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Abstract 
Histopathological images are essential for the diagnosis of cancer type and selection of optimal 
treatment. However, the current clinical process of manual inspection of images is time 
consuming and prone to intra- and inter-observer variability. Here we show that key aspects of 
cancer image analysis can be performed by deep convolutional neural networks (CNNs) across 
a wide spectrum of cancer types. In particular, we implement CNN architectures based on 
Google Inception v3 transfer learning to analyze 27815 H&E slides from 23 cohorts in The 
Cancer Genome Atlas in studies of tumor/normal status, cancer subtype, and mutation status. 
For 19 solid cancer types we are able to classify tumor/normal status of whole slide images with 
extremely high AUCs (0.995±0.008). We are also able to classify cancer subtypes within 10 
tissue types with AUC values well above random expectations (micro-average 0.87±0.1). We 
then perform a cross-classification analysis of tumor/normal status across tumor types. We find 
that classifiers trained on one type are often effective in distinguishing tumor from normal in 
other cancer types, with the relationships among classifiers matching known cancer tissue 
relationships. For the more challenging problem of mutational status, we are able to classify 
TP53 mutations in three cancer types with AUCs from 0.65-0.80 using a fully-trained CNN, and 
with similar cross-classification accuracy across tissues. These studies demonstrate the power 
of CNNs for not only classifying histopathological images in diverse cancer types, but also for 
revealing shared biology between tumors. We have made software available at: 
https://github.com/javadnoorb/HistCNN 
 

Introduction 
Histology image analysis is the gold standard for diagnosis of cancer malignancy and subtypes 
and plays a major role in selecting specific treatment modalities (He et al. 2012). The current 
clinical process of image analysis involves manual examination of  whole slide images (WSIs) 
for histopathological features by trained pathologists (Gurcan et al. 2009), a time-consuming 
process that could benefit from advances in computer-assisted technologies. Although 
pathologist agreement for severe cases is high, there is significant variability for borderline 
cases (Allison et al. 2014). For example, the inter-observer agreement for histological evaluation 
of adenocarcinoma and squamous cell carcinoma has been estimated as κ=0.48-0.64 (Stang et 
al. 2006), with additional confounding by tumor stage and the evaluator’s pulmonary expertise 
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(Grilley-Olson et al. 2013). New computational approaches to standardize image analysis could 
be valuable, as large scale cancer image mining (Cooper et al. 2018) has great potential in 
analogy with pan-cancer genomic data mining (Bailey et al. 2018). 
 
Over the past few years there have been major advances in machine learning models for 
supervised and unsupervised learning tasks including image analysis and classification 
(Russakovsky et al. 2015; Litjens et al. 2017). Tumor histopathology image analysis is well-
suited to machine learning, as it involves assessments of visual features that are context-
dependent and challenging to specify, such as cellular morphology, nuclear structure, and 
tissue architecture, but which can be learned computationally. Earlier work used support vector 
machines and random forests for tumor subtype classification and survival outcome analysis 
(Luo et al. 2017; Yu et al. 2016; Mousavi et al. 2015). However, these approaches use pre-
specified image features that do not generalize well across tumor types.  
 
Recent studies have focused on fully-automated approaches using convolutional neural 
networks (CNNs), bypassing the feature extraction step. For example, Schaumberg et. al., 
trained an ensemble of ResNet-50 CNNs to predict SPOP mutations using WSIs from 177 
prostate cancer patients with 20 positive (Schaumberg, Rubin, and Fuchs 2018), achieving AUC 
= 0.74 in cross validation and AUC = 0.64 on an independent cohort. Yu et.al., utilized multiple 
CNN architectures, including AlexNet, GoogLeNet, VGGNet-16 (Simonyan and Zisserman 
2014), and the ResNet-50 to identify transcriptomic subtypes of lung adenocarcinoma (LUAD) 
and squamous cell carcinoma (LUSC) (Yu et al. 2019). They were able to classify LUAD vs. 
adjacent dense benign tissues (AUC of 0.941-0.965), LUSC vs. adjacent dense benign tissues 
(AUCs 0.935-0.987), and LUAD vs. LUSC (AUCs 0.883-0.932). Moreover, they were able to 
predict the TCGA transcriptomic classical, basal, secretory, and primitive subtypes of LUAD 
(Wilkerson et al. 2010, 2012) with AUCs 0.771-0.892. Recently, Coudray et. al. (Coudray et al. 
2018) proposed a CNN based on Google Inception v3 architecture to classify WSIs in LUAD 
and LUSC using TCGA samples. They achieved an AUC ~ 0.99 in tumor/normal classification 
using 1,176 tumor and 459 normal WSIs, a significant improvement over non-CNN based 
models. Using a three-way classifier, their model was able to distinguish LUAD, LUSC, and 
normal tissues with a macro average AUC ~ 0.97. Further, their models were able to predict 
mutations in 6 key genes (STK11, EGFR, FAT1, SETBP1, KRAS and TP53) in LUAD with AUC 
>= 0.74. In a subsequent work (Kim et al. 2019), the same group predicted mutations in BRAF 
(AUC ~ 0.75) or NRAS (AUC ~ 0.77) on 324 melanoma slides. Other groups have used CNNs 
to distinguish tumors with high or low mutation burden (Xu et al. 2019). These recent advances 
highlight the potential of CNNs in computer assisted diagnosis on WSIs.  
 
Still, many open questions and challenges remain. Notably, because prior studies have focused 
on only a small number of tumor types, it is unclear how broadly such methods can be applied. 
This is a crucial question, as unique image pre-processing steps and neural network 
architectures might be needed to understand each cancer type. A systematic investigation 
across types would therefore be valuable, e.g. using The Cancer Genome Atlas -- a resource 
with centralized rules for image collection, sequencing and sample processing. Second, pan-
cancer cross-tissue comparisons of the efficacy of neural network classifiers could provide 
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important biological insights. This is in analogy with pan-cancer comparisons of sequence 
features, which have revealed many drivers shared or private to different types of tumors 
(Martincorena et al. 2017; Hoadley et al. 2018). Shared genomic drivers have motivated the 
cross-tissue translation of therapies e.g. the application of trastuzumab to HER2-amplified 
breast and gastric cancers (Bang et al. 2010; Piccart-Gebhart et al. 2005), and shared 
histopathological features have similar potential. 
 
In this work we undertake such a pan-cancer study of tumor image data, systematically 
analyzing 27815 whole-slide hematoxylin and eosin (H&E) images from 23 TCGA cohorts. To 
do this, we have developed image processing and neural network training software applicable 
across tumor types within an Inception CNN architecture. Using these techniques, first we report 
on neural networks trained to classify 14,550 images from 19 TCGA cohorts according to their 
tumor/normal status, showing that almost all cancers can be distinguished from normal with high 
accuracy. Second, we report on the effectiveness of neural networks trained to classify slides by 
their cancer subtype. Third, we compare the ability of neural networks trained on one cancer 
type to classify images from another cancer type. We show that a network trained for one 
cancer can often classify other cancers as well, and that these relationships overlap with known 
tissue biology. Finally, we test the ability of neural networks to classify mutation status in 
selected genes. As part of this we investigate the effect of full training of the network on 
classification of TP53 mutation status in and across breast, lung, and gastric cancers. We also 
present software to enable the applications of these methods by other groups. We anticipate 
that these pan-cancer studies and tools will motivate new imaging-based approaches for 
biomarker development and treatment design.  

Results 

Convolutional neural networks for tumor/normal classification 
We classified tumor/normal status of slides using a neural network that fed the last fully 
connected layer of an Inception v3-based CNN pre-trained on ImageNet into a fully connected 
layer with 1024 neurons (Figure 1a).  These two final fully connected layers were  trained on 
tiles of size 512x512 from WSIs. We trained this model separately on 19 TCGA cohorts having 
numbers of slides ranging from 205-1949 (Figure 2a). 70% of the slides were randomly 
assigned to the training set and the rest were assigned to the test set. To address the data 
imbalance problem, which has an appreciable impact on performance (Charte et al. 2015), the 
majority class was undersampled to match the minority class.  
 
Figure 2b shows the classification results. We first considered classification of individual tiles 
using labels such that, after removal of background regions, all tiles in a normal image are 
assumed normal and all tiles in a tumor image are assumed tumor. The CNN accurately 
classifies the tiles for most tumor types (accuracy: 0.91±0.05, precision: 0.97±0.02, recall: 
0.90±0.06, specificity: 0.86±0.07. Mean and std calculated across cohorts). We next examined 
the fraction of tiles classified as tumor or normal within each slide. The fractions of tiles 
matching the slide annotation are 0.88±0.14 and 0.90±0.13 for normal and tumor samples, 
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respectively (Figure 2c) (mean and std calculated from all cohorts pooled together). These 
fractions are high in almost all slides, and the tumor-predicted fraction (TPF) is significantly 
different between tumors and normals (p < 0.0001 per-cohort comparison of tumor vs. normal 
distributions in Figure 2c; Welch’s t-test).  We also performed the classification on a per-slide 
basis. To do this, we used the TPF in each slide as a metric to classify it as tumor or normal. 
This approach yielded extremely accurate classification results for all cohorts (Figure 2d, mean 
AUC ROC = 0.995, mean PR AUC = 0.998). 
 
We next investigated whether TPF is a meaningful measure of tumor purity. The distributions of 
TPF values were generally higher than the pathologist-reported tumor purities available on 
TCGA (Figure S1). However, we found significant positive correlations between TPF and this 
ground truth in the majority of cancer types (Figure 2d). These observations can be reconciled 
by the fact that TPF is based on neoplastic area while the pathologist annotation is based on 
cell counts, and tumor cells are larger than stromal cells. TPF is therefore a good predictor of 
tumor purity in most cohorts. Furthermore, we observe a stronger correlation for larger cohorts 
(e.g. BRCA: p=5e-17), indicating that training on larger datasets may improve development of 
classifiers for purity estimation. Overall these results suggest that our network can successfully 
classify WSIs as tumor or normal across many different cancer types. Per-tile classification 
results can potentially be improved by increasing data and developing intra-slide annotations for 
regions of interest. 

Cancer subtype classification 
Next we applied our algorithm to classify tumor slides based on their cancer subtypes (Figure 
1a). This analysis was performed on 10 tissues for which pathologist subtype annotation was 
available on TCGA: sarcoma (SARC), brain (LGG), breast (BRCA), cervix (CESC), esophagus 
(ESCA), kidney (KIRC/KIRP/KICH), lung (LUAD/LUSC), stomach (STAD), uterine (UCS/UCEC), 
and testis (TGCT). Cancer subtypes with at least 15 samples were considered, based on TCGA 
metadata (see Methods). Because comparable numbers of FFPE and flash frozen samples are 
present in TCGA cohorts (FFPE to frozen slide ratio: 1.0±0.5), both were included in our 
analysis (Figure 3a). 
 
The following subtypes were considered for each tissue (Figure 3b): brain (oligocytoma, 
oligodendroglioma, astrocytoma), breast (mucinous, mixed, lobular, ductal), cervix (adenoma, 
squamous cell carcinoma), esophagus (adenocarcinoma, squamous cell carcinoma), kidney 
(chromophobe, clear cell, papillary), lung (adenocarcinoma, squamous cell carcinoma), 
sarcoma (MFS: myxofibrosarcoma, UPS: undifferentiated pleomorphic sarcoma, DDLS: 
dedifferentiated liposarcoma, LMS: leiomyosarcomas), stomach (diffuse, intestinal), testis (non-
seminoma, seminoma), thyroid (tall, follicular, classical), uterine (carcinoma, carcinosarcoma). 
For the subtype classification task, we used the same CNN model as used for tumor/normal 
classification; however, for cohorts with more than two subtypes, a multi-class classification was 
used. Figure 3c and 3d show the per-tile and per-slide classification results (AUC ROCs 
alongside their micro- and macro-averages). As can be seen, the classifier can accurately 
identify the subtypes in most cases (AUC micro-average: 0.87±0.1; macro-average: 0.87±0.09). 
The highest  AUC micro/macro-average was achieved in kidney (AUC 0.98), while the lowest is 
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in brain with micro-average 0.60 and macro-average: 0.67. Taken together, these results 
demonstrate the ability of our classifiers to effectively detect cancer subtypes from WSIs in each 
tumor type. 

Cross-classification relationships between tumor types 
Next we used cross-classification to test the hypothesis that different tumor types share CNN-
detectable morphological features distinct from those in normal tissues. For each cancer cohort, 
we re-trained the binary CNN classifier for tumor/normal status using all samples in the cohort. 
We then tested the ability of each classifier to correctly predict tumor/normal status in the 
samples from each other cohort. Figure 4 shows a heat map of per-slide ROC AUC for all cross-
classifications, along with a hierarchical clustering on the rows and columns of the matrix of 
AUC values. Surprisingly, most neural networks trained on any single tissue were quite 
successful in classifying cancer vs. normal in most other tissues (average pairwise AUCs of off-
diagonal elements: 0.88±0.11 across all 342 cross-classifications). There were exceptions to 
this, e.g. LIHC and PAAD performed poorly for multiple cross-classifications. Still, the 
prevalence of strong cross-classifications supports the common existence of morphological 
features shared across cancer cohorts but not normal tissues. In particular, classifiers trained on 
most cohorts successfully predicted tumor/normal status in BLCA (AUC=0.98±0.02), UCEC 
(AUC=0.97±0.03), and BRCA (AUC=0.97±0.04), suggesting that these cancers most clearly 
display features universal across types. 
 
To test the biological significance of cross-classification relationships, we assessed associations 
between tissue of origin (Hoadley et al. 2018) and cross-classification clusters. Specifically, we 
labeled KIRC/KIRP/KICH as pan-kidney (Ricketts et al. 2018), UCEC/BRCA/OV as pan-
gynecological (pan-gyn) (Berger et al. 2018), COAD/READ/STAD as pan-gastrointestinal (pan-
GI) (Liu et al. 2018), and LUAD/LUSC as lung. The hierarchical clustering in Figure 4 provides a 
visualization demonstrating how cohorts of similar tissue of origin cluster closer together. We 
observed that the lung cohort clusters together on both axes, Pan-GI clusters on the test and 
partially the train axis, and Pan-Gyn also partially clusters on the test axis. Pan-Kidney partially 
clusters on both axes. To quantify this, we tested the associations between proximity of cohorts 
on each axis and similarity of their phenotype (i.e. tissue of origin/adeno-ness). Organ of origin 
was significantly associated with smaller distances in the hierarchical clustering (p-value=0.002 
for test axis and p=0.009 for train axis; Gamma index permutation test. See Methods). We also 
grouped cohorts by adenocarcinoma/carcinoma status (Figure 4, second row from top), though 
SARC and ESCA do not fit either category. The cohort distances were significantly associated 
with adeno-ness on the test axis (p-value=0.008). This indicates that cross-prediction is 
influenced by commonality in tissue architecture. 
 
We observed other intriguing relationships among cross-tissue classifications as well. 
Particularly, Pan-GI created a cluster with Pan-Gyn, sarcoma and COAD/READ, suggesting 
these tumor types have shared features related to malignancy. Likewise, Pan-Kidney and lung 
also cluster close to each other. On the other hand, the LIHC classifier is very poorly predictive 
of cancer in the Pan-Kidney cohort. LIHC has an intermediate sample size among the cohorts, 
indicating this is not due to lack of training data and likely reflects distinct biology. 
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Fully-trained CNNs for mutation classification 
A more challenging task is to predict underlying genetic aberrations from WSIs, as this should 
be heavily dependent on the aberration. We investigated this question in the multi-cohort 
context by testing our ability to predict TP53 mutations in TCGA cohorts of BRCA, LUAD and 
STAD. For this instead of transfer learning we used a fully trained CNN including the Inception 
model based on an architecture described in (Coudray et al. 2018) (Figure 1b). The cohorts 
BRCA, LUAD and STAD were selected as they have the highest frequencies of TP53 mutations 
(Cancer Genome Atlas Research Network 2014a; Cancer Genome Atlas Network 2012; Cancer 
Genome Atlas Research Network 2014b). The same under-sampling technique as in the 
tumor/normal classifier was utilized to address data imbalance. The CNN model was trained on 
70% of slides and testing was performed on the remaining 30%. Figures 5a and 5b show 
heatmaps of AUC for the classification results per-tile and per-slide, respectively. Self-cohort 
redictions (diagonal values) are generally good, with AUC values ranging from 0.65-0.80 for the 
per-slide and 0.63-0.78 for the per-tile evaluations. Stomach adenocarcinoma was notably more 
difficult to predict than lung adenocarcinoma (slide AUC=0.80), for which we found AUC values 
comparable to the AUC=0.76 LUAD results reported by (Coudray et al. 2018). It is noteworthy 
that the LUAD fully trained network outperformed a transfer learning simulation we implemented 
for the same data (slide AUC = 0.73), suggesting opportunities for improved training by 
optimizing early layers of the CNN. We also tested the ability of the model to cross-predict 
across cohorts in a similar fashion as for the tumor/normal classifiers.  Cross-predictions yielded 
AUC values with a comparable range as the self-cohort analyses (cross-prediction AUCs 0.62-
0.72 for slides; 0.60-0.70 for tiles), again supporting shared morphological features across 
tissues, though self-cohort analyses were slightly more accurate. The cross-classification results 
also supported the finding that stomach adenocarcinoma was the most difficult set on which to 
train and test. 
 

Discussion 
 
In this paper we have presented a versatile CNN-based classification framework for pan-cancer 
analysis of cancer histology images. We were able to train highly effective tumor/normal 
classifiers in nearly all cancer types (AUC: 0.995±0.008), based on cohorts as small as a few 
hundred whole slide images. Although we trained based on whole slide annotations, most tiles 
were classified consistently with their slide annotation, indicating that the classifiers learned 
global features of the WSIs. Moreover, the fraction of tumor-predicted tiles in each slide was 
strongly correlated with pathologist-annotated tumor purity, indicating that these CNNs have 
sub-slide predictive power. We also demonstrated that our algorithms are effective at classifying 
images based on histopathology subtypes. The accuracy of the model for subtype classification 
is dependent on the tissue type, but this is expected as genetic drivers of cancer subtypes vary 
and may manifest differently, and TCGA annotations may vary in quality as well. Notably, 
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subtype classification in kidney is highly accurate, while lower grade glioma subtypes are more 
difficult to identify.  
 
Remarkably, tumor/normal classifiers developed for most cancer cohorts were effective at 
distinguishing tumor/normal in most other cancers, indicating that cancers often share 
histopathological features that can be effectively learned by CNNs. Cancers known to have 
similar biology, e.g. various types of adenocarcinomas, carcinomas, or cancers with the same 
tissue of origin, showed commonalities in their trainability and classifiability. This was especially 
pronounced for UCEC, BLCA, and BRCA, for which classifiers trained on most cohorts could 
predict their cancer status in these 3 groups. Taken together, our cross classification analysis 
indicates that there are hierarchies of features that are common across all cancers or subtypes 
of histologically related cancers. 
 
Our cross-classification analysis also revealed novel pairs of cancer types (Figure 4) likely to 
have shared predictive histopathological features (e.g. kidney and lung cancers), or that may 
have unique features (e.g. LIHC). Associating such features to molecular subtypes may provide 
new insights for shared molecular markers for drug discovery, and also aid in identifying 
cancers of unknown origin. In the future, using tissue relationships to train neural networks on 
multiple cancer types may lead to improved classification and provide a more realistic data 
augmentation procedure. For the TP53 mutation calling, we observed similar behaviors. 
Although tissues varied in their amenability to the CNN approach (LUAD best, STAD worst), all 
three tissues showed positive self- and cross-classifiability. This indicates that the mutation 
classification problem will benefit from the use of tissue relationships as well. 
 
A number of key challenges need further exploration. For example, histopathology datasets are 
typically highly imbalanced in the samples of each class, which may result in biased predictions. 
This problem will be critical for analysis of regional variations within slides, e.g. in the analysis of 
intratumoral heterogeneity with multiple subclones. This is an example of multi-label, multi-
instance supervised learning with highly imbalanced data, an active area of research in machine 
learning (Charte et al. 2015; Read et al. 2015; Li and Wang 2016). Another limitation of deep 
learning models is their challenge in interpretability, which may slow identification of targetable 
biological features. Fortunately, there have been rapid developments in interpretation in the last 
decade (Yosinski et al. 2015; Samek et al. 2017), and integrating the latest advancements into 
computational pathology applications will be crucial to increasing their utility.   
 
Prior studies have distinguished tumor and normal samples and their subtypes when coupled 
with detailed spatial annotations from expert pathologists (Wei et al. 2019); however because of 
the labor-intensive nature of pathological annotation and the engineering effort needed for 
image data processing, such studies have typically been limited to a single cancer type. Our 
approach indicates that even with only slide-level annotations, high classification accuracies are 
possible by leveraging pan-cancer datasets, systematic data processing and job submission, 
and multi-tissue cross-classification findings. We expect these results will be improved if fine-
grained spatial pathological annotations can be generated at scale by the community, e.g. 
through further curation of TCGA and other cohorts. There is precedent for such community-
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based effort in computer vision and image analysis (e.g. ImageNet, CIFAR-10). The 
development of such resources with new computational approaches has the potential to not 
only accelerate pathological annotation, but also to join histopathology to genomics as pillars of 
cancer data science. 
 

Materials and Methods 

Transfer learning 
Sample selection for tumor/normal classification: Since there are very few normal FFPE 
WSIs on TCGA, we only considered flash frozen samples (with barcodes ending with BS, MS, 
or TS). We selected 19 TCGA cohorts that had at least 25 normal samples. The samples were 
randomly divided into 70% training and 30% testing. Stratified sampling was used to balance 
the ratio of positives and negatives into train and test sets.  
 
Sample selection for subtype classification: WSI images from 10 tissue types were used for 
subtype classification. FFPE and flash frozen samples are approximately balanced among the 
tumor WSIs; hence we used both for subtype classification. The samples were randomly divided 
into 70% training and 30% testing. Some cancer tissues had subtypes that were available as 
individual cohorts within TCGA. These 3 tissues were LUAD/LUSC (lung); KICH/KIRC/KIRP 
(kidney); and UCS/UCEC (uterine). For all other tissues, TCGA provided single cohorts that 
spanned multiple subtypes designated by pathologist annotations.  Only clinical subtype 
annotations with at least 15 samples were considered. Samples with ambiguous or 
uninformative annotations were not included. 
 
CNN architecture and training:  
We used a Google Inception v3-based architecture for pan-cancer tumor/normal classification of 
TCGA H&E slides. Our CNN architecture uses transfer learning on the Inception module with a 
modified last layer to perform the classification task. For predicting mutational status we utilize 
the same architecture as in Coudray et.al. (Coudray et al. 2018) and fully trained the model on 
TCGA WSIs.  
 
The output of the last fully connected layer of Inception v3 (with 2048 neurons) was fed into a 
fully connected layer with 1024 neurons. The output was encoded as a one-hot-encoded vector. 
A softmax function was utilized to generate class probabilities. Each training simulation was run 
for 2000 steps in batches of 512 samples, with 20% dropout. Mini-batch gradient descent was 
performed using Adam optimizer (Kingma and Ba 2014). To mitigate the effects of label 
imbalance in tumor/normal classification, undersampling was performed during training by 
rejecting inputs from the larger class according to class imbalances, such that, on average, the 
CNN receives equal number of tumor and normal tiles as input. Per-tile classification ROCs 
were calculated based on thresholding softmax probabilities and per-slide classification ROCs 
were based on voting on maximum softmax probability.  
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Preprocessing and transfer learning steps: 
1. Aperio SVS files from primary solid tumors or solid tissue normal samples with 20X or 

40X magnification were selected. 
2. Each SVS file was randomly assigned to train or test set. 
3. 40X images were resized to 20X. 
4. Background was removed as in (Coudray et al. 2018). 
5. Images were tiled into non-overlapping patches of 512x512 pixels. 
6. Tiles were used as inputs of the Inception v3 network (pretrained on ImageNet; 

downloaded from http://download.tensorflow.org/models/image/imagenet/inception-
2015-12-05.tgz), in a forward pass and the values of last fully connected layer 
('pool_3/_reshape:0') were stored as ‘caches’ (vectors of 2048 floating point values). 

7. Caches from similar holdout group were shuffled and assigned to a TFRecords in groups 
of 10,000.  

8. TFRecords were used as input to the transfer learning layers. 
 
Programming details: All analysis was performed in Python. Neural network codes were 
written in TensorFlow (Martín et al. 2016). Images were analyzed using OpenSlide (Goode et al. 
2013). Classification metrics were calculated using Scikit-learn (Pedregosa et al. 2011). All 
transfer learning analysis including preprocessing was performed on the Google Cloud Platform 
(GCP). The following GCP services were used in our analysis: Kubernetes, Datastore, Cloud 
Storage, and Pub/Sub. During the preprocessing steps we used up to 1,000 compute instances 
(each 8 vCPUs and 52GB memory) and up to 4,000 Kubernetes pods. Cloud Storage was used 
as shared storage system, while Pub/Sub asynchronous messaging service in conjunction with 
Datastore were used for task distribution and job monitoring of the Kubernetes cluster. This 
architecture ensures scalability and a fault tolerant process. We leveraged a similar architecture 
for the pan-cancer training/testing process. 
 

Mutational classification 
Sample selection for mutational classification: We selected flash frozen WSIs of BRCA, 
LUAD and STAD cohorts. Impactful TP53 mutations were determined using masked somatic 
mutations maf files called by MuTect2 (Cibulskis et al. 2013). Mutations which were categorized 
as MODERATE/HIGH (by VEP software (McLaren et al. 2016)) in the IMPACT column were 
considered as impactful mutations. If the gene had at least one impactful mutation in the 
sample, it was counted as mutated and was considered as wild-type otherwise. Table 1 shows 
the number of wild type and mutated slides in each cancer type.  For cross classification, the 
model was trained on the entire training cohort and predictions were made on the entire test 
cohort. 
 
Table 1. Numbers of wild type and mutated slides in each cohort. 

  

Cancer type No. Wild type slides No. Mutated slides  
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BRCA 647 338 

LUAD 295 270 

STAD 237 200 

 
 
CNN architecture and training: We utilized the Inception v3 architecture (Coudray et al. 2018) 
to predict TP53-associated mutations in BRCA, LUAD and STAD cohorts. Unlike the 
tumor/normal analysis, transfer learning was not used for mutational classifiers. Instead models 
were fully trained on input slides. As a pre-processing step, we used a fully trained normal/tumor 
classifier to identify and exclude normal tiles within each tumor slide. This filtering step ensures 
that tiles with positive mutation class label are also labeled as tumor. To predict mutations in the 
TP53 gene, we trained 2-way classifiers, assigning 70% of the images in each tissue to training 
and the remaining 30% to the test set. Cross-tissue mutational classification was performed by 
training the model on the entire train set of a cohort and performing prediction on other cohorts. 
The model outputs for tiles were used to produce slide level prediction by averaging 
probabilities. A similar downsampling as in the tumor/normal classifier was performed to handle 
data imbalance issues. 
 
Computational configuration: All of the computational tasks for mutation prediction were 
performed on linux High performance computing clusters with following specification: 8 CPUs, 
RAM: 64 GB, and  Tesla V100 GPUs, 256 GB RAM. Furthermore, The GPU-supported 
TensorFlow needed CUDA 8.0 Toolkit  and cuDNN v5.1. All GPU settings and details were 
obtained from TensorFlow and TF-slim documentations and NVIDIA GPUs support. 
 
Cross-classification statistics: Hierarchical clustering was applied to cross-classification per-
slide AUC values using UPGMA with Euclidean distance. To determine the association between 
clustering and independent phenotypic labels (i.e. organ and adeno-ness), we used Gamma 
index of spatial autocorrelation from the Python package PySal (Rey and Anselin 2007). 
Gamma index is defined as (Hubert, Golledge, and Costanzo 1981): 

� �  ∑�,� ������, 

where  � is the feature matrix and �is the weight matrix, and indices range over cancer cohorts. 
For each axis and each phenotype group (i.e. organ or adeno-ness), we calculate a separate 
Gamma index. We define ��� � 1 if cohorts � and 	 have the same phenotype (e.g both are 

adenocarcinoma) and ��� � 0 otherwise. For weights we set  ��� � 1 if cohorts � and 	are 

immediately clustered next to each other and ��� � 0 otherwise. P-values are then calculated by 

permutation test using the PySal package. We dropped any cohort with ‘Other’ phenotype from 
this analysis. 
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Data/Code Availability 
Codes used in this analysis can be found on the following GitHub page: 
https://github.com/javadnoorb/HistCNN 
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Supplementary Material 
 
Figure S1: Distribution of tumor purity as predicted by our CNN model compared to the 
pathologist reports 
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Figures 
Figure 1) Classification pipelines. a) Transfer learning pipeline for tumor/normal and subtype
classification b) Full training pipeline for mutation classification  
 

 
  

pe 

 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/715656doi: bioRxiv preprint first posted online Jul. 26, 2019; 

http://dx.doi.org/10.1101/715656
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2) Tumor/normal classification using CNNs. (a) Numbers of tumor and normal slides 
in test and training sets. (b) Per-tile classification metrics (c) Fraction of tiles within each slide 
predicted as tumor (d) per slide AUC values for tumor/normal classification for ROC and 
precision-recall curve (PR) (e) Pearson correlation coefficients between predicted and 
pathologist evaluation of tumor purity. P-values are based on permutation test of the dependent 
variable after Bonferroni correction across all cohorts. 
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Figure 3) Subtype classification using CNNs. (a) Number of samples used for training. (b) 
number of samples for each subtype (c) AUC ROC for subtype classification per tile (d) and per 
slide.  
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Figure 4) Per-slide AUC values for cross classification of tumor/normal status. The
hierarchically clustered heatmap shows pairwise AUC values of CNNs trained on the
tumor/normal status of one cohort (train axis) tested on the tumor/normal status of another
cohort (test axis). Adeno-ness (adenocarcinoma vs. non-adeno carcinoma) and organ of origin
(lung, kidney, gastrointestinal, gynecological) for each cohort are marked with colors on the
margins. Cohorts with ambiguous or mixed phenotype are marked as ‘Other’. 
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Figure 5) Classification of TP53 mutation status for breast cancer, lung adenocarcinoma,
and stomach adenocarcinoma. Cross- and self- classification AUC values from balanced
deep learning models (with 95% CIs) are given (a) per-slide and (b) and per-tile.  
a 
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