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Abstract 
 

An automatic system that utilizes data analytics and 

machine learning to identify adult American eel in data 

obtained by imaging sonars is created in this study. 

Wavelet transform has been applied to de-noise the 

ARIS sonar data and a convolutional neural network 

model has been built to classify eels and non-eel objects. 

Because of the unbalanced amounts of data in 

laboratory and field experiments, a transfer learning 

strategy is implemented to fine-tune the convolutional 

neural network model so that it performs well for both 

the laboratory and field data. The proposed system can 

provide important information to develop mitigation 

strategies for safe passage of out-migrating eels at 

hydroelectric facilities. 

 

1. Introduction  
 

1.1. Adult American eel protection 

 
The population of American eel (Anguilla rostrata) 

has significantly declined in the last few decades. The 

declines have been partly attributed to adults being 

injured or killed by being entrained into hydropower 

turbines when migrating from rivers to the ocean for 

spawning. It is technically challenging to protect this 

species because of its morphological and behavioral 

characteristics. Currently, a common practice of dam 

operators is to turn off turbines and provide a relatively 

safe, alternate downstream passage route at night for 

several months during the primary downstream passage 

period. This reduces passage via turbines to help 

mitigate injuries and mortality. 

Information on eel behavior and the ability to 

identify peak migration times and pathways can assist in 

optimizing hydropower dam operations and the design 

of eel protection technologies. This not only helps 

improve downstream eel passage for eel recovery but 

also potentially lower the costs of turning off turbines. 

Data analytics and machine learning techniques can be 

applied to develop a tool that can automatically identify, 

track, and enumerate untagged eels in remotely sensed 

data gathered from large, fast-moving rivers. Such 

automation could also minimize the need for laborious 

human review for the large data files. 

 

1.2. Literature review 

 
Egg et al. [1] compared ARIS multi-beam sonar-

based and GoPro camera-based methods in detecting 

fish and concluded that sonar is more suitable to identify 

riverine fish-movement patterns than optical underwater 

cameras in night and turbid conditions. Moreover, 

acoustic imaging sonar systems have significant range 

capability and the ability to measure fish or other 

objects.  

In 2016, Gurshin et al. [2] compared three sonar 

technologies for observing the behavior of migrating 

adult eels and found that the ARIS multi-beam sonar, 

operating with 48 beams, is the most promising among 

the three for identifying eels out to 16-20 meters in 

range. A complete description of the project and results 

is now freely available to the public [11]. Mueller et al. 

[3] identified eels in DIDSON sonar data using three 

machine learning classifiers and manual feature 

extraction. Among the three classifiers, multiple layer 

perceptron (feed-forward artificial neural network) 

performed the best. Bothmann et al. [4] conducted fish 

classification using sonar data obtained by DIDSON and 

self-defined features.  

Qin et al. [5] constructed a convolutional neural 

network (CNN) incorporating principal component 

analysis (PCA) and a support vector machine (SVM) 

classifier for fish recognition in underwater camera data. 

Since Krizhevsky et al. [6] won the ImageNet 

competition, CNN has become the leading machine 

learning model for image classification. However, 
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training a deep learning model usually requires massive 

amount of data. For problems with limited training data, 

transfer learning has become a feasible option if more 

data from a related domain can be obtained [7].  

Zhang et al. [8] studied synthetic aperture radar 

(SAR) images using CNN and transfer learning. They 

built a model similar to the famous visual geometry 

group (VGG) network [9] that classifies vehicle and 

transferred the model for ship classification. Sun et al. 

[10] also used transfer learning and a large-scale 

existing CNN model AlexNet [6] for fish classification 

in underwater camera images. 

Developing a system-specific CNN for the 

automatic detection of eels in the river systems, proving 

that transfer learning is useful in achieving a balanced 

model when having limited field data and abundant lab 

data, and showing that the combination of sonar images 

and CNN is a viable option for eel monitoring are the 

major contributions of this study. 

 

2. Method  

 
2.1. Data collection 

  
Training a robust CNN model requires sufficient 

representative data of the objects of detection. Due to 

the scarcity of migrating eels in natural environments, 

we construct the study with two datasets: (1) data 

obtained from laboratory experiments in an oval shaped 

water tank (7.3 m long, 3.0 m, and 2.5 m deep) in the 

Aquatic Research Laboratory at the Pacific Northwest 

National Laboratory, where four juvenile eels (yellow 

phase) ranging in length from 330 to 350 mm were 

tethered on the lower jaw so that they can swim against 

0.53 and 0.76 m/s water flow within the range of the 

ARIS sonar (Model Explorer 1800, Sound Metrics 

Corp, Bellevue, WA); (2) field data collected at Iroquois 

Dam on the St. Lawrence River in a previous study [11], 

which featured adult eels ranging in length from 700 to 

910 mm in their natural environment.  

In both laboratory and field experiments, some 

artificial non-eel objects, such as neutrally buoyant 

wood sticks, were also imaged with the ARIS sonar. The 

wood sticks are about the same size as the tested eels, 

which can potentially confuse the identification of eels 

in a riverine environment. The laboratory experiment is 

advantageous over the field experiment because it is 

more controllable, able to reproduce consistent range 

and velocity values with a known sized object, and 

needs fewer resources to conduct than field 

experiments.  

The study of transfer learning from lab data to field 

data serves as an exploration of the feasibility of 

Figure 1. (a) A raw sonar image featuring an eel centered at pixel (250, 685). The structure on 
the upper left corner is part of the dam pier nose. (b) Example images of eels and sticks after 
background removal with image differencing. First row: eels in the field; second row: sticks in 

the field; third row: eels in the laboratory; fourth row: sticks in the laboratory. 
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employing more lab data in the CNN training and 

minimizing the need and cost of collecting eel data in 

the field. The eel lengths for the laboratory studies were 

less than for the adult eels images at the field site. The 

scaling issue is partially mitigated by the shorter 

detection range of the sonar. In the laboratory 

experiment, the detection range of the sonar was set to 

2.8-6.7 m, and the eels were imaged at 5.5 m while in 

the field the range was 2-20 m. Because the apparent 

size of the object decreases in sonar images when the 

detection range increases, the lab and field data have 

similar eel size in the sonar images. Figure 1 includes an 

example of a raw frame obtained from the ARIS sonar 

featuring an eel centered at pixel (250, 685). 

 

2.2. Data preprocessing 
 

Multiple data preprocessing techniques are applied 

to enhance the signal-to-noise ratio of time-lapse sonar 

images and facilitate object detection. Sonar images 

sometimes contain not only the object of interest, but 

also some static structures (such as the pier nose of the 

dam) that can be treated as image background. Because 

the background is static and consistent in all frames, it 

can be removed by image differencing, i.e. by 

subtracting one image with the mean of several adjacent 

frames.   

In addition to background structures, sonar images 

can contain unwanted noise (entrained air or small 

debris) at random location and high intensity. The noise 

source includes ambient environmental noise that 

occurs in a similar operating frequency of the sonar 

Reducing sonar image noise is important for object 

detection because a large number of high intensity 

pixels can impede the edge detection of the object. 

Wavelet analysis can help separate and remove the 

white noise from the anomalies such as eels, and provide 

more accurate shapes and dimensions of the objects. 

Therefore, wavelet denoising was performed after the 

background has been removed. The denoising process 

includes (1) computing a wavelet transform of the two-

dimensional image and decomposing the image into 

different frequency components; (2) filtering the 

wavelet coefficients with a constructed threshold; (3) 

Figure 2. Example images of eels and sticks after background removal and wavelet denoising. 
First row: eels in the field; second row: sticks in the field; third row: eels in the laboratory; 
fourth row: sticks in the laboratory. 
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reconstructing the image using the corresponding 

inverse wavelet transform [12-14]. Multiple wavelets 

with various threshold levels were tested and compared 

to select the right wavelet that can efficiently remove 

noise from images while maintaining important edges. 

Based on the results from the comparison, we selected 

the Daubechies wavelet db2, which is part of the 

Wavelet Toolbox on MATLAB (Version 2018b, The 

MathWorks, Natick, MA, USA). 

After background removal and wavelet denoising, 

the image was further processed for object detection. 

Firstly, a threshold in pixel intensity was selected, and 

the grayscale image was transformed into a binary 

image by turning the pixels with intensities above the 

threshold to 1 and the pixels with intensities below the 

threshold to 0. Secondly, a sliding window of 61 × 61 

pixels was moved from the top left to bottom right, 

screening the potential object with a threshold of the 

number of white pixels (whose pixel intensities equal to 

1) in the sliding window. Once the number of white 

pixels in the sliding window met the threshold and 

reached the maximum, an object was localized and 

extracted. Thirdly, the extracted objects were visually 

verified to ensure that they were either eels or sticks. 

Note that the extracted image size has been selected to 

accommodate the eel size in both lab and field data.  

Overall, 1,892 eel images and 1,654 stick images 

were extracted from the lab data, while 129 eel images 

and 23 stick images were extracted from the field data. 

In the training of CNN models, we down-sampled the 

lab data by randomly selecting one out of seven images 

for both eel and stick images. Some representative 

images of eels and sticks are included in Figure 1. The 

eel shapes in the field have more sinusoidal locomotion 

than those in the lab. Moreover, field stick images 

appeared as two parts, which was caused by the 

operation mechanism of the ARIS sonar. In Figure 1.b, 

the sinusoidal locomotion feature is captured in the four 

lab eel images as well as the last two field eel images. 

The first two images of field eels looks different due to 

its different positioning relative to the sonar beam axis. 

The four lab stick images are also similar to the last two 

images of field stick. The first two stick images are cut 

into two segments due to sonar imaging mechanism and 

the motion of sticks. It is obvious that lab data and field 

data have similarities. The small differences are also 

notable. The application of transfer learning is built on 

the big similarities and small differences between the 

lab and field data. Figure 2 shows example images of 

eels and sticks after background removal and wavelet 

denoising. 

 

2.3. Convolutional neural network 
 

In recent years, CNN has achieved remarkable 

success in various research fields that have a need for 

image classification. This is due to its many advantages 

compared to traditional feature-based machine learning 

[15] including: 

1. Automatic feature extraction: the convolutional 

layers serve as feature extractors that learn 

features automatically by striding filters (or 

kernels) through the image data instead of 

requiring manual feature-engineering. 

2. Hierarchical feature extraction: CNN can learn 

features from the data at different levels, 

learning both the small details and the big 

picture. 

The convolution function in a CNN is, 

(𝑓 ∗ 𝑔)[𝑛] = ∑ 𝑓[𝑖] × 𝑔[𝑖]

𝑛

𝑖

                   (1) 

where 𝑓 is the filter feature, 𝑔 is the input corresponding 

to the filter, and 𝑛 is the size of the filter. Such 

convolution operators introduce a unique property of 

CNN called parameter sharing. In a traditional neural 

network, each weight is used for one input unit. 

Parameter sharing greatly reduces the computational 

burden compared to dense matrix multiplication. 

Parameter sharing also leads to equivariance to input 

translation, which allows the network to generalize 

shape patterns like edges and corners in different 

locations. Moreover, the pooling layer makes the data 

representation approximately invariant to small 

translations. These two complementary properties 

lessen the importance of the exact location of features 

Figure 3. The structure of the convolutional neural network 
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[16]. Max pooling especially emphasizes strong features 

such as edges and corners. Early stage convolutions 

detect features that are smaller in comparison to 

convolutions in the deeper layers. Therefore, as the 

network trains in deeper layers, more complex patterns 

can be detected. 

Activation function is also an important component 

of neural networks because it makes them non-linear. 

Such non-linear functions allow modeling complex data 

distributions. The activation function used in this study 

was rectified linear unit (ReLU), 

𝑟(𝑥) = 𝑥+ = max(0, 𝑥)                   (2) 

ReLU handles the vanishing gradient problem well and 

is computationally less expensive than tanh and sigmoid 

activation operations [17]. 

Dropout layers were also incorporated in the CNN 

structure here. During training, neurons were “turned 

off” with a static probability, which means that the 

training process would ignore these neurons with regard 

to updating weights. Such neurons were “turned on” 

during the testing period. Dropout layers help the 

network prevent over-training and generalize better 

[18]. Batch normalization is usually considered an 

alternative to dropout. In this study, dropout yielded 

better results than batch normalization. The output layer 

used sigmoid function as the classifier, 

𝑆(𝑥) =
𝑒𝑥

𝑒𝑥 + 1
                              (3) 

and binary cross-entropy was used as the loss function, 

𝐽 = −
1

𝑚
∑[𝑦(𝑗) log(𝑦̂(𝑗)) + (1 − 𝑦(𝑗)) log(𝑦̂(𝑗))]

𝑚

𝑗

(4) 

where 𝑦̂ is the output of the model, 𝑦 is the true label of 

the input sample, 𝑗 stands for the 𝑗𝑡ℎ sample, and 𝑚 is 

the size of the training data. 

Applying CNN to distinguish eels from other 

moving targets (e.g. sticks) is an innovative contribution 

of this study. Non-eel objects usually have a more rigid 

shape than eels since the body of eels can twist freely 

(anguilliform swimming motion). Eels often have a 

behavior component to their movements. Also, other 

acoustic characteristics like pixel intensity may be 

different between the two groups. 

The CNN architecture used in this study is shown in 

Figure 3. After the input layer, there was a convolutional 

layer with 32 filters. The filter size was 5 × 5. The 

second convolutional layer had 64 filters with the same 

filter size. A max pooling layer followed with 2 × 2 

pooling size. Before and after the fully-connected layer 

with 128 hidden units, dropouts were implemented. The 

output layer used the sigmoid function as the final 

classifier. Adam was chosen as the optimizer [19]. Ten 

percent of the lab data were separated as the testing set. 

They were never used by the model during the training 

period. For each image, it was normalized by its 

maximum value. 

 

2.4. Transfer learning 
 

Traditional machine learning assumes that training 

and testing data must be from the same domain and have 

the same distribution. However, because deep learning 

usually requires large amount of training data, transfer 

learning is becoming more popular in the deep learning 

community. 

Transfer learning is a machine learning framework 

that transfers knowledge from a certain domain of 

interest to an application in a related domain. There are 

typically two reasons for implementing transfer 

learning: 

1. The (large-scale) base model is too hard to train.  

2. The target task has limited or insufficient 

training data. 

In both scenarios, the fundamental assumption of 

transfer learning is that the features learned by the base 

Figure 4. Flowchart of transfer learning 
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model are useful for the target task. The transferability 

of features in this study comes from the similarity 

between laboratory and field data. This paper applies 

transfer learning mainly within the second scenario. 

There are several reasons why transfer learning is an 

attractive option for the target model. There are limited 

in-river data from field experiment while there are 

abundant laboratory data available. However, while a 

model based only on laboratory data might be successful 

for laboratory environment, the ideal model should be 

able to identify eels in the field, too. On the other hand, 

a model trained on the limited field data is very likely to 

be over-trained and not robust enough. 

Transfer learning has been implemented to include 

field data in the training process and to retain the 

generalizability of the model based on laboratory data. 

Moreover, proving the validity of solving the problem 

of limited field data using transfer learning could 

potentially lower labor and costs for field experiments 

which are much more difficult to conduct than 

laboratory experiments.  

The approach (Figure 4) here was to reuse the 

network that is pre-trained using abundant laboratory 

data, including its structure and connection weights. We 

then fine-tuned the weights using field data to obtain a 

final model that performs well with both testing data 

sets. The theoretical foundation of this approach is that 

the extracted features of the base model are versatile and 

valuable for the final model. The similarities of features 

include the natural body shapes of eels (edges and 

corners that can be learned by CNN) in both lab and 

field, the swimming patterns of eels, the shapes and 

rigidness of non-eels (such as sticks), and the flowing 

patterns of non-eels. Both experiments were conducted 

by domain experts using sonar settings that were mostly 

the same and in comparable data collection 

environments in terms of flow velocity, object size, and 

detection range. The assumption of the proposed 

approach is that the similarities of features outweigh the 

differences between the lab and field data. 

After fitting a base model that produces good testing 

results for the laboratory data, the field data were 

separated into two groups, one for transfer training and 

one for testing. There were six eel videos from field 

experiments. The three eel videos that have better image 

quality were used for fine-tuning the model and the 

other three lower quality videos were used for testing. 

By doing so better information was provided to the 

model while the ability of transfer learning to detect 

difficult eel cases was also tested. For the two non-eel 

objects, one was used for transfer training, the other one 

for testing the fine-tuned model. 

The connection weights of the entire network were 

subject to change during fine-tuning. However, only 

small updates were expected to be applied to the lab 

model and a large number of weights could have 

remained unchanged after transfer learning. The back-

propagation process of neural network should be able to 

find the features that best bridge the gap between the lab 

and field data and update them accordingly without 

making huge changes to the entire network. This could 

be assessed by the classification results of the final 

model on the lab data. The lab model was fine-tuned 

using field training data and tested on both lab testing 

data and field testing data epoch by epoch. The initial 

learning rate for transfer learning is usually smaller 

compared to the one used in the lab model training 

process, since the solution space of the second model is 

theoretically smaller. This learning rate could also be 

manually decreased based on the classification 

performance after each transfer learning epoch. 

 

3. Results and discussion 

 
Two sets of results are summarized in Tables 1 and 

2 to illustrate the information gap between laboratory 

data and field data. These eel classification results are 

based on all the 129 images from the field data. Table 1 

shows the testing results of a model trained on the 

laboratory data and tested on the field data. The model 

trained on the lab data can predict the non-eel objects 

well with correct rates of more than 70%. However, the 

prediction accuracy on the eels from the field data 

images is low at 38%. 

Table 2 shows the testing results of a model trained 

on the field data and tested on the laboratory data. This 

model performed poorly on detecting both eels and non-

eel objects. These results indicate an information gap 

between the lab and field data. 

The information gap between lab eel data and field 

eel data might be mainly due to the different posture and 

orientation. Eels in lab experiments generally have a 

more stretched body that is oriented perpendicular to the 

beam axis of the sonar. The field eels have more posture 

and orientation variations. When field eels are not 

oriented perpendicular to the sonar beam axis or are not 

well stretched as lab eels, their images appear different 

from lab eel images, as shown in the first two images on 

the first row of Figure 1. Also, field eel data have a 

relatively lower resolution because of the longer 

detection range. 

The results of refined transfer learning are 

summarized in Table 3. The results of field data testing 

here are object-based for a detailed look at the 

performance of transfer learning. The images from one 

video are classified and the whole video is classified 

based on the percentage of the image classification 

result. The 129 eel images originally belong to six eel 

videos and the 23 stick images belong to two non-eel 
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videos. Without transfer learning, the base model, which 

was trained on the lab data, achieved a 100% correct 

classification rate on lab testing data, and also correctly 

identified the non-eel object if a 50% decision threshold 

is adopted. However, it performed poorly on field eel 

data. After two epochs of transfer learning, the number 

of correctly classified eel images increased, while lab 

testing results and non-eel field testing results were 

slightly worse. After five epochs, an ideally tuned model 

was achieved. All the field eels are correctly identified 

with a 50% decision threshold. The non-eel object can 

still be correctly identified. The lab testing result is 

above 95%, indicating the generalizability of the model. 

Results show that the CNN model aided by transfer 

learning can settle at an ideal middle point between the 

two data sets. The results support the assumption that 

the lab and field data are similar with small differences 

that can be bridged. 

The challenges this approach might face could be 

that the size of the smaller data set is too small compared 

to the larger one, or that the distributions of the two data 

sets are too different. In either case, transfer learning 

might not work as well. 

 

Table 1. Lab model tested on field data 

Class Correct Rate Percentage 

Eels 49/129 38% 

Non-eel object 1 9/12 75% 

Non-eel object 2 8/11 73% 

 
Table 2. Field model tested on lab data 

Class Correct Rate Percentage 

Eels 94/271 35% 

Non-eel objects 69/237 29% 

 

Table 3. Transfer learning results 

Class No TL 2 Epochs 5 Epochs 

Lab testing 100% 98% 96% 

Field eel 1 10/27 14/27 24/27 

Field eel 2 3/17 5/17 10/17 

Field eel 3 1/18 4/18 10/18 

Non-eel object 2 8/11 7/11 6/11 

 

4. Conclusion 

 
In this study, transfer learning is used to bridge the 

gap between lab data and field data and a model that 

works well for both has been developed. This model 

retains the general representation of eel and non-eel 

objects from lab data when field data are limited and 

allows improvement when more field data are included 

in the model training. 

The proposed solution to deal with the challenge of 

unbalanced data sets could be useful in other fields for 

utilizing relevant yet different data sets for a balanced 

model. The automatic eel detection system using sonar 

data, deep learning, and transfer learning could provide 

important fish passage monitoring capability for 

hydropower facility operators concerning safe passage 

of eels and other species. 
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