The Effects of Spatial Interpolation on a Novel, Dual-Doppler 3D Wind Retrieval Technique

Abstract

Three-dimensional wind retrievals from ground-based Doppler radars have played an important role in meteorological research and nowcasting over the past four decades. However, in recent years, the proliferation of open-source software and increased demands from applications such as convective parameterizations in numerical weather prediction models has led to a renewed interest in these analyses. In this study, we analyze how a major, yet often-overlooked, error source effects the quality of retrieved 3D wind fields. Namely, we investigate the effects of spatial interpolation, and show how the common practice of pre-gridding radial velocity data can degrade the accuracy of the results. Alternatively, we show that assimilating radar data directly at their observation locations improves the retrieval of important dynamic features such as the rear flank downdraft and mesocyclone within a simulated supercell, while also reducing errors in vertical vorticity, horizontal divergence, and all three velocity components.Comment: Revised version submitted to JTECH. Includes new section with a real data cas

    Similar works

    Full text

    thumbnail-image

    Available Versions