
Beyond Linear Similarity Function
Learning

Julien Bohné

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Computer Science

University College London

October 7, 2016

2

3

I, Julien Bohné, confirm that the work presented in this thesis is my own. Where

information has been derived from other sources, I confirm that this has been indicated

in the work.

Abstract

Being able to measure the similarity between two patterns is an underlying task in many

machine learning and data mining applications. However, handcrafting an effective

similarity function for a specific application is difficult and tedious. This observation

has led to the emergence of the topic of similarity function learning in the machine

learning community. It consists in designing algorithms that automatically learn a sim-

ilarity function from a set of labeled data. In this thesis, we explore advanced similarity

function concepts: local metric, deep metric learning and computing similarity with

data uncertainty.

Linear metric learning is a widely used methodology to learn a similarity function

from a set of similar/dissimilar example pairs. Using a single linear metric may be a

too restrictive assumption when handling heterogeneous datasets. Lately, local metric

learning methods have been introduced to overcome this limitation. However, most

methods are subject to constraints preventing their usage in many applications. For

example, some require the knowledge of all possible class labels during training. In

this thesis, we present a novel local metric learning method, which overcomes some

limitations of previous approaches.

Deep learning has become a major topic in machine learning. Over the last few

years, it has been successfully applied to various machine learning tasks such as clas-

sification or regression. In this thesis, we illustrate how neural networks can be used to

learn similarity functions which surpass linear and local metric learning methods.

Often, similarity functions have to deal with noisy feature vectors. In this con-

text, standard similarity learning methods may result in unsatisfactory performance. In

this thesis, we propose a method which leverages additional information on the noise

magnitude to outperform standard methods.

Acknowledgements

I would like first to thank my supervisor, Massimiliano Pontil, for his precious advises

and his patience. This PhD has been supported by a company named Safran Identity &

Security and I want to thank Stéphane Gentric, the head of face recognition research,

for his time and our fruitful discussions.

I am also immensely grateful to my wife, Véronique, for being the source of count-

less moments of happiness and supporting me in hard times.

Contents

Introduction 19

Notation 23

1 Background 25

1.1 Definition of a Metric . 25

1.2 Mahalanobis Distance . 26

1.3 Other Types of Similarity Functions 30

2 Performance Evaluation 35

2.1 Performance Measures . 35

2.2 Classification Datasets . 36

2.2.1 MNIST . 36

2.2.2 Isolet . 36

2.2.3 Letter . 37

2.2.4 Reuters . 37

2.2.5 20newsgroup . 37

2.3 Face Verification Datasets . 38

2.3.1 LFW . 38

2.3.2 FRGC . 38

3 Objective Functions for Empirical Loss Minimization 41

3.1 Empirical Loss . 41

3.1.1 Linear Loss . 41

3.1.2 Hinge Loss . 43

3.1.3 Data Preprocessing . 45

10 Contents

3.1.4 Learning from Pairs or Triplets? 45

3.1.5 Selecting Training Pairs from Class Labels 46

3.2 Common Metric Learning Regularizers 47

3.3 A New Regularizer for Metric Learning 50

3.3.1 Regularizer Ω(M) . 50

3.3.2 Effect of the Regularizer Ω(M) 52

3.4 Optimization . 53

3.4.1 Stochastic Gradient Descent 53

3.4.2 Bypassing with the Positive-Definiteness Constraint 56

4 Large Margin Local Metric Learning 59

4.1 Local Metric . 60

4.1.1 Objective Function . 61

4.1.2 Alternate Minimization Scheme 63

4.2 Computing the GMM on a Low Dimensional Embedding 64

4.3 Experiments . 66

4.3.1 Synthetic Dataset . 66

4.3.2 Nearest Neighbor Classification 69

4.3.3 Face Verification . 71

4.4 Conclusion . 74

5 Deep Metric Learning 75

5.1 Neural Network for Similarity Function Learning 77

5.1.1 Network details . 77

5.1.2 Intermediate Losses . 79

5.2 Training Pair Selection for Deep Metric 80

5.2.1 Separate Scale Optimization 81

5.3 Experiments . 82

5.4 Conclusion . 85

6 Similarity Function Learning with Data Uncertainty 87

6.1 Dimensionality Reduction . 88

6.1.1 Uncertainty-Aware Probabilistic PCA 88

Contents 11

6.1.2 Learning µ and W . 89

6.2 Uncertainty-Aware Similarity Function 91

6.2.1 Generative Model . 91

6.2.2 Uncertainty-Aware Likelihood Ratio 92

6.2.3 Parameters Estimation . 93

6.3 Experiments . 97

6.3.1 MNIST . 97

6.3.2 Application to Face Verification 100

6.4 Conclusion . 106

Final Remarks and Future Work 107

Appendices 111

A Calculations for Uncertainty-Aware Likelihood Ratio 113

A.1 Calculation of P(µc|Xc,Ψ̄) . 113

A.2 Calculation of P(wc,i|Xc,Ψ̄) . 114

A.3 Maximization of R(Ψ,Ψ̄) with respect to Sw 115

Bibliography 116

List of Figures

1 What a good similarity function is depends on the task of interest. On

left side, d(·, ·) would be a desirable distance for letter recognition. On

the right side, it would be a suitable distance for writing style comparison. 20

2 Face verification process . 21

3 Border crossing using face recognition 21

2.1 Samples from MNIST digits . 37

2.2 Images from LFW . 38

2.3 Images from FRGC . 39

3.1 `γ,b(r,z) with γ = 0.5 . 44

3.2 Performance comparison between the hinge loss and the linear loss on

FRGC . 44

3.3 On FRGC, using tough dissimilar pairs improve performance at low

false positive rates. 47

3.4 Performance of hinge loss-based loss functions on FRGC. 49

3.5 Performance of hinge loss-based loss functions on LFW. 50

3.6 Speed of convergence of Gradient Descent and SGD function of the

batch size. 55

4.1 Percentiles of Bhattacharyya distance between neighbors function of

the embedding dimensionality m. 66

4.2 Synthetic data with small mean angle difference between the 3 GMM

components. Left: Examples of positive pairs (points linked by black

segments). Right: Performance of the Euclidean Distance, Global Met-

ric and Local Metric. 68

14 List of Figures

4.3 Synthetic data with large mean angle difference between the 3 GMM

components. Left: Examples of positive pairs (points linked by black

segments). Right: Performance of the Euclidean Distance, Global Met-

ric and Local Metric. 69

4.4 Optimizing both the matrices M0..K and the GMM parameters θ im-

proves performance on the synthetic dataset. 70

4.5 Impact of K on LMLML’s performance on MNIST. 71

4.6 Performance of LMLML and other methods on FRGC 72

4.7 Each row shows the images with the highest posterior probability

P(k|x) for a specific k. 73

5.1 DET curve of LMLML and Deep Metric on FRGC. The red curve cor-

responds to the performance with K = 3 which is the value giving the

best results on FRGC. 83

5.2 DET curve on MNIST for LMLML and Deep Metric. 84

5.3 These two pairs of digits are considered to be very similar by Deep

Metric but not by LMLML. Deep Metric handles similar pairs of fea-

ture vectors which are too far away in the original feature space better

than local metrics. 85

6.1 Graphical representation of the generative model using plate notation.

All the covariance matrices Sµ , Sw and Sc,i are considered fixed in the

generative model. However, while the matrices Sc,i are provided by

UA-PPCA or the feature extractor, the matrices Sµ and Sw are estimated

by the EM algorithm. 94

6.2 Examples of digits with three levels of additional noise: none (left),

medium (middle) and strong (right) 98

6.3 High resolution (left) and low resolution (right) versions of an FRGC

image . 101

6.4 Histograms of the magnitude of a high frequency Gabor filter response

on LR and HR images . 102

6.5 Examples of occluded faces . 103

6.6 Original (left) and frontalized version (right) of an image from MUCT . 105

List of Figures 15

6.7 Masks associated with 3 of the 5 bins of yaw angle. The proportions of

discarded pixels (hatched areas) are written in white. 105

List of Tables

3.1 Classification Accuracy of hinge loss-based loss functions on MNIST

and Reuters . 49

3.2 Regularizer Comparison on Public Datasets. Performances indicated

are Classification Accuracy for MNIST and Reuters, Accuracy for

LFW and FNR at FPR=0.1% for FRGC. 52

3.3 Metric Learning for face verification with identity document photos.

Comparison of the False Negative Rate at 0.1% of False Negative Rate. 53

4.1 Classification Rates . 71

4.2 Accuracy on LFW. 74

5.1 Network configurations. In the Activation function column, MO stands

for maxout. 83

5.2 Classification Rates . 83

6.1 EER on MNIST . 99

6.2 Sensitivity to the uncertainty accuracy 99

6.3 EER on MNIST with strong noise function of the dimensionality re-

duction method used for training (rows) and how the low dimensional

projection is performed (columns) . 100

6.4 FNR at FPR=0.1% on FRGC depending on the training set and test set

resolutions . 102

6.5 Impact of occlusion on the FNR at FPR=0.1% on FRGC 104

6.6 Robustness to pose variations. FNR at FPR=0.1% on two databases

with large variations in pose. 106

Introduction

Pattern recognition tasks, such as clustering or nearest-neighbor classification, require

computing similarity between pairs of data points. The overall task performance

strongly depends on how well the similarity measure accurately reflects the actual prox-

imity between the concepts represented by those points.

For many pattern recognition tasks the processing pipeline starts with a feature

extraction step during which the raw data (e.g. images, speech signal, health moni-

toring) are transformed into feature vectors of fixed length. In this work, we focus on

similarity functions for feature vectors in Rn. In this setting, a similarity function is a

function f : Rn×Rn 7→ R which outputs small values for pairs of similar inputs and

larger values for dissimilar ones. In this thesis, in an abuse of terms we use similarity

function to denote both similarity and dissimilarity functions (such as distances).

What similar means is entirely application dependent. For example, to obtain good

performance in letter classification using a nearest-neighbor approach, the similarity

between two images depicting the same letter should be high and it should be low

for pairs of images of different letters. Alternatively, if the goal is to differentiate

writing styles, the similarity measure should be completely different (See Figure 1).

The Euclidean distance and other non-parametric similarity functions usually fail to

deliver good performances because they ignore both the variable relevance of each

feature for the task and the dependencies among those features.

Handcrafting a similarity function for a specific task may be complex and requires

sophisticated prior knowledge of both the data and the task. However, it is often more

effective and efficient to automatically learn the similarity function from a set of labeled

data. Labels can be the class to which each data point belongs to, but several similarity

function learning methods use a weaker form of supervision. They only need to be

provided with a set of data pairs labeled similar when the two points belong to the

20 Introduction

d(,) = 0.1

d(,) = 0.1

d(,) = 10

d(,) = 10

d(,) = 10

d(,) = 10

d(,) = 0.1

d(,) = 0.1

Figure 1: What a good similarity function is depends on the task of interest. On left side, d(·, ·)
would be a desirable distance for letter recognition. On the right side, it would be a
suitable distance for writing style comparison.

same class, or dissimilar when then do not. It is also popular to use triplets instead of

pairs, each triplet containing two data points of the same class and a third point from a

different class.

Learning a similarity function is a difficult task. Compared to other machine learn-

ing tasks, such as classification or regression, the need to consider the data points by

pairs is a source of complexity as it belies the common assumption that training points

are independent and identically distributed. Moreover, the number of parameters to

learn grows quadratically with n. This tends to make similarity learning algorithms

slower and relatively prone to over-fitting.

Similarity function learning has been a topic of interest in machine learning for

many years but its popularity has increased recently when one of its most prominent

applications, namely, face verification, became a central topic in computer vision. Face

verification could be decomposed into three steps (see Figure 2). First, each face is

detected and aligned (usually by finding a geometric transformation which puts points

such as eyes, mouth corners etc. at specific locations). Second, the aligned image

is transformed into a feature vector by applying filter banks, computing histograms

of gradients etc. Then, a similarity score can be computed between pairs of feature

vectors. To obtain the best overall performance, a good similarity function must be

used and this is the topic of this thesis.

This PhD has been supported by Safran Identity & Security which is a company

Introduction 21

Figure 2: Face verification process

Figure 3: Border crossing using face recognition

designing biometric identification systems. For example, it provides automatic solu-

tions based on face recognition to check at the border that a passport holder is its right-

ful owner (see Figure 3).

In Chapter 1, we give a general presentation about similarity functions and briefly

describe the most popular methods. In Chapter 2, we describe the datasets used in this

thesis to assess the performance of similarity functions. The training of most similarity

function learning methods consists in optimizing an objective function. We discuss the

components of such functions and related optimization methods in Chapter 3. Linear

metrics obtain good results on a large variety of scenarios but are sometimes too simple

to deal with heterogeneous data. Local metric learning is one of the type of methods

22 Introduction

which have been introduced to overcome this limitation. We present a novel local

metric learning method in Chapter 4. Deep Learning is a strong trend in Machine

Learning. It is widely used to perform classification but can also be used to compute

similarities. Chapter 5 describes how to create a similarity function based on the Deep

Learning principles. Uncertainty is a central issue in machine learning because the

features we work with are often corrupted by noise. In Chapter 6, we introduce a

new similarity function which takes advantage of information on the uncertainty of the

features of each data point. Finally, we conclude this thesis by exposing the future

challenges in similarity function learning.

Notation

We introduce here notations which are used throughout this thesis.

Notation Description

xi Data point in Rn

yi Class of xi

ri j Similar/dissimilar pair indicator, ri j = 1 if yi = y j and −1 other-

wise

Sn
+ The set of positive definite matrices of size n

S Set of similar pairs, (i, j) ∈ S =⇒ ri j = 1

D Set of dissimilar pairs, (i, j) ∈ D =⇒ ri j =−1

T Set of training pairs, T = S ∪D

‖ ·‖F Frobenius norm

Tr(·) Trace of a matrix

[z]+ Positive part operator: [z]+ = max(0,z)

N (· |µ,S) Probability distribution function of the multivariate Normal dis-

tribution of mean µ and covariance matrix S

Chapter 1

Background

This chapter presents the different types of similarity functions and the most prominent

methods to learn their parameters. Metric, or distance, is a popular class of similarity

functions. We first give its definition and then describe the state-of-the-art algorithms

to train a type of parametric distance called Mahalanobis distance. In the last section

of this chapter, we extend our presentation to non-distance similarity functions.

1.1 Definition of a Metric
A metric over a set A is a function d :A×A 7→ R+ which satisfies 3 properties:

1. Symmetry: ∀a,b ∈ A, d(a,b) = d(b,a),

2. Identity: d(a,b) = 0 ⇐⇒ a = b,

3. Triangular inequality: ∀a,b,c ∈ A, d(a,b)+d(b,c)≥ d(a,c).

The Minkowski distance of order p is defined in Rn by (∑n
k=1 |ak−bk|p)1/p where ak

and bk are respectively the kth component of a and b. This family includes many of the

usual non-parametric distances such as the Euclidean distance (p = 2), the Manhattan

distance (p = 1) or the Chebyshev distance (p = ∞). Minkowski distances of order p

with p < 1 are not metrics as they do not satisfy the triangular inequality, they might

nonetheless be effective similarity functions for some applications.

Non-parametric distances cannot be adapted to take into account the specificities

of the data and the task of interest. Therefore, they give poor results in practice when

all features are not equally relevant for the task. Parametric similarity functions have

been developed to overcome this limitation. In the remaining part of this chapter, we

present the most popular types of similarity functions and the algorithms which have

been proposed to learn their parameters.

26 Chapter 1. Background

1.2 Mahalanobis Distance

Originally, the Mahalanobis distance [1] has been introduced to deal with features

of different scales and potentially correlated. The Mahalanobis distance between xi

and x j in Rn is defined by
√

(xi− x j)>S−1(xi− x j) where S is an estimate of the co-

variance matrix of the data. By an abuse of language in the metric learning com-

munity, Mahalanobis distance is generally used to denote any distance of the form

dM(xi,x j) =
√

(xi− x j)>M(xi− x j) where M ∈ Sn
+, the cone of positive-semidefinite

(PSD) matrices of size n. When M is not positive-definite, the Mahalanobis distance is

not a distance but only a pseudo-distance because it does not satisfy the 2nd property

but only weaker one which is xi = x j =⇒ d(xi,x j) = 0. Many metric learning algo-

rithms have been proposed to find an appropriate matrix M given a set of labeled data,

several are presented below.

Any PSD matrix M can be factorized as M = L>L with L ∈ Rn×n. So, a Ma-

halanobis distance parametrized by M can be written as the Euclidean distance after

applying the linear transformation L to the data: d2
M(xi,x j) = (xi− x j)

>M(xi− x j) =

(Lxi− Lx j)
>(Lxi− Lx j). This equivalence is very useful to speed-up distance com-

putation when each data point is compared to many others. Instead of computing√
(xi− x j)>M(xi− x j) for each pair, the linear transform is applied once per data point

and Mahalanobis distances are replaced by Euclidean distance which is much faster.

Some metric learning methods aim to find the best matrix M, whereas others try to find

L directly. To further speed-up the distance computation and also reduce the memory

needed to store the feature vectors, it can be interesting to reduce the feature vector

dimensionality. Discriminative dimensionality reduction can be achieved by searching

for a rectangular matrix L ∈ Rr×n with r < n, such that the Euclidean distance in the

reduced space is a good similarity function.

A popular choice for the matrix M comes from assuming that all classes fol-

low multivariate Normal distributions and share the same covariance matrix [2]. This

within-class covariance matrix is generally approximated by the within-class scatter

matrix

Sw =
1
C

C

∑
c=1

1
nc

nc

∑
i=1

(
xc,i−

1
nc

nc

∑
j=1

xc, j

)>(
xc,i−

1
nc

nc

∑
j=1

xc, j

)
(1.1)

where C is the number of classes in the training set and nc the number of data points in

1.2. Mahalanobis Distance 27

the cth class. The probability that two data points xi and x j in Rn both belong to a class

whose center is xi+x j
2 is equal to

N
(

xi

∣∣∣ xi + x j

2
,Sw

)
N
(

x j

∣∣∣ xi + x j

2
,Sw

)
=

exp
(
−(xi−x j)

>S−1
w (xi−x j)

4

)
2π det(Sw)n (1.2)

where N (· | µ,S) is the probability distribution function of the multivariate Normal

distribution of mean µ and covariance S. Using the Mahalanobis distance with M = S−1
w

is equivalent to using the above probability as a similarity function.

There is a tight link between using a Mahalanobis with M = S−1
w and the multi-

dimensional Linear Discriminant Analysis (LDA) [3] which is a discriminative dimen-

sionality reduction method. In several algorithms, such as FisherFace [4], the similarity

function used is the Euclidean distance in the post-LDA subspace. The LDA finds a lin-

ear subspace which simultaneously maximizes the scattering of the class centers while

making the classes as compact as possible. It leads to the optimization of the Fisher’s

criterion:

max
L∈Rm×n

det
(
L>SbL

)
det
(
L>SwL

) (1.3)

where Sw is the within-class scatter matrix defined above and Sb is the scatter matrix

of the class centers. The Fisher’s criterion is invariant with regards to the norm of

the columns of L whereas those norms have an impact on the performance of the Eu-

clidean distance in the post-LDA subspace. The most common method to maximize

the Fisher’s criterion is to use the matrix whose columns are the generalized eigenvec-

tors corresponding to the m largest eigenvalues in Sbl = λSwl. The resulting matrix L

satisfies the equation L>SwL = I which is equivalent to M = L>L = S−1
w when m = n

(no dimensionality reduction). The between-class scatter matrix Sb has an impact only

when the number of dimensions is effectively reduced: m < n.

The Mahalanobis distance with M = S−1
w only uses the within-class scatter matrix

and discards all information about between-class variations. Köstinger et al. propose to

use both with KISSME (Keep It Simple and Straightforward MEtric) [5]. This method

takes as inputs a set of similar pairs and a set of dissimilar ones, respectively denoted

S and D, and assumes that feature vector differences of similar and dissimilar pairs

follow 0-mean multivariate Normal distributions. The covariance matrices of those

28 Chapter 1. Background

distributions, respectively denoted Sw and Sb, are simply estimated by the empirical co-

variance matrices of the feature vector differences of the corresponding pair set. When

the data follows a statistical model, the likelihood ratio test is known to achieve the

minimal error rate to choose between two mutually exclusive hypotheses (Neyman-

Pearson lemma). We are interested in finding out if the difference between two feature

vectors comes from a similar or a dissimilar pair, so we look at the likelihood ratio
P(xi−x j |dis)
P(xi−x j | sim) . Given the Gaussian assumption presented above, the log-likelihood ra-

tio is equal to (xi− x j)
> (S−1

s −S−1
d

)
(xi− x j) up to a constant. To obtain the closest

pseudo-metric to this log-likelihood ratio, the authors take M =
(
S−1

s −S−1
d

)
+

where

(·)+ is the projection on the PSD cone operator.

Many metric learning algorithms are not based on a statistical modeling of the

data but directly optimize an empirical objective function. The first method which has

formulated metric learning this way is Mahalanobis Metric for Clustering (MMC) [6].

The matrix M is found by solving the following optimization problem:

max
M

∑
(i, j)∈D

dM(xi− x j) (1.4)

s.t. ∑
(i, j)∈S

d2
M(xi− x j)≤ 1 (1.5)

M � 0. (1.6)

The optimization is performed by projected gradient ascent. After each gradient step,

the matrix M is alternatively projected on the set of matrices satisfying each constraint

until both are satisfied. The problem is convex and the procedure is therefore guaran-

teed to converge to the global optimum. This optimization method requires numerous

eigenvalue decompositions of the matrix M and hence becomes rather slow when the

dimensionality of the feature space increases.

Large Margin Nearest Neighbor (LMNN) [7] has been designed to improve near-

est neighbor classification using a set of labeled points (xi,yi). The first step is to build

a similar pair set S by selecting for each point the k-nearest neighbors of its class with

the Euclidean distance. The second step is to optimize a cost function which gives a

penalty when the squared distance of a similar pair (xi,x j) is larger than the squared

distance between xi and any point xk belonging to a different class. To prevent infinite

1.2. Mahalanobis Distance 29

space inflation, the cost function also penalizes the sum of squared distances of similar

pairs. More specifically, the cost function is given by

min
M∈Sn

+
∑

(i, j)∈S
dM(xi− x j)+ c ∑

(i, j,k)
yi=y j
yi 6=yk

[
1+dM(xi− x j)−dM(xi− xk)

]
+

(1.7)

where [·]+ = max(0, ·) and c is a positive constant set by cross-validation. This opti-

mization problem is convex and close to the standard SVM for classification problem.

The authors propose an efficient optimization algorithm which takes advantage of the

fact that most of the triplets (xi,x j,xk) do not create any penalty. Several extensions

of this work have been introduced to deal with multi-tasks learning [8], nonlinear pro-

jections [9] or local metrics [10]. More details about the latter are given in the next

section.

In Logistic Discriminative Metric Learning (LDML) [11], the authors propose

to cast the metric learning problem into a log-likelihood maximization. The squared

Mahalanobis distance is transformed into the probability that the two points be-

long to the same class using a sigmoid function: pi j = P
(
yi = y j | xi,x j;M,b

)
=(

1+ exp
(
dM(xi,x j)−b

))−1 where b is a bias term. The log-likelihood of the dataset

is

∑
(i, j)∈S

ln pi j + ∑
(i, j)∈D

ln(1− pi j) (1.8)

and is maximized with respect to M and b using a simple gradient ascent. This problem

being concave, the optimization is guaranteed to converge to the global maximum.

Like with most machine learning tasks, over-fitting is a key issue in metric learn-

ing. Several articles propose a regularized objective function to limit over-fitting. In

Information Theoretic Metric Learning (ITML) [12], the regularization is performed by

penalizing the LogDet divergence between M and a given matrix M0 which can be, for

example, the identity matrix or the inverse of the sample covariance matrix. The cost

function favors matrices M for which similar pair distances are below a given upper

bound u ∈ R+ and dissimilar pair distances are above a given lower bound ` ∈ R+:

min
M∈Sn

+,ξ
∑

(i, j)∈S

(
ξi j

u
+ log

ξi j

u

)
+ ∑

(i, j)∈D

(
ξi j

`
+ log

ξi j

`

)
+λd`d(M,M0) (1.9)

30 Chapter 1. Background

s.t. d2
M(xi,x j)≤ ξi j ∀(i, j) ∈ S (1.10)

d2
M(xi,x j)≥ ξi j ∀(i, j) ∈ D (1.11)

where d`d(M,M0) = Tr
(
MM−1

0
)
− logdet

(
MM−1

0
)
− n is the LogDet divergence be-

tween two matrices and λ controls the strength of the regularization. This optimization

problem is convex and the authors present an algorithm based on Bergman projections

to solve it. There is no need to enforce the positive semi-definiteness of M specifically

as this is automatically taken care of by the regularization term because d`d(M,M0) =∞

if M and M0 do not share the same range. A kernelized version and an online version

of the algorithm are also proposed in [12].

Several results exist on generalization error bounds for metric learning. In [13], Jin

et al. use uniform stability to show that, under some assumptions, a regularizer bound-

ing Tr(M) improves robustness with high dimensional data. A trace norm regularizer

is also used in BoostMetric [14], a method which builds the matrix M by incrementally

adding rank-1 matrices in a way similar to what Adaboost does with weak learners.

Nonetheless, Maurer advocates in [15] that trace norm regularization can lead to too

sparse solutions and learning instability. On the other hand, he shows a generaliza-

tion error bound based on Rademacher complexity which depends on ‖M‖F . A metric

learning algorithm is derived from this observation, it combines a hinge loss-based

empirical error and a penalization of the Frobenius norm of matrix M, namely

min
M∈Sn

+
∑

(i, j)∈S∪D

[
1+

ri j

γ

(
1−d2

M(xi,x j)
)]

+

+λ‖M‖F (1.12)

where γ is the width the margin and λ controls the regularization strength. More details

about this objective function are given in Section 3.1.2. The optimization problem

(1.12) is solved via stochastic gradient descent (SGD).

1.3 Other Types of Similarity Functions
As seen in the previous section, Mahalanobis distance learning has been widely ad-

dressed by the research community. However, other types of similarity function have

also been explored. We present more complex function types in this section.

In some applications, it has been observed that data point norm contains no dis-

1.3. Other Types of Similarity Functions 31

criminative information. For example, when data points are obtained by applying a

bank of linear filters on an image, the norm varies strongly with the image brightness

and contrast. Therefore, the norm is an irrelevant information for many similarity func-

tion learning applications where invariance to such perturbations is sought. The cosine

similarity CS(xi,x j) =
x>i x j

‖xi‖2‖x j‖2
is often used to obtain norm-invariant similarity func-

tions. Like the Euclidean distance, the cosine similarity can also be parametrized by a

PSD matrix M to adapt to the data and task at hand:

CSM(xi,x j) =
x>i Mx j

x>i Mxi x>j Mx j
. (1.13)

Nguyen et al. apply this parametric cosine similarity to face verification [16]. They

define the following objective function with respect to the linear data transformation

matrix L

max
L

∑
(i, j)∈S∪D

ri j CSM(xi,x j)+λ‖L−L0‖2
F (1.14)

where M = L>L, L0 is a predefined matrix and λ controls the strength of the regular-

ization. The regularization term is close in spirit to that of ITML. This optimization

problem is not convex and there is no guarantee to reach the global maximum. The

optimization procedure initializes the matrix L with L0 and then uses the conjugate

gradient method.

The Joint Bayesian method [17] relies on Gaussian assumptions over both the class

centers distribution and that of the samples within a class. More specifically, each data

point is expressed as xi = µyi +wi where µyi corresponds to the center of the class yi

and wi to the variation with respect to this class center. Moreover, µyi is assumed to be

drawn from the distribution N (· |0,Sµ) and wi from N (· |0,Sw). The authors describe

a variational Expectation-Maximization (EM) algorithm to estimate Sµ and Sw from a

set of labeled training points (xi,yi). Given the model, it is possible to compute the

likelihood of any data points pair (xi,x j) considering that they belong to the same class

(Hsim) and the likelihood considering that they belong to different classes (Hdis). The

authors propose to use the log-likelihood ratio

llr(xi,x j) = log

(
P
(
xi,x j |Hsim;Sµ ,Sw

)
P
(
xi,x j |Hdis;Sµ ,Sw

)) (1.15)

32 Chapter 1. Background

as similarity function. Thanks to the Gaussian assumptions, the log-likelihood ratio has

a simple expression llr(xi,x j) = x>i M1x j +x>i M2xi+x>j M2x j +const where M1 and M2

are two PSD matrices which are computed from Sµ and Sw. Other articles [18, 19]

find the parameters of analogous similarity functions by optimizing hinge-loss based

objective functions.

Using kernels is a common way to extend linear machine learning meth-

ods into non-linear ones [20] which has been popularized by SVMs. A non-

linear similarity function can be created by combining a non-linear mapping

Φ : Rn 7→ F with a Mahalanobis distance in the feature space F : d2
MF

(xi,x j) =(
Φ(xi)−Φ(x j)

)>MF
(
Φ(xi)−Φ(x j)

)
. However, the feature space F can be very

high or even infinite-dimensional, making it costly or impossible to explicitly compute

the mapping Φ. The kernel trick allows to implicitly make calculations in the feature

space without actually performing the mapping. To make this possible we need to

define a kernel K : Rn×Rn 7→ R which corresponds to an inner product in the feature

space F . Conveniently, the Mercer’s theorem states that any functions fulfilling the

Mercer’s condition is an inner product in some feature space. Nonetheless, it is not

trivial to kernelize an algorithm as it requires expressing all operations on data points as

inner products. The LDA presented in the previous section is one of the first methods

which have be kernelized [21]. A non-linear version of ITML using kernels has also

been proposed by its authors [12].

As we have already seen, there is a strong connection between learning a simi-

larity function and learning a data transformation such that a non-parametric similarity

like the Euclidean distance delivers good performance. The idea of using neural net-

works to perform the data transformation has first been explored in the 90’s for signa-

ture verification [22] and more recently for face recognition with Convolutional Neural

Network (CNN) [23, 24] or standard descriptor-based approaches [25, 26]. In all these

methods, the weights of the neural network are obtained by minimizing an objective

function similar to those used in ITML, LMNN, LDML, etc. The main differences are

the inputs types (images or feature vectors) and the network structure.

Mahalanobis distance has been shown to be quite effective on various tasks but it

suffers from a strong limitation: a single linear metric is used to compare data over all

the input space. This may be inappropriate in order to handle heterogeneous data. This

1.3. Other Types of Similarity Functions 33

observation is the root of the development of local metric learning methods which adapt

the dissimilarity function to the local specificities of the data. For illustrative purpose

let us consider two examples. It is well known that in digit classification some digits

are easily mistaken for another such as “1” and “7” or “3” and “8”. It seems therefore

reasonable to focus on different features to discriminate digits in the “1-7” region and in

the “3-8” one in order to reduce the number of misclassifications. Our second example

is face verification: should we put the emphasis on the very same features to compare

two pictures of Caucasian males and two pictures of Asian females? Weinberger and

Saul proposed an extension of LMNN to local metric (MM-LMNN [10]), in which a

specific metric is associated to each class and all metrics are jointly learned to optimize

a classification criterion. KISSME [5] has also been extended to local metric in [27]

where one KISSME metric is learned separately for each class. These class-specific

metrics are averaged with a global one to limit the risk of over-fitting due to the fact

that each metric might be learned using only a limited number of training samples.

GLML [28] uses a local metric to optimize nearest neighbor classification using the

class conditional probability distributions.

All these local metric learning methods suffer from the same drawback, namely

they need enough training samples per class to estimate the metrics. Therefore, they

cannot be employed directly in applications in which there is a large number of classes

with only a few training data points in some classes. To overcome this problem, a

local metric learning method is introduced in [29] based on finite a number of linear

metrics named PLML. The number of metrics is different from the number of classes

and hence the method can scale up to a larger number of classes. However, this method

is specifically designed for nearest neighbors classification as it can only compute the

similarity of pairs for which at least one data point is in the training set. This strongly

limits the practical range of tasks that PLML can deal with. For example, it prevents

the application of PLML to the problem of face verification. In Chapter 4, we introduce

a method called LMLML which overcomes those limitations.

When several local metrics are learned, one issue is to determine how to compare

data samples which come from different subparts of the input space. CLML [30] is an

alternative to LMLML. It jointly learns many locally linear projections such that any

pair of projected points can be effectively compared using Euclidean distance. Like

34 Chapter 1. Background

in LMLML, the input space is soft-partitioned using a GMM. More details about this

partitioning are given in Section 4.1.

Chapter 2

Performance Evaluation

In the next chapters, we compare the performance of several similarity function learn-

ing methods. We present here how we measure performances and the datasets on which

those methods have been evaluated.

2.1 Performance Measures
In this section we present the performance measures we use to evaluate similarity func-

tions in this thesis. A similarity function takes two inputs and outputs a score. There-

fore, it is natural to evaluate it like a pair classifier with a DET curve that we define

below. The process to obtain this curve is composed of four steps:

1. We compute similarity scores for a large number of pairs for which we know the

correct labels (similar or dissimilar).

2. For every possible threshold t, we compute the number false positive errors (dis-

similar pairs dimmed similar by thresholding the similarity) and false negative

errors (similar pairs dimmed dissimilar by thresholding the similarity).

3. Those error counts are transformed into rates by dividing them by the correspond-

ing number of pairs to obtain a False Positive Rate (FPR) and a False Negative

Rate (FNR) for every threshold t.

4. We plot the FNR as a function of the FPR. This curve is called a Detection Error

Tradeoff (DET) curve.

A DET curve displays the performance of a similarity function at all the possible op-

erating points (thresholds) but for some applications, like face verification, people are

often focused on performance at low FPR. To better visualize the performance at low

FPR, a common practice is to plot the DET curve with the FPR axis in logarithmic

36 Chapter 2. Performance Evaluation

scale.

A DET curve gives of global view of the performance of a similarity function

but it is sometimes convenient to synthesize the performance in one value to compare

different methods easily. The Equal Error Rate (EER) is often used to this end. It is

defined by EER = FNR(t) where the threshold t is chosen so that FPR(t) = FNR(t). It

is also common to compare methods by looking at the FNR at a given value of FPR.

The chosen FPR depends on the operating point of interest for the target application.

Similarity functions are also used for classification tasks to improve performance

of a k-nearest neighbor classifier. In this case, we usually measure the performance by

looking at the classification accuracy which corresponds to the proportion of requests

correctly classified.

2.2 Classification Datasets

Similarity function learning is often used as a means to improve nearest neighbors clas-

sification. Indeed, some of the most famous metric learning methods such as LMNN

[7] have been specifically designed for this problem. The five datasets we used for

classification are described below.

2.2.1 MNIST

Handwritten digits classification has been widely used to assess the performance of

similarity functions for classification. The MNIST dataset is composed of 70000 im-

ages of size 28×28, 60000 for training and 10000 for testing. Figure 2.1 shows some

examples of images composing the dataset. To create feature vectors, we do a PCA

directly on the pixel values and 164 dimensions are kept after dimensionality reduction

to retain 95% of the energy.

2.2.2 Isolet

Isolet is a spoken-letter datasets which contains 6238 vectors for training and 1559

for testing. 150 subjects were asked to pronounce each letter of the alphabet twice.

The 617-dimensional feature vectors are composed of spectral coefficients, contour

features, sonorant features, pre-sonorant features and post-sonorant features.

2.2. Classification Datasets 37

Figure 2.1: Samples from MNIST digits

2.2.3 Letter

Letter is a typed-letter recognition dataset. Distortions have been applied to the letters

from 20 different fonts to create 20000 16-dimensional feature vectors composed of

various statistical cues (mean, variance, correlation etc.) and edge count. The 16000

first samples are used for training and the remaining 4000 for testing.

2.2.4 Reuters

The text categorization dataset Reuters-21578 R52 consists of 9100 text documents

which appeared on the Reuters newswire in 1987, 6532 in the training test and 2568 in

the testing set. Each text belongs to one of the 52 topics and every topic has at least

one text in the training set and one in the testing set. The classes are very unbalanced,

some topics have more than 1000 text documents whereas others have just a few. Each

text is described by a histogram of word occurrence spanning 5180 terms. A very large

number of dimensions should be kept after the PCA to preserve 95% of the energy but

to speed up the experiments we kept only the first 100 dimensions retaining 62% of the

energy.

2.2.5 20newsgroup

20newsgroup is composed of 18774 messages taken from 20 Usenet newsgroups span-

ning topics as diverse as alt.atheism or rec.motorcycles. Each text is represented by a

20000-dimensional word count histogram. The histograms are available for download

on the Internet but each paper using this dataset proposes its own processing pipeline

to transform those high dimensional histograms into more easily usable feature vec-

tors (filtering with a stop-list, normalization, dimensionality reduction, etc.). We have

implemented our own pipeline to create 1000-dimensional feature vectors.

38 Chapter 2. Performance Evaluation

Figure 2.2: Images from LFW

2.3 Face Verification Datasets
Face verification is an important and practical application of similarity function learn-

ing. We present results on two face datasets: LFW and FRGC.

2.3.1 LFW

Labeled Faces in the Wild (LFW) [31] is a popular face verification dataset. It is com-

posed of 13233 images of 5749 people taken from Yahoo! News in a wide range of

acquisition conditions (pose, illumination, expression, age, etc.). Some examples are

given in Figure 2.2. The best currently published results on LFW [24, 32] are obtained

with deep learning methods trained on very large outside datasets (up to several mil-

lions). In this thesis, we use an experimental setup where learning is performed on a

small number of predefined training pairs (2700 similar and 2700 dissimilar) called re-

stricted setting. We use a simple feature extractor which has been often used to assess

performance of metric learning algorithms on LFW [16]. We start from the “aligned”

images that we cropped to 150× 80 to remove most of the background, then we ex-

tracted descriptors composed of histograms of Local Binary Patterns [33] and finally

we reduced their dimensionality to 300 by PCA.

2.3.2 FRGC

FRGC Experiment 1 [34] is a face dataset of 15000 images from more than 500 peo-

ple. Figure 2.3 shows some examples. The pose of the subjects and the illumination

have been controlled during the acquisition. Compared to datasets like Labeled Faces

in the Wild presented above, this dataset is fairly simple. However, on this type of

dataset, the interest is focused on the verification rate at low false positive rates (1%

and below). This is a realistic setting for many security applications of face recognition

(like smartphone unlocking or passport check at the border) where a false acceptance

is a security breach and therefore should be very rare. After aligning the images using

2.3. Face Verification Datasets 39

Figure 2.3: Images from FRGC

the eyes locations, we computed UoCTTI HOG descriptors [35] extracted using the

VLFeat library [36] to obtain 6076-dimensional feature vectors. We then use PCA to

reduce the dimensionality to 700.

Chapter 3

Objective Functions for Empirical

Loss Minimization

Similarity function learning methods can be classified into two categories. First, meth-

ods based on a statistical model of the data (for example KISSME [5] or the Joint

Bayesian Method [17]). Second, methods based on the optimization of an objective

function which depends on a set of labeled training pairs (or triplets). This category in-

cludes many of the most popular metric learning methods such as ITML [12] or LMNN

[7]. This type of approach is often considered more flexible and more effective as it

makes no assumption on the data distribution. In this chapter, we first describe the two

components of objective functions: the empirical loss and the regularization term. The

former drives the optimization toward a solution which performs well on the training set

while the latter aims at limiting over-fitting to obtain good generalization performance.

We conclude this chapter by presenting an optimization method based on Stochastic

Gradient Descent.

3.1 Empirical Loss

3.1.1 Linear Loss

When the dataset is composed of similar and dissimilar pairs, the goal of the learning is

to get small distances for similar pairs and large distances for dissimilar ones. A simple

objective function has been proposed in [37], yielding to the optimization problem

min
M∈Sn

+
∑

(i, j)∈T
ri j
(
xi− x j

)>M
(
xi− x j

)

42 Chapter 3. Objective Functions for Empirical Loss Minimization

s.t. ‖M‖F ≤ 1 (3.1)

where ri j is equal to 1 if (i, j) is a similar pair and -1 otherwise. The constraint on

‖M‖F prevents that an increase of the scale of M systematically leads to a lower cost

whereas the loss should be intrinsically invariant to the scale of M. The problem can

be rewritten as

max
M∈Sn

+

〈M,A〉

s.t. ‖M‖2
F ≤ 1 (3.2)

where A = −∑(i, j)∈T ri j
(
xi− x j

)(
xi− x j

)> and 〈·, ·〉 is the matrix inner product. We

now prove that the solution to this problem is

M =
A+

‖A+‖F
(3.3)

where A+ is the positive part of the matrix A.

Let M =Udiag(λ)U> and A=V diag(µ)V> be the eigendecompositions of matri-

ces M and A respectively. The two constraints on M both depend only on its spectrum

λ : ‖M‖2
F ≤ 1 ⇐⇒ ∑k λ 2

k ≤ 1 and M ∈ Sn
+ ⇐⇒ ∀k ∈ {1, . . . ,n},λk ≥ 0. Moreover,

∀M ∈Rn×n and A ∈Rn×n, the inequality 〈M,A〉 ≤ 〈λ ,µ〉 holds and is tight if and only

if U = V . Since we want to maximize 〈M,A〉 and that the constraint ‖M‖2
F ≤ 1 does

not impact U , we can deduce that U =V . We now need to solve

max
λ

n

∑
k=1

λkµk

s.t.
n

∑
k=1

λk ≤ 1

∀k ∈ {1, . . . ,n},λk ≥ 0. (3.4)

which has a trivial solution:

λk =
[µk]+√

∑
n
k′=1 [µk]+

2
(3.5)

3.1. Empirical Loss 43

The solution to the problem (3.2) is therefore M =V diag(λ)V> which is equivalent to

M = A+
‖A+‖F

.

The weakness of the linear loss is that every pair equally contributes to the loss

whereas some might carry more discriminative information than others. This explains

the bad performance presented in the next section when compared, for example, to the

hinge loss.

3.1.2 Hinge Loss

The hinge loss has been popularized by Support Vector Machine. As opposed to the

linear loss, only the hard-to-classify training examples have an impact on the empirical

loss. In the context of metric learning, we define our hinge loss by

`γ

(
ri j,z

)
=

[
1−

ri j

γ
(1− z)

]
+

(3.6)

where γ corresponds to the margin width and z is a dissimilarity between xi and x j.

The parameter γ is typically between 0.5 and 1: only the most difficult pairs impact the

objective function when γ is small but a larger proportion of them does if γ is large.

Its optimal value depends on how helpful easy pairs are to improve the performance

on the part of the DET curve we care about (low false positive or equal error rate for

example). It also depends on the size of the training set: larger values of γ are better

with small training sets because when few pairs are available it is better not to discard

too many of them even if they are not the most helpful ones. `γ is plotted in Figure 3.1

for the two types of pairs. Equivalently, the hinge loss can be formulated with the help

of slack variables and constraints:

`γ

(
ri j,z

)
= minξ

s.t. z− γ +1 < ξ if ri j = 1

γ− z+1 < ξ if ri j =−1

ξ ≥ 0. (3.7)

With the hinge loss, learning a metric can be formulated as the following opti-

44 Chapter 3. Objective Functions for Empirical Loss Minimization

Figure 3.1: `γ,b(r,z) with γ = 0.5

FPR
10 -4 10 -3 10 -2 10 -1 10 0

F
N

R

0

0.2

0.4

0.6

0.8
Hinge loss
Linear loss

Figure 3.2: Performance comparison between the hinge loss and the linear loss on FRGC

mization problem:

min
M∈Sn

+
∑

(i, j)∈T
`γ

(
ri j,d2

M(xi,x j)
)
. (3.8)

The use of the hinge loss leads to better similarity functions than the linear loss

presented in the previous subsection (see Figure 3.2). The hinge loss focuses on difficult

pairs whereas the linear loss also tries to move pairs which are already well classified

and therefore have no real impact on the performance.

For the classification task, many loss functions have been proposed in the liter-

ature. The most frequently encountered are the exponential loss e
ri j
γ
(1−d2

M(xi,x j)) used

3.1. Empirical Loss 45

in AdaBoost [38], and the logistic loss log
(

1+ e
ri j
γ
(1−d2

M(xi,x j))
)

which comes from

Logistic Regression. They can both be adapted to learn similarity functions and, be-

ing convex losses, do not create specific optimization difficulties. Those different loss

functions usually obtain similar accuracy but depending on the dataset some might be

more effective than others. In this thesis, we only used the hinge loss because it has the

advantage of being faster to compute.

3.1.3 Data Preprocessing

As it is common in similarity function learning, we apply a data preprocessing step.

This step serves two purposes: first it reduces the dimensionality to speed up compu-

tation for both training and testing, and second it reduces the noise thereby improving

the overall performance of the algorithm.

As with most metric learning methods, we first center the dataset and reduce the

dimensionality to a n-dimensional space by PCA; n is often chosen so that 95% of the

energy is preserved. We compute the within-class scatter matrix defined by

S =U

(
∑

(i, j)∈S
(xi− x j)(xi− x j)

>

)
U> (3.9)

where U is the matrix formed by the n leading eigenvectors of the covariance matrix

of the data, and then multiply the data by S−1/2 to make the classes isotropic on av-

erage. This transformation is known under different names such as mapping in the

intra-personal subspace in face recognition [18] or Within-Class Covariance Normal-

ization (WCCN) in the speaker recognition community [2]. The transformed data points

are now x′ = S−1/2U(x−m) where m is the mean of the data. Like in [18], we finally

rescale each feature vector so that it has a unit `2-norm.

3.1.4 Learning from Pairs or Triplets?

A similarity function takes a pair of input points and outputs a similarity value. It

is therefore quite natural to learn the function parameters using pairs of inputs as it

reflects how the function will actually be used. Usually, loss functions based on pairs

generate a cost if a similar pair has a distance larger than a given threshold θs or a

dissimilar one a distance smaller than a second threshold θd . It therefore leads to a

similarity function which can effectively be thresholded to take decisions. This property

46 Chapter 3. Objective Functions for Empirical Loss Minimization

is very desirable for many applications, such as face verification for example. Some

other similarity function learning methods use triplets of data points (xi,x j,xk) with

yi = y j and yi 6= yk and their objective function penalize small or negative values of

d2(xi,x j)− d2(xi,xk). These objective functions are not primarily designed to create

similarity functions whose output can be thresholded but rather functions designed to

answer questions such as “Is xi more similar to x j than to xk?”. Triplets-based methods

are therefore better suited for ranking applications (e.g. nearest neighbor classification)

than pair verification. In this thesis, we focus on pairwise objective functions because

we are interested in both ranking and thresholding.

3.1.5 Selecting Training Pairs from Class Labels

In many applications, training pairs are not provided but have to be built from labeled

data points. The number of potential pairs grows quadratically with the number of

training points, therefore it is often impracticable to use all of them because the train-

ing would require a prohibitive amount of time. The choice of training pairs has a

significant impact on the performance of the similarity functions learned.

When the similarity function is employed for nearest neighbors classification, it

makes sense to pick training pairs composed of neighboring points because nearest

neighbor classifiers base their decision only on such points. In this case, we propose

proceeding as follow: for each data point x, create k similar pairs, formed by x and each

of its k closest neighbors from the same class, and k dissimilar pairs, formed by x and

each of its k closest neighbors from a different class. This results in 2k training pairs

per data point. We use k = 5 in all our nearest neighbor classification experiments.

Similarity measures may also be thresholded to take a decision, as in face verifica-

tion for example. The choice of the threshold leads to a specific trade-off between false

positive and false negative rates. On datasets such as FRGC with few images per iden-

tity, the number of potential similar pairs is limited and all of them can be used during

training but a selection has to be made for the dissimilar ones. To learn a similarity

function performing well at low false positive rates, the training set should include a

large number of dissimilar pairs. To speed up the training, we use a simple hard dis-

similar pairs mining scheme. We randomly pick a number of dissimilar pairs equal to

the number of similar pairs first and train our model with this set. We then compute the

3.2. Common Metric Learning Regularizers 47

FPR
10 -4 10 -3 10 -2 10 -1 10 0

F
N

R

0

0.05

0.1

0.15

0.2

0.25

0.3
Training with tough pairs
Training with random pairs

Figure 3.3: On FRGC, using tough dissimilar pairs improve performance at low false positive
rates.

similarity for a large number of dissimilar pairs and select the 5 or 10% hardest pairs

to train the similarity function again. This step could be repeated several times but in

practice we observed little improvement after the first iteration. Figure 3.3 shows the

improvement between learning the metric described in Section 3.1.2 with random and

tough dissimilar pairs.

3.2 Common Metric Learning Regularizers

Over-fitting is often considered to be one of the main issues in machine learning. It

occurs when the model to train is too complex, too powerful for the training data at our

disposal. The consequence is that the learned model has a very low training error (error

on the training data) but a high generalization error (error on unseen data). To limit

over-fitting, one solution is to restrict the model complexity by limiting its number of

parameters, for example using a low degree polynomial for curve fitting. The second

possibility which offers more flexibility is to add a regularization term to the objective

function. The regularizer penalizes complex models but they can nonetheless be chosen

if the performance gain on the training set is large enough.

In the context of metric learning, the optimization problem combining the hinge

48 Chapter 3. Objective Functions for Empirical Loss Minimization

loss (3.6) and a regularizer can be formulated as

min
M∈Sn

+
∑

(i, j)∈T
`γ

(
ri j,d2

M(xi,x j)
)
+λR(M) (3.10)

where R(M) is the regularizer and λ is a meta-parameter controlling the regularization

strength which should be set by cross-validation. Several regularizers for metric learn-

ing have been proposed in the literature. To provide an intuition about regularizer for

metric learning, we rewrite the squared Mahalanobis distance using the eigendecom-

position M =UDU>:

d2
M(xi,x j) = (xi− x j)

>UDU>(xi− x j) (3.11)

=
n

∑
k=1

Dk,k

(
x>i U·,k− x>j U·,k

)2
(3.12)

where Dk,k is the kth diagonal element of D and U·,k is the kth column of U . We see

that d2
M(xi,x j) is a weighted sum of squared differences along orthogonal directions,

the weights being the eigenvalues of the matrix M. If M has a very unbalanced spec-

trum, the overall distance depends mostly on a few terms of the sum. On the contrary,

if the spectrum of M is flat, all terms contribute to d2
M(xi,x j) with comparable inten-

sity. Domain specific knowledge can help to choose the suitable regularizer. If the

discriminative information lies in a low dimensional subspace, then a regularizer favor-

ing sparse spectrum should be chosen. Penalizing the rank of M leads to non-convex

optimization problems. The common approach is to penalize the trace norm regularizer

Tr(M) [13, 14] as it is the best convex approximation of the rank of M. On the other

hand, if there is a prior that no direction in the feature space should out-weight the oth-

ers, a regularizer favoring a flat spectrum should be preferred. The regularizer is meant

to balance the fact that the empirical cost only takes into account the directions which

matter in the training set. The Frobenius norm of the matrix M is a simple convex reg-

ularizer well suited in this case as ‖M‖F =
√

∑
n
k=1 Dk,k

2. This assertion is supported

by the fact that a generalization error bound function of ‖M‖F can be computed [15].

Figure 3.4, 3.5 and Table 3.1 show the performance on MNIST, Reuters, FRGC

and LFW (see Chapter 2 for details about these datasets). We compare the Euclidean

distance (M = I) with similarity functions learned without regularization and with the

3.2. Common Metric Learning Regularizers 49

Classification Accuracy

Method MNIST Reuters

Euclidean distance 96.61% 86.77%
Hinge loss without regularization 96.94% 88.02%
Hinge loss and trace norm regularizer 96.91% 88.04%
Hinge loss and Frobenius norm regularizer 97.40% 88.64%

Table 3.1: Classification Accuracy of hinge loss-based loss functions on MNIST and Reuters

FPR
10 -4 10 -3 10 -2 10 -1 10 0

F
N

R

0

0.05

0.1

0.15

0.2

0.25
Euclidean distance
Hinge loss without regularization
Hinge loss and trace norm regularizer
Hinge loss and Frobenius norm regularizer

Figure 3.4: Performance of hinge loss-based loss functions on FRGC.

regularizers Tr(M) and ‖M‖F . For all the datasets, we feed similarity functions with

data preprocessed as described in Section 3.1.3. Therefore, the Euclidean distance

in this new space is equivalent to the cosine similarity with M = S−1
w in the original

feature space. In our experiments, the discriminative information does not seem to

be concentrated in a low-dimensional subspace and, therefore, the trace norm which

induces too much sparsity in the spectrum of M leads to a worse performance than the

Frobenius norm. On LFW, MNIST and Reuters, the trace norm regularizer has even a

negative impact on the performance and therefore very small values for λ are selected

by the cross-validation process. This explains why performance without regularization

and with the trace norm regularizer are very close in Figure 3.5 and Table 3.1.

50 Chapter 3. Objective Functions for Empirical Loss Minimization

FPR
0 0.2 0.4 0.6 0.8 1

F
N

R

0

0.2

0.4

0.6

0.8

1
Euclidean distance
Hinge loss without regularization
Hinge loss and trace norm regularizer
Hinge loss and Frobenius norm regularizer

Figure 3.5: Performance of hinge loss-based loss functions on LFW.

3.3 A New Regularizer for Metric Learning
The Frobenius norm ‖M‖F is the most common regularizer in metric learning, it often

leads to good results but is not always optimal. In particular, if prior information that

Euclidean distance is already a good metric is available, the Frobenius norm might not

be the best choice. This occurs, for example, when feature vectors are preprocessed

with a method such as that described in Section 3.1.3 because it aims at getting good

results with the Euclidean distance which is equivalent to using M = I.

3.3.1 Regularizer Ω(M)

We introduce here a regularizer which favors matrices M close to a multiple of the

identity matrix. Our objective function (4.4) is not scale-invariant as the threshold to

decide whether two feature vectors are similar is set to 1. Therefore, multiplying the

matrix by a factor should not be penalized. One could suggest to define the regularizer

to be ‖s×M− I‖F where s is a free variable introduced to accommodate for the scale

of M and to optimize M and s jointly during training. Unfortunately, this regularizer

is not convex. Our proposal is to use Ω(M) = ‖M− sI‖F . The two formulations are

not equivalent. Ω(M) is scale invariant for diagonal matrices only. But in practice, as

the goal of the regularizer is to favor matrices close the identity matrix and therefore

diagonal, Ω(M) do not show a strong bias toward matrices with small coefficients as

‖M‖F does.

3.3. A New Regularizer for Metric Learning 51

It is possible to avoid dealing explicitly with the additional variable s. Indeed,

for any matrix M there is a closed-form solution for s which minimizes the regu-

larizer. It is obtained by solving the equation ∂‖M − sI‖F/∂ s = 0 which leads to

s = Tr(M)/n where n is the dimensionality of the feature space. The variable s can

then be replaced by its expression to obtain a final formulation of our regularizer:

Ω(M) = ‖M− Tr(M)
n I‖F .

Ω(M) is convex as shown by the following proof: ∀M,M′ ∈ Sn
+,

Ω

(
M+M′

2

)
=

∥∥∥∥M+M′

2
− Tr(M+M′)

2n
I
∥∥∥∥ (3.13)

=
1
2

∥∥∥∥M− Tr(M)

n
I +M′− Tr(M′)

n
I
∥∥∥∥ (3.14)

≤ 1
2

∥∥∥∥M− Tr(M)

n
I
∥∥∥∥+ 1

2

∥∥∥∥M′− Tr(M′)
n

I
∥∥∥∥ (3.15)

≤ Ω(M)+Ω(M′)
2

. (3.16)

The regularizer Ω(M) can easily be integrated into any gradient-based optimiza-

tion scheme as its gradient has a simple closed-form:

∂Ω(M)

∂M
=

M− Tr(M)
n I

Ω(M)
. (3.17)

The regularizer ‖M‖F favors matrices with small coefficients. When the parameter

λ which tunes the regularization strength is large, the use of ‖M‖F tends to make

all distances small and hence changes significantly the balance between similar and

dissimilar pairs in the loss function. In extreme cases, only dissimilar pairs’ losses are

active and similar pairs are completely ignored.

The Regularizer Ω(M) does not have this issue. It favors matrices which are close

to any multiple of the identity but is not biased toward matrices with small diagonal

elements. To get an insight about this, let’s study the gradient of Ω when M is a 2-by-2

matrix:

M =

 a c

c b

 . (3.18)

The gradients with respect to a, b and c are respectively equal to a− b, b− a and 4c.

52 Chapter 3. Objective Functions for Empirical Loss Minimization

Table 3.2: Regularizer Comparison on Public Datasets. Performances indicated are Classifica-
tion Accuracy for MNIST and Reuters, Accuracy for LFW and FNR at FPR=0.1%
for FRGC.

MNIST Reuters LFW FRGC

‖M‖F 97.77% 88.64% 87.77% 1.26%
Ω(M) 97.86% 88.75% 87.60% 1.17%

Relative error
improvement

-4.0% -1.0% +1.4% -7.1%

When minimizing Ω(M) with gradient descent, we easily see that, at the optimum, the

off-diagonal element c will have a small absolute value and the diagonal elements a

and b are both going to be close to the average of their initial value. Using Ω(M) as a

regularizer for metric learning will not give more weight to the dissimilar pairs than to

the similar ones even if the hyper-parameter λ is large.

The issue described above occurs frequently when a metric is learned to adapt

features which have been learned for a specific dataset to a new one from a different

domain which has few samples for training. We show the benefit of using Ω(M) rather

than Frobenius norm regularizer in a domain adaptation context in Section 3.3.2.

3.3.2 Effect of the Regularizer Ω(M)

In Section 3.3, we presented a new regularizer for metric learning Ω(M). We compare

it to the most common metric learning regularizer, namely the Frobenius norm.

The performances reported in Table 3.2 correspond to the classification accuracy

on MNIST and Reuters, accuracy on LFW and False Negative Rate at 0.1% of False

Positive Rate on FRGC. Ω(M) improves performances on 3 out of 4 public datasets.

The improvement is most significant on FRGC. This might be linked to the fact that the

preprocessing stage described in Section 3.1.3 works particularly well on this dataset

and hence constraining the matrix M to be close to the identity is effective.

We explained in Section 3.3 that Ω(M) has an advantage over the Frobenius norm

when the regularization strength hyper-parameter λ is large. Indeed, using ‖M‖F leads

to giving more weight to the dissimilar pairs than the similar ones but our proposed

regularizer does not. We illustrate this by performing the following face verification ex-

periment. We use feature vectors produced by a Convolutional Neural Network (CNN)

3.4. Optimization 53

Table 3.3: Metric Learning for face verification with identity document photos. Comparison of
the False Negative Rate at 0.1% of False Negative Rate.

DB1 DB2 DB3 DB4 DB5 DB6

No Metric Learning 3.1% 4.7% 4.3% 4.0% 5.8% 17.3%

ML with ‖M‖F 3.3% 4.5% 4.4% 1.3% 5.4% 16.9%
ML with Ω(M) 2.8% 4.0% 3.2% 1.2% 5.5% 16.2%

Relative error
improvement

-15.1% -11.1% -27.3% -7.7% +1.9% -4.1%

trained on 500 000 images of actors downloaded from the Internet [39] and learn a

metric to adapt those features to the kind of pictures used in identity documents.

For each regularizer, we learn a metric on 500 images and then evaluate it on

6 proprietary datasets made of photos from passports and other identity documents.

Because of the few samples used for training, strong regularization is applied to pre-

vent over-fitting. The different test datasets mainly differ by the type of acquisition

process (use of a digital camera, old document scans etc.). We see in Table 3.3 that

using Metric Learning improves performance on most of the datasets despite the small

number of samples used for training. Ω(M) significantly outperforms the Frobenius

norm on all but one dataset. The performance gap is larger in this experiment than on

the public datasets; this is linked to the fact that the hyper-parameter λ (selected by

cross-validation) is much greater in this experiment.

3.4 Optimization

3.4.1 Stochastic Gradient Descent

Gradient Descent, also called Steepest Descent, is a standard and generic minimization

technique. It starts with an initial solution and iteratively improves it by making a step

in the opposite direction of the gradient of the function. Its most basic version uses

a fixed step size which needs to be carefully tuned but various strategies have been

proposed to speed-up the convergence.

Once the direction is chosen, finding the good step size is an optimization problem

of its own called line search. Many methods exist, one can use derivative-based meth-

ods (1st and 2nd order), Golden Section Search [40] or approximate methods such as

54 Chapter 3. Objective Functions for Empirical Loss Minimization

Backtracking Line Search which have been proven to be very efficient. A simpler pos-

sibility is to have a predefined sequence of step size εt with t being the iteration index.

For example, it is common to use εt = a/(b+ t) where a and b are hyper-parameters

controlling the decrease rate.

The direction of the gradient is not the optimal one. For example, when the func-

tion to optimize has narrow valleys, it might lead to strong oscillations from one side

of the valley to the other. Newton or Quasi-Newton methods such as L-BFGS [41] use

second order derivative information to get a better direction by locally approximating

the function by a quadratic form. Conjugate Gradient [42] is also very popular. It im-

poses orthogonality constraints on subsequent search directions to prevent oscillations.

The methods described above aim at reducing the number of iterations to reach

the optimum at the expense of higher computational cost per iteration. The opposite

approach can also be considered: doing more iterations but reducing the time taken

by each. In machine learning with large scale training sets, computing the gradient is

long because of the loop over all the training examples. Stochastic Gradient Descent

(SGD) approximates the average gradient over the whole training set by the gradient

depending on only one random sample. The resulting approximation is generally too

noisy to be used with advanced methods such as Conjugate Gradient and Quasi-Newton

methods but it is accurate enough for Steepest Descent. In practice, we use a mini-

batch version of SGD. Instead of approximating the gradient by looking at only one

example, it uses a small batch of examples randomly selected for each iteration. While

the objective functions presented in this chapter are convex and have no local minima,

it is not always the case. Another advantage of replacing the exact gradient by a noisy

stochastic approximation is that the method has a chance of escaping local minima [43].

Figure 3.6 compares the time of convergence of Gradient Descent and mini-batch

SGD with different batch sizes on a toy metric learning problem. In this experiment,

we use a fixed step size. We clearly see that SGD is faster than Gradient Descent of

several orders of magnitude. On this problem, the best convergence rate is obtained

with a batch size of 1000 because it offers a good trade-off between the accuracy of the

gradient and its computation time. Moreover, we see that, with a batch size of 10, the

gradient approximation is too noisy to allow good convergence and the process does not

go below 0.2. It would be necessary to use a smaller step size to get better results with a

3.4. Optimization 55

 0.1

 1

 1 2 3 4 5 6

O
b
j.

 F
u
n
ct

io
n

Time (s)

Gradient Descent

SGD - batch size = 50000

SGD - batch size = 15000

SGD - batch size = 5000

SGD - batch size = 1000

SGD - batch size = 500

SGD - batch size = 100

SGD - batch size = 10

Figure 3.6: Speed of convergence of Gradient Descent and SGD function of the batch size.

small batch size. However a smaller step size would decrease the speed of convergence

at the beginning of the optimization process. The best solution is therefore to change

the step size during the optimization.

Performing a line search using the entire dataset after each iteration to compute the

step size would be very slow. Therefore, most SGD implementations use a predefined

step size sequence such as εt = a/(b+ t). Under mild assumptions over the objective

function and the step size sequence, SGD converges almost surely. With strictly con-

vex functions, such as those presented in this chapter, the expected error decreases in

O(t−1) [44].

The hyper-parameters a and b have a significant impact on the convergence speed

in practice. To overcome this drawback, we use the Bold Driver method [45] to adapt

the step size ε in our implementation of SGD (see Algorithm 1). The step size is

initialized with a rather large value ε0 at the beginning, then, it is updated every p

iterations depending on the value of the objective function computed on a validation

set V . The step size is divided by 3 if the error has increased since the previous check,

or multiplied by 1.1 otherwise. The algorithm stops when the step size falls below a

predefined value εend .

56 Chapter 3. Objective Functions for Empirical Loss Minimization

Algorithm 1: Stochastic Gradient Descent
Input: Training set T , objective function φ , meta-parameters p, ε0, and εend
Output: Matrix M

/* Initialization */
ε ←− ε0 /* Step size */
V ←− random subset of T /* Validation set */
E←− ∞ /* Training error on V */
M←− random matrix
Mprev←−M
i←− 1 /* Iteration counter */

/* Optimization */
while ε > εend do

if i mod p = 0 then
if E > φV(M) then

E←− φV(M)
Mprev←−M
ε ←− 1.1× ε

else
M←−Mprev
ε ←− 0.33× ε

i←− i+1
T ′←− random subset of T
M←−M− ε× ∂φT ′(M)

∂M

3.4.2 Bypassing with the Positive-Definiteness Constraint

In metric learning, the matrix M is usually constrained to be positive-semidefinite so

that the similarity function is a pseudo-distance. If M has negative eigenvalues, it im-

plies that, for some directions in space, the more different xi and x j are, the more similar

they would be considered to be. This would clearly be an odd behavior and therefore

should be avoided. Gradient-based methods such as those described in Section 3.4.1

do not enforce the constraint and can therefore lead to non valid solutions. Projected

Gradient Descent is a standard way to overcome this issue. After each update, the pa-

rameter is projected onto the set of feasible solutions. To achieve this, we could add a

last line in the while-loop in Algorithm 1:

M←− argmin
M′∈Sn

+

‖M−M′‖F . (3.19)

3.4. Optimization 57

This optimization problem is easy to solve. First, we compute the eigendecomposition

of M: M = UDU>, second, we set all the negative eigenvalues to 0 and, finally, we

reconstruct the matrix M. However, the projection is a major bottleneck in making the

optimization process efficient because eigendecomposition has a complexity of O(n3).

We prefer another solution to deal with the positive-definiteness constraint of M

which consists in making a change of variable M = L>L where L ∈Rn×n and perform-

ing an unconstrained optimization with respect to L. As we shall see, despite the fact

that some objective functions are convex in M but not in L, there is no risk to get stuck

in a non-global minimum. The following proof has been proposed by Maurer in [46].

We call φ(M) our objective function which is continuous and does not have any non

local minimum. We define the function ψ by ψ(L) = φ(L>L). Let us assume that ψ(L̂)

is a minimum and φ(L̂>L̂) is not. We can build a sequence of matrices Mn ∈ Sn
+ such

that Mn
n→∞−−−→ L̂>L̂ and ∀n, φ(Mn) < φ(L̂>L̂). The polar decomposition of L can be

written as L̂ = U
√

L̂>L̂ where U is a unitary matrix. We can build a sequence of ma-

trices Ln =U
√

Mn which converges to U
√

L̂>L̂. We then have the following relations

ψ(Ln) = φ(L>n Ln) = φ(Mn) < ψ(L̂) which are in contradiction with the assumption

that L̂ is a minimum of ψ . Therefore, all minima of ψ are global and have the same

value as the minimum of φ .

Chapter 4

Large Margin Local Metric Learning

In machine learning, linear methods are appealing because they are relatively simple

and often powerful enough to deliver good performance. When this is not the case, one

way to go beyond linear functions is to use kernels. However, it leads to methods which

do not scale well in terms of speed when the number of training examples grows. An

alternative way to extend linear methods which does not suffer this limitation is to use

local functions. This scheme has been used for classification by Ladickỳ and Torr in

[47]. Their classifier is a weighted combination of several linear SVMs, the weights of

the combination depending on where the point to classify is located.

This idea can also be applied to metric learning. In Section 1.3, we have introduced

this concept and briefly described the state-of-the-art methods. Previous methods suffer

from two main limitations: they cannot deal with an arbitrary large number of classes

and/or they are designed solely for nearest neighbor classification and, therefore, cannot

work on pairs of points which none of them are in the training set. In this chapter, we

introduce a flexible local metric learning method called Large Margin Local Metric

Learning (LMLML) which overcomes these limitations. It computes a set of local

metrics which are combined into an adaptive similarity function with the help of a soft

partitioning of the feature space. The optimization of the local metrics is formulated

as a convex problem which favors a large margin solution. Our experiments show that

LMLML outperforms or matches state-of-the-art results on various datasets. We have

originally presented LMLML in a paper published at ECCV14 [48].

This Chapter describes the proposed method. We start by detailing LMLML’s

model and each step of its optimization and, then, demonstrate its effectiveness on

various datasets in Section 4.3

60 Chapter 4. Large Margin Local Metric Learning

4.1 Local Metric

We start by applying the preprocessing step described in Section 3.1.3 to the raw fea-

ture vectors extracted from the data. Whenever we mention a feature vector x in the

reminder of this chapter, it refers to the n-dimensional preprocessed and normalized

vector. Let Sn
+ be the set of n× n PSD matrices. The usual squared Mahalanobis

distance associated with a matrix M ∈ Sn
+ and evaluated on a pair of data points

(xi,x j) ∈ Rn×Rn is given by (xi− x j)
>M(xi− x j). In LMLML, the matrix M is re-

placed by a matrix-valued function Mθ : Rn×Rn 7→ Sn
+ which is defined, for every

(xi,x j) ∈ Rn×Rn, as a convex combination a K +1 matrices

Mθ (xi,x j) =
K

∑
k=0

wk
θ (xi,x j)Mk (4.1)

where wk
θ
(xi,x j) are nonnegative weights which will be defined below. The resulting

similarity function is given, for every (xi,x j) ∈ Rn×Rn by the formula

d2(xi,x j,Mθ) = (xi− x j)
>Mθ (xi,x j)(xi− x j). (4.2)

The smoothness of the matrix-valued function Mθ is a desirable property because it

ensures the similarity function be local. It also prevents abrupt changes which, as we

observed in our experiments, degrade performance. In order to favor the smoothness,

we use weight functions wk
θ

which vary smoothly across the input space. As we want

the similarity function to be local, it makes sense to use a soft partitioning of the input

space to compute the weights wk
θ
(xi,x j). To this end, we employ a Gaussian Mixture

Model (GMM) with K components of parameter θ = {αk,µk,Sk}k=1...K , where αk is

the mixing probability of the Gaussian with mean µk and covariance matrix Sk. The

weights are defined by the formula:

wk
θ (xi,x j) =

 β if k = 0

P(k|xi,θ)+P(k|x j,θ) otherwise
(4.3)

where β is a positive constant and P(k|x,θ) is the posterior probability that the point

x has been generated by the Gaussian k of the GMM. Notice that for every (xi,x j) ∈

4.1. Local Metric 61

Rn×Rn, we always have ∑
K
k=0 wk

θ
(xi,x j) = 2+β . The GMM parameter is initialized

using the standard Maximum Likelihood EM algorithm and refined during the metric

optimization process.

Note that each local metric has a strong influence only within a specific region,

that is Mk has a large weight inMθ (xi,x j) if xi or x j is strongly associated with Gaus-

sian k and even more so if both are. In the face verification example mentioned in the

introduction, the soft partitioning tends to roughly regroup faces by gender and ethnic-

ity (see Section 4.3.3). Thus Mθ (xi,x j) emphasizes the features which are the most

discriminative to compare people with similar gender/ethnicity than xi and/or x j.

The metric M0 is associated with a constant weight and is therefore a global metric,

it handles the part of the similarity function which is common to the whole input space.

The metrics Mk with 1≤ k≤K deal with the local adaptations of the similarity function

over the regions defined by the Gaussians of the GMM. Our model is a generalization of

global metric and purely local metric as the parameter β allows to balance the influence

of the global metric M0 and the local metrics Mk in the matrixMθ (xi,x j). The larger K

is, the more the model will be able to handle subtle local adaptations. Among the values

of K obtaining comparable performance during cross-validation, the smallest should be

preferred because speed and memory occupancy for training and testing grow linearly

with K. The impact of K on the performance is studied in Section 4.3.2. If K = 0,

K = 1 or β → ∞ our model is equivalent to a global linear metric.

One could think that adding the matrix M0 in our model is unnecessary because

the same similarity function can be written without M0 by integrating it into the other

matrices Mk. However, with the help of an appropriate regularizer (see Section 4.1.1),

the actual formulation allows one to use all the training points to learn the part of

the similarity function which is common to the whole space and this leads to better

generalization performance. We experimentally verified that when the global metric is

removed, performance deteriorates significantly.

4.1.1 Objective Function

Let T = {(i, j)} denote the index set of training pairs and let ri j be a label which is equal

to 1 if (xi,x j) is a similar pair and -1 otherwise. The objective function of LMLML is

62 Chapter 4. Large Margin Local Metric Learning

given by

φ(M,θ) =
1
|T | ∑

(i, j)∈T
`γ

(
ri j,d2(xi,x j,Mθ)

)
+λ

K

∑
k=0

Ω(Mk) (4.4)

where M = {M0, . . . ,MK} and the loss function `γ is defined by Equation (3.6). The

empirical loss is high for similar pairs which have large distances and dissimilar pairs

with small distances (see Section 3.1.2 for more details about this loss function).

The function Ω is the convex regularizer proposed in Section 3.3. Other standard

matrix regularizers such as the Frobenius norm or the trace norm could also be used but

we obtained better results with Ω. The overall expression ∑
K
k=0 Ω(Mk) is a mixed-norm

regularizer. It favors solutions where the part of the similarity function common to the

whole space is concentrated in the matrix M0. λ tunes the strength of the regularization,

it needs to be set by cross-validation. We seek to minimize φ(M,θ) with respect to M

and θ under the constraint that Mk ∈ Sn
+, for every k ∈ {0, . . . ,K}.

The function M 7→ φ(M,θ) is convex in M for every choice of the parameter

vector θ , because it is a sum of convex functions. Indeed the regularizer Ω in (4.4) is

convex (see Section 3.3.1) and the empirical loss terms are also convex. Specifically, by

equations (4.1) and (4.2), we see that the quantity d2(xi,x j,Mθ) is linear with respect

to each of the matrices Mk. Since the hinge loss is convex and the composition of a

convex function with a linear mapping is convex (see [49], 3.2.2), we conclude that the

function φ(M,θ) is convex in M.

The positive-definiteness constraints on the matrices Mk could be enforced by us-

ing a projected gradient descent. However, this would be rather slow as it requires per-

forming an eigen-decomposition of each matrix Mk to project it on the positive-definite

cone after each iteration. To overcome this difficulty, inspired by previous work in [15],

we transform the constrained problem into an unconstrained one by making the change

of variable and Mk = L>k Lk, for k = 0,1 . . . ,K. We introduce the objective function ψ

as

ψ(L,θ) = φ(M(L),θ) (4.5)

where L = {L0, . . . ,LK} and M(L) = (L>0 L0,L>1 L1, . . . ,L>K LK). Solving this optimiza-

tion problem does not create any local minima issue. The proof given in Section 3.4.2

4.1. Local Metric 63

is trivial to extended to the multi matrix case and therefore, as φ is convex in M, we can

minimize the unconstrained function ψ without risking getting stuck in a non optimal

local minimum. Notice that this reasoning only applies because the matrices Lk are

square. Using rectangular matrices would be equivalent to adding rank constraints on

the matrices Mk and therefore making the initial optimization problem non convex.

4.1.2 Alternate Minimization Scheme

We optimize ψ(L,θ) with an alternate minimization scheme based on gradient descent.

We first initialize the GMM using standard Maximum Likelihood EM algorithm and

compute the weights wk
θ
(xi,x j) using (4.3). We then interleave gradient steps with re-

spect to L and gradients steps with respect to θ until the loss improvement between

two optimization steps of L is smaller than a predefined threshold. Optimization is

performed by mini-batch stochastic gradient descent (SGD) with a adaptive step size

decrease (see Section 3.4.1). For each gradient step, only a random subset of the train-

ing samples is used. Let ψT ′(L,θ) be the approximation of the objective function using

only the batch T ′ ⊂ T , its gradient with respect to Lk is equal to

1
|T ′| ∑

(i, j)∈T ′

∂`γ

(
ri j,d2(xi,x j,Mθ)

)
∂Lk

+λ
∂Ω
(
L>k Lk

)
∂Lk

with

∂`γ

(
ri j,d2(xi,x j,Mθ)

)
∂Lk

=


0 if ri j(1−d2(xi,x j,Mθ))> γ

2ri jwk
θ
(xi,x j)Lk(xi− x j)(xi− x j)

>

γ
otherwise

. (4.6)

The gradient of the regularizer is given by (3.17). Note that in LMLML, the ma-

trices Lk are jointly optimized: they all impact the value of Mθ (xi,x j) and therefore

the gradient with respect to each Lk.

Next, we detail the formula of the gradient of ψT ′(L,θ) with respect to µk, Sk and

αk. To this end, we first define the auxiliary functions

gk,k′(x) =

 −∑k′′ 6=k αk′′P(x|k′′) if k = k′

αk′P(x|k′) otherwise
. (4.7)

64 Chapter 4. Large Margin Local Metric Learning

The gradient with respect to µk is equal to

1
|T ′| ∑

(i, j)∈T ′
ri j ∑

k′
‖Lk(xi− x j)‖2 (f µ

k (xi)gk,k′(xi)+ f µ

k (x j)gk,k′(x j)
)

(4.8)

where

f µ

k (x) =
αkP(x|k)

(∑k′ αk′P(x|k′))2 S−1
k (µk− x). (4.9)

The gradient with respect to Sk is equal to

1
|T ′| ∑

(i, j)∈T ′
ri j ∑

k′
‖Lk(xi− x j)‖2

(
f S
k (xi)gk,k′(xi)+ f S

k (x j)gk,k′(x j)
)

(4.10)

where

f S
k (x) =

αkP(x|k)
2(∑k′ αk′P(x|k′))2

(
S−1

k −S−1
k (µk− x)(µk− x)>S−1

k

)
. (4.11)

Finally, the gradient with respect to αk is equal to

1
|T ′| ∑

(i, j)∈T ′
ri j ∑

k′
‖Lk(xi− x j)‖2 (f α

k (xi)gk,k′(xi)+ f α
k (x j)gk,k′(x j)

)
(4.12)

where

f α
k (x) =− P(x|k)

(∑k′ αk′P(x|k′))2 . (4.13)

4.2 Computing the GMM on a Low Dimensional Em-

bedding
The weights wk

θ
(xi,x j) presented in Section 4.1 are based on the soft partitioning of

the space derived from the GMM of parameter θ . Instead of training the GMM on

the original features, we propose to first project the data into a very low dimensional

discriminative embedding. We use 10 dimensions in all our experiments, much less

than the several hundreds of dimensions kept after the PCA used in the preprocessing

step. This serves two purposes: first, the low dimensionality of the embedding favors

the smoothness of weight functions. Second, for local metric to be effective it is needed

that points which are hard to discriminate using a global metric have similar weights so

that the local metrics focus on the locally discriminative information.

4.2. Computing the GMM on a Low Dimensional Embedding 65

The very low dimensionality inherently limits the amount of information pre-

served. While enough information is preserved to perform a soft partitioning of the

data, the actual similarity should rather be computed in a higher dimensional feature

space. The low dimensional embedding presented in this section is only used to com-

pute the GMM parameter and derive the weights wk
θ
(xi,x j) but the metric is computed

directly on the feature vectors output by the preprocessing stage (i.e. the matrices Mk

are of order n).

PCA should not be used to reduce the dimensionality to 10 dimensions because it

would lead to a massive loss of discriminative information. We propose to use a method

inspired by low rank global metric learning methods [50] to obtain a transformation

matrix V ∈ Rm×n which embeds the data into a low dimensional discriminative feature

space of size m. We find the transformation V by minimizing an objective function

similar to (4.4):

1
|T | ∑

(i, j)∈T
`γ

(
ri j,‖V (xi− x j)‖2)+λΩ(V>V). (4.14)

This optimization problem is not convex, therefore, there is no guarantee to find

the global minimum In practice we observed that the initialization has only a limited

impact on the final performance. The minimization is performed by stochastic mini-

batch gradient descent.

To illustrate the impact of the dimensionality on the smoothness of the weight

functions, we compute low dimensional embeddings for several dimensionality values

m on MNIST. For each value we perform the following operations:

1. Estimation of the GMM parameters (for this experiment we have arbitrarily cho-

sen K = 5),

2. Computation of the posterior probability distribution P(·|x) for every x in the

training set,

3. Computation of the Bhattacharyya distance

dB
(
P(·|xi),P(·|x j)

)
=− log∑

k

√
P(k|xi)P(k|x j) (4.15)

between the distribution associated with each x and those of its 3 nearest neigh-

66 Chapter 4. Large Margin Local Metric Learning

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 20 40 60 80 100 120

B
ha

tta
ch

ar
yy

a
di

st
an

ce

Embedding dimensionality

75th percentile
90th percentile

Figure 4.1: Percentiles of Bhattacharyya distance between neighbors function of the embed-
ding dimensionality m.

bors.

Figure 4.1 shows the 75th and 90th percentiles of the computed Bhattacharyya distance

function of the dimensionality of the embedding. We can see that a larger embedding

dimensionality leads to a larger Bhattacharyya distance between nearby points which

means less smooth weight functions wk
θ

. This smoothness matters: on high dimensional

data such as that used for face verification (see Section 4.3.3), we have observed that

more than half of the benefit of using local metric vanishes if the GMM is computed in

the original feature space. This supports the claim that the GMM should be computed

on a low dimensional embedding.

4.3 Experiments
LMLML’s performance is assessed through a set of extensive experiments. First, we

illustrate the advantage of local metric learning on synthetic datasets. Second, we com-

pare LMLML to other metric learning methods on a large variety of datasets which are

presented in Chapter 2.

4.3.1 Synthetic Dataset

Using a single metric to compare two feature vectors may often be too restrictive to

obtain good performance. Local metric learning overcomes this limitation by allowing

adaptation of the similarity function to the regions of the input space the two feature

vectors belong to. To illustrate this advantage we build a 2D synthetic dataset using the

following procedure.

4.3. Experiments 67

A GMM with 3 Gaussians with significant overlap is used to create synthetic

datasets. We generate a similar pair in 3 steps. First, we draw the pair center using the

GMM. Second, we draw the orientation of the pair in a Gaussian distribution whose

mean depends on the component of the GMM the pair center belongs to. Third, the

distance between the two vectors of the pair is also drawn from a Gaussian distribution

and the two point locations are computed. The process to obtain a similar pair (x1,x2)

is summarized below:

Step 1:

z∼Categorical({1/3,1/3,1/3}) (4.16)

c∼N (µc
z ,0.3× I) (4.17)

Step 2:

o∼N (µo
z ,15) (4.18)

Step 3:

m∼N (0,0.2) (4.19)

x1 = c+ rot
(
[0,m]>,o

)
(4.20)

x2 = c− rot
(
[0,m]>,o

)
(4.21)

where µc
1 = [−1,−1]>, µc

2 = [−1,1]>, µc
3 = [1,0]>, µo

{1,2,3} are the mean angles asso-

ciated with each Gaussian and rot(v,o) is the rotation operator which applies a rotation

of angle o to the vector v. By varying angles µo
{1,2,3} used in Step 2, we can tune how

much the orientation of similar pairs changes when moving across the input space. The

same points are used for dissimilar pairs which are simply made of points which have

been generated from different pair centers.

When the orientations of positive pairs belonging to different components are

close (see Figure 4.2a), the global metric works well and the local metric only offers

a limited improvement. When the change in orientation of the positive pairs becomes

more significant, performance of the global metric degrades much faster than that of

local metric (Figure 4.2b, 4.3a and 4.3b).

Section 4.1.2 describes LMLML’s optimization scheme which alternates between

gradient steps with respect to the matrices M0..K and with the GMM parameters θ . Fig-

68 Chapter 4. Large Margin Local Metric Learning

-2 0 2 4
-2

-1

0

1

2

FPR
0 0.05 0.1 0.15 0.2

F
N

R

0

0.2

0.4

0.6

0.8

1
Euclidean Distance
Global Metric
Local Metric (K = 3)

(a) Angle mean difference 5◦

-2 0 2 4
-2

-1

0

1

2

FPR
0 0.05 0.1 0.15 0.2

F
N

R

0

0.2

0.4

0.6

0.8

1
Euclidean Distance
Global Metric
Local Metric (K = 3)

(b) Angle mean difference 15◦

Figure 4.2: Synthetic data with small mean angle difference between the 3 GMM components.
Left: Examples of positive pairs (points linked by black segments). Right: Perfor-
mance of the Euclidean Distance, Global Metric and Local Metric.

ure 4.4 shows that performance improves slightly when θ is optimized and not kept

fixed at the value output by the EM initialization. We also conducted experiments on

the synthetic dataset where θ was randomly initialized. In this case, the performance

gap between with and without optimization of the GMM parameters is wider. However,

on most real datasets, we observed that optimizing θ had a limited impact on the per-

formance. So, in the experiments described in the rest of this chapter, the optimization

of θ has been disabled to speedup the training.

4.3. Experiments 69

-2 0 2 4
-2

-1

0

1

2

FPR
0 0.05 0.1 0.15 0.2

F
N

R

0

0.2

0.4

0.6

0.8

1
Euclidean Distance
Global Metric
Local Metric (K = 3)

(a) Angle mean difference 30◦

-2 -1 0 1 2
-2

-1

0

1

2

FPR
0 0.05 0.1 0.15 0.2

F
N

R

0

0.2

0.4

0.6

0.8

1
Euclidean Distance
Global Metric
Local Metric (K = 3)

(b) Angle mean difference 45◦

Figure 4.3: Synthetic data with large mean angle difference between the 3 GMM components.
Left: Examples of positive pairs (points linked by black segments). Right: Perfor-
mance of the Euclidean Distance, Global Metric and Local Metric.

4.3.2 Nearest Neighbor Classification

Metric learning is often use as a mean to improve k-nearest neighbors classification.

Indeed, some of the most prominent metric learning methods such as LMNN [7] have

been specifically designed for this purpose. We evaluated LMLML on the five clas-

sification datasets described in Section 2.2 and compared it to both global and other

local metric learning methods. In this section we present classification rates obtained

exclusively with 1-nearest neighbor classification. Using more neighbors consistently

improves performance of all methods but does not change the observations about the

metric learning methods evaluated.

70 Chapter 4. Large Margin Local Metric Learning

FPR
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

F
N

R

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Global Metric
LMLML without GMM optimization
LMLML with GMM optimization

Figure 4.4: Optimizing both the matrices M0..K and the GMM parameters θ improves perfor-
mance on the synthetic dataset.

Performances of all methods are summarized in Table 4.1. Results of other meth-

ods on MNIST, Isolet and Letter are borrowed from [29]. All hyper-parameters have

been set by cross-validation. We observe that using a local metric leads to improved

performance compared to a global one. The relative decrease in error rate of LMLML

when K > 1 compared to K = 0 ranges from 2% to 24%. The optimal value for K varies

from one dataset to another but is generally between 3 and 5. When the risk of over-

fitting is small because feature vectors are of low dimensionality and the training set is

large, larger values of K can lead to better performance. Figure 4.5 shows LMLML’s

accuracy on MNIST for all values of K up to 30, the best performance is obtained

using K = 17. The computation of the GMM parameters is not convex therefore differ-

ent initializations lead to different performance, the error bars show the performance

variability. The classification rate of LMLML on MNIST in Table 4.1 corresponds to

K = 19 which is the value selected by cross-validation.

LMLML is compared to six others methods designed for nearest neighbor classi-

fication: two global metric learning algorithms LMNN [7] and BoostMetric [14], three

local metric learning methods MM-LMNN [10], GLML [28] and PLML [29] and a

multi-class non linear SVM with one-against-all strategy (the best kernel has been cho-

sen by inner cross-validation). LMLML outperforms the other methods on the five

datasets. This good performance can be partly attributed to the use of local metric as

4.3. Experiments 71

Table 4.1: Classification Rates

MNIST Isolet Letter 20newsgroup Reuters

LMLML 98.10% 96.02% 97.60% 77.06% 89.03%
LMLML K = 0 97.86% 94.74% 97.21% 76.28% 88.75%
PLML 97.30% 95.25% 97.22% - 87.39%
LMNN 97.30% 95.51% 96.08% 75.54% 88.87%
MM-LMNN 93.24% 84.61% 95.02% - -
Non linear SVM 97.62% 95.19% 96.64% - -
GLML 84.02% 84.03% 93.86 - -

K
0 5 10 15 20 25 30

C
la

ss
ifi

ca
tio

n
ra

te
 (

%
)

97.8

97.85

97.9

97.95

98

98.05

98.1

98.15

98.2

Figure 4.5: Impact of K on LMLML’s performance on MNIST.

LMLML with K = 0 is beaten by some of the 6 other methods on three datasets out of

five.

4.3.3 Face Verification

In nearest neighbors classification, distances are used to rank the items of a gallery

database function of their similarity to a specific target. It is not an issue if some targets

tend to produce larger or smaller distances than others. However, this is a critical

issue in applications where distances are thresholded to decide whether two feature

vectors are similar. A good example is face verification which consists in comparing

two face images to assess whether both images depict the same person. The identities

presented for face verification do not belong to the training dataset. We have performed

experiments with two face verification datasets: FRGC and LFW, which are described

in Section 2.3.

72 Chapter 4. Large Margin Local Metric Learning

FPR
10 -4 10 -3 10 -2 10 -1 10 0

F
N

R

0

0.01

0.02

0.03

0.04

0.05

0.06
LDML
KISS
ITML
LMLML K=0
LMLML K=3

Figure 4.6: Performance of LMLML and other methods on FRGC

4.3.3.1 FRGC

To perform face verification, a method needs to be able to compute a similarity with

pairs of never seen points so we cannot compare LMLML to previous local metric

learning methods. Figure 4.6 shows the DET curves of LMLML, KISSME [5], ITML

[12] and LDML [11]. We used the code available on their respective author’s website

and cross-validated their parameters in the same way we did with LMLML following

the authors’ recommendations. Our approach obtains better verification rates at all false

positive rates. Moreover, we see that LMLML with K = 3 achieves better performance

at low false positive rates than with K = 0. It means that, as expected, the similarity

function’s ability to adapt to local specificities leads to a better discriminative power

with close-by feature vectors.

In order to gain more insights about the good performance achieved by our

method, we observed the distribution of the faces among the different Gaussians of

the GMM. Each row of Figure 4.7 shows the five faces with the highest posterior prob-

abilities for each Gaussian. Thanks to the use of our discriminative low dimensional

embedding described in Section 4.2, the GMM captures interesting properties of the

faces: the first group is mostly populated of Asian people, the second of Caucasian

females and the third of Caucasian males. This grouping is totally unsupervised as no

4.3. Experiments 73

Figure 4.7: Each row shows the images with the highest posterior probability P(k|x) for a spe-
cific k.

gender or ethnicity information has been given to the algorithm. It allows LMLML to

adapt the similarity function to the specificities of these groups and it contributes to its

good performance on FRGC.

4.3.3.2 LFW

Results on LFW in restricted setting (see Section 2.3.1 for more information about this

evaluation setting) are shown in Table 4.2. LMLML obtains the 2nd best performance

with an accuracy of 87.77%, just behind ECSLDA [51] which achieves 87.97%. How-

ever, the parameter selection process consistently chooses K = 0 (only a global metric)

for all the folds meaning that local metrics does not help on this dataset. Our explana-

tion is that LFW’s major challenge is its wide intra-class variability and this issue is not

addressed by the use of a local metric. We looked at the results of the soft-partitioning

on LFW and saw that images seem to be randomly scattered among the different clus-

ters. Different images of a single person do not tend to have similar values of P(k|x).

Local metric does not help on datasets which are too difficult to obtain a meaningful

soft-partitioning in the low dimensional embedding described in Section 4.2.

74 Chapter 4. Large Margin Local Metric Learning

Table 4.2: Accuracy on LFW.

Method Accuracy Method Accuracy

LMLML 87.77%±0.55 ITML [12] 79.98%±0.39
ECSLDA [51] 87.97% ±0.43 Sub-ITML [18] 83.98%±0.48
Sub-SML [18] 86.73%±0.53 LDML [11] 80.65%±0.47
CSML [16] 85.57%±0.52 Sub-LDML [18] 82.27%±0.58
KISSME [5] 83.37%±0.54 SILD [52] 80.07%±1.35
DML-eig [53] 82.28%±0.41

4.4 Conclusion
In this chapter, we have introduced a new local metric learning algorithm. The data is

embedded into a discriminative low dimensional space to compute a soft partitioning

of the input space. This embedding is then used to define a smooth locally adapting

similarity function. Our method overcomes the limitations of previous local metric

learning methods, it is as flexible as global metric learning methods and can therefore

be applied to wide variety of scenarios. The good performances of LMLML has been

demonstrated on seven different datasets.

Chapter 5

Deep Metric Learning

Artificial Neural Networks are methods with a long history in machine learning, the

first models, such as the Perceptron [54], go back to the 50s. A neural network defines

a parametric mapping function fθ : X 7→Y where θ denotes its set of parameters of the

function. It can be used to perform many machine learning tasks such as classification,

regression, dimensionality reduction etc.

Feedforward neural network is a popular class of neural network where the map-

ping function fθ is the composition of several functions fθ = g1 ◦ g2 ◦ · · · ◦ gK . Each

function is either a parametric linear function such as gi(y) = Wi y+ bi or a non lin-

ear function with few or no parameter such as the hyperbolic tangent or the Rectified

Linear Unit (ReLU) gi(y) = max(0,y). The succession of a linear function and a non

linear activation function is commonly referred to as layer. The set of parameters θ

is the collection of all layers’ parameters such as the matrices Wi and the vectors bi

of the linear layers. The resulting function fθ can be complex and highly non linear.

The architecture of a neural network (number of layers and their type, size etc.) is de-

fined specifically for each use case. It depends on the input, the task and the amount of

available training data.

The training of an artificial neural network consists in finding the values of the

parameters in θ which optimize an objective function. The objective function depends

on the task at hand. For classification, the most common approach is to build a network

with as many outputs as classes whose goal is to give the highest value to the output

corresponding to the correct class. The objective function maximized during training

is generally the average softmax cross-entropy between the output vectors and vectors

containing a 1 for the correct class and 0 for the others. Other multiclass losses could

76 Chapter 5. Deep Metric Learning

be used, e.g. the multiclass hinge loss. For regression, the square loss between the

output and the ground truth is the most popular choice.

The optimization is usually performed by stochastic gradient descent and hence

the objective function needs to be differentiable almost everywhere. The gradient with

respect to the parameters of the different layers is iteratively computed from the last

layer to the first one using the chain rule for composite functions differentiation. This

process is called gradient backpropagation.

The research on neural networks was very active in the 80’s but they were pro-

gressively replaced by Support Vector Machine and other kernel methods during the

90’s. Since 2010, there is a strong renewed interest for neural networks because they

recently achieved outstanding performance in many pattern recognition tasks. For ex-

ample, in computer vision, they became increasingly popular since a Convolutional

Neural Network (a feedforward neural network where linear operations are convolu-

tions) won the ImageNet challenge in 2012 by a wide margin [55]. The field has been

renamed Deep Learning, the notion of depth being a reference to the large number of

layers used in modern neural network architectures. This recent performance surge is

due to the combination of three main factors:

1. algorithmic advances such as new non linear activation functions (e.g. ReLU

[56]) or new regularization techniques (e.g. dropout [57]),

2. availability of large labeled datasets for training (for example, 1.2 million images

for ImageNet),

3. strong increase in computational power with the use of GPUs for general purpose

computing.

The two last points are tightly linked as a large amount of data is useless without com-

putational power to use it and vice and versa. GPUs are especially efficient for the type

of operations used to train and run neural networks thanks to their massively parallel

architecture.

A neural network maps an element from X to a element of Y . To create a neural

network-based similarity function, we choose Y to be a discriminative embedding of

the input space X and use the similarity function ‖ fθ (xi)− fθ (x j)‖2. This is an non-

linear extension of the Mahalanobis distance defined by ‖Lxi−Lx j‖2 with L ∈ Rn×n

presented in Section 1.2. By analogy with Linear Metric Learning, we name neural

5.1. Neural Network for Similarity Function Learning 77

network based-similarity function learning Deep Metric Learning even if the similarity

function does not satisfy the triangular inequality.

In the next section, we describe how to use neural networks for similarity function

learning. We then evaluate the performance of Deep Metric and compare it to linear

metric learning and LMLML presented in Chapter 4 before concluding this chapter.

5.1 Neural Network for Similarity Function Learning
To train a neural network to embed the input data into a discriminative space, we ap-

ply the same methodology as that presented in Section 3.1.2 to learn a linear metric.

Namely, we optimize the objective function

min
θ

∑
(i, j)∈T

`γ

(
ri j,‖ fθ (xi)− fθ (x j)‖2)+λR(θ) (5.1)

where `γ is the hinge loss defined by Equation (3.6), R(θ) is a regularizer and λ allows

to tune the intensity of the regularization. This approach is similar to that proposed for

example in [58, 25, 26].

The training of the similarity function is composed of two steps. First, a set of pairs

(similar and dissimilar) is built using the labels associated with the data. Second, we

use stochastic gradient descent to minimize the above objective function. In the next

subsections, we describe more in details the architecture of the network and present

methods to create good training pairs.

5.1.1 Network details

When input data has a specific structure, it can be taken into account in the design of

the network architecture. For example, when inputs are images, it is common in image

processing to apply filter convolutions on the image. Therefore, the most popular type

of network to process images is the Convolutional Neural Network (CNN) where the

linear functions are convolutions. In our case, we do not have any prior about the

structure of the feature vectors and just consider them as vectors in Rn. Therefore, our

networks have a simple architecture where linear layers are simply layers called fully

connected which are defined by gi(y) =Wi y+bi where y ∈ Rni is the layer’s input and

Wi ∈ Rni+1×ni and bi ∈ Rni+1 are the parameters to be learned.

Numerous activation functions for neural networks have been proposed. Histori-

78 Chapter 5. Deep Metric Learning

cally, the most popular functions were the sigmoid g(y) = (1+ey)−1 and the hyperbolic

tangent. However, those functions saturate on both ends which makes neural networks

hard to train because the gradient vanishes for large absolute values of y. Currently,

the most used activation function is the Rectified Linear Unit (ReLU) which has been

propose by He et al. in [56]. It simply consists in thresholding the negative values to

0: ReLU(y) = max(0,y). ReLU has two interesting properties: it does not saturate on

both end and is very fast to compute. The use of ReLU produces sparse outputs which

can also be an interesting property. Several variants of the ReLU have been proposed,

such as the PReLU function [59]: PReLU(y) = max(0,y)− amax(0,−y) where a is

a trainable parameter. However, the original ReLU remains currently the most used

activation function.

Another popular activation function is called maxout [60]. This function consists

in computing the element-wise maximum between m inputs which come from the pre-

vious linear layer. Consequently, the output size of the maxout function is m times

smaller than its input. For example, with m = 2, the maxout function can be written

g(y)=max
(
y1...ni/2,y1+ni/2...ni

)
where max is the element-wise maximum between two

vectors. In Convolutional Neural Networks, one of the basic components are pooling

layers which progressively reduce the spatial resolution of the feature maps. Maxout

can be seen as type of pooling which acts across feature and not at the spatial level. The

succession of one set of linear layers and a maxout is a universal approximator of any

convex function [60]. A neural network with maxout where m = 5 recently obtained

the state-of-the-art result on MNIST without artificial data augmentation [61]. In our

experiments, we have evaluated two activation functions: ReLU and maxout.

The number of trainable parameters in a neural network can be very large. There-

fore, one major challenge is to obtain good generalization performance. The amount

of data used for training is obviously key and indeed, as we mentioned in the introduc-

tion of this chapter, neural networks started to perform really well when large labeled

datasets became available. In addition, several regularization schemes have been pro-

posed to limit over-fitting. For example, penalizing the L1-norm or L2-norm of the

parameters is widely used (the L2-norm regularizer is often called weight decay in the

neural network community). Recently, a new method called dropout has been intro-

duced [57]. It consists in switching off a random subset of neurons while performing

5.1. Neural Network for Similarity Function Learning 79

each gradient step to prevent complex co-adaptation of the network’s parameters. The

proportion of units switched off can be fairly large, a ratio of 50% is not unusual. The

dropout is only active during training, no neurons are switched off when the network

is used at test time. While using dropout significantly slows down the convergence

of the network during training, it has often a great positive impact on generalization

performance. It has also been observed that dropout leads to an increased sparsity of

the activations. We tried several rates of dropout for each experiment and empirically

selected the best one for the results presented in Section 5.3.

5.1.2 Intermediate Losses

During training, the evolution of the network’s parameters are driven by the gradient

of the objective function. The network’s parameters are initialized randomly. At the

beginning of the training, the gradients with respect to the parameters of the first layers

of the network are obtained by backpropagation through the random weights of the last

layers. Therefore, those gradients might carry little relevant information and it might

make the training very slow or even sometimes making it fail. One method to avoid this

problem is to add intermediate losses. This concept has been first introduced in [62] to

train a 22-layers network which classifies images for the ImageNet Large-Scale Visual

Recognition Challenge 2014 (ILSVRC14). Each intermediate loss is associated with

an auxiliary classifier which adds additional trainable weights.

In the context of similarity function learning, we propose a simpler scheme which

does not add any additional parameter. We want our neural network to transform pro-

gressively the input features into more discriminative ones. After each linear layer, we

directly plug a loss function similar to (5.1) and the overall objective function becomes

a weighted sum of all the intermediate losses and the final one. The weights associated

with the intermediate losses should be small (typically 0.05 or 0.1) because their role is

just to push the network in a good direction at the beginning of the training but the end

goal is to obtain discriminative features after the last layer. One might even consider

removing the intermediate losses toward the end of the training.

80 Chapter 5. Deep Metric Learning

5.2 Training Pair Selection for Deep Metric
In some applications, the training pairs are directly given. But most of the times, the

training dataset provides a label per sample and the pairs need to be built. The num-

ber of possible dissimilar pairs grows quadratically with the dataset size and becomes

quickly too large to be dealt with. In Section 3.1.5, we have described a pair selec-

tion mechanism that works well for learning a linear metric or a local metric such as

LMLML. The pair selection is performed just once, before the actual training begins.

One advantage of this one step method is that it preserves the convexity of the opti-

mization problem used for learning linear and local metric.

However, as neural networks are much more powerful than linear models, they can

take advantage of training with more pairs. We propose to draw new pairs regularly to

adapt the pairs to the current state of the neural network. Neural network training being

already non-convex, we do not lose any interesting property by applying several rounds

of pair selection. Following this approach, the network is trained with increasingly hard

pairs. This type of scheme has shown to be effective to learn complex models [63]. We

have implemented two different pair selection approaches. Both methods select the

similar pairs with a basic random sampling but differ by the procedure used to select

dissimilar pairs.

The first method seeks dissimilar pairs which have approximately the same dis-

tance distribution as the similar pairs. We cannot rely on standard sampling algorithms,

such as Metropolis-Hastings, as the procedure would be very slow because the distri-

butions of similarity measures for similar and dissimilar pairs are very different. As

an alternative, we propose the following procedure. We first randomly create a large

pool of potential dissimilar pairs and compute their associated similarity. Then, we sort

both pairs’ lists with respect to their associated distances and then use Dynamic Time

Warping (DTW) to select dissimilar pairs which have similarities close to those of the

similar pairs. DTW is an algorithm designed to compute a distance between two time

series. It aligns sequences by matching or deleting measurements to minimize a global

alignment cost. We keep the dissimilar pairs which are matched with a similar pair by

the DTW. For efficiency, we use a fast approximation of the DTW that has linear time

complexity [64].

The second method is inspired by the triplet selection method presented

5.2. Training Pair Selection for Deep Metric 81

in [24]. For every similar pair (xi,x j), we build a dissimilar pair (xi,x′i)

where x′i is selected among a pool of candidates C by solving the problem

minx′i∈C
(
‖ fθ (xi)− fθ (x j)‖−‖ fθ (xi)− fθ (x′i)‖

)2. The size of the set C is typically

between 16 and 128 depending of how tough we want the dissimilar pairs to be. As

a result, for each similar pair, we get a dissimilar one with one point in common and

a distance close to that of the similar pair. In most of our experiments, this second

method delivers better performance than that using DTW.

5.2.1 Separate Scale Optimization

The objective function (5.1) is not scale invariant, its goal is making 1 a good threshold

to separate similar and dissimilar pairs. At the beginning of the training the network’s

parameters are first modified so that the average pair distance is 1. We observed that

this adjustment is mainly obtained by changing the weights of the last linear layer. The

consequence is that the L2-norm of the last layer becomes very different from that of

the other layers. This can cause a problem when L2-norm regularization is applied

because the regularization’s intensity is going to be different for the last layer and the

others.

To solve these two issues, we propose to add an additional scalar parameter α > 0

which rescales the squared distance ‖ fθ (xi)− fθ (x j)‖2 in the objective function. The

objective function (5.1) becomes

min
α,θ

∑
(i, j)∈T

`γ

(
ri j,α‖ fθ (xi)− fθ (x j)‖2) . (5.2)

The training is done in two steps. First, the objective function is minimized with respect

to α only. Second, the rest of the network is trained while α is kept fixed. When in-

termediate losses are used (see previous section), one scale parameter should be added

for each loss.

The full objective function to minimize, which combines regularization, interme-

82 Chapter 5. Deep Metric Learning

diate losses and separate scale optimization is given by:

min
θ ,{α1,...,αK}

∑
(i, j)∈T

(
`γ

(
ri j,αK‖ fθ (xi)− fθ (x j)‖2)+β ∑

k∈IL
`γ(ri j,αk‖ f k

θ (xi)− f k
θ (x j)‖2)

)

+λ ∑
l∈L
‖Wl‖2

F (5.3)

where f k
θ
= g1 ◦ g2 ◦ · · · ◦ gk corresponds to the composition of the k first layers of the

network, IL is the set of all intermediate linear layers, L is the set of all linear layers, β

is the weight applied to intermediate losses and λ tunes the regularization strength. We

first minimize it with respect to {αk}k=1...K and then to θ .

There is a second advantage in optimizing separately the variables {αk}k=1...K and

the weights of the network. As explained in the previous subsection, there is an interest

in performing several rounds of pair selection during training. If the scales are not

adjusted after replacing the training set by a new one with harder dissimilar pairs, the

training is perturbed because the average distance of dissimilar pairs makes a sudden

jump to a smaller value. This creates instability in the learning process and slows down

the training.

After each pair selection step, we re-optimize the scales {αk}k=1...K before con-

tinuing the optimization of the network. Using this separate scale optimization scheme

leads to a significant performance improvement on several datasets. For example, we

obtain a 9% relative increase of the classification rate on Isolet (see Section 5.3 for

experimental results).

5.3 Experiments

We have used the TensorFlow framework to conduct our experiments with Deep Metric.

The design of a neural network which works well for a specific task is rather heuris-

tic and usually requires several trials and errors. We have evaluated different neural

network architectures for each dataset and present the performance of the best config-

urations in Table 5.2 and Figure 5.1. Table 5.1 summarizes the network configuration

used for each dataset. The dimensionality of the output feature vectors are equal to

the dimensionality of the input to make the results of this section comparable to those

presented in Chapter 4. The column “Hidden layers size” indicates the size of each

5.3. Experiments 83

Table 5.1: Network configurations. In the Activation function column, MO stands for maxout.

Input / output
size

Hidden layers
size

Activation
function

Dropout
rate

λ β

MNIST 164 [500] MO m = 2 20% 0.1 0.05
Isolet 171 [256, 256] ReLU 10% 0.01 0.05
Letter 16 [128, 256] MO m = 2 0% 0 0.05

20newsgroup 1000 [1000, 1000] ReLU 10% 0.01 0.05
Reuters 100 [250] ReLU 20% 0.1 0.05
FRGC 700 [700] ReLU 0% 0.01 0.05

Table 5.2: Classification Rates

MNIST Isolet Letter 20newsgroup Reuters

Deep Metric 98.61% 96.79% 97.49% 78.61% 89.07%
LMLML 98.10% 96.02% 97.60% 77.06% 89.03%

LMLML K = 0 97.86% 94.74% 97.21% 76.28% 88.75%

hidden layer (i.e. the list length is equal to the number of hidden layers).

Deep Metric is better that the linear metric (LMLML with K = 0) on all datasets

and outperforms the local metric method LMLML on five datasets out of six. On

FPR
10 -4 10 -3 10 -2 10 -1 10 0

F
N

R

0

0.02

0.04

0.06

0.08

0.1

0.12
LMLML K=0
LMLML
DeepMetric

Figure 5.1: DET curve of LMLML and Deep Metric on FRGC. The red curve corresponds to
the performance with K = 3 which is the value giving the best results on FRGC.

84 Chapter 5. Deep Metric Learning

FPR
0 0.05 0.1 0.15 0.2 0.25 0.3

F
N

R

0

0.05

0.1

0.15

0.2

0.25

0.3
LMLML K=0
LMLML
Deep Metric

Figure 5.2: DET curve on MNIST for LMLML and Deep Metric.

the classification datasets, the performance reported in Table 5.2 is the classification

accuracy obtained when the similarity functions are combined with a nearest neighbor

classifier. This classifier is very simple but powerful. It can create highly non-linear

class boundaries, especially when the number feature vectors in the reference set is

large. To lead to good performance, a similarity function used in a nearest neighbor

classifier is only required to work well at very short range.

Linear metrics are linear similarity functions. LMLML is a non-linear similarity

function which adjusts the similarity to local specificities. Both are unable to perform

well with similar pairs composed of feature vectors coming from very different parts

of the space. For example, they could not solve the XOR problem. On the other hand,

Deep Metric is perfectly able to deal with this problem. To compare Deep Metric and

LMLML on MNIST without using a nearest neighbor classifier, we computed the DET

curves (Figure 5.2). Deep Metric obtains an EER of 1.5% whereas LMLML gets 7.2%

and a linear metric 8.7%. The gap is much larger than when we look at the classification

accuracy because Deep Metric can output small distances for pairs of digits of the same

class with very different appearances (examples are given in Figure 5.3)

We also tried using Deep Metric on LFW but did not obtain competitive results.

We think that there are two main reasons for this failure. First, LFW is composed of

5.4. Conclusion 85

Figure 5.3: These two pairs of digits are considered to be very similar by Deep Metric but not
by LMLML. Deep Metric handles similar pairs of feature vectors which are too far
away in the original feature space better than local metrics.

only 13233 images which is too few for learning a task as complex as face verification

with deep learning. Second, we used a feature extractor based on LBP histograms

which might not produce rich enough features to benefit from deep methods.

5.4 Conclusion
One strength of modern Deep Learning approaches like CNN is that they create a hi-

erarchical feature transform by taking advantage of the structure of the data. When

applied on data without any specific structure such as feature vectors, we cannot obtain

such kind of hierarchical representations. Nonetheless, we have shown that fully con-

nected neural networks with one or two hidden layers obtain state-of-the-art results in

similarity function learning when the amount of available training data is large enough.

Chapter 6

Similarity Function Learning with

Data Uncertainty

Standard similarity functions compute a similarity value from a pair of feature vectors.

Feature vectors are often corrupted by noise and this contributes to make similarity

learning a challenging task. In this chapter, we show how knowledge about the uncer-

tainty of each feature of each data point could be used when available. For example, the

uncertainty of a local image descriptor in the top left corner of an image could depend

on the signal to noise ratio in that area. It would be different from one image to another

and independent of the signal to noise ratio in, say, the bottom right corner. Nonethe-

less, this uncertainty information is ignored by most machine learning algorithms which

simply treat each sample as a point in a feature space. To overcome this limitation, we

propose to consider each sample as a probability distribution whose parameters are pro-

vided by the feature extraction process. Each sample has a specific distribution which

reflects the uncertainty in the corresponding features. This idea has been explored for

some machine learning tasks. Particularly, several classification algorithms have been

extended to deal with uncertain data, including support vector machines [65, 66], de-

cision trees [67], and naive Bayes classifier [68]. Clustering algorithms have also been

adapted to uncertain data, see, for example, [69, 70] and references therein.

Up to our knowledge, this type of approach has never been applied to similarity

function learning. We extend the Joint Bayesian method [17] presented in Section 1.3

to deal with uncertainty information. Our approach is composed of an unsupervised

dimensionality reduction stage and the similarity function itself. Uncertainty is taken

into account throughout the whole processing pipeline during both training and testing.

88 Chapter 6. Similarity Function Learning with Data Uncertainty

We have published the method described in this chapter in a ICPRAM16 paper [71].

This chapter is organized as follows. We start by proposing an uncertainty-aware

dimensionality reduction algorithm inspired by the PPCA [72] in Section 6.1. Then,

we detail how to compute our uncertainty-aware similarity function and how to learn

its parameters in Section 6.2. Section 6.3 presents experiments which indicate that our

uncertainty-aware similarity function outperforms standard similarity function learning

methods on challenging tasks. Finally, we summarize our findings in Section 6.4.

6.1 Dimensionality Reduction
In many fields such as computer vision, feature vectors are often very high dimensional.

Therefore, most similarity function methods start with a dimensionality reduction step

in order to limit the computational cost and limit the risk of over-fitting. PCA has

been shown to be both simple and effective for this task but does not take into account

any uncertainty information. In this section we propose a dimensionality reduction

method which uses the uncertainty information to learn the low dimensional space and

to project new feature vectors into it.

6.1.1 Uncertainty-Aware Probabilistic PCA

Our dimensionality reduction method, Uncertainty-Aware Probabilistic PCA (UA-

PPCA), uses a generative model similar to that used in Probabilistic PCA [72] or Factor

Analysis. This latent variable model defines the observation x̃ as the sum of a linear

transformation of a low dimensional latent variable x plus some noise. x is assumed to

follow the standard multivariate normal distribution N (0, I). Specifically, our model

can be written as

x̃ = µ +Wx+ ε̃x (6.1)

where x̃ ∈ Rn, µ ∈ Rn is the center of the observation space, W ∈ Rn×m relates the

observation and the latent space, x ∈Rm and ε̃x ∈Rn is a Gaussian noise of distribution

N (0, S̃x). The uncertainty associated with the feature vector x̃ is represented by the

covariance matrix S̃x.

The difference between PPCA or Factor Analysis and our method is that we make

a different assumption on the noise distribution. In PPCA and Factor Analysis, a single

noise covariance matrix is common to all samples. This makes it possible to learn this

6.1. Dimensionality Reduction 89

matrix from the data. In contrast, in UA-PPCA, each vector ε̃x has its own covariance

matrix S̃x which reflects the uncertainty in each component of the specific feature vector

x̃. The matrices S̃x all being different, they cannot be learned and therefore have to

be provided by the feature extractor. They are regarded as fixed during the learning

process.

Considering that two features are uncorrelated is very different from saying that

the noise which affects them are uncorrelated. In a picture of a face, the appearance

of the two eyes are obviously correlated. However, the noise affecting them in a given

image can very well be different if, for example, there is a cast shadow on one side

of the face. In the rest of this chapter, we assume that the noise is uncorrelated and

therefore consider that the covariance matrices S̃x are diagonal.

Usually, dimensionality reduction consists in finding low dimensional projections

corresponding to high dimensional data. In the context of uncertainty-aware similarity

function, the whole probability distribution of x̃ needs to be transferred into the low

dimensional space. Following our generative model, the low dimensional projection x

and its associated uncertainty are respectively the mean and the covariance matrix of

the conditional probability distribution P(x| x̃, S̃x,W,µ). Using Bayes theorem and the

Gaussian product rule, we obtain the closed-form formula:

P(x| x̃, S̃x,µ,W) =N (x|µx,Sx) (6.2)

where Sx = (W>S̃x
−1

W + I)−1 (6.3)

and µx = SxW>S̃x
−1
(x̃−µ). (6.4)

6.1.2 Learning µ and W

In this subsection we present an Expectation-Maximization algorithm (EM) to learn the

parameters of the model Θ = {µ,W} from an unlabeled training dataset composed of

feature vectors x̃i ∈ Rn and their associated diagonal covariance matrices S̃i ∈ Rn×n.

The EM algorithm is composed of two steps performed alternatively. The Expec-

tation step (E-step) consists in estimating the parameters of the distribution of the latent

variables xi given the previous estimate of the parameters Θ̄. During the Maximization

step (M-step), we maximize Q(Θ,Θ̄), the expectation over the latent variables of the

90 Chapter 6. Similarity Function Learning with Data Uncertainty

log-likelihood of the complete data, with respect to Θ. Its expression is given by

Q(Θ,Θ̄) = ∑
i

∫
P(xi| x̃i, S̃i,Θ̄)

(
logP(xi)+ logP(x̃i|xi, S̃i,Θ)

)
dxi (6.5)

=−1
2 ∑

i

∫
P(xi| x̃i, S̃i,Θ̄)(x̃i−µ−Wxi)

> S̃i
−1

(x̃i−µ−Wxi)dxi + const

(6.6)

where const is a term which does not depend on Θ and can therefore be ignored.

During the E-step, we estimate the parameters of the distributions of the latent

variables P(xi| x̃i, S̃i,Θ̄) using equation (6.2). The M-step, namely the maximization of

Q with respect to Θ, is achieved by solving the system of equations ∂Q(Θ,Θ̄)/∂Θ = 0.

Specifically,

∂Q(Θ,Θ̄)

∂ µ
= ∑

i
S̃i
−1
(

x̃i−µ−W
∫

P(xi| x̃i, S̃i,Θ̄)xi dxi

)
= ∑

i
S̃i
−1

(x̃i−µ−W µxi) (6.7)

and

∂Q(Θ,Θ̄)

∂W
= ∑

i
S̃i
−1
(
(x̃i−µ)

∫
P(xi| x̃i, S̃i,Θ̄)x>i dxi−W

∫
P(xi| x̃i, S̃i,Θ̄)xix>i dxi

)
= ∑

i
S̃i
−1(

(x̃i−µ)µ>xi
−W

(
Sxi +µxi µ

>
xi

))
. (6.8)

There is no closed-form solution for this system of equations in the general case. How-

ever, in our model we restrict the uncertainty covariance matrices S̃i to be diagonal. In

this case, we obtain a closed-form solution for each component of µ and each row of

W which is given by

µ
(j) =

(
∑
i

x̃i
(j)

S̃i
(j, j) µxi

)>
A ja j−∑

i

x̃i
(j)

S̃i
(j, j)

a>j A ja j−∑
i

1

S̃i
(j, j)

(6.9)

W (j,·) =

(
∑

i

x̃i
(j)

S̃i
(j, j)

µxi−µ
(j)a j

)>
A j (6.10)

where A j =

(
∑

i

Sxi +µxi µ
>
xi

S̃i
(j, j)

)−1

, (6.11)

6.2. Uncertainty-Aware Similarity Function 91

a j = ∑
i

1

S̃i
(j, j)

µxi, (6.12)

(·)(j, j) denotes the jth element of the diagonal of a matrix, (·)(j,·) its jth row and (·)(j)

the jth component of a vector. The parameters µ and W have to be initialized before

the first iteration of the EM algorithm. We simply initialize µ to the empirical mean of

the data and W to the m first leading eigenvectors of the empirical covariance matrix

of the training set multiplied by the square-root of their respective eigenvalue. The

computational complexity of each EM iteration is O(n(m3 +Nm2) where n and m are

respectively the dimensionality of the original and low dimensional feature vectors and

N is the number of training samples.

6.2 Uncertainty-Aware Similarity Function

In this section, we present our similarity function: Uncertainty-Aware Likelihood Ratio

(UA-LR). The feature vectors and their associated uncertainty covariance matrices used

in this section are usually the outputs of the dimensionality reduction method presented

in the previous section. However, when the dimensionality of the original feature space

is not too large, we can bypass the dimensionality reduction stage and directly apply

the similarity function. We start by describing the generative model. The associated

similarity function is presented in Section 6.2.2. Finally, in Section 6.2.3, we propose

an EM-based algorithm to learn the model parameters.

6.2.1 Generative Model

Gaussian generative models are popular because they are both relatively simple and

effective. Many face recognition algorithms rely on Gaussian assumptions such as

FisherFaces [4], KISSME [5], Joint Bayesian Faces [17], and PLDA [73]. Those ap-

proaches model the data as the sum of two terms, x = µc + δ , where µc is the center

of the class to which x belongs to and δ is the deviation relative to its class center. We

propose to split δ into two further terms, leading to the following model:

x = µc +w+ εx (6.13)

92 Chapter 6. Similarity Function Learning with Data Uncertainty

where w is the intrinsic variation of the sample from its class center µc and εx is an

observation noise. As opposed to the previous methods, this model explicitly takes

the uncertainty information into account by considering that it affects the distribution

of εx. All those variables follow zero-mean multivariate normal distributions: µc ∼

N (0,Sµ), w∼N (0,Sw) and εx∼N (0,Sx). In the remaining of this chapter, Sµ is called

between-class covariance matrix, Sw within-class covariance matrix and Sx uncertainty

covariance matrix.

Sµ and Sw are common to all samples and are unknown. We introduce an EM al-

gorithm to estimate them in Section 6.2.3. On the contrary, Sx is specific to each feature

vector and is either computed by the Uncertainty-Aware Probabilistic PCA described in

the previous section from the original feature vectors x̃ and their uncertainty covariance

matrices S̃x or, directly provided by the feature extractor when dimensionality reduc-

tion is not needed. The uncertainty matrix of the original input features S̃x is always

diagonal but, after dimensionality reduction, the matrix Sx computed with (6.4) is a full

covariance matrix.

6.2.2 Uncertainty-Aware Likelihood Ratio

In Bayesian decision theory, decisions based on thresholding the likelihood ratio are

known to achieve minimum error rate (Neyman-Pearson lemma). In this method, we

use the log-likelihood ratio associated with the above generative model as our similarity

function.

Two feature vectors belonging to the same class (similar pair hypothesis: Hsim)

share the same value for µc and only differ in their respective intrinsic variation w and

observation noise εx. In contrast, two vectors from different classes (dissimilar pair

hypothesis: Hdis) are totally independent.

Let xi and x j be two feature vectors and Si and S j their associated uncertainty co-

variance matrices. Following the same methodology as in [17] we derive the probability

distributions P(xi,x j|Hsim,Si,S j) and P(xi,x j|Hdis,Si,S j) from the generative model:

P(xi,x j|Hsim,Si,S j) =N (
[
x>i x>j

]>
|0,Ssim) (6.14)

P(xi,x j|Hdis,Si,S j) =N (
[
x>i x>j

]>
|0,Sdis) (6.15)

6.2. Uncertainty-Aware Similarity Function 93

where

Ssim =

 Sµ +Sw +Si Sµ

Sµ Sµ +Sw +S j

 (6.16)

and

Sdis =

 Sµ +Sw +Si 0

0 Sµ +Sw +S j

 . (6.17)

The log-likelihood ratio LR(xi,x j|Si,S j) = log
(

P(xi,x j|Hsim,Si,S j)
P(xi,x j|Hdis,Si,S j)

)
is obtained in

closed-form using block-wise inversion matrix and determinant formula. Specifically,

a direct computation gives

LR
(
xi,x j|Si,S j

)
= x>i

(
M1−

(
Sµ +Sw +Si

)−1
)

xi + x>j
(

M3−
(
Sµ +Sw +S j

)−1
)

x j

+2x>i M2x j− log
∣∣Sµ +Sw +Si

∣∣ − log |M1| + const (6.18)

where

M1 =
(

Sµ +Sw +Si−Sµ

(
Sµ +Sw +S j

)−1 Sµ

)−1
, (6.19)

M2 =−M1Sµ

(
Sµ +Sw +S j

)−1
, (6.20)

M3 =
(
Sµ +Sw +S j

)−1 (I−SµM2
)

(6.21)

and const is a constant which does not depend on either xi, x j, Si or S j and can therefore

be ignored.

The similarity function is a quadratic form of the feature vectors xi and x j. The

contribution of a specific component of the feature vectors to the similarity score de-

pends on two factors: its discriminative power which is function of Sµ and Sw, and its

reliability which is measured by Si and S j. The Uncertainty-Aware Likelihood Ratio

presented in this section combines these different types of information to compute a

meaningful similarity.

6.2.3 Parameters Estimation

The parameters of our model to learn are the covariance matrices Sµ and Sw. We present

an EM algorithm to estimate them in this subsection.

94 Chapter 6. Similarity Function Learning with Data Uncertainty

μc

Sμ Sw

wc,i Sc,iεc,i

xc,i

C

mc

Figure 6.1: Graphical representation of the generative model using plate notation. All the co-
variance matrices Sµ , Sw and Sc,i are considered fixed in the generative model.
However, while the matrices Sc,i are provided by UA-PPCA or the feature extrac-
tor, the matrices Sµ and Sw are estimated by the EM algorithm.

We consider a training set with C different classes. Any class c contains mc fea-

ture vectors, xc,1, . . . ,xc,mc . Xc denotes the concatenation of those feature vectors and

Sxc,1, . . . ,Sxc,mc
their respective uncertainty covariance matrices. We define the latent

variables Zc = {µc,wc,1, . . . ,wc,mc} and the parameters to estimate Ψ =
{

Sµ ,Sw
}

. The

graphical representation of the generative model of the dataset is depicted in Figure 6.1.

The EM algorithm consists in iteratively maximizing R(Ψ,Ψ̄), the expectation of the

log-likelihood of the complete data over the latent variables Zc given the previous esti-

mate of the parameter Ψ̄. R(Ψ,Ψ̄) is given by

R(Ψ,Ψ̄) =
C

∑
c=1

∫
P(Zc|Xc,Ψ̄) logP(Xc,Zc|Ψ)dZc (6.22)

=
C

∑
c=1

∫
P(Zc|Xc,Ψ̄)

(
logP(µc|Sµ)+

mc

∑
i=1

logP(wc,i|Sw)+

mc

∑
i=1

logP(xc,i|µc,wc,i,Sc,i)
)

dZc. (6.23)

The standard E-step would consist in estimating the parameters of the distribution

P(Zc|Xc,Ψ̄). But Zc might have a very high dimensionality especially for classes con-

taining a large number of samples and therefore manipulating directly the parameters

of P(Zc|Xc,Ψ̄) could be a heavy computational burden. In order to make the opti-

mization computationally tractable, we take advantage of the structure of the problem.

6.2. Uncertainty-Aware Similarity Function 95

Namely, we observe that the latent variables wc,i are conditionally independent among

themselves given µc (see Figure 6.1). Therefore P(Zc|Xc,Ψ̄) can be factorized as:

P(Zc|Xc,Ψ̄) = P(µc|Xc,Ψ̄)
mc

∏
i=1

P(wc,i|xc,i,µc,Ψ̄). (6.24)

To maximize R(Ψ,Ψ̄) with respect to Ψ, we solve the equation ∂R(Ψ,Ψ̄)/∂Ψ= 0.

The optimal values for Sµ and Sw can be computed separately and we explicit the update

formula in the next two sections.

6.2.3.1 Update of Sµ

As shown in the next paragraph, the solution for Sµ depends on the parameters of the

distribution P(µc|Xc,Ψ̄) which is a normal distribution N (µc|bµc ,Tµc) where

Tµc =

(
S̄µ
−1

+
mc

∑
i=1

(
S̄w +Sc,i

)−1

)−1

and (6.25)

bµc = Tµc

mc

∑
i=1

(
S̄w +Sc,i

)−1 xc,i. (6.26)

The proof is given in the supplementary material Section A.1. It is interesting to ob-

serve how uncertainty impacts the probability distribution of µc. For samples with very

large uncertainty,
(
S̄w +Sc,i

)−1 becomes close to the null matrix and therefore these

samples have little weight in the computation of Tµc and bµc . This weighting operates

at the feature level, meaning that a given sample can have a small weight for some

features and a large one for others.

To find the matrix Sµ maximizing R(Ψ,Ψ̄), we compute its gradient with respect

to Sµ :

R(Ψ,Ψ̄)

∂Sµ

=
C

∑
c=1

∫
P(Zc|Xc,Ψ̄)

∂ logP(µc|Sµ)

∂Sµ

dZc

∝

C

∑
c=1

∫
P(µc|Xc,Ψ̄)

(
S−1

µ −S−1
µ µcµ

>
c S−1

µ

)
d µc (6.27)

∝ CS−1
µ −S−1

µ

C

∑
c=1

∫
P(µc|Xc,Ψ̄)µcµ

>
c d µcS−1

µ (6.28)

∝ CS−1
µ −S−1

µ

C

∑
c=1

(
Tµc +bµcb

>
µc

)
S−1

µ (6.29)

96 Chapter 6. Similarity Function Learning with Data Uncertainty

from which we obtain the following closed-form update formula

Sµ =
1
C

C

∑
c=1

(
Tµc +bµcb

>
µc

)
. (6.30)

6.2.3.2 Update of Sw

The optimization of R(Ψ,Ψ̄) with respect to Sw requires the knowledge of the param-

eters of the distribution P(wc,i|Xc,Ψ̄). We show in the supplementary material Sec-

tion A.2 that P(wc,i|Xc,Ψ̄) =N (wc,i|bwc,i,Twc,i) where

Twc,i = Rc,iS−1
c,i TµcS

−1
c,i Rc,i +Rc,i, (6.31)

bwc,i = Rc,iS−1
c,i
(
xc,i−bµc

)
and (6.32)

Rc,i =
(

S−1
c,i + S̄w

−1
)−1

. (6.33)

The impact of Sc,i on the parameters of the distribution is quite natural. If the

uncertainty is large, the posterior probability P(wc,i|Xc,Ψ̄) converges to the prior

N (wc,i|0, S̄w). This makes sense as, in the absence of a reliable observation, the prior

should be used. However, if the uncertainty is very small then P(wc,i|Xc,Ψ̄) converges

to N (wc,i|xc,i−bµc,Tµc) which does not depend anymore on the prior over wc,i.

To maximize R(Ψ,Ψ̄) with respect to Sw we compute its gradient which is given

by
R(Ψ,Ψ̄)

∂Sw
=

C

∑
c=1

∫
P(Zc|Xc,Ψ̄)

mc

∑
i=1

∂ logP(wc,i|Sw)

∂Sw
dZc (6.34)

and find the value of the matrix Sw which sets it to 0. The calculation uses the factor-

ization (6.24) and is detailed in Section A.3 of the supplementary material. It leads to

the following closed-form update equation

Sw =
1

∑
C
c=1 mc

C,
mc

∑
c=1,
i=1

(
Twc,i +bwc,ib

>
wc,i

)
. (6.35)

6.2.3.3 Parameter Estimation Overview

EM algorithms need an initial estimate of the parameters to begin with. We initialize

Sµ and Sw with their respective empirical estimate. To this end, we compute the em-

pirical mean of each class, set Sµ to the covariance matrix of the means and Sw to the

6.3. Experiments 97

covariance matrix of the difference of each sample with the mean of its class. After

initialization, we alternate between the E-step: the computation of the parameters Tµc ,

bµc , Twc,i and bwc,i using equations (6.25), (6.26), (6.31) and (6.32) and the M-Step: the

update of Sµ and Sw using equations (6.30) and (6.35). This process is repeated until

the Frobenius norm of the differences between two consecutive estimates of Sµ and

Sw are both smaller than a predefined threshold. The complexity of each iteration of

the EM algorithm is O(Nm3) where m is the feature vector dimensionality and N the

number of training samples.

If we consider the data to be noiseless, our method is equivalent to the Joint

Bayesian method [17]. In the case where the uncertainty of the features is unknown,

considering the data to be slightly uncertain is a means to regularize the learning pro-

cess. Indeed, by looking at the update equations of the matrices Sµ and Sw, we see

that using constant uncertainty matrices Sc,i = αI with α > 0 would act as a kind of

Tikhonov regularization. The link between considering the data to be uncertain or noisy

and regularization is well known [74]. This is the reason why performing artificial data

augmentation by perturbing the original data is a common practice in machine learning,

especially in the neural network community.

6.3 Experiments
The experiments presented in this section demonstrate the performance of the

Uncertainty-Aware PPCA and the Uncertainty-Aware Likelihood Ratio. We first

present results on MNIST to which we artificially add noise. Second, we show how

the use of uncertainty can contribute to tack challenges in a real world application like

face verification.

6.3.1 MNIST

Performance on MNIST is usually measured by classification accuracy and similarity

functions are commonly combined with a nearest neighbor classifier to perform the

actual classification. Our aim is to investigate the impact of noise and uncertainty on

the performance of similarity functions. To evaluate solely similarity functions, we

have conducted a digit verification experiment (given a pair of images, do they contain

the same digit?) and report the Equal Error Rate (EER).

98 Chapter 6. Similarity Function Learning with Data Uncertainty

Figure 6.2: Examples of digits with three levels of additional noise: none (left), medium (mid-
dle) and strong (right)

We artificially add noise to the images to create uncertain data. The data generation

protocol takes two steps: first, for each image and each pixel p, the noise standard

deviation σp is drawn from a uniform law between 0 and t and second, we add to each

pixel a noise drawn from a centered normal distribution with standard deviation σp.

The uncertainty matrix associated to an image is simply the diagonal matrix containing

the σ2
p of this image. By varying the value of t, we simulate different noise levels.

Figure 6.2 shows examples of two different images affected by the three levels of noise

we tested: none, medium and strong.

We compare our method, Uncertainty-Aware Likelihood Ratio (UA-LR) to three

other methods: Joint Bayesian [17] (JB) to which our method is equivalent in the ab-

sence of noise, ITML [12] and the metric learned with the method based on the hinge

loss and the Frobenius regularizer described in Section 3.2 (denoted HL+FR in the

remaining of this chapter). We start by reducing the dimensionality to 100 using UA-

PPCA for UA-LR and standard PCA for the three others as prescribed by the authors.

As we can see in Table 6.1, the proposed method does not get the best results on noise-

less data, however, thanks to the use of the uncertainty information, it outperforms the

other methods on noisy data. Whereas the error rates of the other methods are more

than doubled when a strong noise is added, UA-LR’s EER relative increase is only of

46%.

6.3. Experiments 99

Methods

Noise Level UA-LR JB ITML HL+FR

None 10.1% 10.1% 9.1% 8.7%
Medium 12.2% 13.5% 12.9% 12.5%
Strong 14.7% 20.6% 19.4% 18.8%

Table 6.1: EER on MNIST

Perturbation intensity

Noise Level None +/-30% +/-60%

Medium 12.2% 12.3% 12.8%
Strong 14.7% 14.9% 16.3%

Table 6.2: Sensitivity to the uncertainty accuracy

In real applications, the exact values of the uncertainty values are unknown and

only estimates can be provided to our algorithm. To evaluate its sensitivity to the accu-

racy of the uncertainty values, we propose to artificially perturb each σp by multiplying

it by a factor uniformly drawn from [0.7,1.3] (for light perturbation) or [0.4,1.6] (for

strong perturbation). Table 6.2 shows that our method is robust to this perturbation as

the error rates increase of less than 11% even when a strong perturbation is applied.

In Section 6.1 we have proposed a new dimensionality reduction method named

UA-PPCA which takes uncertainty into account. We evaluate the performance of

UA-LR if we use the standard PCA instead of the proposed method to compute the

matrix W and µ and/or if we replace the projection described in Section 6.1.1 using

P(x| x̃, S̃x,W,µ) by orthogonal linear projections (Wx̃ for feature vectors and W>S̃xW

for uncertainty matrices). Ignoring uncertainty at the dimensionality reduction stage

leads to higher error rates (see Table 6.3). UA-LR does not even bring any improve-

ment over the Joint Bayesian method if standard PCA and linear projection are used

because the highly uncertain features contaminate all the dimensions of the low di-

mensional space. Uncertainty needs to be taken into account throughout the whole

processing pipeline to get good performance.

100 Chapter 6. Similarity Function Learning with Data Uncertainty

Projection

Training Orthogonal Probabilistic

PCA 20.2% 17.1%
UA-PPCA 18.8% 14.7%

Table 6.3: EER on MNIST with strong noise function of the dimensionality reduction method
used for training (rows) and how the low dimensional projection is performed
(columns)

6.3.2 Application to Face Verification

In this section, we show experiments on different face recognition datasets to demon-

strate that uncertainty can contribute to cope with challenges like image resolution

changes, occlusions and pose variations. We used the FRGC, PUT and MUCT datasets.

FRGC is presented in Section 2.3.2, it includes face images of more than 500 identities

acquired in controlled conditions, with little variations in pose. PUT [75] contains 9971

images from 100 persons. The subjects were asked to move their head in a specific way

to get large pose variations. MUCT[76] also exhibits large pose variations. It contains

3755 images from 276 people. Pictures were simultaneously acquired with 5 cameras

to obtain different views of each person. We report performance by looking at the False

Negative Rate (FNR) at a False Positive Rate (FPR) of 0.1%.

6.3.2.1 Resolution Change

To illustrate how using uncertainty can contribute to deal with images of different reso-

lutions, we have performed an experiment on FRGC. We cannot reuse the HOG-based

feature vectors described in Section 2.3.2 because we need a representation for which

a change in resolution clearly affects different features with different intensities.

The feature extraction process is composed of the following steps. We align the

images using eyes location. The native inter-eye distance in FRGC images is approxi-

mately 80 pixels and during the alignment process the images are rescaled so that every

image has an inter-eye distance of 64 pixels. We call those images high resolution im-

ages (HR). The feature vectors are composed of magnitudes of Gabor filters’ response

sampled on a regular grid (see [77], Section 4.4 for more information). We use 4 scales

and 8 orientations and the resolution of the grid is specific to each scale (finer mesh at

finer scales). The resulting feature vectors are 14216-dimensional. For all the experi-

6.3. Experiments 101

Figure 6.3: High resolution (left) and low resolution (right) versions of an FRGC image

ments with FRGC we have arbitrarily set the dimensionality of the space after reduction

to 300. For other methods we compare ours to, standard PCA is used.

We created a low resolution (LR) version of each image by scaling it down by a

factor 4 and then up by the same factor (using Lanczos resampling) so that they have

the same size as the HR images. Figure 6.3 shows the two versions of an image.

The loss of resolution mostly affects the high frequency filters. It makes them

noisier but also shrinks their distribution as shown in Figure 6.4. To cope with this issue

we post-process each feature vector depending on the resolution of the image. First, we

center each HR (resp. LR) feature vector around their HR (resp. LR) means. Second,

we scale each component of LR feature vectors by a parameter so that the variance of

the scaled component after post-processing is equal to the sum of the variance of this

component in HR feature vectors plus the variance of the noise. The noise variance is

estimated by the formula E
[
(xHR− xLR)

2] on a dataset including for each image the

HR and LR versions. The mean feature vectors and the factors have been computed

once and for all on a special training dataset, hence they are used to post-process all

the feature vectors involved in the training and the tests of the experiments presented in

this section.

We now demonstrate the effectiveness of the proposed method to deal with sce-

narios where the training and tests are performed on images of different resolutions.

To this end, we have performed three experiments which differ in the images used for

training. The training of the first experiment is performed with the HR images, that of

102 Chapter 6. Similarity Function Learning with Data Uncertainty

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

200

400

600

800

1000

Magnitude

HR

LR

Figure 6.4: Histograms of the magnitude of a high frequency Gabor filter response on LR and
HR images

Methods

Training Test UA-LR JB ITML HL+FR

HR
HR 2.5% 2.5% 4.1% 2.5%
LR 4.1% 6.3% 8.4% 6.7%

LR
HR 3.0% 3.2% 5.3% 3.8%
LR 3.0% 4.2% 6.6% 4.2%

Mix
HR 2.6% 2.7% 6.8% 2.7%
LR 3.2% 4.6% 7.5% 4.2%

Table 6.4: FNR at FPR=0.1% on FRGC depending on the training set and test set resolutions

the second with the LR images and that of the last experiment with a random mix of

50% of HR images and 50% of LR images. For each experiment we have evaluated

the performance of all the methods on a test set of HR images and a test set of LR

images. The results of the proposed method (UA-LR), Joint Bayesian [17], ITML [12]

and HL+FR are presented in Table 6.4. UA-LR performs well in all configurations and

it is worth noticing that, thanks to the use of the uncertainty, it is more robust than other

methods. The benefit of using uncertainty is most visible when training on HR images

because other methods tend to learn that the high-frequency Gabor filters are the most

discriminative whereas these features are very noisy when the test set is composed of

LR images.

6.3. Experiments 103

Figure 6.5: Examples of occluded faces

6.3.2.2 Dealing with Occlusion

Occlusion is one of the main challenges in face recognition and uncertainty offers a

framework to handle it. In this experiment we use the non occluded HR images of

FRGC described in the previous section for training. We have artificially created oc-

cluded test images by drawing random masks over the original images. The mask of

each image is composed of two possibly overlapping rectangles which are symmetrical

with respect to the vertical axis. We use symmetric masks because otherwise it would

be too easy to recover the occluded part using the natural symmetry of faces. Figure 6.5

shows some examples of occluded faces. The masks on images are transformed into

masks on feature vectors by considering that a feature is occluded if more than 5% of

the energy of the corresponding filter is in an occluded area.

Similarity functions can only compare feature vectors of a fixed specific size,

therefore we need to fill the occluded features. We use a standard missing data impu-

tation scheme based on the conditional probability of the hidden data given the visible

ones for normally distributed data. We can consider without loss of generality that,

up to a feature reordering, all the occluded features are at the beginning of the fea-

ture vector. We use the formula of conditional multivariate normal random variables

to compute the mean o|v=a and the covariance So|v=a of the filling pattern given the

visible features v:

o|v=a = µo +Co,vC−1
v,v (µv−a) (6.36)

So|v=a =Co +Co,vC−1
v,v Cv,o (6.37)

where µo and µv are respectively the mean of the occluded and visible features and C

104 Chapter 6. Similarity Function Learning with Data Uncertainty

Methods

UA-LR JB ITML HL+FR

Standard 2.5% 2.5% 4.1% 2.5%
Occluded 8.0% 9.8% 12.5% 11.9%

Table 6.5: Impact of occlusion on the FNR at FPR=0.1% on FRGC

is the covariance matrix of the features which has the following structure:

C =

 Co,o Co,v

Cv,o Cv,v

 . (6.38)

µo, µv and C are computed on the training set which is not occluded.

We provide to all methods the feature vectors where the occlusions have been

filled with o|v=a. diag(So|v=a) is used by UA-LR as uncertainty matrix and is ignored

by other methods.

As in the previous section, UA-LR exhibits similar performance to Joint Bayesian

and HL+FR on the original images but it outperforms them on the occluded images

thanks to the use of uncertainty (see Table 6.5).

6.3.2.3 Robustness to Pose Variation

Robustness to pose variation is an important challenge for face recognition algorithms.

A popular approach is to cancel most of the impact of pose variation with the help of

a 3D morphable model. Synthetic frontal views are generated from non-frontal images

and those synthetic images are used for comparison instead of the original ones. This

process is called face frontalization. In our experiments, we use a method similar to that

described in [78] and use the Gabor-based feature vectors described in Section 6.3.2.1.

Creating frontal views from non-frontal images is a difficult task and artifacts might

appear on generated images, especially in portions of frontalized images which cor-

respond to areas poorly visible in the original non-frontal views. In this section, we

show that performance is improved if the most affected areas are disregarded by the

similarity function.

The pose of the face in a given image is estimated during the 3D morphable model

fitting process. We automatically choose the mask of pixels to ignore among a set of

6.3. Experiments 105

Figure 6.6: Original (left) and frontalized version (right) of an image from MUCT

Figure 6.7: Masks associated with 3 of the 5 bins of yaw angle. The proportions of discarded
pixels (hatched areas) are written in white.

predefined masks, function of the yaw angle estimated. Yaw angles are discretized into

5 bins: yaw <−20◦, −20◦ ≤ yaw <−5◦, −5◦ ≤ yaw <+5◦, +5◦ ≤ yaw <+20◦ and

+20◦ ≤ yaw. Each bin is associated with a mask of pixels to ignore (see Figure 6.7).

The discarded pixels are those which should be ignored during the comparison process

because they are poorly visible on the original non-frontal image. These masks are

transformed into uncertainty matrices on the feature vectors and are provided to our

method exactly as explained in Section 6.3.2.2 for random occlusions.

We use the FRGC images to learn the parameters of our model (µ , W , Sµ and Sw)

and test our similarity function on PUT and MUCT, two face datasets with large pose

variations. We compare our method to standard PCA + Joint Bayesian. We may first

note that error rates on databases with pose variations are not much higher than those

we reported on FRGC in the previous section. This is due to the frontalization scheme

used in this section; FNR are much higher if comparisons are performed on the original

images. Second, we observe that using an uncertainty-aware similarity function leads

to a notable improvement in performance on both databases despite the simple and

106 Chapter 6. Similarity Function Learning with Data Uncertainty

Table 6.6: Robustness to pose variations. FNR at FPR=0.1% on two databases with large vari-
ations in pose.

Methods

Database UA-LR JB

PUT 2.7% 3.1%
MUCT 3.4% 3.6%

coarse correspondence between yaw angles and pixel masks we use (see Table 6.6).

6.4 Conclusion
In this chapter, we have introduced a novel similarity learning method which, unlike

previous approaches, can take advantage of the uncertainty information made available

by the feature extraction process. The two stages of our method are based on proba-

bilistic models and we provide EM algorithms to estimate their parameters.

Our experimental results indicate that it is beneficial to explicitly account for un-

certainty information in similarity function learning. We demonstrate the effectiveness

of our method on various challenging tasks such as performing face verification with

images of various resolutions, pose variations or occlusions. However, our method has

two limitations. First, it relies on Gaussian assumptions which might be over-simplistic

for some data. Second, our algorithm only accepts variance as uncertainty information.

Enabling it to deal with a broader class of auxiliary values would make the method more

practical. For example, we would provide whether an image is high or low resolution

as input and the algorithm would determine how this information should impact the

similarity function. Overcoming those limitations are interesting challenges for future

research.

Final Remarks and Future Work

The learning of similarity functions plays a central role in many pattern recognition

tasks. Throughout this thesis, we have explored this topic and proposed novel methods

; this research has led to the publication of two conference papers [48, 71]. The work

presented here has been carried out in collaboration with Safran Identity & Security

which is a wold leader in biometric identification systems. This partnership has con-

tributed to shape the course of this PhD. Many of the problems we have addressed in

this thesis come from industrial needs and some algorithms we developed are now inte-

grated into products. This partnership is also the reason why many illustrative examples

are drawn from biometrics and, more specifically, from face recognition.

The development of a similarity function learning method requires the design of

three important components:

1. An appropriate type of function must be chosen. In this thesis we have worked

with linear metrics (Chapter 3), local metrics (Chapter 4), deep neural networks

(Chapter 5) and log-likelihood functions (Chapter 6).

2. Using a well adapted regularizer also contributes to obtain good performance.

We have presented a new regularizer for linear and local metrics in Section 3.3.

As indicated in Section 6.2.3.3, considering the data to be uncertain is also a way

to prevent over-fitting.

3. The training procedure for similarity function learning is more complicated than

for standard regression or classification tasks. One reason is that training pairs are

often not provided but have to be constructed from a multi-class dataset. The pair

selection process has a strong impact on the overall performance. We have pro-

posed several methods to create training pairs from labeled data in Section 3.1.5

and Section 5.2.

In many applications, scores output by similarity functions are thresholded to take

108 Final Remarks and Future Work

a decision. The trade-off between false positive and false negative rates depends on this

threshold, and hence the choice of the operating point is application-dependent: the fo-

cus can be placed on having either a low false positive rate (e.g. access control) or a low

false negative rate (for example, forensic systems assisting police investigators finding

suspects). To obtain good performance at low false negative rates, the similarity func-

tion needs to be robust to large intraclass variations. On the other hand, to be effective

at low false positive rates, the similarity function should perform well on pairs of data

points which are close in the original feature space. To improve performance at low

false positive rates in heterogeneous datasets, we have introduced in Chapter 4 a novel

local metric learning method called LMLML. Instead of using a single Mahalanobis

distance everywhere in the feature space, LMLML combines several linear metrics into

an adaptive similarity function which is able to handle local specificities. The objective

function optimized during training also has an impact on the operating point at which

performance is optimized. For methods which use pairs of feature vectors, adapting

the pair selection strategy is one way to loosely focus on an operating point of interest.

We have presented different methods of pairs selection in Section 3.1.5 and 5.2. How-

ever, to the best of our knowledge, there is no systematic approach to design objective

function targeting specific operating points.

In Chapter 6, we have proposed the Uncertainty-Aware Likelihood Ratio, the first

similarity learning method for data with uncertainty. This similarity function takes spe-

cific uncertainty information on the feature vectors as additional input. It is based on

a generative model of the data which extends that proposed in [17]. Our method illus-

trates the potential of such approaches but there is still much to be done on this topic.

Future work could address the two limitations of our approach. Namely, that it relies on

strong Gaussian assumptions which might be too simple for some data and that it can

only deal with a specific type of confidence information. It would also be valuable to

output the confidence in a similarity score without auxiliary information on the feature

vectors to compare. A similarity function is trained on a specific dataset. The similar-

ity scores output for data pairs which are very different from those of the training set

might be unreliable. To illustrate this, imagine a face verification system trained only

on Asian faces. It might give erroneous similarity scores for people from other ethnic-

ity, for example falsely considering that all Caucasians look the same. In addition to

Final Remarks and Future Work 109

the similarity score, it would be useful to output a confidence value to modulate how

the similarity is used in the system. One possible solution would be to combine the

similarity function with a generative model of the training data to associate a similarity

score and a confidence value to any data pair depending on how close to the training

set the feature vectors are.

When similarity functions are used for nearest neighbors classification, the abso-

lute value of the similarity scores do not matter, only the ranking does. On the other

hand, many applications make a decision by comparing similarity scores to a prede-

fined threshold. In this case, a correspondence between thresholds and performance

measures has to be established. For example, when a face verification system verifies

that a badge holder is its rightful owner to give access to a building, the false positive

rate corresponds to the probability that a stolen badge could be used successfully. It

is therefore mandatory to be able to determine accurately the threshold which leads to

a targeted false positive rate. Moreover, the false positive rate corresponding to this

threshold should be the same for all individuals. We want to avoid having badges being

easier to fraud with than others. This problem has been formalized in [79] and is known

in the biometric community as the Doddington zoo effect. Whereas the phenomenon

has been extensively analyzed, there exists no systematic approach to build similarity

functions with a stable correspondence between scores and false positive rates. Finding

such methods would facilitate the integration of similarity functions in many opera-

tional systems.

During the last couple of years, the emergence of Deep Learning has changed

the way many machine learning problems are addressed. We have seen in Chapter 5

that Neural Networks can also be successfully applied to similarity function learning.

In this work, we have restricted ourselves to taking feature vectors as input and not

the raw data in order to be able compare the results with the other similarity learning

methods studied in this thesis. In practice, Deep Learning has blurred the distinction

between feature extraction and decision making methods. Previously, feature represen-

tations were mostly handcrafted and only the decision stage was learned. With Deep

Learning, the raw data such as images or speech signals is progressively transformed

into increasingly discriminative features which eventually lead to a decision. However,

most of the future research directions proposed above remain valid. Designing objec-

110 Final Remarks and Future Work

tive functions which target specific operating points and guarantee that no sample is

prone to false positive errors and finding similarity functions which output confidence

values are interesting challenges for Deep Learning-based similarity function learning

methods.

Transfer learning is an interesting concept in which a model learned on a given

dataset is adapted to a different type of data for which only few training samples are

available. More recently, a related paradigm called Learning Using Privileged Infor-

mation (LUPI) [80] has been introduced. It proposes to take advantage of additional

information during training to mimic the interaction between a teacher and his student.

In [80], the authors derive a method for classification called SVM+, it would be in-

teresting to find how this paradigm could be applied to similarity function learning.

Appendices

111

Appendix A

Calculations for Uncertainty-Aware

Likelihood Ratio

A.1 Calculation of P(µc|Xc,Ψ̄)

The parameters of the distribution P(µc|Xc,Ψ̄) are used in the update formulas of Sµ

(6.30) and Sw (6.35). In this section we show how we obtain them. We apply in se-

quence the Bayes theorem, the rule about affine transformation of normal random vari-

ables and that on Gaussian convolution to obtain:

P(µc|Xc,Ψ̄) ∝ P(µc| S̄µ)P(Xc|µc, S̄w) (A.1)

∝N (µc|0, S̄µ)
mc

∏
i=1

∫
N (wc,i|0, S̄w)N (xc,i−wc,i|µc,Sc,i)dwc,i (A.2)

∝N (µc|0, S̄µ)
mc

∏
i=1
N (xc,i|µc, S̄w +Sc,i) (A.3)

∝ exp

(
−1

2

(mc

∑
i=1

(µc− xc,i)
> (S̄w +Sc,i

)−1
(µc− xc,i)+µ

>
c S̄µ

−1
µc

))
(A.4)

∝ exp
(
−1

2
(µc−bµc)

>T−1
µc

(µc−bµc)

)
(A.5)

where T µc =

(
S̄µ
−1

+
mc

∑
i=1

(
S̄w +Sc,i

)−1

)−1

(A.6)

and bµc = Tµc

mc

∑
i=1

(
S̄w +Sc,i

)−1 xc,i. (A.7)

114 Appendix A. Calculations for Uncertainty-Aware Likelihood Ratio

P(µc|Xc,Ψ̄) is a probability distribution so (A.5) implies that P(µc|Xc,Ψ̄) =

N (µc|bµc ,Tµc).

A.2 Calculation of P(wc,i|Xc,Ψ̄)

The update formula of Sw (6.35) depends on P(wc,i|Xc,Ψ̄). We detail here the calcula-

tions leading to the expression of its parameters. We introduce the variable µc that we

marginalize out to obtain

P(wc,i|Xc,Ψ̄) =
∫

P(µc|Xc, S̄µ)P(wc,i|xc,i,µc, S̄w)d µc (A.8)

We use the Bayes theorem and the rule on affine transformation of normal ran-

dom variables and on the product of normal distributions to get the expression of

P(wc,i|xc,i,µc, S̄w):

P(wc,i|xc,i,µc, S̄w) ∝N (wc,i|0, S̄w)N (xc,i−µc|wc,i,Sc,i) (A.9)

∝N (wc,i|0, S̄w)N (wc,i|xc,i−µc,Sc,i) (A.10)

∝N (wc,i|Rc,iS−1
c,i (xc,i−µc) ,Rc,i) (A.11)

where Rc,i =
(

S−1
c,i + S̄w

−1
)−1

. (A.12)

Moreover, as P(wc,i|xc,i,µc, S̄w) is a probability distribution, it is actually equal to

N (wc,i|Rc,iS−1
c,i (xc,i−µc) ,Rc,i). Applying again the rule of affine transformation of

normal random variables in conjunction with that of the convolution of two normal

distributions we obtain:

P(wc,i|Xc,Ψ̄) =
∫
N (µc|bµc ,Tµc)N (wc,i|Rc,iS−1

c,i (xc,i−µc) ,Rc,i)d µc (A.13)

=
∫
N (µc|bµc ,Tµc)N (−Sc,iR−1

c,i wc,i−µc| − xc,i,Sc,iR−1
c,i Sc,i)d µc

(A.14)

=N (−Sc,iR−1
c,i wc,i|bµc− xc,i,Tµc +Sc,iR−1

c,i Sc,i) (A.15)

=N (wc,i|bwc,i,Twc,i) (A.16)

where T wc,i = Rc,iS−1
c,i TµcS

−1
c,i Rc,i +Rc,i (A.17)

and bwc,i = Rc,iS−1
c,i
(
xc,i−bµc

)
. (A.18)

A.3. Maximization of R(Ψ,Ψ̄) with respect to Sw 115

A.3 Maximization of R(Ψ,Ψ̄) with respect to Sw

To maximize R(Ψ,Ψ̄) (6.23) with respect to Sw, we compute its gradient and find the

value of the matrix Sw which cancels it.

∂R(Ψ,Ψ̄)

∂Sw
=

C

∑
c=1

∫
P(Zc|Xc,Ψ̄)

mc

∑
i=1

∂ logP(wc,i|Sw)

∂Sw
dZc (A.19)

=
C

∑
c=1

∫
· · ·
∫

P(µc|Xc,Ψ̄)
mc

∏
j=1

P(wc, j|xc, j,µc,Ψ̄)

mc

∑
i=1

∂ logP(wc,i|Sw)

∂Sw

mc

∏
j=1

dwc, j d µc. (A.20)

P(wc,i|Sw) does not depend on the latent variables wc, j for j 6= i, it can therefore be

taken out of the integrals. Moreover, all the integrals over wc, j are equal to 1 as they

are integrals of random variables over their entire domain of definition. This leads to

the following simplification:

∂R(Ψ,Ψ̄)

∂Sw
=

C,
mc

∑
c=1,
i=1

∫∫
P(µc|Xc, S̄µ)P(wc,i|xc,i,µc, S̄w)d µc

∂ logP(wc,i|Sw)

∂Sw
dwc,i (A.21)

=

C,
mc

∑
c=1,
i=1

∫
P(wc,i|Xc,Ψ̄)

∂ logP(wc,i|Sw)

∂Sw
dwc,i (A.22)

∝ S−1
w

C

∑
c=1

mc−S−1
w

C,
mc

∑
c=1,
i=1

∫
P(wc,i|Xc,Ψ̄)wc,iw>c,i dwc,iS−1

w (A.23)

∝ S−1
w

C

∑
c=1

mc−S−1
w

C,
mc

∑
c=1,
i=1

(
Twc,i +bwc,ib

>
wc,i

)
S−1

w . (A.24)

We have therefore the following closed-form solution for the update formula:

Sw =
1

∑
C
c=1 mc

C,
mc

∑
c=1,
i=1

(
Twc,i +bwc,ib

>
wc,i

)
. (A.25)

Bibliography

[1] Prasanta Chandra Mahalanobis. On the generalised distance in statistics. Pro-

ceedings of the National Institute of Sciences of India, 2(1):49–55, 1936.

[2] Andrew O. Hatch, Sachin Kajarekar, and Andreas Stolcke. Within-class covari-

ance normalization for svm-based speaker recognition. In ICSLP, pages 1471–

1474, 2006.

[3] Richard O. Duda and Peter E. Hart. Pattern Classification and Scene Analysis.

John Willey & Sons, 1973.

[4] Peter N. Belhumeur, Joao P. Hespanha, and David J. Kriegman. Eigenfaces vs.

fisherfaces: Recognition using class specific linear projection. IEEE Transactions

on Pattern Analysis and Machine Intelligence, pages 711–720, 1997.

[5] Martin Köstinger, Martin Hirzer, Paul Wohlhart, Peter M. Roth, and Horst

Bischof. Large scale metric learning from equivalence constraints. In CVPR,

pages 2288–2295, 2012.

[6] Eric P. Xing, Andrew Y. Ng, Michael I. Jordan, and Stuart Russell. Distance

metric learning, with application to clustering with side-information. In NIPS,

pages 505–512, 2003.

[7] Kilian Q. Weinberger and Lawrence K. Saul. Distance metric learning for large

margin nearest neighbor classification. Journal of Machine Learning Research,

10:207–244, 2009.

[8] Shibin Parameswaran and Kilian Q. Weinberger. Large margin multi-task metric

learning. In NIPS, pages 1867–1875, 2010.

118 Bibliography

[9] Dor Kedem, Stephen Tyree, Fei Sha, Gert R. Lanckriet, and Kilian Q. Weinberger.

Non-linear metric learning. In NIPS, pages 2573–2581, 2012.

[10] Kilian Q. Weinberger and Lawrence K. Saul. Fast solvers and efficient implemen-

tations for distance metric learning. In ICML, pages 1160–1167, 2008.

[11] Matthieu Guillaumin, Jakob Verbeek, and Cordelia Schmid. Is that you? metric

learning approaches for face identification. In ICCV, pages 498–505, 2009.

[12] Jason V. Davis, Brian Kulis, Prateek Jain, Suvrit Sra, and Inderjit S. Dhillon.

Information-theoretic metric learning. In ICML, pages 209–216, 2007.

[13] Rong Jin, Shijun Wang, and Yang Zhou. Regularized distance metric learning:

Theory and algorithm. In NIPS, pages 862–870, 2009.

[14] Chunhua Shen, Junae Kim, Lei Wang, and Anton van den Hengel. Positive

semidefinite metric learning with boosting. In NIPS, pages 1651–1659, 2009.

[15] Andreas Maurer. Learning similarity with operator-valued large-margin classi-

fiers. Journal of Machine Learning Research, 9:1049–1082, 2008.

[16] Hieu V. Nguyen and Li Bai. Cosine similarity metric learning for face verification.

In ACCV, pages 709–720, 2011.

[17] Dong Chen, Xudong Cao, Liwei Wang, Gang Wen, and Jian Sun. Bayesian face

revisited: a joint formulation. In ECCV, 2012.

[18] Qiong Cao, Yiming Ying, and Peng Li. Similarity metric learning for face recog-

nition. In ICCV, 2013.

[19] Zhen Li, Liangliang Cao, Shiyu Chang, John R. Smith, and Thomas S. Huang.

Beyond mahalanobis distance: Learning second-order discriminant function for

people verification. In CVPR Workshops, pages 45–50, 2012.

[20] Bernhard Scholkopf and Alexander J. Smola. Learning with Kernels: Support

Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cam-

bridge, MA, USA, 2001.

Bibliography 119

[21] Sebastian Mika, Gunnar Rätsch, Jason Weston, Bernhard Schölkopf, and Klaus-

Robert Müller. Fisher discriminant analysis with kernels. In Neural Networks for

Signal Processing, pages 41–48, 1999.

[22] Jane Bromley, Isabelle Guyon, Yann Lecun, Eduard Säckinger, and Roopak Shah.

Signature verification using a ”siamese” time delay neural network. In NIPS,

pages 737–744, 1994.

[23] Sumit Chopra, Raia Hadsell, and Yann Lecun. Learning a similarity metric dis-

criminatively, with application to face verification. In CVPR, pages 539–546,

2005.

[24] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified

embedding for face recognition and clustering. CoRR, abs/1503.03832, 2015.

[25] Junlin Hu, Jiwen Lu, and Yap-Peng Tan. Discriminative deep metric learning for

face verification in the wild. In CVPR, pages 1875–1882, 2014.

[26] Xinyuan Cai, Chunheng Wang, Baihua Xiao, Xue Chen, and Ji Zhou. Deep non-

linear metric learning with independent subspace analysis for face verification. In

ACM International Conference on Multimedia, pages 749–752, 2012.

[27] Martin Köstinger, Peter M. Roth, and Horst Bischof. Synergy-based learning of

facial identity. In DAGM, volume 7476 of Lecture Notes in Computer Science,

pages 195–204, 2012.

[28] Yung-Kyun Noh, Byoung-Tak Zhang, and Daniel D. Lee. Generative local metric

learning for nearest neighbor classification. In NIPS, pages 1822–1830, 2010.

[29] Jun Wang, Alexandros Kalousis, and Adam Woznica. Parametric local metric

learning for nearest neighbor classification. In NIPS, pages 1610–1618, 2012.

[30] Shreyas Saxena and Jakob Verbeek. Coordinated local metric learning. In ICCV

ChaLearn Looking at People workshop, 2015.

[31] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. Labeled

faces in the wild: A database for studying face recognition in unconstrained envi-

ronments. Technical Report 07-49, University of Massachusetts, Amherst, 2007.

120 Bibliography

[32] Yi Sun, Yuheng Chen, Xiaogang Wang, and Xiaoou Tang. Deep learning face

representation by joint identification-verification. In NIPS, 2014.

[33] Timo Ojala, Matti Pietikäinen, and Topi Mäenpää. Multiresolution gray-scale and

rotation invariant texture classification with local binary patterns. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 24(7):971–987, 2002.

[34] Jonathon P. Phillips, Patrick J. Flynn, Todd Scruggs, Kevin W. Bowyer, Jin Chang,

Kevin Hoffman, Joe Marques, Jaesik Min, and William Worek. Overview of the

face recognition grand challenge. In CVPR, pages 947–954, 2005.

[35] Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester, and Deva Ramanan.

Object detection with discriminatively trained part-based models. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 32(9):1627–1645, 2010.

[36] Andrea Vedaldi and Brian Fulkerson. VLFeat: An open and portable library of

computer vision algorithms, 2008.

[37] Andreas Maurer. Generalization bounds for subspace selection and hyperbolic

pca. In Subspace, Latent Structure and Feature Selection, pages 185–197, 2006.

[38] Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm.

In ICML, pages 148–156, 1996.

[39] Dong Yi, Zhen Lei, Shengcai Liao, and Stan Z. Li. Learning face representation

from scratch. CoRR, abs/1411.7923, 2014.

[40] Jack Kiefer. Sequential minimax search for a maximum. Proceedings of The

American Mathematical Society, 4:502–502, 1953.

[41] Dong C. Liu and Jorge Nocedal. On the limited memory bfgs method for large

scale optimization. Mathematical Programming, 45:503–528, 1989.

[42] Magnus R. Hestenes and Eduard Stiefel. Methods of conjugate gradients for

solving linear systems. Journal of research of the National Bureau of Standards,

49:409–436, 1952.

Bibliography 121

[43] Léon Bottou. Stochastic gradient learning in neural networks. In Proceedings of

Neuro-Nı̂mes 91. EC2, 1991.

[44] Léon Bottou. In Grgoire Montavon, Genevieve B. Orr, and Klaus-Robert Mller,

editors, Neural Networks: Tricks of the Trade (2nd ed.), pages 421–436.

[45] Roberto Battiti. Accelerated backpropagation learning: Two optimization meth-

ods. Complex Systems, 3(4):331–342, 1989.

[46] Andreas Maurer. Learning to compare using operator-valued large-margin classi-

fiers. In NIPS, LTCE Workshop, 2006.

[47] Lubor Ladickỳ and Philip H. S. Torr. Locally linear support vector machines. In

ICML, pages 985–992, 2011.

[48] Julien Bohné, Yiming Ying, Stéphane Gentric, and Massimiliano Pontil. Large

margin local metric learning. In ECCV, 2014.

[49] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge Uni-

versity Press, New York, NY, USA, 2004.

[50] Karen Simonyan, Omkar M. Parkhi, Andrea Vedaldi, and Andrew Zisserman.

Fisher vector faces in the wild. In BMVC, 2013.

[51] Lei Zhang and David Zhang. Evolutionary cost-sensitive extreme learning ma-

chine and subspace extension. CoRR, abs/1505.04373, 2015.

[52] Meina Kan, Shiguang Shan, Dong Xu, and Xilin Chen. Side-information based

linear discriminant analysis for face recognition. In BMVC, pages 1–12, 2011.

[53] Yiming Ying and Peng Li. Distance metric learning with eigenvalue optimization.

Journal of Machine Learning Research, 13:1–26, 2012.

[54] Frank Rosenblatt. The perceptron: A probabilistic model for information storage

and organization in the brain. Psychological Review, pages 65–386, 1958.

[55] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification

with deep convolutional neural networks. In NIPS, pages 1097–1105, 2012.

122 Bibliography

[56] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural

networks. In AISTATS, pages 315–323, 2011.

[57] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: A simple way to prevent neural networks from overfit-

ting. Journal of Machine Learning Research, pages 1929–1958, 2014.

[58] Raia Hadsell, Sumit Chopra, and Yann Lecun. Dimensionality reduction by learn-

ing an invariant mapping. In CVPR, pages 1735–1742, 2006.

[59] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into

rectifiers: Surpassing human-level performance on imagenet classification. In

ICCV, pages 1026–1034, 2015.

[60] Ian J. Goodfellow, David Warde-farley, Mehdi Mirza, Aaron Courville, and

Yoshua Bengio. Maxout networks. In ICML, 2013.

[61] Jia-Ren Chang and Yong-Sheng Chen. Batch-normalized maxout network in net-

work. CoRR, abs/1511.02583, 2015.

[62] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going

deeper with convolutions. In CVPR, 2015.

[63] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curricu-

lum learning. In ICML, pages 41–48, 2009.

[64] Stan Salvador and Philip Chan. Toward accurate dynamic time warping in linear

time and space. Intelligent Data Analysis, pages 561–580, 2007.

[65] Jinbo Bi and Tong Zhang. Support vector classification with input data uncer-

tainty. In NIPS, pages 1651–1659, 2004.

[66] Pannagadatta K. Shivaswamy, Chiranjib Bhattacharyya, and Alexander J. Smola.

Second order cone programming approaches for handling missing and uncertain

data. Journal of Machine Learning Research, 7:1283–1314, 2006.

Bibliography 123

[67] Smith Tsang, Ben Kao, Kevin Y. Yip, Wai-Shing Ho, and Sau Dan Lee. Decision

trees for uncertain data. IEEE Transactions on Knowledge and Data Engineering,

23:64–78, 2011.

[68] Jiangtao Ren, Sau Dan Lee, Xianlu Chen, Ben Kao, Reynold Cheng, and David

Wai-Lok Cheung. Naive bayes classification of uncertain data. In ICDM, 2009.

[69] Graham Cormode and Andrew McGregor. Approximation algorithms for cluster-

ing uncertain data. In PODS, 2008.

[70] Hanz-Peter Kriegel and Martin Pfeifle. Hierarchical density-based clustering of

uncertain data. In ICDM, 2005.

[71] Julien Bohné, Sylvain Colin, Stéphane Gentric, and Massimiliano Pontil. Simi-

larity function learning with data uncertainty. In ICPRAM, 2016.

[72] Michael E. Tipping and Chris M. Bishop. Probabilistic principal component anal-

ysis. Journal of the Royal Statistical Society, Series B, 61:611–622, 1999.

[73] Simon J.D. Prince and James H. Elder. Probabilistic linear discriminant analysis

for inferences about identity. In ICCV, 2007.

[74] Christopher M. Bishop. Training with noise is equivalent to tikhonov regulariza-

tion. Neural Computation, page 108116, 1995.

[75] Andrzej Kasiński, Andrzej Florek, and Adam Schmidt. The put face database.

Image Processing & Communication, 13/3:59–64, 2008.

[76] Stephen Milborrow, John Morkel, and Fred Nicolls. The muct landmarked face

database. Pattern Recognition Association of South Africa, 2010. http://www.

milbo.org/muct.

[77] Stan Z. Li and Anil K. Jain. Handbook of Face Recognition 2nd ed. Springer,

2011.

[78] Volker Blanz, Patrick Grother, Jonathon P. Phillips, and Thomas Vetter. Face

recognition based on frontal views generated from non-frontal images. In CVPR,

pages 454–461, 2005.

http://www.milbo.org/muct
http://www.milbo.org/muct

124 Bibliography

[79] George Doddington, Walter Liggett, Alvin Martin, Mark Przybocki, and Dou-

glas Reynolds. Sheep, goats, lambs and wolves a statistical analysis of speaker

performance in the nist 1998 speaker recognition evaluation. In International

Conference On Spoken Language Processing, 1998.

[80] Vladimir Vapnik and Akshay Vashist. A new learning paradigm: Learning using

privileged information. Neural Networks, pages 544–557, 2009.

	Introduction
	Notation
	Background
	Definition of a Metric
	Mahalanobis Distance
	Other Types of Similarity Functions

	Performance Evaluation
	Performance Measures
	Classification Datasets
	MNIST
	Isolet
	Letter
	Reuters
	20newsgroup

	Face Verification Datasets
	LFW
	FRGC

	Objective Functions for Empirical Loss Minimization
	Empirical Loss
	Linear Loss
	Hinge Loss
	Data Preprocessing
	Learning from Pairs or Triplets?
	Selecting Training Pairs from Class Labels

	Common Metric Learning Regularizers
	A New Regularizer for Metric Learning
	Regularizer (M)
	Effect of the Regularizer (M)

	Optimization
	Stochastic Gradient Descent
	Bypassing with the Positive-Definiteness Constraint

	Large Margin Local Metric Learning
	Local Metric
	Objective Function
	Alternate Minimization Scheme

	Computing the GMM on a Low Dimensional Embedding
	Experiments
	Synthetic Dataset
	Nearest Neighbor Classification
	Face Verification

	Conclusion

	Deep Metric Learning
	Neural Network for Similarity Function Learning
	Network details
	Intermediate Losses

	Training Pair Selection for Deep Metric
	Separate Scale Optimization

	Experiments
	Conclusion

	Similarity Function Learning with Data Uncertainty
	Dimensionality Reduction
	Uncertainty-Aware Probabilistic PCA
	Learning and W

	Uncertainty-Aware Similarity Function
	Generative Model
	Uncertainty-Aware Likelihood Ratio
	Parameters Estimation

	Experiments
	MNIST
	Application to Face Verification

	Conclusion

	Final Remarks and Future Work
	Appendices
	Calculations for Uncertainty-Aware Likelihood Ratio
	Calculation of P(c | Xc,)
	Calculation of P(wc,i | Xc,)
	Maximization of R(,) with respect to Sw

	Bibliography

