1,075 research outputs found

    Cooperative Filtering and Parameter Identification for Advection-Diffusion Processes Using a Mobile Sensor Network

    Get PDF
    This article presents an online parameter identification scheme for advection-diffusion processes using data collected by a mobile sensor network. The advection-diffusion equation is incorporated into the information dynamics associated with the trajectories of the mobile sensors. A constrained cooperative Kalman filter is developed to provide estimates of the field values and gradients along the trajectories of the mobile sensors so that the temporal variations in the field values can be estimated. This leads to a co-design scheme for state estimation and parameter identification for advection-diffusion processes that is different from comparable schemes using sensors installed at fixed spatial locations. Using state estimates from the constrained cooperative Kalman filter, a recursive least-square (RLS) algorithm is designed to estimate unknown model parameters of the advection-diffusion processes. Theoretical justifications are provided for the convergence of the proposed cooperative Kalman filter by deriving a set of sufficient conditions regarding the formation shape and the motion of the mobile sensor network. Simulation and experimental results show satisfactory performance and demonstrate the robustness of the algorithm under realistic uncertainties and disturbances

    Deep Reinforcement Learning based Path-Planning for Multi-Agent Systems in Advection-Diffusion Field Reconstruction Tasks

    Get PDF
    Many environmental processes can be represented mathematically using spatial-temporal varying partial-differential equations. Timely estimation and prediction of processes such as wildfires is critical for disaster management response, but is difficult to accomplish without the availability of a dense network of stationary sensors. In this work, we propose a deep reinforcement learning-based real-time path-planning algorithm for mobile sensor networks traveling in a formation through a spatial-temporal varying advection-diffusion field for the task of field reconstruction. A deep Q-network (DQN) agent is trained on simulated advection-diffusion fields to direct the mobile sensor network to travel along information-rich trajectories. The field measurements made by the mobile sensor network along their trajectories enable identification of field advection parameters, which are required for field reconstruction. A cooperative Kalman filter developed in previous works is employed to receive estimates of the field values and gradients, which are essential for reconstruction as well as for the estimation of the diffusion parameter. A mechanism is provided that encourages exploration in the field domain once a stationary state is reached, which allows the algorithm to identify other information-rich trajectories that may exist in the field improving reconstruction performance significantly. Two simulation environments of different fidelities are provided to test the feasibility of the proposed algorithm. The low-fidelity simulation environment is used for training of the DQN agent. The high-fidelity simulation environment is based on Robot Operating System (ROS) and simulates real robots. We provide results of running sample test episodes in both environments which demonstrate the effectiveness and feasibility of the proposed algorithm

    Diffusion recursive least squares algorithm based on triangular decomposition

    Get PDF
    In this paper, diffusion strategies used by QR-decomposition based on recursive least squares algorithm (DQR-RLS) and the sign version of DQR-RLS algorithm (DQR-sRLS) are introduced for distributed networks. In terms of the QR-decomposition method and Cholesky factorization, a modified Kalman vector is given adaptively with the help of unitary rotation that can decrease the complexity from inverse autocorrelation matrix to vector. According to the diffusion strategies, combine-then-adapt (CTA) and adapt-then-combine (ATC) based on DQR-RLS and DQR-sRLS algorithms are proposed with the combination and adaptation steps. To minimize the cost function, diffused versions of CTA-DQR-RLS, ATC-DQR-RLS, CTA-DQR-sRLS and ATC-DiQR-sRLS algorithms are compared. Simulation results depict that the proposed DQR-RLS-based and DQR-sRLS-based algorithms can clearly achieve the better performance than the standard combine-then-adapt-diffusion RLS (CTA-DRLS) and ATC-DRLS mechanisms

    Diffusion Adaptation Strategies for Distributed Optimization and Learning over Networks

    Full text link
    We propose an adaptive diffusion mechanism to optimize a global cost function in a distributed manner over a network of nodes. The cost function is assumed to consist of a collection of individual components. Diffusion adaptation allows the nodes to cooperate and diffuse information in real-time; it also helps alleviate the effects of stochastic gradient noise and measurement noise through a continuous learning process. We analyze the mean-square-error performance of the algorithm in some detail, including its transient and steady-state behavior. We also apply the diffusion algorithm to two problems: distributed estimation with sparse parameters and distributed localization. Compared to well-studied incremental methods, diffusion methods do not require the use of a cyclic path over the nodes and are robust to node and link failure. Diffusion methods also endow networks with adaptation abilities that enable the individual nodes to continue learning even when the cost function changes with time. Examples involving such dynamic cost functions with moving targets are common in the context of biological networks.Comment: 34 pages, 6 figures, to appear in IEEE Transactions on Signal Processing, 201

    On the use of autonomous unmanned vehicles in response to hazardous atmospheric release incidents

    Get PDF
    Recent events have induced a surge of interest in the methods of response to releases of hazardous materials or gases into the atmosphere. In the last decade there has been particular interest in mapping and quantifying emissions for regulatory purposes, emergency response, and environmental monitoring. Examples include: responding to events such as gas leaks, nuclear accidents or chemical, biological or radiological (CBR) accidents or attacks, and even exploring sources of methane emissions on the planet Mars. This thesis presents a review of the potential responses to hazardous releases, which includes source localisation, boundary tracking, mapping and source term estimation. [Continues.]</div

    Snowfall Event Characteristics from a High-Elevation Site in the Southern Appalachian Mountains

    Get PDF
    Accurate assessment of snowfall patterns in high elevation remote areas is essential to providing the necessary boundary conditions for climatological analyses. The Southern Appalachian Mountain (SAM) region of the eastern U.S. provides a unique study area due to its low latitude and proximity to the Gulf of Mexico and Atlantic Ocean. Major snowstorms, such as Hurricane Sandy in October 2012, can result in heavy snowfall of 100 cm or greater in favored upslope regions. To contribute to this understanding, the MObile Precipitation Research And Monitoring (MOPRAM) station was deployed at Roan Mountain (1875 m asl.) on the Tennessee/North Carolina border in October 2012. MOPRAM has allowed for the analysis of hourly variables such as temperature, liquid precipitation, and snow depth during the 2012-13 snow season. In this paper, observed snowfall event characteristics are analysed and compared with those of other sites in the SAM. The 25 snow events were characterized by conditionally unstable upstream lapse rates, northwest winds, high-to-low elevation precipitation enhancement near a factor of three, and 364 mm of seasonal snow liquid equivalent on Roan Mountain. An estimated 391 cm of snow fell at Roan during the 2012-2013 season when using nearby snow liquid ratios to estimate snowfall

    Connecting Land–Atmosphere Interactions to Surface Heterogeneity in CHEESEHEAD19

    Get PDF
    The Chequamegon Heterogeneous Ecosystem Energy-Balance Study Enabled by a High-Density Extensive Array of Detectors 2019 (CHEESEHEAD19) is an ongoing National Science Foundation project based on an intensive field campaign that occurred from June to October 2019. The purpose of the study is to examine how the atmospheric boundary layer (ABL) responds to spatial heterogeneity in surface energy fluxes. One of the main objectives is to test whether lack of energy balance closure measured by eddy covariance (EC) towers is related to mesoscale atmospheric processes. Finally, the project evaluates data-driven methods for scaling surface energy fluxes, with the aim to improve model–data comparison and integration. To address these questions, an extensive suite of ground, tower, profiling, and airborne instrumentation was deployed over a 10 km × 10 km domain of a heterogeneous forest ecosystem in the Chequamegon–Nicolet National Forest in northern Wisconsin, United States, centered on an existing 447-m tower that anchors an AmeriFlux/NOAA supersite (US-PFa/WLEF). The project deployed one of the world’s highest-density networks of above-canopy EC measurements of surface energy fluxes. This tower EC network was coupled with spatial measurements of EC fluxes from aircraft; maps of leaf and canopy properties derived from airborne spectroscopy, ground-based measurements of plant productivity, phenology, and physiology; and atmospheric profiles of wind, water vapor, and temperature using radar, sodar, lidar, microwave radiometers, infrared interferometers, and radiosondes. These observations are being used with large-eddy simulation and scaling experiments to better understand submesoscale processes and improve formulations of subgrid-scale processes in numerical weather and climate models

    Review of selection criteria for sensor and actuator configurations suitable for internal combustion engines

    Get PDF
    This literature review considers the problem of finding a suitable configuration of sensors and actuators for the control of an internal combustion engine. It takes a look at the methods, algorithms, processes, metrics, applications, research groups and patents relevant for this topic. Several formal metric have been proposed, but practical use remains limited. Maximal information criteria are theoretically optimal for selecting sensors, but hard to apply to a system as complex and nonlinear as an engine. Thus, we reviewed methods applied to neighboring fields including nonlinear systems and non-minimal phase systems. Furthermore, the closed loop nature of control means that information is not the only consideration, and speed, stability and robustness have to be considered. The optimal use of sensor information also requires the use of models, observers, state estimators or virtual sensors, and practical acceptance of these remains limited. Simple control metrics such as conditioning number are popular, mostly because they need fewer assumptions than closed-loop metrics, which require a full plant, disturbance and goal model. Overall, no clear consensus can be found on the choice of metrics to define optimal control configurations, with physical measures, linear algebra metrics and modern control metrics all being used. Genetic algorithms and multi-criterial optimisation were identified as the most widely used methods for optimal sensor selection, although addressing the dimensionality and complexity of formulating the problem remains a challenge. This review does present a number of different successful approaches for specific applications domains, some of which may be applicable to diesel engines and other automotive applications. For a thorough treatment, non-linear dynamics and uncertainties need to be considered together, which requires sophisticated (non-Gaussian) stochastic models to establish the value of a control architecture

    Optimal Sensing and Actuation Policies for Networked Mobile Agents in a Class of Cyber-Physical Systems

    Get PDF
    The main purpose of this dissertation is to define and solve problems on optimal sensing and actuating policies in Cyber-Physical Systems (CPSs). Cyber-physical system is a term that was introduced recently to define the increasing complexity of the interactions between computational hardwares and their physical environments. The problem of designing the ``cyber\u27\u27 part may not be trivial but can be solved from scratch. However, the ``physical\u27\u27 part, usually a natural physical process, is inherently given and has to be identified in order to propose an appropriate ``cyber\u27\u27 part to be adopted. Therefore, one of the first steps in designing a CPS is to identify its ``physical\u27\u27 part. The ``physical\u27\u27 part can belong to a large array of system classes. Among the possible candidates, we focus our interest on Distributed Parameter Systems (DPSs) whose dynamics can be modeled by Partial Differential Equations (PDE). DPSs are by nature very challenging to observe as their states are distributed throughout the spatial domain of interest. Therefore, systematic approaches have to be developed to obtain the optimal locations of sensors to optimally estimate the parameters of a given DPS. In this dissertation, we first review the recent methods from the literature as the foundations of our contributions. Then, we define new research problems within the above optimal parameter estimation framework. Two different yet important problems considered are the optimal mobile sensor trajectory planning and the accuracy effects and allocation of heterogeneous sensors. Under the remote sensing setting, we are able to determine the optimal trajectories of remote sensors. The problem of optimal robust estimation is then introduced and solved using an interlaced ``online\u27\u27 or ``real-time\u27\u27 scheme. Actuation policies are introduced into the framework to improve the estimation by providing the best stimulation of the DPS for optimal parameter identification, where trajectories of both sensors and actuators are optimized simultaneously. We also introduce a new methodology to solving fractional-order optimal control problems, with which we demonstrate that we can solve optimal sensing policy problems when sensors move in complex media, displaying fractional dynamics. We consider and solve the problem of optimal scale reconciliation using satellite imagery, ground measurements, and Unmanned Aerial Vehicles (UAV)-based personal remote sensing. Finally, to provide the reader with all the necessary background, the appendices contain important concepts and theorems from the literature as well as the Matlab codes used to numerically solve some of the described problems
    • …
    corecore