9 research outputs found

    A Coalition Formation Game for Cooperative Spectrum Sensing in Cognitive Radio Network under the Constraint of Overhead

    Get PDF
    Cooperative spectrum sensing improves the sensing performance of secondary users by exploiting spatial diversity in cognitive radio networks. However, the cooperation of secondary users introduces some overhead also that may degrade the overall performance of cooperative spectrum sensing.  The trade-off between cooperation gain and overhead plays a vital role in modeling cooperative spectrum sensing.  This paper considers overhead in terms of reporting energy and reporting time. We propose a cooperative spectrum sensing based coalitional game model where the utility of the game is formulated as a function of throughput gain and overhead. To achieve a rational average throughput of secondary users, the overhead incurred is to be optimized. This work emphasizes on optimization of the overhead incurred. In cooperative spectrum sensing, the large number of cooperating users improve the detection performance, on the contrary, it increases overhead too. So, to limit the maximum coalition size we propose a formulation under the constraint of the probability of false alarm. An efficient fusion center selection scheme and an algorithm to select eligible secondary users for reporting are proposed to reduce the reporting overhead. We also outline a distributed cooperative spectrum sensing algorithm using the properties of the coalition formation game and prove that the utility of the proposed game has non-transferable properties.  The simulation results show that the proposed schemes reduce the overhead of reporting without compromising the overall detection performance of cooperative spectrum sensing

    Discrete time analysis of cognitive radio networks with imperfect sensing and saturated source of secondary users, Computer Communications

    Get PDF
    Sensing is one of the most challenging issues in cognitive radio networks. Selection of sensing parameters raises several tradeoffs between spectral efficiency, energy efficiency and interference caused to primary users (PUs). In this paper we provide representative mathematical models that can be used to analyze sensing strategies under a wide range of conditions. The activity of PUs in a licensed channel is modeled as a sequence of busy and idle periods, which is represented as an alternating Markov phase renewal process. The representation of the secondary users (SUs) behavior is also largely general: the duration of transmissions, sensing periods and the intervals between consecutive sensing periods are modeled by phase type distributions, which constitute a very versatile class of distributions. Expressions for several key performance measures in cognitive radio networks are obtained from the analysis of the model. Most notably, we derive the distribution of the length of an effective white space; the distributions of the waiting times until the SU transmits a given amount of data, through several transmission epochs uninterruptedly; and the goodput when an interrupted SU transmission has to be restarted from the beginning due to the presence of a PU. (C) 2015 Elsevier B.V. All rights reserved.The research of A. S. Alfa was partially supported by the NSERC (Natural Sciences and Engineering Research Council) of Canada under Grant G00315156. Most of the contribution of V. Pla was done while visiting the University of Manitoba. This visit was supported by the Ministerio de Educacion of Spain under Grant PR2011-0055, and by the UPV through the Programa de Apoyo a la Investigacion y Desarrollo (PAID-00-12). The research of the authors from the Universitat Politecnica de Valencia was partially supported by the Ministry of Economy and Competitiveness of Spain under Grant TIN2013-47272-C2-1-R.Alfa, AS.; Pla, V.; MartĂ­nez Bauset, J.; Casares Giner, V. (2016). Discrete time analysis of cognitive radio networks with imperfect sensing and saturated source of secondary users, Computer Communications. Computer Communications. 79:53-65. https://doi.org/10.1016/j.comcom.2015.11.012S53657

    Comprehensive survey on quality of service provisioning approaches in cognitive radio networks : part one

    Get PDF
    Much interest in Cognitive Radio Networks (CRNs) has been raised recently by enabling unlicensed (secondary) users to utilize the unused portions of the licensed spectrum. CRN utilization of residual spectrum bands of Primary (licensed) Networks (PNs) must avoid harmful interference to the users of PNs and other overlapping CRNs. The coexisting of CRNs depends on four components: Spectrum Sensing, Spectrum Decision, Spectrum Sharing, and Spectrum Mobility. Various approaches have been proposed to improve Quality of Service (QoS) provisioning in CRNs within fluctuating spectrum availability. However, CRN implementation poses many technical challenges due to a sporadic usage of licensed spectrum bands, which will be increased after deploying CRNs. Unlike traditional surveys of CRNs, this paper addresses QoS provisioning approaches of CRN components and provides an up-to-date comprehensive survey of the recent improvement in these approaches. Major features of the open research challenges of each approach are investigated. Due to the extensive nature of the topic, this paper is the first part of the survey which investigates QoS approaches on spectrum sensing and decision components respectively. The remaining approaches of spectrum sharing and mobility components will be investigated in the next part

    Cooperative spectrum sensing for cognitive radio networks under limited time constraints

    No full text
    International audienceUser cooperation for spectrum sensing in cognitive radios has been proposed in order to improve the overall performance by mitigating multi-path fading and shadowing experienced by the users. However, user cooperation results in high energy consumption, extra time for results exchange, as well as delay and security risks. In this paper, we investigate the effects of cooperative spectrum sensing (CSS) on energy consumption and achievable performance. Our analysis is based on a limited time resources assumption. This implies that the time resources dedicated for CSS process are limited and shared between spectrum sensing and results reporting, which depend on the number of sensing users. Our results show that cooperation among large number of users not only causes high energy consumption, but it also degrades the performance. Motivated by these considerations, the number of sensing users is optimized for different setups: throughput maximization, energy consumption minimization, and energy efficiency maximization. The optimal number of the sensing users is computed in a closed-form for both throughput maximization and energy minimization setups, while a simple iterative algorithm is proposed for obtaining the optimal number of sensing users for maximizing energy efficiency. Moreover, a novel energy efficient approach is presented that is able to significantly improve energy efficiency without degrading achievable throughput

    An adaptive threshold energy detection technique with noise variance estimation for cognitive radio sensor networks

    Get PDF
    The paradigm of wireless sensor networks (WSNs) has gained a lot of popularity in the recent years due to the proliferation of wireless devices. This is evident as WSNs find numerous application areas in fields such as agriculture, infrastructure monitoring, transport, and security surveillance. Traditionally, most deployments of WSNs operate in the unlicensed industrial scientific and medical (ISM) band and more specifically, the globally available 2.4 GHz frequency band. This band is shared with several other wireless technologies such as Bluetooth, Wi-Fi, near field communication and other proprietary technologies thus leading to overcrowding and interference problems. The concept of dynamic spectrum access alongside cognitive radio technology can mitigate the coexistence issues by allowing WSNs to dynamically access new spectrum opportunities. Furthermore, cognitive radio technology addresses some of the inherent constraints of WSNs thus introducing a myriad of benefits. This justifies the emergence of cognitive radio sensor networks (CRSNs). The selection of a spectrum sensing technique plays a vital role in the design and implementation of a CRSN. This dissertation sifts through the spectrum sensing techniques proposed in literature investigating their suitability for CRSN applications. We make amendments to the conventional energy detector particularly on the threshold selection technique. We propose an adaptive threshold energy detection model with noise variance estimation for implementation in CRSN systems. Experimental work on our adaptive threshold technique based on the recursive one-sided hypothesis test (ROHT) technique was carried out using MatLab. The results obtained indicate that our proposed technique is able to achieve adaptability of the threshold value based on the noise variance. We also employ the constant false alarm rate (CFAR) threshold to act as a defence mechanism against interference of the primary user at low signal to noise ratio (SNR). Our evaluations indicate that our adaptive threshold technique achieves double dynamicity of the threshold value based on the noise variance and the perceived SNR

    Towards realisation of spectrum sharing of cognitive radio networks

    Get PDF
    Cognitive radio networks (CRN) have emerged as a promising solution to spectrum shortcoming, thanks to Professor Mitola who coined Cognitive Radios. To enable efficient communications, CRNs need to avoid interference to both Primary (licensee) Users (PUs), and among themselves (called self-coexistence). In this thesis, we focus on self-coexistence issues. Very briefly, the problems are categorised into intentional and unintentional interference. Firstly, unintentional interference includes: 1) CRNs administration; 2) Overcrowded CRNs Situation; 3) Missed spectrum detection; 4) Inter-cell Interference (ICI); and 5) Inability to model Secondary Users’ (SUs) activity. In intentional interference there is Primary User Emulation Attack (PUEA). To administer CRN operations (Prob. 1), in our first contribution, we proposed CogMnet, which aims to manage the spectrum sharing of centralised networks. CogMnet divides the country into locations. It then dedicates a real-time database for each location to record CRNs’ utilisations in real time, where each database includes three storage units: Networks locations storage unit; Real-time storage unit; and Historical storage unit. To tackle Prob. 2, our second contribution is CRNAC, a network admission control algorithm that aims to calculate the maximum number of CRNs allowed in any location. CRNAC has been tested and evaluated using MATLAB. To prevent research problems 3, 4, and to tackle research problem (5), our third contribution is RCNC, a new design for an infrastructure-based CRN core. The architecture of RCNC consists of two engines: Monitor and Coordinator Engine (MNCE) and Modified Cognitive Engine (MCE). Comprehensive simulation scenarios using ICS Designer (by ATDI) have validated some of RCNC’s components. In the last contribution, to deter PUEA (the intentional interference type), we developed a PUEA Deterrent (PUED) algorithm capable of detecting PUEAs commission details. PUED must be implemented by a PUEA Identifier Component in the MNCE in RCNC after every spectrum handing off. Therefore, PUED works like a CCTV system. According to criminology, robust CCTV systems have shown a significant prevention of clear visible theft, reducing crime rates by 80%. Therefore, we believe that our algorithm will do the same. Extensive simulations using a Vienna simulator showed the effectiveness of the PUED algorithm in terms of improving CRNs’ performance
    corecore