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Chapter

Reliable Positioning and Journey
Planning for Intelligent Transport
Systems
Ahmed El-Mowafy, Nobuaki Kubo and Allison Kealy

Abstract

Safety and reliability of intelligent transport systems applications require posi-
tioning accuracy at the sub-meter level with availability and integrity above 99%. At
present, no single positioning sensor can meet these requirements in particular in
the urban environment. Possible sensors that can be used for this task are first
reviewed. Next, a suggested integrated system of low-cost real-time kinematic
(RTK) GNSS, inertial measurement units (IMU) and vehicle odometer is discussed.
To ensure positioning integrity, a method for fault detection in GNSS observations
and computation of the protection levels (PL) that bound the position errors at a
pre-set risk probability of the integrated sensors are presented. A case study is
performed for demonstration. Moreover, to save energy, reduce pollution, and to
improve the economy of the trip, proper journey planning is required. A new
approach is introduced using 3D city models to predict the route with the best
positioning integrity, availability and precision for route selection among different
possible routes. The practical demonstration shows that effectiveness of this
method. Finally, the potential of using the next generation SBAS for ITS applica-
tions was tested using kinematic tests carried out in various environments charac-
terized by different levels of sky-visibility that may affect observations from GNSS.

Keywords: intelligent transport systems, positioning, GNSS, IMU, odometer,
integrity monitoring, SBAS, prediction

1. Introduction

Intelligent transport systems (ITS) require reliable, continuous, accurate and
cost-effective vehicle positioning in real time and in different weather and work
conditions with for lane identification and control of vehicles. Normally, the width
of the lane is about 2.8–3.5 m and that of the car is about 2 m. Therefore, better than
1 m horizontal accuracy is required to recognize the lane and 0.1 m horizontal
accuracy is needed to control the vehicle [1]. The work environment of ITS is also
very dynamic, changing between open sky, semi-urban to urban where vehicles
may be surrounded by other vehicles and travel in overpass, tunnels, etc. In such
dynamic environment, and due to limitations in the capabilities, and performance
of available positioning sensors, such as global navigation satellite systems (GNSS),
inertial measuring units (IMU), odometers, cameras and radar, it is hard to depend
solely on one system, but rather on integrated set of sensors. For example, some ITS
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applications rely on light detection and ranging with the help of cameras and radar.
However, cameras sometimes cannot recognize the lane since the white line some-
times disappeared, and cameras are less reliable during foggy weather and at night.
Similarly, while GNSS provides a primary positioning system, its signals can easily
be obstructed in the urban environment. Thus, GNSS needs to be integrated with
other sensors such as inertial measurement units (IMUs) to bridge positioning
during GNSS positioning outages [2, 3]. To help the on-board positioning systems,
methods such as cooperative positioning were proposed [4]. When selecting sen-
sors, one should note that their cost varies much according to their quality; yet, the
car industry can only afford a combination of sensors with a total cost that does not
exceed a few hundreds of dollars. Therefore, low cost sensors, which may have
limited capabilities, are used.

For ITS safety applications, not only accuracy is needed, but also integrity and
reliability. Positioning integrity is a key performance parameter, where the system
should be able to detect and exclude measurement faults, boundmeasurement errors,
and trigger an alarm in the event that unreliable positioning performance is
suspected. In addition, when no fault is detected, a protection level (PL) should be
computed to bound the true position error at a certain probability of risk [5]. Integrity
monitoring (IM) is currently being applied in aviation using an advanced receiver
autonomous integrity monitoring (ARAIM) approach, which relies on the use of
multi-frequency and multi-constellation phase-smoothed pseudo-range observations
[6–8]. However, limited research has been done for applications such as ITS which
require precise positioning that utilizes carrier-phase observations. Some examples
are given in [9] when positioning using relative positioning, in [10] using precise
point positioning (PPP) method, and in [11] using Real-Time Kinematic (RTK)
method. At the moment, integrity requirements in vehicular transport have not been
defined yet, but the demand for higher levels of automation in an increasing number
of applications is pushing the relevant authorities to urgently fill this gap.

Up to now, most IM proposed methods focused on applying ARAIM in aviation
and only employing GNSS measurements. Such integrity monitoring for transport
applications has been addressed in a few studies, for instance in [12–14], where the
focus was primarily on the use of single-frequency code observations. However, for
ITS, GNSS cannot be used solely, and hence new IM methods are needed when
integrating GNSS with other sensors [15]. In this article, the PLs that bound the
position error are presented for continuous positioning of vehicular applications by
integrating, in a simple fusion, loosely coupled algorithm low-cost RTK GNSS using
code and phase observations supplemented by Doppler measurements, combined
with low-cost IMU and vehicle odometer data. For GNSS we restrict our focus to
horizontal positioning for the along-track and cross-track positioning of the vehi-
cles, which are of interest for lane identification and collision warning.

For journey planning, to ensure reliability, and to save energy and reduce trip
time, prediction of GNSS positioning integrity and precision are presented using 3D
city models [16, 17]. The 3D city model also helps in identifying non-line of sight
(NLOS) GNSS signals, which is a source of error. In addition, while RTK or network
RTK [18] requires data from reference stations, the use of satellite based augmen-
tation systems (SBAS) [19], does not have this requirement where sub-m accuracy
in a stand-alone mode can be obtained. Therefore, results from testing the new
generation of SBAS of the Australian test bed applied for ITS in various work
environments are presented. This SBAS comprises the traditional L1 legacy SBAS
signals for GPS only, the new dual-frequency multi-constellation (DFMC) SBAS
and SBAS-based PPP using measurements from GPS and Galileo measurements.
The following sections describe these methods, and their performance is demon-
strated through tests representing ITS applications.
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2. Positioning in ITS

2.1 GNSS and IMU as the main positioning sensors

There is a range of GNSS methods that can be used for transportation applica-
tions. Their features and accuracy are summarized in Table 1. The single point
positioning (SPP) and Differential GPS (DGPS) use only one receiver, and employ
single-frequency undifferenced code observations for the former and with correc-
tions of satellite-related errors (satellite orbit and clocks corrections) in the latter,
making them affordable and widely used for vehicle navigation. However, both
approaches provide several meters of positioning error, and thus they are not
suitable for ITS. With the sub-m requirement of ITS, only three methods can be
used, namely real-time kinematic (RTK) [20] or network RTK (NRTK) [18], pre-
cise point positioning (PPP) [21, 22], and the next generation SBAS [19]. The
advent of low-cost dual-frequency multi-constellation GNSS, at the level of a few
hundreds of dollars, allow their use in advanced vehicle positioning. Their perfor-
mance has recently been remarkably improved, at a few cm accuracy.

For the IMU (also known as inertial navigation system (INS), typically after
obtaining a navigation solution), the strategic grade type provides the best perfor-
mance, but at a high cost and thus is not suitable for vehicle applications. However,
small, robust, and low-cost inertial sensors, e.g. the micro electrical mechanical
sensors (MEMS) IMUs [23], have been available in the market for several years,
which can be used in vehicle navigation. They, however, suffer from the rapid
growth of their biases. The solutions obtained from GNSS and IMU complement
each other, as they have different characteristics, summarized in Table 2. GPS
solution aid IMU by resetting the accumulation of its bias. On the other hand, IMU
can extrapolate solutions at a higher rate and can cover positioning during short
GNSS outages. IMU additionally provides the attitude (orientation) that can also be

Features SPP DGPS SBAS RTK (Sing

Ref. and

NRTK)

PPP

No. of receivers one one one 2 (RTK)

1 (NRTK)

one

No. of

Observation

Frequencies

one (e.g. L1) one (e.g. L1) one (e.g. L1) 2

DFMC (L1&L5)

2 (e.g. L1&L2

or L1&L5)

2 (e.g. L1&L2

or L1&L5)

Need for data or

corrections

Autonomous Reference

station

corrections

Orbit + clock

corr. (+iono for

L1)

Reference

station data

Orbit + clock

corrections

Main

observations

Code obs. Code obs. Code obs. Code + phase

obs.

Code + phase

obs.

Accuracy 1–6 m Sub-m to a

few-m

Sub-m to 1.5 m Few cm Dm (float),

cms (fixed)

Solution type Snap shot Snap shot Snap shot Kalman or

sequential LS

Kalman filter

or seq. LS

Main issues Low

accuracy -

noisy

Low accuracy -

noisy

Not suitable for

urban

Ambiguity

fixing

Long time for

Convergence

Suitable for ITS No No In open sky only Yes Yes

Table 1.
Features of GNSS methods used for positioning in transportation.
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used in estimating the positioning errors along the vehicle direction of motion,
which is needed for a more representative integrity monitoring as will be explained
later, and in applications such as collision alert.

2.2 Simple integration of low-cost GNSS, IMU and odometer

In this article, low-cost systems that are suitable for vehicle applications are
considered. Two approaches can be applied to control the growth of heading bias of
the MEMS IMU. At the start, or when the vehicle stops, e.g. at red traffic lights, the
zero velocity update (ZUPT) is applied. When GNSS data is available, it is used to
reset the heading bias of the MEMS IMU. The GNSS position and velocity are
coupled with the IMU output using Kalman Filter in loosely- or tightly-coupled
schemes. While the tightly coupled integration is beneficial in the case when GNSS
cannot estimate the position, e.g. due to a low number of visible satellites, the IMU
data can be used to slightly predict the pseudo-range observations; however, it is
impossible to predict the carrier phase observations at the level of ambiguity fixed
solution. Therefore, for the low-cost RTK/IMU systems, no practical difference
exists between using loosely and tightly coupled integration.

In RTK a minimum of five satellites should be observed. When observing four
satellites, e.g. in a semi-urban environment, a simple approach can be applied for
positioning using the low cost systems. GNSS Doppler velocities can be used to
compute initial values of IMU heading and to calibrate it at short intervals to control
the growth of its bias [24]. The computed heading from Doppler measurements at

time t (denoted as θt) is calculated from the average θt ¼ tan �1 VEt

VNt

� �

, where VEt

and VNt
are the Doppler-based velocity components in the local-level frame. Thus,

the accuracy of heading obtained from GNSS depends on the velocity measure-
ments and partly on the dilution of precision (DOP), which is an indicator of the
number and geometry of observed satellites (their distribution in the sky). When
the speed of the vehicle is low, the heading from GNSS is not reliable because the
computed GNSS velocity would be noisy in the order of a few centimeters per
second. In addition, the sampling rate of GNSS is less than that of the heading rate
of the MEMS IMU; therefore, when the road suddenly bends, the obtained heading
could deviate several degrees from the actual orientation of the vehicle. Conse-
quently, several conditions were set to use GNSS for calibrating the IMU heading
error to below two degrees. These conditions include VSS > 0.5 m/s; |VGNSS – VSS|
< 0.5 m/s; VSS > 0.5 m/s, where VGNSS and V ss are the velocities estimated by the
GNSS and vehicle’s odometer, respectively. Large errors of the heading obtained
from the GNSS should not be used. Therefore, the heading from the GNSS must

GNSS IMU

Absolute positioning Relative positioning

Good accuracy in long term Good accuracy in short term

Attitude available—need multiple units Attitude available—single unit

Low sampling rate (1–10 Hz) High sampling rate (e.g. 100 Hz)

Subject to signal blockage Not related to surrounding environment

Low-cost can provide good accuracy Low-cost provides poor accuracy

Biases are stable Biases grow with time

Table 2.
Characteristics of GNSS and IMU.
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always be checked, with a threshold in the order of 2°, using both the best estimated
heading in the previous epoch and the heading rate of the IMU, as the heading rate
obtained from the IMU in a short period is accurate.

If RTK is unavailable, the positions can be estimated by integrating the speed
estimated from the vehicle odometer with the heading of the MEMS IMU. The time
increments of position components in North and East (ΔE,ΔN) is computed, such
that ΔE ¼ V ss � sin θð Þ � Δt and ΔN ¼ Vss � cos θð Þ � Δt, where θ is the heading
estimated by the IMU and Δt is the time increment. The velocity and azimuth
considered are the mean values during the time increment. The odometer equipped
in the vehicle is used to obtain the distance information of the car. Normally, a
velocity pulse generation device counts the number of pulses per rotation of the
wheel. In this study, we use the speed pulse obtained from the POSLVX system,
which is a wheel-mounted rotary shaft encoder that accurately measures the linear
distance covered by the vehicle [25]. The two methods, Doppler calibrated IMU and
Odometer+IMU, can only estimate temporal position changes, and hence, their
positioning errors accumulate with time, in particular, the heading bias of the IMU.
Therefore, they should only be restricted to bridging short breaks in RTK as will be
discussed later by an example.

2.3 SBAS for ITS

The positioning accuracy of the traditional SPP method can be improved by
using orbital and clock corrections from the satellite based augmentation systems
(SBAS). SBAS can provide meter-level accuracy in a stand-alone mode without the
need for relative positioning with a nearby base station that is required in RTK.
However, traditional SBAS systems, such as the United States WAAS system or the
European EGNOS system augment only L1 single frequency measurements. There-
fore, the ionosphere delays need to be processed and delivered to the users. This
makes single-frequency SBAS sensitive to the distribution of the ground network
used to compute the ionosphere corrections, have a limited coverage area, and are
less precise during rapid fluctuations of the ionosphere.

The second-generation SBAS, such as that implemented in the under-
development Australia SBAS, includes in addition to the traditional L1 legacy SBAS
signals, dual-frequency multi-constellation (DFMC) SBAS signals that are trans-
mitted over L5 for GPS L1/L5 and Galileo E1/E5a signals. Hence, the user can apply
ionosphere-free combination without the need for ionosphere corrections. This
allows the user to work anywhere within the footprint of the SBAS satellite and is
not sensitive to ionosphere fluctuations. Moreover, the second generation SBAS
includes precise orbits and satellite clock corrections to enable precise point posi-
tioning (PPP) service with float-ambiguity solution type. This can provide dm level
accuracy, which is suitable for ITS. Furthermore, the multi-constellation scenario
will increase the number of satellites and thus provides users with a better mea-
surement geometry. Results from testing the new generation of SBAS when applied
for ITS in various work environments are presented in the testing section.

2.4 Cooperative positioning

The recent developments in vehicular ad-hoc networks (VANETs) and dedi-
cated short range communication (DSRC) support the principle of cooperative
positioning (CP) through wireless connectivity. CP has been proposed to share
positioning information obtained from each individual vehicle, connected to the
system, to increase the vehicle awareness of the surrounding vehicles, predict
potential incidents, threats, and hazards on the road with an increased time horizon
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and awareness distance that is beyond what in-vehicle technologies (radars or
cameras) and the driver can visualize [26].

In the vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communi-
cations, vehicles send messages to each other or to infrastructure. These messages
include their temporary ID, location, speed, heading, lateral and longitudinal accel-
eration, brake system status, and vehicle size [27]. Sharing this data in the V2V
communication can provide warnings to the drivers in poor vision scenarios during
the rear end or intersection collision and lane change. Examples of V2I benefits
include awareness of unsafe conditions on the road, including fog, ice, and
Eco-approach and departure at signalized intersections.

The positions of all nodes in the in the VANET network can be determined by
integrating this information in either a centralized or decentralized algorithm. An
alternative concept relies either on the availability of ranging information to other
vehicles using V2V communication or the availability of ranging information to
DSRC roadside units (RSUs) using V2I [28]. Other CP methods leverage the com-
munications signal as a ranging signal. For instance, methods such as signal
strength-based ranging, time-based ranging including time of arrival (TOA) and
time difference of arrival (TDOA) methods have been implemented however, these
produce errors at several meters, which makes them not suitable for ITS. On the
other hand, Non Ranging-Based techniques do not rely on time or signal strength
ranging techniques, and thus, have fewer errors, but they are expensive since it
requires RSUs, installed at each intersection, storing information about the road
geometry. Several approaches were proposed to enable CP in the framework of
VANET, while each method has merit, it has also limitations. This idea of ranging
between nodes in the network has led to sensors such as ultra wide band and radar
being deployed as part of the multi-sensor suite to overcome some of the limitations
associated with ranging from DSRC signals.

Based on this discussion of CP, as depicted in Figure 1, two distinct subsets of
navigation systems are used to define a CP architecture. The first is termed as local
level, where each vehicle takes its own measurements and would be able to provide
its own position estimate, independent of other vehicles. This system typically con-
sists of GNSS and IMU. The second is termed as network level, where vehicles would
share information among each other to form a network, using DSRC and UWB, to
provide a more robust position estimate in GNSS denied environments. The advan-
tages of the network approach over the local level are: the additional inter-vehicle
measurements provide greater measurement redundancy and consequently improve
the precision and robustness of the solution. In sharing measurements, vehicles with
insufficient measurements to determine a local level solution, are still able to deter-
mine their position, thereby improving the availability of positioning solutions across
the whole network. A network approach is also scalable to a large number of nodes,

Figure 1.
Local and network level observations.
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using a decentralized processing approach, a large network can share information
in a way that maintains the optimal estimate for each node, whilst balancing the
computational overheads. This allows this approach more computationally efficient
compared to centralized processing at each node in the local level.

3. Route selection

For ITS, reliable real-time positioning should be maintained all the time. In
addition, for the driver convenience and to save energy and reduce pollution by
reducing journey time and improving the economy of a trip, proper journey plan-
ning is required by the computer on board the ITS vehicle before the start of the
Journey. The route with best positioning performance in terms of integrity avail-
ability and precision, in addition to other parameters such as trip time and distance,
is selected among different possible routes. Prediction of these parameters can be
best performed using 3D city models when using GNSS, where a minimum of five
satellites need to be observed to enable GNSS-RTK positioning. The method is also
suitable to determine locations within the city, at different times of the day that
GNSS would not be suitable and other sensors should be used.

The general procedure to predict the satellites that are in view and the existence of
LOS (LINE-OF-SIGHT) between a GNSS satellite and GNSS receiver using a 3D city
model for each location along candidate routes comprises the following four steps:

a. Identify the receiver position: The vehicle position is first approximately
estimated at each epoch according to time and location of the start of the
journey, speed of the vehicle (taken as the road speed), and the centerline of
the lane that has the worst satellite geometry, typically the nearest to the
nearby buildings. A change of position of �20 m/s is expected, therefore, the
LOS checking should be performed at short time intervals, e.g. 2–10 Hz.

b. Estimate satellite positions: The satellite positions are predicted using satellite
navigation file, according to the expected time of processing. Due to the slow
change of satellite geometry, an actual delay or advance of a few minutes
between the actual and prediction time would not make a significant
difference in the satellite geometry, and hence in the prediction result.

c. Establishment of buildings and terrain data: The location, size, height and
orientation of each building along the route are constructed from 3D polygon
data. Buildings and terrain data are prepared separately and later are
combined. Figure 2 shows an example of 3D models that were created for our
research. More details will be given in the testing section.

d. Assessing the existence of LOS between satellites and the receiver: The presence of
LOS between possible satellites in view from the almanac and the receiver can
be determined by checking whether the direct line connecting the satellite
and the receiver intersects with the building. By modeling the building as
triangular meshes, it is possible to determine the presence of an intersection
as shown in Figure 3 using the following method presented in [29]. In this
figure, S indicates the satellite position and R represents the receiver’s
location. B1, B2 and B3 are the vertices of a triangular face of the building
meshed surface facing the receiver. Let s, r, b1, b2 and b3 be the corresponding
position vectors in an arbitrary reference frame, and uij be the unit vector
from Bi to Bj. Likewise, let point P be the intersection between the vector
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between the receiver and the satellite, which unit direction vector is indicated
by uLOS, and the triangular mesh, and p is the corresponding position vector.
In the vector space we have:

p ¼ rþ γ uLOS and p ¼ b1 þ α u13 þ β u12 (1)

where γ is the distance between R and P. α and β are the coordinates of P in a
local frame that includes the sides of the mesh triangle as principle axes. The system
in (1) can be solved for γ, α, and β. Thus, the conditions for P to be included in the
triangular mesh, and therefore No LOS (NLOS) are:

γ ≥0; 1≥
α

∣b1 � b3∣
≥0;

1≥
β

b1 � b2j j ≥0; 1≥
α

b1 � b3j j þ
β

b1 � b2j j ≥0 (2)

Figure 2.
Example of buildings and terrain data of 3D city model (left), showing the AT-CT and N-E (right). θ is the
azimuth.

Figure 3.
Prediction of the satellite LOS.

8

Advanced Energy Management Modelling and Control for Intelligent and Efficient…



Otherwise, the satellite position is considered in LOS. The geometry of the
visible satellites is then examined to check sufficient positioning precision can be
obtained, and check integrity as will be discussed in the next section.

4. Integrity monitoring

Integrity monitoring includes the ability of the system to detect and exclude
faulty observations (known as FDE) and to alarm the user if a protection level (PL)
that bounds the true position error at a specific risk probability is less than an alarm
limit (AL). Integrity monitoring is considered available when PL < AL. Both tasks,
i.e. FDE and computation of PL, are addressed in the following sub-sections.

4.1 Fault detection

In general, the equation of the fault-free observations can be expressed as:

y ¼ G xþ ε (3)

where y is the measurement vector, computed as the difference between the
observations and their estimated values from the approximate user and satellite
positions. The null hypothesis is expressed as H0: E{y} = G x with D{y} = Qy,
representing the covariance matrix of the observations, where E{} and D{} denote
the expectation and dispersion operators, respectively. The unknown vector x is the
difference between the final and the approximate vehicle’s computed positions. ε is
the observation error, assumed noise in the fault-free case with zero mean and
Gaussian distribution. The G matrix for RTK is the direction cosine matrix.

For the IMU + odometer, the observations are the Easting and Northing velocity
components computed as VE ¼ Vss � sin θð Þ, and VN ¼ Vss � cos θð Þ. These veloc-
ities are integrated in time to provide the time changes in position in Easting and
Northing directions. The observations are considered in this case as the mean values
of the IMU heading (θ) and the odometer speed Vss, for instance between the
epochs t-1 and t. Thus, the G matrix is expressed as [25]:

Gt ¼
∂ θ

∂ΔE

∂ θ

∂ΔN
∂ v

∂ΔE

∂ v

∂ΔN

2

6

4

3

7

5

t

¼

ΔN

ΔE2 þ ΔN2

�ΔE

ΔE2 þ ΔN2

ΔE

Δt�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΔE2 þ ΔN2
p

ΔN

Δt�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΔE2 þ ΔN2
p

2

6

6

4

3

7

7

5

t

(4)

Using least squares for fault detection, the solution in (E-N-U) frame reads:

x̂ ¼ R GTQ�1
y G

� ��1
GTQ�1

y y ¼ S y (5)

where S ¼ R GTQ�1
y G

� ��1
GTQ�1

y is the pseudo inverse, which maps the obser-

vations onto the unknowns. In RTK, R is the rotation matrix from the Cartesian
frame, in which the GNSS satellite positions are expressed, to the E-N-U frame.
When using IMU + odometer measurements, R is the identity matrix. To identify
which observations are faulty, the solution separation method can be applied [6].
This is performed by computing a position solution unaffected by the fault, by
excluding the suspected observations. An error bound around this solution is com-
puted, and the difference between the position solution from all observations and
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the fault tolerant position is accounted for. For each potential fault mode i, which
may comprise one or more faulty observations, an analogous Si matrix is computed
by excluding the suspected observations, such that:

x̂i ¼ Si y (6)

The discrepancy in the positional vector ∣x̂� x̂i| forms the base for checking the
presence of observation faults, where in case of faulty measurements in mode i, the
difference between the two solutions x̂ and x̂i will be significant. The standard
deviations of this difference (σdEi

, σdNi
, σdUi

) are next computed as:

σq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aTk Si � Sð ÞQy Si � Sð ÞT ak

q

(7)

k = 1, 2, 3 for dEi, dNi, dUi, with aT1 ¼ 1, 0, 0½ �, aT2 ¼ 0, 1, 0½ �, and aT3 ¼ 0, 0, 1½ �:
For ITS applications, where only horizontal positioning is considered, it is more

convenient to conduct testing for the along-track (AT) and cross-track (CT) posi-
tion directions [30, 12]. Assuming Δx̂i ¼ ∣x̂� x̂i| has a zero-mean Gaussian distri-
bution in the fault-free mode; and considering its components for the AT and CT

directions, defined as Δx̂iAT and Δx̂iCT . Then the normalized discrepancies, i.e. ∣∆x̂iAT ∣
σ∆x̂iAT

and ∣∆x̂iCT ∣
σ∆x̂iCT

will also have a zero-mean Gaussian distribution, and will be used as the

test statistic, where σΔx̂iAT and σΔx̂iCT are the stds of Δx̂iAT and Δx̂iCT respectively.
Therefore, when examining m possible fault modes, for i = 1 to m, setting a thresh-
old of the standard normal distribution at a selected significance level, i.e.
N α

2�2m
0, 1ð Þ, a fault is suspected when:

HaiAT :
∣∆x̂iAT ∣

σ∆x̂iAT
≥N α

2�2m
0, 1ð Þ and HaiCT :

∣∆x̂iCT ∣

σ∆x̂iCT
≥N α

2�2m
0, 1ð Þ (8)

When the direction of the vehicle is not well defined, or when this direction
rapidly changes, for instance during rapid turns, a conservative approach is to
perform the FDE test in the direction of the maximum error. To this end, the
maximum-minimum region defined along the semi-major and semi-minor axes of a
horizontal confidence error ellipse can be tested. These directions are defined in the
Eigen space by the orientation of the first and second Eigen vectors. The semi-major
axis of the error ellipse, which represents the max std. σ∆ximax

equals
ffiffiffiffiffiffi

ξ1i
p

, where ξ1i
is the first Eigenvalue. Similarly, the semi-minor axis of this error ellipse σ∆ximin

is

calculated as
ffiffiffiffiffiffi

ξ2i
p

, where ξ2i represents the second Eigenvalue of Q∆x̂i:, the 2D
variance matrix of ∆x̂i computed by applying the propagation law. Thus, the null
hypothesis is rejected suspecting a fault in mode i when:

∆x̂T:

i E
!
1i

� �2

σ2
∆ximax

þ
∆x̂T:

i E
!
2i

� �2

σ2
∆ximin

≥ χ2α
m
df , 0ð Þ (9)

where E
!
1i and E

!
2i denote the first and second Eigenvector of Q∆x̂i .

4.2 Computation of the protection levels

In our work, the PLs are modeled on the basis of the multi-hypothesis solution-
separation method [6]. In RTK, with df > 0, a position error bound is computed for
each possible fault mode i that might be misdetected. The PLs can be computed by
solving the equations [12, 30]:
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2 ψ
PLAT � boAT

σx̂oAT

� �

þ
X

Na

i¼1

Piψ
PLAT � KfaσΔx̂iAT � biAT

σx̂iAT

� �

¼ 1

2
PHMIHð Þ (10)

2 ψ
PLcT � bocT

σx̂ocT

� �

þ
X

Na

i¼1

Piψ
PLcT � KfaσΔx̂icT � bicT

σx̂icT

� �

¼ 1

2
PHMIHð Þ (11)

The components (boAT and boCT) and (biAT and biCT) are projected in the
position space using S and Si from bo and bi, which denote the sum of the maximum
nominal biases in the observations under the fault-free and fault hypotheses,
respectively. σx̂oAT and σx̂iAT are the stds for the AT position solution and σx̂oCT and
σx̂iCT are for CT. Similarly, σΔx̂iAT and σΔx̂iCT are the stds of Δx̂iAT and Δx̂iCT
respectively. The absolute value of the bias is considered to bound the worst case
scenario and to ensure that the continuity requirement is met. ψð Þ is the tail
probability of the cumulative distribution function of a Gaussian distribution. Pi is
the a-priori probability of fault in the observations in the examined fault mode i,
assuming the same probability for all observations from one system, which differ

among systems. Since no standards are available yet for IM in ITS, PHMIH of 10�5 is
assumed. The Kfa becomes ψ�1 α

2m

� �

, where we assume α = 1% in this article.

It is assumed here that the observation and the position errors follow a Gaussian
distribution. In the open sky environment, this is valid, but in the urban environ-
ment, and due to multipath, the distribution could be biased and it could have
multiple peaks. Additionally, in ITS and due to motion of the vehicle and the
dynamic change of the nearby structures, causing multipath, multipath tends to
randomize. One approach here is to deweight the observations that may experience
large multipath, such that their contribution in the solution is minimized. Such
multipath modeling is based on satellite elevation and azimuth, and the use of 3D
city models to describe the geometry of the surrounding structures. Moreover, an
overbounding Gaussian distribution with large stds [31] can be used. However, this
would lead to large PLs, a loss in integrity availability. Figure 4 shows a flowchart of
the positioning and integrity monitoring process, which includes the FDE and
computation of the PLs.

For the case of integrating the heading fromMEMS IMU and speed estimated by
the odometer, where df = 0, the PLs are expressed as:

PLAT,i ¼ Kmd,iσAT,i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos θaT1 S
bθIMU

bv

" # !2

þ sin θaT2 S
bθIMU

bv

" # !2
v

u

u

t

PLCT,i ¼ Kmd,iσCT,i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin θaT1 S
bθIMU

bv

" # !2

þ cos θaT2 S
bθIMU

bv

" # !2
v

u

u

t (12)

where bθIMU
is a scalar representing possible unaccounted for growth in IMU

heading bias between the bias resetting, using, for instance, GNSS heading. It is
assumed here that this bias increases linearly with time, such that bθIMU

¼
bθo þ Δb� ∆t, where bθo is the initial bias, Δb is the bias drift with time, and ∆t is
the time difference between current epoch and the resetting epoch. bv denotes the
bias due to velocity measured by the odometer. Kmd,i is the inverse of the comple-
ment of the right-side standard normal cumulative distribution function (i.e.
Kmd,i ¼ ψ�1 βð Þ) to satisfy the misdetection probability β, which can be preset. The
final protection levels PLAT and PLCT are considered as the max{PLAT,i} and max
{PLCT,i}.
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Since in the IMU + odometer case only time-changes of positions are measured,
integrity risk has to additionally consider the accumulation of errors. The covari-
ance matrix of the unknown coordinates (QENt

) at time t can be expressed as:

QENt
¼ G QobsG

T þ QENt�1
(13)

To bound the development of the accumulated error, this positioning approach
needs to be reinitialized at short time intervals and the QENk

is reset with each

reinitialization. Such an approach will lead to a sawtooth-like pattern for the PL to
adapt to the growth-reset error pattern.

5. Testing

In this section test results of an integrated GNSS/IMU/odometer system pro-
posed for ITS are first presented and discussed. Afterwards, the next generation
SBAS is tested when being implemented within an ITS setting.

5.1. Test description

A kinematic test was conducted using a small vehicle fitted with a low-cost RTK,
MEMS IMU and odometer. The test is performed in semi-urban and urban envi-
ronments in Tokyo, Japan. The road has 2–3 lanes on each side of the road, where
several high-rise buildings were present. In addition, several overpasses, pedestrian
bridges, and a river bridge were also present. The test trajectory is shown in
Figure 5. The use of multi-system GNSS measurements is essential to observe
enough number of satellites for RTK positioning and to resolve the ambiguities as
quickly as possible to maintain reliability in this environment as the number of
observed satellites changes frequently between 5 and 22. Therefore, the RTK system
used GPS, GLONASS, QZSS and BeiDou dual-frequency observations with 10 Hz
sampling interval. The RTK-GNSS was supported by Doppler frequency observa-
tions [32]. The Doppler-aided RTK-GNSS usually improves the fix rate by about 10–
15% and provide the same reliability [33]. The positioning error (PE) in the RTK
mode was estimated as the difference between the RTK-computed positions and
those determined from post-mission kinematic processing (PPK) of the same data
collected by the receiver but using independent software. The vehicle receiver
operates within a few kilometers from a reference receiver occupying a known

Figure 4.
Flowchart of the positioning, FDE and integrity monitoring process.
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point such that the spatially correlated errors; i.e. the broadcast orbital error and the
atmospheric delays - ionosphere and troposphere, are canceled by double
differencing the observations between the rover and the reference receiver, leading
to �5 cm accuracy [25].

A Bosch-consumer grade MEMS IMU was used in the test. The heading error of
this IMU ranged from �2 to 5°, which can accumulate to 10° after 30 min without
calibration [25, 34]. The raw 3-axis angular rate, 3-axis acceleration, and pressure
are provided. The vertical position of the GNSS is integrated with the change in the
vertical position deduced from the barometric sensor. If the velocity vector esti-
mated by the GNSS is not available, the velocity vector estimated by the final
integrated heading and speed sensor is used instead. If the absolute difference
between these two velocity vectors is more than 0.25 m/s, we rely on the velocity
vector estimated by the final integrated heading and odometer. The sampling rate of
IMU and odometer was 100 Hz. For the odometer, the standard deviation of the
computed speed is estimated as 5 cm/s, and for the speed determined from GNSS-
Doppler measurements, it is 10 cm/s. The positioning errors when using
IMU + odometer were computed by differencing their positions with the output
from a POS/LV system (developed by Applanix Inc.), which was mounted on the
vehicle and has a nominal positioning accuracy of approximately 20 cm.

The test was also used to demonstrate the performance of the prediction
approach for selection of the best route based on best integrity availability and trip
characteristics, such as distance and time of travel. Results of the predicted satellite
positions and their geometry applying the 3D city model are compared with the real
observed satellites obtained for the same route and the same period. The 3D city
model is built using a GEOSPACE 3D solution numerical surface with polygon
representation (http://www.ntt-geospace.co.jp/geospace/3d.html). The model
includes land, roads, bridges, buildings, and vegetation. The 3D buildings are cre-
ated by adding height information to the GEOSPACE digital 2D map, where the
heights are measured from GEOSPACE aerial photographs (orthoimage). The
accuracy of the models employed in this test is 2–3 m.

5.2. Route selection results

Figure 6(left) shows the difference between the number of satellites in view
determined by the prediction algorithm and the number of the actually observed
satellites along the test route. The difference in their satellite geometry, expressed
by Position Dilution of Precision (PDOP), is illustrated in Figure 6(right). The

Figure 5.
Test trajectory in Tokyo.
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results show that the average difference between the number of observed and
predicted satellites in view is two satellites, ranging between �5 satellites. The mean
value of the absolute difference in PDOP is 0.461. Possible enhancement in this
performance can be achieved by using more precise 3D models or maps. For
instance, the 3D city models used here were of a medium accuracy of about 2–3 m in
height estimation. More accurate 3D models at 1 m or better are available but at an
extra cost. Better 3D maps can also be established from laser scanning, particularly
in urban areas.

5.3. Accuracy and integrity monitoring results

Positioning in the above test was carried out using a system of combined RTK
and IMU + odometer, where the latter method was required during gaps in RTK
positioning spanning only short periods of up to 4 s, totaling about 3% of the entire
test period. The position errors, computed as the difference between the solution
from each of the positioning methods and the solution from a more precise system
as explained in the previous section, are illustrated in Figure 7. Table 3 shows the
median of the absolute positioning errors and the RMSE for each mode. The median
is used as it is less affected by outliers and skewed values of PLs. The table and
Figure 5 show that the RTK with correct ambiguity resolution provided positioning
errors of a few cms and IMU + odometer provided sub-m level accuracy reaching
0.53 m after 4 s, which can grow to more than 2 m in less than 20s if left without

Figure 6.
Difference between using observed and predicted satellites in terms of: (left) number of satellites and (right)
geometry expressed by PDOP.

Figure 7.
Difference between using observed and predicted satellites in terms of: (left) number of satellites and (right)
geometry expressed by PDOP.
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calibration. Hence, this method should be limited to bridging RTK positioning only
for a few-second period.

Figure 8 shows the time series of the PL when the RTK (top panel) and
IMU + odometer (bottom panel) were used for the AT and CT directions (shown as
PL_AT and PL_CT) using an integrity risk of 1 � 10�5. The absolute values of the
positioning errors in the AT and CT directions, i.e. err_AT and err_CT are depicted
in the figure. Note the different scale used. The effectiveness of integrity monitor-
ing algorithm can be assessed by checking that the position errors (PEs) are
bounded by PLs, and availability of integrity monitoring is judged by checking that
PL < AL. The RTK positioning errors shown in the figure were less than 10 cm and
were always bounded by tight protection levels and thus the choice of an alert limit
(AL) of 1.5 m (e.g. half of a small lane width of 3 m) is sufficient. Likewise, for the
majority of IMU + odometer positioning period, the position errors were bounded
by the PLs. Thus, positioning integrity was available (i.e. PL < AL) for the full
period of RTK positioning and during most of IMU + odometer positioning, giving a
total availability of integrity monitoring >99.9%.

6. Testing SBAS for ITS

To evaluate the next generation SBAS for ITS applications, Kinematic tests were
conducted using two test vehicles in scenarios characterized by different levels of
sky-visibility that may be experienced by ITS applications, which included open

Figure 8.
PL_AT, PL_CT and PE for the AT (left) and CT (right) for the RTK (top panel), and IMU + odometer
positioning (bottom panel), integrity risk = 1 � 10�5.

Positioning mode Median Error RMSE

(AT) (CT) (AT) (CT)

RTK 0.057 0.055 0.078 0.106

IMU + odometer within a few seconds 0.151 0.320 0.248 0.205

Table 3.
Median positioning error and RMSE for AT and CT directions (m).
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sky, semi-urban and urban environments. The tests were carried out in July and
August 2018 in Australia. The next-generation SBAS test-bed data was used which
provides three types of solutions, L1 SBAS solution, a DFMC SBAS solution using
L1/L2 GPS and Galileo E1/E5a measurements, and SBAS-corrections for PPP solu-
tion using GPS and Galileo observations (L1/L2 and E1/E5a, respectively). All data
were collected and processed at a frequency of 1 Hz. A ‘ground truth’ for the
positions of the vehicle was computed in a post-processing mode through indepen-
dent relative kinematic positioning - PPK. The same raw code and phase observa-
tions used for SBAS-based positioning were used as the rover observations with data
from a Continuously Operating Reference Station (CORS), serving as a base station,
where the test vehicles were within a radius of eight kilometers from the base
station. Only ambiguity-fixed solutions from PPK, with 1–5 cm precision, were used
as ground truth.

Figure 9 shows two examples of applying the new generation DFMC and float-
ambiguity PPP SBAS in the open-sky (left panel) and semi-urban (right panel)
environments. Analysis of results shows that the new SBAS DFMC solutions have
slightly better accuracy than the SBAS L1 solutions, but both generate errors
between sub-m to more than 2 m. In addition, the multi-constellation PPP solutions
have shown to provide the best positioning precision and accuracy among all the
tested solution types (L1 SBAS, DFMC SBAS, and SBAS-based PPP) with sub-
decimeter level standard deviations after solution convergence [35], provided that
enough convergence time is available, which may take up to 30 min. Testing clearly
demonstrates that positioning performance of both DFMC SBAS and PPP methods
is strongly dependent on the environment of the application, which is linked to the
strength of the satellite geometry, number of observed satellites, the presence of
multipath and NLOS. When considering the suitability of these findings for ITS
applications, results suggest that, in open sky environment, lane identification and
collision alert applications can be performed 80% of the time with DFMC SBAS and
nearly all the time with PPP. The urban environment was the least promising with
low availability for all SBAS solution types.

7. Cooperative positioning tests

A series of experiments with an aim to test the performance of different CP
architectures were conducted in the vicinity of Melbourne, Australia. A network of

Figure 9.
Results of DFMC SBAS and SBAS-based PPP for open-sky environment (left) and semi-urban environment
(right).
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platforms was employed, with two vehicles acting as moving rovers and two static
platforms acting as RSUs, shown in Figure 10. The tests were conducted in multiple
environment scenarios such as in open sky, residential and dense urban environ-
ments. In all, five main sensors were deployed and attached to these platforms,
including GNSS, IMU, VSS, UWB and DSRC. The deployment of these sensors on
each platform is as described in Table 4.

A more suitable architecture for CP in a VANET is one that is decentralized in
nature. The proposed architecture is depicted in Figure 11 (top) where the different
color lines represent different input/output similar to the centralized architecture in
Figure 10 (bottom). It can be seen that in this system, each vehicle only uses
connections with immediate neighbors, i.e., data does not need to be hoped to a
central processor in an event where direct connections between the central proces-
sor and vehicles cannot be established. This makes a VANET with a decentralized
architecture more efficient in handling scalability compared to a centralized system.
However, the nature of a decentralized system disallows for the computation of the
network joint posterior, where only marginal posteriors can be calculated. Thus, in
terms of the parameter estimation process, it is expected that the decentralized
architecture and algorithm would produce less accurate navigation output com-
pared to the centralized architecture. Figure 11 shows that apart from the absence
of a central processor, the decentralized architecture is identical to the centralized
one. As before, the local level observations are solved for first, before the resulting
information is passed on to the CP processor, utilizing SPAWN or MDSPAWN as

Figure 10.
CP equipment setup—Reference (left) on the car (right).

Table 4.
Different Sensor deployment for CP testing.
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the CP state estimator. In this example, the algorithms used for the centralized
processing were the standard extended Kalman filter (EKF) [36] and particle filter
(PF) [37] as well as an algorithm developed here termed the measurement directed
progressive correction (MDPC), which is an improved centralized PF based on [37]
for cooperative positioning in difficult environments. The decentralized approaches
implemented were the sum product over wireless network (SPAWN) method,
which is a fully distributed estimation algorithm, based on a factor graph (FG) and
sum product algorithm (SPA) [38, 39]. This was further developed in this research
and adopts the measurement directed method on SPAWN, termed the measure-
ment directed SPAWN (MD-SPAWN) algorithm. Full details of these algorithms
can be found in [40].

Results obtained from integrating INS, GNSS using real datasets where both
non-radio ranging and radio ranging based CP were utilized are summarized in
Table 5. The table shows that fusing INS and shared raw GNSS observations to form
V2V double difference ranging in CP could significantly enhance the positioning
accuracies of the participating vehicles in VANET. INS, which provided measure-
ment redundancies and continuous positioning, enables for the CP to continuously
operate even when the observed satellites were below the minimum number of

Figure 11.
Decentralized CP (top) and centralized CP (bottom), from [40].

18

Advanced Energy Management Modelling and Control for Intelligent and Efficient…



satellites needed in conventional CP system, which is useful in environments that
suffer from GNSS signal shadowing. However, this technique is not suitable to be
used when the GNSS signals are affected by multipath, which would invariably
affect the V2V ranging. When radio ranging was obtained via UWB transceivers,
instead of shared raw GNSS observations results obtained were comparable.

8. Conclusion

A proposed system that can be used for ITS is discussed. The system includes
low-cost GNSS RTK integrated with MEMS IMU and automotive odometer. This
low-cost RTK system can produce an accuracy of less than 0.l m. The Integrity
monitoring (IM) approach for this system is presented. The computed PLs were
shown to bound the position errors all the time, proven effectiveness of the models.
The PLs also suggested that the use of an alert limit of 1.5 m will provide IM
availability larger than 99.9%. This can support several ITS applications. A main
challenge in positioning using IMU + odometer is that they estimate the time-
change in positioning and their biases accumulate with time, the system thus needs
frequent resetting. Their bridging of positioning is thus recommended only for a
few seconds, where sub-meter accuracy can be obtained.

The next-generation SBAS was also evaluated for ITS applications. It is evident
from testing that the positioning performance of both DFMC SBAS and PPP
methods is strongly dependent on the environment of application, where SBAS
seems only suitable for open sky environment where DFMC SBAS and PPP can
provide sub-m/m and dm accuracy, respectively.

To ensure safety, reduce pollution and save energy, reliable positioning with
best route selection capability is required for intelligent transport systems. A
method for route selection with the capability of predicting precision and integrity
of positioning using GNSS integrated with 3D city models is presented. A demon-
stration of the method was conducted in a semi-urban area in Tokyo. Results show
that the 3D city model based algorithm is able to determine LOS satellites with a
small margin of error. An improvement can be achieved, for instance, by using
higher accuracy 3D models or digital laser scanning 3D models. The method pro-
posed is also suitable to determine locations within the city, where GNSS would not
be suitable and other sensors should be used.

Future work includes the use of Lidar sensors and better quality IMUs, and
developing new algorithms for the computation of the PLs for these sensors. Addi-
tionally, advanced models for weighting GNSS observations under multipath are
considered. Finally, more architectures of V2V and VANET are planned.

Table 5.
Integrating INS with GNSS in different CP scenarios.
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