1,411 research outputs found

    Cancer diagnosis using deep learning: A bibliographic review

    Get PDF
    In this paper, we first describe the basics of the field of cancer diagnosis, which includes steps of cancer diagnosis followed by the typical classification methods used by doctors, providing a historical idea of cancer classification techniques to the readers. These methods include Asymmetry, Border, Color and Diameter (ABCD) method, seven-point detection method, Menzies method, and pattern analysis. They are used regularly by doctors for cancer diagnosis, although they are not considered very efficient for obtaining better performance. Moreover, considering all types of audience, the basic evaluation criteria are also discussed. The criteria include the receiver operating characteristic curve (ROC curve), Area under the ROC curve (AUC), F1 score, accuracy, specificity, sensitivity, precision, dice-coefficient, average accuracy, and Jaccard index. Previously used methods are considered inefficient, asking for better and smarter methods for cancer diagnosis. Artificial intelligence and cancer diagnosis are gaining attention as a way to define better diagnostic tools. In particular, deep neural networks can be successfully used for intelligent image analysis. The basic framework of how this machine learning works on medical imaging is provided in this study, i.e., pre-processing, image segmentation and post-processing. The second part of this manuscript describes the different deep learning techniques, such as convolutional neural networks (CNNs), generative adversarial models (GANs), deep autoencoders (DANs), restricted Boltzmann’s machine (RBM), stacked autoencoders (SAE), convolutional autoencoders (CAE), recurrent neural networks (RNNs), long short-term memory (LTSM), multi-scale convolutional neural network (M-CNN), multi-instance learning convolutional neural network (MIL-CNN). For each technique, we provide Python codes, to allow interested readers to experiment with the cited algorithms on their own diagnostic problems. The third part of this manuscript compiles the successfully applied deep learning models for different types of cancers. Considering the length of the manuscript, we restrict ourselves to the discussion of breast cancer, lung cancer, brain cancer, and skin cancer. The purpose of this bibliographic review is to provide researchers opting to work in implementing deep learning and artificial neural networks for cancer diagnosis a knowledge from scratch of the state-of-the-art achievements

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Pan-cancer classifications of tumor histological images using deep learning

    Get PDF
    Histopathological images are essential for the diagnosis of cancer type and selection of optimal treatment. However, the current clinical process of manual inspection of images is time consuming and prone to intra- and inter-observer variability. Here we show that key aspects of cancer image analysis can be performed by deep convolutional neural networks (CNNs) across a wide spectrum of cancer types. In particular, we implement CNN architectures based on Google Inception v3 transfer learning to analyze 27815 H&E slides from 23 cohorts in The Cancer Genome Atlas in studies of tumor/normal status, cancer subtype, and mutation status. For 19 solid cancer types we are able to classify tumor/normal status of whole slide images with extremely high AUCs (0.995±0.008). We are also able to classify cancer subtypes within 10 tissue types with AUC values well above random expectations (micro-average 0.87±0.1). We then perform a cross-classification analysis of tumor/normal status across tumor types. We find that classifiers trained on one type are often effective in distinguishing tumor from normal in other cancer types, with the relationships among classifiers matching known cancer tissue relationships. For the more challenging problem of mutational status, we are able to classify TP53 mutations in three cancer types with AUCs from 0.65-0.80 using a fully-trained CNN, and with similar cross-classification accuracy across tissues. These studies demonstrate the power of CNNs for not only classifying histopathological images in diverse cancer types, but also for revealing shared biology between tumors. We have made software available at: https://github.com/javadnoorb/HistCNNFirst author draf

    Few Shot Learning in Histopathological Images:Reducing the Need of Labeled Data on Biological Datasets

    Get PDF
    Although deep learning pathology diagnostic algorithms are proving comparable results with human experts in a wide variety of tasks, they still require a huge amount of well annotated data for training. Generating such extensive and well labelled datasets is time consuming and is not feasible for certain tasks and so, most of the medical datasets available are scarce in images and therefore, not enough for training. In this work we validate that the use of few shot learning techniques can transfer knowledge from a well defined source domain from Colon tissue into a more generic domain composed by Colon, Lung and Breast tissue by using very few training images. Our results show that our few-shot approach is able to obtain a balanced accuracy (BAC) of 90% with just 60 training images, even for the Lung and Breast tissues that were not present on the training set. This outperforms the finetune transfer learning approach that obtains 73% BAC with 60 images and requires 600 images to get up to 81% BAC.This study has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 732111 (PICCOLO project)

    Enhanced Convolutional Neural Network for Non-Small Cell Lung Cancer Classification

    Get PDF
    Lung cancer is a common type of cancer that causes death if not detectedearly enough. Doctors use computed tomography (CT) images to diagnoselung cancer. The accuracy of the diagnosis relies highly on the doctor\u27sexpertise. Recently, clinical decision support systems based on deep learningvaluable recommendations to doctors in their diagnoses. In this paper, wepresent several deep learning models to detect non-small cell lung cancer inCT images and differentiate its main subtypes namely adenocarcinoma,large cell carcinoma, and squamous cell carcinoma. We adopted standardconvolutional neural networks (CNN), visual geometry group-16 (VGG16),and VGG19. Besides, we introduce a variant of the CNN that is augmentedwith convolutional block attention modules (CBAM). CBAM aims to extractinformative features by combining cross-channel and spatial information.We also propose variants of VGG16 and VGG19 that utilize a supportvector machine (SVM) at the classification layer instead of SoftMax. Wevalidated all models in this study through extensive experiments on a CTlung cancer dataset. Experimental results show that supplementing CNNwith CBAM leads to consistent improvements over vanilla CNN. Resultsalso show that the VGG variants that use the SVM classifier outperform theoriginal VGGs by a significant margin
    • …
    corecore