2
i

= exp(−‖Lx− r+
i ‖2)(2r+

i − 2Lx)(2r+
i − 2Lx)T

−2 exp(−‖Lx− r+
i ‖2)I;

∂2h(x; Θ)

∂r−2
j

=− exp(−‖Lx− r−j ‖2)(2r−j − 2Lx)(2r−j − 2Lx)T

+2 exp(−‖Lx− r−j ‖2)I;

∂2h(x; Θ)

∂L[a,b]
2 =

∑
i

4(Lx− r+
i )2

[a]x
2
[b] exp(−‖Lx− r+

i ‖2)

−2
∑
i

x2
[b] exp(−‖Lx− r+

i ‖2)

−
∑
j

4(Lx− r−j )2
[a]x

2
[b] exp(−‖Lx− r−j ‖2)

+2
∑
j

x2
[b] exp(−‖Lx− r−j ‖2),

where I is the identity matrix. All second partial derivatives have finite values as

long as diam(L),diam(x) and diam(r) are bounded.

5.3.2 Loss Function

Hinge loss is not second-order differentiable. Similar to Huber loss for regression

[29], the following loss is defined by combining a quadratic and a linear function

l(a) =


1− a if a ≤ 0

1
4
(a− 2)2 if 0 < a ≤ 2

0 if a > 2

(5.11)

The derivative of l(a) is as follows

l′(a) =


−1 if a ≤ 0

a−2
2

if 0 < a ≤ 2

0 if a > 2
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Figure 5.1: An illustration of the ‘smooth’ loss function and its derivative. Left: loss func-
tion l(a); right: the derivative of loss function l′(a).

The loss function and its derivative are illustrated in Figure 5.1. The Lipschitz

constant of l′(a) is bounded by 1
2

and the proposed loss (5.11) is a smooth loss.

5.3.3 Objective Function

Using the classifier defined in (5.10), the loss function defined in (5.11) and the

convex regularisation terms
∑

i ‖r
−
i ‖2

2 +‖r+
j ‖2

2 +‖L‖2
F , the following optimisation

problem is proposed:

min
Θ

1
n

∑
k l(ykh(xk; r

m,L)) + λ
(∑

i ‖r
−
i ‖2

2 + ‖r+
j ‖2

2 + ‖L‖2
F

)
i = 1, . . . , n,

(5.12)

where Θ = {rm,L} denotes the set of parameters to be optimised; L denotes the

linear mapping to be learned and the learning of L is equivalent to the learning

of the Mahalanobis distance M ; rm = {r−i , r+
j ; i = 1, . . . ,m+, j = 1, . . . ,m−}

denotes the set of all extracted instances; λ is a trade-off parameter which balances

the loss term and the regularisation term.

5.3.4 Gradient Descent

The optimisation function is not a convex problem due to the non-convexity of

h(x; rm,M ). Thus the gradient descent algorithm is used:

Θt+1 = Θt − α ∂g
∂Θ
|Θt ,
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where α is the learning rate; the superscript t denotes the time step during optimi-

sation; g denotes the objective function.

The gradient of the objective function g with respect to each set of parameters

is

∂g

∂Θ
|Θt =

( 1

n

∑
k

yk
∂l

∂h(xk; Θ)

∂h(xk; Θ)

∂Θ
+ 2λΘ

)
|Θt .

The final updating equations are as follows:

r+,t+1
i =r+,t

i − 2λαr+,t
i

+
α

n

n∑
k=1

ykl
′[h(xk; Θ)] exp(−‖Lxk − r+

i ‖2)(2r+
i − 2Lxk)|Θt ;

r−,t+1
j =r−,tj − 2λαr−,tj

−α
n

n∑
k=1

ykl
′[h(xk; Θ)] exp(−‖Lxk − r−j ‖2)(2r−j − 2Lxk)|Θt ;

Lt+1 =Lt − 2λαLt

+
α

n

n∑
k=1

ykl
′[h(xk; Θ)]

∑
i

exp(−‖Lxk − r+
i ‖2)2(Lxk − r+

i )xTk |Θt

−α
n

n∑
k=1

ykl
′[h(xk; Θ)]

∑
j

exp(−‖Lxk − r−j ‖2)2(Lxk − r−j )xTk |Θt .

5.4 Experiments

The proposed algorithm is compared with nine established metric learning algo-

rithms from two categories: 1) The most cited algorithms, including large margin

nearest neighbor (LMNN) [76], information theoretic metric learning (ITML) [9],

neighbourhood component analysis (NCA) [17] and metric learning by collaps-

ing classes (MCML) [16]; (2) the most state-of-the-art algorithms, including ge-

ometric mean metric learning (GMML) [83], regressive virtual metric learning

(RVML) [52], stochastic neighbor compression (SNC) [35], sparse compositional

metric learning (SCML) [59] and reduced-rank local distance metric learning

(R2LML) [26]. LMNN and ITML are implemented by using the metric-learn tool-
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Table 5.1: Experiment results of smooth metric learning with instance extraction. Mean
accuracy (percentage) and standard deviations are reported with the best ones in
bold; ‘# of best’ indicates the number of data sets that an algorithm performs
the best.

Data set LMNN ITML MCML NCA RVML
Australian 78.8 ±2.57 77.17 ±1.94 78.77 ±1.70 79.96 ±1.63 83.01 ±1.58

Breastcancer 95.91 ±0.69 96.39 ±1.04 96.35 ±0.77 95 ±1.52 95.77 ±1.09
Diabetes 69.16 ±1.44 69.09 ±1.24 69.19 ±1.18 68.47 ±2.46 71.04 ±2.60
Fourclass 72.06 ±2.31 72.09 ±2.22 72.06 ±2.43 72.06 ±2.46 70.46 ±1.40
German 67.85 ±1.54 66.95 ±2.05 67.67 ±1.48 69.95 ±2.88 71.65 ±1.78

Haberman 67.89 ±3.34 67.97 ±4.05 67.56 ±2.75 67.4 ±3.33 66.67 ±2.30
Heart 76.2 ±3.82 76.94 ±3.30 77.22 ±3.66 75.56 ±2.01 77.69 ±4.05
ILPD 66.97 ±2.13 68.67 ±2.83 67.48 ±2.58 66.8 ±1.19 67.95 ±2.90

Liverdisorders 61.01 ±4.80 57.17 ±4.01 60.65 ±5.12 59.78 ±3.44 64.64 ±3.93
Pima 68.54 ±1.64 67.95 ±2.01 68.31 ±2.33 65.91 ±3.04 69.45 ±1.68

Voting 94.83 ±0.77 90.75 ±1.44 92.64 ±1.58 94.77 ±0.92 95.75 ±1.26
WDBC 96.58 ±1.12 94.91 ±0.92 95.7 ±0.90 96.58 ±0.85 96.58 ±1.34
# of best 0 0 0 0 0

Dataset GMML SCML R2LML SNC Smooth MLIE
Australian 84.35 ±1.04 82.25 ±1.40 84.67 ±1.32 81.78 ±8.8 85.52 ±1.98

Breastcancer 97.26 ±0.81 97.01 ±0.91 97.01 ±0.66 96.65 ±0.69 96.98 ±0.79
Diabetes 74.16 ±2.58 71.49 ±2.21 73.8 ±1.37 75.32 ±2.74 75.22 ±2.49
Fourclass 76.12 ±1.87 75.54 ±1.42 76.12 ±1.91 73.39 ±8.7 74.53 ±2.93
German 71.55 ±1.12 70.9 ±2.65 72.9 ±1.83 70.13 ±3.33 73.03 ±1.79

Haberman 71.22 ±3.35 69.19 ±2.47 71.06 ±3.39 71.98 ±5.2 72.35 ±4.02
Heart 81.2 ±2.69 78.98 ±3.24 82.04 ±3.81 77.04 ±5.32 82.31 ±2.92
ILPD 67.14 ±2.17 68.03 ±2.90 65.85 ±2.22 68.91 ±2.67 69.12 ±2.72

Liverdisorders 63.84 ±5.43 61.74 ±4.57 66.81 ±3.68 63.31 ±5.18 66.66 ±4.71
Pima 72.95 ±1.84 71.14 ±2.64 72.34 ±1.54 73.99 ±2.59 74.91 ±2.86

Voting 95.17 ±1.88 95 ±1.30 96.32 ±1.19 94.45 ±1.2 95.11 ±1.25
WDBC 96.71 ±0.78 96.97 ±0.89 96.93 ±1.67 96.93 ±0.85 97.63 ±1.22
# of best 1 1 2 1 7
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box3; NCA and MCML are implemented by using the drToolbox4; and GMML,

RVML, SCML, R2LML and SNC are implemented by using the authors’ code.

The experiment is focused on binary classification of 12 publicly available data

sets from the websites of UCI5 and LibSVM6, namely Australian, Breastcancer, Di-

abetes, Fourclass, Germannumber, Haberman, Heart, ILPD, Liverdisorders, Pima,

Voting and WDBC. All data sets are pre-processed by firstly subtracting the mean

and dividing by the standard deviation, and then normalising the L2-norm of each

instance to 20.

For each data set, 60% instances are randomly selected as training sam-

ples and the rest for testing. This process is repeated 10 times and the mean

accuracy and the standard deviation are reported. 10-fold cross-validation is

used to select the trade-off parameters in the compared algorithms, namely

the regularisation parameter of LMNN (from {0.1, 0.3, 0.5, 0.7, 0.9}), γ in

ITML (from {0.25, 0.5, 1, 2, 4}), t in GMML (from {0.1, 0.3, 0.5, 0.7, 0.9}),

λ in RVML (from {10−5, 10−4, 10−3, 10−2, 10−1, 1, 10}), Ratio in SNC (from

{0.01, 0.02, 0.04, 0.08, 0.16}). All other parameters are set as default. For the

proposed algorithm, the parameters are set as follows: the initial weight of L is

set as the identity matrix I; the initial values of rm are set as the k-means clus-

tering (Matlab kmeans function with random initial values) centres of the positive

and negative classes; the number of extracted instances for each class is set as 2;

the trade-off parameter λ is set as 1 and the learning rate α is set as 0.001. The

maximum number of iterations is set as 5000 and the final result is based on the

parameters at time t, which is the earliest time when the smallest training error is

obtained.

As shown in Table 5.1, with only two instances extracted from each class, the

proposed algorithm achieves the best accuracy on 7 data sets out of the 12 data sets.

None of the other algorithms performs the best in more than 3 data sets. These

experiment results show the proposed algorithm enjoys competitive performance

3https://all-umass.github.io/metric-learn/
4https://lvdmaaten.github.io/drtoolbox/
5https://archive.ics.uci.edu/ml/datasets.html
6https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html
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against state-of-the-art metric learning algorithms.

5.5 Conclusion
In this chapter, the generalisation PAC bound is used to cover the factors related to

the optimisation process. Based on the resultant bound, a smooth classifier and a

smooth loss function are used for MLIE. Compared to the experiment result in last

chapter, considering the smoothness property has improved the performance of the

classifier.

5.6 Appendix

5.6.1 Proof of Theorem 10

The definition of PAC and agnostic PAC learnable is reviewed. After that, the re-

quired Lemma of McDiarmid’s inequality is introduced. Then one proposition is

proved and Finally Theorem 10 is proved.

Definition 38. [57, 65] A hypothesis class H is Probably Approximately Correct

(PAC) learnable if there exist a function nLH : (0, 1)2 → N and a learning algorithm

with the following property: For every ε, δ ∈ (0, 1), for every distribution DX over

X , and for every target function g ∈ G, if there exists an h∗ ∈ H which returns

the same classification result as g, then when running the learning algorithm on

n ≥ nLH(ε, δ) independent and identically distributed (i.i.d.) instances generated

by DX and labelled by g, the algorithm returns a hypothesis ĥ, such that, with

probability at least 1− δ, R(ĥ) ≤ ε, which can be equivalently written as

Pxn
(
R(ĥ) ≤ ε

)
≥ 1− δ,

or

Pxn
(
Ex′
[
l
(
ĥ(x′); g(x′)

)]
≤ ε
)
≥ 1− δ,

where the probability is over xn and ĥ is a random variable related to xn.

Definition 39. [57, 23] A hypothesis class H is agnostic PAC learnable or has ag-

nostic PAC learnability if there exist a function nALH : (0, 1)2 → N and a learning
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algorithm with the following property: For every ε, δ ∈ (0, 1) and for every dis-

tribution DZ over Z , when running the learning algorithm on n ≥ nALH (ε, δ) i.i.d.

instances generated by DZ , the algorithm returns a hypothesis ĥ which satisfies the

following agnostic PAC learning bound: with probability at least 1− δ,

R(ĥ)−min
h∈H

R(h) ≤ ε.

The above agnostic PAC learning bound can be equivalently written as

Pzn
(
R(ĥ)−min

h∈H
R(h) ≤ ε

)
≥ 1− δ,

or more explicitly

Pzn
(
Ez′
[
l
(
ĥ(x′); y

)]
−min

h∈H
Ez′
[
l
(
h(x′); y

)]
≤ ε
)
≥ 1− δ.

where the probability is over zn and ĥ is a random variable related to zn.

Lemma 11. [46] Let zn = {z1, . . . ,zi−1, zi, zi+1, . . . ,zn} be n independent sam-

ples; Let zn,i = {z1, . . . ,zi−1, z
′
i, zi+1, . . . ,zn}, where the replacement example

z
′
i is assumed to be drawn from the same distribution of zi and it is independent

from zn. Furthermore, let m : Zn → R be a function of z1, . . . ,zn that satisfies

∀i, ∀zn,∀zn,i

|m(zn)−m(zn,i)| ≤ ci, (5.13)

for some constant ci. Then for all ε > 0, McDiarmid’s Inequality states that

Pzn(m(zn)− Ezn(m(zn)) ≥ ε) ≤ exp(
−2ε2∑n
i=1 c

2
i

)

Pzn(Ezn(m(zn))−m(zn) ≥ ε) ≤ exp(
−2ε2∑n
i=1 c

2
i

)

i.e.

Pzn(|m(zn)− Ezn(m(zn))| ≥ ε) ≤ 2 exp(
−2ε2∑n
i=1 c

2
i

) (5.14)
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Proposition 17. Suppose the range of the risk function r(z, h) is bounded by

[0, Cr], then

Pzn
(

min
h∈H

Rn(zn, h)− Ezn [min
h∈H

Rn(zn, h)] ≥ ε
)
≤ exp(

−2nε2

C2
r

).

Proof. Given zn and fixed hypothesis set of H, then the value of a(zn) =

minh∈HRn(zn, h) is fixed and this mapping a : Zn → R is a function. So we can

use Lemma 11 and we need to bound |minh∈HRn(zn, h)−minh∈HRn(zn,i, h)| as

follows,

min
h∈H

Rn(zn,i, h)

= min
h∈H

(
Rn(zn, h)− r(zi, h)

n
+
r(z′i, h)

n

)
≤min

h∈H

(
Rn(zn, h)− 0 +

Cr
n

)
= min

h∈H

(
Rn(zn, h)

)
+
Cr
n

Similarly,

min
h∈H

Rn(zn, h) ≤ min
h∈H

(
Rn(zn,i, h)

)
+
Cr
n
.

Therefore

|min
h∈H

Rn(zn, h)−min
h∈H

Rn(zn,i, h)| ≤ Cr
n
.

The result is obtained by substitute the above Cr
n

into Lemma 11.

Then Theorem 10 is proved as follows.

Proof. Let ĥ ∈ argminh∈HRn(zn, h), we have

Rn(zn, ĥ) = min
h∈H

Rn(zn, h).

Suppose

Pzn
(
R(ĥ)−Rn(zn, ĥ) ≤ ε/2

)
≥ 1− δ/2,
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Pzn
(
Rn(zn, ĥ)− Ezn [Rn(zn, ĥ)] ≤ ε/2

)
≥ 1− δ/2.

LetE1 = {zn|R(ĥ)−Rn(zn, ĥ) ≤ ε/2};E2 = {zn|Rn(zn, ĥ)−Ezn [Rn(zn, ĥ)] ≤

ε/2}. ∀zn ∈ E1 ∩ E2, we have

R(ĥ)

(a) ≤Rn(zn, ĥ) +
ε

2

(b) ≤Ezn [Rn(zn, ĥ)] + ε

(c) =Ezn min
h∈H

∑n
i=1 r(zi, h)

n
+ ε

(d) ≤min
h∈H

Ezn

∑n
i=1 r(zi, h)

n
+ ε

(e) = min
h∈H

Ezr(z, h) + ε

(f) = min
h∈H

R(h) + ε,

where inequality (a) is due to R(ĥ) − Rn(zn, ĥ) ≤ ε/2; inequality (b) is due

to Rn(zn, ĥ) − Ezn [Rn(zn, ĥ)] ≤ ε/2; equality (c) is due to the definitions of

Rn(zn, h) and ĥ; inequality (d) is due to change the order of Ezn and minh∈H;

equality (e) is due to the identical assumption of zn; equality (f) is due to the defi-

nition of R(h).

Therefore

Pzn
(
R(ĥ) ≤ min

h∈H
R(h) + ε

)
(a) ≥Pzn

(
E1 ∩ E2

)
(b) ≥1− δ1 − δ2,

where inequality (a) is due to the relationship between E1 ∩ E2 and R(ĥ) ≤

minh∈HR(h) + ε; inequality (b) is due to the probability of union of sets.

Based on Proposition 17, to guarantee Pzn
(
Rn(zn, ĥ)−Ezn [Rn(zn, ĥ)] ≤ ε/2

)
≥

1− δ/2 is satisfied, 2C2
r

ε2
ln 4

δ
instances are required.

At the same time, based on Definition 35, to guarantee Pzn
(
R(ĥ) − Rn(zn, ĥ) ≤

ε/2
)
≥ 1 − δ/2 is satisfied, mG

H(ε/2, δ/2) instances are required. Therefore, with



5.6. Appendix 136

more than max[mG
H(ε/2, δ/2), 2C2

r

ε2
ln 4

δ
] instances, Pzn

(
R(ĥ) ≤ ε

)
≥ 1 − δ is sat-

isfied. Based on Definition 39, the hypothesis set is (agnostic) PAC learnable and

the agnostic PAC learner forH is ERMH.

5.6.2 Theorem 13

Theorem 13. Let r(z,w) = l(h(x,w)) be the loss function of a parameterized

function h and w ∈ RQ. Suppose lip(r ← w) ≤ L and and diam(W , ‖ · ‖2) ≤ B,

then the following inequality holds

Pzn
[

max
w∈W

R(w)−Rn(zn,w) ≤ CLB

√
Q

n
+

√
ln 1/δ

2n

]
≥ 1− δ,

whereC is a universal constant and lip(r ← w) is the Lipschitz constant of function

r with respect to w, which is defined as follows

lip(r ← w) = max
w1,w2∈W,w1 6=w2,z∈Z

|r(z;w1)− r(z;w2)|
‖w1 −w2‖

.

5.6.3 Proof of Lemma 9

Proof. Let E1 be the set of events of R(ĥ) − Rn(zn, ĥ) ≤ ε and E2 be the set of

events of maxh∈H[R(h)−Rn(zn, h)] ≤ ε

Pzn(E1) =

∫ (
f(zn)1[E1]

)
dzn

Pzn(E2) =

∫ (
f(zn)1[E2]

)
dzn.

1. At the points zn where 1[E2] = 1, we have 1[E1] = 1, thus

f(zn)1[E1] = f(zn)1[E2].

2. At the points zn where 1[E2] = 0, we have

f(zn)1[E1] ≥ 0 = f(zn)1[E2].
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Therefore, at each zn,

(∫
f(zn)1[E1]

)
≥

(
f(zn)1[E2]

)
. Thus Pzn(E1) ≥

Pzn(E2).

5.6.4 Proof of Theorem 11

Proof. Let E1 denote the set of events R(ŵ) − Rn(zn, ŵ) ≤ ε; let E2 denote

the set of events m(zn) ∈ Ŵ; let E3 denotes the set of events maxw∈Ŵ R(w) −

Rn(zn,w) ≤ ε.

Pzn [¬E1]

=Pzn [¬E1, E2] + Pzn [¬E1,¬E2]

(d) ≤Pzn [¬E1, E2] + δ1

(e) ≤Pzn [¬E3] + δ1

=δ2 + δ1;

where inequality (d) is due to Pzn [¬E1,¬E2] ≤ Pzn [¬E2] = 1 − Pzn [E2] ≤ δ1;

inequality (e) is based on the relationship between 1[E2]1[¬E1] and 1[E3]. At

the points zn that satisfy m(zn) ∈ Ŵ , 1[¬E1] = 1 ⇒ 1[¬E3] = 1, thus

1[E2]1[¬E1] ≤ 1[¬E3] and Pzn [¬E1, E2] ≤ Pzn [¬E3].

5.6.5 Proof of Lemma 10

Proof. m(T )
[q] (zn; s) and zn satisfy the Zn → R function and independent assump-

tions of Lemma 11. To concentrate the difference between m(T )
[q] (zn; s) and its ex-

pectation, |m(T )
[q] (zn; s)−m(T )

[q] (zn,i; s)| need to be bounded. ∀s,∀q, |m(T )
[q] (zn; s)−

m
(T )
[q] (zn,i; s)| ≤ ‖m(T )(zn; s) − m(T )(zn,i; s)‖, where ‖ · ‖ denotes the vec-

tor l2 norm7. We will now discuss the bound of ‖m(T )(zn; s) −m(T )(zn,i; s)‖.

m(T )(zn; s) andm(T )
[q] (zn; s) are temporarily simplified tom(T )(zn) andm(T )

[q] (zn)

respectively.

(1) Decomposem(t)(zn)

To see the influence of zi, the updating equation of m(t)(zn) could be divided into

7In the cases of w being matrix, the matrix would be reshaped into a vector and then vector l2
norm would be used, which is equivalent to using matrix Frobenius norm directly.
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two parts

m(t)(zn) =

(
m(t−1)(zn)−

∑
j∈[n]/i

α(t)

n

∂r(zj,w)

∂w
|m(t−1)(zn)

)
−α

(t)

n

∂r(zi,w)

∂w
|m(t−1)(zn).

The updating process represented with operator G is as follows

m(t)(zn) = G(m(t−1)(zn))− α(t)

n

∂r(zi,w)

∂w
|m(t−1)(zn).

For both zn and zn,i, G(m(t−1)(zn)) = G(m(t−1)(zn,i)) because all training in-

stances considered in G are the same. Then

‖m(t)(zn)−m(t)(zn,i)‖

=

∥∥∥∥∥G(m(t−1)(zn))− α(t)

n

∂r(zi,w)

∂w
|m(t−1)(zn)−

G(m(t−1)(zn,i)) +
α(t)

n

∂r(zi′ ,w)

∂w
|m(t−1)(zn,i)

∥∥∥∥∥
≤

∥∥∥∥∥α(t)

n

∂r(zi,w)

∂w
|m(t−1)(zn) −

α(t)

n

∂r(zi′ ,w)

∂w
|m(t−1)(zn,i)

∥∥∥∥∥ (Term 1)+∥∥∥∥∥G(m(t−1)(zn))−G(m(t−1)(zn,i))
∥∥∥ (Term 2)

Term 1 and term 2 in the inequality can be bounded by using the Lipschitz constant

of function r with respect to w and the Lipschitz constant of G with respect to w

respectively.

(2) Bound Term 1: with the following definition of lip (r ← w)

lip (r ← w) = max
w1,w2∈W,w1 6=w2,z∈Z

|r(z,w1)− r(z,w2)|
‖w1 −w2‖

,
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term 1 is bounded as follows∥∥∥∥∥α(t)

n

∂r(zi,w)

∂w
|m(t−1)(zn) −

α(t)

n

∂r(zi′ ,w)

∂w
|m(t−1)(zn,i)

∥∥∥∥∥
≤

∥∥∥∥∥α(t)

n

∂r(zi,w)

∂w
|m(t−1)(zn)

∥∥∥∥∥+

∥∥∥∥∥α(t)

n

∂r(zi′ ,w)

∂w
|m(t−1)(zn,i)

∥∥∥∥∥
≤2α(t)

n
lip (r ← w).

(3) Bound Term 2: the Lipschitz constant of the operator is illustrated via the fol-

lowing definition of η-expansive. Term 2 is bounded as follows

∥∥∥G(m(t−1)(zn))−G(m(t−1)(zn,i))
∥∥∥ ≤ η‖m(t−1)(zn)−m(t−1)(zn,i)

∥∥∥
(4) Iterations

t = 1

‖m(1)(zn)−m(1)(zn,i)‖

≤‖α
(1)

n

∂r(zi,w)

∂w
|w0 − α(1)

n

∂r(zi′ ,w)

∂w
|w0‖+ ‖G(w0)−G(w0)‖

≤2α(1)

n
lip (r ← w)

t = 2

‖m(2)(zn)−m(2)(zn,i)‖

≤‖α
(2)

n

∂r(zi,w)

∂w
|m(1)(zn) −

α(2)

n

∂r(zi′ ,w)

∂w
|m(1)(zn,i)‖+

‖G(m(1)(zn))−G(m(1)(zn,i))‖

≤2α(2)

n
lip (r ← w) + η

2α(1)

n
lip (r ← w)

=
2(ηα(1) + α(2)) lip (r ← w)

n
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...

t = T

‖m(T )(zn)−m(T )(zn,i)‖

≤‖α
(T )

n

∂r(zi,w)

∂w
|m(T−1)(zn) −

α(T )

n

∂r(zi′ ,w)

∂w
|m(T−1)(zn,i)‖+

‖G(m(T−1)(zn))−G(m(T−1)(zn,i))‖

≤
2
(∑T

t=1 η
T−tα(t)

)
lip (r ← w)

n

(5) Concentration

|m(T )
[q] (zn)−m(T )

[q] (zn,
′
)|

≤‖m(T )(zn)−m(T )(zn,i)‖

≤
2
(∑T

t=1 η
T−tα(t)

)
lip (r ← w)

n

=
C

n

where C = 2
(∑T

t=1 η
T−tα(t)

)
lip (r ← w). In the case of η ≤ 1, C ≤

2
∑T

t=1 α
(t) lip (r ← w); in the case of η > 1,C ≤ 2

(∑T
t=1 η

T−t
)(

maxt α
(t)
)

lip (r ← w) =

2η
T−1
η−1

(
maxt α

(t)
)

lip (r ← w).

Therefore, based on Lemma 11, ∀s,m(T )
[q] (zn,a; s) can be bounded as

Pzn [|m(T )
[q] (zn)− Eznm(T )

[q] (zn)| ≤ ε√
Q

] ≥ 1− exp(
−2ε2

Q
∑n

i=1 c
2
i

)

= 1− exp(
−2ε2n

QC2
)

Therefore,

Pzn [‖m(T )(zn)− Eznm(T )(zn)‖ ≤ ε]

(a) ≥Pzn [

Q⋂
q=1

‖m(T )
[q] (zn)− Eznm(T )

[q] (zn)‖ ≤ ε√
Q

]

(b) ≥1−Q exp(
−2ε2n

QC2
).
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where inequality (a) is due the relationship between the events; inequality (b) is due

to the probability of the union of events.

5.6.6 Proof of Theorem 12

Proof. Let ball(E,B) := ball
(
Eznm

(T )(zn), B
)

denote the ball with the centre at

Eznm
(T )(zn) and radius of B. In the result of Corollary 7,

Pzn
[
m(zn) ∈ ball(E,B)

]
≥ 1− δ1, (5.15)

where δ1 = Q exp(−2B2n
QC2

2L
2 ) i.e. B = C2L1

√
Q
2n

ln Q
δ1

.

Based on the result of Theorem 13,

Pzn
[

max
w∈ball(E,B)

R(w)−Rn(zn,w) ≤ C1L2B

√
Q

n
+

√
ln 1/δ2

2n

]
≥ 1− δ2.

Substitute B = C2 lip(r ← w)
√

Q
2n

ln Q
δ1
≤ C2L1Ll

√
Q
2n

ln Q
δ1

into the above for-

mula

Pzn
[

max
w∈ball(a)

R(w)−Rn(zn,w) ≤ ε
]
≥ 1− δ2. (5.16)

ε =
C1C2L

2
1L

2
lQ
√

1
2

ln(Q/δ1)

n
+

√
1
2

ln(1/δ2)
√
n

.

Based on (5.15) and (5.16), the final result is obtained using Theorem 11

Pzn [R(m(zn))−Rn(zn,m(zn)) ≤ ε] ≥ 1− δ1 − δ2.



Chapter 6

Summary and Future Work

6.1 Summary

In this thesis, some intuitive metric learning algorithms and their PAC bounds have

been proposed. The intuitive explanations help us understand the terms in the PAC

bounds, such as the intuition of large margin ratio in Chapter 2. Meanwhile, the

PAC bounds can theoretically guarantee the performance of the algorithms and the

requirement for ‘better’ PAC bounds help propose better algorithms, such as the

modification from Chapter 4 to Chapter 5 has improved the performance of the

algorithm.

The learnable conditions and the terms required to be bounded in each chapter

are summarised in Table 6.1. The PAC bounds in different chapters are suitable for

different classifiers. For classifiers without a bounded partial derivative value ∂h
∂θ

but

with bounded lip(h← x), the bound for lip(h← x) can be used, such as the local

metric classifier used in Chapter 3. However, the exponential term of (16C)ddim(X )

means that the bound may be useful only when the sample size is very large or the

doubling dimension of X is very small. For classifiers with a bounded gradient, a

Lipschitz continuous loss and a bounded parametric space Θ, the bound proposed in

Chapter 4 can be used. Furthermore, for the classifiers which enjoy the (Lipschitz)

smoothness property besides the conditions mentioned in Chapter 4, there exists a

bound with terms related to the optimisation process.
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Chapter Properties

2

task classification
intuition large margin ratio

learnable condition uniform convergence
bounded terms lip(h← x), lip(r ← h), diam(X )

3

task classification
intuition local metric regions

learnable condition uniform convergence
bounded terms lip(h← x), lip(r ← h), diam(X )

4

task classification and compression
intuition local linear classifier

learnable condition uniform convergence
bounded terms lip(h← θ), lip(r ← h), diam(Θ)

5

task classification and compression
intuition a ‘smooth’ edition of Chapter 4

learnable condition generalisation PAC bound
bounded terms lip(h← θ), lip(∂h

∂θ
← θ), lip(r ← h), diam(Θ)

Table 6.1: A summary of metric learning problems and PAC learning bounds discussed in
the thesis.

6.2 Future Work

6.2.1 More Regularisation Terms and Classifiers

In this thesis, the regularisation term is restricted to be vector L2-norm or matrix

Frobenius norm and the type of classifiers is limited to those discussed in the four

chapters. Meanwhile, in metric learning, a large number of regularisation terms and

distance-based classifiers have been proposed and verified by experiments whereas

the intuition and learnablilty of these methods are rarely discussed. Therefore, it

would be valuable to extend our work to more regularisation terms and distance-

based classifiers.

Some deep neural networks (DNNs) can be regarded as Lipschitz functions

when all layers use Lipschitz functions and hence the hierarchical structure is a

composition of Lipschitz functions. Some attempts have recently been made to find

the PAC bounds of DNNs, such as [3, 1], and further theoretical and intuitive ex-

planations of more types of DNNs would be interesting work. Moreover, as metric

learning classifiers have much stronger classification ability than the softmax clas-

sifier, the latter of which is widely adopted in DNNs, incorporating metric learning
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into DNNs may reduce the required number of layers for feature extraction or the

number of nodes in each layer. Hence, it is interesting to study hierarchical metric

learning and its learnability.

6.2.2 Considering Optimisation in PAC Bounds

Lipschitz properties are crucial to both learning theory and optimisation. Research

on learning theory and optimisation are complementary. Besides the extensive dis-

cussions on the rate of convergence toward the minimal empirical risk, optimisa-

tion algorithms should consider the generalisation performance at the same time,

which requires the help of learning theory. Meanwhile, as illustrated in [22, 47, 48],

the traditional generalisation bound cannot explain many important observations of

the optimisation algorithms and further work is required to better understand deep

learning and many other classifiers [84]. Therefore, it is important to combine the

results in these two research areas. The explanation of the generalisation ability for

more advanced optimisation techniques would be another interesting future work

and Lipschitz properties would be an important factor to consider.

6.2.3 Reinforcement Learning Problems

As mentioned in Chapter 1, besides classification, there exist other important learn-

ing tasks, such as reinforcement learning (RL) [64]. RL learns to take sequential

actions in an environment so as to maximise the cumulative reward and it has been

applied to various practical problems [45]. Lipschitz functions are used in some

state-of-the-art reinforcement learning models, such as deep reinforcement learn-

ing models. Future work may focus on learnability problems and intuitions behind

effective reinforcement learning algorithms.

Meanwhile, reinforcement learning may help solve many hard classification

problems. For example, active learning, which designs an algorithm on selecting a

subset of unlabelled instances for additional labelling so as to improve the classifi-

cation performance, may be understood as a sequential decision problem and hence

solved by reinforcement learning [50]. Structure learning in DNNs, which aims

to learn a suitable network structure for a specific classification task, may also be
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viewed as a sequential decision task and the policy network is learned to add/delete

nodes or layers in a DNN given current information on data and network [85]. These

interesting problems, as well as their theoretical and intuitive explanations, would

also be a future work.
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