284 research outputs found

    Detection of OFDM Signals Using Pilot Tones and Applications to Spectrum Sensing for Cognitive Radio Systems

    Get PDF
    Nowadays there are an increasing number of wireless devices which support wireless networking and the need for higher data rate communication is increasing rabidly. As more and more systems go wireless, approaching technologies will face spectral crowding and existence of wireless devices will be an important issue. Because of the limited bandwidth availability, accepting the request for higher capacity and data rates is a challenging task, demanding advanced technologies that can offers new methods of using the available radio spectrum. Cognitive radio introduces a key solution to the spectral increasing issue by presenting the opportunistic usage of spectrum that is not heavily occupied by licensed users. It is a latest idea in wireless communications systems which objective to have more adaptive and aware communication devices which can make better use of available natural resources. Cognitive radio appears to be an attractive solution to the spectral congestion problem by introducing the notion of opportunistic spectrum use. Cognitive radios can operate as a secondary systems on top of existence system which are called primary (or licensed) systems. In this case, secondary (cognitive) users need to detect the unused spectrum in order to be able to access it. Because of its many advantages, orthogonal frequency division multiplexing (OFDM) has been successfully used in numerous wireless standards and technologies. It\u27s shown that OFDM will play an important role in realizing the cognitive radio concept as well by providing a proven, scalable, and adaptive technology for air interface. Researches show that OFDM technique is considered as a candidate for cognitive radio systems. The objective of this dissertation is to explore detecting of OFDM modulated signals using pilot tones information. Specifically we applying Time-Domain Symbol Cross-Correlation (TDSC) method in the confect of actual 4G wireless standards such as WIMAX and LTE. This detection is only based upon the knowledge of pilot structures without knowledge of received signal so that, it can be performed on every portion of the received signal. The approach induces Cross-Correlation between pilots subcarriers and exploits the deterministic and periodic characteristics of pilot mapping in the time frequency domain

    On Random Sampling for Compliance Monitoring in Opportunistic Spectrum Access Networks

    Get PDF
    In the expanding spectrum marketplace, there has been a long term evolution towards more market€“oriented mechanisms, such as Opportunistic Spectrum Access (OSA), enabled through Cognitive Radio (CR) technology. However, the potential of CR technologies to revolutionize wireless communications, also introduces challenges based upon the potentially non€“deterministic CR behaviour in the Electrospace. While establishing and enforcing compliance to spectrum etiquette rules are essential to realization of successful OSA networks in the future, there has only been recent increased research activity into enforcement. This dissertation presents novel work on the spectrum monitoring aspect, which is crucial to effective enforcement of OSA. An overview of the challenges faced by current compliance monitoring methods is first presented. A framework is then proposed for the use of random spectral sampling techniques to reduce data collection complexity in wideband sensing scenarios. This approach is recommended as an alternative to Compressed Sensing (CS) techniques for wideband spectral occupancy estimation, which may be difficult to utilize in many practical congested scenarios where compliance monitoring is required. Next, a low€“cost computational approach to online randomized temporal sensing deployment is presented for characterization of temporal spectrum occupancy in cognitive radio scenarios. The random sensing approach is demonstrated and its performance is compared to CS€“based approach for occupancy estimation. A novel frame€“based sampling inversion technique is then presented for cases when it is necessary to track the temporal behaviour of individual CRs or CR networks. Parameters from randomly sampled Physical Layer Convergence Protocol (PLCP) data frames are used to reconstruct occupancy statistics, taking account of missed frames due to sampling design, sensor limitations and frame errors. Finally, investigations into the use of distributed and mobile spectrum sensing to collect spatial diversity to improve the above techniques are presented, for several common monitoring tasks in spectrum enforcement. Specifically, focus is upon techniques for achieving consensus in dynamic topologies such as in mobile sensing scenarios

    6G Enabled Smart Infrastructure for Sustainable Society: Opportunities, Challenges, and Research Roadmap

    Get PDF
    The 5G wireless communication network is currently faced with the challenge of limited data speed exacerbated by the proliferation of billions of data-intensive applications. To address this problem, researchers are developing cutting-edge technologies for the envisioned 6G wireless communication standards to satisfy the escalating wireless services demands. Though some of the candidate technologies in the 5G standards will apply to 6G wireless networks, key disruptive technologies that will guarantee the desired quality of physical experience to achieve ubiquitous wireless connectivity are expected in 6G. This article first provides a foundational background on the evolution of different wireless communication standards to have a proper insight into the vision and requirements of 6G. Second, we provide a panoramic view of the enabling technologies proposed to facilitate 6G and introduce emerging 6G applications such as multi-sensory–extended reality, digital replica, and more. Next, the technology-driven challenges, social, psychological, health and commercialization issues posed to actualizing 6G, and the probable solutions to tackle these challenges are discussed extensively. Additionally, we present new use cases of the 6G technology in agriculture, education, media and entertainment, logistics and transportation, and tourism. Furthermore, we discuss the multi-faceted communication capabilities of 6G that will contribute significantly to global sustainability and how 6G will bring about a dramatic change in the business arena. Finally, we highlight the research trends, open research issues, and key take-away lessons for future research exploration in 6G wireless communicatio

    An investigation on the use of SNR distributions for the optimisation of coarse-fine spectrum sensing for cognitive radio

    Get PDF
    This thesis investigates the optimisation of Coarse-Fine (CF) spectrum sensing architectures under a distribution of SNRs for Dynamic Spectrum Access (DSA). Three different detector architectures are investigated: the Coarse-Sorting Fine Detector (CSFD), the Coarse-Deciding Fine Detector (CDFD) and the Hybrid Coarse-Fine Detector (HCFD). To date, the majority of the work on coarse-fine spectrum sensing for cognitive radio has focused on a single value for the SNR. This approach overlooks the key advantage that CF sensing has to offer, namely that high powered signals can be easily detected without extra signal processing. By considering a range of SNR values, the detector can be optimised more effectively and greater performance gains realised. This work considers the optimisation of CF spectrum sensing schemes where the security and performance are treated separately. Instead of optimising system performance at a single, constant, low SNR value, the system instead is optimised for the average operating conditions. The security is still provided such that at the low SNR values the safety specifications are met. By decoupling the security and performance, the system’s average performance increases whilst maintaining the protection of licensed users from harmful interference. The different architectures considered in this thesis are investigated in theory, simulation and physical implementation to provide a complete overview of the performance of each system. This thesis provides a method for estimating SNR distributions which is quick, accurate and relatively low cost. The CSFD is modelled and the characteristic equations are found for the CDFD scheme. The HCFD is introduced and optimisation schemes for all three architectures are proposed. Finally, using the Implementing Radio In Software (IRIS) test-bed to confirm simulation results, CF spectrum sensing is shown to be significantly quicker than naive methods, whilst still meeting the required interference probability rates and not requiring substantial receiver complexity increases

    Study of the cyclostationarity properties of various signals of opportunity

    Get PDF
    Global Navigation Satellite Systems (GNSS) offer precise position estimation and navigation services outdoor but they are rarely accessible in strong multipath environments, such as indoor environments. Fortunately, several Signals of Opportunity (SoO), (such as RFID, Wi-Fi, Bluetooth, digital TV signals, etc.) are readily available in these environments, creating an opportunity for seamless positioning. Performance evolution of positioning can be achieved through contextual exploitation of SoO. The detection and identification of available SoO signals or of the signals which are most relevant to localization and the signal selection in an optimum way, according to designer defined optimality criteria, are important stages to enter such contextual awareness domain. Man-made modulated signals have certain properties which vary periodically in time and this time-varying periodical characteristics trigger what is known as cyclostationarity. Cyclostationarity analysis can be used, among others, as a tool for signal detection. Detected signals through cyclostationary features can be exploited as SoO. The main purpose of this thesis is to study and analyze the cyclostationarity properties of various SoO. An additional goal is to investigate whether such cyclostationarity properties can be used to detect, identify and distinguish the signals which are present in a certain frequency band. The thesis is divided into two parts. In the literature review part, the physical layer study of several signals is given, by emphasizing the potential of SoO in positioning. In the implementation part, the possibility of signals detection through cyclostationary features is investigated through MATLAB simulations. Cyclostationary properties obtained through FFT accumulation Method (FAM) and statistical performance of detection are studied in the presence of stationary additive white Gaussian noise (AWGN). Besides that, the performance in signal detection using cyclostationary-based detector is also compared to the performance with the energy-based detectors, used as benchmarks. The simulated result suggest that cyclostationary features can certainly detect the presence of signals in noise, but simple cases, such as one type of signal only and AWGN noise, are better addressed via traditional energy-based detection. However, cyclostationary features can exhibit advantages in other types of noises and in the presence of signal mixtures which in fact may fulfil one of the preliminary requirements of cognitive positioning

    Optimization and Applications of Modern Wireless Networks and Symmetry

    Get PDF
    Due to the future demands of wireless communications, this book focuses on channel coding, multi-access, network protocol, and the related techniques for IoT/5G. Channel coding is widely used to enhance reliability and spectral efficiency. In particular, low-density parity check (LDPC) codes and polar codes are optimized for next wireless standard. Moreover, advanced network protocol is developed to improve wireless throughput. This invokes a great deal of attention on modern communications

    Research on Cognitive Radio within the Freeband-AAF project

    Get PDF

    Cognitive Radio Systems

    Get PDF
    Cognitive radio is a hot research area for future wireless communications in the recent years. In order to increase the spectrum utilization, cognitive radio makes it possible for unlicensed users to access the spectrum unoccupied by licensed users. Cognitive radio let the equipments more intelligent to communicate with each other in a spectrum-aware manner and provide a new approach for the co-existence of multiple wireless systems. The goal of this book is to provide highlights of the current research topics in the field of cognitive radio systems. The book consists of 17 chapters, addressing various problems in cognitive radio systems

    Antennas and Propagation Aspects for Emerging Wireless Communication Technologies

    Get PDF
    The increasing demand for high data rate applications and the delivery of zero-latency multimedia content drives technological evolutions towards the design and implementation of next-generation broadband wireless networks. In this context, various novel technologies have been introduced, such as millimeter wave (mmWave) transmission, massive multiple input multiple output (MIMO) systems, and non-orthogonal multiple access (NOMA) schemes in order to support the vision of fifth generation (5G) wireless cellular networks. The introduction of these technologies, however, is inextricably connected with a holistic redesign of the current transceiver structures, as well as the network architecture reconfiguration. To this end, ultra-dense network deployment along with distributed massive MIMO technologies and intermediate relay nodes have been proposed, among others, in order to ensure an improved quality of services to all mobile users. In the same framework, the design and evaluation of novel antenna configurations able to support wideband applications is of utmost importance for 5G context support. Furthermore, in order to design reliable 5G systems, the channel characterization in these frequencies and in the complex propagation environments cannot be ignored because it plays a significant role. In this Special Issue, fourteen papers are published, covering various aspects of novel antenna designs for broadband applications, propagation models at mmWave bands, the deployment of NOMA techniques, radio network planning for 5G networks, and multi-beam antenna technologies for 5G wireless communications

    Compressive Sensing of Multiband Spectrum towards Real-World Wideband Applications.

    Get PDF
    PhD Theses.Spectrum scarcity is a major challenge in wireless communication systems with their rapid evolutions towards more capacity and bandwidth. The fact that the real-world spectrum, as a nite resource, is sparsely utilized in certain bands spurs the proposal of spectrum sharing. In wideband scenarios, accurate real-time spectrum sensing, as an enabler of spectrum sharing, can become ine cient as it naturally requires the sampling rate of the analog-to-digital conversion to exceed the Nyquist rate, which is resourcecostly and energy-consuming. Compressive sensing techniques have been applied in wideband spectrum sensing to achieve sub-Nyquist-rate sampling of frequency sparse signals to alleviate such burdens. A major challenge of compressive spectrum sensing (CSS) is the complexity of the sparse recovery algorithm. Greedy algorithms achieve sparse recovery with low complexity but the required prior knowledge of the signal sparsity. A practical spectrum sparsity estimation scheme is proposed. Furthermore, the dimension of the sparse recovery problem is proposed to be reduced, which further reduces the complexity and achieves signal denoising that promotes recovery delity. The robust detection of incumbent radio is also a fundamental problem of CSS. To address the energy detection problem in CSS, the spectrum statistics of the recovered signals are investigated and a practical threshold adaption scheme for energy detection is proposed. Moreover, it is of particular interest to seek the challenges and opportunities to implement real-world CSS for systems with large bandwidth. Initial research on the practical issues towards the real-world realization of wideband CSS system based on the multicoset sampler architecture is presented. In all, this thesis provides insights into two critical challenges - low-complexity sparse recovery and robust energy detection - in the general CSS context, while also looks into some particular issues towards the real-world CSS implementation based on the i multicoset sampler
    • …
    corecore