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Abstract

Accurate Quantitative Precipitation Forecasts (QPF) at high spatial and temporal resolution
are crucial for urban flood prediction. Typically, Lagrangian persistence based on radar data is
used to nowcast rainfall intensities with up to 3 hours lead time, but nevertheless is not able to
deliver  reliable  QPFs  past  20  min  lead  time  (known  as  well  as  the  predictability  limit).
Especially, for extreme events causing pluvial floods, accurate QPFs cannot be achieved past 5
min lead time. Furthermore when compared to gauge recordings, the QPFs are not useful at
all. There is an essential need to provide better QPFs by improving the rainfall field supplied to
the nowcast and by employing non-linear processes for the extrapolation of rainfall into the
future.  This  study  is  focused  on  these  two  main  problems,  and  it  investigates  different
geostatistical and data-driven methods for the improvement of the QPFs at fine scales.

The study was conducted within the Hannover radar range where observations between
2000 to 2018 were available. The skill of the nowcast models was assessed on the point (1 km2

and 5 min) and storm scale, based on continuous criteria comparing both radar and gauge
observations. A total of 100 gauge measurements inside the study area were as well employed
for  the  assessment.  From  the  period  2000-2012,  93  events  of  different  properties  were
distinguished and used as a basis for the method development and assessment. Two state-of-
the-art nowcast models (HyRaTrac and Lucas-Kanade) were chosen as reference and used as
benchmarks for improvement.

To  improve  the  rainfall  field,  a  real  time  merging  between  radar  and  gauge  data  was
investigated. Among different merging techniques (mean field bias, quantile bias correction
and kriging interpolation), conditional merging (CM) yielded the best rainfall field. When fed
to the reference nowcast models, it led to improvements of up to 1 hour of the predictability
limit and of the agreement between radar based QPFs and gauge data. To improve the QPF
accuracy even further, two different data driven techniques were developed in order to learn
non-linear behaviours from past observed rainfall. First, a nearest neighbour approach (k-NN)
was developed and employed instead of  Lagrangian Persistence on the HyRaTrac nowcast
model. The k-NN method accounts for the non-linearity of the storm evolution by consulting
k-similar past storms. A deterministic nowcast issued by averaging the behaviours from the 3
most similar storms yielded the best results, extending the predictability limit at the storm
scale to 2-3 hours. Second, an ensemble nowcast accounting for the 10 closest neighbours was
generated in order to estimate the uncertainty of the QPF. Third, a deep convolution neural
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network (CNN) was trained on past merged data, in order to learn the non-linearity of the
rainfall process. The network based on the last 15 min of observed radar images proved to
successfully capture death and decay and partly birth processes, and extended the rainfall
predictability limit at the point scale to 3 hours.

Lastly, the methods were tested on 17 convective extreme events, extracted from the period
2013-2018, to compare the tested methods for an urban flood nowcast application. The CNN
based  on  merged  data  outperformed  both  reference  methods  as  well  as  the  k-NN based
nowcast, with the predictability limit reaching 30 – 40 min. The k-NN, although better than
the  Lagrangian  persistence,  suffered  greatly  from the shortcomings  of  the  storm tracking
algorithm present  under  fast  moving and extreme storms.  To  conclude,  even  though clear
improvements were achieved, there is a clear limit to the data-driven methods that cannot be
overcome,  unless  coupled  with  the  convection  initialization  from  Numerical  Weather
Prediction  (NWP) models.  Nevertheless,  complex  relationships  learned from past  observed
data, together with a better rainfall field as input, were proven to be useful in increasing the
QPF accuracy and predictability limits for urban hydrology application.

Keywords: rainfall nowcast, predictability limit, data driven methods, merging methods,
urban flood forecast
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Kurzfassung 

Quantitative Niederschlagsvorhersagen (QPF) in hoher räumlicher und zeitlicher Auflösung
sind  entscheidend  für  die  Prognose  urbaner  Sturzfluten.  Der  auf  Radardaten  basierende
Lagrange Ansatz wird typischerweise für Regenintensitätsvorhersagen mit einem Horizont von
3  Stunden  verwendet.  Zuverlässig  ist  dieser  allerdings  nur  bis  20  Minuten  (bekanntes
Prognoselimit). Bei extremen Niederschlagsereignissen, die urbane Sturzfluten verursachen, ist
das  Limit  sogar  bereits  bei  5  Minuten  erreicht.  Außerdem  kommt  es  zu  deutlichen
Abweichungen  zwischen  der  QPF  und  den  Messdaten  an  Niederschlagsstationen.  Eine
Verbesserung der  QPF ist  demnach zwingend erforderlich.  Eine  solche Verbesserung kann
durch  die  Anpassung  des  Eingabe-Niederschlagsfeldes  und  durch  die  Anwendung
nichtlinearer  Prozesse  für  die  Extrapolation  des  Niederschlags  erreicht  werden.  Die
vorliegende  Studie  konzentriert  sich  auf  diese  beiden  Hauptprobleme  und  untersucht
verschiedene  geostatistische  und  Data-Mining  Methoden  zur  Verbesserung  der  QPF  auf
solchen Skalen.

Die Studie wurde im Radarbereich von Hannover durchgeführt, wo Beobachtungsdaten von
2000 bis 2018 verfügbar sind. Die Güte der Nowcast-Modelle wurde auf der Punkteskala (1 km 2

und  5  min.)  anhand  kontinuierlicher  Kriterien  evaluiert  und  in  Relation  zu  Radar-  und
Stationsbeobachtungen gesetzt. Hierfür wurden insgesamt 100 Stationsmessungen innerhalb
des Untersuchungsgebietes verwendet. Aus dem Zeitraum 2000 bis 2012 wurden 93 Ereignisse
mit  unterschiedlichen  Eigenschaften  als  Grundlage  für  die  Methodenentwicklung  und  -
beurteilung  ausgewertet.  Zwei  gängige  Nowcast-Modelle  (HyRaTrac  und  Lucas-Kanade)
wurden als Referenzmodelle ausgewählt und als Maßstab für Verbesserungen eingesetzt.

Um das  Niederschlagsfeld  zu verbessern,  wurden Radar-  und Stationsdaten  in  Echtzeit
zusammengeführt. Unter den verschiedenen Methoden (Mean Field Bias, Quantile Mapping
Bias,  Kriging-Interpolation)  ergab  das  Conditional  Merging  (CM)  das  optimalste
Niederschlagsfeld.  Als  Input  für  die beiden Referenzmodelle  verwendet,  führte das  CM zu
einer Verlängerung des Prognoselimits auf bis zu eine Stunde. Auch die Übereinstimmung der
radargestützten  QPF  mit  den  Stationsdaten  verbesserte  sich.  Um  das  Prognoselimit  noch
weiter  auszudehnen,  wurden zwei  verschiedene Data-Mining Techniken entwickelt,  um die
nichtlinearen Verhaltensweisen aus vergangenen Regenfällen zu erlernen: Zunächst wurde ein
Nächster-Nachbar-Ansatz  (k-NN)  entwickelt  und  anstelle  der  Lagrange  Persistenz  im
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HyRaTrac-Nowcast-Modell  eingesetzt.  Die k-NN-Methode berücksichtigt  die  Nichtlinearität
der Regensturmentwicklung, indem k-ähnliche vergangene Stürme herangezogen werden. Ein
deterministischer  Nowcast,  der  durch  Mittelwertbildung  der  Verhaltensweisen  der  drei
ähnlichsten  Stürme  erstellt  wurde,  lieferte  die  besten  Ergebnisse  und  verlängerte  das
Prognoselimit auf bis zu zwei-drei Stunden. Ein Ensemble-Nowcast, bei dem die zehn nächsten
Nachbarn  berücksichtigt  wurden,  wurde  ebenfalls  erstellt,  um  die  Unsicherheit  des  QPF
abzuschätzen.  Zudem  wurde  ein  künstliches  neuronales  Netz  (CNN)  basierend  auf
vergangenen  Daten  entwickelt,  um  die  Nichtlinearität  des  Niederschlagsprozesses  zu
berücksichtigen. Das neuronale Netz, das mit den beobachteten Radarbildern der letzten 15
Minuten gefüttert wurde, erwies sich als erfolgreich in der Erfassung von Todes-, Zerfalls- und
Geburtsprozessen  von  Stürmen  und  konnte  das  Prognoselimit  auf  bis  zu  drei  Stunden
erweitern. 

 Um die Wirksamkeit der entwickelten Methoden für die Vorhersage urbaner Sturzfluten zu
untersuchen, wurden sie auf 17 konvektive Extremereignisse aus dem Zeitraum 2013 bis 2018
angewendet.  Der k-NN Ansatz war zwar besser als die Lagrange Persistenz,  litt  aber stark
unter den Fehlern des Sturmverfolgungs-Algorithmus bei schnellen und extremen Stürmen.
Das CNN übertraf sowohl die Referenzmethoden als auch den k-NN-basierten Nowcast. Das
Prognoselimit  konnte  so  von 5  auf  30  bis  40  Minuten  erweitert  werden.  Für  eine  weitere
Verbesserung  zeichnete  sich  letztlich  eine  klare  Grenze  ab,  die  nur  mit  der
Konvektionsinitialisierung  aus  Numerischen  Wettervorhersagemodellen  (NWP-Modellen)
überwunden werden kann.  Im Vergleich mit  den  ausgewählten  Referenzmodellen,  können,
durch die hier entwickelten Methoden, die Genauigkeit und das Prognoselimit der QPF in der
städtischen Hydrologie erheblich verbessert werden.

Schlagwörter: Niederschlagsvorhersage, Prognoselimit, Data-Mining Methoden, Merging-
Methoden, urbane Sturzfluten
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1. INTRODUCTION

Urban floods are caused mainly by convective rainfall events that develop quite rapidly and
are characterized by short  lived and intense rainfall.  Recently,  there is  a  growing concern
towards these floods as on one hand the rainfall extreme events are becoming more intense,
short and frequent [Einfalt et al., 2009][van Dijk et al., 2013], and on the other hand the urban
areas  are  expanding due to population  growth  [Jacobson,  2011][Worldbank,  2019]. As  the
infiltration capacity in cities decreases, and more water is coming in at shorter duration, the
rainfall-runoff process becomes much faster, leading to large inundation areas. These types of
floods, typically called pluvial floods, may happen everywhere, and are expected to increase in
the future [Lau et al., 2010]. Examples of such floods are for instance a) Dortmund (Germany)
July 2008 with a rainfall volume of 200mm over 3 hours (return period Ta was over 100 years)
and a damage of 17.2 million Euro [Grünewald, 2009], b) Hull (UK) June 2007 with rainfall
volume of 100 mm in 24 hours (return period Ta ~ 150 years) that damaged 8600 residential
buildings and 1300 businesses [Coulthard and Frostick, 2010], Tokyo (Japan) August 2008 with
more than 50 mm within 30 min that caused 5 casualties [Kato and Maki, 2009]. In order to
decrease human and economic losses associated with these floods, forecasting and modelling
are very important.

To model the dynamics of the pluvial floods, urban models are built.  Given the rainfall as
an input, they are able to predict the surface water levels and surcharge flows [van Dijk et al.,
2013][Russo et al., 2015]. Since these models simulate processes that are fast (minutes to a few
hours) and at specific locations (at each street or manhole), rainfall intensities at fine scales (1-
5 min and 100m2-1km2) are a perquisite [Berne et al., 2004][Einfalt, 2005][Ochoa-Rodriguez et
al., 2015]. Therefore, accurate and fine resolution rainfall forecasts (referred to as Quantitative
Precipitation Forecast – QPF) are  necessary to model urban floods and to issue warnings.
Nevertheless, issuing accurate QPF is quite challenging due to the erratic nature of the rainfall
itself at such scales. 

The large and synoptic scale, can be modelled and predicted well enough by Numerical
Weather  Prediction  (NWP)  Models  for  days  and  even  weeks ahead,  and produce  reliable
rainfall intensities at spatial scales larger than 10km2 and accumulations longer than an hour
[Golding, 2009][Surcel  et al.,  2015].  For finer scales, however, these models are not able to
predict the exact location and the sub-hourly peaks of the rainfall intensities,  and hence are
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not suitable for urban flood application  [Kato et al., 2017][Šálek et al., 2006][Surcel et al.,
2015].  Radar  data  on  the  other  hand  can  capture  spatio-temporal  structures  of  rainfall
intensities at the desired fine scales (5min and 1km2) and give the basis for the identification
and forecasting of the rainfall storms for forecast horizons (referred here as lead times) up to
two hours (referred here as nowcasting) [Berenguer et al., 2012][Jensen et al., 2015][Lin et al.,
2005][Zahraei et al., 2012]. Even though the radar can deliver fine resolution rainfall nowcast,
it can only deliver useful results up to 20 minutes (at maximum 25 min) lead time. This is
mainly for two reasons:

First, the radar measures the rainfall intensity indirectly by capturing the reflected energy
from the water droplets in the atmosphere, and as such is prone to numerous sources of
errors. When compared to gauge data (which are typically considered the ground truth and
used for  urban model  calibration),  the radar  data show a systematic  underestimation of
rainfall  intensities.  Second,  the  radar  based  nowcast  usually  employs  a  Lagrangian
persistence to extrapolate the rainfall fields into the future. Once a rainfall pattern (storm) is
recognized, the Lagrangian persistence considers its movement as constant in time, with no
changes at its inner structure (the intensities are kept constant). Thus, such persistence is not
able to predict the birth (predicting the storm initiation before it has been observed), the
death (predicting when the storm has stopped) and the growth or decay (predicting how the
storm is changing between birth and death). Consequently, the nowcast is limited to lead
times shorter than the average lifetime of the rainfall storms. 

Attempts have been made to improve radar based nowcast by blending the Lagrangian
persistence with a NWP (in order to capture better the storm birth processes) and with a
stochastic generator (in order to model better the growth and decay processes). A famous
example of such algorithm, is the STEPS nowcast used at the UK MetOffice [Bowler et al.,
2006]. The performance of STEPS was also investigated for urban flood forecast application,
and even though it improved the nowcast skill compared to the Lagrangian persistence, it
could not yield useful nowcasts for lead times longer than 30 minutes [Foresti et al., 2016].

Ideally a one- or two-hour duration rainfall nowcast is required as an input for the urban
model (as typically the concentration times in an urban catchment are one to two hours). The
current radar based nowcasts cannot satisfy this condition, as apparently there is limit (20-30
minutes)  that  the  Lagrangian  persistence  and  the  stochastic  noise  generator  cannot
overcome (also referred here as the predictability limit). Obviously, there is a need to deliver
better radar based nowcasts by either improving the radar rainfall field or by including other
methods that account for the erratic and intermittent nature of the rainfall process.  In this
thesis, this is achieved by studying different methods in the Hannover Radar region in Lower
Saxony, Germany. 

First,  different  correction  procedures  based  on  gauge observations  are  applied  on  the
radar data in order to achieve a better rainfall field as input for the nowcast. The assumption
here is that a better rainfall field will yield better nowcasts in terms of higher predictability
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limit and better agreement with the gauge observations. Here it is investigated for the method
that is more reliable when applied online and that brings the biggest additional value to the
nowcast. Of course, the selected method should yield better results than the uncorrected radar
data or the interpolation of the gauge data.

Second, two data-driven methods are developed and applied to the radar data in order to
understand and to improve the predictability limits at fine scales. One method is the Nearest
Neighbour (k-NN) method that aims to identify storms that are behaving the same, and to
nowcast based on similar observed patterns in the past. The assumption here is that similar
storms  behave  similarly  and  display  similar  growth/decay  rates  and  death  times.
Consequently,  it  is  important  to  investigate  what  are  the  right  predictors  in  recognizing
similar  storms.  The  other  method  is  a  deep  Convolution  Neural  Network  (CNN)  trained
independently for each lead time. As neural networks have gained popularity at the recent
years, due to their ability to learn complex relationships, it is important to investigate their
potential at improving the rainfall nowcast. The assumption here is that certain growth, decay
and death patterns can be learned from past observed storms and can be applied to future
storms.

Third,  since the  sources  of  uncertainty  are  many in  a  radar  based  nowcast (the  input
merged field, the choice of the nowcast model etc.) and the models at the moment are not able
to  predict  the  exact  location  and  intensity  of  the  storm  birth,  it  is  important  to  issue
probabilistic nowcast (ensembles) instead of a deterministic one. The assumption here is that a
set  of  ensembles  nowcasts  can provide  better  prediction,  as  in  addition to the  nowcasted
rainfall intensities, they provide useful information about the uncertainty of such intensities.

Lastly, as the ultimate objective is the pluvial flood forecast, the rainfall nowcast should be
able to give reliable predictions for extreme rainfall events that can potentially cause such
floods. For this purpose, the developed nowcast methods are tested under extreme convective
events, to prove an improvement of the predictability limit even for these types of events.

1.1 Objectives of the thesis

The three main problems for rainfall nowcasting that the thesis is focused on are:

1. identifying the ‘true’ rainfall field – accurate rainfall intensities at fine temporal
and spatial resolution (1km2 and 5min) which will  be an input for the  nowcast
model.

2. improving the predictability of rainfall mostly of convective events at such fine
scales to more than 30 min, by including storm decay, birth, growth and death.

3. tackling the problem of prediction uncertainty and quantifying it, by considering
an ensemble approach.
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Based on these three problems, the main objectives of this work are as follow:

1. deriving  a  more  accurate  field  of spatially  distributed  rainfall  suitable  for
operational use in the urban flood forecast by using different merging techniques
between radar and gauge data

2. developing a new nowcast method based on data-driven techniques that would
include  the  non-stationary  nature  of  the  rainfall,  and  lead  to  improved
performance and predictability towards the existing reference methods.

3. integrate ensemble prediction on the new nowcast method in order to consider
different sources of uncertainty in the data and the model, and to cover a wide
range of possible nowcasts for given extreme events. 

1.2 Research Questions

The main research questions that this thesis tries to answer are as follows:

1. What is the best way to describe predictability of storms and predictability for
the urban flood application?

2. What are the gaps of the current methods used for nowcasting, that could be
improved with data-driven method?

3. How can merging of radar and gauge rainfall information be optimized in order
to have an accurate and high-resolution rainfall field? 

4. Can a better rainfall input field improve the predictability of storms? 

5. Do similar storms behave similarly? And if so what would be the best way or
features to identify similar storms, that exhibit similar relationship?

6. Can  data-driven  methods  be  useful  in  improving  the  actual  rainfall
predictability? 

7. Can  ensemble  nowcast yield  better  and  more  reliable  nowcast than  a
deterministic one?

8. Can the final product yield reliable results even for extreme convective events
that can cause urban floods? 
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1.3 Organization of the thesis

An  overview  of  target  objectives  (blue  boxes),  research  questions  (bold  writing)  and
approaches to reach them (red arrows) is given in the following Figure 1.1. The structure of the
thesis and their content is indicated by the green boxes. 
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Figure 1.1: The overall organization of the thesis: chapters (in green) and their focus on the 
three main researches objectives (the blue columns). The chapters where the innovative methods 
are explained and employed are illustrated with a bold green box. 



First,  some  basic  background  information  about  the  topic  and  the  selection  of  the
reference  methods  are  given  in  Chapter  2.  The  study  area,  the  available  data  and  the
selection  of  relevant  events  are  described  in  Chapter  3.  The  predictability  limits  of  the
reference nowcast methods under the selected events are drawn in Chapter 4 and form the
benchmark for improvement. Three innovative methods are employed to improve these limits
and are explained respectively in Chapter 5, 6, and 7. Chapter 5 focuses on the improvement
of the rainfall field as an input for the nowcast, and the impact it has on the predictability
limits. The obtained optimal rainfall field is then used as basis for the development of the two
new  nowcast  models:  the  nearest  neighbour  method  (described  in  Chapter  6)  and  the
convolutional  neural  network (described  in  Chapter  7).  Finally,  a  comparison among the
developed  and  reference  methods  under  extreme  convective  conditions  is  performed  in
Chapter 8, in order to investigate the improvement of predictability limits for events causing
pluvial floods. The thesis is closed with conclusion, remarks and future works in Chapter 9.
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2. STATE OF THE ART

2.1 Hydro-Meteorological Processes

2.1.1 Meteorological Rainfall Types and Features

Precipitation is one of the most important components of the water cycle on earth; it has
large impacts on the human society and the ecosystem. As the main driver for runoff, it affects
greatly  the  water  supply,  the  surface  hydrology,  and  can  lead  to  rather  severe  disasters
causing human, economic and ecological  damages.  Due to its high variability in time and
space, it has been and it is essential to understand the processes governing its formation. The
main field that studies the formation of precipitation is the cloud physics, which summarizes
the equations and the physical  processes that  describe the occurrence of  different droplet
types, based on the medium (water, ice or mixed clouds) at the micro scale1. 

For  specific  conditions  of  the  weather  systems,  the  precipitation  cloud  systems  are
organized and structured, according to the dominance of two mechanisms: convective and
stratiform movements.  These two mechanisms exhibit  different  types  of  droplets  and rain
formation that are initiated by air motions with different magnitudes, and consequently are
characterized  by  different  rainfall  duration  and intensities.  The  convective  precipitation  is
caused by strong local vertical air motions (for instance created by strong solar radiation) that
can initiate in a very short time (in the range of minutes) the formation of big droplets at the
base of  the cloud formation.  On the other  hand,  the stratiform precipitation is  developed
usually under a longer time (in the range of hours or even days), as the vertical air motion is
very weak, causing small  droplets  to be formed at the top of  the  cloud formation. At  the
presence of mountains, at both stratiform or convective structures, a vertical movement of the
air masses can occur due to the orographic lifting. Based on the current state of the weather
and  the  governing  mechanism,  three  major  classes  of  precipitation  storm  types  are
distinguished in the mid-latitude of the northern hemisphere, according to [Maidment, 1993],
whose properties are discussed below and summarized in Table 2.1.

1 Scale is defined here as the attribute of a process that describes the spatial or temporal extension of it. 
Regarding the atmospheric scale of the rainfall formation we distinguish: micro-scale (<1km2), meso-γ scale 
(102-104km2), meso-β scale (104-105km2) and macro-α scale (>108km2).
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a. Extratropical Cyclones

The synoptic systems can either be cyclones (low air pressure) or anticyclones (high air
pressure) caused by well-established and stable air flow patterns around the earth, mainly in
regions outside of the tropics. While the anticyclones are associated with a dry period, the
cyclones  are associated with precipitation formation caused by the encounter  of  two air
masses with different temperature and humidity (depending on the region of their origin). As
warmer air has lower density compared to the cold one, it rises above, forming fronts of
precipitation that persist2 temporally for several hours and spatially from tens to hundreds of
kilometres, and that are caused by a strong gradient in temperature, pressure and humidity.
Typically, the vertical lifting in such systems is lower than 0.1 km/h, thus the predominant
mechanism is the stratiform type [Maidment, 1993].

The created front can either be a cold front – cold air moves underneath a slower warm air
mass,  or  a  warm front  – warm air  moves  above a slower colder air mass. Warmer fronts
typically last longer (more than 24 hours) and are wide spread, with no specific storm shapes
and with low intensities  that rarely  exceed 20 mm/h.  The cold fronts last  only for some
hours,  and  form  narrow,  stripe  shaped  storms  that  move  rather  uniformly  and  rapidly,
accompanied by intensities higher than the warmer front but hardly exceeding 50-60mm/h
[Ehret, 2003]. While the synoptic systems occur at the macro-α scale, the fronts occur at the
meso-β scale. A typical formation of the cold and warm front is illustrated in Figure 2.1. 

a) b) c)

b. Mid-latitude Thunderstorms

Thunderstorms are created by the convective mechanisms, in air masses with uniform
temperature,  low-level  moisture  and  little  wind  shear,  which  are  destabilized  by  strong
radiation, causing a strong upward convective current. Warm and moisture air, reaches the

2 Persistence is referred here as the duration of a process, which continues to exists with little or no change 
in the features that describe it.
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Figure 2.1: Illustration of the air motions when fronts occur: the warm air  is shown with red, 
the cold with blue, the major movement of the front is indicated by the thick white arrow, while 
the air masses movements by the black arrows. Here can be distinguished a) warm front as the 
warm air rises above the cold air, b) stationary front – with no clear frontal movement, and c) 
cold front – as cold air moves underneath the warm air [Wallace and Hobbs, 1977].



height of the troposphere rather rapidly, causing fast and short-lived rainfall storms. Figure
Error:  Reference  source  not  found illustrates  the  formation  of  such  a  storm.  Usually  the
convective  storms happen at the meso-γ scale  (102-104km2)  and are characterized by high
rainfall intensities (typically from 100 mm/h up to 400 mm/h) that are limited in space, thus
exhibit a great spatial variability. Such storms are associated with thick and high clouds, big
rain  droplets,  and  at  some  cases  also  with  hail  formation.  The  convective  storms  are
characterized by oval shapes that develop very erratically both in space and time. Under very
dynamic atmospheric conditions (with sufficient humidity), super cells may be formed and are
more persistent that the normal convective  ones and exhibit a more distinctive motion and
longer lifetimes [Ehret, 2003][Maidment, 1993].

Organized thunderstorms happening at the meso-β (104-105km2) scale are mainly caused by
distinctive  horizontal  air  advection,  and  are  classified  in  two  categories:  a)  meso-scale
convective systems – which exhibit circular and more regular storm shapes that can cover up
to 100,000 km2 and persist for several hours with a rather uniform advection movement, and b)
squall lines – which are often created together with a cold front, either in front of it or parallel
to  it.  As  the  name  suggests,  these  convective  storms  are  organized  in  a  linear  form,
characterized  by  intense,  persistent  and  long  rainfall.  Both  convective  and  stratiform
mechanism are present in this type, and rainfall burst mainly at the gusts of the wind. These
two types are of great importance as they are the major driver of hydrological floods (both in
urban and rural catchments) in the mid latitudes [Ehret, 2003].

   a)        b) c)

c. Orographic Rainfall

The orography can influence any of the above-mentioned storms; as the warm and humid
air is forced to move up a terrain obstacle (either a hill or a mountain), it produces convective
instabilities, resulting in cooling or condensation of the moistured air that can enhance or
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Figure 2.2: Illustration of a convective storm formation stages a) cummulus, b) mature, and c) 
dissipation stage. The 0oC and the -40oC isotherms are indicated in red, while the horizontal 
scale is 30% of the vertical one [Wallace and Hobbs, 1977].



cause precipitation. The storm created or enhanced, is mainly falling around the obstacle
(both  on  the  leeward  and  windward  side),  and  is  characterized  by  different  intensities,
duration and persistence. Their importance depends on the terrain feature and the storm
type [Maidment, 1993].

However, in this study the focus is mainly on two types of storms a) the fronts – which
will be referred to as stratiform events and b) the thunderstorms – which will be referred as
convective events.  The orographic  mechanism is  left  aside for  three  main reasons:  i) the
majority of storms are mainly caused either by convective or stratiform  mechanisms and
later  emphasized by the orography; ii) since the creation of  rainfall  due to orography is
accompanied by convective instabilities, in a sort of way they are convective events (and will
be regarded as such), only that the main driver is not the strong solar radiation but instead
the orographic force; iii) as the rainfall will be looked at the fine scale, the change due to the
orography can be  neglected.  The following table  (Table  2.1)  shows  some features  of  the
considered  rainfall  structures,  and  forms  the  basis  for  the  event  type  identification  and
classification presented in section 3.4.

Table 2.1: Rainfall structures and characteristics in typical mid-latitude storms in the northern 
hemisphere [Ehret, 2003].

Storm
structure

Warm fronts Cold fronts Meso-scale
Convection

Super cells Convective
cells

 Atmospheric
scale

meso-β meso-β meso-β meso-γ meso-γ

Horizontal scale
[km2] 103-104 103-104 10-103 10-50 10-50

Time scale
[h]

4-24 4-24 0.5-4 0.5-4 0.5-1.5

Air motion
Mechanism stratiform stratiform mixed mixed convective

Shape front front Cells along a
front

Irregular
cells

Irregular cells, 
oval shapes

Maximum
Intensity
[mm/h]

20 60 200 300 400

Average
intensity
[mm/h]

5 30 40 100 100

Main motion With fronts With fronts With prevailing
air motion

With
prevailing air

motion
Erratic
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2.1.2 Urban Hydrology

Today more than half of the world’s population lives in cities  [Worldbank, 2019],  a rising
trend that has been observed from 1950 (mainly in Europe and America) and is expected to
continue in the future; rising up to 68% by year  2050  [UN, 2018].  As the area of the urban
settlements increases, dramatic changes are caused in the catchment hydrology that lead to
faster response times and water quality degradation. As the generation of the urban flow is
more complex and unknown than in rural hydrology, and the vulnerability of the population is
as  well  higher  in  urban settlements,  in  the last  decades,  urban hydrology has  become an
important  and  active  field  of  research  both  in  terms  of  fundamental  understanding  and
management approaches. 

There are two mains reasons why there is a bigger and faster runoff response to the rainfall
in  urban  areas.  First,  as  the  impervious  areas  are  increasing  (due  to  streets,  pavements,
buildings,  top soil  compaction etc.),  the  infiltration of  the  water  in  the ground is  limited,
increasing greatly the volume of the surface runoff (the faster component of the runoff) and
causing  immediate and faster  peaks or flood levels. Secondly,  the water flow is facilitated
through the construction of sewer and drainage systems, which accelerates the travel time.
Resulting, thus, in a response within minutes or few hours at maximum, instead of several
hours  or days  that  are  common for  rural  catchments.  Moreover,  the  sewer  and drainage
systems are designed on rainfall intensity statistics at a specific duration (often one or two
hours). Nonetheless, it happens that when higher intensities are recorded at shorter duration
(i.e. 15min), the pipes will be filled at a faster rate and cause overflow [Jacobson, 2011]. 

To predict the implications of the rainfall in urban areas and infrastructure; the surface
water levels,  flow velocities  and discharge in the pipe network or  in the inundation area,
hydraulic models are built. Typically, these models consists of a coupling between the pipe
network  where  1D  shallow  water  equations  are  used,  and  a  2D  open  flow  model  that
computes the water levels based on the topography and shallow water equations. The two
parts of the model are connected via the manholes; once the pipe network simulates surcharge
at a specific manhole, the surface flow computation is initialized. Logically, the model input is
the rainfall (either continuous or a single event) in order to produce the response discharge
and water levels [van Dijk et al., 2013][Russo et al., 2015].

Since the models need to simulate processes that occur fast (at the scale of minutes or
seldom hours)  and at  specific  locations,  they are often run at  short  time steps  (1-6  min)
[Fletcher et al., 2013].  Hence, the rainfall input provided to urban models should be at the
adequate  resolution  to  ensure  an  accurate  runoff  estimation.  Different  studies  have
investigated the sensitivity of the urban flow towards the rainfall resolution, and they agree
that the required temporal resolution of rainfall should be within 1-5 minutes, and the spatial
resolution between 100-500m2  [Berne et al., 2004][Einfalt, 2005][Ochoa-Rodriguez et al., 2015]
[Schilling, 1991]. The true spatio-temporal rainfall field at such scales is still  unknown, but
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however  there  are  two  rainfall  measurements  techniques  that  can  provide  rainfall
information at similar scales: 

a) Rain Gauge Networks

The traditional method for recording rainfall volumes is through networks of rain gauges;
the typical one being a tipping bucket that records the rainfall at 0.1 mm resolution and at 1
min  time  steps.  Due  to  the  wind,  wetting and the  evapotranspiration  effects,  the  gauge
measurement are not error free  [Lanza and Vuerich, 2009].  They manifest a standard error
that changes with the severity of the storm; for instance an error of 7% is expected for a
rainfall intensity of 25 mm/h falling within 5 min  [Ciach, 2003]. However, the rain gauges
represent rather correctly the rainfall volume at very fine scales close to the earth surface,
therefore they are mainly used as  an input  for  small  urban catchment  [Codo and Rico-
Ramirez, 2018][Quirmbach and Schultz, 2002].

Nevertheless, rain gauges are point measurements and alone cannot describe the spatial
structure of rainfall. Given a specific network, the point measurements can be interpolated at
different spatial resolutions for each time step in order to get the spatial information. The
relevance of such interpolation depends strongly on the network density. According to Berne
et  al.  (2004),  the  required  density  depends  on  the  catchment  and  on  the  city  under
consideration, varying from 1 gauge per 7km2 (case study Barcelona) to 1 per 18km2 (case
study Lyon).  But generally, a high density should be present in order to capture the strong
spatial  variability  of  the  rainfall  at  the  scales  required by  an  urban  model.  Such  dense
networks don’t exist because they are expensive and difficult to build and maintain [Berne et
al., 2004].

b) Radar Networks 

Weather  radar  measures  indirectly  the  rainfall  field  through  reflectivity;  microwaves
signals are transmitted by the radar via pulses, and the energy reflected by hydro-meteors, is
captured back and is converted into intensity. As the radar does a 360o scanning around
itself, it builds up rainfall fields usually at 1 km2 and 5 min resolutions. Due to the ability of
the radar to capture the structure of the rainfall at such fine scales, its’ potential for urban
hydrology use, has been long recognized by urban hydrologist [Berne and Krajewski, 2013].

However,  since the radar  data doesn’t  measure  the  rainfall  directly,  it  is  subjected to
several sources of errors,  compromising so the accuracy of the rain rates. Many attempts
have been made to recognize and to mitigate these sources of errors over the past decades,
nevertheless since the true rainfall field is not known (radar rainfall rates at such scales don’t
necessarily  meet  the  rain  gauge  measurement  [Ochoa-Rodriguez  et  al.,  2019]),  no  final
conclusion can be reached regarding its accuracy [Steiner et al., 1999][Vasiloff et al., 2009].
But the use of radar data in urban hydrology is still a common practice, because they can
capture small rainfall features (which the gauge  could miss) that might have considerable
impact on the urban floods [Gires et al., 2012][Ochoa-Rodriguez et al., 2015][Schellart et al.,
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2014]. Moreover, given their ability to capture the spatial structure of the rainfall, they are
perfect candidates to track and nowcast rainfall storms. A more detailed description of the use
of radar in urban hydrology is given in the Section 2.2.2.

Regarding  different  types  of  storms  (as  mentioned  in  the  previous  section),  urban
catchments are particularly vulnerable to convective events (both at meso-γ and meso-β scale).
Because these storms live very shortly (less than 4 hours) and deliver high amount of rainfall
volume, the urban catchments respond very fast, causing the manholes to overflow and hence
resulting in surface inundation [Thorndahl et al., 2016]. Even though in most of the cases, the
water  resides  in  a  few  hours,  water  could be  trapped  in  depression,  causing  mobility
interruption,  economic  losses  (basements  are  commonly  flooded),  potential  ground  and
groundwater contamination, and in severe cases even human casualties.  Although there is
some work  being done already for increasing the resilience of the cities (by increasing the
infiltration  area,  green  roofs  or  retention  volumes)  [Löwe et  al.,  2017],  it  is  still  of  great
importance  to  develop  fast  and  accurate  pluvial  floods  forecasts,  in  order  to  inform  the
residents and to take measures in time for the mitigation of the damages [Jha et al., 2012][van
Dijk et al., 2013]. While some issues related to urban models are still open for research; like the
calibration of the model, the fast simulation time, the structure of the model etc., the main
deficiencies today for such forecasts are related with the poor rain nowcast at fine resolutions
[Thorndahl et al., 2016][Schellart et al., 2014]. There is an incomprehensible need to improve
the rainfall nowcast for these events at such scales.
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2.2 Weather Radar for Hydrology

2.2.1 Radar Theory and Precipitation Measurements

The term Radar stands for “Radar Detection and Ranging”, as it recognizes the presence of
objects  by capturing the electromagnetic radiation reflected by their surface. Based on the
energy reflected, one can  identify the  location, the extent and the material of the object.
Water  droplets,  as  objects  in the atmosphere,  can be detected by microwaves,  if  located
within the detectable range of the radar. Typically, the radar device consists of three parts; a)
the transmitter that generates the microwave pulse, b) an antenna that shoots the waves in
the atmosphere and receives the reflected energy, and c) a receiver that detects, amplifies
and  transforms  the  incoming  signal.  The  schematic  diagram  of  a  radar  measurement
principle  is  illustrated  in Figure  2.3. First  the  radar  dish  emits  very  short  pulses  of
microwaves (the pulses are emitted at 3 milliseconds apart, for a microsecond) in a conical
beam with a fixed angle, referred here as the elevation angle of the antenna (approximately
1.5o),  into  the  atmosphere.  Once  the  electromagnetic  wave  encounters  an  object  (water
droplets in this case), a part of the wave is absorbed or scattered, but another part is reflected
back, which eventually reaches the radar where it is recorded by the receiver. Table 2.2 gives a
summary of different bands, wavelengths and frequencies that are typically used in the radar
systems.
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Figure 2.3: A schematic representation of radar instrument measurement principle [Pierre, 
2011]



Table 2.2:  Different bands, wavelengths and frequencies of typically used radar [Sauvageot, 
1992].

Band Frequency [GHz] Wavelength [cm]
L 1 - 2 30 - 15
S 2 - 4 15 – 7.5
C 4 - 8 7.5 – 3.75
X 8 -12.5 3.75 – 2.4
Ku 12.5 - 18 2.4 – 1.67
K 18 – 26.5 1.67 – 1.13

The  time  of  the  reflected  energy  (reflected  time)  is  measured,  and  together  with  the
azimuth and the elevation angle noted when the signal was emitted, one can conclude the
exact position of the obstacle (water droplet) as indicated by Equation 2.1. 

r=
c
f r

=t⋅c
2

Once the distance is found, one can use the radar equation (Equation 2.2) to find out the
reflectivity  (Z)  of  the water  particles  [in  mm6/m3] based on the measured back-scattered
radiation (Pb[W]), the measured target distance from the reflected time (r[m]) and based on
two empirical constants; i) C -the radar coefficient and ii)  parameter k - the hydro-meteor
reflection  factor.   The k  parameter  value  for  the  hydro-meteors  is found empirically,  and
typically it lays within 0.964 for rain and 0.456 for snow.

Z=
PB⋅r

2

C⋅k2  

          

Until today three types of radar systems are recognized [Krämer, 2008]; a) the conventional
radars (X and C band), which are historically the most used and investigated ones. They emit a
radiation beam only in the horizontal direction and measure only the reflected energy; b)
Doppler radars, which emit a horizontal beam of energy, however they don’t only record the
reflected energy but also the phase shift between the emitted and the reflected waves (the so
called Doppler effect/shift). By recognizing the shift, this type of radar enables us to compute
the velocity of the reflected surface (either it is moving towards the radar, or away from it),
that is a valuable information when identifying the object reflected; c) Polarized radars, which
in contrast to the conventional and the Doppler radar do not only send a horizontal beam, but
as the name suggests, their signal is polarized also in the vertical direction. The two emitted
beams are perpendicular to each other, and thus perform a much better scan of the weather,
recognizing as well the height of the objects (due to the difference between the vertical and
horizontal  reflection).  This  is  particularly  important  in  recognizing  and  classifying  hydro-
meteors.  Dual-Polarised radars are new and have just started to become an active area of
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where:
r  –   target distance                     [m]
c  –   speed of light                       [m/s]
 t  –   time to target                      [s]
fr  –   reflected wave frequency   [GHz]

where:
Z  –   reflectivity                                    [mm6/m3]
Pb –  back-scattered radiation               [W]
r   –  target distance                              [m]
C  –   radar coefficient                          [Wm5/mm6]
k  –   hydro-meteor reflection factor   [-]

(2.1)

(2.2)



research. Since the conventional radars are frequently used and have longer observed data,
they are usually used for hydrological studies. In this thesis, conventional radar data (namely
C-Band) is used, thus the subsequent literature review is focused on the error measurement
and the hydrological importance of C-band radar. 

As the C-band radar does a 360o scan around its’ axes, it captures the reflected energy at a
certain angle accuracy (usually at 0.5 or 1o) depending on the rotation speed, while in the
radial direction the discretization of the measured reflectivity is determined by the pulse
length (τ) according to Equation 2.3; for instance, for a pulse length of 1 μs the discretization
would be 150m [Krämer, 2008].

Δr= c⋅τ
2

 

 Thus, the reflectivity is measured in polar coordinates, and is usually converted in the
Cartesian coordinates (typically with 1 km2 resolution) to facilitate the interpretation of the
data. The convectional radar systems, issue a set of pulses at a given opening angle, thus the
volume scanned by the radar is increasing with the distance from the radar (as shown in
Figure 2.3). Consequently, the radar receives the signal of the water droplets from different
heights, that in the end are averaged together without any grouping based on the height
information.  Figure  2.4 illustrates  the  relationship  between  different  opening  angles,  the
height of the radar beam and the distance from the radar [Seed et al., 2002]. Therefore, one
has to keep in mind that the radar reflectivity field given by the C-band radar at a specific
spatial  and temporal resolution, is  actually representing instant scans of  the atmosphere
height, that is increasing with the distance from the radar. 

Once the spatio-temporal distribution of the reflectivity is determined, rainfall rate can be
estimated from the empirical relationship with the measured reflectivity. This relationship is
determined based  on  observed  data  from  disdrometer and  tipping  bucket  measurement.
Marshall and Palmer were one of the firsts to study this relationship and concluded that the
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Figure 2.4: Height of the radar beam at different ranges from the radar (km) and at different 
opening angles [Seed et al., 2002].

where:
Δr  –  radial resolution [m]
c    –   light speed          [m/s]
τ    –   pulse length        [s]

(2.3)



relationship between reflectivity and rain rate is of a power type, and the rain rate is to be
calculated as indicated by the Equation 2.4 - where a and b are empirical constants. 

z=a⋅Rb    

They suggested the values a = 200 and b = 1.6 for these constants. However, the values of
the empirical parameters a and b vary with different meteorological conditions. Table 2.3 gives
typical  values  that  are  used for  different  type of  storms.  Even though choosing  the right
constant is still an open research field, in this  thesis the Germans’ Weather Service (DWD)
constants for the Marshall-Palmer relationship are used.

Table 2.3: Typically used a, b coefficients for the Marshall-Palmer Relationship [Ehret, 2003].

Meteorological condition a b
convection 300-500 1.4-1.5
stratiform 200-250 1.5-1.6

DWD values 256 1.42
Original Marshall and Palmer 200 1.6

As  already mentioned,  because  the  radar  is  measuring indirectly  the  rainfall  rate,  it  is
subjected to a range of errors that reduce considerably its’ ability to deliver accurate rainfall
rates. While some of the errors can be detected and corrected, others  might be difficult to
quantify. These errors are summarized below into 4 groups: 

a) Errors due to the ground clutters and objects that obstruct the beam 

While  the  radar  is  performing  its’  scan  of  the  atmosphere,  microwaves  of  not-watery
objects may be reflected or blocked. For instance, a ground obstacle (a mountain/hill), here
referred to as ground clutter, can stop the radar beam, and cause a void in the field behind the
obstacle.  These are usually  static  clutters,  that  don’t  change their  position with time,  and
hence can be identified easily from accumulating the radar data reflectivity over a long time
period  (one  or  more  years)  [Berndt  et  al.,  2013].  Once  they  are  identified,  interpolation
methods from the surrounding grid cells can be used, or the recording from another radar can
be integrated to fill the missing values. There are also other objects in the atmosphere (near to
the earth surface) that are time-invariant, here referred to as dynamic clutter, whose signal
may be captured by the radar; this can be birds flocks, dust, flying object etc. As these objects
are time-invariant, it is quite difficult to clear the radar data from these noises (or errors).

b) Errors due to the attenuation of the waves 

One of the main problems with the conventional radar data is that, depending on the size
and the density of the water droplets, the signal can be strongly attenuated with the distance
from the radar location. This is specially the case when hail or an intense convective storm is
located at the proximity of the radar; the storm will scatter most of the energy emitted by the
radar,  hence all  the  energy  beyond the storm or  the  hail  is  very weak (causing very low
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where:
Z      –    the reflectivity measured in     [dBz]
a, b  –   Marshall Palmer Coefficients    [– ]
R      –    Rainfall rate                              [mm/5min]

(2.4)



reflectivity) or in-existent. Thus, a decrease in reflectivity is observed for convective storms or
even for wide spread stratiform storms, that is dependent on the intensity of the storm, the
frequency of the waves and the distance from the radar (as indicated in the Figure 2.5).

Another very important source of error is that the radar beam doesn’t sample exactly the
given area of interest. It is desired to have scans of the near-surface atmosphere, so one could
conclude  how much  rain  is  falling  on  the  surface.  However,  as  the  horizontal  beam  is
propagating, the scan area increases with the distance due to the opening angle (as shown in
Figure 2.3) and due to the earths’ curvature; a horizontal signal issued at the earth surface,
after 100 km will be located at a height of 780 m. As the precipitation is very chaotic in its’
nature,  with  high  spatial  variability  (both  in  horizontal  and  vertical  direction),  such
measurements do not represent the true rainfall volume on the ground surface. Altogether a
20% error in the rainfall  estimation can be introduced to the conversion just  due to the
measurement of the wrong rainfall volume [Seo, 1997].

c) Errors due to the indirect measurement of the rainfall

As mentioned above, the rainfall rate is calculated through two steps a) the reflectivity is
calculated  based  on  the  radar  equation,  and  b)  based  on  the  power  relationship  the
reflectivity is converted in rainfall. Both of these conversions are not perfectly representing
the relationship between the back-scattered radiation and rain rate,  thus are introducing
additional errors into the transformation. For instance, the radar equation [Crozier, 1986] is
considered to be accurate under the following assumptions: 

i)    the particles are homogeneous in volume and are of spherical shape,
ii)   the reflectivity Z is uniform within the volume scanned and the pulse interval,
iii)  the water particles are all in the same phase (either ice or water),
iv)  the volume of the pulse is filled with randomly distributed water particles.

Such assumptions are most of the time not fulfilled,  because the droplets may not be
symmetrical or homogeneous in the volume, neither can they be all in the same phase (either
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Figure 2.5: The loss of the rainfall information due to an increase of the attenuation [in 
dB/km] for different storm intensities in relationship with different frequencies of the 
electromagnetic waves, according to [Curry, 2012].



ice  or  water).  Moreover,  the  governing  relationship  by  Marshall  and  Palmer  between
reflectivity and rain rate is a general case, as it has already been proven its’ dependency on the
rainfall event type and the type of the hydro-meteor. Lastly, the measured data are converted
from a polar grid to Cartesian one causing unwanted smoothing of the data  [DWD, 1998]
[Sharif et al., 2001].

d) Errors related with the radar system itself

Seo (1997) suggests that the radar system can introduce bias into the measurements due to
the system losses with time and if the antenna gain in not precisely known. He suggested that
these  errors  could  be  identified  once  the  radar  measurements  are  compared  with  the
measurements of another one. 

The main challenge when trying to recognize and to mitigate these errors, is the missing
true  rainfall  field  which could  be  used  as  a  basis  for  the  evaluation  of  the  radar  rainfall
estimates.  Usually  gauge  data  are  considered  as  a  true  observation  of  the  rainfall  at  the
ground level and hence are often used as a reference to judge the radar data reliability and to
evaluate the error-reducing methods [Kneis and Kneis, 2009]. For fine temporal accumulation
(for instance under 1 hour) the measuring scales of radar and gauge are very different, and as
such, one should not expect that the volume captured by the radar in one scan to be exactly
the same as the volume accumulated at the gauge within 5min [Ochoa-Rodriguez et al., 2019].
However, for longer temporal accumulations (hourly, daily, monthly) a direct comparison of
the radar with the gauge data is possible and is commonly done [Heistermann et al., 2013].
While using the longer accumulation  durations can tell the hydrologist about the quality of
the radar data and the applied correction method, it is still not very clear how representative
the fine temporal structure of the radar measurements is.

Nevertheless, even though the radar data at such resolutions is prone to numerous errors, it
has still been proved useful for urban hydrology [Berne and Krajewski, 2013]; as the urban
system is sensitive to the rainfall intensities at fine scale, the radar data are well suited for the
modelling or forecasting of the urban floods and for urban water management. Thus, the next
section gives first an overview of methods used to mitigate radar errors, and then a summary
of radar based forecast most often used. 
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2.2.2 Radar Data as Input for Urban Modelling 

The rainfall process is characterized by a high intricate spatial and temporal variability (a
combination of continuity and intermittence). The 1 min recording gauges can give a good
insight  about  the  temporal  variability  of  the  rainfall,  however  since  they  are  point
measurements, can’t provide the same for the spatial variability. As for urban hydrology the
spatial  resolution  of  the  rainfall  events  is  a  must  [Berne et  al.,  2004][Gires  et  al.,  2012]
[Ochoa-Rodriguez  et  al.,  2015][Schellart  et  al.,  2012] a  need  thus  emerged  to  either
interpolate gauge data or to use the radar information. 

A rainfall interpolation of fine temporal scales (~ 5 min) from the gauge data can be done
either  by  geostatistics3 (Ordinary  Kriging  for  instance)  [Berndt  et  al.,  2013] or  other
interpolation  techniques  (multi-regression,  nearest  neighbour,  inverse  distance  etc.).
However, these interpolations are highly dependent on the study area, precipitation type and
time scales [Hu et al.,  2019]. At fine temporal scales, these  methods don’t exhibit a high
spatial variability (characteristics of  the rainfall field); even the Ordinary Kriging (OK) that
tries to model the observed spatial consistency through a variogram4,  has been proven to
smooth too much the rainfall intensities in space. This means that especially for convective
events,  the  rainfall  would  be  overestimated  at  some  locations,  and  underestimated  at
locations  between  gauges  where  a  storm  has  passed  but  was  not  recorded.  Thus,  the
performance of such interpolation methods is dependent of the station density available; a
higher station density yields better results than a lower station density. However the high
density needed is usually not provided [Berne et al., 2004].

That’s why the hydrologist turned their sight towards radar data. Radar data, as already
mentioned, can produce a high spatial variability of the rainfall but however at the cost of
the accuracy. A lot of research is going on to reduce these errors, nevertheless one has to be
realistic that it is impossible to reach error-free radar precipitation estimates. Overall there
are three ways in the literature to obtain the so-desired high spatial and temporal rainfall
information by using radar data; a) by trying to minimize the radar error, b) by integrating
the radar information to the interpolation of the gauges, and c) merging of both radar and
gauge information to obtain a final field.  

2.2.2.1 Minimizing radar error 

The radar error for the rainfall intensity estimation is commonly corrected based on the
tipping bucket recording data. Here the radar volumes at specific time intervals are corrected
by considering the accumulations of gauge data as true observations. A correction factor is
calculated at each gauge location for a specific accumulation time, and then these factors are
transferred to other locations. These are usually referred to as bias adjustment methods. 

3 Geostatistics includes the techniques to describe and to model the spatio-temporal relationship between 
the data. 

4 Variogram describes the spatial dependency of the variance between pairs of data based on their distance.
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The simplest application of such method is the Mean Field Bias adjustment (MFB), which
assumes that there is a spatial uniform bias throughout the radar image which can or not
change with time (static bias – one bias calculated for a long time period, dynamic bias – bias
calculated for antecedent periods). Thus, a correction factor is found for the whole radar field
(either static or changing in time), and is multiplied with each radar grid cell. Such methods
can work for higher accumulations (monthly, daily, annually) [Borga et al., 2000][Borga et al.,
2002][Goudenhoofdt and Delobbe, 2009] however are not yielding very good results for sub-
daily durations due to the high spatio-temporal variability of rainfall at such scales  [Ochoa-
Rodriguez et al., 2019]. Nevertheless for nowcasting application dynamic MFB (typically for
hourly accumulations) is commonly used [Seo et al., 1999][Chumchean et al., 2006].

Other  studies  have  been performed  in  order  to  find  correction  factors  at  each  station
location and then regionalize or interpolate the correction factors at other radar grid cells with
no gauge information  [Seo and Breidenbach, 2002]. However,  one of the main drawbacks of
MFB method is that, if for instance a local convective storm has been captured by a gauge
(hence high rainfall accumulation), and due to strong attenuation the radar accumulation at
that location is low, the MFB will produce a high correction factor. This factor when applied to
other regions of the radar, may cause very high unrealistic rainfall  accumulation from the
radar data, i.e. at a place where another convective event is registered but the attenuation is
not that strong. 

Contrary to MFB, Quantile Mapping Bias correction technique (QQ) has been developed to
adjust the bias both in space and time, while keeping the probability distribution of intensities
intact  [Rabiei and Haberlandt, 2015]. The radar  intensities at each grid cell are  substituted
according to their respective quantile value from the  gauge probability distribution. Thus,  it
causes more reasonable radar intensities while keeping the similar structure  from the radar
data. However for such method to work, one needs enough gauge recorded intensities to build
a  reliable  cumulative  distribution  function.  This  could  be  achieved  by  either  increasing
spatially  (interpolating the  rain gauge values)  or  temporally  (by extending the time steps
considered) the sample size. Whilst the first one can introduce new uncertainties due to the
smoothing of the rainfall field (as in the case of the MFB), the latter one may increase the
duration so much that different events might be sampled, introducing thus an additional bias
at a certain time step [Rabiei and Haberlandt, 2015].  As both of the methods presented here
have their advantages and disadvantages it is in the aim of this study to find out which of the
bias  correction  would  work  better  for  radar  based  nowcasting  for  the  urban  hydrology
application. 

2.2.2.2 Integrating radar information to gauge interpolation

As  mentioned before  Ordinary  Kriging5 (OK) interpolation of gauges smooths the spatial
information  of  the  rainfall.  Thus  a  Kriging  with  External  Drift (KED)  is  used  instead,  by

5 Ordinary Kriging models the spatial relationship of the given data based on their variogram by minimizing 
the error variance.
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introducing a new variable which constrains the interpolation of the gauge data: the radar
rainfall rate.  Another application of KED is  with the elevation as an external drift variable
[Haberlandt, 2007]. While this affects time accumulations of days or higher, the elevation is
not highly correlated with the intensities at 5 min time steps [Bárdossy and Pegram, 2013],
indicating that the elevation can be left out. A different application of KED is the indicator
KED  (IDK)  which  constrains  even  further  the  interpolation  on  specific  thresholds  of
intensities. However, Berndt et al. (2013) found that for very short time steps, the IDK does
not introduce additional accuracy to the interpolation. 

Overall it appears that KED with radar information might perform well also in 5 min time
steps  interpolation  of  rainfall  information,  that  is  why  it  is  worth  considering  and
investigating its’ usage for radar based nowcasting.

2.2.2.3 Merging radar and gauge information

As the name suggest, the methods under this category try to merge together the two
data-sources, without giving more priority to one or to the other. Three main methods are
distinguished  in  the  literature:  a)  Co-Kriging (CoK),  b)  Bayesian  Merging  (BM)  and  c)
Conditional Merging (CM) of radar data (known also as kriging with radar-based correction).

The Co-Kriging is very similar to the  KED but unlike it, the outcome field is calculated
based on a linear relationship between the gauge and radar intensities. This method has been
used by Krajewski (1987), which requires as input into the kriging system both the individual
covariance of rain and gauge data and as well their cross variance. In comparison to the KED,
the  CoK  is  computationally  expensive  and  may  lead  to  numerical  instabilities [Ochoa-
Rodriguez et al.,  2019]. A reduced form of the  CoK was performed by Schuurmans et al.
(2007) and Velasco-Forero (2009), where only the radar information at the target locations is
used,  simplifying  thus  the  CoK matrix  and  leading  to  more  stable  and  faster  systems.
However, they concluded that the KED performs better than CoK respectively for daily and
hourly resolution. Thus, one can conclude that KED is a superior method due to its simplicity
and reliable results. 

Bayesian merging performs the merging of the rain-radar intensities by considering their
uncertainties;  a)  the  gauge  uncertainties  are  computed  from the  error  covariance  of  an
Ordinary Kriging field, b) the radar uncertainties are computed by direct comparison to the
OK of gauge data. Once the uncertainties have been computed, a Kalman filter6 is employed
to combine both sources of data proportional to their uncertainties. Different configuration
of the Bayesian Merging were studied by Mazzetti and Todini (2004), Wang et al. (2013) and
Ochoa-Rodriguez et al.  (2015a) (the latter ones performed on a 5 min and 1 km2 resolution
typically  needed  for  urban  applications).  Ochoa-Rodriguez et  al.  (2015a)  compared  a

6 A Kalman filter is an algorithm that keeps track of both the current state of a variable (x), and the variance 
or the uncertainty of the variable (Px). In radar nowcasting, the uncertainty of the radar derived intensities 
is calculated based on the discrepancies between radar and gauge. For each time step t, the intensity at 
lead time +LT is found based on the last radar intensity (xt|t-1) and uncertainty observation (Pxt|t-1).
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modified version of the Bayesian theory towards the KED and found out that both of them
behave similarly. 

Lastly, conditional merging (CM) was first done by Ehret (2003) and later was implemented
and tested also in  Berndt  et  al.  (2013).  The method consists  in  merging  together  the  OK
interpolated field of the gauges  with the variance of the radar data. Berndt et al. (2013) found
that  CM outperforms  KED (slightly)  at  fine  temporal  scales  up  to  10min.  However  other
studies done by Jewell and Gaussiat (2015), Nanding et al. (2015) and Kumar et al. (2016) at
coarse resolutions found out that KED outperforms the CM. 

Overall it looks like that at fine temporal resolution the KED is the most popular method
which gives the most reliable results, as indicated by Ochoa-Rodriguez et al. (2019). Regarding
the CM, even though Berndt et al. (2013) showed that CM was superior to the  KED, other
studies are not consistent with this result. While the MFB has been proved to be outperformed
by KED, nothing is said related to the QQ: there is no direct comparison of the methods to
such fine resolution. The BM is shown to perform as good as KED, thus one can expect that if
one of these methods outperforms the KED then consequently it will outperform the Bayesian
Merging as well. 

Therefore at this point a question arises on which of the methods is more adequate for
correcting radar data on fine temporal and spatial scales; Quantile Mapping Bias Correction,
Mean Field Bias Correction, Conditional Merging, or  Kriging with External Drift? Since not
many of the literature check the merging results towards the Ordinary Kriging of the stations,
it  is  logical  to  ask  whether  at  high  density,  the  merging  techniques  still  provide  better
information than the single data sources (either  OK interpolation of stations or radar data)?
Moreover, only a few of these corrections have been performed for the nowcasting application
of the radar data, consequently the questions arise: how suitable are these methods when run
online (only past information is available)? Can they outperform the MFB which is usually
employed for radar based nowcasting? Up to what degree does the merged data affect the
radar nowcast and the prediction accuracy? These are the main questions treated in Chapter 5.

As indicated as  well at Ochoa-Rodriguez et al.  (2019),  only very few cases focus on the
performance of such integration methods at fine scales suitable for the urban model. This is
mainly due to the fact that many hydrologists are very sceptical at the integration of these
two completely different precipitation measurements: radar represents an instant scan of the
atmosphere at different heights, while station measurements represent a rainfall accumulation
at a single point at the ground surface; both are representing different scales, thus cannot be
merged together!  However, one has to keep in mind that at the moment this is the best option
available to perform nowcast for the urban catchment and to validate models. First, it has
been proven that running a model with gauge data, yields best results, thus many references
for the urban model are flood levels simulated with gauge data. But when radar based flood
nowcast are  compared  to  the  gauge  based  flood  forecast,  they  are  starting  with  a  clear
disadvantage. Thus, in order to minimize as much as possible the discrepancies between radar
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and  gauge  and  in  order  to  improve  the  predictability  of  floods  simulated  by  models
calibrated by gauge data, it makes sense to use the merging methods at such fine temporal
and spatial scales.

2.2.3 Use of Weather Radar in Urban Flood Nowcast

While  the  sub  seasonal  and  synoptic  scale  rainfall  forecasts7 are  quite  predictable,
knowing the exact precipitation volume that will fall in the next hours (here referred to as
nowcasting) at the meso-γ or -β scales, is a difficult task to perform [Keil et al., 2014][Surcel
et al., 2015]. This is mainly because the atmospheric processes and the current state of the
weather system are quite complex to describe and to model [Germann et al., 2006][Germann
and Zawadzki, 2004]. Numerical Weather Prediction (here referred to as NWP) models try to
describe and to simulate such processes,  with the aim to predict  different variables,  and
among them the  precipitation  volumes  expected  to  fall  in  the  near  future,  by  solving  a
handful of equations at finite discretization of the atmosphere.

NWP models have undergone a lot of improvement on the recent years and they can
produce quite well the forecast at large scale (scales larger than 10km2 and longer than 1
hour accumulations for lead time higher than 6 hours – here referred as short-range forecast)
[Ahrens and Jaun. 2007][Ballard et al., 2012][Bowler et al., 2006][Golding, 2009][Surcel et al.,
2015]. However for the fine scales suitable for the urban catchment, NWP models are not
able to  provide good rainfall  nowcast; they can give good estimates on the severity of the
storms and intensities [Kato et al., 2017], but fail to produce the exact time and location of
such intensities that are crucial for the urban floods  [Kato et al., 2017][Šálek et al., 2006]
[Surcel  et  al.,  2015]. This  may happen for various reasons;  either  because the simulation
becomes computationally very expensive, or the physical process associated with the rainfall
formation at such scales are not fully understood [Grecu and Krajewski, 2000][Germann and
Zawadzki, 2004] or high uncertainties are present due to the spin-up problem [Golding, 2009]
[Kato et al., 2017][Surcel et al., 2015]. The spin-up problem, also called the initial condition
problem, rises from our inability to measure and to know the true rainfall field. As described
by Lorenz (1973), even if we could build up the perfect forecast model, a small error at the
initial condition will grow up so much with longer lead times8, that soon the model will have
large errors and zero ability to predict the rainfall. Mainly for these reasons, NWP models
still need some time to provide reliable rainfall nowcast at fine scales required for the urban
flood forecast.

On the other hand, radar information offers a useful tool to identify and nowcast the
rainfall  rates at fines scales.  Leaving aside the errors associated with the radar ability to
measure  accurately  the  rainfall  field,  rainfall  structure  from  radar  data  are  easy  to  be

7 Depending on the forecast horizon, the forecasts distinguished here in this thesis are: a) long range – with 
lead times > 1 day, b) medium range – with lead times < 1 day, c) short range – with lead times between 6 
and 12 hours, and d) nowcasting – with lead times < 6 hours. 

8 Lead time is the horizon of the forecast issued; the duration between the time the forecast is initialized and
the time of the target forecast.
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identified, tracked and extrapolated into the future. Many studies have shown that for short
lead time (1 to 2 hours) radar based nowcast outperforms the NWP [Berenguer et al., 2012]
[Jensen et al.,  2015][Lin et al.,  2005][Zahraei et al.,  2012]. Contrarily, for longer lead times
(more than 2 hours) the performance of radar based nowcast decreases rapidly (depending on
the storm type and the size of radar field available), and hence a blending between NWP and
radar  based nowcast  is  proposed  [Bowler  et  al.,  2006][Jensen et  al.,  2015] to improve the
nowcast skill at these lead times. However, one has to keep in mind that the accuracy of the
blended product at short lead times is as high as the accuracy of the radar nowcast. It is the
aim  of  this  thesis  to  investigate  the  radar  based  nowcast,  with  the  assumption  that  an
improved radar nowcast, would lead to a better blended product for the overall prediction of
rainfall structures at fine temporal and spatial scales. Therefore, a blending with NWP is not
included. Also, following the study from Luk et al. (2001) that the nowcast based on solely a
dense gauge network is not yielding  good results for lead times longer than 10-15min, the
following literature review and the development of methods are focused only on radar based
nowcasting techniques.

Typically there are three mains steps used in radar based nowcasting, illustrated as well in
Figure 2.6: a) identifying the rainfall in the area of study at time t0 (the nowcast is initialized),
b) track the rainfall to determine main advection9 velocity and direction from time t+1 and
previous time step t0, and c) given an advection vector, the rainfall is extrapolated in the future
at different lead times t+LT. The rainfall is either considered as an object – individual storms are
identified and tracked, also called the object oriented approach (Figure 2.6), or as a field – the
whole radar imaged is tracked with no special consideration for singular storms, also referred
to as a field based approach (Figure 2.7). While the object based approach is considered more
accurate especially for convective events, as it considers storms independently, there are many
issues regarding splitting and merging of the storms [Pierce et al., 2004]. Thus, the field based
approach has been widely used in literature, however they best perform when the field has a
distinctive  movement  (i.e.  stratiform  events)  [Han  et  al.,  2009].  A review  of  the  existing
tracking  methods  employed  in  some  of  the  most  used  or  cited  nowcast models  in  the
literature, is given in the following section. 

  a) Storm Identification      b) Storm Tracking    c) Storm Extrapolation

9 Advection here is considered as the horizontal movement of the storms or rainfall structures as captured by 
radar data.
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Figure 2.6: The main steps of an object based radar nowcast. Blue indicates the current 
instance of the storm at any time t, and grey indicates the past instances of the storm (here at 
t-1). The advection vector is shown with red. 



t0 t+1 t+LT

   a) Rain detection                             b) Field Tracking                            c) Field Extrapolation

2.2.3.1 Object oriented approach

The methodology of this approach is shown in Figure  2.6. A storm here is defined as a
group of radar grid cells (the group must be bigger than a threshold X set beforehand) that
have intensities higher than a threshold (Y in mm/h). If a storm is identified both at the time
step t0 and t+1, they are checked whether or not are the continuation of the same storm – also
referred here as matching of the storms. The storms are matched, if the centre of intensity of
storm t+1 falls within the boundary box of the storm t0.  Once the storms are matched, a
movement vector (referred to here as advection) is found by the cross-correlation method. In
this  method,  the  storm  at  time  t0 is  shifted  with  different  advection  vectors  (different
magnitudes and directions), and is cross-correlated with the storm at time t 1. The advection
vector with the highest correlation is then said to be the advection velocity of the storm. 

Other methods calculate the advection speed directly based on the displacement of the
centre of intensity. However at such methods, because some storms are very variant in time,
the  location  of  centre  of  intensity  may  change  drastically  from time  step  to  time  step,
causing very high and unreasonable advection speeds. Thus, the cross-correlation method is
thought to provide more reliable results. A gradient search is often included in the cross-
correlation in order to decrease the run time of the tracking algorithm. 

It is usually the case, that two storms merge together at a certain time, or a single storm
split  between  several daughter  storms.  Thus,  special  attention  should  be  paid  to  these
splitting and merging of the storms. This evolution can be identified by checking two criteria:
a) the minimum distance between the storms that have splatted or merged should be smaller
than the perimeter of the merged or that-is-splitting storm, and b) the position of the centre
of intensity of former storms should be within the boundaries of the latter storm. A brief
illustration of such splitting and merging criteria is given in Figure 2.8. 
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Figure 2.7: The main steps of a field based radar nowcast. Where coloured pixels indicate the 
rainfall volume according to the colour bar in mm/h, the field advection vectors are shown in 
black vectors and the grey plot region at figure (c) indicates the gap created due to the movement 
of the field with a specific advection vector at different lead times.



  

Examples  of  object-oriented  approach  in  the  literature  are  for  instance  a)  HyRaTrac
(Hydrological  Radar  Tracking)  developed  by  Krämer  (2008)  with  cross-correlation  based
advection, and b) TITAN (Thunderstorm Identification, Tracking  and Nowcasting) developed
by Dixon and Weiner  (1993)  with centroid  based advection  on  a  3D Cartesian  coordinate
system  (later  called  TINT  for  the  nowcast on  the  2D  data).  Problems  with  the  TITAN
application mainly on the advection estimation for some strong convective events have been
already  identified  [Pierce  et  al.,  2004] and  attempts  have  been  made  to  improve  such
deficiencies  [Han et al., 2009] by integrating a cross-correlation field approach. At a certain
degree  the  Enhanced  TITAN  (E-TITAN)  performance  improved  with  the  cross-correlation
approach,  indicating  that  these  methods  perform better  than the centroid  based  method.
Krämer (2008) implemented the cross-correlation method to determine directly the local storm
advection, and unlike E-TITAN doesn’t have the same restrictions for the maximum advection
speeds. The restrictions present on E-TITAN cause an underestimation of advection for very
severe storms that move very fast,  while HyRaTrac may be able to track them due to the
maximum found cross-correlation. However, one has to keep in mind that HyRaTrac just like
E-TITAN can be prone to false merging or splitting of cell, and hence introduce errors in the
advection  speed  and  in  the  nowcast of  the  storms.  Since  the  HyRaTrac  was  applied
successfully to the real-time nowcast of a sewer system flow (with NSE8 = 0.7 for lead time of
15min)  [Krämer et  al.,  2007] and it  includes the same basic  principle as TITAN, it  is  here
selected as a reference model for the object based radar nowcast. 

2.2.3.2 Field based approach

The  methodology  of  this  approach  is  shown  in  Figure  2.7:  like  the  objected  oriented
approach the advection vector is determined by the cross correlation method, but instead of
finding local advections for each storms, the field based approach works on the entire domain
–  each  grid  cell  identified  with  rain  will  move  according  to  one  advection  vector.  The
traditional method to calculate such field vector is the cross-correlation method. According to
Johnson et al. (1998) this method provides satisfactory results about the image advection, and
can work both on stratiform and convective events. An example of such implementation is the
Tracking Radar  Echoes  by Correlation  (TREC)  method developed  by  Rinehart  and Garvey
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Figure 2.8: The combination of two individual cells at time t0 to a single one at time t1 is done 
only if the dmin < dlimit and if centroids of t0 storms (Xc, Yc) fall within the contour storm at time t1

- shown with arrows (adapted from Krämer, 2008).  



(1978). However, one of the main drawbacks of this method is that since there is one motion
vector for the radar echo, it can not represent well enough the individual storms that might
co-exist inside the echo but exhibit different speeds and even different directions [Han et al.,
2009]. 

Thus, another approach was created first by Horn and Schunck (1981) that later served as
a basis of many studies [Germann and Zawadzki, 2002][Grecu and Krajewski, 2000][Liu et
al., 2015][Zahraei et al., 2012]. It calculates the motion field by investigating the slope of the
intensity change between two consecutive radar images – that today is referred to as optical
flow method. The basic assumption of the optical flow theory, is that, for a short time period
dt, the intensity doesn’t change from time t0 to time t0+dt, but instead it is just displaced with
a vector dx and dy. Therefore it is expected that the intensity (I) at coordinates (x, y, t) is the
same as the intensity at coordinates (x+dx, y+dy, t+dt) as indicated in Equation 2.5 [Marzban
and Scott, 2010]. For each grid cell a given dx and dy is determined, and the set of all dx and
dy (representing all the grid cells in the image) makes the optical flow field. 

I (x,y,t )≈ I (x+dx,y+dy,t+dt )  

The  Equation  2.5 can  be  expanded  by  the  Taylor  Series  and  can  be  solved  by  finite
differences between the two images. But since there are two unknowns (dx and  dy) some
constrains have to be made.  Based on the assumption of such constrains different solution
methods are distinguished: a)  [Horn and Schunck, 1981] – uses a constrain where nearby
pixels  have  similar  displacements,  b)  [Lucas  and  Kanade,  1981]–  assumes  that  the
displacement within a window/region of size W is constant, and c)  [Ruzanski et al., 2011]
through  Fourier  transformation,  the  radar  images  are  transformed  and  the  optical  flow
equation in  solved in  the spectral  domain (DARTS).   The former two methods require  a
minimum of 2 images to determine the optical flow (thus considering only linear movement),
while the latter requires 4 images to determine the optical flow (thus considering rotational
movements as well). 

Liu et al.  (2015) compared the two former methods Lucas-Kanade (LK) and Horn and
Schunck (HS), and as the LK outperforms the HS, they suggested to use a local LK method
for  the  rainfall nowcast from infrared  satellite  images.  Ruzanski  et  al.  (2011)  tested  the
DARTS method against the traditionally used cross-correlation method on radar data and
found that DARTS improves the  nowcast,  nevertheless concluded that the advection field
estimation affects little the nowcast performance. Moreover, DARTS advection field seems to
be more sensitive than LK for individual storms, an example of such a case is illustrated in
Figure  2.9:  where  the  LK predicts  more  uniform  flow  vectors  than  the  DARTS  method.
However, the solutions of DARTS require the determination of an empirical value based on
prior knowledge. Since no prior information is available at the moment about what value
would fit the best to the case study, only LK is considered here. Thus, the optical flow in LK
will be calculated from the last 15 minutes according to the results from Ayezel et al. (2019)
indicating that the rotational movements performs better than a linear one.
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(2.5)



      a) Lucas – Kanade          b) DARTS 

2.2.3.3 Extrapolation methods

Once the advection vector is determined (either for an object or for a field), it can be used
to  extrapolate  the  rainfall  in  the  future  at a  specific  lead  time.  Persistence  as  a  term is
generally used to describe the assumption that the rainfall structure in the near future is not
changing, or partially changing. The two used persistences in radar nowcasting are: a) Eulerian
persistence – the storms are kept stationary as observed at the last time step. There is no
change in intensity nor in the coordinates as dictated by Equation 2.6; 

I (x,y,t+LT )=I (x,y,t )     

 or b) Lagrangian persistence – the rainfall intensities are kept constant as last observed but
given  the vectors  U and  V (each for  x and  y direction)  of  advection,  the  coordinates  are
changed according to Equation  2.7.  While for  Eulerian persistence no change of  the radar
image is done, the Lagrangian persistence is illustrated in Figure 2.6 (c) and Figure 2.7 (c).

I (x,y,t+LT )=I (x∓U⋅LT,y∓V⋅LT,t )     

As mentioned in  Grecu  and Krajewski  (2000),  the  radar  structures  at  larger  scales  (for
instance 4×4 km2 and  hourly accumulation) exhibit better persistence than at smaller scales.
For large scales the Eulerian and Lagrangian  persistence can produce reliable results, but as
the resolution  gets finer, the temporal distribution of rainfall structures is changing rapidly,
and these persistence-s lose their ability to represent accurately the rainfall. The change of the
nowcast performance from different models at different scales was investigated by Surcel et al.
(2015), and the Figure 2.10-left gives an overview of their results. Nevertheless, for very short
lead time (at the range of few minutes), under the assumptions that the rainfall doesn’t exhibit
a strong variation, the two persistence-s could be useful even for fine scales. Lorenz (1973)
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where:
LT  –    lead time                                 [min]
U   –    x component of advection      [m/s]
Y    –    y component of advection     [m/s]

Figure 2.9: The estimated optical flow field from Lucas – Kanade and DARTS method for a 5 
min time step of a radar image. The black arrows indicate the motion field.

(2.6)

(2.7)

where:
LT      –    lead time   [min]



concept about the  prediction skills  of different models based on lead time is presented in
Figure 2.10-right: he argued that for very short lead times Eulerian persistence can produce
good results, but shortly after the nowcast initialization it is outperformed by the Lagrangian
persistence.  However like the Eulerian, the Lagrangian persistence  does not consider any
birth or death of the storms, and as such it loses its’ nowcast skill quite fast. For longer lead
times more complex approaches are required that can model storm birth, decay and death of
the storms. 

Thus, complex models that account for the non-linear extrapolation of the rainfall field in
the future are studied in this thesis, with the aim to investigate the effect that the non-linear
consideration has on the nowcast skill at different lead times. 

2.3 Predictability Limits 

As the Lagrangian persistence does not include the storm death or birth, the nowcast skill
of  this  model  is  strongly  dependent  on the  life  time  of  the  storm.  Consequently,  for
stratiform events,  the Lagrangian based  nowcast can yield reliable results for longer lead
times than for convective events. For instance, for a storm that lives typically one hour long,
the Lagrangian based nowcast losses its’ nowcast skill shortly before one hour. Depending on
the  storm  dynamics,  the  persistence  can  lose  its’  skill  even  before  this,  due  to  non-
consideration of growth or decay of the storms. Table 2.4 gives a summary of up to what lead
time one can expect the Lagrangian persistence to provide useful nowcasts (at fine scales) for
different type of events.

Type of events Reliable Nowcasts
Individual Convective cells 5 - 20 min

Thunderstorms 10 – 60 min 
Meso-scale Convection 60 – 120 min

Stratiform 120 – 180 min
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Figure 2.10: The dependency of the forecast skill of different models based on the scales at 
consideration and different lead times left) according to Surcel et al., (2015) and right) 
according to Lorenz (1973).

Table 2.4: Typical limits of predictability for different types of rainfall events [Krämer, 2008]



Here it is important to understand how to determine the lead time up to which the nowcast
can be useful,  which in literature is  referred to as predictability limit.  Even if  the perfect
nowcast model existed, it can yield reliable results only until a specific lead time, as due to our
inability to measure and observe the true rainfall  field,  initial errors are introduced in the
nowcast system. Lorenz (1973) defined this limit as the intrinsic predictability limit, which can
be considered as well as the theoretical predictability limit - the limit that we can never cross,
no matter how good the nowcast model is. However in real life, we are far away from creating
a perfect  nowcast model, thus other errors due to the model structure are introduced in the
nowcasted field. This limit, that often is calculated in studies, is referred to as the practical
predictability  of  storms.  A good  nowcast model  is  thus  considered  one that  can  beat  the
predictability limit of the Lagrangian persistence and hence provide a better nowcast skill for
longer lead times. In literature there are mainly three ways to calculate directly the practical
predictability limit of a nowcast system: 

1)  The de-correlation time (τ) - as presented in Grecu and Krajewski (2000), is the lead
time when the  nowcast field becomes completely de-correlated with the observed field. The
fields are treated as completely de-correlated, when the correlation becomes lower than 0.5.
However,  in  a  later  study  by Germann and Zawadzki  (2002),  the value  of  1/e  ~  0.37  was
proposed as a good indicator for the predictability limit.

2)  Equitable Threat Score (ETS) – also presented in  Germann and Zawadzki (2002) is a
categorical criteria that can be calculated as per Equation 2.8 for detection of rainfall above a
given threshold [mm/h]. A value lower than 0.3 indicates that the nowcast is not useful at all.

ETS=
A−AR

A+B+C+D
   and  AR=

(A+B) (A+C )
A+B+C+D

   

 3)  Receiver Operating Characteristic Curve (ROC) – as presented in Codo and Rico-
Ramirez (2018) is a categorical criteria for ensemble nowcasts that indicates the relationship
between Hit Alarm Ratio (as per Equation  2.9) and False Alarm Ratio (as per Equation 2.10) on
different probability of rainfall detection above a given threshold (mm/h). A typical ROC curve
is illustrated in Figure 2.11. A nowcast model is said to have no nowcast skill if the area under
the curve is less than 0.5 – the False Alarm Ratio is higher than the Hit Alarm Ratio.

HAR= A
A+C

         

FAR= B
B+D
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where:
A – Hit Alarms
B – False Alarms
C – Miss Alarms
D – No Alarms

(2.8)

(2.9)

(2.10)

where:
A – represents the case when the rainfall was forecasted and observed (Hit Alarm)
B – represents the case when the rainfall was forecasted but not observed (False Alarm)
C – represents the case when the rainfall was observed but not forecasted (Miss Alarm) 
D – represents the case when the rainfall was not observed and not forecasted (No Alarm)



 

It  has  been  the  object  of  many  studies  to  investigate  the  predictability  limits  of  the
Lagrangian persistence and how to push through these limits. For small scale applications
the  typical  predictability  limits  found  by  different  studies  are  summarized  in  Table  2.5.
Generally for small scale applications (1 km2 and 5 min), the Lagrangian persistence has been
proven to yield reliable results up to 20 – 25 min, after this lead time  it  is very difficult to
predict the rainfall structures. Especially for high rainfall intensity, the predictability limit is
quite short (up to 7 min for 50 mm/h).

Other attempts have been made to improve the predictability of rainfall by considering
blending the radar based nowcast with NWP [Codo and Rico-Ramirez, 2018][Foresti et al.,
2016][Jasper-Tönnies et al., 2018]. An example for this which is also quite famous is STEPS
[Bowler et al., 2006]. This method uses the radar based  nowcast from Seed  (2003)  up to 2
hours, and later on it uses downscaled inputs from NWP to extend the lead time up to 3-6
hours.  As  it  has been  proven  that  the  large-scale  precipitation  is  more  persistent  and
influences  the  movement  of  the  small  scales [Surcel  et  al.,  2015],  the  STEPS  nowcast
employees a cascade approach – estimating the temporal evolution of rainfall at different
scales, and uses the Lagrangian persistence to predict the motion of rainfall features at such
scales.  A stochastic  noise generator  is  then used to provide ensemble predictions and to
account for different conditions of the storm birth. Such method has been proven to improve
the rainfall predictability by some minutes (up to 30 min) [Foresti et al., 2016]. Even though
the results  are slightly better than the convectional single scale persistence, it is clear that
there is a limit to the rainfall predictability that may not be  exceeded at the moment by
stochastic generators.  
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Figure 2.11: Example of the ROC Curve; if the nowcast falls within the green area then it is 
considered useful, otherwise is considered as unreliable.



Study

Nowcast Resolution
Predictability

Measure 
Nowcast 

Type
Threshold

[mm/h]

Predictability
Limit 
[min]

Spatial
 [km2]

Temporal
 [min]

Grecu & Krajewski (2000) 4 km2

32 km2 15min
Decorrelation

Time 

( ~ 0.5)
Lagrangian 0.1 30 min

60 min

Kato et al. 
(2017)

250 m2   
    1km2 5 min

Equitable
Threshold Score

(ETS ~ 0.3)

Semi -
Lagrangian

1
5
10
30
50

35 min
22 min
17 min
10 min
  7 min

Ruzanski et al. 
(2011) 0.5km2 1min

Equitable
Threshold Score

(ETS ~ 0.3)

Semi -
Lagrangian 25 dBz 21 -23 m

Germann & Zawadzki
(2002) 4 km2 15min

Equitable
Threshold Score

(ETS ~ 0.3)

Semi -
Lagrangian

0.1 
1 
10 

2.5 – 6h
1-3h

30 min

Foresti et al. 
(2016) 1 km2 5min

Equitable
Threshold Score

(ETS ~ 0.3)
Steps 0.5

5 
60 – 90 min

30 min

Codo & Rico-Ramirez 
(2018) 1 km2 5min ROC Curve

(Area ~ 0.5) Steps
0.1 
1 
3 

2 – 3 h
2 – 3 h
1 – 2 h

Jasper -Tönnies et al.
(2018) 1 km2 5min ROC Curve

(Area ~ 0.5)
Cosmo-DE
Blending

3 
7 

<1h
<1h

To summarize, the sources for errors (uncertainties)  that are restricting the predictability
limit are: a) a storm has to be identified in order to nowcast its’ movement, hence no birth or
storm pop up is possible.  With stochastic generators (ensemble predictions) it is possible to
model such births, but still their ability to  nowcast the exact time, location and intensity is
low. Also due to the image boundary of the radar data, no information is continuously flowing
from this boundary  at longer lead times (see Figure  2.7-c); b) uncertainties related with the
tracking and evaluation of  the advection vectors, and lastly c)  uncertainties related to the
extrapolation of the observed rainfall storms/field in the future due to the in-stationary nature
of the rainfall. Uncertainty of the type (a), the inability to predict the birth of the storms limits
greatly the prediction skill of the radar to about two hours, followed up by the uncertainty of
the type (c), the inability of the nowcast to predict the death or decay of the cells, limiting the
prediction skill of the radar up to the duration of storm itself. 

In this thesis the focus is mainly at reducing the uncertainty of the type (c). More complex
methods are developed to improve the simulation of storm growth/decay and death processes
and consequently extend the practical predictability limit. As the archived observed dataset is
becoming larger, new techniques rise: heuristic methods that learn from the available database
and can predict based on previously observed motions and behaviours. Thus, here two data-
driven methods are investigated on their  ability  to yield  better  nowcasts  than Lagrangian
persistence: the Neural Networks and the Nearest Neighbour approach. 
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Table 2.5: A summary of predictability limits on different spatial and temporal scales 
investigated by different literature studies with different nowcasting techniques. 



2.3.1 Neural Networks 

The Artificial Neural Networks (ANN) have already been used for rainfall prediction but
not directly in rainfall nowcasting [Asanjan et al., 2018][Chaing et al., 2007]. Given a sample
of input-output pairs, the ANN tries to model the relationship between them by employing a
number of units (called neurons) that have non-linearly relationship between them (dictated
by  activate  functions).  The  number  of  neurons  and  the  way how the  information  flows
between  them  (neurons  having  the  same  input  make  up  a  layer)  build  up  the  ANN
architecture  (see  Figure  2.12).  The  weights  at  each  neuron  control  how  the  data  is
transformed from input to output and can be optimized by minimizing a cost function (for
instance  reducing  the  bias  between  observed  and  simulated output),  which  is  typically
referred to as the training of the network. Depending on the right predictors (the input), the
ANN can learn complex relationship and predict them successfully. The only main drawback
of such predictions is that, since the ANN is a black-box model, there is no physical meaning
to the weights and transformation learned.

Grecu  and  Krajewski  (2002) were  one  of  the  firsts that  trained  a  neural  network  to
nowcast rainfall intensities from the radar data on a 4 km2 grid and 15 min time steps. They
used a  Back Propagation Neural  Network (BPNN) and fed into it reflectivity-changes time
series  at each grid cell. That is for a specific region (a training quadrant), the predictors of
each grid cell within the region (the reflectivity-change time series) were pooled to train the
ANN and to  keep a  certain  spatial  consistency of  the  nowcasted field.  The results  were
disappointing because there was not a significant gain in the predictability of the rainfall
compared to the Lagrangian persistence. 

Another type of ANN structure that is commonly used in pattern recognition, is the deep
convolution  neural  networks  (CNN).  These  are  mainly  used  in  image  processing,  where
hidden layers consist of a group of neurons that convolve with a multiplication or another
dot product. For instance, in the stereo-depth training, two images of a camera (mimicking
left and right eyesight) with a specific resolution (M X N) are combined together in order to
predict the true location of the objects inside them. A matrix with dimensions MxNx2 is given
as an input to the Neural Network and a filter of a fixed size k convolves in the matrix (one
convolution  over  kxk pixels  represents  the  input  of  a  single  neuron).  The  convolution  is
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Figure 2.12: Architecture of an artificial neural network with one hidden layer (retrieved from
https://artineurons.com/introduction-to-neuron-network/)



repeated several times for the complete matrix, thus increasing the resolution of the image
each  time/level  (each  time/level  of  convolution  represents  a  neuron  layer).  Through  the
training of the network, the weights inside the k -filter are changed and adapted such that, the
predicted output and the observed output have a minimized cost function [Gerchow, 2018 ].

DispNet  Architecture was developed by Mayer  (2016)  with the  same flow as  explained
above, however the training for the data is not only done at the end level (reduce the error on
the output image), but instead it proposes the minimization of  cost function at each level
when the k filter is applied. Thus ensuring that the coarser features are maintained and that
no spatial  inconsistencies  are  produced  by  the  CNN.  Such  architecture  was  implemented
successfully by Gerchow (2018) for the estimation of stereo depth from two images (left and
right) for the application in micro laser surgery. 

It  would be interesting to investigate if  such an architecture can be applied for rainfall
nowcast where the inputs are the radar images at time t0 and t-1. Given that the CNN is able
to learn from and keep the structure at different resolutions, it would be a suitable candidate
for  the  rainfall  nowcast,  as  it  has  already  been  observed  that  the  coarse  rainfall  scales
influence or model the fine scales. Thus, one of the objectives of this thesis is to check if such
an architecture can extend the predictability of the rainfall. Is the CNN able to learn birth and
death of the storms? 

2.3.2 Nearest Neighbour Bootstrap Method

On the other hand, other methods like nearest neighbour has been used in hydrology for
prediction (i.e. stream forecast based on rainfall, temperature and discharge  [Galieti, 1990]).
The idea of nearest neighbour is that similar events are caused by similar predictors, thus if
one successfully identifies the predictors, then the hypothesis is that the events characterized
by the same predictors have the same (or at least similar) behaviour. As described by Lall and
Sharma (1996) a nearest neighbour approach, given an event to be forecasted, is applied in two
steps; a) first from a group of past events, the k-most similar events are selected. Similarity of
events is determined by the Euclidean distance of the predictors as per Equation 2.11; and b)
the response/behaviour of the event at hand, is then the average of the k-most similar events
as per Equation 2.12. The k – number giving the best value is learned by investigating a cost
minimization function for different k. 

Ed=√(X1−Y 1)
2+(X2−Y 2)

2+. . . .+(X N−Y N )2    
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where:
Ed                – is the Euclidean distance 
1,2,….N       – refers to the predictors used for the similarity estimation
X1, X2, … XN – are the predictors of the event at hand 
Y1,Y2,…...YN  – are the predictors from in-past observed event

(2.11)



The  application  of  k-Nearest  Neighbours  (k-NN)  seems  valid  when  using  the  object
oriented approach; it can be that similar storms are developing similarly and having more or
less same life time. Thus, it can be an important tool in predicting the storm death and decay
– decreasing so the high false alarm ratio associated with the Lagrangian persistence. One of
the advantages of the k-NN is that, since different neighbours can be similar to the storm at
hand, an ensemble prediction can be made by considering all of them instead of averaging
the k-responses. Moreover, the errors due to the death or decay can be better identified and
quantified. Hence, one of the objectives of this thesis is to check if such a storm based k-NN
can be applied as an extension to the object based nowcast (namely HyRaTrac) to increase
the predictability of the rainfall. If yes, what would be the best predictor set  to recognize
similar  events? And  what  would  be  the  best  way  to  determine  if  events  are  behaving
similarly?

Galieti (1990)  successfully  forecasted  daily  discharge  data  from  the  previous  daily
discharge, the rainfall daily volume and mean temperature. In such case the application of k-
NN is quite fruitful because there is a clear (with physical background) connection between
the  input  variables and  the  target  discharge.  However,  when  such  information  is  not
available,  it  can  be  challenging  to  identify  the  right  predictors  and  hence  have  a  good
performance from the k-NN. The identification of  the right predictors is  bounded to the
predictor set that one chooses to investigate. This task is an open research topic not only in
the field of rainfall nowcast but overall in hydrology. 

In non-parametric forecast models, the most common way of identifying a predictor is the
presence  of  a  strong  correlation  between  the  predictor  and  the  target  variable.  Mutual
Information  [Fraser and Swinney, 1986] is another method widely used, that can help to
express the statistical dependence of two variables (either if they have a linear or non-linear
relationship).  However, both of them consider the effect of only one predictor, and not the
interaction between them (the partial dependence). As it might be that some predictors are
left out just because they don’t have a direct relationship with the target variable, but might
improve the forecast if used in relationship with another predictor.  

Thus  Sharma  and  Mehrotra  (2014)  proposed  a  modified  version  of  the  Mutual
Information, called Partial Information Content (PIC),  that can measure partial dependency
of the predictors set.  The applied PIC metric is a number of synthetic generated data that
included linear and non-linear relationship. The PIC metric (also referred to weights) gives
values from 0 to 1 – one  representing high dependency and 0 no dependency at all.  The
results look promising and such weights are advised to be used as well in a k-NN based
forecast approach [Sharma et al., 2016].
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where:
Rnew  – is the target response that one wants to forecast 
 k      – is the number of similar neighbours selected
Ri      – is the response from the ith neighbour
wi      – is the weight for the ith neighbour

(2.12)



Relative  Importance  Analysis  (RIA),  on  the  other  hand,  represents  another  way  to
understand the interaction between different predictors and the target variable, by studying
how  the  variance  of  the  target  variable  is  explained  based  on  the  predictors’  variance
[Tonidandel  and  LeBreton,  2011].  RIA offers a  global  analysis  to  determine  the  variable
importance given  the prior  hypothesis  that  the  predictors  and the  target  exhibit  a  linear
relationship.  Unlike the multi-regression weights,  RIA considers the interaction among the
predictors, but due to a transformation in an orthogonal space, the effect of co-linearity is
removed. 

Both RIA and PIC metric, can give direct weights of predictors importance but nonetheless
since the RIA assumes a linear relationship, only the PIC weights can be used directly as input
for the estimation of the Euclidean distance in the k-NN nowcast. However, RIA can provide
useful  information  on  how  the  predictors  interact  with  each  other,  what  are  the  most
important ones, and which one can be discarded. Thus, in this thesis the information from the
RIA  will  be  integrated  with  the  PIC,  to  estimate  the  right  predictors  and  the  respective
weights.  Additionally,  the  correlation  weights  will  be  used,  to  check  whether  the  applied
methods can provide better estimators than the most commonly used one. 
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3. STUDY AREA AND DATA

This chapter gives an overview about the study area –  Section  3.1, and available data –
Section  3.2 that  are  used  in  this  thesis  to  investigate  the  predictability  of  the  storms by
different  nowcast methods.  Section  3.3 summarizes  the  procedure  employed  for  the
identification  of  relevant  rainfall  events  that  would  be  suitable  for  the  training  and  the
validation of these methods. As the nowcast methods are expected to behave differently based
on the event types, a simple classification scheme of the selected events is described in Section
3.4. 

3.1 Study Area

The study area is located in northern Germany, as illustrated in  Figure 3.1-a, and it lies
within the Hannover Radar Range as shown in Figure 3.1-b. The Hannover radar is situated at
the Hannover Airport and it  covers an area with a radius of 115  km, including most of the
Lower Saxony Region, the city of Bremen,  the north-east  part of Northrein-Westphalia, and
eastern part of Saxony-Anhalt. As illustrated by the topography map provided by the German
Federal  Agency for Cartography and Geodesy (BGR), the area is mainly flat, with elevation
barely reaching 200 m in the centre and northern part, while the south-west is characterized
by few hills and the south-east by the Harz mountains that reach up to 1140 m a.s.l. 

As the study area is in the proximity of the North Sea, the majority of the region (mainly
the northern flats) is dominated by the maritime climate - characterized by cool summers and
not so cold winters, with high humidity around the year and low sunshine duration in winter.
In the southern part of the region, where the hills and the mountains are located, the climate
is rather continental with dry summers and cold rainy winters. 

The precipitation is mainly of a) stratiform type in winter - caused by the Westerlies Air
Masses  (from  the  Atlantic)  and  characterized  by  long  rainfall  with low intensities;  b)
convective type in summer  - caused by the radiation instabilities which occur at local scales
and for a short duration of time; and c) orographic type throughout the year - due to the
presence of the mountains in the south-east part. Figure 3.2 illustrates the spatial variability of
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the seasonal rainfall volume (averaged from 1983 to 2010) for the study region. Due to the
presence of the orography, it is clear that the Harz mountains are receiving the most rainfall
for both summer and winter, while the other regions (the northern flats) receive more rainfall
in summer (due to convective processes) than in winter. 
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Figure 3.2: The spatial variability of the long term (1983-2010) seasonal rainfall volume inside 
the study area according to Deutscher Wetterdienst (DWD) data. 

Figure 3.1: The location of the study area a) within Germany and b) with the corresponding 
elevation and boundaries. 



3.2 Data Available 

As indicated in Section  2.1.2 the two types of rainfall measurements adequate for urban
flood forecast and that are used on this study are gauge recordings (discussed in Section 3.2.1)
and  radar  scans  (discussed  in  Section  3.2.2).  Both  measurements are  managed  by  the
Deutscher Wetterdienst (DWD) and are available for the public since 2017 under the server:
https://opendata.dwd.de/climate_environment/CDC/.  For  the  purpose  of  this  study  as
illustrated by Figure 3.3 were employed 100 recording stations (shown in dark red) and 1 radar
recording (shown in dark blue). 

3.2.1 Station Data

The gauge data used in this study are tipping bucket devices that record the rainfall at 0.1
mm accuracy at 1 min resolution. Since the data provided by the DWD are raw data, and only
an automatic check was performed prior to data delivery, the 1 min data are first aggregated
to 5 min time steps and then are further checked for plausible values. Attention is given that
the extreme rainfall at different periods doesn’t exceed the highest recorded in the region. In
dry periods where it is clear that there is no sudden high rainfall, the values are set to 0, while
for the other cases are set to missing values.

3.2.2 Radar Data 

The  radar  used  in  this  study  is  of  C-band  that  gives  reflectivity  measurements  at  an
azimuth resolution of 1o and every 5 min scans. The reflectivity measurements were converted
to intensity according to the Marshall-Palmer relationship with the constant coefficients of a=
256 and b=1.42 according to the Equation  2.4.  For the correction of the radar data, a simple
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Figure 3.3: The available recording stations (red) and radar (blue) inside the study area.

https://opendata.dwd.de/climate_environment/CDC/


static clutter correction according to Berndt et al. (2013) was employed. The procedure is as
follows: 

Step 1: Random years of radar measured intensity were summed up (2 or 3 years)
in order to identify the static clutters. Here static clutters are considered as zones 
where the rainfall is either too low (zones with rainfall lower than 500 mm) or too 
high (zones with rainfall higher than 2800 mm). The location of the erroneous 
beam was estimated visually as well by the accumulated volume and is treated as 
a clutter. 

Step 2: Once the clutters were identified, the inverse distance interpolation 
method was employed to fill in the rainfall information from the surrounding grid
cells.  

Step 3: The corrected intensities from step 2 are converted to a Cartesian 
Coordinate system with a 1 km2 resolution. 

The radar data obtained are used as a basis for the later procedures and for the merging
with gauge data, and are referred to as raw radar product (RR). No further correction is done
to the radar data, as it is assumed, that the merging with the gauge information, will handle
the other types of errors present in the radar measurements. 

3.3 Event Selection 

Since  the  radar  data  are  available  only  from  2000  and  on,  the  observation  period
considered in this study is from 2000 to 2018. As the precipitation nowcast is case dependent
(depending highly on the storm type and its’ distinctive movement and transformation), it is
important to consider separate events, instead of continuous time series. Thus, the aim is to
extract events that are relevant for the study and give a good overview of convective and
stratiform mechanisms. To select the relevant events, first the gauge data were consulted and
then the radar one. 

The procedure for the extraction of the events is illustrated in Figure 3.4. First, for each of
the  100  recording  stations  the  extreme  rainfall  volumes  for  different  durations  were
extracted.  As  indicated  in  Figure  3.4 upper-left,  a  sliding  window with  the  span  of  the
duration under investigation (in the example the duration is 15 min), is used to calculate the
rainfall  volumes  accumulated  under  the  duration.  For  each  rainfall  event,  the  maximum
volume (PE) is selected and used to build the partial extreme time series. Rainfall extremes
are recognized from one another by a dry spell duration (DSDmin) longer than the sliding
window. The partial extreme time series is not only useful because it helps to recognize the
most extreme storms, but also by fitting a  GEV (Generalized Extreme Value) in the partial
series, it gives a tool to measure the severity of storms given a specific duration (as shown in
Figure 3.4. lower-left).
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Nevertheless, the extreme value analysis indicates extreme events happening at a point
location, but since the interest is in spatial events, it is important to recognize events that are
happening around the whole radar region. To account for the region, areal averages (for the
whole area) were computed for each 5 min time steps based on the 100 stations. The average
time  series  was  then  used  to  identify  the  wet  period  (WSD)  –  time steps  where  rainfall
intensity (PI) is bigger than a minimum intensity threshold (WSImin=0.05 mm); and the dry
periods – time steps with PI less than 0.05mm, in the region as shown in Figure 3.4.-right. The
wet periods were distinguished from one another if a dry period (DSDmin) of more than 4
hours is present [DWA, 2012].

Once the areal events were identified, only the ones with the pre-recognized extreme events
at local scale were selected for the further evaluation. In the final step, the radar data were
employed to check whether or not a rainfall event was recognized by the radar, and hence if
spatial information was available. Thus an event, starts when the average areal intensity is
higher than 0.05 mm and ends when there is no rainfall present in the region for more than 4
hours.

Based on the procedure a total of 100 events were selected for the further evaluation of the
methods. A detailed description of the events, with the duration and extremity, is illustrated in
Appendix A – Table A.1. Since, as discussed in Section 2.3 the predictability limit is expected to
vary based on the event type, it is important to distinguish between them when analysing the
results. For this purpose, a classification scheme was used to distinguish between types of
events as described in Section 3.4. The set of 100 events is then separated into two datasets: i)
2000-2012  dataset  used  for  estimating  the  limits  of  rainfall  nowcast  predictability  and
developing the new nowcast methods (see Section 3.4.1), and ii) 2013-2018 dataset used for the
final comparison of the nowcast methods under severe convective events for the urban flood
nowcast application (see Section 3.4.2). 

43



Figure 3.4: The procedure for the selection of relevant events; a) left - the selection of extreme events per each station is illustrated. Cumulative 
Probability Distributions of partial extremes are built for each station and duration to know the severity of the storms at each station; right) the 
procedure for the selection of the areal events is illustrated. For each recognized areal event, the extreme events at each station for different duration are
consulted, in order to select only the most relevant ones. Once the relevant events are selected, the radar data is consulted; if the radar data are available
for the given periods and if the quality of the measurements is good enough for the nowcast. 



3.4 Event Classification 

In the classification scheme proposed here (illustrated in Figure  3.5) four variables were
employed.  The variables were calculated for the event – the start and the end of the wet
period considering the whole radar range, and individual storms – which here is referred to as
a group of rainy grid cells recognized by the radar observed on different time steps. Hence one
event includes many storms, with different duration and areal extents. 

1- Maximum Rainfall Intensity (PImax) observed in the station data [mm/5min] 
during each event – According to Ehret (2003) cold and warm fronts can reach 
intensities up to 60 mm/h and not higher. However, since the fine resolution peaks 
are generally higher than the coarse resolution ones, we consider 7 mm/5min as a 
threshold for the separation of the convective and stratiform events. 

2- Wet Area Ratio (WAR): Percent of event time steps where the fraction of the 
radar image that has rainfall intensity higher than 0.05 mm/5min, is more than 
45% - According to Ehret (2003) warm and cold front can be distinguished by a 
WAR higher than 45%, while a convective one by a WAR lower than 8%. However, it
can be than the convective events are spread on the whole radar range, thus the 
WAR itself cannot provide a full classification, that is why the duration and the 
maximum extend of singular storms were considered as well. 

3- Maximum Storm Area in each event from radar data [km2] – According to 
Ehret (2003) convection and meso-scale convection cannot reach extents higher 
than 103 km2, thus this can be used as a limit to distinguish between convective and
stratiform events. Nevertheless, since the investigation is done on a single radar 
station, the extent of the storm is limited by the radar boundaries. 

4- The Longest Duration of all singular storms observed in each event from radar
data – According to Table 2.1, the convective storms typically live between 30 min 
and 4 hours. They seldom live longer. That is why the 4 hours (360min) duration 
was used as a threshold to identify storms that are convective or stratiform. 

Based on these characteristics,  events  are distinguished into 4  groups:  a)  stratiform, b)
simple convection, meso-γ supercell convection, meso-β wide spread convection, and mixed
events. As depending of the event duration considered, it may be that both stratiform and
convective  storms  are  present  during  an  event,  thus  a  clear  separation  is  not  possible.
Therefore a new group is introduced – the mixed events. The classification of the events was
then done according to 5 rules as explained below and as illustrated in Figure 3.5. 

Rule 1: IF WAR is bigger than 45% for at least half of the event duration, the 
maximum storm duration within the event is longer than 4 hours, and the 
maximum intensity observed by the stations is lower than 7mm/5min, the event is 
classified as stratiform (colour code green). 
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Rule 2: IF maximum storm duration is shorter than 4 hours and the maximum 
storm area is lower than 102 km2, the event is classified as convective (colour code 
light blue). 

Rule 3:  IF the maximum storm duration is shorter than 4 hours, the maximum 
area is higher than 102 km2, and the maximum observed intensity is higher than 7 
mm/5min, the event is classified as meso-γ scale convective (colour code blue). 

Rule 4: IF the maximum storm duration is shorter than 4 hours, the maximum 
area is higher than 102 km2, and the maximum observed intensity is lower than 7 
mm/5min, the event is classified as meso-β scale convective (colour code dark 
blue).

Rule 5: IF the maximum storm duration is longer than 4 hours, and the 
maximum observed intensity is higher than 7 mm/5min, the event is classified as 
a mixed event (colour code turquoise).   

3.4.1 Events for the Evaluation of Rainfall Nowcast 

In total 93 events were recognized by the procedure in 3.3 for the period from 2000 to 2012.
These events are to be used for the training, validation and evaluation of the rainfall nowcast
algorithms. From the 93 selected events – 13 were classified as stratiform, - 14 as convective,
-14 as meso-γ convective, -25 as meso-β convective and – 27 as mixed events. The properties
of  each  group  of  events  are  shown  in  Figure  3.6.  As  expected  the  most  severe  events
(regarding urban floods) are within the convective and meso-γ convective events, while the
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Figure 3.5: The schematic diagram for the event type classification for events with maximum 
observed intensity higher (left) and lower (right) than 7mm/5min based on Maximum Storm Area 
(x-axis), Maximum Storm Duration (y-axis) and Coverage of Wet Area Ration (the red line). 



mixed events can also exhibit high intensities, but they share as well characteristics with the
stratiform events. 

3.4.2 Events for the Evaluation of Urban Flood Nowcast 

As discussed in Section 2.1.2 meso-scale convective events are the main cause for the urban
floods. Even though some of these events have been selected to test the predictability and to
train new data-driven nowcasts, it is important to test these methods under distinctive events
that can cause urban pluvial flood. For this purpose, a total of 17 events were selected from the
period 2013-2018 that exhibited extreme rainfall volumes for the short duration (60 to 120 min
corresponding to the concentration time typical of the urban catchment). In total 17 extreme
events were recognized - 5 as simple convective, -7 as meso-γ convective, and – 5 as mixed
events. The properties of each group of events are shown in Figure 3.7. 
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Figure 3.6: The maximum storm duration (up-left), maxim storm area (up-right), WAR event 
coverage (lower-left) and maximum gauge intensity (lower-right) of the selected events grouped in 
a) stratiform (green), b) simple convective (light blue), meso-γ convective (blue), meso-β convective 
(dark blue) and  c) mixed (turquoise). 

Storm Duration Storm Extent   

Storm Coverage   Maximum Intensity
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Figure 3.7:  The maximum storm duration (up-left), maxim storm area (up-right), WAR event
coverage (lower-left) and maximum gauge intensity (lower-right) of the selected events for the
urban flood simulation grouped in a) stratiform (green), b) simple convective (light blue), 
meso-γ convective (blue), meso-β convective (dark blue) and  c) mixed (turquoise).
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4. REFERENCE METHODS

This chapter gives an overview about the performance and the predictability limits of the
existing nowcast  methods for  the  Hannover  study area and for  different  event  types.  The
selected nowcast reference methods, introduced in the literature review, are described shortly
in Section 4.1, followed up by the predictability and performance measurements for different
thresholds in Section  4.2.  The existing gap between radar and gauge data is  illustrated in
Section 4.3 and finally in Section 4.4 an overview of the predictability limits and performance
of the reference methods for different storms is given, and conclusions are derived about the
need and room for improvement of the existing nowcast methods. 

4.1 Existing Nowcast Methods 

The Lagrangian persistence is used as a reference for the estimation and improvement of
the predictability. Eulerian persistence is not considered here, because as mentioned in the
literature review, it is outperformed by the Lagrangian one. The two types of Lagrangian radar
based nowcast considered here are; i) the object based approach represented by the HyRaTrac
model  [Krämer, 2008] and the field motion approach represented by Lucas-Kanade optical
flow method [Lucas and Kanade, 1981]. The algorithms of the methods are illustrated shortly
in Figure 2.6 and Figure 2.7 from the Section 2.2.3 of the literature review. 

4.1.1 HyRaTrac Settings 

As already mentioned HyRaTrac performs the nowcast in three steps; I) identification of the
individual storms, ii) tracking of the individual storms, and iii) extrapolation of the individual
storms by the Lagrangian persistence.  The nowcast  is  initialized when a wet  time step is
present; when a group of 64 radar grid cells has an intensity higher than the initial threshold
of Z = 20 dBz. Afterwards in each wet time step, an individual storm is recognized if a group of
grid cells exceeds a certain threshold. To account for both types of storms, two thresholds are
set;  20 dBz for more than 128 radar pixels (stratiform), and 25 dBz for more than 16 radar
pixels (convective). 

Once a storm is recognized and tracked, the advection vectors are estimated by maximizing
the cross-correlation between the two radar images;  the current image at  time t,  and the
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previous image at time t-1. First global velocities are calculated for the whole radar image, to
have a first estimate about the direction of advection, then local velocities for each storm
region10 are calculated. If a storm is just identified (so no previous storm state is known) then
the local  advection is  set  to the  global  one.  To account  for  missing time steps,  a  15min
window is given; this means that if a previous time step or the current time step is missing,
the information used for the advection in the last 15 min is still  used as a basis for the
nowcast. 

Once the advection is determined, the extrapolation of the storm in the future is done
based on the Lagrangian persistence as shown in the following Figure 4.1. The advection is
not applied at the centroid of the storm, but at the storm region. This means that the corner
coordinates of the storm are displaced by the advection vector. The nowcast is given every 5
min for the total lead time of 3 hours.

4.1.2 Lucas-Kanade Flow Settings 

As with HyRaTrac a threshold of 20dBz was used to recognize the rainfall structures of the
radar images. Unlike HyRaTrac there is no limit about the group of cells that are higher than
this threshold. Instead all the radar pixels that are lower than this threshold are set to 0. The
optical flow algorithm according to Lucas-Kanade method is then employed to determine the
flow field based on the last 15 min; current time step t, and previous time steps t-1 and t-2.
The  extrapolation  on  the  rainfall  field  in  the  future  is  done  based  on  the  Lagrangian
persistence for every 5 min until a lead time of 3 hours. For the implementation of the Lucas-
Kanade method, the pysteps package in python was used [Pulkkinen et al., 2019]. 

10 The storm region is the region within the minimum and maximum X and Y extent of the storm.
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a) time t0 b) time t+LT

Figure 4.1: The extrapolation of a storm region (blue box) as  last observed at time t0 (when 
the nowcast is issued), and in the future with a specific lead time (t+LT) based on the local 
advection vectors (blue arrows). The storm region belonging to the previous time step is 
indicated in a dashed line.



4.2 Measurements of Predictability

 As discussed in Section 2.3, the predictability can be distinguished between the theoretical
and the practical one. In this study the focus is only on the practical predictability, as the
models at hands are far from perfect and furthermore in the existing nowcast methods the
nowcast uncertainty due to the initial conditions cannot be estimated. Thus, an overview of
the theoretical predictability is not possible. However, the practical predictability can still be
investigated by comparing the nowcast either to the gauge or to the radar observations. 

As  the  final  scope  is  the  urban  flood  nowcast,  and  urban  flood models  are calibrated
typically with gauge data, a comparison of the nowcast with the gauge observation will give
an overview on how good are the radar based nowcast for the point scale application. This
predictability will  be  referred  here  as  the  gauge (practical)  predictability.  As  the  gauge
predictability  is  greatly  affected  by  the  existing  gap between radar  and gauge measuring
scales, it is important to determine as well the predictability of the model itself independent
from the error between gauge and radar data. This predictability is referred here as the radar
(model) predictability  and it is calculated based on the input radar data  fed to the nowcast
model. 

Theoretically, an adequate estimation of the predictability would be possible if both gauge
and radar data are available continuously in space and time. For the radar data this is the
case, however for the gauge observations this is not possible. One can interpolate the gauge
observation  to  a  continuous space,  but  this  might  introduce  a  new  uncertainty  in  the
estimation of  the nowcast predictability.  It  is  for this reason that the predictability of the
storms is computed only at the gauge location (as illustrated in Figure 4.2) for both gauge and
radar predictability. The  radar predictability can be calculated in a continuous space, but to
ensure a fair comparison between the two predictabilities, the calculation is kept the same as
for the gauge one.
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Figure 4.2: The location of the reference points (corresponding to the gauge location) for the 
performance assessment of the radar products and the nowcast models (shown in dark blue). 
The extend of the radar measurement is illustrated in light blue. 



Based on the literature review, three measurements were proposed for the estimation of
the predictability limit of the nowcast for specific lead time, when the cross-correlation falls
below 0.37,  when the Equitable Threat Score (ETS)  falls below 0.3, and the area under the
ROC curve is smaller than 0.5. The ROC curve works for probability nowcasts and as such is
left  outside at  the moment because none of the reference methods can produce ensemble
nowcast.  The ETS gives a good overview of the predictability where certain events are at
focus;  for  instance,  there  is  a  specific  intensity  that  triggers  an  alarm.  However,  at  the
moment  it  is  not  clear  what  5  minute  intensity  can  trigger  an  urban  flood  (or  other
accumulation volumes),  and since this  is  site  specific,  the ETS is  also left  outside of  the
investigation. The decorrelation time seems reasonable for the urban flood purpose as, in the
urban  model  the  rainfall  distribution  is  quite  important.  Thus,  here  in  this  study  the
decorrelation time as explained below is used as a measurement for the predictability limit. 

a)  Decorrelation time  (τLT)– the lead time when the cross-correlation between nowcast 
and observation data becomes lower than 0.37. 

τ whenρ For ,Obs=
∑
i=1

n

(For i−For )(Obsi−Obs)

√∑
i=1

n

(For i−For )
2√∑

i=1

n

(Obsi−Obs)
2

≤1
e
≈0.37

The decorrelation time gives the information up to which lead time the nowcast issued is
useful. Typically for the nowcast assessment, in the literature, the cross-correlation in space
is calculated. For instance, at a given time step, the cross-correlation of the nowcast field
with the observed field is calculated, and if one desires to have the cross-correlation value for
an event with a specific duration, the space cross-correlation is averaged over all the time
steps of the event as illustrated in  Figure 4.3-a and in Equation  4.2. The cross-correlation
computed in space and then averaged over time, indicates how well the nowcast can capture
the spatial variability of the rainfall. 

 Performancespatially=
∑
ts=1

N

f ts(For st=1
100 ,Obs st=1

100 ,)

N
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(4.1)

where:
n      –  number of observed values
Obsi –  the respective ith observed value
Fori    –  the respective ith nowcasted value
For   –  mean of the nowcasted values
Obs  –  mean of the observed values

(4.2)

where:
N      –  number of time steps in an event
st      –  the station reference from 1 to 100
Obs   –  the observed value
For   –  the nowcast value
fts      –  the performance function computed spatially for a time step



Nevertheless,  the  cross-correlation  in  space  doesn’t  give  any  information  how well  the
nowcast can model the temporal variability of the rainfall at a point scale (i.e. the temporal
variability of the gauge). To have an idea about this, the cross-correlation can be calculated at
each gauge location for each lead time between the nowcasted and observed time series (over
the whole  duration  of  the  event)  as  illustrated  in  Figure  4.3-b.  Here  in  this  study this  is
referred to as the temporal correlation, and can be averaged over the whole group of gauges as
indicated by Equation 4.3.  

Performance temporally=
∑
st=1

100

f st(For ts=1
N ,Obs ts=1

N ,)

100

Moreover, for the urban flood nowcast the high intensities are particularly of great interest
because they are the ones causing the surcharge. Typically for the nowcast assessment, low
rainfall thresholds have been set, like 1, 5 or 10 mm/h, which for 5 minute lead to intensities
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(4.3)

where:
N      –  number of time steps in an event
st      –  the station reference from 1 to 100
Obs   –  the observed value
For   –  the nowcast value
fst      –  the performance function computed temporally for a station

  a) Spatially   b) Temporally 

Figure 4.3: Nowcast performance assessment a) spatially - forecast and observed are compared
spatially (in green) over all grids (in blue) then averaged temporally (in red) over the event time
steps; b) temporally - at each grid (blue) the forecast and observed are compared temporally (in
red) over all event time steps and then averaged spatially (in green) over all the grids.
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less  than  1  mm.  Additionally  to  these  limits,  here  it  is  also  investigated  the  60  mm/h
(5mm/5min) intensities when calculating the space and temporal cross-correlation.

Even though the cross-correlation can give an idea about how good the nowcast is, and
until what lead time the nowcast is useful, it  doesn’t give enough information about the
rainfall nowcast error that is fed to the urban model when nowcasting urban floods. Thus,
evaluation of continuous errors produced by the nowcast for the whole time series at a point
scale is necessary. This can be illustrated for instance by the root mean square error of the
complete time series or the error in the time and volume of the peak: 

b) Root Mean Square Error (RMSE) for the whole time series 

RMSE [mm/5min]=√∑i=1

n

(For i−Obsi)
2

n

c) Peak Relative Bias (Bias) for the maximum rainfall volume observed in 30 min.  

Bias[%]=
∑
i=1

n

( ∑
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∑
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d)  Peak Time Shift  (TPShift) – the time difference between the maximum 30 min peak
from nowcast and from observation. 

TPShift [5min]=t
∑

DUR=30min

max

For i

−t
∑

DUR=30min

max

Obs i

d) The Variance Ratio (RVAR) – the ratio between the variance of the nowcasted time
series and the variance of the observed time series.

RVAR [ ]=
Var (Forst )
Var (Obsst)
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where:
n       –  number of time steps
Obs   –  the observed time series at a location
For   –  the nowcasted time series at a location

(4.4)

(4.5)

(4.6)

where:
N      –  number of time steps in an event
st      –  the station specific value
Obs   – the nowcast for the respective observed value
For   –  the mean of the nowcasted values

where:
i        –  number of time steps in an event
t        – the time of peak for a station
Obs    – the observed time series
For    –  the nowcasted time series

where:
st        –  the station specific value
Obsst   – the observed time series at a specific station
Forst    – the nowcasted time series at a specific station

(4.7)



4.3 Discrepancy between Radar and Gauge

The radar based nowcast can be as good as the radar input fed to the nowcast algorithm.
Therefore before looking at the  nowcast performance, it is important to understand what is
the input data error; hence the radar to gauge discrepancy. To investigate this, both spatial and
temporal performance criteria for all events types are derived. Figure 4.4 illustrates the cross-
correlation calculated both temporally (upper graph) and spatially (lower graph) for the f ive
given thresholds and grouped according to the five event types. 

It  is  clear  that  the  cross-correlation  tends  to  decrease  with  a  higher  threshold,  as  the
discrepancy  between  radar  and  gauge  becomes  higher.  This  is  the  case  for  the  temporal
correlation.  For  thresholds  higher  than  1  mm/h  the  discrepancies  are  so  big,  that  the
correlation  for  all  the  events  is  mostly  below  the  predictability limit  (0.37).  Hence  when
comparing the nowcast with the gauge data, one cannot expect a predictability at all, as the
input data cross-correlation is lower than the limit. Moreover, as expected the correlation is
higher for the stratiform events and the lowest for the simple convective events. This may be
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Figure 4.4: The cross-correlation between the radar and gauge measurements calculated for 
each threshold: temporally (averaged over the 100 stations) and spatially (averaged over the 
event time steps) for each event. The red dashed line indicates the value 0.37 taken as a reference 
for the predictability limit. 



caused by the wind drift  and the mismatch between the measuring scales  of  radar  and
gauges, as also documented by Berndt et al. (2013). Overall it should be expected that the
stratiform events yield higher predictability than the convective ones, at least for the lowest
threshold. What is somehow surprising are the results for the 60 mm/h threshold. For some
of the convective events it seems that the timing and the variability of the high thresholds
are met, and one may expect good predictability results. However one has to keep in mind,
that the time steps and stations were the threshold is higher than 60 mm/h are much fewer
than the other thresholds, thus affecting the performance calculation.

Contrary to the temporal performance, the cross-correlation in space indicates that the
radar data can capture better the spatial rainfall variability, as generally the values exhibited
by all the event types are higher than the one exhibited by the temporal performance. At
least for the lowest threshold the values of most events are above the predictability limit,
suggesting that the nowcast may show good skills when calculating the spatial performance.
Overall,  the meso-scale convective events  seem to be better  represented spatially  by the
radar. On the other hand, stratiform, mixed and simple convective events apparently suffer
from  higher  errors.  This  can  either  be  attributed  to  the  wrong  coefficients  of  the  Z-R
relationship (mainly in the case of the convective type), or attenuation (in the case of the
stratiform events) or either to the storm distance with the radar and the effect of the earth
curvature (for both event types).   

To investigate how suitable are the radar data to be fed in an urban flood nowcast, the
temporal performance at the point scale, grouped for each event type, is illustrated in Figure
4.5.  It  seems that the RMSE is quite small  and acceptable  when no threshold is set (> 0
mm/h). When looking to the peak shift, it is clear that a consistent bias on the time of peak is
present (approximately 10 minutes delay). This agrees with the time discrepancy as reported
by the other studies due to the presence of the wind.  The shift  in peak looks consistent
throughout  different  events  and  thresholds,  but  is  mainly  bigger  in  stratiform  events.
Moreover, when  looking  at  the volume  of  the  peak,  the radar  data  is  underestimating
strongly the rainfall intensities, causing a systematic underestimation up to 100% of the peak
volume.  As expected the RMSE is increasing with the threshold (Appendix C- Figure C.3),
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Figure 4.5: The temporal performance: RMSE (left), shift in peak time (middle) and the peak 
bias (right) averaged over the all stations for each event type. No threshold is set for the 
calculation of these criteria. 



and for the 60 mm/h threshold even though the correlation was above the correlation limit,
the RMSE is quite big and with little difference among the event types. It is evident that when
nowcasting  urban  floods,  the  radar  data  error  will  propagate  in  the  urban  model,  most
probably causing a big underestimating of flood volume, since the rainfall peak is completely
missed. 

Overall, it is clear that without the smoothing of the radar data and their correction based
on the gauge intensities, the gauge predictability will be almost zero; for the lowest threshold
(0mm/h) it may exhibit a certain predictability degree, however for intensities higher than 1
mm/h the correlation between radar and gauge is lower than 0.37, hence the nowcast will have
no predictability at all. The results suggest that a smoothing in time and space of the radar
data should be done before the merging in order to ensure a better estimation of the peak. The
smoothing  should  be  done  for  a  window  of  at  least  10  min,  in  order  to  overcome  the
measuring gap (due to the wind drift) between the gauge and radar data. Such smoothing will
help with a better prediction of the peak time and peak volume. However, the smoothing itself
will not be enough to overcome the errors of the radar measurements. Thus, posterior to the
smoothing, a proper merging technique should be selected such that the radar and the gauge
discrepancies are minimized, resulting  in a higher  temporal performance. Nevertheless, such
methods may come to the expense of the spatial performance, but since the focus is urban
flood nowcast, priority is given to the temporal performance.
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4.4 Predictability Limit 

The raw radar data are fed to the reference nowcast models HyRaTrac and Lucas-Kanade,
and  the  results  for  each  are  shown  respectively  in  Sections 4.4.1 and  4.4.2.  A  direct
comparison of the two models is given in Section 4.4.3, in order to understand, which of the
method may give better results when fed with not corrected radar data.

4.4.1 HyRaTrac Predictability

Figure 4.6 illustrates the cross-correlation computed both temporally (upper) and spatially
(lower) between the HyRaTrac nowcasts at different lead times and the input radar (left) or
gauge data (right) for each event type. 
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Figure 4.6: The event median cross correlation for each event type as nowcasted by HyRaTrac
for different  lead times,  calculated temporally – upper row (averaged over 100 station per
event) and spatially – lower row (averaged over the time steps per event). The red dashed line
indicates the correlation value of 0.37 for the predictability limit, while the grey dashed line is
a reference to the 20 min predictability limit as suggested by the literature. A threshold of 0
mm/h was used to calculate the cross correlation. Performances for higher rainfall intensities
are given in Appendix B – Figure B.1 and B.2.



The  temporal  radar predictability  limit  here  is  15  min  for  stratiform  and  meso-scale
convective events, and 10 min for the other event types. It seems that the predictability limit
for the meso-scale convective events is higher than for the convective, mixed and stratiform
events. For the small convective events, this is to be expected as they have relatively short life,
while  for  the  stratiform  since  they  have  a  large  coverage,  the  errors  due  to  the  lack  of
information at the boundary of the radar  may become so big that it affects the correlation.
Whilst  the  meso-scale  events,  that  are  not  so  large but  with  higher  intensities,  can  be
distinguished and tracked better by  HyRaTrac. This is consistent also with the results from
Grecu and Krajewski (2000) that claim that the nowcast is better with higher intensity storms. 

The spatial radar predictability is higher than the temporal one, reaching up to 20 min for
all the events, except the simple convective one (whose limit is approximately 15min). This is
as well consistent with the results from Section  4.3, as the spatial cross-correlation between
radar and gauge is higher than the temporal one, thus it makes sense that the decorrelation
time is longer for the spatial performance. Moreover, the exhibited radar predictability agrees
well with the one in the literature, and suggests that the HyRaTrac is at the same line as the
state of the art methods. The rate of decrement in the spatial performance is smaller than the
temporal one, suggesting that the spatial patterns can be modelled better by the HyRaTrac.
Particularly for the stratiform events, the rate is smaller than the others, indicating that these
events can be best nowcasted by HyRaTrac, even though the spatial cross-correlation between
radar input and gauge is not the highest among the event types. Consequently, the stratiform
events, as they are more persistent in time, are easier to be tracked and nowcasted. 

Whilst when compared to the input data, the nowcast model exhibits some predictability,
this is not the case for the gauge one. As expected, since the radar to gauge correlation is quite
low,  the  gauge  predictability  is  almost  non-existent,  for  both  spatial  and  temporal
performance. That suggests again that the radar based nowcasts are not suitable at all for the
urban flood nowcast application.  

To get a complete overview on the temporal performance of the nowcast on the point scale,
the temporal RMSE, peak shift and the peak bias of the nowcasted time series at different lead
times compared to both radar and gauge data, for all of the event types, is illustrated in Figure
4.7. The RMSE based on both radar and gauge data displays no big difference along different
lead times for all the events; even for the short lead times (for example 5 or 10 minutes) the
RMSE is not considerably smaller than for the long ones. The RMSE compared to the radar
data, as expected, are lower than the ones compared to the gauge data. There is a difference
between the performance of the events, for instance the RMSE of the stratiform nowcast to
radar is lower than the one of the convective, however this has to do more with the event
characteristics (like duration, intensity and persistence) rather than with the nowcast model.
However, what is interesting is that, the storm types having the lowest RMSE compared to the
radar are not  the same ones having the lowest  RMSE when compared to the gauge.  This
suggests that the radar to gauge errors are more dominant than the model errors, causing no
gauge predictability at all.
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Unlike  the  RMSE,  the peak shift  for  both radar-  and gauge-compared performance is
getting worse with longer lead times. Surprisingly for the convective events when comparing
the peak with the gauge observation the shift is zero, indicating that the nowcast can capture
the peak for such events but when looking at the peak bias it is completely underestimated.
Actually this is the case for all the event types, no matter the lead time, the underestimation
of the peak volume when compared to the gauge data is always 100%. This suggests once
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Figure  4.7:  The median of the temporal performance:  RMSE (upper),  Shift  in Peak Time
(middle) and Peak Bias (lower) for each of the event types of the HyRaTrac  nowcast with
different lead times, compared to the input radar data (left) and gauge data (right). The red
dashed line  indicates  the  limit  performance value  for  each of  the  criteria,  while  the  grey
dashed line is a reference to the 20 min predictability limit as suggested in literature. Here no
intensity threshold was used.



again, that even though the nowcast to radar may be useful for the first lead times, the radar
to gauge errors are so big that the nowcast is useless. At this point the correction of the radar
data is a must!

When considering the radar predictability both is space and time (see Figure 4.6), stratiform
events appears to be better predicted than the others, however when considering the temporal
performance of the peak at the point scale, the  nowcast of stratiform events exhibits a very
high peak  shift  in  comparison  to  other  events.  This  suggests  that  the  predictability  limit
(especially the spatial one) may not be always a good measure for the temporal behaviour at
point scale. Generally speaking, there is a link between the temporal cross-correlation and the
temporal  performance.  However,  for  the first  lead times,  even though the temporal cross-
correlation is higher than the limit, the temporal peak bias and the peak shift are already very
high, suggesting that the nowcast model is not appropriate for the point scale. If this can be
improved by feeding merged data to the model or by choosing another nowcast model, is yet
to be seen. 

4.4.2 Lucas-Kanade Predictability

Figure 4.8 illustrates the cross-correlation computed both temporally (upper) and spatially
(lower) between the Lucas-Kanade (LK) nowcasts at different lead times and the input radar
(left)  or  gauge  data  (right)  for  each  event  type.  As  seen  by  HyRaTrac,  the  nowcast
predictability when compared to the gauge is way below the correlation limit. It is clear that
as radar data is underestimating systematically the rainfall intensities, when high intensity
threshold are set, the correlation becomes zero with little difference between the event types.
This emphasizes again the need for radar correction to gauge data. 

Regarding the comparison with the radar input, as seen in HyRaTrac, the temporal radar
predictability limit is 15 min. However, there is a slight difference on event predictability. At
LK it seems that the events with the highest correlation are the small convective and the
stratiform events. As the LK is a field motion approach it is expected to yield better results for
the stratiform events which are wide spread. For  the small  convective events,  as they are
characterized  by  smaller  intensities  and  maybe  by  lower  speed  and  rate  of  change,  the
nowcast works well for a short period and then it losses its predictability quite fast; which can
be related to the life span of the small convective cells. It is still unclear why the temporal
cross-correlation  after  the  first  hour  of  nowcast  starts  increasing  for  both  convective  and
meso-β convective events. 

Similar results are also exhibited by the spatial cross-correlation, with a slight increment of
radar predictability up to 20 min for the lowest threshold. Convective and stratiform events,
here as well, are the ones with the highest correlation, although they have different decrement
rates over the lead times. For the convective events, as expected, the drop in predictability is
quite  fast,  due to  the  storm death which is  not  considered by the model.  Whilst  for  the
stratiform events the drop in predictability is slower, suggesting that as the stratiform is more
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persistent in time, it is better nowcasted by the optical flow. Nevertheless, the spatial cross-
correlation is dropping at 20 min lead time below the predictability limit. This suggests that
even for the stratiform events (not only the convective ones at different scales) the storm
growth or decay is important to capture. Moreover, one has to keep in mind that the drop in
the  stratiform predictability  can  also  be  caused  by  the radar  boundaries  as  there  is  no
continuous flow of rainfall information (as illustrated in Figure 2.7).

To get a complete overview on the temporal performance of the nowcast on the point
scale,  the temporal RMSE, peak shift  and the peak bias of  the nowcasted time series at
different lead times compared to both radar and gauge data, for all of the event types, are
illustrated in Figure 4.9. As seen with HyRaTrac, the RMSE based on both radar and gauge
data  displays  no  big  difference  along  different  lead  times  for  all  the  events.  The  RMSE
compared to the radar data as expected are lower than the ones compared to the gauge data,
but generally both are higher than the HyRaTrac error. As in HyRaTrac,  the storm types
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Figure  4.8:  The event  median cross correlation for  each event  type as nowcasted by LK
algorithm for different  lead times,  calculated temporally  – upper row (averaged over 100
station per event) and spatially – lower row (averaged over the time steps per event). The red
dashed line indicates the correlation value of 0.37 for the predictability limit, while the grey
dashed line is a reference to the 20 min predictability limit as suggested by the literature. A
threshold of 0 mm/h was used to calculate the cross correlation. For performance of higher
intensity thresholds see Appendix B – Figure B.3 and B.4.



having the lowest RMSE compared to the radar are not the same ones having the lowest
RMSE when compared to the gauge. At LK as well, the radar to gauge errors are dominant to
the model errors, causing no gauge predictability.

Unlike HyRaTrac, the peak shift is increasing clearly with the lead time (for both nowcasts
compared with radar and gauge), but the first lead times the peak shift is nearly 0. It seems
that the peaks for the convective and stratiform events are better captured and reproduced, at
least for lead times up to 40 minutes. Apparently the information from three past time steps
used for  advection (the  case  of  LK Method)  is  more  useful  than the two past  time steps
information (the case of HyRaTrac) for the estimation of the temporal patterns at point scale.
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Figure  4.9: The  median  of  the  temporal  performance:  RMSE  (upper),  Shift  in  Peak  Time
(middle) and Peak Bias (lower) for each of the event types of the LK method with different lead
times,  compared to  the input  radar  data (left)  and gauge data (right).  The red  dashed line
indicates the  limit performance value  for each of the criteria, while the  grey dashed line is a
reference  to  the  20  min  predictability  limit  as  suggested  in literature.  Here  no  intensity
threshold was used.



Moreover, the peak bias compared to radar, doesn’t start from a 50% underestimation like in
HyRaTrac, but instead it starts from 0-10% underestimation. However, this advantage seems
valid only until 30 min lead time, afterwards the behaviour is the same as in HyRaTrac. This
is to be expected, as the advection estimation plays a role only on the short lead times, while
at  the  longer  ones,  the  inclusion  of  growth,  decay  and  death  is  necessary  for  a  better
performance. 

4.4.3 Comparison between HyRaTrac and Lucas-Kanade

Figure  4.10 and  Figure  4.11 give  a  direct  comparison  of  the  temporal  and  spatial
predictability  limits  of  the  two  nowcast  methods  (HyRaTrac  and  Lucas-Kanade)  when
compared to radar and to the respective gauge information averaged over all the events. The
performance of the nowcasts are quite similar, mainly due to the poor quality of the radar
data. For the short lead times, it seems that HyRaTrac has slightly better temporal cross-
correlation than the LK nowcast,  however  the  performance of  HyRaTrac decreases  more
rapidly than the LK method. At longer lead times, the LK yields better results than HyRaTrac,
but the temporal correlation is still below the predictability limit. The same behaviour is also
seen at the spatial cross-correlation. Overall the cross-correlation value for both temporal
and  spatially  performance  is  decreasing  rapidly  with  the  increasing  threshold.  For  both
methods  the  radar predictability  limit  seems to  be  10-15 min  temporally  and 15-20 min
spatially. Regarding the gauge predictability limit, at both types, is lower than 5 minutes.

Even though the HyRaTrac shows better predictability performance (both spatially and
temporally) than LK method, the latter one has still the advantage of modelling better the
temporal variability of rainfall at the point scale. For this reason, the LK is still included in
the study, to see whether or not, an improvement on the radar input can improve as well the
predictability of both methods, and if so until what lead time. It is clear that both of the
methods  are  limited  due  to  the  implementation  of  the  Lagrangian  persistence  and  as
dictated by the literature, can provide useful results up to 20 min. An inclusion of storm birth,
growth, decay and death is necessary in order to increase the radar predictability limit even
further on. 

64



65

Figure 4.10:  The average temporal cross-correlation over all the events for the HyRaTrac and
LK Nowcast for the lead times from 5 min to 180 min (every 5min) for intensities higher than 0
mm/h, 1 mm/h, 5mm/h and 12 mm/h calculated based on raw radar input (solid lines) and gauge
reference  (dashed line).  The red dashed line indicates  the correlation 0.37  considered  as  the
predictability limit, while the grey dashed line indicates the limit predictability as shown in the
literature (20min). 

Threshold 0mm/h Threshold 1mm/h

Threshold 5mm/h Threshold 12mm/h
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Figure Figure 4.11: : The average The average spatial cross-correlation over all the events for the HyRaTrac and L cross-correlation over all the events for the HyRaTrac and LK
Nowcast for the lead times from 5 min to 180 min (every 5min) for intensities higher than 0
mm/h, 1 mm/h, 5mm/h and 12 mm/h calculated based on raw radar input (solid lines) and gauge
reference  (dashed line).  The red dashed line indicates  the correlation 0.37  considered  as  the
predictability limit, while the grey dashed line indicates the limit predictability as shown in the
literature (20min). 

Threshold 0mm/h Threshold 1mm/h

Threshold 5mm/h Threshold 12mm/h



5. MERGING DIFFERENT DATA SOURCES

As already mentioned in the literature review, radar data are prone to numerous sources of
errors and hence are not as accurate as the gauge recordings. On the other hand, the gauges
provide  point  information,  and  even  though  one  can  get  the  spatial  information  by
interpolation,  the  rainfall  structures  are  smoothed  out  and  high  peaks  are  typically
underestimated.  It  seems  that  the  single  source  products  (either  radar  or  gauge)  are  not
enough to provide a reliable rainfall field. Thus, a merging approach, integrating both data
sources, is required in order to have an accurate and highly  resolved rainfall field. However,
since the true rainfall field is unknown, the only way to validate the methods is through either
split sampling or cross validation on gauge data, and this may favour the direct interpolation
of gauge data. For instance, Ordinary Kriging interpolation of station data has already been
proven to yield good results based on cross validation when a dense station network is at
hand, thus the question arises – can the radar data through a merging method provide an
additional value to the interpolation of the gauges even on a dense network? And if yes, what
would be the best merging method and setting that would bring the most value? Would the
performance depend on the event type? Would a better evaluation of rainfall field improve the
predictability of the storms with the current existing methods? 

These are the main questions treated in this chapter. Section 5.1 gives an overview about
the single products: on one hand radar data and on the other hand the interpolation of gauge
information through Ordinary Kriging. Next as discussed in the literature review, the  merging
methods; Mean Field Bias correction, Quantile Mapping based bias correction, Conditional
Merging and Kriging with External Drift are explained in Section 5.2. The validation method,
performance criteria and the operational application of these methods are described in Section
5.3. The results and the answers of the above mentioned questions are discussed in Section 5.4.
As the resulting best merging method will  be used as an input for  the nowcasting of  the
rainfall, it is important to prove that this method can bring additional value to the nowcast –
meaning that when validating the nowcast with the station data, the nowcast fed with the
merged product should yield significantly better results than the one fed with the raw radar
data. This is treated in Section 5.5, where it is also discussed up to which lead time the radar
input quality influences the nowcast.
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5.1 Single Products

5.1.1 Radar Data

As introduced in Section  2.2.2 and later illustrated in Section  4.3, there is a consistent
spatial  and  temporal  bias  in  the  radar  data  when compared  to  the  gauge  data,  mainly
because of the scale mismatch between the two types of measurements. Due to different
advection or wind speed and direction, the rainfall volume measured by the radar data at a
specific  time,  may  be  captured  with  a  time  delay  or  even  a  spatial  shift  by  the  gauge
instrument. Such a mismatch in time and space can be recovered partly if the radar data are
smoothed in space and time. This was first suggested by Bárdossy and Pegram (2013), as
they indicated that the prevailing wind direction is affecting the rainfall mismatch between
the two data sources. Later, Berndt et al. (2013) used spatial and temporal smoothing of the
radar data, and found out that not only does it improve the agreement between radar and
gauge, but when used as a basis for the combination of the two data sources, it improves the
performance considerably. In their results, they stated clearly that a strong spatial smoothing
(with  25  adjacent  grid  cells-  Figure  5.1 right),  yields  better  results  that  a  light  spatial
smoothing (with 9 adjacent grid cells - Figure 5.1 left). Following their results, here a strong
spatial  smoothing with 25 adjacent grid cells  (Figure 5.1 - right)  is performed before the
temporal smoothing.

Regarding the temporal smoothing, Berndt et al. (2013) suggest a temporal window of 15
minutes. However, as seen in  Figure 4.5, the rainfall peaks at most events are exhibiting a
temporal  shift  of  5  to  10  minutes.  Based  on  the  event  results,  and  the  fact  that  the
investigation performed by Berndt et al. (2013) was done on a continuous time period, rather
than specific events, it is important to choose with care the temporal window that would fit
best for the nowcast application. For this purpose, three temporal windows are considered
(10, 15 and 20 min) and applied as indicated (for the case of 15min) in the Equation 5.1. As
the application is for nowcast, the temporal smoothing of a time step can be done by using
only past information (see Figure 5.6 in Section 5.3). Spatial smoothing was done before the
temporal smoothing for each case. The results of the best smoothing technique are indicated
in Section 5.4.1. The smoothing window with the best correlation and lowest peak bias will be
used as an input for the merging methods. 

PI(t)=ω 2PI (t−2)+ω 1PI(t−1)+ω 0 PI (t )
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Figure 5.1: Spatial smoothing applied to the radar data with two kernels; left – light 
smoothing with 3x3 kernel, right – strong smoothing with 5x5 kernel.

(5.1)
where:
t     –    time step   [5min]
PI   -     intensity at time t [mm/5min]
ω    -     weight for each time step [-]



5.1.2 Ordinary Kriging

Ordinary Kriging (OK) is one of the most used and simple methods among geostatistics
interpolation  techniques.  It  considers  only  one  data  source  (uni-variate  method)  when
estimating unobserved locations from adjacent known locations based on a Gaussian process
governed by prior covariances. Geostatistics (also Ordinary kriging) regard spatial data as a
result of a random process, thus each measurement at each location is a realization of such a
random process.  Ideally  each  location  (u)  within  the  study area  could  be  described  by  a
Gaussian probability distribution, and the set of all these probability distributions gives the
random function that can describe and predict the random process. However, in practice such
information is lacking and only a few realizations of the random process are available at some
specific locations. In order to overcome this lack in information, all the known realizations of
the random process at specific location are pooled together to build up the random function.
Nevertheless, such implementation is possible if  the second order hypothesis (as described
below) is true:

1. The second order hypothesis states that the expected value of a random process in a
specific study area is constant (Equation 5.2.) and that the covariance of two random variables
(C) in the study area is dependent only on the distance between the two (h) and not on the
exact location (neither u or u+h) as illustrated as well by Equation 5.3. The second condition is
not  always  met,  that  is  why  the  second  order  hypothesis  is  substituted  by  the  intrinsic
hypothesis which has slightly weaker constrains than the second order one. 

E[Z (u+h)]=E[Z(u)]=m

E[(Z (u+h)−m)(Z (u)−m)]=C (h)

2.  The  intrinsic  hypothesis  states  that  the  increment  on  the  variance  of  two  random
variables at location u and u+h, depends only on the distance between the two locations h as
illustrated in Equation 5.4. As for the second order hypothesis the equation 5.2 is still valid.

Var [Z (u+h)−Z (u)]=E [(Z (u+h)−Z (u))2]=2γ (h)

The function that can describe the change of  variance  at a specific time step  with the
distance  between  any  two  pair  locations,  it’s  called  a  semi-variogram  (here  referred  for
simplicity as variogram). The empirical variogram is estimated as shown in Equation 5.5. 

γ (h)= 1
2N (h) ∑

ui−uj=h

(Z (ui)−Z (u j))
2
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(5.2)

(5.4)

(5.3)

where:
h          –     distance between two locations
Z(u)     –     value at location u
Z(u+h) –     value at location u+h
C(h)     –     the covariance function
E[]        –     the expected value

where:
ɣ          –     the semi-variogram function

where:
ui and uj  –   locations at distance h
N             –  the available number of pairs

(5.5)



As the empirical variograms are not continuous functions, theoretical functions need to be
fitted to the observed values. Several theoretical variogram models may be used to describe
the  spatial  variance  of  the  data.  Typically  for  the  rainfall  interpolation,  the  exponential
variogram is used as indicated by Equation 5.6 [Berndt et al., 2013][Rabiei and Haberlandt,
2015].

γ h=co+c [1−exp(−h
a

)]

Ideally the variograms are fitted for each time step, but in practice the variograms are
commonly  normalized  and  averaged  over  a  period  of  time  according  to  Equation  5.7.
Verworn and Haberlandt (2011) state that the choice of variogram, either automatically fitted
for each time step or averaged per each event, has little impact on the performance of the
interpolation. Thus, the averaged variograms as per Equation  5.7 are used here. However,
instead  of  variograms averaged  per  event,  here  they  are  averaged per  season under  the
assumption  that  in  summer  (from  1st May  to  31st of  October)  the  dominant  rainfall
mechanism is of convective type and in winter (1st of November to 30th of April) of stratiform
type. The reason behind this is that, in a nowcast application, the whole event information is
not available, thus a seasonal variogram may be better suited.

γ avg(h)=
1
n
⋅∑
t=1

n γ t (h)
Var (z t)

For the calculation of the empirical variogram, radar data were used instead of the station
data. As they provide more spatial information, they can produce better variograms than the
station data [Germann and Jürg, 2001].  The semi-variance at the 1km2 data was averaged
from two winter and two summers separately (years considered 2007-2008, 2009-2010 and
2011-2012). Only time steps with areal rainfall higher than 0.1 mm/5min were considered for
the empirical variogram. The fitting of the theoretical variogram was done visually and based
on the least square error optimization. The parameters for both winter and summer models
are given in Table 5.1 and the variograms are illustrated in Figure 5.2
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(5.6)

(5.7)where:
ɣt           –   the variogram at time step t
Var(zt)   –   variance of z at time step t
n            –   number of time steps

     a)       b)
Figure 5.2: The experimental variogram for a) winter and b) summer averaged over 2007-2008 
(black), 2009-2010 (red) and 2011-2012 (blue). The fitted exponential variogram is shown as a 
black line. 
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where:
co  –   the nugget
c   –   the sill 
a   –   the range



Table 5.1: Parameters of the theoretical exponential variogram models used for the OK 
interpolation.

co c aeff

Winter 0.3 0.8 45 km
Summer 0.27 0.7 21 km

Once  a  variogram  has  been  determined,  it  can  be  used  as  a  basis  for  the  rainfall
interpolation of 5min time steps  on a 1km2 grid (corresponding to the radar data). As any
other interpolation technique, Ordinary Kriging estimates the rainfall at an-unknown location
(Z’) by averaging the rainfall from nearby known-location (Z) by certain weights as indicated
in the Equation 5.8. 

Z ' (uo)=∑
i=0

n

λ i⋅Z (ui)

The weights of each nearby known location (λi) are determined based on the variogram and
on the distance between the pair known-unknown location. The two equations (the kriging
system) given in Equation 5.9 and 5.10 are used for finding the weights (λi) of Equation 5.8. 

∑
j=1

n

λ jγ (ui−u j)
+μ=γ (ui−u j)

for i=1 ,... , n

∑
j=1

n

λ j=1

This kriging system is solved for each point of the grid, in a way that for each time step the
weights are estimated and later on the rainfall is calculated according to the Equation 5.8. The
geostatistics software library (GSLIB) and the R library (GSTAT) were used to solve the kriging
systems [Deutsch and Journel, 1998][Pebesma, 2004]. Following the hypothesis of stationarity,
the OK is one of the best methods to achieve a spatial unbiased interpolation. However, the
rainfall  will  be smoothed in space and many of the peaks will  be underestimated and no
particular structure (no storm recognition like in radar) is  displayed.  Thus, even though the
spatial bias is expected to be zero, most probably the temporal bias is higher/lower than 0,
since the peaks will be underestimated and the dry periods will be overestimated. 
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(5.8)

(5.9)

(5.10)

where:
λi        –   the weight from location ui

Z(ui)   –   known variable at location ui

Z’(u0) –   unknown variable at location uo

n         –   total neighbouring measurements

where:
ɣ(ui-uj) – the variogram for the known pair ui,uj

λj      –   the weight from location uj

μ       –   the Lagrange multiplier 
n       –   total neighbouring measurements



5.2 Merging Methods

5.2.1 Kriging with External Drift

In the  Kriging with External  Drift (KED) a secondary variable can be introduced that
influences the interpolation. Contrary to OK, the intrinsic hypothesis is left out. Instead, the
KED assumes  that  the  expected  value  at  a  location  u depends  linearly  on  m additional
variables as shown by the Equation 5.11.

E[Z (u)∣Y 1(u), Y 2(u) ,.... , Y m(u)]=b0+∑
k=1

m

bk Y k (u)

Thus, theoretically speaking, the variogram for  KED should not be computed from the
absolute values of the target variable (as in OK), but from the residuals between the target
variable and the external drift one. However, the results from Delrieu (2014) indicate that the
OK variograms can be used instead of the residual variograms and produce similar results.
Thus in this  study, as in Berndt et  al (2013),  the OK variograms  were used for the  KED
interpolation. Nevertheless, the assumption that the expected values of two locations are
only dependent on the distance between the two (h)  and  not to their exact location still
holds. The KED system is then described by the following equations 

∑
j=1

n

λ jγ (ui−u j)
+∑
k=1

m

μk Y k (ui)+μ 0=γ (ui−u0 )
for i=1 ,... , n

∑
j=1

n

λ j=1

∑
j=1

n

λ jY (u j)=Y (u)

In order to solve the system the same way as with OK, the new external variable (Y) has
to  be  known for  all  of  the  locations  of  the  grid.  The GSTAT R-package  is  used  for  the
application of the KED on each time step [Pebesma, 2004]. As suggested by Berndt et al.
(2013) the KED implemented here only uses one external drift  – the radar data. The KED
does not depend on an assimilation time window to average the results, but only on the
radar information at the given time step; either on the raw radar data or the temporally and
spatially smoothed radar data as mention on Section  5.1.1. Thus, three radar products are
investigated for the best application of the KED method as indicated in  Table 5.2; the raw
radar data,  the smoothing with 10 minutes (as the best smoothing method from Section
5.4.1) and the smoothing with 15 minutes as suggested by Berndt et al. (2013). Depending on
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(5.11)

(5.12)

(5.13)

(5.14)

where:
Z(u)    –   target variable at location u
m         –    number of additional variables used
Y1...m(u) –   m additional variables at location u
bo,b1.,bk –   unknown constants of the linear relationship



which application yields the best results (given in Section 5.4.3), the final application is chosen
and compared with the single data sources performances. 

5.2.2 Mean Field Bias Correction

As seen in  Figure 4.5 there is  a consistent  bias  for  all  event types  in radar  data when
compared to gauge measurements.  A scaling with a factor can be useful to reduce the bias
between the two data sources. These factors can either be singular values for each station or
areal values for the whole radar field for a single time step. The single values, since they are
point values, need to be interpolated in space in order to have factors for the whole radar
region. On the other side, areal values can correct the whole radar image. For simplicity the
areal values (or factors) for the whole radar region are implemented here. This is referred as
Mean Field Bias correction (MFB) and is done according to Equation 5.15. 

B t=
∑
i=1

n

Gi ,t

∑
i=1

n

R i ,t

The factor calculated only from one time step,  due to the wind drift and scale mismatch
between radar and gauge, may not be very useful for the correction. Instead another approach
is  used;  the rainfall  is  accumulated at  specific  time periods (assimilation periods)  and the
correction factor is calculated based on this accumulation volume, as shown in Equation 5.16. 

B t=
∑
j=0

w

∑
i=1

n

Gi ,t− j

∑
j=0

w

∑
i=1

n

R i ,t− j

For MFB hourly accumulations are typically used. Thus, for a current time step, for instance
t, the accumulations from t0-1h to t0 can be used to correct the current radar image fed to the
nowcast algorithm. Nevertheless, the hourly accumulation can work for some type of events
and not work for others. For this reason, the accumulations over periods of 0.5, 1, and 2 hours
are investigated to find which accumulation is suited better for the study area and nowcast
purpose. As radar input for all three methods will be the 10 min smoothed radar data, as the
best radar product (see Section 5.4.1).

5.2.3 Quantile Mapping based Bias Correction

The main idea of the  Quantile  Mapping Bias correction is the correction of a dataset  by
manipulating its probability distribution based on one from another dataset that is considered
the true  observation.  Here  the  dataset  to  be  corrected  is  the  radar  data  and the dataset
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(5.15)

(5.16)

where:
t   –    the current time step to be corrected
n  –    number of available gauges
t   –    the current time step
Gi,t–    gauge observation at the i station and t time
Ri,t–     radar observation at the i station location and t time
Bt –     the bias correction factor for the time t

where:
t     -   the current time step to be corrected
n   –   number of available gauges
w   –   number of time steps as a basis for the accumulation
Gi,j,t–   gauge observation at the i station and time step j
Ri,j,t –   radar observation at the i station location and time step j
Bt    –    the bias correction factor for the time t



considered as the true rainfall is the gauge information. The procedure of the quantile based
bias correction is shown in Figure 5.3 and is mainly done in three steps. 

First the empirical cumulative probability distributions (CDF) for both radar and gauge
data are built up as in (a) and (b). A theoretical Gamma distribution is fitted to the each of
the empirical distributions as indicated by the Equation  5.17. Here the R package lmomco
[Asquith, 2011] is used to estimate the parameters of the Gamma distribution based on the
method of L-moments. 

F(Z (x ,t) ;r ,λ )=
λ r Z (x , t)r−1 exp(−λ Z (x , t))

Γ (α )
; Z (x , t)>0

Then the correction is applied; for  each grid point of  the radar data which has to be
corrected, the quantile based on the respective CDF is computed, and the radar value is
substituted  with  the  value  of  the  gauge  data  corresponding  to  the  same  quantile  as
illustrated in Equation 5.18. An example of such application is given by the Figure 5.3 (c); A
value of 100 mm/h is recorded by the radar, which based on the radar CDF corresponds to
the quantile 0.9. The gauge intensity corresponding to the same quantile is 24 mm/h, hence
the value of 100 mm/h in the radar is substituted with the one of 24 mm/h.

Z 'R(x ,t )=Fobs ,t
−1 (Frad , t(ZR(x , t)))

As indicated in the Equation 5.17, only intensities higher than a specific threshold can be
used for the empirical distribution intensities. As the measurement accuracy of radar and
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                         a)                                               b)                                            c)

Figure 5.3: Different steps in the bias correction of the radar data based on quantile 
mapping: a) fitting a Gamma distribution to gauge recordings, and b) to radar intensities. 
Based on the two distribution, for same quantiles, the radar intensities are substituted by the 
gauge ones (c) [Rabiei and Haberlandt, 2015].
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(5.17)

(5.18)

where:
F          –   the non-exceeding probability for a data type
Z(x,t)   –   the rainfall value at location x and time t
r,λ        –   parameter of the Gamma distribution
Γ(α)      –   the Gamma function

where:
Z’R(x,t)   –   the new value of radar
Frad,t        –   the quantile of radar observed value at x and t (ZR(x,t))
F-1

rad,t      –   the gauge value corresponding to the quantile Frad,t



gauge is 0.01 mm/5min, values that are equal or higher than this threshold are used to built
the  CDF  of  both  datasets.  Actually,  Rabiei and  Haberlandt  (2015)  investigated  various
threshold  (0,  0.02,  0.05,  0.07  and  0.1  mm/h)  for  the  CDF calculation  of  radar  data,  and
concluded  that  their  empirical  CDF  should  be  build  by intensities  higher than  0.5mm/h.
Nevertheless, in this application, the 0.01 mm/5min yielded stable and satisfactory results.

Theoretically, the quantile bias correction has to be done on each time step. However, care
has  to  be  taken  that  enough  data  are  available  to  fit  the  Gamma  CDFs,  otherwise  the
parameter estimation is not possible. In the best case scenario, 100 stations will be available
for the CDF construction. A hundred stations are not enough to provide a good correction of
the radar CDF where around 40000 points are used. Two solutions can be used to deal with
this lack of data. 

i) The first one is to interpolate the station data to the same grid like the radar and use the
interpolated  field  to  build  up  the  CDF.  Nevertheless,  such  an  application  will  introduce
additional uncertainty to the correction as the interpolated field comes with errors as well.
Moreover, as OK is smoothing in space, it will cause an underestimation of the peak intensities
at the radar. 

ii) The second one is to pool together radar and gauge observations from a fixed duration
(also referred here as temporal window). However, one has to be careful with determining the
temporal  window  from  which  to  take  the  information,  as  a  too  long  window  may  mix
information from different rainfall mechanisms (hence affect the radar correction), and a too
short  window  can  cause  instabilities  when  estimating  the  parameters  of  the  Gamma
distribution. 

To investigate what duration yields best results for all the types of events, three durations
are considered and investigated: 1, 3, and 6 hours. As radar input for all three methods will be
the 10 min smoothed radar data, as the best radar product resulting from Section 5.4.1.

5.2.4 Conditional Merging

The Conditional Merging (CM) is the combination of two data source: the radar data and
the interpolated gauge data with Ordinary Kriging. The combination is done on 5 steps as
illustrated in Figure 5.4. For a specific time step, the gauge information is available on specific
points (a) and radar data (b) is available continuously in space (displaying a high variance).
The  first  step  is  the  OK  interpolation  of  the  gauge  data  as  shown  in  (c).  Second,  the
information from the radar grid points matching with the gauge location, is interpolated via
OK with the same variogram as in the gauge interpolation (d). Then a deviation grid between
the radar data (b) and the interpolated radar field (d) is derived (e).  This deviation grid is
added to the interpolation of gauge information (f). The final product of conditional merging is
the one indicated in part (g) and it includes an unbiased estimator in space (due to OK) and a
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high spatial variability (due to the radar data). Moreover, two conditions are set to the final
product in order to avoid negative rainfall and to keep the storm structures as dictated by
the radar data, so that they can be easier tracked by nowcast algorithms. 

1.if the OK field is smaller than the deviation field then the resulting grid is set to zero. 
2. if there is no rainfall recognized by the radar, then the resulting grid is set to zero. 
3. if the radar data are missing, then the OK of gauge is used. 

Unlike the MFB or the QQ correction methods, the CM doesn’t depend on a time window
to average the results, but depends only on the radar information at the given time step.
Thus,  the  CM can be  run either  on  the raw radar  data  or  the temporally  and spatially
smoothed radar data as mention on Section  5.1.1. As in the KED application, three radar
products are investigated for the best application of the CM method as indicated in Table 5.2;
the raw radar data, the smoothing with 10 min (as the best smoothing method from Section
5.4.1) and the smoothing with 15 min as suggested by Berndt et al. (2013). Depending on
which yields the best results (given in Section 5.4.3), the final application will be chosen and
compared with the single data sources performance.
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Figure 5.4:  The procedure for the conditional merging: a) represents the observations at the
gauges which are discrete,  b)  represents the observations  in radar which are  continuous in
space, c)  the observation by the gauge are interpolated with OK, d) the radar observations
corresponding  to  the  gauge  location  are  interpolated  with  OK,  e)  the  derivation  grid  is
computed between the original radar and radar interpolation,  f) the deviation grid is added to
the gauge interpolation data, and g) the final data as the product from gauge interpolation and
radar variation grid [Berndt et al., 2013]. 



5.3 Method Evaluation and Application

5.3.1 Merging Validation and Application

For estimating the best merging method, the performance criteria as explained in Section
4.2 are used. The true information for the rainfall considered here, is the gauge information.
Thus, the performance assessment is done at the point scale, where the gauge measurements
(true rainfall) are available. For the validation of the methods a split-sampling validation is
used; the 100 stations are separated into two groups a) 68 calibration stations – the stations
that are used in the merging application, and b) 32 validation stations – the stations where the
performance criteria are calculated. The stations in each group are selected randomly and are
illustrated in the Figure 5.5.

Since the methods are used to merge radar and gauge data for the nowcast application,
only rainfall information from the past of the current time step can be used. That means that
the methods are applied online. Offline application, in contrary, can use the information from
the past and the future of the current time step. The illustration of the two modes online and
offline  application  is  shown  in  Figure  5.6,  where  the  current  time  step  is  t=0  and  the
assimilation window is receptively the online and offline filter. 
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Figure 5.5: The stations used for the calibration (in magenta) and for the validation (in yellow)
of the merging methods. 

Figure 5.6:  The application of the merging methods online (pink) and offline (blue).



The summary of the merging methods investigated, for different temporal assimilation
windows and for different radar inputs, is indicated in the following Table 5.2:

5.3.2 Application of Best Merging Product at the Nowcast

The best  merging method achieved (from  Table  5.2)  will  be  used as  an input  for  the
nowcast algorithms and all the 100 stations (as illustrated in Figure 4.3) are used as input for
the best merging method. Based on these 100 stations the performance criteria listed in
Section  4.2 are used to determine the impact of the best merging method to the nowcast
performance. To have a direct comparison between the nowcast fed with merged data and
the  nowcast  fed  with  raw radar  data,  a  percent  of  improvement  is  calculated  for  each
performance  criteria  as  indicated  by  the  following  Equations  5.19 -  5.22.  A  positive
improvement indicates that the nowcast fed with merged data had better performance than
the one fed with raw radar data, and a negative improvement indicates the opposite.

ρ impr [% ]=100
(ρmerge−ρ raw)

ρ raw

RMSEimpr [%]=100
(RMSE raw−RMSEmerge)

RMSEraw

BIAS impr [% ]=100
(|BIAS raw|−|BIASmerge|)

|BIASraw|

TPshift [% ]=100
(|TP raw|−|TPmerge|)

|TPraw|
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Table 5.2: Summary of the methods investigated, the temporal window applied, the input 
product and the reference name for each of them.

Window [min] Input Product Name

Smoothing 10 15 20 RRraw RR10 RR15 RR20

OK G OK

MFB 30 60 120 RR10 MFB30 MFB1 MFB2

QQ 60 180 360 RR10 QQ1 QQ3 QQ6

KED RRraw RR10 RR15 KEDraw KED10 KED15

CM RRraw RR10 RR15 CMraw CM10 CM15

(5.19)

(5.20)

(5.21)

(5.22)

w
merge – criteria displayed by the merged radar
raw     – criteria displayed by the raw radar
impr    – the improvement in criteria due to the 

merged radar

where:
ρ        – the correlation displayed by the radar product
RMSE– the root mean square error for each time step
BIAS  – the absolute error in volume estimation
TP      – the shift in time of rainfall peak



5.4 Merging Results

5.4.1 Radar Smoothing

Figure 5.7 shows the temporal performance of the three temporal smoothing windows on
radar data compared to the use of the raw data. For all smoothing windows, the temporal
correlation is improved considerably, for all the thresholds, as well the temporal RMSE and the
Peak Bias.  Among the different  durations,  the 10min smoothing window exhibits  the best
results. Of course the longer the window, the bigger is the smoothing (the lower the variance)
causing lower correlations. However, for the 5 and 12 mm/h intensities it seems than the 15
min window performs a bit better in terms of temporal correlation. In terms of RMSE there is
no big difference between the smoothing windows.  The 20 min window seems to produce
slightly lower RMSE, but that is to be expected  as the smoothing is stronger.  Regarding  the
peak bias, the 10 and 15min windows yield the best results, with the 10 min being slightly
better.  It  is  clear  that  the  temporal  smoothing  improves  the  match  of  radar  and  gauge
observation, nevertheless one has to be careful not to use a strong smoothing as the variation
and the peak volume will decrease considerably. Based on the results, the 10 min window is
chosen as the best smoothing window for the event based application. 

Figure 5.8 shows the temporal and spatial cross-correlation between the 10 min smoothed
radar data for each event type. Overall there is an improvement of the correlation for all the
storms. As in the raw radar, the spatial cross-correlation is higher than the temporal one for
the low thresholds, however for the high thresholds the temporal one is higher. Especially, for
the  60  mm/h  intensity  threshold,  the  stratiform  spatial  structure  is  very  well  captured.
Nevertheless,  the  cross-correlation,  both  spatial  and  temporal,  is higher  than  0.37
(predictability  limit)  only  for  the  lowest  threshold.  Thus,  it  is  still  hard to  expect  a  high
predictability skill from the nowcast model at the high intensities.

For the temporal cross-correlation, the smoothing seems to be better for the stratiform and
the meso-β events. This is also the case for the spatial cross-correlation. These two types of
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Figure 5.7: The temporal performance (correlation -left, RMSE -middle, Peak Bias - right) for the
application of each temporal smoothing window of the radar data. The grey dashed line are 
guidelines while the red dashed one indicate critical values as dictated by the literature.



events are widespread and not with very high intensities, therefore smoothing in time and
space yields better results. Nevertheless,  it  was expected that the smoothing in  time and
space could improve particularly the  results for the convective events – where due to the
wind drift, the gap between the radar and the gauge is bigger. If compared with the Figure
4.4 from the raw radar data, it is clear that all types of events (also convective ones) agree
better with the gauge data when radar data are smoothed. 

However,  it  still  seems that the convective (simple and  meso-γ) events fall  behind the
others. This may be caused by the so-called advection errors; as the radar measurement is
only a time shot at periodic times (it captures an instant state of the storm at different times
see Figure 5.9-a and -b), it may miss certain rainfall location due to the distance between the
instant states of  the storms as illustrated in  Figure 5.9-c.  For  slowly moving storms,  like
stratiform events, this gap is recovered by the spatial and temporal smoothing, however for
the fast moving storms, the smoothing is not that effective. This may be solved in future
works, by an advection correction as suggested by Seo and Krajewski (2015).
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Figure 5.8: The temporal (upper) and the spatial (lower) cross-correlation of the radar data 
smoothed with a 10 min window for the 5 types of the events. The grey dashed lines are 
guidelines while the red dashed lines illustrate the predictability limit value as shown by the 
literature.



5.4.2 Gauge OK Interpolation

Figure 5.10 illustrates the temporal performance criteria for the interpolation of the gauge
data with OK for different intensity thresholds. As expected the temporal correlation is quite
low (lower than the predictability limit value)  and it gets worse with the higher intensities.
Even though OK is  unbiased  in  space,  this  is  not  the  case  for  the  bias  in  time.  The OK
interpolation is clearly underestimating the peak volume especially for the high intensities. It
is apparent that the OK cannot be used as a single input to the nowcast algorithm, because
the temporal performance criteria are quite bad when compared to the smoothed radar data.
Thus, merging methods are needed!

Figure 5.11 and Figure 5.12 illustrate the temporal and spatial cross-correlation for different
thresholds and event types for the OK interpolation of gauges. Among all the event types, it
seems to capture best the structure of the stratiform events. This is expected as those events
are quite extended in space, and many radar grids have captured rainfall. However, since it is
smoothing in  space,  the  high intensities  are  not  well  captured  (hence  low correlation  for
intensities higher than 60 mm/h). Regarding the convective events, even though a summer
variogram was implemented, with clearly shorter range, it is not enough to model such events
correctly. 
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Figure 5.9: Schematic representation of the instant radar rainfall estimation at t (a) and t+5min

(b) on 1km2 grid, and rainfall accumulation between the two time steps (c). Blue grids indicate
the rainfall  intensities  captured by the radar,  while  the grey ones  illustrate  the locations
where the radar did not capture any rainfall [taken from Seo and Krajewski, 2015].

a) b) c)

Figure 5.10: The temporal performance (correlation -left, RMSE -middle, Peak Bias - right) for
the OK interpolation of the gauge data. 
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Figure 5.11: The temporal correlation of the OK gauge interpolation for the 5 types of the 
events. The red dashed line illustrates the predictability limit value as shown by the 
literature, while the grey lines are for guidance. 

Figure 5.12: The spatial cross-correlation of the OK gauge interpolation for the 5 types of 
the events. The red dashed line illustrates the predictability limit value as shown by the 
literature, while the grey lines are for guidance. 



5.4.3 Best Application for each Method

For each merging method, different applications (as shown in Table 5.2) were investigated
in order to find the best application for each method. The evaluation of the best application is
done based on the temporal performance criteria over the 32 validation stations. The results
for all merging methods are shown in Figure 5.13. 
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Figure 5.13: The temporal performance (correlation -left, RMSE -middle, Peak Bias - right) for
the application of each merging method (MFB, QQ, KED and CM) with different temporal 
windows used for the assimilation of gauge and radar information. The grey lines are for 
guidance while the red dashed lines show the critical values as indicated by the literature.
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The performance of three different implementation of MFB corrections on radar data are
very similar to one another, with very few differences. The temporal correlation for the low
intensity thresholds shows the same range for all three applications. A small difference is
apparent  at  the  high  intensity  threshold  of  60  mm/h,  where  the  MFB  on  two  hours
accumulation has slightly higher values. However, this application has the highest peak bias
when compared to the other one. Contrary to this, the MFB on 30 minutes accumulations
has the lowest bias when compared to the others, but also the lowest correlation for the high
intensities.  It  appears  that  the  hourly  MFB  has  a  more balanced  trade  between  the
correlation  and  the  peak  bias  than  the  other  applications,  thus  it  is  selected  as  the
representative one. This is not only in agreement with the literature review, but also with the
RMSE results, as the hourly MFB displays slightly lower RMSE than the others.

The performance of three different implementation of  QQ corrections on radar data are
also similar  to  one  another,  however  show  a  higher  variability  than  the  MFB
implementations.  The  temporal  correlation  looks  better  for  the  3-  and  6-hours
implementations;  only  at  the  highest  intensity  threshold  (60mm/h)  the  hourly
implementation is slightly better. Nevertheless, when looking at the peak bias, QQ for each
implementation displays a constant and high bias in time. Even though the QQ (together
with MFB) is  optimized by reducing the bias  in  space,  apparently  this  is  not  enough to
reduce the bias in time. When advised with the Figure 5.11 and Figure 5.12, it seems that this
feature  of  QQ  is  inherited  from  the  gauge  information,  as  OK  also  underestimates
considerably the temporal peaks. From the three implementations, the 3 hours one shows
slightly better results for the peak bias, and it is selected as the representative one.  

The performance of three different implementation of  KED merging of radar and gauge
data are  quite different from one another. For starter, it is clear that the spatio-temporal
smoothing of the radar data, improves clearly the temporal performance of the KED when
compared to the one using raw radar data as an external drift. Both KED10 and KED15 show
a higher correlation and smaller RMSE and peak bias when compared to the KEDraw. Among
the two smoothed radar products fed to the KED, there is not a very big difference. From one
side the KED15 shows better temporal correlation for the high intensities but  on the other
side it shows also higher peak bias. It is for this reason, the lower peak bias, that the KED10
is chosen as a representative of this method.

The performance of three different implementation of CM are, as in the KED case, quite
different from one another. Also, here it is clear that the spatio-temporal smoothing of radar
data improves clearly the temporal performance when compared to CMraw. Both CM10 and
CM15 show a higher correlation and smaller RMSE and peak bias when compared to the
CMraw. Unlike the KED implementation, here it is clearer that the CM10 runs have slightly
better results at the highest intensity threshold (60 mm/h), than the CM15; better correlation
and peak bias median. For the other intensity thresholds the performance of both products
seems very close to one another. Also in terms of RMSE, their performance is quite similar,
with CM10 having slightly lower values for the 60mm/h intensity. Since the CM10 exhibits
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better  results  for  the  highest  intensity,  it  is  selected  as  the  representative  from  the  CM
implementations. Since both KED and CM are fed with 10 min smoothed radar data, a direct
comparison between them is possible.

5.4.4 Best Merging Method

A direct  comparison  of  the  temporal  and spatial  performance of  the  merging methods
(MFB1, QQ3, KED10 and CM10) and the reference single source products (RR raw and OK) for
the different intensity thresholds is illustrated by  Figure 5.14 and Figure 5.15. Regarding the
temporal correlation, it seems that all of the merging methods have a better performance than
the OK of stations. Among all the merging methods, CM10, MFB1 and the QQ3 outperform
the  KED10,  with  CM10  and  QQ3  being  ranked  among  the  best.  The  MFB1  has  similar
performance to the CM10, however for the highest intensity the superiority of CM10 is clear.
QQ3 shows a bit higher correlation than CM10 at the mid-range intensities, but losses this
advantage at the higher intensities.   

It  is  surprising  to  see  that  KED10 is  the  worst  merging  method in  terms  of  temporal
correlation for all the intensities. When looking at the temporal correlation of KED10 for each
event  type  (see  Figure  5.16),  it  exhibits  quite  high  correlation  for  the  stratiform  events,
however very low values for the convective events. As a derivative of  OK, KED10 seems to
inherit the bad ability of the OK to capture the convective events.  CM10 on the other side,
inherits the high correlation of the radar data and seems not to be so dependent on the OK
performance. Therefore as the RR10, the CM10 displays very good correlation for the wide
range events (like stratiform, mixed and meso-β convective scale), but cannot capture well the
temporal pattern of the simple and meso-γ convective events. On the opposite to CM10, QQ3
seems to improve the performance especially for these two types of events: simple and meso-γ
convective events, while for the other events the correlation is lower than the CM10 method.

In terms of temporal peak shift and bias (Figure 5.14), the methods are again better than
the OK of the station data. KED10 seems again to inherit the high peak shift  from the OK,
although the bias in the peak is considerably better than OK. In contrast to the temporal
correlation, the supremacy of CM10 in the peak capturing is quite obvious; first the CM10 has
a median peak shift of 0 minutes consistent throughout all the thresholds, which is not the
case  for  the  other  methods;  secondly  it  has  a  peak  bias  lower  than  50%.  Of  course,  the
underestimation is still considerable, but given the merging methods, it is the best in reducing
this bias. In terms of RMSE, all merging methods improve the performance by having lower
RMSE than OK and RR data.

Regarding the spatial cross-correlation (Figure 5.15) QQ3 looks like the best performing
method, followed up from the CM10 and MFB1. The KED10. even though it shows a higher
spatial than temporal correlation, it still falls behind the other methods. Regarding the space
variance in  Figure 5.15,  QQ3 seems to inherit  the low variance of  the gauge OK (see the
difference between the OK and the QQ3), unlike the CM10 which exhibits a higher variation
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from the radar data.  KED10 has a slightly better variation coefficient than OK, but still very
low – indicating that the spatial variance of the storms is underestimated. MFB1 at the other
hand has a RVAR within the 1 range, but the median is worse than the CM. Regarding the
spatial RMSE, all merging methods exhibit lower value than the RR and OK, especially when
high intensity thresholds are considered. 

Unlike in the temporal correlation, the QQ3 can capture better the spatial variability of
the convective events, rather than the stratiform events. The CM10 on the other hand, keeps
still the same behaviour as in the temporal correlation; it can capture better the wide range
events (stratiform, mixed and meso-β events) than the small scale ones (simple and meso-ɣ
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Figure 5.14: The temporal performance criteria for each of the single  (OK and RR) and 
merging products (MFB1, QQ3, KED10 and CM10) for different types of thresholds. The grey 
lines are for guidance, while the red dashed ones indicate the critical values.



convective events). KED10 displays higher cross-correlation than OK for all the event types,
but as OK it captures better the structure of the wide range events, (still not as good as the
CM10). Lastly MFB1 shows very good correlation for all the type of events, and surprisingly it
improves the cross-correlation mainly for the small scale events rather than the large scales,
displaying a slightly higher correlation than the CM10 for the low intensity threshold.

Overall,  the  merging  methods  have  their  own  advantage  and  disadvantage.  Some  can
capture very well the temporal and spatial structure of the rainfall but in the cost of the peak
bias or the RMSE. From all the methods, CM10 seems to be more consistent with the results
displaying good correlation, RMSE, peak bias, peak shift and RVAR. It is for this reason that
CM10 is chosen as the merging method for correcting the input radar data of the nowcast.
QQ3 seems a second promising method, however its application is yet to be improved. Lastly,
the  KED  with  only  RR  doesn’t  seem  that  promising  for  urban  application,  unless  other
additional variables are used as external drifts. 
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Figure 5.15: The spatial performance criteria for each of the single  (OK and RR) and merging 
products (MFB1, QQ3, KED10 and CM10) for different types of intensity thresholds. The grey 
lines are for guidance, while the red dashed one indicates the critical value as suggested by the 
literature. 



Some spatial visualization of merging techniques for 5 randomly selected events are given
in Appendix E – from Figure E.1 to E.5.
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Figure 5.16: The temporal (upper) and the spatial cross-correlation (lower) of each of the 
merging methods for the 5 types of the events. The red dashed lines illustrate the predictability 
limit value as shown by the literature, while the grey lines are for guidance. Here no intensity 
threshold was used. For higher intensity thresholds see Appendix C – Figure C.1 and C.2



5.5 Nowcast Results with Merged Data

The  best  merged  product,  as  per  Section  5.4.4,  the  conditional  merging  between the
temporal  smoothed radar  data  with a 10 minutes  window and gauge data (from here on
referred to as CM instead of CM10) is used as an input for the nowcast with HyRaTrac and
Lucas-Kanade algorithms.

5.5.1 Nowcast with HyRaTrac

Figure 5.17 illustrates the cross-correlation computed both temporally (upper) and spatially
(lower) between the CM fed HyRaTrac nowcasts and either the input radar (left) or gauge data
(right) in respect with different lead times and different types of events. The first noticeable
result, is that both gauge and radar predictabilities have increased for all the event types (also
both spatial  and temporal  performances  when compared to  Figure 4.6).  Especially  for  the
stratiform events the improvement is  clearly visible.  Through the merged input,  the gauge
predictability of the stratiform events is increased to more than 30 minutes, and the radar
predictability to about 60 minutes. The stratiform events are followed up by the mixed events,
whose gauge and radar predictability are respectively higher than 20 and 30 minutes. 
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Figure 5.17: The event median cross correlation for each event type as nowcasted by HyRaTrac
for different lead times, calculated temporally upper row (averaged over 100 station per event)
and spatially – lower row (averaged over the time steps per event). The red dashed line indicates
the correlation value of 0.37 for the predictability limit, while the grey dashed line is a reference
to the 20 min predictability limit as suggested by the literature. No intensity threshold was used
here. For higher intensity thresholds see Appendix B – Figure B.5 and B.6.



For the other remaining convective types, the radar predictability is at least 20 minutes,
while  the  gauge  one  is  about  15  minutes.  The  local  convective  type  is  the  worst  in
performance,  even  though  when advised  with  Figure  3.6,  most  of  convective  events  live
longer than 30 minutes. This might suggest a shortcoming of the HyRaTrac to nowcast the
convective events. Overall, there is a pattern in the results; i) storms that are bigger and more
persistent have a higher predictability; and ii) as seen also with the raw radar data as an
input to the nowcast, the spatial cross-correlation is higher than the temporal one. However
there seems to be an exception in the stratiform case where the spatial radar predictability
behaves more or less the same as the temporal one.
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Figure  5.18:  The median of  the temporal  performance:  RMSE (upper),  Shift  in Peak Time
(middle)  and Peak Bias  (lower) for each  of  the  event  types  of  the  HyRaTrac  forecast  with
different lead times, compared to the input radar data (left) and gauge data (right).  The red
dashed line indicates the limit performance value of the criteria, while the grey dashed line is a
reference to the 20 min predictability limit as suggested in literature. No intensity threshold was
used here. 



Moreover,  Figure  5.18 illustrates  the  additional  temporal  performance  of  the  CM  fed
nowcast for  the different  event  types.  When compared to the  Figure 4.7 from the RR fed
nowcast, a great improvement of the peak shift is observed for both results and especially for
the longer lead times. This is not the case though for RMSE, as for all the events it seems that
the RMSE for both inputs has increased. Regarding the peak bias the improvement is mainly
seen  at  the  comparison  to  the  gauge  observation;  the  RR  fed  nowcast  has  a  consistent
underestimation of 100% for the peak volume. However, this is not the case for the CM fed
HyRaTrac at the first hour of the nowcast. Whilst at the predictability a ranking of the events
was displayed clearly, at the temporal performance it is not true that the best performance is
always reached by the stratiform events. 

5.5.2 Nowcast with Lucas-Kanade

Figure 5.19 illustrates the cross-correlation computed both temporally (upper) and spatially
(lower) between the CM fed LK nowcasts and either the input radar (left) or gauge data (right)
in respect with different lead times and different types of events.  As with HyRaTrac there is
clearly an improvement in both spatial and temporal predictability (compared with Figure 4.8).
The biggest improvement seems to be for the temporal radar predictability. 

91

Figure 5.19: The event median cross correlation for each event type as nowcasted by Lucas Kanade 
for different lead times, calculated temporally – upper row (averaged over 100 station per event) and
spatially – lower row (averaged over the time steps per event). The red dashed line indicates the 
correlation value of 0.37, while the grey dashed line the 20 min predictability limit as in the 
literature. No intensity threshold was used here. For higher intensity thresholds see Appendix B- 
Figure B.7-B.8.



Here all the events display a predictability higher than 50 minutes, even for the convective
events!  This  is  surprising as the convective events are very short lived, and thus are not
expected to have predictability higher than 30minutes. However, when consulting with the
storm characteristics diagram (see Figure 3.6 from Section 3.4.1), we see that the median of
the convective storm duration is 100 minutes (more than one hour). Thus, since the plots
shows the median values for each event type, it is still reasonable that the convective events
display a predictability skill up to 50 minutes lead times. 

The gauge predictability has also increased considerably when compared to the one from
Figure 4.8 of Section 4.4.2. Mainly the spatial performance, for all the storms. outperform the
predictability limit of 20 min from the literature review. Overall, unlike HyRaTrac here only
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Figure 5.20: The median of the temporal performance: RMSE (upper), Shift in Peak Time 
(middle) and Peak Bias (lower) for each of the event types of the LK method with different lead 
times, compared to the input radar data (left) and gauge data (right). No intensity threshold was 
used here. 



one pattern is observed; that the bigger and longer the storm the longer the predictability.
Which predictability, either the spatial or the temporal one, can be modelled better is hard to
say. For the radar predictability the temporal one shows a better performance, however for the
gauge one (as in the case with the RR or with HyRaTrac)  the spatial  one shows a better
performance. Figure 5.20 illustrates the temporal performance of the CM fed LK nowcast for
different types of events. When compared to Figure 4.9 of Section 4.4.2 as in HyRaTrac there is
an increase in the temporal RMSE for all  the lead times, and a slight improvement of the
temporal peak shift and peak bias. 

5.5.3 Comparison between HyRaTrac and Lucas-Kanade

Figure  5.21 and  Figure  5.22 give  a  direct  comparison  of  the  temporal  and  spatial
predictability  limits  of  the  two  nowcast methods  (HyRaTrac  and  Lucas-Kanade)  when
compared  to  radar  and to  the  respective  gauge  information  averaged  over  all  the  events.
Unlike the case with the RR as input (see Figure 4.10 and Figure 4.11 from Section 4.4.3), the
performance of the two methods is quite different from one another: the LK predictability
seems to be higher than the one from HyRaTrac, especially for the temporal one. While for the
spatial predictability (at least for high intensity thresholds) the gap between the two methods
is not quite big, for the temporal predictability the LK nowcast is clearly the superior method. 

Apparently, it seems that CM enhances the performance of both methods, but particularly
it  gives  more  advantage to  the  field  motion based  nowcast.  Since  CM makes  the  rainfall
patterns more persistent in time and space (due to smoothing), the optical flow can estimate
better the advection velocities. Moreover, it has to be mentioned that the LK method uses
three time steps to calculate the motion field, while HyRaTrac only uses two time steps, which
may not  be enough to evaluate  correctly the advection vectors.  Another  reason that  may
disadvantage the HyRaTrac, is the matching of the storms. For a storm to be matched, it needs
to be in a certain vicinity of the pre-existing state of the storm, if this is not the case, then the
storms will not be matched and thus have global or not updated advection velocities. Despite
of the true nature of the error, it can be concluded that a proper estimation of motion field can
increase the predictability up to 10 or 30 minutes (event 1 hour) depending on the intensity
threshold and the predictability considered. 
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Figure 5.21: The average temporal cross-correlation over all the events for the HyRaTrac and 
Lucas-Kanade Nowcast for the lead times from 5 min to 180 min (every 5min) for intensities 
higher than 0.12 mm/h, 1 mm/h, 5mm/h and 12 mm/h calculated based on raw radar input (solid
lines) and gauge reference (dashed line). The red dashed line indicates the correlation 0.37 
considered as the predictability limit, while the grey dashed line indicates the limit predictability
as shown in the literature (20min). 
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Figure 5.22: The average spatial cross-correlation over all the events for the HyRaTrac and 
Lucas-Kanade Nowcast for the lead times from 5 min to 180 min (every 5min) for intensities 
higher than 0.12 mm/h, 1 mm/h, 5mm/h and 12 mm/h calculated based on raw radar input (solid
lines) and gauge reference (dashed line). The red dashed line indicates the correlation 0.37 
considered as the predictability limit, while the grey dashed line indicates the limit predictability
as shown in the literature (20min). 



5.5.4 Improvement of Rainfall Predictability

Figure  5.23 illustrates  the  direct  comparison  for  all  events  and  performance  criteria
between both nowcast methods fed with RR and CM data. Here instead of absolute values of
predictability, the percent of improvement for each performance criteria is plotted  for the
nowcast compared to the radar input and the gauge reference. A plus value (the green area)
indicates that the nowcast fed with CM performs better than the one fed with RR data. For
the  negative  values  (the  red  area)  the  opposite  is  true;  the  RR  fed  nowcast  has  better
performance.

For the low threshold it seems that for all the lead times the CM as input data improves
the nowcast results, not only compared to the gauge data (which is expected due to the
merging  technique)  but  also  when  compared  to  the  radar  data.  This  supports  the
assumptions that a conditionally merged product is more persistent in time and easier to be
tracked  than the structures  from the raw radar  data.  The consistent  underestimation  of
rainfall intensities and the discrete nature of the radar measurements,  may cause such bad
performance of the RR fed nowcast even when compared to the input radar data. 

Nevertheless, it is not clear to say which of the nowcasting methods is more favoured by
the use of the CM data. Regarding the spatial and temporal predictability, the LK method is
improving the most, however in terms of peak bias and shift HyRaTrac seems to have the
most  benefits.  In  terms  of  spatial  and  temporal  RMSE,  both  methods  have very  similar
results, with very little change at the high lead times. Moreover, while this pattern is true for
the predictability throughout all thresholds set, this is not the case for the peak performance
and the RMSE (see  Appendix D – from Figure D.1 to D.4 for more detailed information
regarding the other  thresholds)  for  the high intensity  thresholds.  There are times (when
compared to the gauge for higher intensities than 5mm/h) that the RR based nowcast yields
better results. Thus, there is a limit to the advantage of using the CM data which is varying
with the intensity threshold, event type, the lead time and the performance at hand. 

To conclude, a better estimation of the rainfall field can improve the predictability of the
storms  both  when  nowcasted  with  an  object-oriented  or  a  field-oriented  approach.  The
quality of the radar input can affect the predictability skill of the method from 10 min up to 1
hour lead time depending on the intensity threshold set. However, for lead times longer than
an hour,  the rainfall  field  cannot bring any additional  value to the predictability.  This  is
because at such lead times, the rainfall structure has changed so much that the Lagrangian
persistence is not valid any-more.  Processes like birth, growth, decay and death must be
included in order to increase the predictability of the storms even more. 
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Figure 5.23: The average improvement of Spatial and Temporal Criteria for each lead time 
(from 5 to 180 min) when using CM data instead of RR as an input for both HyRaTrac and LK 
nowcast method. The green area indicates a better performance by the CM fed nowcast, and 
the red area indicates a better performance by the RR fed nowcast. No intensity threshold was 
used here. For higher intensity threshold see Appendix D – from Figure D.1 to D.4. 
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6. k-NN RESAMPLING OBJECT BASED NOWCAST

As seen in Chapter 5, the use of merged radar data can improve the predictability of the
nowcast up to 30-60 min lead times depending on the storm type. Past this lead time, the
nowcasts issued by HyRaTrac were useless. Of course a part of the error is attributed to the
matching and tracking of the storm, nevertheless a main deficit of the HyRaTrac method is
that, by implementing the Lagrangian Persistence, it doesn’t consider the intermittence nature
of the rainfall. Whilst the birth of the storms is mostly related to meteorological conditions
(thus information from NWP is necessary), the changing rate and death time may be learned
from past observed storms. For instance from previous observed convective storms, one knows
how long they typically last and what is the rate of decay. Such information can be useful
when a convective storm is identified and a nowcast must be issued. Here a nearest neighbour
approach is implemented to perform such task; when a new storm is identified, similar past
storms (neighbours) are selected and their behaviour is assigned to the nowcast of the storm
at hand. Naturally the first questions that rise are: How to evaluate similar storms and do
similar storms actually behave similarly? In other words, how can the similarity of the storms
be channelled through features? And once similar storms are identified, could their behaviour
improve the HyRaTrac nowcast skill? 

These are the main questions that are treated in this chapter. Here, a k-NN is applied at the
storms identified from the HyRaTrac algorithm, in order to investigate if past information can
bring additional value to the HyRaTrac nowcast, especially regarding the decay and death of
storms. Section 6.1 gives a brief introduction to the k-NN theory and the methods chosen for
the  predictor  estimation,  followed  up  by  Section  6.2 where  the  structure  of  the  k-NN
implemented  here  as  an  extension  of  HyRaTrac  is  illustrated.  The  model  set  up  and
optimization is described in Section 6.3 and the respective results for such implementation are
discussed in Section 6.4.
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6.1 Basics of the k-NN Approach

The nearest neighbour approach is mainly used in regression or classification purposes.
The  nowcast  application,  since  it  aims  in  simulating  future  behaviours,  is  in  a  way  a
regression problem. The assumption here is that events that exhibit similar features (also
referred as predictors) are expected to behave similarly (have similar responses). Hence, each
event can be described by N features (x1, x2,, …, xN) and has a corresponding behaviour (y).
When a new event,  with  the  respective  features  xnew

1,  xnew
2,  xnew

N, is  observed and whose
response is unknown, the k-responses (y1,  y2,  …, yk)  from the most similar  past observed
events,  are used to predict  the new response (ynew).  The response prediction from the k-
nearest neighbours (hence the name k-NN) is done in two steps. 

In the first step, the most similar events are selected based on the distance of the new
event with the past ones on the feature space. Typically, Euclidean Distance is used as per
Equation 6.1. Given the prior knowledge on the importance of the predictors, weights can be
assigned at each of them for the distance calculation. Based on the distance, the events are
then ranked from the most similar to the least similar. 

Ed
i =√α 1(X 1

new−X1
i )2+α 2(X2−X2

i )2+. .. .+α N (XN−X N
i )2    

Once the most k-similar events are recognized, their response is averaged according to the
respective weights for the estimation of the new response as per Equation 6.2. 

ynew=∑
i=1

k

wi y i

The weights for each neighbour (wi) can be calculated based on the rank probability as per
Equation  6.3. So, depending on the number of neighbours (k), the first one will  have the
highest weight, followed up by the second one and so on. 

wi=

1
k

∑
(i=1)

k

1+ 1
k

However, one of the main drawbacks of the rank probability is that, it gives importance
also to the neighbours that might have a significantly high distance from the new one, but
are still within the k-selected neighbours. Thus, a distance probability is thought to be more
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where:
N      – number of features or predictors
Ei

d     – is the Euclidean distance between the ith past and new event
Xi      – the feature describing the ith past event
αN      – the importance weight of the Nth features/ predictor

(6.1)

where:
ynew  – is the new event behaviour
k      – is the number of similar neighbours selected
yi      – is the behaviour from the ith neighbour
wi      – is the weight for the ith neighbour

(6.2)

where:
wi     – is the weight for the ith neighbour
k       – is the rank of the k- most similar neighbours

(6.3)



accurate, as it gives the highest weight to the neighbours in the close vicinity as described in
Equation 6.4

wi=

1
d i

∑
(i=1)

k

1+ 1
d i

The best k-number for a certain application is learned by optimizing a loss function either
on a split sampling or on a leave one out cross validation. The weighted average of the k-past
behaviours, creates a new one, not previously observed, which satisfies the statement that
nature  doesn’t  repeat  itself.  Nevertheless,  since  the  new  behaviour  is  derived  from  past
observed one, the approach itself is unable to predict extreme behaviours; the new behaviour
will be within the range of the past ones. Even though the k-number of neighbours can be
learned, the performance of the k-NN approach is largely depending on two factors; i) the
right features or predictors have been selected to describe the events, and ii) the Euclidean
Distance can describe adequately the similarity between events. 

6.1.1 Predictors Selection

Finding the right predictors is an active field of research in hydrology. Typically, most of the
predictors selected have a physical relationship, for instance when forecasting the discharge at
a location, the rainfall volume over the last days can be selected as a predictor [Haberlandt,
2015] as the two processes (rainfall-runoff) are connected to each other. However, having such
linked predictors is not always the case. In such cases, the presence of a strong correlation (for
instance Pearson correlation) between the predictors and the response (target variable) is used
to identify the most important predictors. Nonetheless, a correlation can only measure a linear
relationship  between  two  variables,  thus  it  doesn’t  account  for  the  interaction  between
predictors. For instance, two predictors A and B may have low correlation with target C, but
due to the interaction of A and B, both of them can predict satisfactory the value of C. Thus,
another  approach  should  be  considered,  in  order  to  account  as  well  for  the  interaction
between the predictors. 

Since the k-NN approach selects its’ prediction based on the Euclidean Distance, only the
events characterized by predictors in the close vicinity of the new event are selected. Often a
“local” linear approximation is assumed. Hence multiple-regression models can be fitted into
all the selected predictors and targets (by the least square minimization approach) in order to
recognize the important predictors based on the standardized regression coefficients as per
Equation 6.5:

Y=β 1 X1+β 2 X2+...+β N X N+ε
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where:
wi     – is the weight for the ith neighbour
k       – is the number of neighbours
di      – is the distance from the ith neighbour

(6.4)

where:
N   – the number of predictors
βi   – the regression weight for the ith predictor
Xi  – the ith predictor
Y   – the response 

(6.5)



Nevertheless,  the  regression  coefficients  are  dependent  on  the  rank  on  which  the
predictors are introduced into the regression, and moreover they are susceptible to the co-
linearity among the predictors.  Alternatively, a Relative Importance Analysis (RIA) could be
employed in multiple-regression models to determine the variable importance [Tonidandel
and LeBreton, 2011]. Unlike the standardized regression weights, RIA creates a new set of
predictors that are orthogonal to each other, in order to avoid co-linearity and to recognize
the most important ones. 

For  instance,  for  a  set  of  predictors  (X1,  X2 and  X3)  whose  response  is  Y,  three  new
predictors Z1,  Z2 and Z3,  that are orthogonal to each other and maximally related to the
original predictors set, are created (as illustrated in  Figure 6.1). Two types of standardized
regression weights are determined; ßN representing the relationship between the orthogonal
predictors  and  the  target  variable  Y,  and  λN,N representing  the  relationship  between  the
orthogonal predictors and the actual ones. The final relative weights (αj) for each original
predictor are then calculated by adding up the products of squared standardized regression
coefficients as indicated by the Equation 6.6. 

α j=β 1
2λ j1

2 +β 2
2λ j2

2 +β 3
2λ j3

2

The  relative  weights  found  based  on  RIA  can  give  useful  information  about  the
importance and the ranking of variables when given a certain regression model. Moreover, to
account for the statistical importance of the weights, a bootstrapping procedure is possible
as described by Tonidandel et al.  (2009). Nevertheless, for the computation of the relative
weights, RIA assumes that the regression model at hand is the correct one. Thus, the weights
are not  to be used as  direct  weights  in the k-NN approach,  but rather as an additional
information to understand which of the predictors play an important role in the explanation
of  the  target  variance.  For  this  reason,  a  multivariate-regression  will  be  fitted  to  the
predictors  in  this  thesis,  only  if  the  coefficient  of  determination  (R2)  is  high  enough  to
indicate a linear relationship between the predictors and target variables, and the respective
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(6.6)
where:
αj   – is the weight for the jth predictor
βk   – the regression weight for the kth orthogonal predictor
λjk  – the standardized regression weight for the jth predictor X

to orthogonal predictor Z.

Figure 6.1: Calculation of the relative weights for a regression model with three predictors 
(X1,X2,X3) transformed in a set of orthogonal predictors (Z1, Z2,Z3) for the estimation of the final
target variable (Y) [Tonidandel and LeBreton, 2011].



relative weights from RIA will be used additional to the Pearson correlation to recognize the
most important predictors.

However, the relationship between the predictors and target variables may be of non-linear
nature.  Hence,  an  additional  method  is  used  here,  where  no  prior  assumption  about  the
system type is required. Such a method was proposed by Sharma and Mehrotra (2014), which
is specifically designed for nearest neighbour approach given the prior knowledge of the most
important predictor. The method is based on a metric called the Partial Information Content
(PIC) and is computed from the Partial Information (PI) as in Equation 6.7. 

PIC=√(1−exp (−2PI ))

The Partial  Information itself  is  a  modification of  the  Mutual  Information (MI  –  as  in
Equation 6.8)  in order to measure partial dependency between the predictors and the target
variable, by adding predictors one at a time (step-wise procedure). Thus, when X predictors are
available, their partial dependency on the target Y is as described by Equation 6.9

MI (X ,P)=∫ f X ,P(x , p)log [
f X , P(x , p)
f X (x) f P(p)

]dxdp

PI (Y , Xnew∣X )=MI (Y , Xnew , X)−MI (Y , X)−MI (Xnew , x )+MI (x)

The evaluation of PIC needs a pre-existing identified predictor from which the computation
can start. If the pre-defined predictor is correctly selected, then through the Equation 6.9, the
method is able to recognize and leave out the new predictors which are not related to the
response and which don’t  bring  additional  value  to the  existing relationship  between the
current predictors and target variable.  As proven by Sharma and Mehrotra (2014), for such
cases the PI would be 0, thus consequently causing a PIC of zero in Equation 6.7. Contrarily,
the stronger the relationship between the predictors, the higher the PI, and the closest is PIC
to the value 1. 

As in the case of a linear regression model where regression weights are assigned based on
a  least  square  method,  relative  weights  can  be  derived  as  well  for  the  k-NN  regression
application, as a relationship between the PIC metric and the associated partial correlation, as
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(6.7)where:
PI    – Partial Information as extension to the MI
PIC – Partial Information Correlation

(6.9)

where:
MI    – Mutual Information between variables
X       – The pre-existing identified predictor
Xnew  – The new predictor added step-wise
Y       – The target variable

(6.8)

where:
MI    – Mutual Information between variables
X,P    – The two variables considered
fX(x) – The marginal probability density function of X
fP(p) – The marginal probability density function of P
fX,P(x,p) – The joint probability density function of X and P



indicated by Equation  6.10.  These weights can be used as part of  the Euclidean distance
(Equation 6.1) when selecting the most similar responses.

α j=PICX , X j∣X (− j)

SY∣X(−j)

SX j∣X (− j)

In this thesis the NPRED package in R [Sharma et al., 2016] was used for the step-wise
estimation of the predictors and the respective weights. As the implementation of the PIC
requires a pre-determined predictor, the most important one as indicated by both Pearson
Correlation and RIA,  will  be  used as a  start  for  the  analysis.  Then the other  predictors,
ranked important by the two mentioned methods,  will  be added one by one in order to
determine their weights for the similarity estimation.

6.2 Developing the k-NN Model

The k-NN approach is applied on the storm scale. From the respective radar data for each
of  the  93  events  used  for  the  development  of  the  nowcast  methods,  storms  have  been
recognized and tracked in hind-cast mode by the HyRaTrac algorithm (as described from
Section 2.2.3.1 and 4.1.1). Thus, a dataset with several types of storm is built and saved. The
storms are saved with an ID based on the starting time and location, and for each time step
of the storm evolution (noted as well on the ID), the spatial information is saved. Here the
spatial rainfall intensities of a storm at a particular time step (in 5min) of the storms’ life, is
referred to as the “instance” of the storm (see Figure 4.1). A storm that has been observed for
15 minutes, consists of three “instances” each occurring at a 5 min time step. 

Theoretically,  since  the  aim  of  the  nowcast  is  to  have  a  cross-correlation  above  the
predictability limit (0.37), a correlation distance can be employed to evaluate similar storms.
Nevertheless, when thousands of storms are available, looking for the most cross-correlated11

storm in the past can be very time consuming mainly for two reasons: i) The storms are
located  at  different  regions  of  the  radar  data.  As  one  may  expect  that  storms  behave
similarly no matter the location, one has to shift the instances of the past storms accordingly
to match at best the storm-instance at hand. Hence, this should include a cross-correlation
optimizer tool, which increases the computational time. ii) Additionally, the present instance
of the storm should be cross-correlated (and optimized) to each time step (instance) of each
of  the  previous  storms  to  find  the  most  similar  neighbours,  increasing  considerably  the
computation time of the k-NN nowcast.

11 Cross-correlation is here referred to the correlation between the spatial rainfall intensities of any two storm
regions (instances), indicating thus, if these two storms have similar spatial rainfall distributions at a 
particular instance of their storm life. 

104

(6.10)where:
αj         – predictor coefficient
X          – the predictor
Y        – the target response
SY|X(-j)– scaled conditional standard deviations between the 

first predictor and the target 
SXj|X(-j)– scaled conditional standard deviations between the 

additional predictor and the first one



To  overcome  such  high  computation  times,  a  four  step  approach  is  proposed  for  the
application of the k-NN method on the object-oriented nowcast as illustrated in the Figure 6.2
and explained step by step from Sections 6.2.1 to 6.2.4. 

For any given storm that has to be nowcasted, in Figure 6.2, the blue-instance represents
the current state of the storm at the initialization of the nowcast (time t0), the grey-instances
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Figure 6.26.2: The main steps involved in the k-NN based nowcast with the estimation of similar  The main steps involved in the k-NN based nowcast with the estimation of similar 
storms (step 1 and step 2) for a new observed storm, and the future predictions according to the
most similar storms (step 3 and step 4).



represent the previous states of the storm (t-1,  t-2),  and the green-instances represent the
future state of the storm at a specific lead time (t+LT) that is to be nowcasted. These instances
shown in Figure 6.2 and 6.3 as clouds, represent the spatial intensities at a 5 min time step
inside the storm region. At first the storm-instances (for both the past storm database and
the present to-be-nowcasted storm) are treated as objects with certain features (serving as
predictors) that describe them at each time step of the storms’ life (Step 1 -  Figure 6.2). In
Step 1, through the Euclidean Distance on these features, the most-similar instances of the
past storms (indicated in the  Figure 6.2 -right in blue), that have similar features and that
might exhibit similar patterns in the future, are selected (see Section  6.2.1). Once a similar
instance of  a past  storm has  been recognized (the blue-instance in Figure 6.2-right),  the
future instances of that storm (the green-instances in Figure 6.2-right, each for a specific lead
time  from  the  occurrence  of  the  selected  similar  blue-instance),  are  treated  as  future
instances (the green-instances in Figure 6.2-left) of the to-be-nowcasted storm.

 After recognizing the most similar storms (in terms of predictors), in  Step 2,  a cross-
correlation optimization is performed between each of the blue-instances of the past selected
storms (Step 2: Figure 6.2-right) with the current blue-instance of the to-be-nowcasted storm
(Step  2:  Figure  6.2-left).  The  past  selected  storms  are  then  ranked  based  on  the  cross-
correlation between the past-present blue-instance pairs (see Section 6.2.2). Furthermore, to
ensure that the nowcast fields, derived from each of the neighbours, will be representative of
the to-be-nowcasted storm, in Step 3, a cross-correlation distance is computed between each
of the past green-instances (at time t+5min from the neighbours) with the current blue-instance
of the to-be-nowcasted storm. The storms are then ranked according to descending cross-
correlation values.  Only k-neighbours are selected, and their  respective future behaviours
(the green-instances) are set as the future responses of the current blue-instance of the to-
be-nowcasted  storm  (see  Section  6.2.3).  At  last,  in  Step  4,  either  a  probabilistic  or  a
deterministic  nowcast  is  issued.  If  a  deterministic  nowcast  is  selected,  then  the  green-
instances of the k-neighbours are averaged according to their rank for each lead time (see
Section  6.2.4).  Contrary,  if  a  probabilistic  nowcast  is  selected,  k-ensembles  are  issued
independently; to each neighbour a probability is assigned according to their distance with
the to-be-nowcasted storm (see Section 6.2.4).

6.2.1 Step 1 – Feature Optimization 

At first storms are treated like objects that exhibit certain features (predictors) like area,
intensity, lifetime etc., at each instance (state) of the storm life until the storm dies (and the
predictors are all  set to zero). The features of the objects are categorized in two parts a)
present features and persistence features, as illustrated in Figure 6.3 (shown respectively in
blue and grey). The present features describe the current state of the storm at the time of
nowcast (denoted with t0 in Figure 6.3), and are calculated from one instance of the storm. To
compute certain features, an ellipsoid is fitted to each instance of the storm. The persistence
features, on the other hand, describe the past instances of the storm (denoted with t -1, t-2 in
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Figure 6.3) and how these features change over the past life of the storm (as illustrated in
Table 6.1). For example, the change of area from time t-2 to t-1 is a persistence feature. If the
change of  area is  averaged from the last  30  minutes  of  the storm, then the average area
changing rate is obtained. While the present features help to recognize storms that are similar
at the given instance when the nowcast is issued, the persistence ones give the information
about the past evolution of the storm. The features used here to describe the storms as objects,
and hence tested as predictors, are indicated in Table 6.1.

The  aim  of  these  features  is  to  recognize  the  states  of  previously  observed  storms
(illustrated in blue in  Figure 6.2 and  Figure 6.3) that are most similar to the current blue-
instance  of  the  to-be-nowcasted  storm.  Once  the  most  similar  past-blue-instances  are
recognized, the green-instances of  these  past-blue-instances at different lead times  can be
assigned  as  the future  behaviour of  the  blue-instance of  the to-be-nowcasted storms.  The
similarity  is  assessed based  on  the  Euclidean  Distance  of  the  most  important  predictors.
Nevertheless,  to  recognize  the  most  important  predictors,  a  sensitivity  analysis  has  to  be
performed. Thus, specific target variables are needed in order to recognize the most important
predictors and to conclude if storms with similar predictors do actually behave the same (have
similar response or target variable values).

Since the storms are regarded as objects with specific features, similarity at different lead
times is determined by the area, intensity and velocity of the storm instances. Thus, for each
storm-instance,  the area (A+LT),  mean intensity (I+LT)  and velocity in X (Vx+LT)  and Y (Vy+LT)
direction,  for  its’  future  states  at  +5min  to  +180min  (every  5  min)  lead  times,  are  saved
together with the past and present features of that storm-instance. In case the storm is dying
before reaching up the 180min, then all the target variables are set to zero. The features and
the target variables are saved for each of the storms recognized by HyRaTrac at each event.
Before training and validating of the k-NN method, an importance analysis is performed for
each of the target variables in order to recognize the most important predictors(see Section
6.4.1).
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Figure 6.3: The features describing the past (grey) and present (blue) instances of the storm 
used as predictors to nowcast the future instance of the storm (green) at a specific lead time 
(T+LT) described by the 4 target variables (in red). The present instance (blue) indicates the state 
of the storm when the nowcast is issued.



Table 6.1: List of all the past and present features of the storm object that are investigated for 
their importance as predictors.

Features Symbol 

P
re

se
n

t 
Fe

at
u

re
s

area of the storm A

average spatial intensity of the storm Iave

maximum spatial intensity Imax

 standard deviation of the spatial intensities Isd

global velocity Vg

x component of the local velocity Vx

y component of the local velocity Vy

ratio of the major and minor axis of the ellipsoid fitted at the
instance of the storm

J

orientation angle of the major axis of the ellipsoid fitted at the
instance of the storm

φ

P
as

t 
Fe

at
u

re
s

change in area over the last two instances of the storm ΔA10 = A-1-A0

change in average intensity over the last two instances ΔIave10 = Iave-1-Iave0

change in maximum intensity over the last two instances ΔImax10 = Imax-1-Imax0

change in the standard deviation of intensity over the last two
instances 

ΔIsd10 = Isd-1-Isd0

change in the global velocity over the last two instances ΔVg10 = Vg-1-Vg0

change in the horizontal local velocity over the last two
instances

ΔVx10 = Vx-1-Vx0

change in the vertical local velocity over the last two instances ΔVy10 = Vy-1-Vy0

change in the ellipsoid axis ration over the last two instances ΔJ10 = J-1-Jg0

change in the ellipsoid major axis orientation over the last two
instances

Δφ10 = φ-1-φ0

average change in area over last 15 and 30 min ΔA15, ΔA30 

average change in average intensity over last 15, 30 min ΔIave15, ΔIave30 

average change in maximum intensity over last 15, 30 min ΔImax15, ΔImax30 

average change in standard deviation of intensity over last 15
and 30 min

ΔIsd15, ΔIsd30

average change in global velocity over last 15 and 30 min ΔVg15, ΔVg30

average change in horizontal local velocity over last 15 and 30
min

ΔVx15, ΔVx30

average change in vertical local velocity over last 15 and 30
min

ΔVy15, ΔVy30

average change in ellipsoid axis ratio over last 15 and 30 min ΔJ15, ΔJg30 

average change in ellipsoid major axis orientation ratio over
last 15 and 30 min

Δφ15, Δφ30m
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6.2.2 Step 2 – Cross-Correlation Optimization

Step 1 aims at finding out which instances of the past storms are most similar to the blue-
instance of the to-be-nowcasted storm. Once these past blue-instances have been recognized,
it is important to select only the ones that display similar spatial rainfall variability with the
current to-be-nowcasted storm. Since these instances are most probably at different regions of
the radar image, a transposition (spatial shifting) of the past blue-instances is done in order to
maximize the similarity between the past and the to-be-nowcasted blue-instances. This is done
by the cross-correlation optimization. Given the coordinates in x and y, the past blue-instance
is  shifted  with  different  lags  in  both  x  and  y  direction  in  order  to  maximize  the  cross-
correlation  between  the  to-be-nowcasted  and  selected  past  storm  blue-instances.  The
optimization includes  only  the  non-zero  values  of  both  storms  and  is  expressed  by  the
following equation.  Once the maximum cross-correlation is found, the  x and y lags together
with the maximum cross-correlation value are saved. The 100 storms selected from Step 1, are
then ranked according to the highest displayed cross-correlation. 

x i , y i∈D→max ∫
x i , y i

D

ρ For (x+xi )( y+y i) ,Obs
=

∑
i=1

n

(For (x+x i)( y+ y i)−For( x+x i)( y+ y i))(Obsi−Obs)

√∑
i=1

n

(For(x+x i)( y+ y i)−For(x+x i)( y+ y i))
2√∑

i=1

n

(Obsi−Obs)
2

6.2.3 Step 3 – Response Optimization

The future states of the selected past blue-instances, are then assigned as response (green-
instances) for the blue-instance of the to-be-nowcasted storm. Nevertheless, it may happen,
that even though at a time step, the two storms display a high spatial cross-correlation, the
past green-instances are not highly correlated to the blue one of the to-be-nowcasted storm.
Since it has been shown that storms are persistent for 5 min (as Eulerian Persistence works
well  for  5  min  lead  times),  a  further  ranking  of  the  storms  is  done  based  on  the  cross-
correlation between the past green-instances at time +5min with the blue-instance of the to-
be-nowcasted storms. 

max∫
k

100

ρ For k ,+5min ,Obs
=

∑
i=1

n

(Fork ,+5min−Fork ,+5min)(Obsi−Obs)

√∑
i=1

n

(For k ,+5min−For k ,+5min)
2√∑

i=1

n

(Obsi−Obs)
2
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(6.11)

where:
xi,yi             –  the x and y lags
Obs            –  the observed field of the blue instance of the to-be-nowcasted storm
For(x+xi,y+yi)      –  the blue instance field from the kth neighbour shifted with xi,yi lag 
For(x+xi,y+yi)    –  mean of the the blue instance field (from the kth neighbour) shifted with xi,yi lag 
Obs                –  mean of the observed field of the blue instance of the to-be-nowcasted storm

where:
Obs            –  the observed field of the blue instance of the to-be-nowcasted storm
For(k,+5min)       –  the green-instance field at tLT=+5min from the kth neighbour
For(k,+5min)     –  the green-instance field at tLT=+5min from the kth neighbour 
Obs                –  mean of the observed field of the blue instance of the to-be-nowcasted storm

(6.12)



6.2.4 Step 4 – Deterministic and Probabilistic Nowcast

For the ensemble nowcast mode, the probability of occurrence for each of the neighbours
is  determined based  on  the  rank probability  as  determined in  Step  3.  A  distance-based
probability was also tested, nevertheless the results from the rank probability were more
stable  and  could  converge  to a  specific  number  of  k-neighbours  when  used  for  the
deterministic approach. Only neighbours that display a distance higher than 0.37 (as dictated
by the predictability limit in the literature) are selected. In case this condition is not satisfied,
then  the  number  of  ensembles  is  restricted  to  10  for  each  blue-instance  of  the  to-be-
nowcasted storms. Since two or more storms may be observed at the same time step when
issuing a nowcast, a combination of all of the ensembles at the storm scale from k-NN is
build  up.  Depending  on  their  probability  of  occurrence  described  in  Equation  6.13,  the
maximum number of ensembles is fixed to 150. 

Pr i=
(1 /k i)

∑
k i=1

k

(1 /k i)

For the deterministic approach, an averaging of the most-similar ensemble storms is done
for  each lead  time according to  the  rank probability  as  expressed  in  Equation  6.14.  The
response here is referred to the spatial distribution of the rainfall intensities at 1 km 2 and 5
min time steps. For time steps when in the radar image more than one storm needs to be
nowcasted, responses as per Equation  6.14 are derived for each storm, and then later on
summed together. 

Inew (x , y )=∑
i=1

k

Pr i I i(x , y)

Lastly,  since the performance of  the k-NN is  highly dependent on the number of  k –
neighbours used for the averaging, a prior training is done in order to select the right k-
neighbours that yields the best performance (see Section 6.4.2). 
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where:
Inew  – is the target intensity at a specific lead time at location x and y of the radar image
k      – is the number of similar neighbours selected
Ii     – is the intensity at location x and y from the ith neighbour
Pri   – is the weight for the ith neighbour

(6.14)

(6.13)where: 
k     – is the number of similar neighbours selected
ki    – is the descending rank from the ith neighbour
Pri   – is the rank probability of the ith neighbour



6.3 Model Training and Optimization 

From the period 2002- 2012 (over the 93 events) a total of 12428 storms were identified with
different  durations  and  properties  as  describes  in  Figure  3.5 from  Section  3.4.1.  For  the
selection of the best k-number and as well of the most important predictors, a training of the
k-NN model is performed on a split sampling validation. For this purpose, the whole dataset
was  separated  randomly  between  the  “past”  dataset  and  the  “new”  one  according  to  the
respective 70 %and 30% ratio. 

The past dataset is used for the predictors analysis, which results are discussed in Section
6.4.1,  and for  the training of  the k-neighbours  for  the deterministic  nowcast  as  shown in
Section 6.4.2. The training of the k-neighbours is done with the objective to find the response
that is spatially most correlated with the future observed behaviours at different lead times.
The k-number with the best correlation performance for most of the lead times is selected as a
representative for the deterministic approach. 

Once the k and the most important predictors are analysed, for each of the new storms, a
deterministic and ensemble nowcast is issued at different stages of the storms’ life. This is
done in order to comprehend better when the k-NN behaves good and how long should the
information from storms be saved in order to have a good nowcast. Since the storms are of
different variations, five representative stages of storm life are considered here: the first, the
second, the third, the 12th (1-hour after initialization) and the 36th (3 hours after initialization)
time step of the storm life. The performance is assessed only on the storm scale (no point scale
considered) and only spatial criteria is computed. The two criteria used here for the validation
of the k-NN approach are:

a) the spatial cross-correlation:

ρ (k )LT=
∑
i=1

n

(For (k )i−For (k ))(Obsi−Obs)

√∑
i=1

n

(For (k)i−For (k ))
2 √∑

i=1

n

(Obsi−Obs)
2
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where:
n           –  number of grid cells with intensity > 0 mm/5min
Obsi      –  the respective observed value at the ith grid cell
For(k)i    –  the respective nowcast value of the k response at the ith grid cell
For        –  mean of the nowcasted values at a specific lead time (LT)
Obs       –  mean of the observed values at a specific lead time (LT)

(6.15)



b) the spatial root mean square error: 

RMSE(k )LT [mm /5min ]=√∑i=1

n

(For (k )i−Obsi)
2

n

As  the  nowcast  is  evaluated  at  the  storm scale,  it  is  possible  to  calculate  the  errors
associated with the death or growth/decay of the storms. These errors give a better insight on
how important these non-linear processes are in the nowcast model, and what is the gained
improvement towards the Lagrangian persistence. Figure 6.4 illustrates for an observed storm
(top row) how the death and growth/decay are considered for the error calculation. For a
given storm, the birth is referred to as the time step when the storm is first recognized by
radar (in  Figure 6.4 is the time t-5min). The storm then changes itself  continuously until
t+15min – this is referred to as the growth/decay of the storm. At t+20min the storm stops
existing – hence the death of the storm. 

In this example, a 2-NN nowcast is issued at time t=0 (respectively middle and lower row).
The RMSE is then calculated separately for two time steps groups: a) the time steps between
the t+5min and the death of the storm (t+15min) – representing the  growth/decay error
and b) the time steps between t+20min (after observed storm death) and t+25min (death of
the nowcasted storm) – representing the death error. In this case, the death error displayed
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(6.16)

where:
n          –  number of grid cells
Obs          –  the observed intensity at the ith grid cell
For(k)   –  the nowcasted intensity from the k response at the ith grid cell

Figure 6.4: The visualization of the growth/decay and death errors at the storm scale for the 
k-NN nowcast.



by the 1st neighbour is zero, while for the 2nd one is higher than zero. Since a storm has to be
recognized in order to be nowcasted, the birth process is not included in the k-NN nowcast
and hence the birth errors cannot be calculated. 

Lastly, as all the storms from all the events are pooled together and split-sampled for the
training and the validation of the k-NN, the consideration of the prevailing mechanism is not
possible any-more. Moreover, even though an event has been classified as convective, it may
happen that stratiform mechanism are present. Thus, the results are pooled together for all
types of storms. For some visualization examples of the k-NN application please refer to the
nowcast plots at Appendix G – from Figure G.6 to Figure G.10.
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6.4 Results 

6.4.1 Predictor Selection

In order to have reliable results for the k-NN application, the most important predictors
have  to  be  identified.  First  the  Pearson  correlations  are  calculated  between each of  the
features  selected  in  Table  6.1 and  the  target  variables.  To  simplify  the  selection,  the
correlations computed only for the target variables at lead times +5min, +1h and +3h are
shown in Figure 6.5. As indicated by the colour shades, the area target variable seems to be
most affected by the area of the instances, followed by intensity and the advection velocities.
The x and y component of the local velocities seem to be mainly correlated only to their
history.  For the mean intensity,  the three features of the intensity (mean, maximum and
standard deviation) seem highly correlated with the target variable (at least for lead times up
to 1 hour). However, one has to keep in mind that some of the features are highly correlated.
For instance, as seen in the correlation plot of the features with one another (in Appendix F –
Figure F.1), the features describing the present intensity are highly correlated to one another,
consequently  the  intensity  target  will  be  highly  correlated  to  all  features  describing  the
intensity.

Additionally, to the correlation between all the features, a multi-regression (based on all
the mentioned features) was fitted to each of the target variables. Since the regression was
satisfactory,  with  r2 on  average  higher  than  0.85,  a  linear  relationship  may  be  assumed
between the predictors and the target variables. Therefore, the relative importance weights
were computed for each of the target variables and are illustrated in Figure 6.6. The weights
from the RIA analysis match somehow with the correlation values, however some features
are enhanced. For instance, the change in the ellipse axis ratio is displaying more importance
than in the Figure 6.5. The area target variable is not only dependent on the observed area,
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Figure 6.5: The absolute Pearson Correlation between each of the features (as named in Table 
6.1) with the four target values (in this order Area, Intensity, horizontal and vertical velocity) at 
three different lead times +5min, +1h and +3h.
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but as well the mean intensity. Note that here, only mean intensity is important and not the
other intensity features.  Through the orthogonal new predictors,  the RIA has removed the
effect  of  the  co-linearity  which  was  present  in  the  correlation  weights.  Moreover,  in  the
intensity target variable, it seems like the maximum and the standard deviation intensity are
important for the +5min intensity but not for the longer lead times; there the mean intensity is
more important. It is surprising to see, that the velocity target variables are dependent on the
axis ration changes and on the average intensity. This was a relationship not displayed by the
correlation. 

Based on the results of both analyses, the Pearson Correlation and the RIA weights, 12
features were selected as important predictors for the nowcast. These predictors are shown in
bold in Table 6.1 and are respectively: A, Iave, Isd, Vg, Vx, Vy, Iave10, Isd10, Vx10, Vy10, J10 and
A30. For the given selected predictors, the step wise PIC was computed for each of the target
variables in order to get an overview about the weights to be used in the Euclidean Distance.
As already mentioned, an important predictor has to be recognized prior to the step wise PIC
procedure.  Thus the ones with the highest values from RIA weights for each of the target
variables were used, respectively for Area the A, for the Intensity the Iave, for Velocity in x,y
direction the Jr10. Nevertheless, the step wise PIC didn’t yield satisfactory results. For the Area
and Intensity, where the first predictors showed a strong correlation (see Appendix F- Figure
F.1), the analysis yield only these two predictors as the most important ones with a weight of
80%. For the Vx and Vy, it was unable to find any meaningful predictors. Even though the PIC is
thought to recognize important predictors especially for the k-NN approach, it appears that it
is not able to work well for very large dataset with several predictors. This either shows a
shortcoming of  the method or that  the current  predictors are either equally  important  or
equally non-important. 
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Figure 6.6: The RIA weights between each of the features (as named in Table 6.1) with the 
four target values (in this order Area, Intensity, horizontal and vertical velocity) at three 
different lead times +5min, +1h and +3h.

A

I

V
x

Vy

0 0.25 0.5 0.75 1 
ρ [-]



In the end, the 12 selected predictors, normalized according to the observed range, were
chosen  for  the  Euclidean  Distance  computation  without  any  weights  applied,  to  check
whether or not a k-NN nowcast based on these predictors is able to provide reliable results in
terms of similar storms. The Euclidean Distance, as shown per Equation 6.1, is first used to
calculate the similarity between the to-be-nowcasted storm and the past storms and to rank
all the storms in an ascending order. Only the 100 most similar storms are being selected for
the next step of the k-NN to optimize the cross-correlation. 

6.4.2 Training k-Neighbours for Deterministic Nowcast

The  cross-correlation  results  of  the  deterministic  nowcast  with  different  k-neighbours
used for different lead times are shown in Figure 6.7. Neighbours up to 50 were investigated
to find out which of the k-neighbour yields the  best spatial cross-correlation results when
issuing the nowcast at different life stages of the storm cell. The first thing noticeable, is that
the  cross-correlations  displayed  by  nowcasts  issued  at  the  first-time  step  of  the  storm
evolution are quite low when compared to the other time steps. Apparently, the uncertainty
at the first time steps is quite high and the k-NN approach is not able to select the closest
neighbours. This can be attributed to the lack of the past persistence predictors. As many
storm instances have similar present features, a defined number of 100 neighbours is not
enough to find the most cross-correlated storm instance in the past.

This, however, is changing when the nowcast is issued at  later time steps of the storm
evolution. For example, for nowcast issued at the third time step, the spatial cross-correlation
exhibited by the k-NN neighbours with various neighbour numbers, reaches values up to
0.90. The highest cross-correlation values are reached between the neighbours 2 to 10. As
expected  the  first  neighbour  is  not  the  best  one,  reinforcing  thus  the  theory,  that  an
averaging from k-neighbours should be done, instead of taking the first neighbour. Moreover,
it seems that for higher lead times, the responses of neighbour storms are more similar than
for the short lead times. This suggest that similar storms might exhibit similar patterns on
the long term rather than the short term. 

Similar results are also visible for the nowcast issued at the 1st and 3rd hour of the storm
life. In contrast to the nowcast issued at the 3rd time step, here the highest cross-correlation
values are clearly centred between 2 to 10 neighbours, more  precisely 2 and 3 neighbours
yielded the best results. Here as well the same spatial cross-correlation pattern is observed,
the longer lead times display higher correlation than the short lead times. As the results
exhibited here are quite good and they represent mainly storms that have longer duration
(thus  storm  of  the  meso-scale  and  stratiform  type),  one  can  conclude  that  the  area
persistence over the last 30 minutes together with the persistence from the last time step
predictors are enough to recognize similar patterns between storms. 

Overall,  for  nowcasts issued at higher stages of  storms’ life (higher than 1)  the k-NN
indicates  promising  results  in  selecting the  closest  neighbours.  Moreover,  the probability
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selected for the averaging of the storms seems also adequate as the cross-correlation values
reached are quite high. Other probability-weights based on the distance were investigated,
however  they  didn’t  exhibit  so  high  cross-correlation  values.  A  representative  number  of
neighbours as 3 was selected to average the results for the deterministic k-NN approach. It
seems that for all the life stages of the storm, three neighbours will yield reasonable and good
results. Nevertheless, for the 1st time step of the storm evolution, the approach of k-NN might
not work due to the high uncertainties in neighbour selection.
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Figure 6.7: The performance (cross-correlation) of the deterministic k-NN for different 
neighbours (k) considered, at different lead times and at different life stages of the storm when
the nowcast is issued.
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6.4.3 Performance of k3-NN Deterministic Nowcast

The spatial performance criteria (both cross-correlation and average RMSE) of the k3-NN
nowcast issued at different time steps of the storm life  is illustrated in  Figure 6.8. As it is
expected from the training of the k-NN, the cross-correlation displayed when the nowcast is
issued  at  the  first-time  step  is  quite  low.  Within  the  first  10  min  the  nowcasts  loses  its
predictability skill. This is not the case for the nowcasts issued at the other time steps, where
the predictability exhibited is above the limit and doesn’t change much with the lead times.
This proves once again that the k3-NN is able to find the right neighbours and the respective
behaviours can model well the spatial distribution of the new storms’ rainfall.

Also when consulted with spatial RMSE performance, the first time step nowcast has the
highest error, followed up by the 3rd and 1st hour error, and in the end by the 2nd and 3rd time
step where the error is the lowest. While at the first time step the RMSE is getting higher for
lead times longer than 1 hour, for the 1st and 3rd hour of nowcast the errors are getting smaller.
This suggest that at short lead time, the k3-NN is not able to simulate well the growth/decay
or the death of the storms. Since many storms are available and grouped together, no matter
their type, the response from different types of storms may be averaged together resulting in a
high error. Nevertheless, when the nowcast is issued at the high lead times, which means that
most of past storm will be decaying and dying, the RMSE is getting smaller.

To get a better view of how the k3-NN can simulate the processes of grow/decay and death,
the RMSE of the k-NN and Lagrangian persistence during the storm life (decay errors) and
after the storm death (death errors) are illustrated in Figure 6.9. For the 1st time step nowcast,
the decay errors are bigger than the death errors, suggesting that at the beginning of the
storm life the k3-NN cannot distinguish well similar storms and storms of the same type that
can consequently have similar life time. This may happen due to the matching procedure in
HyRaTrac, many storms are left  unmatched and thus exhibit only one time steps. This can
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Figure 6.8: The median spatial performance criteria of the k=3 NN nowcast for different lead 
times and for nowcast issued at different life time of the storm cells. TS is short for time step.



affect the k3-NN in two ways: a) since the majority of the storms are dying within the first
time step, it causes the prediction to stop the life of the storm, thus increasing the decay
errors, b) since the data set is so large and the predictors describe only the instant features of
the storm, the k3-NN is unable to detect the most similar storms. 

For the nowcast issued at the other beginning time steps of the storm (up to the first
hour), the k3-NN performs well enough as both decay and death errors remain at the same
range for  all  lead  times.  This  suggests  that  at  these  time steps,  the  k3-NN has  enough
information to make a suitable identification of the storms and there are enough storms in
the past  to enable  a  good prediction of  the  future  instances  of  the  storm at  hand.  The
nowcast at longer time steps (for example the nowcast at the 3 rd hour of storm life) suffers
mainly from the overestimation of the death time – the storms are simulated to live longer
than they actually do. This can as well be attributed to the number of storms available for the
k-NN which, since the long events have many time steps from where the neighbours can be
sampled, it causes an overestimation of the death time. 
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Figure 6.9: The spatial RMSE observed after and before storm death at both k=3 NN and 
HyRaTrac nowcasts for nowcasts issued at different stages of the storm cell life. TS is short for 
time step (5 min).



6.4.4 Ensemble Nowcast Performance

Apart of the deterministic nowcast, ensemble nowcast were issued at each of the time steps
and each lead time. Since the number of ensembles issued was not a fixed number but rather
controlled by the condition that each of the ensemble should exhibit a cross-correlation higher
than 0.37 with the present instance of the storm at hand.  Figure 6.10 illustrates at left - the
number of ensemble issued at different time steps where the cross-correlation between the
nowcast fields at different lead times and the observed field is higher than the predictability
limit. As seen in the case of the k3-NN nowcast, the ensembles issued at the first-time step are
useless, as almost none of them have a cross-correlation higher than 0.37. Regarding the other
times steps, there is an increase of useful ensembles (that exhibit cross-correlation higher than
0.37) with the lead times. Especially for the nowcast issued at the 3 rd time step of the storm
life, the increase is rather steep, reaching the highest number of useful ensemble members. 

To understand how many of the ensembles add value to the nowcast,  Figure 6.10 middle
indicates the percent of the ensemble members that have on average a higher predictability
skill  than the  Lagrangian  persistence.  As  expected  no ensemble  members  are  better  than
HyRaTrac  for  nowcasts  issued  at  the  first-time  step  of  the  storm life.  Nevertheless,  with
increasing time step and lead time the percent of members which are better than HyRaTrac is
increasing. The peak is mainly for the early life stage of the cells and for the long lead time.
There almost 100% of the issued ensembles are better than the Lagrangian persistence. This is
also supported by the spatial RMSE performance. On general the fields nowcasted by k-NN,
have smaller RMSE than the ones issued by HyRaTrac. Especially for lead times longer than 30
min, for the nowcasts issued from the 2nd time step of the storm life, all of the members issued
have smaller errors than the nowcast issued by HyRaTrac. 

Overall both the deterministic and the ensemble approach of the k-NN method increase the
spatial predictability of the storms for all of the lead times. The deterministic approach can
capture  the  death  and  growth/decay  rates  on  average  50%  better  than  the  Lagrangian
persistence. For this reason, the predictability limit is extended up to three hours for all of the
events. Ensemble nowcasts have also been shown to improve the predictability limit for most
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Figure 6.10: Number of ensembles that exhibit a cross-correlation higher than the predictability
limit (left), percent of ensembles that exhibit higher spatial cross-correlation and RMSE than the 
HyRaTrac for different lead times and for nowcasts issued at different time step of the storm life. 
TS is short for time step (5 min).



of lead times and several members are available to provide a wide range of rainfall nowcasts.
Nevertheless,  even though the k-NN approach improves considerably the nowcast at  the
storm  scale,  it  is  yet  to  be  seen  (Chapter  8)  how  well  can  the  k-NN  members  and
deterministic approach capture the temporal predictability and performance of the rainfall at
the local scale.

6.4.5 Improvement of Rainfall Predictability

Figure 6.11 illustrates the spatial  performance of  the k3-NN when compared with the
Lagrangian persistence of the HyRaTrac and the added value that it brings to the nowcast. It
is clear that the k3-NN improves considerably the performance of the nowcast particularly at
the longer lead times and for storm time steps longer than 10 min. As it is visible from the
graph, the nowcast of the first-time step of storm life, is as bad as or even worse nowcasted
than HyRaTrac. Figure 6.12 illustrates the improvement in the death and decay/growth rate
when using  the  k3-NN approach instead  of  the  Lagrangian  persistence.  The  k3-NN can
capture the processes better than the Lagrangian persistence, particularly the death at the
short at medium range lead times. Nevertheless, here as well there is no added value to the
nowcast for the nowcast issued at the first time step of the storm life. Thus, it is not advised
to issue k3-NN nowcasts at the first time step of the storm. 
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Figure 6.11: The improvement of the spatial cross-correlation and RMSE displayed by the k3-
NN deterministic nowcast when compared with the Lagrangian persistence implemented in 
HyRaTrac. The results are shown for nowcast issued at different time steps of the storms life. 
The green area indicates that the k3-NN performs better than the persistence, and the red area 
indicates the vice-versa. TS is short for time step (5 min).
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Figure 6.12: The improvement of the spatial death and growth/decay RMSE displayed by the 
k3-NN deterministic nowcast when compared with the Lagrangian persistence implemented in 
HyRaTrac. The results are shown for nowcast issued at different time steps of the storms life. 
The green area indicates that the k3-NN performs better than the persistence, and the red area 
indicates the vice-versa. TS is short for time step (5 min).
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7. CNN FIELD ORIENTED NOWCAST

As already seen in Chapter 4 and 5, the current field-motion-based nowcast employs only
the  Lagrangian  persistence,  which  underestimates  the  intermittent  nature  of  the  rainfall
process. Even though such method, depending on the storm type, can yield reasonable results
up to 1-hour lead time, after this  nowcast horizon,  the nowcasts are useless. This is mainly
related  to  the  inability  of  the  Lagrangian  persistence  to  model  several  processes  like  the
initialization  of  the  rainfall,  the  end  of  rainfall,  the  rainfall  continuous  motion  at  the
boundaries of the radar, and lastly the growth/decay rate of the rainfall. At the point scale,
(temporal performance) one may expect the errors to be smaller than the area scale (spatial
performance) due to movement of storms. Nevertheless, results from Chapter 4 and 5 indicate
that the spatial performance is better than the temporal one, suggesting first that the point
scale changes are bigger than the area scale, and second that improvements have to be done to
capture the intermittent nature of the rainfall process at the point scale. One way to learn how
the rainfall changes its’ structure can be by exploring the past dataset and investigate complex
functions that can model such behaviour. Convolution Neural Network (CNN) are quite good
in learning complex relationships between variables and are built to take advantage of the 2D
structure of the images, thus these questions rise: Can the CNN learn how the rainfall changes
itself  in  space  and  time?  If  yes,  can  it  provide  more  information  than  the  Lagrangian
persistence  in  terms  of  capturing  better  the  initialization,  growth/decay,  death  and  the
continuation of the rainfall at the radar boundaries? If yes, until what limit can the CNN bring
an  additional  value  to  the  nowcast?  Lastly,  does  the  CNN  improve  only  the  spatial
performance or the temporal one too? 

These are the main questions that are treated in this chapter. Here, a CNN is applied at the
merged radar data and trained separately for each lead time in order to assess the potential of
deep learning algorithms  for rainfall  nowcast. Section  7.1 gives a brief introduction to the
basics of neural network theory, particularly focusing on the structure of CNN, followed up by
the explanation  on the model setting and implementation in this study in Section  7.2. The
results  of  such  network  are  given  in  Section  7.3.  where  first  the  training  and  validating
performance are illustrated (Section 7.3.1 and 7.3.2), followed up by the predictability exhibited
by storms and the improvement achieved towards the Lagrangian persistence (Section 7.3.3).
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7.1 CNN Basic Theory

7.1.1 Basics of Neural Network Theory

As indicated in Section  2.3.1 of the Literature Review (Figure 2.12), an Artificial Neural
Network (ANN) is composed of one input layer, one or several hidden layers and the output
layer. Typically, the transformation from one layer to the other is done by transforming the
input of each layer as in the following Equation 7.1:

Output=∫
act

{b+∑
i=1

N

wi⋅Input i}

The activation functions are quite important in the theory of neural networks, as they add
the non-linearity into the model, and it’s due to them that the ANNs are particularly good at
modelling complex relationships. The typical used activation functions in ANN are illustrated
in  Figure  7.1.  At  the  moment  the  Leaky  Rectified  Linear  Unit  (Leaky  ReLU)  and  the
Exponential Linear Unit (ELU) are the most desired ones, as they can deal with negative
inputs (unlike the ReLU), are computationally fast, and have no problem with saturation12

when training the network. It is for this reason that these two activation functions are used
in the CNN employed for the radar based nowcast.

The training (also referred to as learning) of the specific weights and b – coefficient can be
done  by  supervised  (the  output  is  available)  or  unsupervised  (output  is  not  available)
learning. The unsupervised learning needs some prior assumptions in order to train the data,
and it is commonly used in pattern detection or stereo matching for depth estimation. The
supervised learning has the advantage of  being properly trained and validated, since the
output is known. For this study, as the nowcast will be issued in hind-cast mode (the events
are already observed), the supervised learning will be used.

12 The saturation is usually caused at the tails of the activation function, as at values very close to the tails 
(for example in the sigmoid function) the gradient becomes very close to zero, delaying or stopping the 
learning process of the ANN.
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(7.1)
where:         N  – number of inputs
                    wi – weight for each input
                    b   – a bias added to the input 
                    ∫act – the activation function

Figure 7.1: Typically used activation functions in ANN to include non-linear Typically used activation functions in ANN to include non-linear Typically used activation functions in ANN to include non-linearity in the model, 
in x-axis is the normalized value of the input, and in y-axis the corresponding activation 
function value. Retrieved from [Gerchow, 2018 ].



In supervised learning, one can try several  weights and choose the set which gives the
lowest difference between the modelled and the observed output that is commonly defined by
a loss function (also here referred as performance criteria). Typically, the weights are learned
by a backward propagation, which focuses in minimizing the gradient of the loss function with
respect to the output. Normally a gradient descent method13 is employed for this purpose. The
gradients from single-layer networks can be computed easily, nevertheless when several layers
are present (as in deep network applications) the automatic differentiation procedure is much
faster.  Due  to  its  feasibility  and  fast  computation  rates,  the  so  called  Reverse  Automatic
Differentiation is mainly used in deep neural networks (the reader is directed to Zhang et al.,
(2020) for more information about the method).

Moreover,  when looking for  an optimum with the gradient  descent  method,  the  whole
input-output  training  dataset  is  used,  which  again  causes  long  training  times.  Therefore,
Bottou (2010) proposed a stochastic approach rather than a deterministic one, where several
small randomly picked training samples (xi,yi) are used to estimate the gradients (J) and hence
the best weights (θ),  as shown by Equation  7.2.  The learning rate (α) is  set to a constant
number, which depending on the gradient rate (the converge  Δθ)  is halved. The closer the
weight set is to the optimum, the smaller will the α be.

θ=θ−α Δθ J (θ , x
i , y i)

7.1.2 The Convolutional Operation
The  convolution  is  a  mathematical  operator  between  two  matrices  (input  data  and

filter/kernel) that produces another matrix whose shape and values are determined by the
modifications that the kernel causes on the input data. The following Figure 7.2 illustrates an
example of such operation. The input is a 2D matrix of shape 3x3 and the filter is a 2D matrix
of shape 2x2.  In the case (a), the filter moves  over the input by one cell at a time (first a
horizontal sliding, then one vertical), which commonly is referred to as a stride14 of 1. For each
location of the filter over the input matrix, the matrices are multiplied and summed to produce
the entry value for the output matrix (as indicated in the Figure 7.2-a). For this case the output
matrix is reduced in dimensions due to the size of the filter. In case one would like to avoid
such reduction in dimensions, then padding is introduced. The padding as in Figure 7.2-b, adds
zero rows and columns at the input matrix borders (here shown in grey), in order to have
similar size or bigger size (as in the indicated case) output matrices.  Figure 7.2-c illustrates
another example with padding, but in this case with a stride of 2. Here the output matrix is
always downsized due to the presence of a stride higher than 1.

13 Gradient descent finds the best value of a loss function (that is either a maximum or a minimum) by 
following the change in its gradient with the purpose to find the location where the gradient is zero (hence 
the location for the maxima or minima).

14 A stride is the number of pixels that the kernel is being shifted after each iteration over the input matrix. 
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(7.2)

where:         xi,yi  – the pair from the training data set
                    θ      – the model weights set
                    J(θ)  – the respective loss function
                    α      – the learning rate
                    Δ(θ)  - the gradient rate



7.1.3 Convolutional Neural Networks

Convolutional  Neural  Networks  can  take advantage of  the  convolutional  operators  to
learn and predict  relationship from 2D images.  Related to the Equation  7.1,  in the CNN
application, the input layer can be represented by one (or multiple) 2D matrix, the sum unit
of Equation 7.1 can be done by a filter with a fixed dimension (k), and then the output can be
obtained by using an activation function to transform the convoluted output. The result of
such operation builds up a so-called “Feature Map” as indicated in red in  Figure 7.3. When
more than on image (matrix) is used as an input, the filter convolves to each of them and the
outputs are cross-correlated together. The cross-correlation15 as an operator here, means that
the corresponding cells from the convoluted outputs are summed together. By applying the
filter at some input images and adding them up, the CNN keeps the locality of the features,
such that features in a local  region are independent and not affected by the features at
greater distances.

15 The cross-correlation as an operator by the CNN should not be confused with the cross-correlation 
performance criteria when validating the nowcast results.
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Figure 7.2: The convolution of a filter (green) over an input 2D matrix (blue) resulting in a 2D
output matrix (red). The convolution is done in (a) with no padding and stride 1, in (b) with 
padding and stride 1, and in (c) with padding and stride 2. 

1⋅2+2⋅2+4⋅1+5⋅1 = 15

0⋅2+0⋅2+0⋅1+1⋅1 = 1

0⋅2+0⋅2+2⋅1+3⋅1 = 5
0⋅2+0⋅2+0⋅1+1⋅1 = 1

Figure 7.3: Convolution  kxk filters c times over an input image resulting in a 3D matrix. 
Retrieved from [Gerchow, 2018 ].



The number of input matrices in CNN is usually denoted by the term channels and it is
considered differently than the x and y dimensions (that is why CNN is referred to as a 2D
and not 3D matrix). The channels represent instances of a specific variable continuous in x and
y. The features dictated by the channels (for instance in radar images the feature is the rain
intensity)  display  behaviours  that  are  independent  on  their  location  (x  and  y).  This  is
particularly  important  when  training  the  CNN,  as  responses  from  same  objects  that  are
situated  in  different  regions  of  the  input  matrix  should  be  the  same (also  referred  to  as
translation invariance).

When  multiple  channels  are  present,  it  may  be  desired  to  have  the  same  number  of
channels (or more) in the output product. This can be achieved by having multiple filters of the
same size (k) but different weights, and produce one feature map for each filter convolving at
the input data. The product of all output channels is indicated in Figure 7.3 as the blue volume.
The output size is dependent on the input resolution and channels, as well as on the number
and size of the filters applied. Having multiple output channels (more than the input channels)
is essential when employing a deep CNN because it enables a trade off between the spatial
resolution and more channel depth. Depending on the number of hidden layers at the CNN, it
can  be  computationally  very  expensive  to  train  the  weights  of  full-sized  images.  Thus,
decreasing the resolution and increasing the number of channels allows for fast computations
and meaningful  feature analysis.  That is  why in CNN architectures,  it  is  quite popular to
decrease the resolution and increase the channel  size with deeper layers  as illustrated on
Figure 7.4. This shown example of the EV-Flownet, will be used as a reference to explain the
other main parts of the deep CNN, which served as a basis for the CNN employed in this
thesis. 

As the resolution decreases with the hidden layers, it becomes easier to learn global (large
scale) features, however in the case of nowcasting, it is desired to have the output at the same
resolution as in the input data. For this reason, the CNN can be built on two components: the
encoder  and the  decoder  as  illustrated  in  Figure  7.4.  Whilst  the  encoder  is  based  on  the
convolution  operation  and  reduces  the  image  size  to  a  certain  point  (referred  here  to
upscaling), the decoder does the opposite; it applies a kernel to the input image in order to
increase its resolution (referred here as down-scaling). This is done by transposed convolution
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Figure 7.4: The overall structure of a deep CNN (the EV-Flownet architecture) consist of input 
matrices decreasing in size [Zhu et al., 2018].



(also referred here as deconvolution16) with same kernel size as the convolution. To explain
shortly  a specific  convolution and the respective transposed convolution,  three cases  are
illustrated in  Figure 7.5. Given an input matrix of size i, kernel of size k, padding of size p
and stride size  s, the output with size  o is created by the convolution operation. To come
back at the same size of matrix input i, when the output size o is given (iT=0), the transposed
convolution is actually a convolution operation with kT=k, pT=k-p-1, sT=1, and in case the s>1,
s-1 empty rows and columns are added inside the iT matrix (as illustrated in case b and c of
Figure 7.5). Note that the kernel size and the locations of the border cells are kept the same
from the convolution (encoding) to the transposed one (decoding). However, although the
resolution is restored, the transposed convolution doesn’t restore the full structure of the
feature.

Since the decoder is restoring the resolution, but not the precise structure of the feature,
in CNN decoder,  additional solutions need to be integrated to keep the structure of  the
feature when increasing the resolution. This is done by introducing concatenation of layers
as illustrated in Figure 7.4. The convoluted planes in the encoder, for each specific layer, are
concatenated (added) to the planes that need to be decoded. Thus, when the next layer is
decoded,  the predicted information from the previous  layer  is  present  together  with the
feature structure from the encoder. The presence of the concatenation removes the influence
from the background loads and yields to better predictions [Wu and Wang, 2019]. 

16 The term deconvolution is not exactly the transposed convolution, however for simplicity for encoder-
decoder devices, we use here the pair of operations convolution-deconvolution.
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Convolution Transposed Convolution

 i = 4, k =3, s = 1, p=0, o =2                       i T=o+(o-1)(s-1)= 2, kT =3, s = 1, pT=k-p-1=2, oT=i=4

i = 5, k =3, s = 2, p=0, o =2                             i TT=o+(o-1)(s-1)= 3, kT =3, s = 1, pT=k-p-1=2, oT=i=5=i=5

i = 5, k =3, s = 2, p=1, o =3                             i T=o+(o-1)(s-1)= 5, kT =3, s = 1, pT=k-p-1=1, oT=i=5

Figure 7.5: For each convolution operator, there is a transposed operator which uses the same 
kernel to store the same resolution as in the convolution input. Here three cases are shown: -
left the convolution, and - right the respective transpose convolution. Blue indicates the input 
matrices, green the output matrix, grey the filter and the dashed blue lines the padding effect 
for each operation [Dumoulin and Visin, 2016].



As shown in Figure 7.4, the encoder and the decoder components are connected together by
residual blocks which are responsible for the deep learning. Since the image is shrank down by
the encoder, only the global features are passed to the deep layers to be learned. This not only
saves time and makes the learning more efficient, but is in accordance with the finding from
Grecu and Krajewski (2000), that the large scale patterns are easier to predict and model than
the small scale precipitation. Theoretically, the more layers are present in these blocks, the
better will the learning be. Nevertheless, in practice this is seldom the case, as the training
error starts to increase with deeper layers. To overcome this problem, He et al., (2015) proposed
to learn the residuals rather than the feature itself. Moreover, instead of fitting the results of
each layer to a specific objective, they found that the deep network efficiency and accuracy is
increasing considerably when introducing the so called “shortcut connections”, as indicated in
Figure 7.6. The residuals are optimized only at the shortcut connections (every 2 layer), and the
network is  trained as usually with the end-to-end Stochastic Gradient Method with back-
propagation. 

Typically, in supervised learning, the performance criteria (the loss) is calculated at the end
of the network comparing the final output with the reference observed image. However, in
CNN, since the image is down-scaled by the decoder at different scales, it would make sense
to have several locations within the decoder where the performance criteria is calculated. By
having several loss calculations as illustrated in Figure 7.4, we make sure that the decoder is
working properly at different scales.

Such implementation of CNN as indicates so far and illustrated in Figure 7.4 have shown
good learning skills and fast computation for image recognition and depth estimation. Since
the computations  are using the GPU instead of  the CPU,  they are quite fast  in  network
training. Due to the results displayed at these studies, the CNN is potentially an adequate tool
to nowcast rainfall based on the radar data mainly for the three following reasons:

i)  the  nowcast  is  first  done  on  the  global  scale  and  then  is  down-scaled  to  a  higher
resolution. This architecture is in accordance with the literature that the larger-scale of the
rainfall models the smaller-scale.
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Figure 7.6: The building block from the residual learning (from He et al., 2015); where the 
feature or identity is x, the Residual is F(x), one connection is skipped between the two layers. 
The residual is optimized based on the feature (x) and the x + F(x) at the second connector
[Gerchow, 2018 ]. 



ii)  the input data can have different channels and this enables the use of several past
observed  radar  images.  As  already  seen  by  Lagrangian  persistence  implemented  in  LK
method, the use of past radar images improves the nowcast. Moreover, due to the translation
invariance  and  the  presence  of  several  channels,  similar  features  will  behave  the  same
regardless on their location.

iii) lastly, the loss function is computed at different scales, assuring a good nowcast first at
the global scales and then to the point one.

7.2 CNN Training and Application

The CNN employed in this study follows the structure of the Flownet,  and the whole
model  components,  input  and output  data,  are  illustrated  in  Figure  7.8.  To  make  a  fair
comparison with the Lucas-Kanade method, 3-time steps of radar information (the last 15
minutes observed) are used as an input to the network. The encoder consists of 7 convolution
operations with different kernel sizes (7x7, 5x5 and 3x3), which reduce the resolution to 2x2
km2 and  512  channels.  The  decoder  on  the  other  side,  uses  as  well  7  deconvolution
operations, but the kernel is always kept the same as 3x3. The concatenation of the encoding
planes to the decoding ones is indicated by the black arrows. The loss function (performance
criteria)  as  per  Equation  7.3 is  computed  at  the  end  output  and  at  three  positions  (as
indicated by purple arrows) inside the decoder chain. 

RMSEtrain=
∑
i=1

N

√(For i−Obsi)2

N

As the  CNN works  better  on  normalized  data,  the  rainfall  field  is  normalized  with  a
maximum value of 80 mm/5min. Moreover, as the CNN cannot handle missing values nor
circular matrices (in the case of the radar data), the radar image is cropped to the range
illustrated in  Figure 7.9. Thus, the training and the validation of the model is done only in
this region. It has been observed that the training of the CNN is sensitive to the input data,
especially to the presence of the zero. If many time steps with a considerable amount of zero
are present, then the model will learn to produce mostly zeros. Thus, it was necessary to
include a global intensity threshold (as in the case of HyRaTrac and LK method). Here only
time steps where at least 25 radar grids have intensities higher than 20 dBz are used for the
training of the CNN.

Within  the  training  of  the  CNN  a  cross-validation  is  performed,  to  ensure  that  the
optimized data provide a decreasing loss also in another “unknown” dataset. For the training,
all the 93 events from 2000-2012 were considered, 80 random train-validation initializations
were performed one after the other. Here these samples are referred to as epochs. At each
epoch random input-output data were used to train and validate the weights, where 70% and
30% of the data correspond respectively for the training and validation dataset. The weights
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(7.3)
where:         Fori – the forecasted image
                    Obsi –the observed image
                    N – number of pixels



learned during an epoch, are then used and further optimized by the consequent one. To avoid
the over-fitting of the weights to the data sample, the learning rate (as describe in Equation
7.2)  is  reduced with each epoch,  until  it  becomes zero and the weights ca  not  be further
trained. The training was done for each of those lead times +5, +10, +15, +20, +25, +30, +60,
+120 and +180 minutes. As the CNN training is time consuming, only these lead times were
considered. For some visualization examples of the CNN application, see Appendix G – from
Figure G.1 to G.5.
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Figure 7.7: The area inside the radar range used for the training of the CNN nowcast. 
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Figure 7.8: The structure of the deep convolution neural network used in this study for the nowcast of the rainfall at different lead times. The input 
consists of three radar time steps (the last 15 min observed rainfall) and the output is a radar image at lead time t+LT. The red area indicates the 
encoding component of the CNN, while the blue the decoding part. 



7.3 Results 

7.3.1 Training Performance

The results of the computed training loss at the final output of the CNN for each epoch are
illustrated in Figure 7.9 and the respective validation losses are given in Figure 7.10. The first
thing noticeable is that the LT +05min nowcast is converging quite fast to a point below 0.1.
However, there is a drastic decrease of the +05minutes loss, indicating that even though the
values are converging, most probably the weights chosen will not be very representative. This
is slightly the case also for the LT+10,+15,+20 and +25 minutes, although the training curves
have  smoother  shapes.  Surprisingly  for  the  high  lead  times  +60,  +120  and  +180min,  the
training  curve  is  gradually  receding,  indicating  that  the  CNN is  learning  well  with  each
iteration  and  decreasing  properly  the  loss  value.  Nevertheless,  the  learning  doesn’t  fully
converge and the number of epochs considered should be higher.

The validation loss follows the same pattern as the one from the training one. Overall the
simulated loss is quite low, however it looks like for some lead times the performance is better.
One would expect the short lead times to have lower RMSE, but this is not the case when
comparing for assistance +120min with +20 min. It appears that the CNN can learn better the
longer lead times, as most probably the large-scale prediction plays an important role here.
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Figure 7.9: The training loss function (RMSE) for the lead times +5, +10, +15 min (left), +20, 
+25, +30 min (middle) and +60, +120, +180 min (right).

Figure 7.10: The validation loss function (RMSE) for the lead times +5, +10, +15 min (left), 
+20, +25, +30 min (middle) and +60, +120, +180 min (right).



Instead in short lead times, the large-scale volumes are similar,  leaving the accuracy of the
CNN to be dependent mainly on the weights used for the down-scaling (deconvolution).
Even though the CNN would yield better results for longer epochs, the results are acceptable
and indicate that the CNN can perform well for the nowcast.

7.3.2 Rainfall Nowcast Performance

The trained weights for each of the lead times, were  run once again for each of the 93
events. Note that the ultimate validation of the CNN nowcast is done in Chapter 8 with the
17 events of period 2013-2018 ,which are completely unknown to the training of the CNN.

Nevertheless the aim here is, to explore the full potential and dynamics of the CNN for
nowcast application; meaning that the performance over these 93 events exhibits the best
performance of the CNN (as the weights are trained on these events). Moreover, since the
training is done on random samples of the 93 events, it can be that some events are better
nowcasted than others, suggesting that some processes are better simulated by the CNN. 

The cross-correlation of the CNN nowcasts averaged for each event type is illustrated in
Figure 7.11 for both the temporal (upper) and the spatial (lower) cross-correlation. The first
noticeable result, is that the performance of the convective events is considerably worse than
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Figure 7.117.11: The event median cross correlation for each event type as nowcasted by CNNCNN 
for different lead times, calculated temporally (upper row) and spatially (lower row). The red 
dashed line indicates the correlation value of 0.37 for the predictability limit, while the grey 
dashed line is a reference to the 20 min model predictability limit as suggested by the 
literature. No intensity threshold was used here. For higher intensity thresholds see Appendix 
B – Figure B.9 and B.10.



the ones from the other events. While the radar and the gauge performances are higher than
the value of the predictability limit in the literature for all the events, for the convective ones
this is not the case. Although the radar predictability is 20min, as suggested by the literature,
this is not satisfactory. This can either be caused by the low impact of convective events in the
training of the CNN (convective events are shorter in duration and fewer in numbers) or the
inability of the CNN to learn processes specific to the convective type. Lastly, when compared
to each other,  unlike the behaviour  of  the reference nowcasting methods,  the  spatial  and
temporal cross-correlation are quite similar.
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Figure 7.12: The median of the temporal performance: RMSE (upper), Shift in Peak Time 
(middle) and Peak Bias (lower) for each of the event types of the CNN nowcast method with 
different lead times, compared to the input radar data (left) and gauge data (right). No intensity
threshold was used here.



The  meso-γ  convective  events,  on  the  other  hand,  have  similar  duration  with  the
convective events (Figure 3.6-Section  3.4.1) and same number of events. Nonetheless their
performance  is  quite  good,  with  cross-correlation  always  above the  0.37  limit.  Thus,  the
number  of  events  and  duration  cannot  be  the  reason  why  the  convective  events  are
simulated so poorly. One main difference between these two types of events lies at the storm
extent; the meso-γ events have extents much higher than the convective ones. Judging from
the  results  of  the  CNN,  it  seems that  the  evolution  of  the  meso-γ  convective  events  is
controlled by the global scale, thus the performance is better. On the other side, for simple
convective events, since their extent is quite small and the CNN is not able to predict their
evolution good enough, it seems that the global scale cannot model the storm evolution. This
is  understandable  as  the  small-extent  convective  events  are  initialized  quite  rapidly  by
temperature instabilities and are not affected much by large scale processes. 

The additional temporal performance criteria of the CNN nowcasts, averaged for each
event type, are shown in Figure 7.12. As expected the RMSE (even though the temporal and
not the spatial one) is quite low, as the CNN was optimized by reducing the RMSE value. It is
surprising to see, that for all types of events the CNN can capture quite well the time of the
peak. Of course, there is a time shift of 5 to 10 minutes, but this stands within an acceptable
range.  Nevertheless,  CNN  displays  a  constant  bias  in  peak  volume,  especially  when
compared to the input  radar  data regardless  of  the lead time.  This  performance is  a bit
disappointing, nevertheless as the time of peak is well captured, the volume can be later
corrected either with a bias adjustment method or perhaps by employing an extra layer of
maximum pooling in the CNN structure.

Overall, for all the events there seems to be a pattern over the lead times considered; the
longer lead times (+60, +120 and +180 minutes) seem to perform better. This is in accordance
with the training and validation loss functions as per Figure 7.9 and Figure 7.10. Even though
the CNN model would clearly perform better with higher epochs (as the convergence is not
yet reached), the training yielded lower losses than the other lead times. On the other side
the performance of the short lead times is also good, they display low temporal errors and
high correlation. Nevertheless, the underestimation of the peak volume is higher than the
ones displayed by HyRaTrac and Lucas-Kanade nowcast. This suggest that probably at these
lead times a saturation is reached (indicated also by the strong gradient decrease and then
constant in the training loss plot). Regarding the other lead times (20-30 minutes) the poor
performance is directly related to the training loss curve achieved (Figure 7.9-middle). For
longer training epochs, results might improve.
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7.3.3 Improvement of Rainfall Predictability

The CNN nowcast  for  the  93  events  was  compared directly  to  the  Lucas  Kanade (LK)
nowcast, to see the extent of the CNN potential to add value in the predictability of storms.
Note that a leave-one-out cross-validation was not used for the CNN, and the following results
express  just  the  maximum improvements  towards  the  LK method. The improvements  are
calculated as per Equations 5.19 -5.22 from Section 5.3.2, and the average values over all the 93
events of the selected performance criteria are illustrated in Figure 7.13. As the CNN is trained
on the minimization of RMSE, both temporal and spatial one, display a big improvement (for
all the lead times) when compared to the LK nowcast. The same behaviour is seen as well for
the temporal peak shift. Meanwhile for the temporal peak bias (as expected) the improvement
is mainly at the long lead times.

Regarding  the  temporal  and spatial  cross-correlation  the improvement  is  seen  for  lead
times higher than 20 minutes, although the improvement to gauge observation is higher than
the  one  to  radar  observation.  This  is  in  accordance  with  the  literature,  stating  that  the
Lagrange persistence works quite good for the short lead times. Apparently, for these lead
times, the non-linearity doesn’t  introduce additional skill to the nowcast method, the linear
motion is more than enough. However, for high lead times, the benefit of the non-linearity
transformation is clearly visible.

The results shown here, are valid for a 0 mm/h threshold set on the data. The results for the
other thresholds (1, 5, 12 and 60 mm/h) are given in Appendix D – Figure D.5 to D.8. With a
higher threshold, the nowcast CNN gives better results than the LK for shorter lead times.
Although in general it still gives the best performance for the long lead times (+60, +120 and
+180 min).  Overall,  the  CNN seems able  to  capture  the  intermittent  nature  of  rainfall  by
simulating the growth and decay rate and even death of storms. While the former is visible at
all events, the latter is mainly visible at the meso-scale events, whose duration is on average
100 minutes, but the lead times of +120 and +180 minutes show the best results. Even though
theoretically speaking the CNN is not able to predict storm births, because as in LK nowcast
rainfall  has  to be detected in order  to initialize the nowcast.  However,  in  cases when the
nowcast has been initialized, the CNN may predict the birth of storms in the vicinity of pre-
existing storms. 
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Figure 7.13: The average improvement of Spatial and Temporal Criteria for each lead time 
(from 5 to 180 min) of the CNN nowcast compared to the LK one. The green area indicates a 
better performance by the CNN, and the red area indicates the contrary. No intensity thresholds
was used here. For higher intensity thresholds see Appendix D – from Figure D.5 to D.8.



8. FINAL COMPARISON OF THE METHODS

Three  new  methods  were  trained  and  validated  on  93  events  in  order  to  improve  the
nowcast skill and the predictability of storms at fine scales. These methods are; the conditional
merging of radar with gauge data (in order to have a better rainfall field), the k-NN nowcast
approach (in order to have a better estimation of the storm evolution in time and space), and a
CNN model (in order to have a better predictability of the rainfall field). The three methods
proved to improve the nowcasting skills for all the types of events used in the training dataset.
Nevertheless, only a few of these events are characterized by extreme rainfall intensities at
short durations. In order to test the improvement of the nowcast achieved with these methods
specifically for the urban flood application, 17 additional events that display very high rainfall
intensity at short duration, are used for the final assessment of the methods. The aim here is
to test,  whether the developed methods trained with a variety of  event types,  can be still
useful in improving the predictability of extreme events that are causing urban pluvial floods.
Of course, the ideal case would be to train the methods only for events causing urban floods,
nonetheless  this  is  very  difficult  to  achieve.  First  because  there  are  not  enough  recorded
extreme events (for instance events with return period higher than 100 years) at a specific
location to train and to validate the models. Secondly, even if enough extreme events are at
hand, one would need to know in advance that an extreme event is about to happen, and
initiate the nowcast. Even though sometimes, extreme events may be expected due to extreme
meteorological conditions and NWP predictions, issuing a nowcast trained only on extreme
events  may tend to overestimate  the  intensities  and to  issue false  alarms.  Thus,  methods
trained in a variety of events, are used here to predict the extreme events and to answer the
following questions: Does the CM improve the rainfall field also in cases of extreme short
events? Up to which limit can the existing nowcast method HyRaTrac and LK yield reasonable
results  for  such  extreme  events?  Can  the  developed  k3-NN  and  the  CNN  extend  the
predictability of such storms at the point scale? Can any of the ensemble members issued by
k-NN provide any additional value to the nowcast? These are the main questions investigated
in this chapter. 

First at Section 8.1 the performance of the CM input field is discussed, followed up by the
direct comparison of the nowcast methods in Section 8.2. The 17 events used in this chapter
are explained in Section 3.4.2 and the performance criteria assessment is described in 4.2. To
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have a direct and fair comparison of the methods, only the stations as illustrated in Figure
7.7 due  to  the  restriction  window  of  the  CNN,  are  considered  for  the  performance
assessment. 

8.1 Improvement of Rainfall Field

Figure 8.1 illustrates both temporal and spatial performance criteria of the raw radar data
(RR)  and  conditionally  merged  radar  data  (CM)  calculated  for  each  of  the  5  intensity
thresholds  considered  in  this  study and averaged  for  each of  the  events.  Here  the  true
reference is considered the gauge information. 
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Figure 8.1: The temporal and spatial performance criteria of the two rainfall products raw 
radar data (in grey) and conditional merging (in green) averaged per event for each of the 
intensity thresholds considered. The red dashed line indicates the limit of predictability, while 
the grey lines are for guidance.



As  seen  in  the  training  events  in  Section  5.4.4,  also  for  the  extreme  events,  the  CM
outperforms the RR data for all of the intensity thresholds. Both temporal and spatial cross-
correlation and RMSE are improved considerably for all the thresholds. Regarding the peak
performance, the peak time is improved to a delay of 5 minutes and an underestimation of
mainly  10%.  The  spatial  cross-correlation  performance  is  higher  than  the  temporal  one
indicating that the spatial patterns may be easier to predict than the temporal rainfall patterns
at  a  point  location.  Moreover,  the  CM  data  display  a  cross-correlation  higher  than  the
predictability  limit  only  for  the  lower  intensity  thresholds  (0  and  1  mm/h),  thus  no
predictability can be expected from the nowcast methods for the higher intensity thresholds
(5, 12 and 60 mm/h). For this reason, only the low intensity is shown in the following section,
to illustrate the predictability skill of the nowcasting methods for the extreme events. 

8.2 Improvement of Rainfall Nowcast

For the comparison of the methods, apart from the HyRaTrac and LK methods used as
reference,  the  deterministic  nowcast  of  k3-NN  and  the  CNN  method  are  considered.  To
investigate as well the value of the ensembles, the first 20 ensemble members issued for each
time step are considered. These ensembles are mainly useful to visualize the uncertainty in the
spatial performance rather than in the temporal ones. In order to visualize the uncertainty for
different temporal performances, then the combinations of all the ensembles issued at each
time step should be regarded. Due to the complexity and the computational time, the results
of the ensembles are shown here only for the spatial performances. As the CM was proven to
outperform RR, it was used as an input for all the nowcast methods.

Figure  8.2 and  8.3 illustrate  respectively  the  temporal  and  spatial  performance  of  the
selected nowcast methods both compared to the radar input (model performance) and to the
gauge  reference  (practical  performance).  In  terms  of  predictability,  HyRaTrac  displays  the
worst temporal and spatial predictability for both model and practical one. It seems that for
such extreme events, the identification and tracking of the storm cells is not enough to display
some predictability skill at any lead time. This, of course, affects greatly the performance of
the k-NN method. 

As the k-NN method is a continuation of the tracking done by HyRaTrac, substituting only
the extrapolation in the future with the Lagrangian persistence, the results cannot be much
better than the HyRaTrac. This is particularly true for the temporal performances. As seen in
Figure  8.2,  the  k-NN  approach  behaves  slightly  better  than  the  Lagrangian  persistence.
Nevertheless, the main improvements of k3-NN are observed at the spatial performance for
lead  times  up  to  30  minutes.  Clearly  the  k3-NN  performs  better  than  the  Lagrangian
persistence,  but  due  to  the  tracking  of  individual  storms,  very  short  model  (+10  min)  or
practical predictability (+5min) is observed. Nonetheless some of growth and decay processes
are captured better by the k3-NN, while the death ones (see for lead times higher than an
hour), the performance of the k3-NN is quite similar with the Lagrangian one. 
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LK on  the  other  hand  displays  good  predictability  of  the  storms,  with  spatial  radar
(model) predictability reaching up to 1 hour and spatial gauge (practical) predictability up to
30 min. The performance of the LK is improved greatly by the use of the CM product as input
data. As in the case of the training events, the Lagrangian persistence based on optical field
can yield reliable spatial results up to 1 hour when fed with better and more accurate rainfall
data. Past this lead time, the predictability of the LK decreases quite rapidly. Regarding the
temporal predictability, the radar (model) one is extended to about 30 minutes, while the
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Figure 8.2: The temporal performance criteria of the selected nowcast methods both 
compared to the CM radar input (left) and the respective gauge information (right) averaged 
over all the 17 events for all the lead times up to 3 hours (x-axis). No intensity threshold was 
used here. The red dashed line indicates the predictability limit while the grey lines are for 
guidance only. 



gauge (practical) one can barely reach the 15 min lead time. This is the same pattern as in the
training events: the LK can capture quite well the spatial variability of the rainfall, but not so
good the temporal variability at the point scale. This is also seen by the high underestimation
that the LK causes to the peak volume both when compared to the radar or the gauge input.
Even though the temporal shift of the peak is improved (a delay of 5 to 10 minutes is exhibited
for the short lead times), there is a constant underestimation of the rainfall intensities. 

The results from the 20 ensembles of the k-NN approach are illustrated as well in Figure 8.3.
As expected all of the ensembles bring an additional value to the HyRaTrac nowcast. For the
first 15 min lead times, all of these ensembles deliver better performances than the Lagrangian
persistence. Moreover for these lead times, it seems that the k3-NN is representing the best
solutions from the similar storms. For the high lead times, the importance of the ensemble
nowcast is better seen. For instance, for lead times of 1 hour or even longer, the performance
exhibited by the ensembles is better than both of the deterministic approaches. Apparently,
they help in capturing better the decay and the death processes of the storms. Lastly, the
performance  band  obtained  from the  ensembles,  can  help  to  quantify  the  uncertainty  of
nowcasts  past  the  15-min  lead  time.  At  the  present,  due  to  the  20  number  of  ensembles
chosen, the uncertainty band is quite narrow (but still better than the reference), nevertheless
wider bands can be obtained with a higher number of ensembles considered. 
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Figure 8.3: The spatial performance criteria of the selected nowcast methods both compared 
to the CM radar input (left) and the respective gauge information (right) averaged over all the 
17 events for all the lead times up to 3 hours. The red dashed line indicates the predictability 
limit while the grey lines are for guidance only. No intensity threshold was used here.



The CNN on the other side exhibits the highest predictability skill for both temporal and
spatial performance. For the radar (model) predictability (both spatial and temporal one) the
CNN displays similar limits and behaviour as the LK nowcast. Here the spatial predictability
is extended to 1-hour, and temporal one to round about 30 minutes. Regarding the temporal
radar (model) predictability, it seems that LK performs better than the CNN, but nevertheless
one has to keep in mind, that the line for the CNN is discrete as the training has been done
only for lead time +30min, + 1hours and not for the other lead times in between. Thus it may
happen that the CNN exhibits higher predictability for the durations between these two lead
times, and thus displays an extended predictability. 

The  main  advantage  of  the  CNN  is  visible  in  estimating  the  gauge  (practical)
predictability  of  the  nowcast  for  both  temporal  and  spatial  performance.  The  temporal
practical predictability is extended to 30 minutes, while the spatial one is extended to almost
one hour. Also, it has to be noted, that for the short lead times the CNN performs much
better than the LK method. Even though during the training of the CNN, the short lead times
were  considered  saturated,  thus  not  so  good  results  were  expected  of  them,  their
performance on the extreme events is quite satisfactory. Regarding the volume peak, it seems
that the CNN can capture well enough the peak shift and volume until 30 minute lead time
for  both nowcasts  compared to  radar  and to  gauge data.  Of  course,  the  performance is
getting worse with the lead time, but for the first 20 minutes the peak bias is around 0%,
while  from  20-30  minutes  it  increases  gradually  to  40%.  Moreover  unlike  the  LK,  the
performance of the CNN seems to be similar for both spatial and temporal performance and
consistent for both model and practical performances.
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9. CONCLUSIONS AND OUTLOOK

9.1 Summary

Accurate rainfall nowcasts at fine temporal (5 min) and spatial (1 km2) scales are essential
for  the  prediction  of  urban  floods,  nevertheless  are  very  challenging  to  achieve.  The
intermittence nature  of  rainfall  at  such small  scales  and our  inability  to  measure  its  true
distribution in space and time, make it quite difficult for the simple persistence models to
work reliably past the 20 min lead time. Consequently, a predictability limit is built up which
cannot  be  surpassed  by  the  models  at  hand.  This  is  especially  true  for  the  urban  flood
application, where the rapid high intensity peaks of rainfall field are crucial. Thus, the scope of
this  thesis  was  to  investigate  how  different  event  types  through  the  state-of-the-art
persistence models exhibit different predictability limits and how such limits can be pushed
further by employing more complex models. 

For this purpose, the area with a radius of 115 km around the Hannover City, Germany, was
considered. Here only a radar scan was employed to nowcast rainfall intensities at the 5 min
time steps and 1 km2 spatial scales. From the period 2000-2018 of available radar data, 110
events  with  different  characteristics  and  severities  were  selected  as  a  basis  for  the
investigation. First, 93 events were used for the overall predictability limit investigation and
the training of the complex nowcast models, while 17 events, with high importance for urban
flood generation, were selected to investigate the predictability limit of the extreme events.
Two state-of-the-art  approaches  based on radar  data were selected as  a  reference for  the
evaluation: HyRaTrac (an object-oriented approach) and Lucas Kanade Optical Flow (a field-
oriented approach). 

Even though the rainfall nowcasting remains a difficult task to perform, a framework was
proposed  and  implemented  successfully  in  this  thesis  to  improve  the  rainfall  nowcast
predictability, particularly for the point scale. The main milestones of the framework were: I)
integrating  gauge  measurements  in  the  nowcast,  ii)  integrating  knowledge  from the  past
observed storms in the nowcast, iii)  utilizing ensemble prediction rather than deterministic
ones. The main conclusions derived from this thesis are discussed in the following section as
answers to the research questions stated in Section 1.2.
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9.2 Conclusions

Research Question 1: The decorrelation time from Germann and Zawadzki (2002) was
used as a tool to estimate the predictability limit at area spatial scales. To match the purpose
for urban modelling, this concept was modified to illustrate the decorrelation time of the
temporal correlation on a point scale. Moreover, other point temporal performances like peak
bias  and  peak  shift  were  used  as  additional  tools  to  estimate  the  nowcast  skill  of  the
methods. 

Research  Question  2:  Since  both  of  the  reference  methods  employ  the  Lagrangian
persistence for the extrapolation of the rainfall information into the future, they fail to model
correctly the transformation processes like birth, growth, decay and death, restricting the
predictability limit of rainfall up to 15 or 20 minutes. In particular, the convective events with
high intensity displayed very short predictability limits (especially at the point scale, the
predictability is limited to 10 min), indicating that the intermittent nature of the rainfall is
more important at the point scale than at the large one. Thus, there is a need to improve not
only the predictability limit at the large scale, but as well as on the point scale. 

Research Question 3:  The gauge information was added to the observed radar field
based on two assumptions; first as a point information when integrated with the radar data
it would improve the point predictability of rainfall,  second it leads to better urban flood
nowcasts as the urban models  are typically calibrated on gauge data.  In total  100 gauge
recordings inside the radar range were merged together with radar observations on 5 min
time  steps.  Five  different  merging  techniques  were  compared,  namely  Mean  Field  Bias
(MFB), Quantile Mapping based Bias Correction (QQ), Kriging with External Drift  (KED),
and Conditional Merging (CM). The latter one, CM on spatial and temporal smoothed radar
data, reached the best agreement between the accuracy of gauge measurements and the
high spatial variability of the radar data. Despite the fact that KED is the most preferred as a
merging method in the literature, the results show clearly than the Kriging with radar data
as an external drift cannot yield as good results as the CM. The QQ on the other hand has
not been used so far (to the knowledge of the author) for the online merging of both data
sources, thus it was surprising to see that it performs similar to the CM. Unfortunately, even
though the large scale is represented very good by the QQ, it is unable to represent the point
scale of the rainfall, as it displays high underestimation of the rainfall peaks. Nevertheless,
QQ seems promising and further investigations are advised in order to reach a better rainfall
product. Overall the CM on temporally and spatially smoothed radar data yielded the best
results  both  at  point  and  large  scale,  and  thus  was  used  as  an  input  to  the  nowcast
algorithms.

Research  Question  4:  When  fed  to  both  nowcast  algorithms,  the  CM  improves
considerably the predictability of all the event types for the short lead times (up to one hour).
The  Lucas-Kanade  nowcast  seems  to  take  the  most  advantage  of  this;  displaying  a
nowcasting skill up to one hour lead time. The method seems to favour more the large scale
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events  (such as stratiform or mixed).  Even though improvements  are seen as well  for  the
convective events, especially for the object based approach, an advection correction should be
implemented in order to achieve even better results.  Moreover,  with the application of the
merging, the local predictability behaves as good as the larger scale, emphasizing again the
importance of two products in the nowcast skill. Overall, the CM is advised for the pluvial
flood application as it is almost bias free when estimating the amount and time of the local
rainfall peaks; it improves the point predictability of the rainfall and the agreement with the
gauge measurements. This is not only true for regular events, but has been proven as correct as
well for the extreme events that have high importance for urban floods.

Nevertheless, even though the CM can improve the predictability of rainfall, there is a limit
to  the  additional  value  that  the  CM can  bring  to  the  nowcast.  At  this  limit,  the  errors
associated to the persistence nowcast are greater than the errors of the input. Thus, to extend
the predictability even further, the temporal and spatial patterns are learned from previously
observed  storms.  Two  data-driven  approaches  were  proposed  in  this  thesis  for  further
improvement;  a  nearest  neighbour  storm  (for  the  object-oriented  approach)  and  a
convolutional neural network (for the field-based approach). 

Research Question 5: The nearest neighbour approach (k-NN) works as an extension of
the  HyRaTrac  algorithm.  Once  a  storm  is  identified  and  tracked  by  HyRaTrac,  the
extrapolation in the future is done based on the 3 most similar neighbours from the past
dataset. The procedure applied here seems to yield very good results for the area scale, causing
spatial cross-correlation higher than the limit value for all  of the lead times.  Once similar
neighbours are successfully identified, the response from the neighbours improves greatly the
predictability. This supports the assumption that similar storms do behave similarly and past
information  can  supply  with  additional  useful  information.  Nevertheless,  the  similar
neighbours are not always successfully identified. For specific time steps the performance was
unsatisfactory, because the k-NN failed to identify very similar storms. Moreover, for the first
time step of the storm life, the selected predictors do not describe correctly the similarity of
storms.  Thus,  it  is  advised  to  use  the  k-NN as  an  extension  to  HyRaTrac only  when the
following  criteria  are  fulfilled:  i)  similar  storms  are  identified,  meaning  that  the  cross-
correlation optimization reaches values of higher than 0.5, and ii) issuing nowcasts from the
2nd time step of the storm life. When any of these criteria are not fulfilled, the Lagrangian
persistence should be used instead.

Research Question 6:  Even though the spatial  performance of  the k-NN was good, it
failed to capture the temporal variability of the rainfall. Clearly a spatial optimization at each
time step is altering the temporal variability of the rainfall and causing underestimation of the
rainfall.  Thus,  the k-NN could bring additional  value  to the  HyRaTrac nowcast,  extending
mainly the spatial point predictability of rainfall. Nevertheless, the performance of the k-NN
method is highly dependent on the matching and tracking of the storms by HyRaTrac. This
was  seen  for  the  extreme  events,  when  the  object-based  approach  did  not  display  any
predictability  at  all.  The  k-NN  could  improve  the  performance  when  compared  to  the
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Lagrangian  persistence,  but  nonetheless  could  not  reach  values  above  the  predictability
limits. 

Research Question 6: The CNN was trained independently at each lead time based on a
split sampling of the training data set. The CNN seemed to perform particularly well for the
stratiform and meso-scale convective events,  where patterns at coarser scales dictate the
overall movements of the rainfall structures. Overall, the CNN has the potential to extend
the predictability limit up to 3 hours lead time. For extreme events, the CNN seems to yield
reasonable results, despite the fact that it  was not trained on extreme convective rainfall
events. For these events, the CNN improves the predictability of the storms up to 30 – 40
minutes lead time. Especially for the practical predictability, the CNN brings the most added
value to the nowcast. Moreover, unlike the other methods, the performance displayed by
CNN both at temporal and spatial performance are very similar and constant between the
radar (model) and gauge (practical) predictability. 

Research  Question 7:  Ensemble  predictions  were  issued  only  by  the  k-NN nowcast
method, where several neighbours were selected for the nowcast. The number of neighbours
were  not  fixed,  but  were  adapted  accordingly  to  only  members  that  exhibit  a  cross-
correlation higher than 0.37 with the last observed radar image. For the short lead times the
deterministic  approach  yielded  better  results  than  the  ensemble  nowcast.  However,  the
number  of  useful  ensembles  increased with the  lead time,  suggesting that  the ensemble
nowcast is particularly useful for the long lead times. This makes sense, as for higher lead
times, the uncertainty is much higher due to the death and decay of storm cells. This was
also  the  case  for  the  extreme  events,  where  the  ensemble  nowcast  outperformed  the
deterministic  one.  Thus,  ensemble  nowcasts  are  suggested  to  be  used  whenever  the
uncertainties  are  expected  to  be  large.  For  predictable  storms  and  short  lead  time,  the
deterministic approach may be used instead. 

Research Question 8: To conclude, the field based nowcasts are more suitable for the
nowcasting of extreme rainfall at fine spatial and temporal scales. The object based nowcast
are highly dependent on the storm matching algorithm, which for severe convective events,
do not represent the temporal evolution of the storm. Thus, for the urban flood nowcast, field
based approaches are recommended. More precisely the CNN trained on merged radar data
should be used as a basis for the flood nowcast, as it represents the most robust method for
rainfall estimation at point scales. Contrary, the k-NN method should be used when rainfall
estimation  at  the  storm scales  are  required,  or  when  the  spatial  evolution  of  storms  is
needed.

9.3 Outlook

The  k-NN method seems a  promising  method in  terms  of  nowcasting  based  on  past
observed storms. Nevertheless, more work has to be done at estimating the right predictors
for similarity estimation. Monte-Carlo simulations with various dataset and predictors may
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be used to explain the variance of the target variables (i.e., Sobol indexes).  However, as the
target  variables  are  many  (and  continuous  in  time)  it  may  be  difficult  to  explain
simultaneously the variance of several predictors. Estimating the right predictors, could help
to classify the storms early on in different behaviour groups,  which can serve as a basis not
only  for  nowcasting  purposes  but  also  for  other  hydrological  purposes.  For  example,
determining the impact of certain storm types on different urban or rural catchments, use
different  storm  statistics  for  generating  area  synthetic  rainfall  data  for  areal  Intensity-
Frequency-Duration  curves  or  other  design  purposes,  recognition  of  dynamic  clutter  and
application of specific Z-R relationship for each storm type in radar data correction, etc.

Another problem with the application of the k-NN is the limitation of the data set. For
instance, the radar  used for this thesis has only 19 years of observations, thus when issuing
nowcasts,  the method may not  always find the right  neighbour,  especially  in  the case of
extreme events. A  regionalization may be required here. Using the storm information from
other regions can increase considerably the data set, thus improve the performance of the
method. Once the right predictors have been identified to recognize similar storms, they can
be used as well to  classify storms in similar groups.  In addition to these predictors, one can
reduce the data set by using certain location descriptors that enable the selection of storms
that have similar meteorological and morphological conditions to the target location. 

Also, the CNN can benefit from a bigger data base by considering radar observations at
other regions. Even though the CNN showed the best performance for the events at hand,
further improvements can be achieved if the database is larger. If more extreme events are
available,  a  special  tuning  of  CNN  can  be  done,  in  order  to  learn  separately  weights
specifically for these extreme events. Information from NWP can then be used as an additional
input when initializing the weights from the special tuning, and thus to predict better the
evolution of the extreme events. Further improvements of the CNN may be achieved if longer
past time steps are considered in the training of the weights, or if better spatial criteria are
used for  the training.  For  instance,  instead of  RMSE,  a  cross-correlation tool  or  even  the
structural  similarity  index  (SSIM)  might  be  applied  to  improve  the  nowcasts.  Moreover,
probabilistic nowcasts may be issued by integrating the model uncertainty; Neurons may be
switched randomly in order to capture the structure uncertainty, different activation function
may be employed to capture the non-linearity uncertainty and training with different data set
may be done to capture the input uncertainty. 

Further works may include the use of the both methods (k-NN and CNN) on polarized
radar data. For the k-NN application the Differential Phase Shift (K) from polarized data can
be used as an additional predictor to recognized similar storm types. As storms caused by
different  mechanisms display  different  hydro-meteors,  the  K-predictor  seems promising in
distinguishing successfully different storm types. The K-information may be used as input as
well  for  the  CNN nowcast  in  order  to learn weights  according to the hydro-meteor  type.
Furthermore, a better product may be achieved if the field- and object- based nowcast are
integrated together. As the CNN is smoothing the rainfall structure in space, information from

151



a k-NN nowcast  may be included in  order  to maintain similar  storm shapes.  Finally,  as
discussed in the literature review, the best approach to extend the predictability limit past 2
or 3 hours lead times would be to couple the radar based nowcast with the NWP forecasts
and to regard the storm birth uncertainty by stochastic random generators. 

152



Bibliography
Ahrens, B., Jaun, S. (2007). On evaluation of ensemble precipitation forecasts with observation-

based ensembles. Advances in Geosciences, 10, 139-144.
Akbari Asanjan, A., Yang, T., Hsu, K., Sorooshian, S., Lin, J., Peng, Q. (2018). Short-Term 

Precipitation Forecast Based on the PERSIANN System and LSTM Recurrent Neural 
Networks. Journal of Geophysical Research: Atmospheres, 123 (22), 12,543-12,563.

Asquith, W.H. (2011). Distributional analysis with L-moment statistics using the R 
environment for statistical computing: First edition. Lubbock, Texas, Create Space 
Independent Publishing Platform, 2nd printing, ISBN 978–1463508418. 

Ballard, S., Li, Z., Simonin, D., Buttery, H., Charlton‐Perez, C., Gaussiat, N., Hawkness-Smith, 
L. (2012). Use of radar data in NWP-Based nowcasting in the Met Office. IAHS-AISH 
Publication, 351, 336-341.

Bárdossy, A., Pegram, G. (2013). Interpolation of precipitation under topographic influence at 
different time scales. Water Resources Research, 49.

Berenguer, M., Surcel, M., Zawadzki, I., Kong, M., (2012). The Diurnal Cycle of Precipitation 
from Continental Radar Mosaics and Numerical Weather Prediction Models. Part II: 
Inter-comparison among Numerical Models and with Nowcasting. Monthly Weather 
Review, 140(8), 2689-2705.

Berndt, C., Rabiei, E., Haberlandt, U. (2013). Geostatistical merging of rain gauge and radar 
data for high temporal resolutions and various station density scenarios. Journal of 
Hydrology, 508, 88-101.

Berne, A., Delrieu, G., Creutin, J., Obled, C. (2004). Temporal and Spatial Resolution of Rainfall 
Measurements Required for Urban Hydrology. Journal of Hydrology, 299, 166-179.

Berne, A., Krajewski, W. (2013). Radar for hydrology: Unfulfilled promise or unrecognized 
potential? Advances in Water Resources, 51, 357-366.

Borga, M., Anagnostou, E. N., Frank, E. (2000).On the use of real-time radar rainfall estimates 
for flood prediction in mountainous basins. Journal of Geophysical Research 
Atmospheres, 105(D2), 2269-2280.

Bowler, N. E., Pierce, C. E., Seed, A. W. (2006). STEPS: A probabilistic precipitation forecasting 
scheme which merges an extrapolation nowcast with downscaled NWP. Quarterly 
Journal of the Royal Meteorological Society,132, 2127-2155.

Pierce, C.E., Ebert, E., Seed, A.W., Sleigh, M., Collier, C. G., Fox, N. I., Donaldson, N., Wilson, J. 
W., Roberts, R., Mueller, C. K. (2004). The Nowcasting of Precipitation during Sydney 
2000: An Appraisal of the QPF Algorithms. Weather and Forecasting, 19, 7-21.

Chiang, Y., Chang, F., Jou, B. J., Lin, P.F. (2007). Dynamic ANN for precipitation estimation and
forecasting from radar observations. Journal of Hydrology, 334, 250-261.

Chumchean, S., Seed, A., Sharma, A.(2006). Correcting of real-time radar rainfall bias using a 
Kalman filtering approach. Journal of Hydrology, 317, 123-137.

Ciach, G.J. (2010). Local Random Errors in Tipping-Bucket Rain Gauge Measurements. Journal 
of Atmospheric and Oceanic Technology, 20, 752-759.

Codo, M., Rico-Ramirez, M.A. (2018). Ensemble Radar-Based Rainfall Forecasts for Urban 
Hydrological Applications. Geosciences, 8, 297, 2076-3263.

Coulthard, T.J., Frostick, L.E. (2010). The Hull floods of 2007: implications for the governance 
and management of urban drainage systems. Journal of Flood Risk Management, 3, 
223-231.

153



 Crozier, C. (1986). Weather Radar Operations Manual and User Guide. Toronto Weather 
Radar Research Station.

Curry, G. R. (2012).Radar essentials: A concise handbook for radar design and performance 
analysis.

Deutsch, C. V., Journel, A. G. (1998).GSLIB: Geostatistical Software Library and User's Guide. 
Oxford University Press.

Dumoulin, V., Visin, F. (2016).A guide to convolution arithmetic for deep learning.
DWA Regelwerk (2012). Starkregen in Abhängigkeit von Wiederkehrzeit und Dauer.
DWD (1998). RADOLAN: Routineverfahren zur Online-Aneichung der 

Radarniederschlagsdaten mit Hilfe von automatischen Bodenniederschlagsstationen 
(Ombrometer) .Geschäftsfeld Hydrometeorologie.Deutscher Wetterdients

Ehret, U. (2003). Rainfall and Flood Nowcasting in Small Catchments Using Weather Radar. 
Institut für Wasserbau. Universität Stuttgart.

Einfalt, T. (2005). A hydrologists' guide to radar use in various applications.
Einfalt, T., Hatzfeld, F., Wagner, A., Seltmann, J., Castro, D., Frerichs, S. (2009). URBAS: 

forecasting and management of flash floods in urban areas. Urban Water 
Journal,6,369-374,1573-062X

Fletcher, T. D., Andrieu, H., Hamel, P. (2013). Understanding, management and modelling of 
urban hydrology and its consequences for receiving waters: A state of the art. 
Advances in Water Resources,51(),261-279, 03091708

Foresti, L., Reyniers, M., Seed, A., Delobbe, L. (2016). Development and verification of a real-
time stochastic precipitation nowcasting system for urban hydrology in Belgium. 
Hydrol. Earth Syst. Sci.,20,505-527,1607-7938

Fraser, A. M., Swinney, H. L. (1986). Independent coordinates for strange attractors from 
mutual information. Physical Review A,33(),1134-1140,1050-2947

Galieti, G. (1990). A comparison of parametric and non-parametric methods for runoff 
forecasting. Journal of Hydrological Sciences, 35 (1). pg 79-94. 

Gerchow, M. (2018). Deep learning based stereo depth estimation with application to laser 
microsurgery. Institut für Mechatronische Systeme. Leibniz Universität Hannover.

Germann, U., Jürg, J. (2001). Variograms of radar reflectivity to describe the spatial continuity
of Alpine precipitation. Journal of Applied Meteorology,40.

Germann, U., Zawadzki, I. (2002). Scale-Dependence of the Predictability of Precipitation 
from Continental Radar Images. Part I: Description of the Methodology. Monthly 
Weather Review,130(),2859-2873.

Germann, U., Zawadzki, I., Turner, B. (2004). Scale Dependence of the Predictability of 
Precipitation from Continental Radar Images. Part II: Probability Forecasts. Journal of
Applied Meteorology,43(),74-89.

Germann, U., Zawadzki, I., Turner, B. (2006). Predictability of Precipitation from Continental 
Radar Images. Part IV: Limits to Prediction. Journal of the Atmospheric 
Sciences,63,2092-2108,

Gires, A., Onof, C., Maksimovic, C., Schertzer, D., Tchiguirinskaia, I., Simoes, N.(2012). 
Quantifying the impact of small scale unmeasured rainfall variability on urban 
runoff through multifractal downscaling: A case study. Journal of Hydrology,442-
443(),117-128,0022-1694

Golding, B. W. (2009). Long lead time flood warnings: Reality or fantasy? Meteorological 
Applications,16(),3-12,13504827

154



Goudenhoofdt, E., Delobbe, L. (2009). Evaluation of radar-gauge merging methods for 
quantitative precipitation estimates. Hydrology and Earth System Sciences, 13, 195-
203.

Grecu, M., Krajewski, W. F. (2000). A large-sample investigation of statistical procedures for 
radar based short-term quantitative precipitation forecasting. Journal of Hydrology, 
239, 69-84.

Grünewald, U. (2009). Gutachten zu Entstehung und Verlauf des extremen Niederschlag-
Abfluss-Ereignisses am 26.07.2008 im Stadtgebiet von Dortmund.

Haberlandt, U. (2007). Geostatistical interpolation of hourly precipitation from rain gauges 
and radar for a large-scale extreme rainfall event. Journal of Hydrology, 332, 144-157.

Haberlandt, U. (2015). Stochastische Simulation täglicher Abflüsse für die Speicherplanung 
unter Berücksichtigung von Klimaänderungen. Hydrologie und 
Wasserbewirtschaftung, 59, 247–254.

Han,L., Fu,S., Zhao, L., Zheng, Y.,Wang, H., Lin, Y. (2009). 3D Convective Storm Identification, 
Tracking, and Forecasting—An Enhanced TITAN Algorithm. Journal of Atmospheric 
and Oceanic Technology, 26, 719-732.

Heistermann, M., Jacobi, S., Pfaff, T. (2013). Technical Note: An open source library for 
processing weather radar data. Hydrol. Earth Syst. Sci.,17, 863-871.

Horn, B. K., Schunck, B. G. (1981). Determining optical flow. Artificial Intelligence, 17, 185-203.
Hu, Q., Li, Z., Wang, L., Huang, Y., Wang, Y., Li, L. (2019). Rainfall Spatial Estimations: A Review

from Spatial Interpolation to Multi-Source Data Merging. Water, 11.
Jacobson, C. R. (2011). Identification and quantification of the hydrological impacts of 

imperviousness in urban catchments: A review. Journal of Environmental Management,
92, 1438-1448.

Jasper-Tönnies, A., Hellmers, S., Einfalt, T., Strehz, .A, Fröhle, Peter (2018). Ensembles of radar 
nowcasts and COSMO-DE-EPS for urban flood management. Water Science and 
Technology,2017(),27-35,0273-1223

Jensen, D,G., Petersen, C., Rasmussen, M. R. (2015). Assimilation of radar-based nowcast into a
HIRLAM NWP model. Meteorological Applications, 22, 485-494.

Jha, A., Lamond, J., Proverbs, D., Bhattacharya-Mis, N., Lopez, A., Papachristodoulou, N., Bird, 
A., Bloch, R., Davies, J., Barker, R. (2012). Cities and Flooding: A guide to integrated 
urban flood risk management for the 21st Century. Journal of Regional Science, 52 (5), 
885-887. 

Kato, A., Maki, M. (2009). Localized Heavy Rainfall Near Zoshigaya, Tokyo, Japan on 5 August 
2008 Observed by X-band Polarimetric Radar — Preliminary Analysis —Sola, 5, 89-92.

Kato, R., Shimizu, S., Shimose, K., Maesaka, T., Iwanami, K., Nakagaki, H. (2017). Predictability 
of meso-γ-scale, localized, extreme heavy rainfall during the warm season in Japan 
using high-resolution precipitation nowcasts. Quarterly Journal of the Royal 
Meteorological Society,143, 1406-1420.

Keil, C., Heinlein, F., Craig, G.C. (2014). The convective adjustment time-scale as indicator of 
predictability of convective precipitation. Quarterly Journal of the Royal 
Meteorological Society, 140, 480-490.

Kneis, D., Kneis, M. (2009). Quality assessment of radar-based precipitation estimates with the
example of a small catchment. Hydrologie Und Wasserbewirtschaftung,160-171.

Krämer, S. (2008). Quantitative Radardatenaufbereitung für die Niederschlagsvorhersage und 
die Siedlungsentwässerung. Mitteilungen des Institutes für Wasserwirtschaft, 
Hydrologie und landw. Wasserbau. Leibniz Universität Hannover.

155



Krämer, S., Fuchs, L., Verworn, H.R. (2007). Aspects of Radar Rainfall Forecasts and their 
Effectiveness for Real Time Control -The Example of the Sewer System of the City of 
Vienna. Water Practice and Technology,2(),1751-231X.

Lanza, L.G., Vuerich, E. (2009). The WMO Field Intercomparison of Rain Intensity Gauges. 
Atmospheric Research,94(),534-543,0169-8095

Lau, C.L., Smythe, L.D., Craig, S.B., Weinstein, P. (2010). Climate change flooding, 
urbanisation and leptospirosis: Fuelling the fire? 104(),631-638.

Lin, C., Vasić, S., Kilambi, A., Turner, B., Zawadzki, I. (2005). Precipitation forecast skill of 
numerical weather prediction models and radar nowcasts. Geophysical Research 
Letters,32, 0094-8276

Liu, Y., Xi, D.G., Li, Z.L., Hong, Y. (2015). A New Methodology for Pixel-Quantitative 
Precipitation Nowcasting using a Pyramid Lucas Kanade Optical Flow Approach. 
Journal of Hydrology,529.

Löwe, R., Urich, C., Sto. Domingo, N., Mark, O., Deletic, A., Arnbjerg-Nielsen, K. (2017). 
Assessment of urban pluvial flood risk and efficiency of adaptation options through 
simulations – A new generation of urban planning tools. Journal of 
Hydrology,550(),355-367,0022-1694

Lucas, B., Kanade, T. (1981). An Iterative Image Registration Technique with an Application to
Stereo Vision (IJCAI),81.

Maidment D. R. (1993). Handbook of Hydrology. McGraw-Hill.
Marzban, C., Scott S. (2010).Optical Flow for Verification. Weather and Forecasting,25(),1479-

1494,
Ochoa-Rodriguez, S., Wang, L. P., Willems, P., Onof, C. (2019). A Review of Radar-Rain Gauge

Data Merging Methods and Their Potential for Urban Hydrological Applications. 
Water Resources Research,.

Ochoa-Rodriguez, S., Wang, L.P., Gires, A., Pina, R.D., Reinoso-Rondinel, R., Bruni, G., A., 
Gaitan, S., Cristiano, E., van Assel, J., Kroll, S., Murlà-Tuyls, D., Tisserand, B., 
Schertzer, D., Tchiguirinskaia, I, Onof, C., Willems, P., ten Veldhuis, M.C. (2015). 
Impact of spatial and temporal resolution of rainfall inputs on urban hydrodynamic 
modelling outputs: A multi-catchment investigation. Journal of Hydrology,531(),389-
407,0022-1694.

Pebesma, E. J. (2004). Multivariable geostatistics in S: the gstat package. Computers and 
Geosciences,30(),683-691,

Pierre, The radar beam path with height, 2011
Pulkkinen, S., Nerini, D., Pérez Hortal, A. A., Velasco-Forero, C., Seed, A., Germann, U., 

Foresti, L. (2019). Pysteps: an open-source Python library for probabilistic 
precipitation nowcasting (v1.0). Geosci. Model Dev.,12,4185-4219,1991-9603

Quirmbach, M., Schultz, G. A. (2002). Comparison of rain gauge and radar data as input to an
urban rainfall-runoff model. Water Science and Technology,45(),27-33,

Rabiei, E., Haberlandt, U. (2015). Applying bias correction for merging rain gauge and radar 
data. Journal of Hydrology,522(),544-557.

Russo, B., Sunyer, D., Velasco, M., Djordjević, S. (2015). Analysis of extreme flooding events 
through a calibrated 1D/2D coupled model: The case of Barcelona (Spain). Journal of 
Hydroinformatics,17(),473.

Ruzanski, E., Chandrasekar, V., Yanting W. (2011). The CASA Nowcasting System. Journal of 
Atmospheric and Oceanic Technology,28(),640-655.

Sauvageot, H.(1992).Radar Hydrology. Artech House.

156



Schellart, A., Liguori, S., Krämer, S., Saul, A., Rico-Ramirez, M. A. (2014). Comparing 
quantitative precipitation forecast methods for prediction of sewer flows in a small 
urban area. Hydrological Sciences Journal, 59,1418-1436.

Schellart, A., Shepherd, W.J., Saul, A.J. (2012). Influence of rainfall estimation error and spatial 
variability on sewer flow prediction at a small urban scale. Advances in Water 
Resources, 45, 65-75.

Schilling, W. (1991). Rainfall data for urban hydrology: what do we need? Atmospheric 
Research, 27, 5-21.

Seed, A., Siriwardena, L., Sun, X., Jordan, P., Elliot, J. (2002). On the calibration of the 
Australian weather radars. Cooperative Research Centre for Catchment Hydrology.

Seo, D. J. (1997). Rainfall estimation in the Vexrad Era-Operational Experience, Issues, and 
Ongoing Efforts in the U.S National Weather Service.

Seo, D. J., Breidenbach, J. P., Johnson, E. R. (1999). Real-time estimation of mean field bias in 
radar rainfall data. Journal of Hydrology, 223, 131-147.

Seo, D. J., Breidenbach, J. P. (2002). Real-time correction of spatially non-uniform bias in radar 
rainfall data using rain gauge measurements. Journal of Hydrometeorology, 3, 93-111.

Sharif, H., Ogden, F., Krajewski, W. F., Xue, M., (2001). Using Radar Rainfall Estimates at 
Ground Level: Beam, Storm, and Watershed Geometric Interaction.

Sharma, A., Mehrotra, R., Li, J., Jha, S. (2016). A programming tool for non-parametric system 
prediction using Partial Informational Correlation and Partial Weights. Environmental 
Modelling & Software, 83, 271-275.

Steiner, M., Smith, J. A., Burges, S. J., Alonso, C. V., Darden, R. W. (1999). Effect of bias 
adjustment and rain gauge data quality control on radar rainfall estimation. Water 
Resources Research, 35, 2487-2503.

Surcel, M., Zawadzki, I., Yau, M.K. (2015).A Study on the Scale Dependence of the 
Predictability of Precipitation Patterns. Journal of the Atmospheric Sciences, 72, 216-
235.

Thorndahl, S., Nielsen, J., Jensen, D., (2016). Urban pluvial flood prediction: A case study 
evaluating radar rainfall nowcasts and numerical weather prediction models as model 
inputs. Water Science and Technology, 74.

Tonidandel, S., LeBreton, J.M. (2011). Relative importance analysis: A useful supplement to 
regression analysis. Journal of Business and Psychology, 26(01), 1-9.

Tonidandel, S., LeBreton, J.M., Johnson, J.W. (2009). Determining the statistical significance of 
relative weights. Phycological Methods, 14, 387–399.

United Nations(2018). 2018 Revision of World Urbanization.
van Dijk, E., van der Meulen, J., Kluck, J., Straatman, J. H. M. (2013). Comparing modelling 

techniques for analysing urban pluvial flooding. Water Science and Technology, 69, 
305-311.

Vasiloff, S. V., Howard, K. W., Zhang, J. (2009). Difficulties with correcting radar rainfall 
estimates based on rain gauge data: A case study of severe weather in Montana on 16-
17 June 2007. Weather and Forecasting, 24, 1334-1344.

Wallace, J.M., Hobbs, P.V. (1977). Atmospheric Science: An Introductory Survey.
Wang, L.P., Ochoa-Rodriguez, S., Simões, N., Onof, C., Maksimovic, Č. (2013). Radar-raingauge

data combination techniques: A revision and analysis of their suitability for urban 
hydrology. Water science and technology: a journal of the International Association on 
Water Pollution Research, 68, 737-747.

Worldbank (2019). World Urbanization Prospects: 2018 Revision. 

157



Wu, Qi., Wang, F. (2019). Concatenate Convolutional Neural Networks for Non-Intrusive 
Load Monitoring across Complex Background. Energies, 12, 1572.

Zahraei, A., Hsu, K., Sorooshian, S., Gourley, J. J., Lakshmanan, V., Hong, Y., Bellerby, T, 
(2012). Quantitative Precipitation Nowcasting: A Lagrangian Pixel-Based Approach. 
Atmospheric Research,118(),418-434,0169-8095

Zhu, A., Yuan, L., Chaney, K., Daniilidis, K. (2018). EV-FlowNet: Self-Supervised Optical Flow 
Estimation for Event-based Cameras.

Šálek, M., Brezková, L., Novák, P. (2006). The use of radar in hydrological modelling in the 
Czech Republic – case studies of flash floods. Nat. Hazards Earth Syst. Sci, 6, 229-236.

158



APPENDIX A

Information about the 110 events chosen for the training and validation of the nowcast
methods. First are listed the 93 events for the period 2000-2012 that have been used for the
training of the nowcast methods, and then the 17 extreme events of the period 2013-2018 that
have been used for the validation of the developed methods for the purpose of the urban flood
application.

Table A.1: General Information about the 110 events investigated in this thesis.
Start Time

[UTC]
End Time

[UTC]
Duration

[ts]
PImax

[mm/5min
]

WR
>45%

Storm
Duration

[ts]

Storm
Type

2001/6/30/8/20 2001/6/30/22/5 166 10.7 53 24 Meso-γ

2002/7/10/13/40 2002/7/10/19/55 76 7.37 42 26 Meso-β

2002/7/16/21/25 2002/7/18/18/5 537 7.9 335 138 Mixed

2003/6/3/13/0 2003/6/3/20/55 96 7.1 7 14 Meso-β

2003/6/8/10/30 2003/6/8/18/55 102 10.5 58 34 meso-γ

2003/7/21/22/45 2003/7/22/7/15 103 5.8 20 16 Meso-β

2003/8/18/11/25 2003/8/18/20/20 108 7 5 9 Meso-β

2003/9/10/13/35 2003/9/11/16/5 319 1.5 209 13 Meso-β

2004/7/18/12/10 2004/7/18/17/55 70 12.6 15 13 Meso-γ

2004/7/21/16/30 2004/7/21/18/25 24 12.87 1 8 Meso-γ

2005/6/21/14/5 2005/6/21/19/20 64 5.9 0 7 Meso-β

2005/7/20/12/50 2005/7/20/18/5 64 3.5 7 8 Meso-β

2005/7/29/14/30 2005/7/30/10/5 236 17.88 33 20 Meso-γ

2005/8/14/4/25 2005/8/15/1/40 256 6.2 128 41 Meso-β

2005/8/20/6/45 2005/8/20/12/25 69 5.25 4 22 Meso-β

2006/6/15/23/50 2006/6/16/8/35 106 12.8 0 1 Meso-γ

2006/6/19/11/35 2006/6/19/20/35 109 13.48 0 62 Mixed

2006/6/25/15/45 2006/6/25/23/50 98 12.49 34 2 Meso-γ

2006/7/7/11/15 2006/7/7/23/15 145 11.86 0 25 Convective

2006/7/20/14/45 2006/7/20/20/5 65 7.2 30 33 Meso-β

2006/7/27/10/0 2006/7/27/17/25 90 15.2 0 16 Meso-γ

2006/8/1/13/40 2006/8/1/20/45 86 8.92 0 43 Meso-β

2006/8/14/11/25 2006/8/15/4/45 209 2.88 145 63 Stratiform

2006/8/18/7/0 2006/8/18/15/15 100 7.73 63 40 Meso-β

2006/8/26/4/10 2006/8/26/15/25 136 6.95 1 22 Meso-β

2007/1/18/2/15 2007/1/18/22/5 239 7.48 238 191 Mixed

2007/5/7/6/40 2007/5/8/4/10 259 5.6 177 223 Stratiform

2007/5/25/5/40 2007/5/25/16/20 129 10.46 14 58 Mixed

2007/5/29/3/45 2007/5/29/19/30 190 1.85 180 190 Stratiform
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2007/6/9/15/10 2007/6/9/21/40 79 8.48 0 13 Convective

2007/6/12/13/30 2007/6/12/15/30 25 8.54 0 1 Convective

2007/6/14/14/40 2007/6/15/0/50 123 12.58 27 18 Meso-γ

2007/6/15/10/20 2007/6/16/4/30 219 14.6 101 57 Mixed

2007/6/21/4/45 2007/6/21/18/15 163 6.43 134 123 Stratiform

2007/8/9/14/45 2007/8/9/21/5 77 10.85 0 77 Mixed

2007/8/10/11/50 2007/8/10/21/50 121 8.84 0 42 Convective

2007/8/15/20/55 2007/8/16/1/30 56 9.19 34 49 Mixed

2007/8/21/5/30 2007/8/21/19/50 173 5.24 104 158 Stratiform

2007/8/24/1/25 2007/8/24/5/15 47 7.23 0 47 Meso-β

2007/9/28/15/0 2007/9/29/20/35 356 6.93 317 236 Stratiform

2007/12/23/18/45 2007/12/24/9/30 178 19.91 0 9 Convective

2008/6/3/13/5 2008/6/3/23/35 127 11 0 39 Convective

2008/6/22/13/55 2008/6/22/21/15 89 15.93 26 56 Mixed

2008/7/3/12/15 2008/7/4/9/35 257 13.55 166 209 Mixed

2008/7/10/16/10 2008/7/11/2/45 128 15.47 1 15 Meso-γ

2008/7/29/12/25 2008/7/29/18/15 71 15.78 27 71 Mixed

2008/8/1/7/55 2008/8/1/23/30 188 13.17 0 54 Mixed

2008/8/3/20/50 2008/8/4/4/35 94 8.58 53 92 Mixed

2008/8/7/14/30 2008/8/7/17/20 35 11.15 0 11 Convective

2008/8/22/11/30 2008/8/23/3/55 198 11.3 155 198 Mixed

2008/9/30/11/20 2008/10/1/15/20 337 14.12 227 132 Mixed

2009/7/3/15/45 2009/7/3/23/0 88 11.07 0 52 Mixed

2009/7/17/22/50 2009/7/18/4/55 74 3.62 63 74 Stratiform

2009/7/21/18/15 2009/7/22/0/20 74 7.64 23 21 Meso-β

2009/7/23/8/35 2009/7/23/15/15 81 19.06 6 36 Meso-γ

2009/8/8/12/55 2009/8/8/17/45 59 11.93 0 53 Mixed

2009/10/7/10/0 2009/10/8/7/50 263 13.67 131 94 Mixed

2010/5/30/9/25 2010/5/30/19/55 127 4.5 89 127 Stratiform

2010/6/9/13/55 2010/6/10/4/25 175 10.1 66 93 Mixed

2010/7/3/16/25 2010/7/3/18/15 23 8.56 0 23 Convective

2010/7/9/23/0 2010/7/10/22/55 288 0.78 0 3 Convective

2010/7/16/20/50 2010/7/17/0/35 46 11.52 0 13 Meso-γ

2010/7/26/10/50 2010/7/26/16/10 65 10.09 42 65 Mixed

2010/8/1/14/55 2010/8/1/20/20 66 14.48 2 59 Mixed

2010/8/12/3/15 2010/8/12/13/25 123 6.24 0 36 Meso-β

2010/8/26/2/15 2010/8/27/16/40 462 8.11 309 1 Meso-β

2010/9/12/14/30 2010/9/12/20/55 78 6.61 41 76 Stratiform

2010/9/25/23/0 2010/9/26/22/55 288 1 133 242 Stratiform

2010/11/12/21/5 2010/11/13/13/30 198 4.12 46 48 Meso-β

2011/6/5/15/30 2011/6/5/19/35 50 17.64 0 17 Convective
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2011/6/22/11/40 2011/6/22/19/10 91 14.14 31 58 Mixed

2011/6/29/13/10 2011/6/30/4/30 185 13.24 104 56 Mixed

2011/8/3/23/0 2011/8/4/22/55 288 3.82 0 38 Convective

2011/8/12/10/10 2011/8/12/17/45 92 7.75 1 47 Meso-β

2011/8/18/18/25 2011/8/19/9/40 184 8.6 29 36 Meso-β

2011/8/23/2/10 2011/8/23/13/50 141 8.96 14 52 Mixed

2011/8/24/17/20 2011/8/24/22/25 62 13.02 0 53 Mixed

2011/8/26/13/20 2011/8/27/1/25 146 9.13 40 39 Meso-β

2011/9/4/13/0 2011/9/4/23/0 121 11.71 0 31 Meso-γ

2011/9/11/13/15 2011/9/11/18/55 69 6.17 52 69 Stratiform

2012/5/2/16/25 2012/5/3/1/0 104 8.4 0 70 Mixed

2012/5/10/19/20 2012/5/10/23/35 52 6.49 0 31 Meso-β

2012/5/31/13/15 2012/5/31/21/25 99 5.21 98 90 Stratiform

2012/6/29/12/40 2012/6/29/17/5 54 9.99 31 42 Meso-β

2012/6/30/22/40 2012/7/1/1/5 30 10.14 0 30 Meso-γ

2012/7/5/16/5 2012/7/6/2/55 131 10 0 95 Mixed

2012/7/7/11/15 2012/7/7/16/45 67 11.4 0 15 Convective

2012/7/19/4/45 2012/7/19/15/20 128 6.9 96 98 Stratiform

2012/7/27/16/5 2012/7/28/7/0 180 16.8 0 10 Convective

2012/8/6/0/0 2012/8/6/4/25 54 8.85 19 23 Meso-β

2012/8/24/22/45 2012/8/25/1/45 37 7.64 19 33 Meso-β

2012/8/31/12/25 2012/8/31/16/35 51 4.8 0 20 Convective

2012/9/11/12/20 2012/9/11/18/15 72 10.63 3 55 Mixed

2014/7/29/15/50 2014/7/30/4/30 153 8.4 20 31 Meso-γ

2015/8/14/15/0 2015/8/15/1/10 123 8.4 0 25 Mixed

2015/8/16/9/30 2015/8/17/0/55 186 13.12 46 57 Mixed

2016/7/22/11/35 2016/7/22/15/40 50 12.17 0 28 Meso-γ

2017/5/18/12/10 2017/5/18/17/55 70 10.49 0 28 Meso-γ

2017/6/3/16/25 2017/6/3/23/55 178 10.97 2 43 Meso-γ

2017/6/22/9/45 2017/6/22/21/20 141 13.68 7 28 Meso-γ

2017/7/10/3/05 2017/7/10/14/15 136 8.36 22 71 Mixed

2014/6/10/19/10 2014/6/10/21/50 34 9.78 0 19 Convective

2014/7/8/15/0 2014/7/9/19/55 349 10.84 6 90 Mixed

2014/8/5/2/25 2014/8/5/9/55 92 7.56 0 91 Mixed

2014/9/19/15/30 2014/9/19/18/55 43 10.95 0 26 Convective

2016/5/28/14/15 2016/5/28/15/30 17 16.31 0 6 Convective

2016/6/24/13/10 2016/6/24/17/30 54 12.03 0 19 Meso-γ

2016/7/21/14/05 2016/7/21/19/10 63 14.67 0 14 Convective

2017/7/19/16/30 2017/7/19/21/45 65 8.27 19 53 Mixed

2018/7/28/11/40 2018/7/28/21/25 119 16.92 0 36 Meso-γ
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APPENDIX B
The performance criteria with raw radar input for the high intensity thresholds of existing

nowcast models a) HyRaTrac Figure B.1 -B.2, and b) Lucas-Kanade Figure B.3- B.4. 
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Figure B.1:  The event median temporal correlation for each event type as nowcasted by 
HyRaTrac on raw radar data for different lead times and different thresholds.
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Figure B.2: The event median spatial cross-correlation for each event type as nowcasted by 
HyRaTrac on raw radar data for different lead times and different thresholds.
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Figure B.3: The event median temporal correlation for each event type as nowcasted by LK on
raw radar data for different lead times and different thresholds.
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Figure B.4: The event median spatial cross-correlation for each event type as nowcasted by LK
on raw radar data for different lead times and different thresholds.



The performance criteria with merged radar input for the high intensity thresholds of
existing nowcast models a) HyRaTrac Figure B.5 -B.6, and b) Lucas-Kanade Figure B.7- B.8. 
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Figure B.5: The event median temporal correlation for each event type as nowcasted by 
HyRaTrac on merged radar data for different lead times and different thresholds.
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Figure B.6: The event median spatial cross-correlation for each event type as nowcasted by 
HyRaTrac on merged radar data for different lead times and different thresholds.
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Figure B.7: The event median temporal correlation for each event type as nowcasted by LK 
on merged radar data for different lead times and different thresholds.
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Figure B.8: The event median spatial cross-correlation for each event type as nowcasted by LK
on merged radar data for different lead times and different thresholds.



The performance criteria with merged radar input for the high intensity thresholds of new
CNN nowcast model (Figure B.9 to Figure B.10) 
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Figure B.9: The event median temporal correlation for each event type as nowcasted by 
CNN on merged radar data for different lead times and different thresholds.
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Figure B.10: The event median spatial cross-correlation for each event type as nowcasted by 
CNN on merged radar data for different lead times and different thresholds.



APPENDIX C
The performance criteria of all the merging methods for the high intensity thresholds for the
93 events (Figure C.1 to Figure C.2). 
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Figure 9.1: The Temporal Cross-Correlation of the best-implemented merging methods  for the 5
types of the events. The red dashed line illustrated the predictability limit value as shown by the
literature.

Figure C.1: The Temporal Cross-Correlation of the best-implemented merging methods  for 
the 5 types of the events. The red dashed line illustrated the predictability limit value as shown 
by the literature.
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Figure C.2: The Spatial  Cross-Correlation of the best-implemented merging methods  for the 
5 types of the events. The red dashed line illustrated the predictability limit value as shown by 
the literature.
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Figure C.3:  The Spatial RMSE of the raw radar data for the 5 types of the events and for
different intensity thresholds.



APPENDIX D

The improvements due to the merged radar data as an input to the existing nowcast models
for high intensity thresholds. 

Figure D.1: The average improvement of spatial and temporal criteria for each lead time when
using CM data instead of RR as Input for  both HyRaTrac and LK nowcast methods.  Here an
intensity threshold of 1 mm/h was used. 
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Figure D.2:  The average improvement of spatial and temporal criteria for each lead time
when using CM data instead of RR as Input for both HyRaTrac and LK nowcast methods. Here
an intensity threshold of 5 mm/h was used. 
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Figure D.3: The average improvement of spatial and temporal criteria for each lead time when
using CM data instead of RR as Input for  both HyRaTrac and LK nowcast methods.  Here an
intensity threshold of 12 mm/h was used. 
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Figure D.4:  The average improvement of spatial and temporal criteria for each lead time
when using CM data instead of RR as Input for both HyRaTrac and LK nowcast methods. Here
an intensity threshold of 60 mm/h was used. 
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The improvements  of  the nowcast  skill  due to the use  of  the CNN model  towards  LK
nowcast approach for high intensity thresholds. 

Figure D.5: The average improvement of spatial and temporal criteria for each lead time when
using CNN instead of LK nowcast methods. Here an intensity threshold of 1 mm/h was used. 
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Figure D.6:  The average improvement of spatial and temporal criteria for each lead time
when using  CNN instead of LK nowcast methods. Here an intensity threshold of 5 mm/h was
used. 
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Figure D.7: The average improvement of spatial and temporal criteria for each lead time when
using CNN instead of LK nowcast methods. Here an intensity threshold of 12 mm/h was used. 
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Figure D.8:  The average improvement of spatial and temporal criteria for each lead time
when using CNN instead of LK nowcast methods. Here an intensity threshold of 60 mm/h was
used. 
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APPENDIX E

The spatial distribution of the rainfall sum of 5 selected events for all the merging methods
investigated Figure E.1 to Figure E.5.

Figure E.1: The spatial distribution of the rainfall sum of all the merging methods for a storm 
classified as a meso-γ type.

Figure E.2: The spatial distribution of the rainfall sum of all the merging methods for a storm 
classified as a convective type.
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Figure E.3: The spatial distribution of the rainfall sum of all the merging methods for a storm 
classified as a meso-β type.

Figure E.4: The spatial distribution of the rainfall sum of all the merging methods for a storm 
classified as a stratiform type.
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Figure E.5: The spatial distribution of the rainfall sum of all the merging methods for a storm 
classified as a mixed type.
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APPENDIX F

The correlation matrix for the selected storm predictors of the k-NN approach for the step
1 of neighbour selection (Figure F.1)

Figure F.1: The correlation among the selected predictors for the recognition of similar storm. 
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APPENDIX G

The spatial visualisation for the nowcast issued from 5 randomly selected rainfall events at
+5. +30 and +60 min lead time are given below for: 

I)  field  based  nowcast  approaches  :  Lucas-Kanade  (middle  row)  and  CNN (lower  row)
models from Figure G.1 to G.5.

II)  object  based nowcast approaches:  HyRaTrac (second row),  3-NN (third row),  and an
ensemble member from k-NN (forth row) models from Figure G.6 to G.10. 

The observed rainfall fields at each time steps and lead times is given for all the figures on
the first row.
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Figure G.1:Figure G.1:The field based nowcast approach example for a meso-ɣ convective event.
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Figure G.2: The field based nowcast approach example for a convective event.

Figure G.3: The field based nowcast approach example for a meso-β convective event.
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Figure G.4: The field based nowcast approach example for a stratiform event.

Figure G.5: The field based nowcast approach example for a mixed event.
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Figure G.6: The object based nowcast approach for a meso-ɣ convective event.
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Figure G.7: The object based nowcast approach for a convective event.
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Figure G.8: The object based nowcast approach for a meso-β convective event.
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Figure G.9: The object based nowcast approach for a stratiform event.
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Figure G.10: The object based nowcast approach for a mixed event.
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