73 research outputs found

    A Hansel and Gretel approach to cooperative vehicle positioning

    Get PDF
    There is little doubt in the benefit gained from cooperative modes of road transport, as agents working together generally perform better. In simple terms, this is the holistic idea that the whole is greater than the sum of its parts, commonly known as synergy. On top of this clear advantage, the complex systems theory of emergence suggests that novel strategies will develop from the as-yet-undefined patterns and structures. It is clear, however, that to facilitate this development certain technological advances need to be achieved. In this case, individual road agents need to accurately identify their location, and communicate easily and safely with other agents. This is a shift away from protective and passive systems toward preventative and active transport safety

    A Hansel and Gretel approach to cooperative vehicle positioning

    Get PDF
    There is little doubt in the benefit gained from cooperative modes of road transport, as agents working together generally perform better. In simple terms, this is the holistic idea that the whole is greater than the sum of its parts, commonly known as synergy. On top of this clear advantage, the complex systems theory of emergence suggests that novel strategies will develop from the as-yet-undefined patterns and structures. It is clear, however, that to facilitate this development certain technological advances need to be achieved. In this case, individual road agents need to accurately identify their location, and communicate easily and safely with other agents. This is a shift away from protective and passive systems toward preventative and active transport safety

    Automotive applications of high precision GNSS

    Get PDF
    This thesis aims to show that Global Navigation Satellite Systems (GNSS) positioning can play a significant role in the positioning systems of future automotive applications. This is through the adoption of state-of-the-art GNSS positioning technology and techniques, and the exploitation of the rapidly developing vehicle-to-vehicle concept. The merging together of these two developments creates greater performance than can be achieved separately. The original contribution of this thesis comes from this combination: Through the introduction of the Pseudo-VRS concept. Pseudo-VRS uses the princples of Network Real Time Kinematic (N-RTK) positioning to share GNSS information between vehicles, which enables absolute vehicle positioning. Pseudo-VRS is shown to improve the performance of high precision GNSS positioning for road vehicles, through the increased availability of GNSS correction messages and the rapid resolution of the N-RTK fixed solution. Positioning systems in the automotive sector are dominated by satellite-based solutions provided by GNSS. This has been the case since May 2001, when the United States Department of Defense switched off Selective Availability, enabling significantly improved positioning performance for civilian users. The average person most frequently encounters GNSS when using electronic personal navigation devices. The Sat Nav or GPS Navigator is ubiquitous in modern societies, where versions can be found on nomadic devices such as smartphones and dedicated personal navigation devices, or built in to the dashboards of vehicles. Such devices have been hugely successful due to their intrinsic ability to provide position information anywhere in the world with an accuracy of approximately 10 metres, which has proved ideal for general navigation applications. There are a few well known limitations of GNSS positioning, including anecdotal evidence of incorrect navigation advice for personal navigation devices, but these are minor compared to the overall positioning performance. Through steady development of GNSS positioning devices, including the integration of other low cost sensors (for instance, wheel speed or odometer sensors in vehicles), and the development of robust map matching algorithms, the performance of these devices for navigation applications is truly incredible. However, when tested for advanced automotive applications, the performance of GNSS positioning devices is found to be inadequate. In particular, in the most advanced fields of research such as autonomous vehicle technology, GNSS positioning devices are relegated to a secondary role, or often not used at all. They are replaced by terrestrial sensors that provide greater situational awareness, such as radar and lidar. This is due to the high performance demand of such applications, including high positioning accuracy (sub-decimetre), high availability and continuity of solutions (100%), and high integrity of the position information. Low-cost GNSS receivers generally do not meet such requirements. This could be considered an enormous oversight, as modern GNSS positioning technology and techniques have significantly improved satellite-based positioning performance. Other non-GNSS techniques also have their limitations that GNSS devices can minimise or eliminate. For instance, systems that rely on situational awareness require accurate digital maps of their surroundings as a reference. GNSS positioning can help to gather this data, provide an input, and act as a fail-safe in the event of digital map errors. It is apparent that in order to deliver advanced automotive applications - such as semi- or fully-autonomous vehicles - there must be an element of absolute positioning capability. Positioning systems will work alongside situational awareness systems to enable the autonomous vehicles to navigate through the real world. A strong candidate for the positioning system is GNSS positioning. This thesis builds on work already started by researchers at the University of Nottingham, to show that N-RTK positioning is one such technique. N-RTK can provide sub-decimetre accuracy absolute positioning solutions, with high availability, continuity, and integrity. A key component of N-RTK is the availability of real-time GNSS correction data. This is typically delivered to the GNSS receiver via mobile internet (for a roving receiver). This can be a significant limitation, as it relies on the performance of the mobile communications network, which can suffer from performance degradation during dynamic operation. Mobile communications systems are expected to improve significantly over the next few years, as consumers demand faster download speeds and wider availability. Mobile communications coverage already covers a high percentage of the population, but this does not translate into a high percentage of a country's geography. Pockets of poor coverage, often referred to as notspots, are widespread. Many of these notspots include the transportation infrastructure. The vehicle-to-vehicle concept has made significant forward steps in the last few years. Traditionally promoted as a key component of future automotive safety applications, it is now driven primarily by increased demand for in-vehicle infotainment. The concept, which shares similarities with the Internet of Things and Mobile Ad-hoc Networks, relies on communication between road vehicles and other road agents (such as pedestrians and road infrastructure). N-RTK positioning can take advantage of this communication link to minimise its own communications-related limitations. Sharing GNSS information between local GNSS receivers enables better performance of GNSS positioning, based on the principles of differential GNSS and N-RTK positioning techniques. This advanced concept is introduced and tested in this thesis. The Pseudo VRS concept follows the protocols and format of sharing GNSS data used in N-RTK positioning. The technique utilises the latest GNSS receiver design, including multiple frequency measurements and high quality antennas

    A fairy tale approach to cooperative vehicle positioning

    Get PDF
    This paper outlines an innovative approach to the cooper-ative positioning of road vehicles by sharing GNSS informa-tion. Much like the children’s fairy tale Hanzel and Gretel by the Brothers Grimm, GNSS receivers on road vehicles generate detailed VRS-like “breadcrumbs” as they accurately position themselves (in this case using a Network RTK GNSS technique). These breadcrumbs can then be shared with other vehicles in the locality to help position themselves, much like traditional RTK GNSS positioning. Similar to the breadcrumbs in the fairy tale that are eaten by birds shortly after being dropped, the VRS-like correction information is only valid for a short period of time. By using this technique, off-the-shelf GNSS receivers can be used without any major hardware or software adjustments, including those of different receiver brands or legacy receivers. The techniques employed in this paper aim to deliver absolute positions, to enable high-accuracy ITS applications that involve road agents and infrastructure alike. A much anticipated development in ITS technology is the use of vehicle to vehicle or vehicle to infrastructure commu-nication (collectively called V2X). Driven partly by the need to increase road safety, and perhaps heavily influenced by the infotainment needs of drivers and passengers, V2X technology will allow local vehicles to communicate with each other and with other road agents and fixed infrastructure. In the US, the National Highway Traffic and Safety Administration (NHTSA) recently commented that connected vehicle technology “can transform the nation’s surface transportation safety, mobility and environmental performance”, with industry experts pre¬dicting the widespread uptake of the technology within 5-6 years. This provides an opportunity for road vehicles to share GNSS information. (As the V2X technology is not under test in this paper, any V2X communication is made using a local Wi-Fi P2P network). This is demonstrated in this paper by directly sharing Network RTK correction information for one receiver (in this case Virtual Reference Station (VRS) corrections) with a second receiver on a separate vehicle. This is done using an NTRIP client running on an Android cellular device at the end-user distributing the VRS corrections from the NTRIP server to both the primary and secondary receivers (in the same locality). Network RTK corrections are not always available, not least because it requires a subscription to a service provider. However, if a GNSS receiver on a road vehicle has access to raw GNSS observations and is capable of calculating its absolute position to a reasonable accuracy (perhaps using an integrated sensor approach), then it has the necessary ingredients to generate its own VRS-like RTK corrections. These VRSs are left like breadcrumbs in the road, ready for any other GNSS receiver in the vicinity to use. Any received VRS correction information will continue to be valid for up to 10 seconds. By utilising the open source RTKLIB GNSS processing software, and the most recent RTCM standard messages (RTCM v3.1) generated through software provided by BKG, one receiver can perform the task of a VRS or a moving base station. The position of the receiver is processed whilst separately recording the raw RINEX information, in order to generate an RTCM stream that simulates that of a Network RTK VRS correction service. Additional information about the source of the correction information is also transmitted, in-cluding the self-assessed quality of the position and hardware used, using the RTCM message types reserved for proprietary information from service providers. Sharing GNSS information between vehicles is shown to significantly increase the availability of ambiguity fixed so-lutions, for both dual and single frequency receivers; and improves the performance of DGNSS receivers. However there needs to be caution, as the use of a single epoch of raw observations from a moving base station is less reliable than traditional static base station Network RTK GNSS positioning. Fixing the integer ambiguity is more likely to be successful (passing the ratio test), but also more likely to be incorrect, and relies heavily on the initial position of the moving base station (i.e. the relative position or baseline may be accurate, but not necessarily the absolute position). Three control solutions are used to assess the performance of the cooperative positioning techniques in real world tests: An RTK GNSS control solution provided by a local static continuously operating reference station (CORS); a Network RTK GNSS solution based on the MAC standard; and an Applanix POS/RS dual frequency GPS inertial navigation system. The processing parameters are adjusted to assess the optimum configuration for successful cooperative positioning (delivering accuracy and reliability), and the limitations of the technique are addressed. It is shown that although the cooperative position may not match the positioning accuracy of the initial moving base station vehicle (<5 centimetre), the solution is valid for sub-decimetre accuracy for up to one minute using dual frequency GPS observations. A cooperative DGNSS solution is accurate to 20 centimetres over the same period

    Automotive applications of high precision GNSS

    Get PDF
    This thesis aims to show that Global Navigation Satellite Systems (GNSS) positioning can play a significant role in the positioning systems of future automotive applications. This is through the adoption of state-of-the-art GNSS positioning technology and techniques, and the exploitation of the rapidly developing vehicle-to-vehicle concept. The merging together of these two developments creates greater performance than can be achieved separately. The original contribution of this thesis comes from this combination: Through the introduction of the Pseudo-VRS concept. Pseudo-VRS uses the princples of Network Real Time Kinematic (N-RTK) positioning to share GNSS information between vehicles, which enables absolute vehicle positioning. Pseudo-VRS is shown to improve the performance of high precision GNSS positioning for road vehicles, through the increased availability of GNSS correction messages and the rapid resolution of the N-RTK fixed solution. Positioning systems in the automotive sector are dominated by satellite-based solutions provided by GNSS. This has been the case since May 2001, when the United States Department of Defense switched off Selective Availability, enabling significantly improved positioning performance for civilian users. The average person most frequently encounters GNSS when using electronic personal navigation devices. The Sat Nav or GPS Navigator is ubiquitous in modern societies, where versions can be found on nomadic devices such as smartphones and dedicated personal navigation devices, or built in to the dashboards of vehicles. Such devices have been hugely successful due to their intrinsic ability to provide position information anywhere in the world with an accuracy of approximately 10 metres, which has proved ideal for general navigation applications. There are a few well known limitations of GNSS positioning, including anecdotal evidence of incorrect navigation advice for personal navigation devices, but these are minor compared to the overall positioning performance. Through steady development of GNSS positioning devices, including the integration of other low cost sensors (for instance, wheel speed or odometer sensors in vehicles), and the development of robust map matching algorithms, the performance of these devices for navigation applications is truly incredible. However, when tested for advanced automotive applications, the performance of GNSS positioning devices is found to be inadequate. In particular, in the most advanced fields of research such as autonomous vehicle technology, GNSS positioning devices are relegated to a secondary role, or often not used at all. They are replaced by terrestrial sensors that provide greater situational awareness, such as radar and lidar. This is due to the high performance demand of such applications, including high positioning accuracy (sub-decimetre), high availability and continuity of solutions (100%), and high integrity of the position information. Low-cost GNSS receivers generally do not meet such requirements. This could be considered an enormous oversight, as modern GNSS positioning technology and techniques have significantly improved satellite-based positioning performance. Other non-GNSS techniques also have their limitations that GNSS devices can minimise or eliminate. For instance, systems that rely on situational awareness require accurate digital maps of their surroundings as a reference. GNSS positioning can help to gather this data, provide an input, and act as a fail-safe in the event of digital map errors. It is apparent that in order to deliver advanced automotive applications - such as semi- or fully-autonomous vehicles - there must be an element of absolute positioning capability. Positioning systems will work alongside situational awareness systems to enable the autonomous vehicles to navigate through the real world. A strong candidate for the positioning system is GNSS positioning. This thesis builds on work already started by researchers at the University of Nottingham, to show that N-RTK positioning is one such technique. N-RTK can provide sub-decimetre accuracy absolute positioning solutions, with high availability, continuity, and integrity. A key component of N-RTK is the availability of real-time GNSS correction data. This is typically delivered to the GNSS receiver via mobile internet (for a roving receiver). This can be a significant limitation, as it relies on the performance of the mobile communications network, which can suffer from performance degradation during dynamic operation. Mobile communications systems are expected to improve significantly over the next few years, as consumers demand faster download speeds and wider availability. Mobile communications coverage already covers a high percentage of the population, but this does not translate into a high percentage of a country's geography. Pockets of poor coverage, often referred to as notspots, are widespread. Many of these notspots include the transportation infrastructure. The vehicle-to-vehicle concept has made significant forward steps in the last few years. Traditionally promoted as a key component of future automotive safety applications, it is now driven primarily by increased demand for in-vehicle infotainment. The concept, which shares similarities with the Internet of Things and Mobile Ad-hoc Networks, relies on communication between road vehicles and other road agents (such as pedestrians and road infrastructure). N-RTK positioning can take advantage of this communication link to minimise its own communications-related limitations. Sharing GNSS information between local GNSS receivers enables better performance of GNSS positioning, based on the principles of differential GNSS and N-RTK positioning techniques. This advanced concept is introduced and tested in this thesis. The Pseudo VRS concept follows the protocols and format of sharing GNSS data used in N-RTK positioning. The technique utilises the latest GNSS receiver design, including multiple frequency measurements and high quality antennas

    A fairy tale approach to cooperative vehicle positioning

    Get PDF
    This paper outlines an innovative approach to the cooper-ative positioning of road vehicles by sharing GNSS informa-tion. Much like the children’s fairy tale Hanzel and Gretel by the Brothers Grimm, GNSS receivers on road vehicles generate detailed VRS-like “breadcrumbs” as they accurately position themselves (in this case using a Network RTK GNSS technique). These breadcrumbs can then be shared with other vehicles in the locality to help position themselves, much like traditional RTK GNSS positioning. Similar to the breadcrumbs in the fairy tale that are eaten by birds shortly after being dropped, the VRS-like correction information is only valid for a short period of time. By using this technique, off-the-shelf GNSS receivers can be used without any major hardware or software adjustments, including those of different receiver brands or legacy receivers. The techniques employed in this paper aim to deliver absolute positions, to enable high-accuracy ITS applications that involve road agents and infrastructure alike. A much anticipated development in ITS technology is the use of vehicle to vehicle or vehicle to infrastructure commu-nication (collectively called V2X). Driven partly by the need to increase road safety, and perhaps heavily influenced by the infotainment needs of drivers and passengers, V2X technology will allow local vehicles to communicate with each other and with other road agents and fixed infrastructure. In the US, the National Highway Traffic and Safety Administration (NHTSA) recently commented that connected vehicle technology “can transform the nation’s surface transportation safety, mobility and environmental performance”, with industry experts pre¬dicting the widespread uptake of the technology within 5-6 years. This provides an opportunity for road vehicles to share GNSS information. (As the V2X technology is not under test in this paper, any V2X communication is made using a local Wi-Fi P2P network). This is demonstrated in this paper by directly sharing Network RTK correction information for one receiver (in this case Virtual Reference Station (VRS) corrections) with a second receiver on a separate vehicle. This is done using an NTRIP client running on an Android cellular device at the end-user distributing the VRS corrections from the NTRIP server to both the primary and secondary receivers (in the same locality). Network RTK corrections are not always available, not least because it requires a subscription to a service provider. However, if a GNSS receiver on a road vehicle has access to raw GNSS observations and is capable of calculating its absolute position to a reasonable accuracy (perhaps using an integrated sensor approach), then it has the necessary ingredients to generate its own VRS-like RTK corrections. These VRSs are left like breadcrumbs in the road, ready for any other GNSS receiver in the vicinity to use. Any received VRS correction information will continue to be valid for up to 10 seconds. By utilising the open source RTKLIB GNSS processing software, and the most recent RTCM standard messages (RTCM v3.1) generated through software provided by BKG, one receiver can perform the task of a VRS or a moving base station. The position of the receiver is processed whilst separately recording the raw RINEX information, in order to generate an RTCM stream that simulates that of a Network RTK VRS correction service. Additional information about the source of the correction information is also transmitted, in-cluding the self-assessed quality of the position and hardware used, using the RTCM message types reserved for proprietary information from service providers. Sharing GNSS information between vehicles is shown to significantly increase the availability of ambiguity fixed so-lutions, for both dual and single frequency receivers; and improves the performance of DGNSS receivers. However there needs to be caution, as the use of a single epoch of raw observations from a moving base station is less reliable than traditional static base station Network RTK GNSS positioning. Fixing the integer ambiguity is more likely to be successful (passing the ratio test), but also more likely to be incorrect, and relies heavily on the initial position of the moving base station (i.e. the relative position or baseline may be accurate, but not necessarily the absolute position). Three control solutions are used to assess the performance of the cooperative positioning techniques in real world tests: An RTK GNSS control solution provided by a local static continuously operating reference station (CORS); a Network RTK GNSS solution based on the MAC standard; and an Applanix POS/RS dual frequency GPS inertial navigation system. The processing parameters are adjusted to assess the optimum configuration for successful cooperative positioning (delivering accuracy and reliability), and the limitations of the technique are addressed. It is shown that although the cooperative position may not match the positioning accuracy of the initial moving base station vehicle (<5 centimetre), the solution is valid for sub-decimetre accuracy for up to one minute using dual frequency GPS observations. A cooperative DGNSS solution is accurate to 20 centimetres over the same period

    Reliable Positioning and Journey Planning for Intelligent Transport Systems

    Get PDF
    Safety and reliability of intelligent transport systems applications require positioning accuracy at the sub-meter level with availability and integrity above 99%. At present, no single positioning sensor can meet these requirements in particular in the urban environment. Possible sensors that can be used for this task are first reviewed. Next, a suggested integrated system of low-cost real-time kinematic (RTK) GNSS, inertial measurement units (IMU) and vehicle odometer is discussed. To ensure positioning integrity, a method for fault detection in GNSS observations and computation of the protection levels (PL) that bound the position errors at a pre-set risk probability of the integrated sensors are presented. A case study is performed for demonstration. Moreover, to save energy, reduce pollution, and to improve the economy of the trip, proper journey planning is required. A new approach is introduced using 3D city models to predict the route with the best positioning integrity, availability and precision for route selection among different possible routes. The practical demonstration shows that effectiveness of this method. Finally, the potential of using the next generation SBAS for ITS applications was tested using kinematic tests carried out in various environments characterized by different levels of sky-visibility that may affect observations from GNSS

    Design and implementation of a sensor testing system with use of a cable drone

    Get PDF
    Abstract. This thesis aims to develop a testing method for various sensors by modifying a commercial cable cam system to drive with an automated process at constant speed. The goal is to find a way to lift the cables in the air securely without a need for humans to climb on ladders and place them afterwards. This is achieved with a hinged truss tower structure that keeps the cables stabile while the tower is lifted. Another goal was to achieve automated movement of the cable drone. This is done by connecting a tracking camera to a computer that is used to control the cable drone’s motor controller. This will have the drone behave in a certain way depending on the tracking camera’s position data. Third goal is to build a portable sensor system which collects and saves the data from the tested sensors. This goal is achieved with an aluminium profile frame which is equipped with all the necessary equipment, such as a powerful computer. Research included studying different sensors’ performance evaluation criteria and effect of the wind on magnitude of the force in this application. Research was done by studying written sources and consulting a cable camera company called Motion Compound GbR. Results of this master’s thesis are used to evaluate if the idea of using a cable cam is applicable for this kind of sensor testing system. As the conclusion the cable drone with automated driving is evaluated to be a practical method which can still be further developed to meet the requirements even better. Antureiden testausjärjestelmän suunnittelu ja toteuttaminen käyttäen vaijeridronea. Tiivistelmä. Tämän diplomityön tavoitteena on muokata kaupallisesta vaijerikamerajärjestelmästä vakionopeudella liikkuva testausmenetelmä eri antureille. Yhtenä työn tavoitteena on löytää tapa nostaa käytettävät vaijerit ylös turvallisesti siten, ettei niitä tarvitse asentaa jälkikäteen korkealla. Tämä toteutetaan saranoidulla, trusseista rakennetulla tornilla. Tornin huipulle asennetaan laakeroidut akselit sekä suoja, jotka yhdessä pitävät vaijerit paikoillaan myös tornin noston ajan. Toinen tavoite on saavuttaa vaijerilennokin automatisoitu liike. Tämä tapahtuu kytkemällä seurantakamera tietokoneeseen, jota käytetään ohjaamaan myös vaijeridronen moottoriohjainta. Näin vaijeridrone saadaan käyttäytymään halutulla tavalla riippuen seurantakameran sijaintitiedoista. Kolmas tavoite on rakentaa kannettava anturijärjestelmä, jolla kerätään ja tallennetaan testatuilla antureilla kerätty data. Tämä tavoite saavutetaan alumiiniprofiilirungolla, joka varustetaan tarvittavilla laitteilla, kuten esimerkiksi tehokkaalla tietokoneella. Tutkimukseen kuului myös antureiden suorituskyvyn arviointikriteereihin tutustuminen sekä työssä käytettävästä järjestelmästä koituvan voiman suuruuden laskeminen. Tutkimus tehtiin perehtymällä kirjallisuuteen ja konsultoimalla vaijerikamera-alalla toimivaa Motion Compound GbR -yritystä. Tämän diplomityön tuloksia voidaan hyödyntää arvioitaessa, onko vaijerikamerajärjestelmä sovellettavissa mainitun anturien testausjärjestelmän rakentamisessa. Lopputuloksena automatisoidulla ajolla varustetun vaijeridronen arvioidaan olevan tähän tarkoitukseen toimiva menetelmä, jota voidaan edelleen kehittää vastaamaan vaatimuksia vielä paremmin

    Lane-Level Localization and Map Matching for Advanced Connected and Automated Vehicle (CAV) Applications

    Get PDF
    USDOT Grant 69A3551747114Reliable, lane-level, absolute position determination for connected and automated vehicles (CAV\u2019s) is near at hand due to advances in sensor and computing technology. These capabilities in conjunction with high-definition maps enable lane determination, per lane queue determination, and enhanced performance in applications. This project investigated, analyzed, and demonstrated these related technologies. Project contributions include: (1) Experimental analysis demonstrating that the USDOT Mapping tool achieves internal horizontal accuracy better than 0.2 meters (standard deviation); (2) Theoretical analysis of lane determination accuracy as a function of both distance from the lane centerline and positioning accuracy; (3) Experimental demonstration and analysis of lane determination along the Riverside Innovation Corridor showing that for a vehicle driven within 0.9 meters of the lane centerline, the correct lane is determined for over 90% of the samples; (4) Development of a VISSIM position error module to enable simulation analysis of lane determination and lane queue estimation as a function of positioning error; (5) Development of a lane-level intersection queue prediction algorithm; Simulation evaluation of lane determination accuracy which matched the theoretical analysis; and (6) Simulation evaluation of lane queue prediction accuracy as a function of both CAV penetration rate and positioning accuracy. Conclusions of the simulation analysis in item (6) are the following: First, when the penetration rate is fixed, higher queue length estimation error occurs as the position error increases. However, the disparity across different position error levels diminishes with the decrease of penetration rate. Second, as the penetration rate decreases, the queue length estimation error significantly increases under the same GNSS error level. The current methods that exist for queue length prediction only utilize vehicle position and a penetration rate estimate. These results motivate the need for new methods that more fully utilize the information available on CAVs (e.g., distance to vehicles in front, back, left, and right) to decrease the sensitivity to penetration rate
    corecore