3,395 research outputs found

    A Convolutional Neural Network model based on Neutrosophy for Noisy Speech Recognition

    Full text link
    Convolutional neural networks are sensitive to unknown noisy condition in the test phase and so their performance degrades for the noisy data classification task including noisy speech recognition. In this research, a new convolutional neural network (CNN) model with data uncertainty handling; referred as NCNN (Neutrosophic Convolutional Neural Network); is proposed for classification task. Here, speech signals are used as input data and their noise is modeled as uncertainty. In this task, using speech spectrogram, a definition of uncertainty is proposed in neutrosophic (NS) domain. Uncertainty is computed for each Time-frequency point of speech spectrogram as like a pixel. Therefore, uncertainty matrix with the same size of spectrogram is created in NS domain. In the next step, a two parallel paths CNN classification model is proposed. Speech spectrogram is used as input of the first path and uncertainty matrix for the second path. The outputs of two paths are combined to compute the final output of the classifier. To show the effectiveness of the proposed method, it has been compared with conventional CNN on the isolated words of Aurora2 dataset. The proposed method achieves the average accuracy of 85.96 in noisy train data. It is more robust against Car, Airport and Subway noises with accuracies 90, 88 and 81 in test sets A, B and C, respectively. Results show that the proposed method outperforms conventional CNN with the improvement of 6, 5 and 2 percentage in test set A, test set B and test sets C, respectively. It means that the proposed method is more robust against noisy data and handle these data effectively.Comment: International conference on Pattern Recognition and Image Analysis (IPRIA 2019

    Improving a 3-D Convolutional Neural Network Model Reinvented from VGG16 with Batch Normalization

    Get PDF
    It is challenging to build and train a Convolutional Neural Network model that can achieve a high accuracy rate for the first time. There are many variables to consider such as initial parameters, learning rate, and batch size. Unsuccessfully training a model is one of the most inevitable problems. In some cases, the model struggles to find a lower Loss Function value which results in a poor performance. Batch Normalization is considered as a remedy to overcome this problem. In this paper, two models reinvented from VGG16 are created with and without using Batch Normalization to evaluate their model performance. It is clear that the model using Batch Normalization provides a better result in terms of Loss Function value and model accuracy, which also achieves a very high accuracy rate. It also reaches the saturation point of the highest model accuracy faster than the model without Batch Normalization. This paper also finds that the accuracy of 3D Convolutional Neural Network model reinvented from VGG16 with Batch Normalization is at 91.2% which can beat many benchmarking results on UCF101 such as IDT [5], Two-Stream [10], and Dynamic Image Networks IDT [4]. The technique introduced in this paper shows a fast, reliable and accurate estimation of human activity type and could be used in smart environments

    Classification of neovascularization using convolutional neural network model

    Get PDF
    Neovascularization is a new vessel in the retina beside the artery-venous. Neovascularization can appear on the optic disk and the entire surface of the retina. The retina categorized in Proliferative Diabetic Retinopathy (PDR) if it has neovascularization. PDR is a severe Diabetic Retinopathy (DR). An image classification system between normal and neovascularization is here presented. The classification using Convolutional Neural Network (CNN) model and classification method such as Support Vector Machine, k-Nearest Neighbor, Naïve Bayes classifier, Discriminant Analysis, and Decision Tree. By far, there are no data patches of neovascularization for the process of classification. Data consist of normal, New Vessel on the Disc (NVD) and New Vessel Elsewhere (NVE). Images are taken from 2 databases, MESSIDOR and Retina Image Bank. The patches are made from a manual crop on the image that has been marked by experts as neovascularization. The dataset consists of 100 data patches. The test results using three scenarios obtained a classification accuracy of 90%-100% with linear loss cross validation 0%-26.67%. The test performs using a single Graphical Processing Unit (GPU)

    Bridging the Gap between Laboratory and Field Experiments in American Eel Detection Using Transfer Learning and Convolutional Neural Network

    Get PDF
    An automatic system that utilizes data analytics and machine learning to identify adult American eel in data obtained by imaging sonars is created in this study. Wavelet transform has been applied to de-noise the ARIS sonar data and a convolutional neural network model has been built to classify eels and non-eel objects. Because of the unbalanced amounts of data in laboratory and field experiments, a transfer learning strategy is implemented to fine-tune the convolutional neural network model so that it performs well for both the laboratory and field data. The proposed system can provide important information to develop mitigation strategies for safe passage of out-migrating eels at hydroelectric facilities

    Classification of water stress in cultured Sunagoke moss using deep learning

    Get PDF
    Water stress greatly determines plant yield as it affects plant metabolism, photosynthesis rate, chlorophyll content index, number of leaves, physiological, biochemical compound, and vegetative growth. The research aimed to detect and classify water stress of cultured Sunagoke moss into several categories i.e. dry, semi-dry, wet, and soak by using a low-cost commercial visible light camera combined with a deep learning model. Cultured Sunagoke moss is a commercial product which has the potential use as rooftop-greening and wall-greening material. This research compared the performance of four convolutional neural network models, such as SqueezeNet, GoogLeNet, ResNet50, and AlexNet. The best convolutional neural network model according to the training and validation result was ResNet50 with RMSProp optimizer, 30 epoch, and 128 mini-batch size; this also gained an accuracy rate at 87.50%. However, the best result of the convolutional neural network model on data testing using confusion matrices on different data sample was ResNet50 with Adam optimizer, 30 epoch, 128 mini-batch size, and average testing accuracy of 94.15%. It can be concluded that based on the overall results, convolutional neural network model seems promising as a smart irrigation system that real-time, non-destructive, rapid, and precise method when controlling water stress of plants

    Dependency-based Convolutional Neural Networks for Sentence Embedding

    Full text link
    In sentence modeling and classification, convolutional neural network approaches have recently achieved state-of-the-art results, but all such efforts process word vectors sequentially and neglect long-distance dependencies. To exploit both deep learning and linguistic structures, we propose a tree-based convolutional neural network model which exploit various long-distance relationships between words. Our model improves the sequential baselines on all three sentiment and question classification tasks, and achieves the highest published accuracy on TREC.Comment: this paper has been accepted by ACL 201
    corecore