5,078 research outputs found

    Distributed Cooperative Control of Multi-Agent Systems Under Detectability and Communication Constraints

    Get PDF
    Cooperative control of multi-agent systems has recently gained widespread attention from the scientific communities due to numerous applications in areas such as the formation control in unmanned vehicles, cooperative attitude control of spacecrafts, clustering of micro-satellites, environmental monitoring and exploration by mobile sensor networks, etc. The primary goal of a cooperative control problem for multi-agent systems is to design a decentralized control algorithm for each agent, relying on the local coordination of their actions to exhibit a collective behavior. Common challenges encountered in the study of cooperative control problems are unavailable group-level information, and limited bandwidth of the shared communication. In this dissertation, we investigate one of such cooperative control problems, namely cooperative output regulation, under various local and global level constraints coming from physical and communication limitations. The objective of the cooperative output regulation problem (CORP) for multi-agent systems is to design a distributed control strategy for the agents to synchronize their state with an external system, called the leader, in the presence of disturbance inputs. For the problem at hand, we additionally consider the scenario in which none of the agents can independently access the synchronization signal from their view of the leader, and therefore it is not possible for the agents to achieve the group objective by themselves unless they cooperate among members. To this end, we devise a novel distributed estimation algorithm to collectively gather the leader states under the discussed detectability constraint, and then use this estimation to synthesize a distributed control solution to the problem. Next, we extend our results in CORP to the case with uncertain agent dynamics arising from modeling errors. In addition to the detectability constraint, we also assumed that the local regulated error signals are not available to the agents for feedback, and thus none of the agents have all the required measurements to independently synthesize a control solution. By combining the distributed observer and a control law based on the internal model principle for the agents, we offer a solution to the robust CORP under these added constraints. In practical applications of multi-agent systems, it is difficult to consistently maintain a reliable communication between the agents. By considering such challenge in the communication, we study the CORP for the case when agents are connected through a time-varying communication topology. Due to the presence of the detectability constraint that none of the agents can independently access all the leader states at any switching instant, we devise a distributed estimation algorithm for the agents to collectively reconstruct the leader states. Then by using this estimation, a distributed dynamic control solution is offered to solve the CORP under the added communication constraint. Since the fixed communication network is a special case of this time-varying counterpart, the offered control solution can be viewed as a generalization of the former results. For effective validation of previous theoretical results, we apply the control algorithms to a practical case study problem on synchronizing the position of networked motors under time-varying communication. Based on our experimental results, we also demonstrate the uniqueness of derived control solutions. Another communication constraint affecting the cooperative control performance is the presence of network delays. To this regard, first we study the distributed state estimation problem of an autonomous plant by a network of observers under heterogeneous time-invariant delays and then extend to the time-varying counterpart. With the use of a low gain based estimation technique, we derive a sufficient stability condition in terms of the upper bound of the low gain parameter or the time delay to guarantee the convergence of estimation errors. Additionally, when the plant measurements are subject to bounded disturbances, we find that that the local estimation errors also remain bounded. Lastly, by using this estimation, we present a distributed control solution for a leader-follower synchronization problem of a multi-agent system. Next, we present another case study concerning a synchronization control problem of a group of distributed generators in an islanded microgrid under unknown time-varying latency. Similar to the case of delayed communication in aforementioned works, we offer a low gain based distributed control protocol to synchronize the terminal voltage and inverter operating frequency

    Event-based H∞ consensus control of multi-agent systems with relative output feedback: The finite-horizon case

    Get PDF
    In this technical note, the H∞ consensus control problem is investigated over a finite horizon for general discrete time-varying multi-agent systems subject to energy-bounded external disturbances. A decentralized estimation-based output feedback control protocol is put forward via the relative output measurements. A novel event-based mechanism is proposed for each intelligent agent to utilize the available information in order to decide when to broadcast messages and update control input. The aim of the problem addressed is to co-design the time-varying controller and estimator parameters such that the controlled multi-agent systems achieve consensus with a disturbance attenuation level γ over a finite horizon [0,T]. A constrained recursive Riccati difference equation approach is developed to derive the sufficient conditions under which the H∞ consensus performance is guaranteed in the framework of event-based scheme. Furthermore, the desired controller and estimator parameters can be iteratively computed by resorting to the Moore-Penrose pseudo inverse. Finally, the effectiveness of the developed event-based H∞ consensus control strategy is demonstrated in the numerical simulation

    Robust Cooperative Manipulation without Force/Torque Measurements: Control Design and Experiments

    Full text link
    This paper presents two novel control methodologies for the cooperative manipulation of an object by N robotic agents. Firstly, we design an adaptive control protocol which employs quaternion feedback for the object orientation to avoid potential representation singularities. Secondly, we propose a control protocol that guarantees predefined transient and steady-state performance for the object trajectory. Both methodologies are decentralized, since the agents calculate their own signals without communicating with each other, as well as robust to external disturbances and model uncertainties. Moreover, we consider that the grasping points are rigid, and avoid the need for force/torque measurements. Load distribution is also included via a grasp matrix pseudo-inverse to account for potential differences in the agents' power capabilities. Finally, simulation and experimental results with two robotic arms verify the theoretical findings
    • …
    corecore