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ABSTRACT

Although deep learning pathology diagnostic algorithms

are proving comparable results with human experts in a wide

variety of tasks, they still require a huge amount of well an-

notated data for training. Generating such extensive and well

labelled datasets is time consuming and is not feasible for cer-

tain tasks and so, most of the medical datasets available are

scarce in images and therefore, not enough for training. In this

work we validate that the use of few shot learning techniques

can transfer knowledge from a well defined source domain

from Colon tissue into a more generic domain composed by

Colon, Lung and Breast tissue by using very few training ima-

ges.

Our results show that our few-shot approach is able to

obtain a balanced accuracy (BAC) of 90 % with just 60 trai-

ning images, even for the Lung and Breast tissues that we-

re not present on the training set. This outperforms the fine-

tune transfer learning approach that obtains 73 % BAC with

60 images and requires 600 images to get up to 81 % BAC.

Index Terms— Histopathology analysis, few shot lear-

ning, convolutional neural network, domain adaptation, opti-

cal biopsy

1. INTRODUCTION

The generalization of Convolutional Neural Networks [1]

have revolutionized the field of biomedical imaging analysis

[2] demonstrating diagnostic accuracy at expert level. Exam-

ples can be found in many different tasks, such as diabetic re-

tinopathy screening [3], skin lesion classification [4], lymph

node metastasis detection [5] or histopathology analysis [6, 7]

among others.

Although these deep learning methods are capable of ob-

taining unprecedented performance not achievable by classi-

cal machine learning algorithms, they normally require seve-

ral thousands of well-labeled images to generate robust met-

hods with the appropriate generalization capabilities. Small

datasets are usually obtained at clinical settings. Creating the-

se datasets is time consuming and might not be feasible for

early clinical studies, for rare diseases or for new imaging

modalities.

In this work we take the few shot learning approach from

a metric learning perspective where new concepts and new re-

presentation are learned from few samples. A Deep Siamese

Neural Network [8] is adapted to learn class distances from a

source domain Ds composed by a multi-class dataset of co-

lorectal tissue textures [9]. Then, a few-shot learning scheme

is applied into a target domain Dt composed by a dataset of

healthy and tumoral samples of colon, breast and lung tissue

where a comparison on the classification performance among

the number of training samples is performed.

2. RELATED WORK

Transfer learning problem has been traditionally covered

by the use of fine-tuning methods [10] that incorporate the

knowledge from a domain source Ds into a target domain Dt

by using a pre-trained network at Ds where its final layers are

adapted to perform the task at Dt. These weights are trained

for the task at Dt while maintaining the pre-trained weights

from Ds followed by a final training over all the network la-

yers. Deep Siamese Neural Networks were adapted for one

shot learning by Koch [8] where two identical classification

neural networks are joined by their final feature extraction la-

yer. This network is fed by two different images and is op-

timized by a loss function that tends to pull apart the input

images belonging to different classes and pushing together

images from identical classes acting as a metric learning loss

that maps the distance between similar and different classes.
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Euclidean-distance-based loss functions like contrastive loss

[11] has played an important role in class distance learning,

while contrastive loss uses the absolute distances of the mat-

ching pairs and non-matching pairs. Triplet loss [12] consi-

ders also the relative difference of the distances by minimi-

zing the distances between an anchor and a positive sample

of the same class and maximizing the distance between the

anchor and a negative sample of different class being more

prone to convergence as the loss performs simultaneous mi-

nimization for the positive and negative matching samples.

3. DESCRIPTION OF THE DATASETS

In order to validate the few-shot approach, we have selec-

ted two different datasets: an extensive dataset from a source

domain Ds that will be used as support dataset for metric lear-

ning and a second dataset from target domain Dt that will be

used for few-shot learning validation.

3.1. Dataset - Ds

Public dataset [9] from the University Medical Center

Mannheim (Germany). Contains tissue samples obtained

from low-grade and high-grade primary tumours of digitali-

zed colorectal cancer tissue slides. The database is divided

into eight different types of textures that are present on the

tumours samples: 1. tumour epithelium, 2. simple stroma,

3. complex stroma, 4. immune cells, 5. debris and mucus,

6. mucosal glands, 7. adipose tissue and 8. background, as

depicted in Fig. 1. There are 625 image samples per class,

producing a total dataset of 5000 image tiles of dimension

150 px x 150 px (74 µm x 74 µm).

Fig. 1: Sample images from dataset Ds [9]. First row: Tumour

epithelium, stroma, complex, immune cells. Second row: de-

bris, mucosa, adipose and empty tile samples are depicted.

3.2. Dataset -Dt

Extensive private dataset with data from the Basque Bio-

bank (BIOEF – Spain) obtained at five local hospitals of the

Basque Public Health system-Osakidetza with the collabora-

tion of 10 specialized pathologists. It contains healthy and

tumoral samples from digitized tissue slides of three diffe-

rent organs: colon, breast and lung. Various types of tumour

are considered: colon adenocarcinoma, breast ductal carcino-

ma, breast lobular carcinoma, lung adenocarcinoma and lung

squamous cell carcinoma. Colon samples are classified into

low or high grade, breast samples into grade I, II or III, whe-

reas lung samples are organized into stage IA, IIA, IB and

IIB. The database contains a total of 259,425 images tiles of

dimension 1300px x 1300px (162µm x 162µm).

The original tissue slides have been annotated by a panel

of expert pathologists. According to their criteria, the diag-

nosis assigned to each slide is the most significant diagnosis

encountered within. Since original digitized slides are huge,

the same slice can contain parts with healthy, low-grade tu-

mour and high-grade tumour tissue at the same time (plus

background, adipose tissue, etc). For this reason, the database

includes a reviewed subset of 1755 image tiles which are re-

presentative of its associated annotated diagnosis.In order to

validate the few-shot approach and ensure the integrity of the

data used as input, the experiments performed in this work

make use of this subset.

The Biopool Colon, Breast and Lung Hematoxylin-Eosin

dataset (B-CBL-HE) request form is available from the Bas-

que Biobank’s catalogue web-page [13].

Fig. 2: Sample images from dataset Dt [14]. Upper row are

healthy samples and lower row tumoral samples.From left to

right: colon, breast and lung tissue are depicted.

4. PROPOSED METHOD

Based on previous research in siamese neural networks

[8], we propose to adapt such an architecture to transfer the

knowledge gained on a complete and well-labeled dataset (da-

taset Ds) from a source domain to the target domain Dt by

using just a few images from Dt for training. The hypothe-

sis is that the siamese network will learn feature and distance

representations from the eight textures present in tumoral tis-

sues and will transfer that knowledge to classify tumoral and

healthy tissues on a more generic domain Dt.



4.1. Histology Siamese Network

We train a Deep Siamese Neural Network over dataset Ds

to learn its inherent characteristics that map the class distan-

ces from the source domain Ds, and to apply it as a feature ex-

tractor in a target domain Dt, and use those low-dimensional

representations of the images to train a shallow classifier that

can perform the classification task at Dt with very few sam-

ples.

4.1.1. Network architecture

As depicted in Fig. 3, we use a three-headed siamese net-

work, in which all the weights and biases are tied. Network

symmetry assures network input commutativity. Three ima-

ges Xp, Xa and Xn are used as input during training stage.

Xa represents an image from a certain class, Xp an image of

same class as Xa and Xn an image of a different class than

Xa.

A VGG16 [15] network with some modifications is used

as base-network. The fully connected layers containing 4096

nodes were removed in order to reduce the number of para-

meters from 139M to less than 18M to prevent over-fitting

by. As suggested by[12], we replace this by adding a single

128 neuron layer to get a embedding layer fi that acts as a

low-dimensional representation of the input images.

Fig. 3: Histology Siamese Network training phase.

As depicted in Fig. 3 , the VGG16 network is able to ge-

nerate embeddings for each of the input images. During the

training stage, we force the embeddings fp and fa from Xp

and Xa images to be as close as possible while pulling apart

fn and fa representations from Xn and Xa images. This is

achieved by using a non-linear version (1) of the triplet loss

function [12] (2).

The reason to use the Lossless version (1) of triplet loss

is that the original triplet loss annuls the gradient for losses

below zero, making more difficult to reach local minima. The

Lossless triplet, however, captures the information for negati-

ve values, and additionally, its non-linearity boosts penaliza-

tion as the distance grows.
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Equations (1) and (2) show these triplet and lossless triplet

functions where fi corresponds to the embedding vector of

the anchor,positive or negative sample on the ith triplet on a

batch, β and D are parameters set up to 128 (the dimension of

the embedding vector) and ǫ is a small number.

4.1.2. Training procedure

The siamese network is trained over the source domain

Ds dataset by minimizing (1). To enhance convergence du-

ring the siamese network training stage, we enforce triplet ge-

neration in a way that a triplet is composed by three samples

that present high difficulty on classification. This is done by

solving a classification problem at the source dataset Ds in

first instance and analyzing which categories are confused by

computing a confusion matrix where a triplet sampling pro-

bability function is obtained.

4.1.3. Shallow Classifier

The previously trained siamese neural network at source

domain Ds is able to extract, for a image Xi an image em-

bedding fi. This embedding vector is a low-dimensional re-

presentation of Xi that minimizes (1) and thus, is designed to

estimate the distance among Ds classes.

Fig. 4: Histology Siamese Network prediction phase.

This shallow classifier is trained from a reduced number

of sample images Xs from the target domain Dt. These Xs

sample images are described by their feature vector fi that is

obtained from the trained siamese network as depicted in Fig.

4 . fi set is then used to train a classification Support Vector

Machine (SVM) [16] where a linear kernel has been selected.

Given n points of the form

(
#»

f 1, y1), ..., (
#»

f n, yn)

where the yi are either 1 or −1, each indicating the class to

which the point
#»

f i belongs. Each
#»

f i is a 128-dimensional

real vector which is the output of the siamese network. The

aim is to find the maximum-margin hyperplane that divides

the group of points
#»

f i for which yi = 1 from the group of

points for which yi = −1.



5. RESULTS

5.1. Network training at source domain Ds

In order to validate our proposed few-shot approach, both

Ds and Dt datasets were divided into train (80 %), validation

(10 %) and test (10 %) sets.

To work on similar scaling, dataset Ds was re-scaled by

a factor of 2 (300px x 300px) to match Dt. In the case of

dataset Dt, images are cropped into 300px x 300px. At each

training interaction, data augmentation such as spatial trans-

formations, Gaussian blur and color transformations [17] ha-

ve been applied randomly and the resulting image is cropped

into 224px x 224px.

The proposed Histology Siamese Network is trained over

the training set at Ds by minimizing equation (1).

5.2. Learning at target domain Dt with few samples

Dt task is learned sequentially from a different number

N of Dt images per class that are obtained from the training

subset of the Dt dataset. The selected N images per class are

described by the Histology Siamese network and their inter-

nal representation fi vectors are used to train a linear SVM

that classifies the image. The obtained classifier was tested

against the full testing set from the Dt domain. To provide

statistically significant results, this process was repeated 50

times for each N value.

5.3. Fine-tuned VGG16 network

For comparative purposes, an identical architecture VGG16

classification network was generated. This network matches

with the base network of the Siamese approach by a single

fully connected layer of 128 nodes. Pre-trained weights from

Imagenet are used for initialization and the last convolutional

block and fully connected layers are trained over the source

dataset Ds to adjust the domain representation to the histo-

logy domain. This fine tuning is followed by a full weight

training over the source domain [18].

This baseline VGG16 network last layer is then replaced

and fine-tuned over dataset Dt. Following the same procedure

as with Histology Siamese network, N images per class are

used when fine tuning. As training process requires significant

time, we trained the network 5 times for each N.

5.4. Discussion

The relation between the obtained accuracy over the tes-

ting subset of Dt and the number of images per class are de-

picted in Fig. 5. It is worth noting that the obtained accuracy

of the Histology Siamese Network was around 80 % for one

single training image per class and it very rapidly increased

almost reaching its maximum at around twenty samples per

class. Then reaches a plateau in the upper border of > 90%
accuracy.

It is of interest that although source domain Ds was com-

posed only by colon tissue images we have been able to per-

form few shot learning within a more generic target domain

where tissues from colon, breast and lung tissues were pre-

sent.

Fig. 5: Accuracy (left) and balanced accuracy (right) of both

networks over domain Dt. (x-axis: samples per class).

6. CONCLUSIONS

A common problem when developing machine learning-

based biomedical applications is the lack of data. In this pa-

per, it has been demonstrated that a Histology Siamese Net-

work clearly outperforms traditional fine-tuned neural net-

work when extensive databases are not available. At least 130

samples per class are needed for the fine-tuned network to

achieve accuracy 15 % lower than the equivalent siamese. It

is notable how the Histology Siamese Network surpasses a

90 % accuracy with just 20 samples/class.

We have also validated that it is possible to transfer know-

ledge from a more restrictive source domain Ds where only

colon images were present into a more generic domain Dt

where other tissues such as colon, breast and lung are present.

Novel imaging technologies (e.g. OCT, MPT, etc) can

provide microscopic information comparable to in-vivo his-

topathology with a label-free modality. The development of a

decision support system for real-time diagnosis via “optical

biopsy” is one of the aims of the proposed work. However,

in these domains, no extensive datasets are available or can

be produced without extensive clinical trials. It is therefore

desirable to explore techniques that may reduce the reliance

on large datasets for training of deep learning algorithms.

Additionally, transfer learning solutions moving from histo-

pathology images to images from these new modalities are

feasible with the approach proposed in this article and aimed

to be developed in the near future.
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