33 research outputs found

    A Three-dimensional Convolutional-Recurrent Network for Convective Storm Nowcasting

    Full text link
    Very short-term convective storm forecasting, termed nowcasting, has long been an important issue and has attracted substantial interest. Existing nowcasting methods rely principally on radar images and are limited in terms of nowcasting storm initiation and growth. Real-time re-analysis of meteorological data supplied by numerical models provides valuable information about three-dimensional (3D), atmospheric, boundary layer thermal dynamics, such as temperature and wind. To mine such data, we here develop a convolution-recurrent, hybrid deep-learning method with the following characteristics: (1) the use of cell-based oversampling to increase the number of training samples; this mitigates the class imbalance issue; (2) the use of both raw 3D radar data and 3D meteorological data re-analyzed via multi-source 3D convolution without any need for handcraft feature engineering; and (3) the stacking of convolutional neural networks on a long short-term memory encoder/decoder that learns the spatiotemporal patterns of convective processes. Experimental results demonstrated that our method performs better than other extrapolation methods. Qualitative analysis yielded encouraging nowcasting results.Comment: 13 pages, 11 figures, accepted by 2019 IEEE International Conference on Big Knowledge The copyright of this paper has been transferred to the IEEE, please comply with the copyright of the IEE

    Application of Machine Learning to Multiple Radar Missions and Operations

    Get PDF
    This dissertation investigated the application of Machine Learning (ML) in multiple radar missions. With the increasing computational power and data availability, machine learning is becoming a convenient tool in developing radar algorithms. The overall goal of the dissertation was to improve the transportation safety. Three specific applications were studied: improving safety in the airport operations, safer air travel and safer road travel. First, in the operations around airports, lightning prediction is necessary to enhance safety of the ground handling workers. Information about the future lightning can help the workers take necessary actions to avoid lightning related injuries. The mission was to investigate the use of ML algorithms with measurements produced by an S-band weather radar to predict the lightning flash rate. This study used radar variables, single pol and dual-pol, measured throughout a year to train the machine learning algorithm. The effectiveness of dual-pol radar variables for lighting flash rate prediction was validated, and Pearson's coefficient of about 0.88 was achieved in the selected ML scheme. Second, the detection of High Ice Water Content (HIWC),which impact the jet engine operations at high altitudes, is necessary to improve the safety of air transportation. The detection information help aircraft pilots avoid hazardous HIWC condition. The mission was to detect HIWC using ML and the X-band airborne weather radar. Due to the insufficiency of measured data, radar data was synthesized using an end-to-end airborne weather system simulator. The simulation employed the information about ice crystals' particle size distribution (PSDs), axial ratios, and orientation to generate the polarimetric radar variables. The simulated radar variables were used to train the machine learning to detect HIWC and estimate the IWC values. Pearson's coefficient of about 0.99 was achieved for this mission. The third mission included the improvement of angular resolution and explored the machine learning based target classification using an automotive radar. In an autonomous vehicle system, the classification of targets enhances the safety of ground transportation. The angular resolution was improved using Multiple Input Multiple Output (MIMO) techniques. The mission also involved classifying the targets (pedestrian vs. vehicle) using micro-Doppler features. The classification accuracy of about 94% was achieved

    Improving the rainfall nowcast for fine temporal and spatial scales suitable for urban hydrology

    Get PDF
    Accurate Quantitative Precipitation Forecasts (QPF) at high spatial and temporal resolution are crucial for urban flood prediction. Typically, Lagrangian persistence based on radar data is used to nowcast rainfall intensities with up to 3 hours lead time, but nevertheless is not able to deliver reliable QPFs past 20 min lead time (known as well as the predictability limit). Especially, for extreme events causing pluvial floods, accurate QPFs cannot be achieved past 5 min lead time. Furthermore when compared to gauge recordings, the QPFs are not useful at all. There is an essential need to provide better QPFs by improving the rainfall field supplied to the nowcast and by employing non-linear processes for the extrapolation of rainfall into the future. This study is focused on these two main problems, and it investigates different geostatistical and data-driven methods for the improvement of the QPFs at fine scales. The study was conducted within the Hannover radar range where observations between 2000 to 2018 were available. The skill of the nowcast models was assessed on the point (1 km2 and 5 min) and storm scale, based on continuous criteria comparing both radar and gauge observations. A total of 100 gauge measurements inside the study area were as well employed for the assessment. From the period 2000-2012, 93 events of different properties were distinguished and used as a basis for the method development and assessment. Two state-of-the-art nowcast models (HyRaTrac and Lucas-Kanade) were chosen as reference and used as benchmarks for improvement. To improve the rainfall field, a real time merging between radar and gauge data was investigated. Among different merging techniques (mean field bias, quantile bias correction and kriging interpolation), conditional merging (CM) yielded the best rainfall field. When fed to the reference nowcast models, it led to improvements of up to 1 hour of the predictability limit and of the agreement between radar based QPFs and gauge data. To improve the QPF accuracy even further, two different data driven techniques were developed in order to learn non-linear behaviours from past observed rainfall. First, a nearest neighbour approach (k-NN) was developed and employed instead of Lagrangian Persistence on the HyRaTrac nowcast model. The k-NN method accounts for the non-linearity of the storm evolution by consulting k-similar past storms. A deterministic nowcast issued by averaging the behaviours from the 3 most similar storms yielded the best results, extending the predictability limit at the storm scale to 2-3 hours. Second, an ensemble nowcast accounting for the 10 closest neighbours was generated in order to estimate the uncertainty of the QPF. Third, a deep convolution neural network (CNN) was trained on past merged data, in order to learn the non-linearity of the rainfall process. The network based on the last 15 min of observed radar images proved to successfully capture death and decay and partly birth processes, and extended the rainfall predictability limit at the point scale to 3 hours. Lastly, the methods were tested on 17 convective extreme events, extracted from the period 2013-2018, to compare the tested methods for an urban flood nowcast application. The CNN based on merged data outperformed both reference methods as well as the k-NN based nowcast, with the predictability limit reaching 30 – 40 min. The k-NN, although better than the Lagrangian persistence, suffered greatly from the shortcomings of the storm tracking algorithm present under fast moving and extreme storms. To conclude, even though clear improvements were achieved, there is a clear limit to the data-driven methods that cannot be overcome, unless coupled with the convection initialization from Numerical Weather Prediction (NWP) models. Nevertheless, complex relationships learned from past observed data, together with a better rainfall field as input, were proven to be useful in increasing the QPF accuracy and predictability limits for urban hydrology application.Quantitative Niederschlagsvorhersagen (QPF) in hoher räumlicher und zeitlicher Auflösung sind entscheidend für die Prognose urbaner Sturzfluten. Der auf Radardaten basierende Lagrange Ansatz wird typischerweise für Regenintensitätsvorhersagen mit einem Horizont von 3 Stunden verwendet. Zuverlässig ist dieser allerdings nur bis 20 Minuten (bekanntes Prognoselimit). Bei extremen Niederschlagsereignissen, die urbane Sturzfluten verursachen, ist das Limit sogar bereits bei 5 Minuten erreicht. Außerdem kommt es zu deutlichen Abweichungen zwischen der QPF und den Messdaten an Niederschlagsstationen. Eine Verbesserung der QPF ist demnach zwingend erforderlich. Eine solche Verbesserung kann durch die Anpassung des Eingabe-Niederschlagsfeldes und durch die Anwendung nichtlinearer Prozesse für die Extrapolation des Niederschlags erreicht werden. Die vorliegende Studie konzentriert sich auf diese beiden Hauptprobleme und untersucht verschiedene geostatistische und Data-Mining Methoden zur Verbesserung der QPF auf solchen Skalen. Die Studie wurde im Radarbereich von Hannover durchgeführt, wo Beobachtungsdaten von 2000 bis 2018 verfügbar sind. Die Güte der Nowcast-Modelle wurde auf der Punkteskala (1 km2 und 5 min.) anhand kontinuierlicher Kriterien evaluiert und in Relation zu Radar- und Stationsbeobachtungen gesetzt. Hierfür wurden insgesamt 100 Stationsmessungen innerhalb des Untersuchungsgebietes verwendet. Aus dem Zeitraum 2000 bis 2012 wurden 93 Ereignisse mit unterschiedlichen Eigenschaften als Grundlage für die Methodenentwicklung und -beurteilung ausgewertet. Zwei gängige Nowcast-Modelle (HyRaTrac und Lucas-Kanade) wurden als Referenzmodelle ausgewählt und als Maßstab für Verbesserungen eingesetzt. Um das Niederschlagsfeld zu verbessern, wurden Radar- und Stationsdaten in Echtzeit zusammengeführt. Unter den verschiedenen Methoden (Mean Field Bias, Quantile Mapping Bias, Kriging-Interpolation) ergab das Conditional Merging (CM) das optimalste Niederschlagsfeld. Als Input für die beiden Referenzmodelle verwendet, führte das CM zu einer Verlängerung des Prognoselimits auf bis zu eine Stunde. Auch die Übereinstimmung der radargestützten QPF mit den Stationsdaten verbesserte sich. Um das Prognoselimit noch weiter auszudehnen, wurden zwei verschiedene Data-Mining Techniken entwickelt, um die nichtlinearen Verhaltensweisen aus vergangenen Regenfällen zu erlernen: Zunächst wurde ein Nächster-Nachbar-Ansatz (k-NN) entwickelt und anstelle der Lagrange Persistenz im HyRaTrac-Nowcast-Modell eingesetzt. Die k-NN-Methode berücksichtigt die Nichtlinearität der Regensturmentwicklung, indem k-ähnliche vergangene Stürme herangezogen werden. Ein deterministischer Nowcast, der durch Mittelwertbildung der Verhaltensweisen der drei ähnlichsten Stürme erstellt wurde, lieferte die besten Ergebnisse und verlängerte das Prognoselimit auf bis zu zwei-drei Stunden. Ein Ensemble-Nowcast, bei dem die zehn nächsten Nachbarn berücksichtigt wurden, wurde ebenfalls erstellt, um die Unsicherheit des QPF abzuschätzen. Zudem wurde ein künstliches neuronales Netz (CNN) basierend auf vergangenen Daten entwickelt, um die Nichtlinearität des Niederschlagsprozesses zu berücksichtigen. Das neuronale Netz, das mit den beobachteten Radarbildern der letzten 15 Minuten gefüttert wurde, erwies sich als erfolgreich in der Erfassung von Todes-, Zerfalls- und Geburtsprozessen von Stürmen und konnte das Prognoselimit auf bis zu drei Stunden erweitern. Um die Wirksamkeit der entwickelten Methoden für die Vorhersage urbaner Sturzfluten zu untersuchen, wurden sie auf 17 konvektive Extremereignisse aus dem Zeitraum 2013 bis 2018 angewendet. Der k-NN Ansatz war zwar besser als die Lagrange Persistenz, litt aber stark unter den Fehlern des Sturmverfolgungs-Algorithmus bei schnellen und extremen Stürmen. Das CNN übertraf sowohl die Referenzmethoden als auch den k-NN-basierten Nowcast. Das Prognoselimit konnte so von 5 auf 30 bis 40 Minuten erweitert werden. Für eine weitere Verbesserung zeichnete sich letztlich eine klare Grenze ab, die nur mit der Konvektionsinitialisierung aus Numerischen Wettervorhersagemodellen (NWP-Modellen) überwunden werden kann. Im Vergleich mit den ausgewählten Referenzmodellen, können, durch die hier entwickelten Methoden, die Genauigkeit und das Prognoselimit der QPF in der städtischen Hydrologie erheblich verbessert werden

    Deep learning model based on multi-scale feature fusion for precipitation nowcasting

    Get PDF
    Forecasting heavy precipitation accurately is a challenging task for most deep learning (DL)-based models. To address this, we present a novel DL architecture called “multi-scale feature fusion” (MFF) that can forecast precipitation with a lead time of up to 3 h. The MFF model uses convolution kernels with varying sizes to create multi-scale receptive fields. This helps to capture the movement features of precipitation systems, such as their shape, movement direction, and speed. Additionally, the architecture utilizes the mechanism of discrete probability to reduce uncertainties and forecast errors, enabling it to predict heavy precipitation even at longer lead times. For model training, we use 4 years of radar echo data from 2018 to 2021 and 1 year of data from 2022 for model testing. We compare the MFF model with three existing extrapolative models: time series residual convolution (TSRC), optical flow (OF), and UNet. The results show that MFF achieves superior forecast skills with high probability of detection (POD), low false alarm rate (FAR), small mean absolute error (MAE), and high structural similarity index (SSIM). Notably, MFF can predict high-intensity precipitation fields at 3 h lead time, while the other three models cannot. Furthermore, MFF shows improvement in the smoothing effect of the forecast field, as observed from the results of radially averaged power spectral (RAPS). Our future work will focus on incorporating multi-source meteorological variables, making structural adjustments to the network, and combining them with numerical models to further improve the forecast skills of heavy precipitations at longer lead times.</p

    The Effects of Spatial Interpolation on a Novel, Dual-Doppler 3D Wind Retrieval Technique

    Full text link
    Three-dimensional wind retrievals from ground-based Doppler radars have played an important role in meteorological research and nowcasting over the past four decades. However, in recent years, the proliferation of open-source software and increased demands from applications such as convective parameterizations in numerical weather prediction models has led to a renewed interest in these analyses. In this study, we analyze how a major, yet often-overlooked, error source effects the quality of retrieved 3D wind fields. Namely, we investigate the effects of spatial interpolation, and show how the common practice of pre-gridding radial velocity data can degrade the accuracy of the results. Alternatively, we show that assimilating radar data directly at their observation locations improves the retrieval of important dynamic features such as the rear flank downdraft and mesocyclone within a simulated supercell, while also reducing errors in vertical vorticity, horizontal divergence, and all three velocity components.Comment: Revised version submitted to JTECH. Includes new section with a real data cas
    corecore