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Abstract

This dissertation investigated the application of Machine Learning (ML) in multi-

ple radar missions. With the increasing computational power and data availability,

machine learning is becoming a convenient tool in developing radar algorithms. The

overall goal of the dissertation was to improve the transportation safety. Three spe-

cific applications were studied: improving safety in the airport operations, safer air

travel and safer road travel. First, in the operations around airports, lightning pre-

diction is necessary to enhance safety of the ground handling workers. Information

about the future lightning can help the workers take necessary actions to avoid light-

ning related injuries. The mission was to investigate the use of ML algorithms with

measurements produced by an S-band weather radar to predict the lightning flash

rate. This study used radar variables, single pol and dual-pol, measured throughout

a year to train the machine learning algorithm. The effectiveness of dual-pol radar

variables for lighting flash rate prediction was validated, and Pearson’s coefficient of

about 0.88 was achieved in the selected ML scheme. Second, the detection of High Ice

Water Content (HIWC),which impact the jet engine operations at high altitudes, is

necessary to improve the safety of air transportation. The detection information help

aircraft pilots avoid hazardous HIWC condition. The mission was to detect HIWC

using ML and the X-band airborne weather radar. Due to the insufficiency of mea-

sured data, radar data was synthesized using an end-to-end airborne weather system

simulator. The simulation employed the information about ice crystals’ particle size

distribution (PSDs), axial ratios, and orientation to generate the polarimetric radar

xiii



variables. The simulated radar variables were used to train the machine learning

to detect HIWC and estimate the IWC values. Pearson’s coefficient of about 0.99

was achieved for this mission. The third mission included the improvement of an-

gular resolution and explored the machine learning based target classification using

an automotive radar. In an autonomous vehicle system, the classification of targets

enhances the safety of ground transportation. The angular resolution was improved

using Multiple Input Multiple Output (MIMO) techniques. The mission also in-

volved classifying the targets (pedestrian vs. vehicle) using micro-Doppler features.

The classification accuracy of about 94% was achieved.

xiv



Chapter 1

Introduction

1.1 Introduction

Radar has proven to be a key component in meteorological studies and weather fore-

casting. Weather radar can provide precipitation measurements and accurate in-

formation on the type of clouds and their microphysics based on the analysis and

processing of the reflected electromagnetic signals. Several groundbreaking develop-

ments in the field of weather radar, like the development of Pulse-Doppler radar,

dual-polarization weather radar, and the development of algorithms, have aided sig-

nificantly in meteorological investigations. As of this time, accurate prediction of

weather type and its hazardous levels, determination of form, shape, and orientation

of hydrometeors have been possible with the aid of existing weather radar technology

(Branch 2012; Doviak et al. 2006; Ryzhkov and Zrnic 2019). However, most of the

current operational weather prediction model is based on analytical or fuzzy-logic

models. The increasing availability of weather data for researchers and the increasing

processing ability of modern computers have facilitated the use of Artificial intelli-

gence (AI)/Machine Learning (MI) in the field of meteorology and hence in the field

of weather radars (McGovern et al. 2017). In addition to the stored data, the modern-

day computer allows the synthesis of simulated data for machine-learning applications

(Minhas et al. 2022). This research aims to identify and evaluate ML applications
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in the field of weather radar to improve the existing weather forecasting models in

terms of accuracy and efficiency. The study findings will be advantageous to academic

researchers and industry partners in the development of newer weather-radar systems

and their forecasting algorithms.

In recent years, the automotive industry has successfully demonstrated various

safety functions such as parking assistance, collision avoidance, and adaptive cruise

control using automotive radar. Complementary Metal Oxide Semiconductor (CMOS)

in radar technology makes automotive radar an ideal sensor in terms of cost, size,

weight, and power requirements (Ragonese et al. 2022). In addition, the radar can

operate in darkness and extreme weather conditions, in which other sensors may not

work. However, for all its advantages, the angular and range resolution of automotive

radar is inferior. The inferior resolution can be explained based on the functioning

of the antenna and the bandwidth available for an automotive radar. Therefore, the

classification of targets using radar and ML algorithms or other perception algorithms

is imperfect. There is, therefore, a need to improve the resolution of an automotive

radar for classification purposes. This dissertation also explores various ways to im-

prove the resolution in automotive radar, thereby improving the classification results.

This chapter will discuss the background and context first, followed by the research

topic, the research aims, objectives, questions, importance, and finally, the limits.

1.2 Backgrounds

1.2.1 Weather Radar

The first type of radar used in the dissertation is Weather Radar. Various ground-

based (both fixed and mobile) and airborne weather radars have been developed for

weather observations. The basic working principle of weather radars is similar, al-

though they vary in the frequency band and correspondingly size and platform. Most

2



weather radar systems are mono-static radars that employ a pulsed waveform. In the

case of a weather radar, a point target is replaced by multiple hydrometeor scatterers

within a resolution volume. These individual scatters contribute to the signals being

reflected. Based on the signal statistics of the reflected signal, information about

the weather can be inferred. The reflected signals are processed to estimate the Re-

flectivity, Velocity, and Spectrum Width. In the case of dual-pol radar, in which

the electromagnetic waves are transmitted in the horizontal and vertical directions,

additional variables like differential reflectivity (Zdr), correlation coefficient (ρHV ),

differential phase (Φdp), and specific differential phase (Kdp) are computed. These

variables, alone or in combination, can provide information about the weather and

cloud microphysics.

1.2.2 Millimeter-Wave, Collision Avoidance Radar

Another type of radar used in this dissertation is the millimeter-wave (mmWave) radar

designed for collision avoidance, most commonly for ground-road-traffic classification,

used in automotive, self-driving cars (Engels et al. 2021; Waldschmidt et al. 2021).

The features provided by this type of radar are simpler than polarimetric weather

radar. However, the angular and range resolutions significantly impact target classi-

fication and estimations accuracy. In contrast to pulsed radar, such as weather radar,

automotive radar uses a Frequency Modulated Continuous Waveform (FMCW) in

which the frequency of the waveform varies linearly over time. To identify the range

of the target, the reflected signal is mixed with the copy of the transmitted signal to

produce the intermediate signal, the frequency of which indicates the range to the

target. For collision avoidance applications, the range, speed, and angle of arrival are

measured. The automobile radars use short-wave electromagnetic or mmWave, with

frequencies ranging from 76 to 81 GHz. The advantages of using higher frequency

is the higher accuracy (better resolutions), compared to the lower frequency system.
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For example, larger bandwidth, which improves the range resolution, is available for

higher frequencies. Higher frequency also means smaller components’ sizes, thereby

reducing the overall size of the radar system.

1.2.3 Application of Machine-Learning

ML is a subset of AI that has been greatly admired in numerous academic domains.

There are three major categories of ML: Reinforcement Learning, Supervised Learn-

ing, and Unsupervised Learning. In Reinforcement learning, an agent is trained to

make a sequence of decisions. For each decision, the agent gets either rewards or

penalties. The goal is to maximize the reward. In Supervised Learning, the machine

is trained using the data that has both inputs and outputs. The machine then de-

tects the underlying patterns and relationships between the input and output data.

In Unsupervised Learning, the machine is trained using the data that has only in-

puts, i.e., unlabeled datasets. The machine then discovers the patterns or clusters in

the dataset. Supervised ML is used in this dissertation. For example, weather radar

measurements are part of the “input feature vector” for ML, while some atmospheric

quantity like the lightning flash rate is the output. The deep learning tools provided

by MATLAB are used in this dissertation, including primary Artificial Neural Net-

work (ANN), Convolutional Neural Network (CNN), and other variations as the key

algorithms.

1.3 Research Objectives

The scope of the research is the application of a generic ML solution to observe multi-

ple environmental “features”. These environmental features can be both natural and

man-made. The three objectives listed below are considered specific applications of

the ML framework. The first study uses dual-pol radar variables as ML features to
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predict the lightning flash rate. In the second study, the meteorological quantity of

interest is High Ice Water Content (HIWC) which is one of the natural aviation haz-

ards to be monitored. Extensive development of physical models of this phenomenon

was developed and validated first, and then simulated polarimetric airborne weather

radar data were used to verify the ML-based algorithms. In the final study, the goal

was to investigate the classification of various traffic using mmWave radars and ML

processing.

1.3.1 Prediction of Lightning Flash Rate

Using Ground-based Weather Radar Observations

Although overall lightning-related fatalities may be decreasing, the number of people

vulnerable to lightning in their workplaces is on the rise (Holle 2016). For example, the

airport has been documented as one of the vulnerable workplaces. Personnel working

outdoors responsible for maintaining airports or servicing aircraft are vulnerable to

lightning-related injuries or deaths. Therefore, it is essential to provide timely alerts

about possible Cloud to Ground (CG) lightning strikes for the safety (Steiner et al.

2012). The current lightning alert system at airports is based on visual warning

cues and a course of actions related to ramp activities. This type of system requires

the initiation of lightning strikes in a near vicinity which is detected by a lightning

detection network and uses color-coded signal lights to indicate the distance of the

strikes from the airport (Heitkemper et al. 2008). Because it is not always easy to

detect lightning initiations, it is plausible to have a lightning alert system that can

provide future lightning information.

One of the possible ways to predict lightning is to use ML algorithms. Previous re-

searches have investigated some radar variables associated with lightnings (Carey and

Rutledge 2000; Chase et al. 2022; Hondl and Eilts 1994; Woodard et al. 2012). The
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data collected from the Lightning Location Information System (LLIS) can be com-

bined with data from radars to study the nature of the storms that create lightning.

Based on these studied data, a ML algorithm may be implemented to predict light-

ning activities. This study introduces a ML algorithm applied to combined radar and

LLIS datasets and predicts the flash rates up to a 30-minute time window. Previous

works have also looked into these variables (Kohn et al. 2011; Lakshmanan and Smith

2009). However, they were limited to using ML algorithms to predict the occurrence

of lightning and not for nowcasting flash rates. Using the proposed algorithm from

this work, the flash rate can be predicted in addition to the detection of lightning.

This is important as a greater flash rate is usually associated with higher injuries, and

damage (Mazzetti and Fuelberg 2017). Flash rates can also predict severe weather

such as wind, hail, and tornadoes (Mazzetti and Fuelberg 2017; Schultz et al. 2009;

Williams et al. 1989).

In this work, ANN is used to predict the flash rate for different types of storm

cells. Storm cells-based lightning nowcasting has been made possible with storm

tracking algorithms. Using storm identification and tracking algorithms, it is possible

to extract the physical parameters of storm cells like their area, volume, and height,

which can be used as the input parameters for the supervised ML algorithms. Storm

physical parameters are related to different atmospheric parameters, which can be

favorable for a lightning generation. Instead of using a single ANN to make the

predictions, the Ensemble Learning Approach (ELA) is used. Here, a cluster of

neural networks are trained, and their respective outputs are averaged out to give a

final output to improve the accuracy of prediction (Smolyakov 2017).
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1.3.2 Airborne Weather Radar Detection of High Ice Water

Content

HIWC represent a significant aeronautical hazard and a threat to jet engine opera-

tions at high altitudes (Dye et al. 2004; Mason et al. 2006; Mason and Grzych 2011;

Ratvasky et al. 2015) including commercial vehicles, rockets, super-sonic vehicles, and

other space exploration mission platforms. The ice crystals get lodged into the jet

engines causing engine power loss and engine rollbacks. International studies, flight

campaigns, and modeling studies have been ongoing to address the HIWC challenge

(Strapp et al. 2016a). Currently, scientific teams at National Aeronautics and Space

Administration (NASA), The University of Oklahoma (OU), and elsewhere are work-

ing to better understand the microphysical processes causing HIWC at high altitudes.

Despite the research progress, there are still significant gaps between current research

and the operational needs of NASA and the industry. The active Federal Aviation

Administration (FAA)-Radio Technical Commission for Aeronautics (RTCA) working

group (RTCA 2019) on HIWC detection has been seeking to develop the minimum op-

erational performance standards for HIWC detection for commercial airborne weather

radars. Critical and fundamental questions need to be answered within an urgent

schedule, such as the criteria for declaring the hazards, the detection ranges, and the

validation of radar capabilities. In terms of testing and evaluation, past flight cam-

paigns were mainly limited to collecting in-situ measurements and some collocated

radar measurements. There is also a strong need to incorporate dual-polarization

capability into the airborne radar sensor, since polarimetric radar observations are

critical for better characterizing microphysical properties of clouds (Bringi and Chan-

drasekar 2001; Ryzhkov and Zrnic 2019; Zhang 2016). Radar polarimetry offers one

of the most promising solutions for HIWC identification, and quantification (Li et al.

2019; Ryzhkov and Zrnic 2019; Zhang 2016). In this study, the truth IWC data has

been collected from different flight campaigns. This truth IWC data, along with the
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information about the microphysical properties of ice particles, measured during the

flight campaigns and knowledge based on the literature, have been used to simulate

radar features. The simulation depends on the scattering properties of ice particles

within a resolution volume and the parameters like the waveform and antenna pattern

of the radar system. These radar features, along with some atmospheric properties

like the temperature, have been used as input features for the supervised learning-

based ML approach. ML is used for the classification purpose (whether the IWC

condition is sufficient to declare a hazard or not) and the estimation of IWC values.

1.3.3 Environment Objects Classification Based on Vehicle-

Mounted Radar Observations

The driving safety and driving comfort offered by autonomous driving have attracted

many researchers. Autonomous driving requires information from sensors like cameras

and radars to make the autonomous vehicle perceive the environment. Various sensors

have their pros and cons. For example, a camera is a superior sensor in terms of

resolution when compared to radar. However, it falls behind radar regarding its

operational ability during the night or in poor light conditions. mmWave FMCW

radar is very common for automotive applications. The range resolution depends

upon the bandwidth of the chirp signal, and angular resolution depends upon the

number of receiving antennas. The higher the number of receiving antennas, the

better will be the resolution. This can be achieved by increasing receiving antenna

elements or implementing the Multiple Input Multiple Output (MIMO) techniques.

By increasing the number of transmitting elements with proper spacing, it is possible

to create an increased number of virtual receiving antennas (Rao 2018). The goals

of this study are to demonstrate the techniques to improve the resolutions of the

radar sensors and use radar features for classifying pedestrians from vehicles. A

complete simulation of the automotive radar case is discussed. A W-band radar has
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been simulated with two transmitting antennas and four receiving antennas in the

MATLAB environment. In addition to this, results from the initial measurement

using commercial automotive radar are presented.

Previous research has explored the possibility of using MIMO techniques in an

FMCW radar. Various techniques to implement orthogonality in an FMCW radar

have been discussed in the previous article (De Wit et al. 2011; Zwanetski et al. 2013).

A practical implementation of Time Division Multiplexing (TDM) and Binary Phased

Modulation (BPM) has been demonstrated in the previous report (Rambach and Yang

2017; Rao 2018). The theoretical concepts of Frequncy Division Multiplexing (FDM)

MIMO radar have been presented in articles (De Wit et al. 2011). In this study,

an end-to-end automotive radar has been simulated to demonstrate the use of FDM

based MIMO technique to improve angular resolution. Moreover, the choice of design

parameters is discussed to consider the drawbacks of FDM-based MIMO identified in

prior research.

In addition to improving the angular resolution, the micro-Doppler-based classi-

fication of targets is also explored in this study. Since a pedestrian and car have

different micro-Doppler features, this can be used for the classification purpose in the

absence of higher resolution offered by a camera or a lidar.

1.4 Organization of Dissertation

In Chapter 1, the background of the dissertation research has been introduced. Then,

the scopes of research, objectives, and the significance of the work are briefly dis-

cussed.

In Chapter 2, the basic theory of radar systems will be reviewed. Architectural

foundations of the radar and the signal processing techniques used in the study will

be presented. In addition, the theory of ML will be presented.
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In Chapter 3, the concept of lightning as a typical aviation hazard will be in-

troduced. The methods and results of the application of the ML algorithm with

polarimetric radar data for the lightning flash rate prediction will be presented.

In Chapter 4, the challenge of HIWC as an emerging aviation hazard will be fur-

ther introduced. Much effort was spent on developing a reliable physics-based radar

signature model of HIWC. The radar return model is then connected to the airborne

weather radar system simulator, which provides an end-to-end tool for airborne radar

developers and industrial partners. Finally, the application of ML solutions is demon-

strated again using the simulation tool and the data it produces.

Chapter 5 introduces the mmWave-FMCW radar sensor and data collection for

road traffic environment monitoring. Usage of MIMO technique to improve spatial

resolution is also discussed. Similar ML algorithms are applied to classify different

targets in an automotive environment. The features are selected specifically for the

road traffic radar missions. The results from this Chapter demonstrate the impacts

of spatial resolution on the sensor data quality.

In Chapter 6, a summary and conclusions will be presented, and the proposed

future works will be outlined.
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Chapter 2

Theoretical and Architecture Foundations

2.1 Introduction

2.1.1 Basics of pulsed radar

As its acronym suggests, radar (Radio Detection and Ranging) uses electromagnetic

waves to detect and range targets. This is achieved by transmitting electromagnetic

waves, which is reflected after hitting some target. The detection of the received

signal is associated with detecting some targets, and the time it takes to return can

be used to find the range to the target. If T and c represent the time delay and the

speed of propagation of electromagnetic waves, then the range to the target is given

as

r =
c · T
2

(2.1)

Most weather radars are pulsed-Doppler radars. A high-level block diagram of

pulsed-Doppler radar is shown in Figure 2.1. Electromagnetic waves generated by a

Stable Local Oscillator (STALO) are modulated to create the transmit pulse. The

pulse is then amplified with a high-power amplifier (HPA). Ground-based weather

radars such as Next-Generation Radar (NEXRAD) use klystron transmitters. In

contrast, modern weather radar transmitters, such as airborne weather radar, have
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been dominated by solid-state technology. The solid-state amplifiers have advantages

such as low power consumption, high efficiency, small form factor, and increased

precision (Hoang 2019; Schreurs and O’Droma 2009). The amplified signal then

passes through the Tx/Rx switch and is finally radiated through an antenna. The

Tx/Rx switch prevents amplified power from leaking into the receiver subsystems.

The radar antenna may be a parabolic dish (as in NEXRAD), a slotted waveguide

array (as in airborne weather radar), or a phased-array antenna. The received signal

is mixed with the original signal and its 90◦ phase-shifted version, then finally low-

pass filtered to obtain the in-phase and quad-phase (IQ) signals. The IQ signal can

be represented with the equation 2.2, where r is the range to the target moving with

the radial velocity of vr.

V (t, r) = I + jQ =
|A|
2
U(t− 2r

c
)e
−j(4πr

λ
+4πvrt

λ
−ψt−ψs) (2.2)

Here, U(t− 2r
c ) signifies the pulse of electromagnetic energy, ψt is the transmitter

phase and ψs is the phase shift after scattering.

The radar received power (Pr) for a point target is given by

Pr =
Ptg

2λ2σbf
4(θ, ϕ)

(4π)3r4
(2.3)

Here, Pt is the transmit power, g is the antenna gain, σb is the backscattering

cross area.

Range resolution, maximum unambiguous range, and aliasing velocity of a general

radar are given by: .

∆r =
c · τ
2

(2.4)

ra =
c · Ts
2

(2.5)

va =
λ

4Ts
(2.6)
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Figure 2.1: Basic block diagram of Weather Radar

2.1.2 Introduction to Weather Radars

The weather radar is a particular application of the Pulse-Doppler radar in which,

instead of a single target “hard target” being the target of interest, it scans through

the storm, which consists of many individual scatterers within the resolution volume.

The resolution volume is defined by the range resolution and the beamwidth of the

antenna. An illustration of the resolution volume is shown in Figure 2.2.

The echo voltage is given by

V (Ts) =
1√
2

Ns∑
i=1

AiWie
−j 4π

λ
ri (2.7)

,

where Ns is the number of scatterers. Ai is dependent on the antenna pattern,

and Wi is the range weighting factor. Here, ri =
4πri
λ

+
4πvriTs

λ
−Ψsi −Bi.

The expected power is given by
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Figure 2.2: Operational Scenario of the Weather Radar.

E[P (r◦)] =
Ptg

2λη

(4π)3r2◦l2

[
c

2

][
πθ2i
8 ln 2

]
(2.8)

Note that the dependency of the received power is squared of the range ( 1
r2◦

),

whereas for the point target, it is 1
r4◦

The most important variables that are measured by weather radars are reflectiv-

ity, velocity, and spectrum width. If the weather radar is dual-polarized, additional

variables such as Zdr, Φdp, Kdp, and ρHV play significant roles in meteorological

studies, particularly for hydrometeor classification. Reflectivity is derived from the

radar return power and is the estimate of the reflectivity factor(η). Reflectivity factor

is backscattering cross-section per unit volume. Mathematically it is written as

η =
π5

λ4
|Kw|2Z

Z =
1

∆V

∑
i

D6
i =

∫ ∞

0
N(D, r)D6dD

(2.9)

Here, Z is the Reflectivity. Reflectivity is often interpreted in logarithmic units

as 10log10(Z). The value of reflectivity ranges from 0 dBZ in light precipitation to

more than 60 dBZ in heavy rainfall.
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Velocity is the mean radial velocities of all the particles inside the resolution vol-

ume, and the spectrum width represents the standard deviation of these velocities.

Spectrum width represents the relative radial motions of the particles inside the res-

olution volume. More turbulent the weather phenomenon, a wider spectrum width

is expected. Velocity and spectrum width can be better explained by the Doppler

spectrum or the power spectral density. Doppler spectrum is defined as the power-

weighted distribution of the radial velocities within the resolution volume. It is the

velocity distribution function of the particles inside the resolution volume. The power

spectral density can be modeled as a Gaussian Distribution with the mean of the ra-

dial velocity and the standard deviation of the spectrum width.

Zdr is the difference between horizontal and vertical polarized reflectivity values.

It is related to the shapes of the hydrometeors. Mathematically,

Zdr(dB) = Zh(dB)− Zv(dB) (2.10)

It is 0 for spherical, positive for oblate, and negative for prolate hydrometeors.

Kdp is the range derivative of the Φdp along the radial. Kdp can be expressed

mathematically as:

Kdp =
Φdp(r2)− Φdp(r1)

2(r2− r1)
(2.11)

Similarly to Zdr, Kdp is positive for horizontal hydrometeors and negative for

vertically oriented particles.

ρHV is the measurement of the similarity between Horizontal and Vertical pulses.

It is a great tool for discriminating between meteorological and non-meteorological

targets.

The most common signal processing algorithm in weather radar involves Pulse-

Pair Processing based on the auto-correlation function. The unbiased estimate of the

AutoCorrelation Function (ACF) of echo voltage V (t, r) can be expressed as
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R̂(kTs) =


1

N−|k|
∑N−|k|−1
n=0 V ∗

r Vr(n+ k) for |k| ≤ N − 1

0 otherwise

(2.12)

The lag-0 of ACF is the power estimate. It can be expressed as:

P̂ = R̂(0) = Ŝ + N̂ (2.13)

, where Ŝ is the signal power estimate and N̂ is the noise estimate.

Similarly mean velocity is estimated from ACF at lag 1, expressed as

v̂r = − λ

4πTs
arg[R̂(1)] (2.14)

Since two pulses are required to have an estimate of power and the velocity, this

process is referred to as Pulse-Pair Processing.

The above mentioned estimation techniques are time domain estimations. Simi-

larly, the moments can also be estimated from the Gaussian power Spectrum.

Ŝ(v) =
S

(2π)1/2σv
e[−(v−vr)2/2σ2v ] + 2NTs

λ
(2.15)

If the spectral estimates obtained for velocites v1, v2, ..., vk (corresponding to the

f1, f2, ..., fk), the zeroth moment (power), first moment (velocity) and the second

moment (spectrum width) can be estimated as:

P̂ =
N−1∑
k=0

Ŝ(k) (2.16)

v̂r =

∑N−1
k=0

vkŜ(v)∑N−1
k=0

Ŝ(v)
(2.17)

σ̂2v =

∑N−1
k=0

(vk − v̂r)
2Ŝ(k)∑N−1

k=0
Ŝ(k)

(2.18)
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2.1.3 Frequency Modulated ContinuousWave (FMCW) radars

In FMCW radars, a frequency chirp signal is transmitted. A chirp is basically a

sinusoidal signal whose frequency varies linearly with time. If the frequency increase

with time, it is called up chirp, and if it decreases with time, it is called down chirp.

Most automotive radars use up-chirps as their transmit signals. Figure 2.3 shows the

Amplitude Vs. Time plot of an FMCW chirp. It is easier to represent the chirp with

a Frequency Vs. Time plot.

Figure 2.3: An example of FMCW chirp pulse, in time domain and frequency domain

The basic operation of an FMCW radar is shown in Figure 2.4. The synthesizer

generates the FMCW chirp, which is transmitted by the TX antenna. The chirp gets

reflected when it hits a target. The RX antenna receives the reflected chirp. A copy of

the TX signal and the reflected signal gets mixed and generates the IF signal, whose
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Figure 2.4: A basic block diagram of FMCW radar

frequency, also known as the beat frequency, depends on the range of the target. The

beat frequency is equal to the instantaneous frequency difference between the TX and

RX signal.

The received signal is a delayed version of the transmit signal. This can be rep-

resented in the Frequency-Time plot as shown in Figure 2.5. Here, T represents

the two-way propagation delay. When this time-delayed version of the RX signal

is mixed with the copy of the TX signal, the IF signal has frequency ST , where

ST = (S × 2d)/c. Here, S is the slope of the chirp. It is the rate at which the chirp

ramps up and is obtained from the division of frequency bandwidth of the chirp and

the chirp ramp time, i.e. S = BW/Tc. Similarly, d is the distance to the target and

c is the propagation speed.

An ideal operation of the FMCW-automotive radar involves transmitting a num-

ber of chirps. The IF signal generated from every chirp is digitized with an Analog

to Digital Converter (ADC) and generates a certain number of samples. Each chirp

is received by each receiving element. The IF signal data cube that has IQ data for

each sample, chirp, and the Rx-element is generated as illustrated in Figure 2.6.
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The data cube then goes through a series of Fast-Fourier Transforms (FFTs) to

estimate the range to the target, the velocity of the target, and the Angle of Arrival

(AOA) of the target. FFT across the number of samples estimates the range as the

frequency of the IF signal is dependent on the range to the target. A moving target

introduces a phase difference across the chirps, so the FFT across the number of

chirps estimates the velocity. Similarly, a phase difference is introduced in angular

direction due to the RX-elements placement. So, the FFT across the number of

Rx elements estimates the AOA. To estimate the AOA in both the Azimuth and

Elevation directions, as in the case of 4D radars, a two-dimensional FFT is required

across the horizontal and vertical RX elements.

Similar to pulsed-Doppler radar, parameters associated with FMCW radars are

given as :

∆r =
c

2B
(2.19)

ra =
Fsc

2S
(2.20)

∆v =
λ

2Tf
(2.21)

va =
λ

4Tc
(2.22)

∆Θ =
λ

N × dcos(θ)
(2.23)

Θa = sin−1

(
λ

2d

)
(2.24)
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Here, ∆r and ra are range resolution and maximum unambiguous range respec-

tively. Similarly, ∆v and va represent the velocity resolution and maximum unam-

biguous velocity. Finally, ∆Θ and Θa are angular resolution and maximum unam-

biguous AOA.

2.2 Specific Radars Used in This Dissertation

The first radar instrument used in this dissertation is CINRAD. CINRAD stands for

�China New Generation Weather Radar. The radar is manufactured by METSTAR

Corporation. It is a dual-polarization S-band Doppler weather radar that incorporates

the simultaneous transmission and reception of horizontal and vertical polarization

(STAR mode). A passive power divider splits Klystron’s high power output into two

pathways, which are delivered to the Dual Polarization Feed horn on the antenna,

which transmits both signals simultaneously, one with Horizontal Polarization and the

other with Vertical Polarization. The Feed Horn divides the H and V polarization

returns into two routes, which are subsequently fed to two digital receiver channels

that are matched. The signal processor analyzes the data from the H and V channels

to generate the dual-polarization parameters. It implements the volume coverage

patterns (VCPs), similar to the NEXRAD radar systems.

The second radar instrument used in this dissertation is an airborne weather radar

sensor originally from Garmin International, Inc.(shown in Figure 2.8), and is used

as the basis for OU’s PARADOX airborne radar. It is an X-band solid-state weather

radar with a peak transmitter power of 40 watts. It uses a mechanically-scanning

slotted waveguide array antenna to cover the field of view of 120◦ in azimuth and 60◦

in elevation.

The third radar instrument used in the dissertation is the Texas Instrument (TI)’s

77 GHz automotive radar sensor chip-set (AWR 1443) and evaluation system (AWR

1443-Boost), which is depicted in Figure 2.9. AWR 1443 is an FMCW transceiver that
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operates at the frequency from 76 to 81 GHz, i.e., with a bandwidth of 4 GHz. It has

two transmit channels, which can be used simultaneously, and four receive channels.

The transmit power from each channel is 12 dBm. It is built with an integrated ARM

processor and a hardware accelerator for radar data processing. This radar can be

programmed for various applications like Short-range automotive radar, Mid-range

radar, and Long-range radar sensing. AWR 1443 Boost is the evaluation system

based on AWR 1443, which enables the capture of raw ADC data and performance

evaluation. The RF front-end with appropriate antenna spacing, shown in Figure

2.10, allows for MIMO operations.

2.3 Machine Learning Techniques Used in

this Dissertation

ML is a subset of AI that can be further divided into three categories: Reinforcement

Learning, Supervised Learning, and Unsupervised Learning. In this dissertation,

supervised learning is used for all three studies. Supervised learning performs the re-

gression or classification by learning the functions that map the inputs to the outputs

based on the input/output pairs. The learning is primarily done using the training

data. To avoid any over-fitting, cross-validation data is used for the cross-validation.

Then the performance is evaluated using the test sets. The functions can be a simple

linear function to a complex neural network. In this dissertation, ANNs are used

predominantly.

The foundations of the ANNs are based on the functioning of the human brain.

As in a human’s neural network, which consists of neurons, a neural network consists

of nodes or perceptrons. A perceptron contains one or more inputs, weights for each

input, a bias (or biases for each input), an activation function, and a single output.
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Y =
i=n∑
i=1

(WiXi) +B (2.25)

Here, Y is the output, Wi is the weight for the input Xi. B is the bias for the

node. An ANN is a collection of interconnected perceptrons or nodes. An example

of ANN is shown in Figure 2.12. Here the inputs are connected to the input layers,

which are then connected to 5 nodes of a single hidden layer. The hidden layer gets its

name because the feature inputs or outputs are not directly visible. Then the hidden

layer is connected to an output layer. The training is usually based on the forward

and backward propagation algorithms. Forward propagation calculates the outputs

of each node based on the weights and biases assigned to them. In comparison,

the backward propagation calculates the weights for each node for the next forward

propagation based on some loss function. The goal of the training is to minimize the

loss function through an iterative process until convergence is achieved. ANN can be

deep or shallow. A shallow neural network has one hidden layer, while a deep neural

network has two or more hidden layers. A special type of neural network is CNN.

A CNN performs convolution on the set of interconnected features as in images or a

signal to learn, making it very popular with applications such as image classifications

(Jmour et al. 2018).
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Figure 2.5: An illustration of FMCW radar operation.
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Figure 2.6: Radar data cube

Figure 2.7: A METSTAR Radar similar to the CINRAD.
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Figure 2.8: GSX 70-PARADOX Airborne Weather Radar

Figure 2.9: Texas Instrument 1443 Radar
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Table 2.1: PARADOX2 System Parameters

Radar Parameters Values

Mechanical

dimensions

Antenna size 6 – 50 inches depending on platform requirements

Transceiver

diameter
8 inches

Depth 6.3 inches

Total Weight
9.5 lbs (including a 12 inch antenna, electronics and

digital backend), <10 lbs without antenna

Operating Frequency 9.3 to 9.5 GHz

Antenna
Slotted Wavefuide Array and Mechanical

scanning

FOV ±60 deg azimuth, 60 deg total elevation

Transmitter
Solid-state 40 watt peak power,

support a wide range of waveforms and PRFs

Sensitivity
0 dBz@30 km

Severe weather signatures up to 40 miles

Receiver
Real-time pulse compression receiver with

optimized LFM and phase coding waveforms

Antenna beamwidth

Scalable: 12 inch panels: 5-8 ◦ az/el,

enhanced to 2 ◦ through software processing,

up to 50 inch panels –achieve 2 ◦ physical beamwidth

Scan speed PPI 4 sec for one elevation, ∼3 sec RHI
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Figure 2.10: Antenna Configuration of Texas Instrument AWR 1443 Radar

Figure 2.11: Structure of node in an ANN.
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Figure 2.12: A 1-hidden layer ANN.
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Chapter 3

Lightning Flash Rate Nowcasting Based on

Ground-Based Polarimetric Radar Sensing and

Machine Learning

3.1 Introduction

Timely detection and prediction of CG lightning strikes are essential for the safety of

infrastructures, such as airports (Heitkemper et al. 2008; Steiner et al. 2012), and per-

sonal safety (Gomes 2017). Numerous previous studies have used various sensors and

processing methods for detecting lightning and providing alerts (Carey and Rutledge

2000; Heitkemper et al. 2008; Hondl and Eilts 1994; Kohn et al. 2011; Lakshmanan

and Smith 2009; Woodard et al. 2012). Weather radars (S-C-X band) have been used

widely as one of the sensors for identifying the properties of the storm with lightning

(Carey and Rutledge 2000; Hondl and Eilts 1994; Woodard et al. 2012). However,

the applications are still limited in these aspects: (1) Polarimetric radar measure-

ments are mainly used for classifying and detecting hydrometeors, not for predicting

the flash rate. (2) The previous studies are limited to predicting the probability of

lightning events instead of predicting the flash rates (flashes per unit time). (3) The

usage of ML algorithms has been preliminary, primarily based on a few solutions,

such as fuzzy logic (Kuk et al. 2012). (4) The lead-time for the prediction has been
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very limited. The lead-time of up to 17 minutes has been demonstrated (Mosier

et al. 2011; Wang et al. 2016). It is well-known that higher flash rates are usually

associated with higher injuries and damage (Mazzetti and Fuelberg 2017). Flash

rates can also be used for identifying conditions such as lightning jumps, which can

help predict severe weather such as wind, hail, and tornados (Mazzetti and Fuelberg

2017; Williams et al. 1989). This work primarily focuses on using polarimetric radar

measurements to predict the flash rate for lightning associated with thunderstorms.

S-band polarimetric radar and lightning detection network datasets are combined for

the training of ANN. The ELA is used in this implementation of the ML algorithm,

for which a cluster of neural networks are trained, and their respective outputs are

averaged to give a final prediction output (Smolyakov 2017). As part of supervised

ML implementation, radar phenomenology knowledge and microphysical knowledge

are incorporated into the feature selection process. A new group of features used in

the ML algorithm is constructed, including general radar measurements and physical

parameters outputs from storm-cell tracking algorithms. Representative and long-

term data cases are used to verify the effectiveness of the proposed approach, and

the prediction accuracy of lightning flash rates is evaluated up to 30 minutes of lead

time.

3.2 General Concepts

The flow chart for the flash rate prediction (or nowcasting) is shown in Figure 3.1.

The data used for lightning nowcasting include both dual-polarized weather radar

(CINRAD) and the LLIS data, which are unique in terms of the location around

mountains in Hong Kong. The LLIS data combined with radar data is used for the

training process, and the polarimetric radar data alone is used for prediction. CIN-

RAD is an S-band, simultaneous dual-polarized radar that is identical to NEXRAD.

The radar antenna has a gain of 45.7 dBi and beamwidth of 0.92◦ for both azimuth
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Figure 3.1: General (data processing) system operation and ML algorithm basic flow.

and elevation. The transmitter frequency is 2.92 GHz with a pulse width of 1.0/2.0

µs. Radar data from each Volumetric Coverage Scan (VCP) include reflectivity fac-

tor, velocity, spectrum width, Zdr, Φdp, ρHV and Kdp. The detailed parameters on

CINRAD are summarized in Table 3.1. On the other hand, the LLIS contains nine

sensors manufactured by Vaisala, which have Detection Efficiency of up to 95% for

CG lightning. Lightning data includes the time and location of the lightning strike,

intensity, and the type of lightning (i.e., CG or intracloud (IC)). For each storm cell,

“truth” flash rates are retrieved from the LLIS data, with the unit of flashes per

minute per storm cell. Figure 3.2(b) shows the location map of the radar (the red

mark) and the lightning detection network (black circles).

In Figure 3.1, firstly, storm cell identification and tracking are applied to the

radar data. Tracking each storm cell is necessary for the study’s approach because

nowcasting is based on the “learned” behavior of individual storm cells. Also, the

focus is on storm cell-based lightning nowcasting. For this approach, all the storm

cells are uniquely identified and tracked throughout the VCPs, and predictions are

made regarding the lightning flash rates of each storm cell, assuming cells, on average,
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Table 3.1: Parameter of the CINRAD polarimetric weather radar system.

Parameter Description

Year of implementation and operation 2014/15

Hardware supplier Metstar, China

Software and radar processor Sigmet IRIS

Polarization Dual-Pol

Antenna height 588 m

Antenna diameter 8.54 m

Antenna gain 44 dB

Antenna beamwidth (AZ/EL)
0.92◦ for both

azimuth and elevation

Elevation levels

0.07◦, 0.86◦, 1.82◦, 2.66◦,

3.58◦, 5.38◦, 9.95◦,

14.96◦, 21.95◦, 33.95◦

First sidelobe (down from the main lobe) 34 dB

Transmitter Klystron

Peak power 650 kW

Pulse width 1.0/2.0 µs

Maximum range
256 km (every 6 minutes)

512 km (every 12 minutes)

Velocity dealiasing algorithm Alternate PRF on ad

Nyquist velocity at lowest elevation scan 45.1 m s−1
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(a) CINRAD radar. (b) Locations of the radar and lightning net-

work nodes (black circles).

Figure 3.2: Images of the sensors used in this study.

have the same characteristics. Different tracking algorithms are used in other studies

(Dixon and Wiener 1993; Hu et al. 2019; Picel et al. 2018). For this research, TINT

(TINT is not TITAN), which is based on the thunderstorm identification, tracking,

analysis, and nowcasting (TITAN) algorithm, has been used for storm cell tracking

(Dixon and Wiener 1993; Picel et al. 2018). Based on TITAN, storm cells are defined

as contiguous regions with minimum reflectivity and volume of 30 dBZ and 25 km3,

respectively. The 30 dBZ threshold is applied for the plan position indicator (PPI) for

all elevation levels. Polarimetric radar measurements for every radar resolution vol-

ume are used as input to TINT. Then, parameters and features required for tracking

and ML are computed for each storm cell.

To analyze the radar features and validate initial ML studies, the entire data set

containing a series of thunderstorm cases from 2017 to 2020, with each case containing

2-5 hours of observations, and covering different seasons, was used. These data sets

are divided randomly, so training is done using some storm cases while testing is done

using other storm cases. The operation of lightning nowcasting implemented a “sliding

window” approach in that the usage of sensor data moves from the older/history

datasets toward the newer/current datasets. For training, output parameters from
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the storm tracking algorithm are combined with the number of flashes obtained from

LLIS to form the training database. To address the operational requirements of

specific aviation facilities, the training period and prediction lead time are set up to

30 minutes. For example, 30 minutes of current radar measurement data are used

as training inputs. Then, the trained model will predict the lightning flash rates

after up to 30 minutes. Meanwhile, the new radar measurements continue to arrive

and become the new training data for further predictions. For validation, the trained

neural network is tested using the test data up to 30 minutes later. For an example of

small training data sets, three representative storm cases are shown in the following

discussions. The first storm case was on 31 August 2017. The total number of unique

storm cells identified was 248 for a duration of 3 hours. Approximately 40 cells

were identified in each VCP scan. Similarly, the next storm case was on 22 August

2018. The total number of unique cells identified was 235 for a duration of 3 hours.

Approximately 30 cells were identified in each VCP scan. Finally, the third storm

case was on 20 April 2019. 574 individual cells are identified during a span of 5

hours. Approximately 30 storm cells are detected in each scan. In these storm cases,

CG flash rates up to 2500 flashes per minute are observed in an area of about 11600

km2. In addition, for an example of long-term training data set, the machine-learning

algorithm was further tested for data obtained during 2020.

3.3 Selection of Features

Connections between dual-pol features and lightning have been studied before (Carey

and Rutledge 1996, 2000; Caylor and Chandrasekar 1996; Hondl and Eilts 1994; Hu

et al. 2019; Jameson et al. 1996; López and Aubagnac 1997; Mattos et al. 2016;

Wiens et al. 2005). This study’s selection of radar features has been based on previ-

ous studies of physical models and radar data analysis. During the physical process, a

thunderstorm contains condensates in the form of supercooled water and graupels at
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the lower level and ice crystals in the upper layer. During thunderstorm generation,

these graupels and ice crystals collide through updrafts and downdrafts, transferring

charges between them (Heitkemper et al. 2008). This Non Inductive (NI) charging

causes the ice crystals and graupels to carry the electric charge of opposite polarity.

Ice crystals carry the positive charge, while graupels, which reside at a lower height,

carry the negative charge. This charging is the principal mechanism responsible for

cloud electrification. The NI charging mechanism is also used to explain the tripolar

and multipolar charge structure (Baker and Dash 1989; Bruning et al. 2014; Keith

and Saunders 1990; Stolzenburg et al. 1998; Williams et al. 1989). The composi-

tions, shapes, and orientations of these particles show distinctive features that are

manifested through polarimetric radar measurements.

The reflectivity factor has been a useful feature of this microphysical process

(Doviak et al. 2006). A storm cell with lightning usually has larger reflectivity values

(>30 dBZ) above freezing altitude (Carey and Rutledge 1996, 1998). For a storm cell

above the freezing altitude, water will be in the form of supercooled liquid, graupels,

or ice crystals (Xu et al. 2010). The presence of ice crystals and graupels, which have

lower reflectivity values and higher reflectivity values, respectively, in the upper layer

(above freezing altitude) of the storm, is an important lightning initiating condition.

In addition, reflectivity values between 30-35 dBZ between -10◦C and -20◦C isotherm

is a good indicator of lightning initiation. Since there is a direct correlation between

altitude and temperature, the height of the echo top has been related to the radiosonde

temperature profile in this study.

Figure 3.3(a) shows one example of radar reflectivity PPI. As anticipated, the

storm cells with a higher reflectivity have more flashes associated with them, as

shown in Figure 3.3(b). Also, in 3.3(b), there are storm cells with comparatively

higher reflectivity values but have fewer flashes, as shown in area 2. In contrast, area

1 has a considerably greater number of flashes. This can be explained by their vertical
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profiles as given by Range Height Indicator (RHI) plots. Storm cell of area 1 has a

higher echo top (10 km) than the storm of area 2 (8 km), shown in Figure 3.3(c).

Higher echo tops were found to be associated with lightning. The higher probability

of lightning for storm cells with higher echo top can be explained based on decreasing

temperature with the increase of altitude in the troposphere, which is shown in Figure

3.3(d). Figure 3.3(d) gives a general idea of the attitude range for the temperature to

be between -10 and -20 ◦ centigrade. It can be inferred that the storm cells with an

echo top greater than 7 km have the probability of lightning. Analyzing the dataset,

it was found that the higher the altitude of the echo top of a storm cell, the greater

number of flashes it produces. In Figure 3.3(b), area 2 has less number of flashes than

area 1, which could be because the vertical extent of storm cell area 2 is shorter (8

km) than that of storm cell area 1 (10 km).

Zdr has higher values for rainfall due to the oblate shape of waterdrops, while it

is usually smaller for the ice crystals in the absence of any electric field due to their

random orientation (Doviak et al. 2006). A sharp change in Zdr around 0◦ isotherm

indicates the presence of water and supercooled liquid and ice particles – the condition

required by the lightning (Xu et al. 2010). Updrafts in convective storms have been

shown to cause lightning. Typically positive Zdr-columns and their vertical extent are

well-correlated with updraft intensity and freezing of drops in these columns. These

regions are likely sources of graupel embryos (Homeyer and Kumjian 2015; Kumjian

et al. 2013). Therefore, the presence of a Zdr column can be a useful feature of

lightning.

Kdp, which is the differential phase shifts at two locations, has positive values

for horizontally orientated hydrometeors and negative values for vertically orientated

hydrometeors. Since ice crystals are presumed to be orientated randomly, Kdp values

will be primarily close to 0 ◦ km−1 above freezing altitude, while having negative

values sometimes since there are vertically orientated crystals affected by the strong
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(a) (b)

(c) (d)

Figure 3.3: Dependency of the lightning on reflectivity and tempera-

ture.(a)Reflectivity PPI display from the CINRAD, (b)Lightning Location in Re-

flectivity PPI represented by blue scatter.1 and 2 represents the area with higher

flash rate and lower flash rate respectively, (c) RHI plot of reflectivity for area 1 (top)

and area 2(bottom), (d) Temperature profile of the storm on August 31st, 2017
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electric field (Preston and Fuelberg 2012). For example, Figure 3.4 shows the ver-

tical profile of Kdp values before and after lightning initiation. In Figure 3.4(a),

the presence of positive and negative Kdp values in the vertical profile observed at

12:00:08 is due to both horizontally and vertically orientated ice crystals. However,

in the vertical profile observed at 12:06:09, as shown in Figure 3.4(b), which is after

the lightning, Kdp values are more “normal” based on that ice crystals appear to be

more randomly orientated.

ρHV has been primarily used to distinguish between meteorological and non-

meteorological targets. It can also be used to study specific types of hydrometeors.

Although the association of the (ρHV) with the lightning has been studied, a signif-

icant difference was not found in the distribution of ρHV values in the storm with

and without thunderstorm and has not been used as features in this study.

Figure 3.5 shows the distribution of reflectivity (Figure 3.5(a)), Zdr (Figure

3.5(b)), Kdp (Figure 3.5(c)) and ρHV(Figure 3.5(d)) collected from resolution vol-

umes from the storm cells with and without lightning. The reflectivity distribution

shows that storms with lightning have higher reflectivity values and a higher standard

deviation of the reflectivity values. The distributions for both Zdr and Kdp for storm

cells without lightning are centered on 1 dB and 1 ◦ km−1 . In contrast, for storm

cells with lightning, the distributions are centered between 0 and 1, which confirms

the possible changes in particle orientations. In terms of ranges of values, it was also

found that Zdr and Kdp values for storms with lightning can be as low as -4.94 dB

and -8.27 ◦ km−1 while the storms without lightning have minimum Zdr and Kdp

values of -2.45 dB and -2.29 ◦ km−1, respectively. The presence of ice crystals and

graupels above the freezing altitude (mixed-phase region) also attributes to the lower

Zdr values. Similar observations were made for the maximum value of Zdr (5.63

vs 3.77 dB), and Kdp (8.31 vs 1.58 ◦ km−1) as storms with and without lightning

were compared. This is because of the heavy rainfall that was observed during the
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(a) Kdp values at 12:00:08.

(b) Kdp values at 12:06:09.

Figure 3.4: Vertical profiles of Kdp values before and after lightning strikes as seen

in two consecutive scans (12:00:08 and 12:06:09) in a storm cell of storm case of 20

April 2019.
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storm with lightning. This gave higher Zdr values due to oblate water drops at a

lower altitude. While significant statistical differences were observed for other radar

variables, statistical measures were found to be similar when ρHV values of storms

with and without lightning were compared.

Based on these observations, Z, Zdr, andKdp are the three most essential features

for training ML algorithms. Specific statistics of these three measurements, such as

maximum, minimum, and average values, are used, as part of the features of the

algorithms. The detailed construction of the training feature vector is illustrated in

Table 3.2, which combines features extracted from 5 consecutive VCPs to generate

a training data set that covers a 30 minutes time span. For each VCP, 14 feature

elements are extracted from radar data. The length of the feature vector reduces

accordingly if a lead time shorter than 30 minutes is needed.

3.4 Training and Testing Procedure

Training and testing samples for supervised learning are generated from the storm

cells by extracting the selected features at each scan. For a 30 minutes lead time,

storm cells that have a “life span” of at least 60 minutes, or 10 VCPs, are used. The

goal is to train the algorithm with up to 30 minutes of data and then estimate the

flash rates of the storm cells up to 30 minutes later. The actual lead time can vary

from 6 minutes to 30 minutes.

Figure 3.6 is used to clarify further the approach used for 30 minutes lead time.

Since each VCP lasts for around 6 minutes, 5 consecutive VCPs, representing 30

minutes, can be used to predict the flash rate for the 10th VCP, i.e., after 24-30

minutes. Suppose the red and green storm cells are tracked consecutively over 11

VCPs; each cell creates two training or testing sample sequences. One of them uses

storm parameters from VCP 1 to 10, and the other uses parameters from VCP 2 to

11. For VCP 1-10, the 6th VCP represents the current time. VCP 1 to 5 from both
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(a) Histogram of reflectivity. (b) Histogram of Zdr.

(c) Histogram of Kdp. (d) Histogram of ρHV.

Figure 3.5: Histograms of the values of (a) Reflectivity in dBZ, (b) Differential Re-

flectivity in dB, (c) Kdp in ◦ km−1 and (d) ρHV of a thunderstorm for the radar

measurement case of 20 April 2019. Storms with lightning have the Zdr distribution

with a slight negative shift and a positive shift of the Kdp distribution, suggesting

horizontal orientations of particles.
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Table 3.2: Feature parameter used for ML algorithm for 30 minutes prediction lead

time. In total a 70-element feature vector is listed. Each parameter derived from

Dual-Pol radar measurements are listed in each row. Each parameter is extracted

from five consecutive scans, and each extraction results in an element in the feature

vector, which is indexed by its location in the feature vector (a number in the second

column).

Parameter Feature indices

Storm area 1, 15, 29, 43, 57

Storm volume 2, 16, 30, 44, 58

Maximum reflectivity 3, 17, 31, 45, 59

Average reflectivity 4, 18, 32, 46, 60

Standard deviation of reflectivity 5, 19, 33, 47, 61

Maximum Zdr 6, 20, 34, 48, 62

Minimum Zdr 7, 21, 35, 49, 63

Average Zdr 8, 22, 36, 50, 64

Standard deviation of Zdr 9, 23, 37, 51, 65

Maximum Kdp 10, 24, 38, 52, 66

Minimum Kdp 11, 25, 39, 53, 67

Average Kdp 12, 26, 40, 54, 68

Standard deviation of Kdp 13, 27, 41, 55, 69

Number of CG flashes in six minutes 14, 28, 42, 56, 70
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Figure 3.6: Illustrative description of creating training and test samples from radar

VCPs.

the storms are used to create two input data of training/testing samples, and the

prediction is made for the 10th VCP. For 2-11, the 7th VCP represents the current

time, and VCP 2 to 6 forms the input data. The process continues in a “sliding

window” approach. Depending on the lead time, different numbers of VCPs can be

grouped into training or testing data with different spans. The “sliding window”

approach is applied to all the storm cells in all VCPs for all storm cases, regardless

of training or testing.

Two approaches are used for training and testing. In the first approach, the

complete lightning datasets are randomly divided into training and testing datasets

(70% training and 30% testing) based on specific storm cases. The second training and

testing approach is to emulate the real-time nowcasting application; for this approach,

during any stage of training, the system is retrained using additional training samples

obtained from the storm case under test. The periods of these additional training

samples are up to 30 minutes before the testing VCPs. Thus, the training data will

have knowledge about storm parameters and flash rates of the storm under test, such

as in the actual “sliding window” implementation. This approach is called “real-time”

training in the following discussions. Further illustration is shown in Figure 3.7. The
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Figure 3.7: Illustrative description of an example of training process for nowcasting

using multiple radar-measured storm cases.

study assumes that the training samples are created using storm cases of 31 August

2017 and 22 August 2018, and test samples are created using storm cases of 20 April

2019. The training process is then modified to implement “real-time training” by

adding the information of the storm case under test on 20 April 2019 as part of the

training samples. With the “real-time training”, after an hour of initiation of the

nowcasting process, storm parameters and true flash rates from the test storm case

of 20 April 2019 are gradually ingested into the training samples. The model is then

retrained with the updated training data before updated predictions are made.

The ML model is an ANN with three hidden layers. Each hidden layer contains

20, 30, and 20 nodes, respectively. The selection of the neural network architecture

is based on its accuracy and efficiency after performing experiments with different

numbers of hidden layers and the number of nodes. The training function was selected

as the Levenberg-Marquardt function, and the internal performance index is mean-

squared-error. The training dataset is further divided into internal training and cross-

validation datasets, which are used through an iterative process. First, a cluster of

ten neural networks is trained, and then the final output from the system is calculated
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as the average output values of the ten neural networks from the cluster. There is no

difference among the neural networks regarding their basic structures. However, since

they have different initial conditions and take different data inputs, an individual

network may produce either overfitted or underfitted results, which is difficult to

control. Such issues can be mitigated using multiple networks trained with randomly

assigned initial weights.

3.5 Results of Short-term Representative Cases

The ML-based solution’s objective is to predict (or nowcast) the flash rates (defined

as the number of CG flashes per minute per storm cell) associated with storm cells

contained in radar VCPs up to 30 minutes ahead. Two performance metrics are used:

Pearson’s correlation coefficient (ρ), which measures the level of correlations between

truth and predicted lightning flash rates, and the mean percentage error (MPE),

which is defined as averaged percentage errors comparing predicted and true values

of flash rates. The first measure is essential for general ML performance evaluation,

while the second is helpful for the specific estimation problem.

Figure 3.8 illustrates the 30 minutes lead time performance of a single ANN based

on randomly selected training and testing samples. The number of training and test

samples were approximately 520 and 130, respectively. Although the distribution of

error values are centred on zero in Figure 3.8(a), the ρ for the model was found to

be 0.57, according to the regression plot in Figure 3.8(b). The ρ varies form about

0.5 to 0.8. Predictions from individual ANNs may result in various ρ values due to

the random division of training and cross-validation sets during the iterative process.

For the similar 30 minutes lead time test, Figure 3.9 shows how the overall accuracy

of the prediction system improves by training and combining the cluster of the neural

networks. The ρ is found to be 0.81 when the outputs from 10 ANNs are averaged.
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(a) Distribution of errors (truth minus predicted).

(b) The corresponding regression/scatter plot.

Figure 3.8: Prediction performances of 30 minutes lead-time based on error distribu-

tion and ρ for an individual ANN. Dual-pol features are used.
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Table 3.3: Comparison of flash rate estimation accuracy when dual-pol features are

used and not used in training. For both methods, 10 ANNs are trained.

Metrics for comparison Dual-Pol No Dual-pol

Number of ANNs

with ρ greater than 0.8
1 0

Number of ANNs

with ρ between 0.7 and 0.8
4 0

Number of ANNs

with ρ between 0.6 and 0.7
2 1

Number of ANNs

with ρ less than 0.6
3 9

Mean ρ for all ANNs 0.82 0.68

The occurrence of error values centered on zero also increases because of ensemble

training.

Even with ensemble training, when the dual-pol features are removed from the

training dataset i.e., only reflectivity statistics are used, the performance of the now-

casting degrades drastically. The distribution of error values is no longer centered on

zero, and the ρ from the average neural network with the random selection of training

and testing samples was found to be 0.49. Summary of the performance of networks

when trained using dual-pol and without dual-pol features for the random division

of training and test samples is shown in Table 3.3. It is clearly illustrated that the

usage of dual-pol features leads to better flash rate estimation performance. The ρ is

significantly larger when the training was done, including dual-pol features (0.82 vs.

0.68 for 30 minutes lead time). The differences between statistical metrics of dual-pol

variables with and without lightning proved to be essential input features in the ML

training.
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(a) Distribution of errors (truth minus predicted).

(b) The corresponding regression/scatter plot.

Figure 3.9: Prediction performances of 30 minutes lead-time based on error distribu-

tion and ρ for 10 ANN clusters. The accuracy improves compared to Figure 3.8.
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Table 3.4: Comparison of performance of different lead times (DP/no DP). 6th, 7th,

8th, 9th, 10th VCP correspond to 6 minutes, 12 minutes, 18 minutes, 24 minutes,

and 30 minutes, respectively

Metrics

for

comparison

6th

VCP

7th

VCP

8th

VCP

9th

VCP

10th

VCP

Number of

ANNs

(ρ>0.8)

6/6 5/7 3/0 2/0 1/0

Number of

ANNs

(0.7<ρ<0.8)

4/2 4/3 6/0 4/0 4/0

Number of

ANNs

(0.6<ρ<0.7)

0/2 0/0 1/4 3/2 2/1

Number of

ANNs

(ρ<0.6)

0/0 1/0 0/6 1/8 3/9

Mean ρ for all ANNs 0.86/0.90 0.86/0.88 0.81/0.66 0.83/0.66 0.82/0.68
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The next example shows the prediction performance for a 12-minute lead time.

Figure 3.10 depicts the time-evolution of the Pearson’s correlation coefficient (ρ)

values and MPE values for the storm case of 20 April 2019, which is used for testing.

The training is done using two storm cases: 31 August 2017 and 22 August 2018, and

the real-time training starts around 14:00. From Figure 3.10(a), it is observed that

when dual-pol features are included in real-time training, the performance is better in

correlation. Between 16:00 and 16:30, ρ are comparatively low, and MPEs have high

values. The storm tracking algorithm detected the merging of storm cells during this

period. As a result, the ML algorithm cannot use the input features derived prior

to the merging to make accurate predictions. Overall, models trained in real-time

with dual-pol features have higher ρ for most durations, indicating a better ability to

correlate the predicted and the true flash rates. This can also be observed in terms of

MPE values in Figure 3.10(b). In summary, with small training data sets, ML models

trained in real-time with dual-pol features have significantly lower overall MPE, in

spite of possible bias during the course of the predictions.

3.6 Results of Longer-Term Operation

The ML algorithm was further tested for data obtained for a longer-term operation.

For this experiment, lightning data was collected from storms that occurred in the

year 2020. In total, 20 thunderstorm cases were used. Although storm cases for all

the months have been used to form the training data, storm cases from May and June

constitute the most considerable portion. Naturally, thunderstorms are more frequent

during the summer period of the year. Therefore, the training dataset consists of 1

case from March, 1 from April, 8 from May, 5 from June, 2 from August, and 3 from

September. Each case contains 3-5 hours of training data.

Figure 3.11 shows the regression plots when the data obtained from the thunder-

storms of 2020 was used in the ML experiment with a lead time of 30 minutes. The
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(a) Pearson’s correlation coefficient (ρ) for all 4 combinations

(b) Mean percentage error (MPE) for all 4 combinations.

Figure 3.10: Performance of flash-rate prediction for 12 minutes lead time, using

small training data sets, measured by Pearson’s correlation coefficient (ρ) and mean

percentage error (MPE) with and without real time (RT) and dual-pol features (DP).

total data were randomly divided into training and test sets. The number of training

and test samples was approximately 4000 and 1000, respectively. As mentioned in

previous sections, ten neural networks were trained, and the final output was calcu-

lated as the average value of the outputs from the ten individual networks. With

and without the usage of dual-pol features, the Pearson’s correlation coefficients (ρ)

between true and predicted flash rates are found to be 0.88 and 0.87, respectively, as

shown in Figure 3.11(a) and Figure 3.11(b). It is indicated that the proposed ML

approach can be scaled for longer-term operational usage.

Besides the random division of data into training and testing sets, additional

testing was done to emulate the lightning nowcasting operation. For this experiment,

51



(a) Regression plot (With dual-pol features).

(b) Regression plot (Without dual-pol features).

Figure 3.11: Regression plots of the test samples obtained from the longer term ML

regression experiment.
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(a) Pearson’s correlation coefficient (ρ) for all 4 combinations

(b) Mean percentage error (MPE) for all 4 combinations.

Figure 3.12: Performance of flash-rate prediction for 30 minutes lead time, measured

by Pearson’s correlation coefficient (ρ) and mean percentage error (MPE) with and

without real time (RT) and dual-pol features (DP), based on long-term data training.

most of the 2020 lightning cases are used for training, and one case in September (9

September 2020) is used for testing. Figure 11 shows that for both metrics, Pearson’s

correlation coefficient (ρ) and MPE display good performance compared to the models

trained from smaller data sets. Figure 11 also shows that even without using dual-pol

features and real-time training, good prediction accuracy can be achieved, provided

the ML model has been trained with larger datasets. This is possible because the

larger data sets contain more information about the characteristics of individual storm

cases. Similar performance can be observed when using other cases for testing and

cases prior to the case for training, which further validated the operational value of

the proposed algorithms.
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Figure 3.13: Feature importance metrics for all the input variables.

3.7 Analysis of Feature Importance

The importance of each feature can be determined by using a univariate F-test (Guyon

and Elisseeff 2003). Each feature is examined using cross-correlation to determine the

strength of the feature’s relationship with the response variable. The cross-correlation

is then converted into F-tests and p-values. The most important predictor has the

smallest p-value of the test statistic. This technique is based on the statistical infer-

ence and does not depend on the ML algorithm as in the case of Permutation feature

importance technique. Thus, the scores obtained using the F-test technique are con-

sistent for different types of ML model. This can also be used to filter out irrelevant

features before the training of ML models.
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One input VCP (the first of the 5 VCPs) is examined to evaluate the importance of

input features. It is clear from Figure 3.13 that the number of flashes in the previous

scans has the maximum weight in predicting the future flash rate. Storm cell volume

and area are also essential features since storm areas are expected to be directly

proportional to lightning rates. The height of the storm, which is related to the

temperature, is also of greater importance. The minimum value ofKdp, the maximum

value of reflectivity, and the average value of Kdp values have approximately the same

level of importance. The standard deviations have relatively minor importance, and

the minimum value of reflectivity (which is about 30 dBZ) has the least importance.

3.8 Conclusion

In conclusion, this study has demonstrated that it is feasible to use polarimetric radar

measurements to predict (or nowcast) lightning flash rates up to 30 minutes of lead

time. The achieved prediction performance is based on the careful selection of feature

variables as well as the ensemble technique in ML algorithm implementation. Also, it

is shown that using dual-pol variables in training and using the “real-time training”

technique can effectively improve the flash rate prediction performance when training

is done using small, short-period data sets, although in some cases, other factors

such as quality of training data and storm tracking results may affect actual results.

On the other hand, when long-term training data is available, performance may be

further enhanced using long-term data from different seasons, and the impacts of

real-time training and dual-pol observations are less significant. The validations of

the proposed algorithm are done using both representative cases from previous years

as well as long-term data collection during the year 2020.
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Chapter 4

Detection of High Ice Water Content Through

Airborne Radar Sensing and Machine Learning

4.1 Introduction

HIWC represent a significant aeronautical hazard and a threat to jet engine operations

at high altitudes (Dye et al. 2004) including commercial vehicles, rockets, super-sonic

vehicles, and other space exploration mission platforms. The ice crystal causes jet

engine power loss and engine rollbacks. The development of the next generation of

airborne aviation weather radar has an urgent need to detect and monitor HIWC

conditions. Data analysis studies, flight campaigns, and modeling studies have been

ongoing to address the HIWC challenge in the aviation community (Harrah et al.

2019; Li et al. 2010). A physical knowledge-based model of radar observation of

HIWC is needed for two reasons. First, it will guide the understanding and inter-

pretation of the radar measurements from existing flight campaigns. Second, it will

guide the industry and manufacturers in designing, developing, and certifying the

new airborne radar products. There is numerous previous modeling effort related to

airborne weather radar. For example, (Li et al. 2010) established the initial frame-

work of using the Numeric Weather Prediction (NWP) model in the airborne aviation

hazard estimation.
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The extension of Airborne Doppler Weather Radar Simulation (ADWRS) for ice

crystals was inveestigated, which would be part of the standard tools for industry

developers (Harrah et al. 2019). The method of simulating ground-based polarimetric

phased array radar using the advanced MATLAB tools was first introduced (Li et al.

2019, 2020). The airborne radar sensor simulation was extended to include antenna

tilt control and various clutter effects (Gilliam 2020). None of these developments,

however, have provided a validated simulation model and complete procedure for

airborne forward-looking HIWC detection, especially for dual-polarized operations.

On the other hand, there are a large amount of data from the previous flight campaigns

(Harrah et al. 2019; Strapp et al. 2019, 2016b), and significant phenomenology analysis

of these data (Hu et al. 2021). However, there is still a lack of connection between the

scientific knowledge derived from these data and the application of the knowledge to

actual radar designs. Further, lack of physical understanding and interpretation has

hindered the acceptance of some practically appealing HIWC detection algorithms

like Radar estimated IWC (RIWC) (Harrah et al. 2019) by the radar community

since there is no model describing the origin of pulse-to-pulse variation of received

signal amplitudes.

This study introduces an improved airborne weather radar simulation tool and

modeling method. The modeling starts from validated microphysical models of ice

particles and then uses them to simulate the stochastic behaviors of ice particles in a

unit-sized, hypothetical radar resolution cell. Each radar pulse samples a Monte-Carlo

realization of the particle states in the volume, according to the Probability Distribu-

tion Functions (PDF) between ice-water-content (IWC) and radar variables and the

radar sensor parameters. The complete radar scans and I/Q signals can then be gen-

erated from the NWP truth field grid of IWC and the end-to-end system tool similar

to (Li et al. 2010), while the airborne radar characteristics are included. The novel

benefit of this approach is that a physics-based validated “radar observation model”
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provides the connection between the IWC and the radar measurements, which incor-

porates the randomness in the measurement caused by ice crystals. Such randomness

may be useful for HIWC detection but has not been fully understood. Also, the new

simulation tool adds flexibility to the overall system evaluations since it provides a

unified interface to read NWP IWC field and aviation encounter cases. Furthermore,

for the first time, it can use 3-D data grid and antenna pattern, and then translate

the samples to radar spherical grids. In addition, the application of the simulation

model with ML based HIWC detection and classification cases is demonstrated, using

realistic radar signals produced from the simulations.

4.2 Development Procedure

The initial modeling has been based on fight measurement data, including NASA’s

DC-8 campaign, NRC-Convair Campaign, and French Falcon Campaign. All the data

collections were performed in 2015; while the NASA campaign was around the Gulf of

Mexico, the latter two campaigns were in Cayenne, French Guiana (Hu et al. 2021).

More details about the data sets used in these campaigns are listed in the Table. 4.1.

Since NASA’s flight campaign was the only one that included the forward-looking

airborne weather radar data, the NASA flight data are used to verify the radar scan

returns. However, data from the other campaigns are also very important for SCMC

inputs. During NASA’s flight campaigns in 2015, the instrument suite on the aircraft

took measurements of the HIWC conditions associated with mesoscale convection

systems along the coast and in the oceans, as well as tropical storms. Detailed

descriptions of the flight test campaigns that acquired these in-situ probe data are

available in (Harrah et al. 2019; Ratvasky et al. 2019).

The sensor data association supporting SCMC development is done among the

measured radar reflectivity (can be extended to other radar parameters) using an
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Flights
Temperature

Range (◦C)

IWC

Range

(g/m−3)

# of

PSD

samples

% of

Size Bins

Set to

Pure Ice

Density

Typical

AR

values

Typical

Canting

Angles(◦)

NASA

DC-8
-58 to -15 0.001 to 3.2 22088 1.62 0.5 0

NRC

Convair
-45 to -5 0 to 4.2 21598 28 0.5 35

French

Falcon
-45 to -3 0 to 4.2 21614 30 0.7 20

Table 4.1: Comparisons of flight campaign datasets used in this study.

X-band airborne radar, as well as IWC and Particle Size Distribution (PSD) mea-

sured by in-situ probes. Spatial matching and correlation are done firstly; latitude,

longitude, and elevation coordinates of each resolution volume were calculated based

on the aircraft’s latitude and longitude, altitude location data, and radar’s azimuth,

elevation, and range in PPI scans. Then these locations are compared with the header

information obtained from the in-situ probe data files. The nearest location matching

probe locations are recorded as the correlated radar resolution volume. Secondly, it

was made sure that the difference in timestamps between radar data and IWC data

was no greater than 15 minutes. It helps avoid the association with the resolution

volume during the return flight path. Thirdly, timestamps from the IWC file and

PSD file are compared and matched to incorporate PSD sensor data. The IWC val-

ues recorded with the IKP-2 probe are linked with the PSD data recorded with 2D-S

and PIP microphysical imaging probes. Because of the in-situ measurements of both

the IWC and PSDs, it was easier to correlate the sensor data based on the time. This

sensor association process is summarized in Figure 4.1.
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Figure 4.1: Data association procedure to correlate in-situ sensor measurement with

radar measurements during 2015 flight test.

The overall development procedure of the simulation tool, as shown in Fig 4.2,

emphasizes the relationships between the IWC values of clouds and the measured air-

borne radar observations. The study’s approach establishes a simplified microphysical

model of ice crystals while validating these models with the best possible knowledge

extracted from measurement data. First, Monte-Carlo Method is used to address

the uncertainty of the model parameters, and then a software package is developed

associated with the previous system simulation tools. Eventually, the simulation tool

may be helpful in the missions of the development of new airborne radar and aviation

standards. (Shrestha et al. 2022).

4.3 Microphysical Properties of Ice Particles

This chapter aims to develop a physics-based radar sensing model for HIWC as an

aviation hazard and then apply a ML-based processing framework to evaluate the

HIWC hazard detection using airborne radars. Recent studies have examined the
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Figure 4.2: Organization of models and verification methods

microphysical properties of high-altitude ice. Convective storms lift a large amount

of moisture to great heights where it freezes into tiny ice particles. Mostly, these

ice particles are tiny, with reported mean mass diameters between 250 and 500 µm.

Ice particles below 100 µm were reported (Leroy et al. 2017). Some common me-

teorological conditions are observed during high-altitude icing. These include high

altitudes (11,000 feet to 40,000 feet), cold temperatures (−10◦C to −50◦C), aircraft

near convection clouds or thunderstorms, and the presence of turbulence (Grzych and

Mason 2010).

Ice crystals’ PSD is important for modeling and analyzing IWC and radar mea-

surements. PSDs are number distribution functions given in #/L/µm that indicate

the number of ice particles per unit volume in a liter, per unit bin size in µm. The

PSDs are measured with 2D-Stereo for 10-1280 µm with a resolution of 10 µm. Sim-

ilarly, for 100-6400 µm, Precipitation Imaging Probe (PIP) with the bin size of 100

µm was used. The example PSDs for the flight campaign is shown in Fig.4.3. In-

terestingly, it was found that all available measured PSDs are well-fitted with the
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(a) (b)

Figure 4.3: Example of PSDs (a) collected from NASA 2015 HAIC-HIWC flight test

campaign (for all the measured IWC values, during Aug 2015 flight).(b) Example of

Cayenne, French Guiana flight collected HIWC PSD (red) and the fitted PSD (black)

using the “double-Gamma” function and regenerated using the extracted function

parameters.

“double-Gamma” function, which contains six parameters (b1 to b6), as shown in

Equation (4.1), and illustrated in in Fig 4.3(b).

y = b1x
b2e−b3 + b4x

b5e−b6 (4.1)

In addition to the size of the ice crystals, the mass-diameter relationship is of

great importance. The mass-diameter relationship (m-D) is usually represented as a

power-law m = αDβ . Where m is a particle’s mass, D is its diameter, α, and β are

coefficients. The variability in mass with diameter also affects the effective density

of ice particles (Heymsfield et al. 2004). Some of the relationships between the ice

particle size and the ice crystals’ effective density ρ are defined (Coutris et al. 2019).
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4.4 Single-Cell Monte-Carlo (SCMC) Simulation

Model

The first step in developing the aviation weather radar simulator is the single-cell

Monte Carlo simulation (SCMC simulation). SCMC is essential in modeling the

physical existence of hydrometeors in the atmosphere. SCMC also includes the calcu-

lation of scattering amplitudes, and radar variables can be calculated based on them.

Single Cell in SCMC represents a unit-sized radar resolution volume in which the

hydrometers are randomly distributed. The total number of hydrometeors and their

shapes/sizes are defined by PSDs. Other microphysical parameters of these particles,

such as the Axial Ratio (AR) of the hydrometeors and their Canting Angles (CA),

are also modeled. Atmospheric parameters such as temperature, which can influence

the scattering properties of hydrometeors, are also included. A novel aspect of the

modified SCMC from the original codes (Li et al. 2010) is the inclusion of the ice

crystal as a new type of hydrometeor and usage of the actual measured in-situ probe

data in the modeling.

With the correlated sensor data, the SCMC uses random distribution assumptions

to “fill-in” the other microphysical parameters that are unknown. For example, Static

Air Temperature (SAT) measured by the DC-8 aircraft was used directly as the single

radar resolution volume/cell temperature. AR and CA of ice particles are defined

following uniform distributions in certain ranges. The dielectric constant of the ice

crystal is estimated based on the measured temperatures. This dielectric constant

is used together with the size of the ice crystals, the AR, and the CA to calculate

the scattering amplitudes of the particles (Mishchenko et al. 1996). The AR and CA

are assumed to follow uniform distribution, with recommended mean values in Table.

4.1. Default ranges of these values are based on studies in (Garrett et al. 2015), and

existing PIP images. The actual canting angles would naturally depend on the wind
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and electrification conditions. Therefore, the SCMC uses flexible configurations of

these variables. SCMC calculates the scattering amplitudes from both the T-Matrix

and the Rayleigh scattering. The scattering amplitudes are then used to calculate

the radar observation variables such as reflectivity, Zdr, Kdp, and ρHV .

4.4.1 Equations Used in the SCMC

For example, reflectivity, Zdr and Kdp can be expressed as (Doviak et al. 2006)

Zh,v =
4λ4

π4 | Kw |

∫ Dmax

Dmin
| fhh,vv(π,D) |2 N(D)d(D) (4.2)

Zdr = 10log10
Zh
Zv

(4.3)

Kdp = 10−3180

π
λRe{

∫ Dmax

Dmin
| fhh(0, D)− fvv(0, D) | N(D)d(D)} (4.4)

Here, wavelength is the radar wavelength in millimeters (mm), and N(D) repre-

sents the PSD in mm−1m−3. fhh,vv(π,D) and fhh,vv(0, D) are the backward and

forward scattering amplitudes, respectively for co-polarized horizontal and vertical

directions, respectively. Kw is the dielectric factor of water (Doviak et al. 2006).

The IWC in unit of g
/
m3 is related with PSD through

IWC =
π

6
10−3

∫ Dmax

0
ρe (D)D3N (D) dD (4.5)

In Equation (4.5), IWC is the key ice content parameter affecting aircraft safety.

ρe is the effective density of ice crystals. When ρe has a unit of g
/
cm3 and equal-

volume diameter of ice particle D has a unit of µm, a useful relationship based on

flight measurement data (Dye et al. 2004) is:

ρe = 1.41× 10−10D−1.1, for D > Dt (4.6)
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Equation (4.6) is a modified version of the BF-95 model (Brown and Francis

1995). The density model in Equation (4.6) may need to be adjusted somehow to

“fit” specific measurement, for example, ρe is often set as constant 0.917g
/
cm3

for particle diameter smaller than certain threshold, Dt. The actual value of Dt

depends on specific temperature of the environment and environment conditions.

The relationship is depicted in Fig 4.4. The dielectric properties of ice crystals, which

affects the scattering properties is also dependent on the density of ice crystals (Ulaby

et al. 2014).

Figure 4.4: Effective Density vs equivolume diameter of ice crystals

Another useful variable, the total concentration of ice particles Nt, is the summa-

tion of numbers of concentration for all sizes, and is given by:

Nt =

∫ Dmax

Dmin
N(D)d(D) (4.7)

Figure 4.6 shows the number of particles (Nt) recorded during the NASA flight cam-

paign for different temperature ranges. Similar concentrations were observed in other
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Figure 4.5: Measured IWC vs estimated IWC based on measured PSD and the mod-

ified effective density Model.

flight campaigns (Hu et al. 2021). This similarity helps to validate the data recorded

to be used in the radar development process.

4.4.2 Mean and Variance of Reflectivity Factors

The pulse-to-pulse variation of radar return signal power, which is related to the

variance of reflectivity factor, has been used in the “Swerling” algorithm developed

by NASA team for HIWC detection (Harrah et al. 2019). This section discusses

both the mean and variance of reflectivity factors as well as the RIWC parameter

used in the “Swerling” algorithm, which have not been addressed before. Assuming

M represents the voltage RCS resulting from N number of sources with individual

RCS of σi and individual phase of ψi. Considering random phases with uniform

distribution from 0 to 2π between N particles, we have
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(a)

(b)

Figure 4.6: Comparisons of number of particles associated with IWC values for dif-

ferent temperature ranges (a) -25 to -30 ◦C , (b) -40 to -50 ◦C.
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M =
i=N∑
i=1

√
σi exp

jψi (4.8)

M∗ =
i=N∑
i=1

√
σi exp

−jψi (4.9)

The mean of the RCS can be written as (Jenn 2005):

Mean(σ) = E|MM∗| =
i=N∑
i=1

σi (4.10)

Similarly, the variance of RCS can be written as

E[|MM∗|2] = E[(MM∗)(MM∗)∗] = E[MM∗M∗M ] = E[M2(M∗)2] (4.11)

Since we have

(a1 + a2 + . . .+ aN )2 =
i=N∑
i=1

(ai)
2 + 2×

∑
1≤j≤N
1≤k≤N
j ̸=k

ajak (4.12)

E[|MM∗|2] =

E

[(i=N∑
i=1

σi exp
j2ψi +2×

∑
1≤j≤N
1≤k≤N
j ̸=k

√
σj

√
σk exp

j(ψj+ψk)
)

∗

(i=N∑
i=1

σi exp
−j2ψi +2×

∑
1≤j≤N
1≤k≤N
j ̸=k

√
σj

√
σk exp

−j(ψj+ψk)
)]

(4.13)
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E[|MM∗|2] = (
1

2π
)N×∫ 2π

0
· · ·
∫ 2π

0

[
(
i=N∑
i=1

σ
j2ψi
i + 2×

∑
1≤j≤N
1≤k≤N
j ̸=k

√
σj

√
σk
j(ψj+ψk))×

(
i=N∑
i=1

σ
−j2ψi
i + 2×

∑
1≤j≤N
1≤k≤N
j ̸=k

√
σj

√
σk

−j(ψj+ψk))

]
dψ1 . . . dψN

(4.14)

After the expansion of the itegrand of the above equation, any terms left with one

or more exponential terms becomes zero as a result of the integration from 0 to 2π

[
∫ 2π
0 ejkθdθ = 0]. The only terms that do not have exponential terms are obtained

as a result of the product between two conjugate terms. As a result,

E[|MM∗|2] =

(
1

2π

)N
× (2π)N ×

(i=N∑
i=1

σ2i + 4×
∑

1≤j≤N
1≤k≤N
j ̸=k

σjσk

)
(4.15)

E[|MM∗|2] =

(i=N∑
i=1

σi

)2
+ 2×

∑
1≤j≤N
1≤k≤N
j ̸=k

σjσk (4.16)

Thus, the variance of RCS becomes

V AR(σ) = E[|MM∗|2]− (E[|MM∗|])2 (4.17)

V AR(σ) = 2×
∑

1≤j≤N
1≤k≤N
j ̸=k

σjσk (4.18)

For spheroid particles, σi can be calculated using the Rayleigh-Gans scattering

formula or T-Matrix theory (Mishchenko et al. 1996). The backscattering amplitude
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f (Bringi and Chandrasekar 2001; Doviak et al. 2006) of each particle i is calculated

and then related to RCS as:

σi = 4π
∣∣fi∣∣2 (4.19)

The reflectivity factor then can be defined as

Z =
σ̄λ4

V π5|Kw|2
(4.20)

Based on Equation (4.20), and (4.17) the variance of reflectivity factor is given by

V AR (Z) =
V AR (σ)λ8

V 2π10|Kw|4
= ξ · V AR (σ) (4.21)

in which, ξ = λ8
/
V 2π10|Kw|4 is a coefficient related to wavelength.

Since the variance of RCS consists of mutual correlation terms
∑
i̸=j

σiσj , and

then based on Equations (4.19) and (4.20), the variance of reflectivity may be also

expressed in terms of PSD and scattering amplitudes as:

V AR
(
Zh,v

)
= ξ

{[∫ ∣∣∣fhh,vv (π,D)
∣∣∣2N (D) dD

]2
−
[∫ ∣∣∣fhh,vv (π,D)

∣∣∣4N (D) dD

]}
(4.22)

And the Radar-Derived IWC (RIWC) factor used in (Harrah et al. 2019) can be

then expressed as:

RIWC ∝ log10

(
V AR (Z)

Z

)
= log10

Zh,v −
∫ ∣∣∣fhh,vv (π,D)

∣∣∣4N (D) dD∫ ∣∣∣fhh,vv (π,D)
∣∣∣2N (D) dD


(4.23)

In Equations (4.22) and (4.23), the units of Z and VAR (Z) are mm−6m3 and

mm−12m6, respectively.
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4.4.3 SCMC Outputs and PDF of Radar Variables

Using probe-measured PSDs and the radar scattering models, SCMC outputs can be

visualized in terms of histograms of radar variables regarding specific IWC values. The

histograms are obtained by collecting all the reflectivity samples from SCMC that are

within ±0.1g
/
m3 of specific IWC values. Fig. 4.7 compares the obtained histograms

of two IWC values for the three flight campaigns. Interestingly, these histograms show

multiple peaks for low IWC values, including a peak centered around 10 dBz. The

histograms are more like Gaussian shapes for high IWC values. The extracted PDFs

from the histograms using MATLAB are illustrated in Fig. 4.8. From these PDFs, we

can observe the interesting trend of how the IWC affects the spreading of PDFs. On

the other hand, this trend may show different behaviors for different flight campaigns

in different regions. For example, the “spreading” of the PDFs may decrease with

IWC for the French Guiana campaign results but increase with IWC for the Gulf of

Mexico campaign, as shown in Fig. 4.8.

4.5 Verification of SCMC Model Outputs

Firstly, the SCMC simulation outputs are compared with the available flight test data

and other open publications. The example outputs from Monte-Carlo simulations

using the PSDs collected from the 2015 DC-8 flight campaign are shown in Figure 4.9

and 4.10, for the X band and S-band, respectively. Meanwhile, the similar simulation

outputs from SCMC for the other two flight campaigns are shown in Figure 4.11.

Comparing the simulated radar variables from the three different campaigns, it can

be noticed that the Convair and Falcon flight measurement PSDs result in a higher

range of reflectivity values than DC-8 data. The Zdr values and distributions are

different among the flight campaigns due to the particles’ different AR and canting

angles. The RIWC plots have similar trends among different flights, and they are in
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Normalized histograms and trend lines of horizontally polarized reflec-

tivity factor values as outputs of SCMC. Vertically polarized reflectivity have similar

distributions. The Left column is for IWC ≈ 1g
/
m3, right column is for IWC

≈ 2.3g
/
m3. (a) and (b) are for the Convair flight, (c) and (d) are the Falcon flight,

and (e) and (f) are for the NASA DC-8 flight.
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(a)

(b)

(c)

Figure 4.8: Comparisons of extracted probability density functions of reflectivity

factor values for different IWC values.The PSDs associated with temperature range

≤ -25◦C are used. (a) Convair data, (b) Falcon data, (c) NASA DC-8 data.
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(a) (b)

(c) (d)

Figure 4.9: SCMC output in form of scatter-plots. Radar frequency is 9.41 GHz.

Dots with density colors represent outputs from 23400 Monte-Carlo runs using 2015

DC-8 flight campaign data, and red lines represent regression trends. (a) IWC vs

mean horizontal reflectivity factor Zh, (b) IWC vs Kdp, (c) IWC vs Zdr, (d) IWC

vs RIWC for vertical polarization (Equation (4.23)).
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(a) (b)

(c) (d)

Figure 4.10: SCMC output in form of scatter-plots. Radar frequency is 3 GHz. Dots

with density colors represent outputs from 23400 Monte-Carlo runs using 2015 DC-

8 flight campaign data, and red lines represent regression trends. (a) IWC vs mean

horizontal reflectivity factor Zh, (b) IWC vs Kdp, (c) IWC vs Zdr, (d) IWC vs RIWC

for vertical polarization (Equation (4.23)).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.11: SCMC output, using the PSD data collected from Convair (Left column)

and Falcon (Right column) campaigns. (a) and (b): IWC vs Zh, (c) and (d): IWC

vs Zdr, (e) and (f): IWC vs Kdp, (g) and (h) IWC vs RIWC for vertical polarization
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the correct range of the IWC values, similar to the results in (Harrah et al. 2019).

However, the RIWCs do not show a linear relationship with the IWC values. The

most interesting radar variable is theKdp, which offers a consistent statistically linear

relationship between IWC and Kdp. A similar relationship is introduced in (Ryzhkov

et al. 1998).

As part of the validation of SCMC outputs with measured radar data, Figure 4.12

(a) shows a comparison between the SCMC simulated IWC-Z curve and the measure-

ment curve derived from the 2015 flight campaign measurement. The figure compares

the reflectivity values generated by the SCMC with the measured average reflectivity

against specific IWC values. A mean value of the reflectivity values assigned to an

IWC value (±0.1 g
/
m3) was used for comparison. For example, for the IWC value

of 1 g
/
m3 in Figure 4.12 (a), all reflectivity values that correspond to IWC values

between 0.9 and 1.1 g
/
m3 are considered for the average calculation. The reflec-

tivity values start at around 22 dBz for IWC of 1 g
/
m3 and increase to around 24

dBz for the IWC of 2.5 g
/
m3, for both simulations and measurements. From these

comparisons, we can see that the changes in reflectivity values vs. IWC are rather

insignificant.

Similarly, RIWC from both the NASA flight campaign and the outputs from the

SCMC simulation versus different IWC values are compared (Figure 4.12 (b)). The

RIWC for the NASA data can be computed based on the mean magnitude (µ) and

the variance of the magnitude (σ) of the I and Q signals of the return pulses (Harrah

et al. 2019):

µ =
1

n

n∑
i=1

(I2i +Q2i ) (4.24)

σ2 =
1

n

n∑
i=1

(I2i +Q2i )− µ2 (4.25)

Finally, RIWC is calculated by
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RIWC = log10(
σ2

µ
) (4.26)

The trend is similar to the trend of the reflectivity. The NASA-RIWC estimates,

however may introduce an error of about ±0.5g
/
m3 (see discussion in (Harrah et al.

2019)). A similar margin of errors is observed with the RIWC estimations simulated

from SCMC.

4.6 Airborne Weather Radar System Simulation

4.6.1 Background

The output of the SCMC simulation can be used in an end-to-end system simulator

to generate the in-phase and quadrature (I/Q) signals. A time-domain, 3D scanning

region airborne radar simulator is developed based on MATLAB, and the simulation

flow is depicted in Figure 4.13.

PASIM (Li et al. 2019, 2020) is a weather radar simulation tool operating in time

domain. It was originally developed for ground-based weather radar system simula-

tions, while it is extended to airborne weather radars. The expansion of the simulator,

which is called “airborne PASIM”, uses the same methods to generate I/Q signals

from radar moment data while supporting airborne motions, geometries, and coor-

dinate system translations. The simulator takes “truth” weather radar variables as

inputs. It generates the radar received IQ signals, which take account of antenna

patterns, waveforms, and RF transceiver characteristics. The radar system devel-

opers then use the simulated I/Q signals to validate the HIWC detection and IWC

estimation algorithms.

The 3D “truth” weather field is derived from the simulated data from NASA’s

Terminal Area Simulation System (TASS) (Ahmad and Proctor 2011; Proctor 1987).

The TASS data field includes three-dimensional fields of IWC as part of its outputs.
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(a)

(b)

Figure 4.12: Comparison of reflectivity (dBz) and RIWC from 2015 DC-8 flight mea-

surement and SCMC outputs, for different IWC values. (a) Averaged reflectivity

values, (b) Averaged RIWC values.
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Figure 4.13: Structure and configuration of SCMC, and its relation with the airborne

radar simulation tool.

It also includes secondary output products such as radar reflectivity factor, graupel,

wind velocity, and other variables that are arranged into the Cartesian coordinate

grid. The first step is to map these data to a radar-based polar grid system, which

can be achieved using neighbor (NN) interpolation or finding the intersecting volume

between radar resolution and the TASS Cartesian grid volume. Then an average is

taken of all the IWC values of these enclosed grid volumes. For each IWC value in the

polar radar grid, the SCMC run produces the polarimetric weather radar variables.

These variables are used as inputs to the modified airborne radar simulator.

First, based on the reflectivity factor values, the scattering amplitudes
∣∣Shh∣∣ and

|Svv| are computed for each resolution volumes using the following equation (Doviak

et al. 2006):

∣∣∣Shh,vv∣∣∣ = Zhh,vv
0.93π6R2cτθ2

16 log (2)λ4
(4.27)

,

In Equation 4.27, Zhh, Zvv are the reflectivity factors (linear scale), θ is the an-

tenna’s 3 dB beam width, τ is signal pulse width. Next, these scattering amplitudes

are applied in MATLAB’s phased array systems toolbox and are used to create I/Q

data for a single pulse over all the resolution volumes within the field of view. To

generate the I/Q data for multiple pulses, the auto-correlation function is utilized.
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Randomness is induced in the I/Q data based on sampling the SCMC output. More

randomness is introduced to explore the pulse to pulse power variation for HIWC

detection. Then the mean velocity and spectrum width are included in the follow-

ing auto-correlation equation for horizontal and vertical polarizations (Bringi and

Chandrasekar 2001; Doviak et al. 2006).

Rhh,vv(mTs) = |Shh,vv|e
−8(πσvmTs

λ
)2
e
−j 4πvmTs

λ +Nδm (4.28)

In Equation 4.28, Shh,vv, vm and σv are the average signal power, mean velocity,

the spectrum width, respectively. Ts is the pulse repetition time, n is the lag index

of the auto-correlation function. N is noise power. The dual-pol radar variables,

including Zdr, ρHV , and Φdp are implemented using the auto-correlation function

and Pulse-Pair Processing (PPP) (Doviak et al. 2006):

Rhh(mTs) = Rhh(mTs) (4.29)

And,

Rvv(mTs) = [ρHV Rhh(mTs) +
√

1− ρ2HV Rvv(mTs)]
e
jΦdp√
Zdr

(4.30)

An example output of the SCMC-airborne radar system simulation is shown in

Figure 4.14. Figure 4.14 (a) is the IWC field generated from the TASS model (which

is treated as the de facto “truth IWC field”). The IWC filed data in the Cartesian

grid have been converted to a polar grid to be consistent with the radar field of

view. Figure 4.14 (b) shows the reflectivity output of SCMC. Simulated reflectivity

scans from the airborne radar are shown in Figure 4.14 (c) and (d), respectively,

using different antenna beamwidth values of a similar aperture (dish type, similar to

existing radar products). In Figure 4.14 (c), the 3 dB beamwidth of the antenna was

assumed to be 1◦ (which can be achieved using angular super-resolution processing

(Wang et al. 2012)). The effective antenna beamwidth is 3.5◦ in Figure 4.14 (d). The
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(a) (b)

(c) (d)

Figure 4.14: End-to-end airborne radar system simulation (PPI scans) (a) IWC field

from the NWP model, (b) Reflectivity field from the SCMC, (c) Reflectivity field

from Airborne Radar System Simulator (1◦ beamwidth), (d) Reflectivity field from

Airborne Radar System Simulator (3.5◦ beamwidth).

effect of the antenna on spatial resolution can be seen clearly, which will, in turn,

affect HIWC detection performance.

Next, simulated PPI scans of all the dual-polarized radar variables were generated,

as shown in Figure 4.15. The Kdp plots show that the relationship between IWC and

Kdp is almost linear and can be expressed as KdP ≈ IWC, for the X-band radar

system. This relationship was also verified from the SCMC outputs. The values of

Zdr are plausible based on the axial ratios defined in the SCMC simulation (i.e., 0.3

to 0.7). However, the Zdr values are distributed in a small range between 0.44 dB
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and 0.45 dB; thus, it is not convenient to infer HIWC conditions from Zdr values

alone.

(a) (b)

(c) (d)

Figure 4.15: End-to-end simulations of PPI scans of polarimetric radar outputs, (a)

A snapshot of Kdp field output from SCMC, (b) Kdp field estimation from Airborne

Radar System Simulator, (c) A snapshot of Zdr output field from SCMC, (d) Zdr

field estimation from Airborne Radar System Simulator (Assuming 1◦ beamwidth for

system simulations).
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4.7 Detection of HIWC using Simulated Airborne

Radar Data

The previous sections established an end-to-end framework for evaluating the algo-

rithms for detecting and classifying the HIWC conditions through airborne radar

sensor measurements. In this section, an illustrative example of algorithm evaluation

based on simple ML (i.e., ANN) is provided. The combination of flight test data

and simulation data provides sufficiently large amounts of training and testing data

for the evaluation. The biggest challenge is the selection and the application of the

features and usage of these features for quantitative predictions. Even though the

measured radar variables show different relations with IWC levels, there is a need

to use the measurable and relevant radar variables in the ML algorithm as features.

These features include reflectivity, Zdr, Kdp, and RIWC for both polarizations. By

doing so, it is convenient to better focus on the optimal detection and the achievable

estimation results. One of the issues is the usage of temperature as a feature variable,

which is further investigated through the following experiment.

ML algorithms are applied for classifying different levels of IWC (e.g., high and

low IWC regions) and/or estimation of IWC values.A regression supervised learning

method based on ANN is once again used for IWC predictions based on radar in-

puts. Similarly, the classification of the HIWC (based on threshold value of either

1 or 1.5 g
/
m3) can be implemented. Using the SCMC simulated radar reflectivity,

temperature, and the IKP probe estimated IWC as input feature variables, a simple

Neural Network with 2 hidden layers (16 nodes each) is trained for the regression and

the classification. The dataset is divided randomly to generate the training (70%),

testing (15%) and the cross validation (15%) datasets. The regression results and

classification’s confusion matrix are shown in the Figure 4.16 and Figure 4.17, re-

spectively. The correlation coefficients of around 0.94 or more were achieved for the
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training, cross validation and the test data sets. Similarly, a classification accuracy

of better than 86% is achieved (In the confusion matrix, 1 represents the HIWC lev-

els (IWC > 1 g
/
m3), and 0 represents IWC values of 1 g

/
m3 or less). The input

features used in this ML experiment include SCMC outputs: Reflectivity, Zdr, Kdp,

and RIWC in both Horizontal and Vertical Polarization. In addition, the temperature

measured by the aircraft’s temperature sensor is used.

Figure 4.16: Regression plots for HIWC detection using temperature as a feature
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Figure 4.17: Confusion Matrices for HIWC detection using temperature as a feature

Although the temperature has been shown to correlate with the IWC in previous

studies, “radar-only” detection and estimation of HIWC are crucial. As the tem-

perature measuring instruments in a flight provide in-situ measurements and radar

cannot estimate the temperature, it is not convenient nor accurate to associate the

aircraft measured temperatures like SAT or TAT with the radar PPI scans. Figure

4.18 and Figure 4.19 shows the regression analysis and classification performance of

the ML algorithm without the use of temperature. Only the radar variables from the

SCMC outputs are used as the inputs to the supervised learning approach. The same
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neural network architecture was used with the same division ratio of the training,

testing, and cross-validation datasets. The correlation coefficient of 0.92 or more and

the classification accuracy of 85% or more were achieved. The results verified that

temperature is not a critical feature variable for HIWC detection, even though it is

important as a pre-condition for HIWC in general. Similar tests can be performed

for different combinations of feature variables to attain further optimizations of ML

algorithms.

Figure 4.18: Regression plots for HIWC detection, without using temperature as an

input feature.
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Figure 4.19: Confusion Matrices for HIWC detection, without using temperature as

an input feature.
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Figure 4.20 shows the ranking of the features used according to their importance.

The ranking is based on the univariate F-test (Guyon and Elisseeff 2003). It can

be seen that the Kdp is the most crucial feature for estimating IWC. It is due to

the linear relationship between IWC and Kdp as seen in the SCMC outputs. The

mean reflectivity values (Zh and Zv) are of secondary importance, while Zdr and the

variances of the reflectivity values (which include RIWCs) are less significant. This

signifies the importance of Kdp and the potential values of incorporating polarimetric

airborne weather radar variables for HIWC detection and estimation.

Figure 4.20: Confusion Matrices for HIWC detection, without using temperature as

an input feature.

To investigate the effectiveness of dual-polarized radar variables as features and

provide examples of using the airborne-PASIM, Zh, Kdp and Zdr is used as input

feature variables for the same NWP weather field as in Figure.4.14 as the test data

set. Zh, Kdp, and Zdr from the SCMC are used as the training dataset. ANN

is designed and optimized herein as a predictor-classifier for IWC values. Again,

the truth IWC field for airborne-PASIM (the output variable for the test dataset)

89



is taken from the TASS output IWC grid instead of actual field measurements. For

each radar resolution cell spatially distributed over a PPI scan, “truth” radar variables

are computed for it by averaging SCMC outputs, and I/Q signal samples of it are

generated for both H and V channels based on an airborne encounter geometry. Zh,

Kdp, and Zdr are estimated using these I/Q data, and then they are fed to the ANN

(trained using SCMC outputs) to predict the IWC values. The visual illustration of

the ML-based IWC estimation process is shown in Figure 4.21. The results of IWC

prediction are shown in Fig. 4.22 (b). Compared to Fig. 4.22 (a), a small bias of

IWC estimation can be observed, while the overall result is promising and validates

the potential usage of polarimetric radar measurement for IWC estimation.

Figure 4.21: Illustration of the ML Based IWC Estimation Process.
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(a) (b)

Figure 4.22: Prediction of IWC levels using (Kdp and Zdr) feature vector. (a) IWC

values from TASS output field (b) IWC values predicted by ML algorithm (trained

ANN using SCMC outputs)

4.8 Discussion and Conclusion

In this chapter, the HIWC was introduced as an aviation hazard that impacts jet-

engine operation. The relationship between the IWC and the radar variables was

studied based on the various flight campaigns. In-situ measured PSDs of ice crystals

are used in the SCMC simulation to generate the radar variables using T-matrix

or Rayleigh scattering theories. After generating the radar variables, an end-to-

end airborne weather radar simulator is developed. The simulator incorporates the

radar system parameters to generate realistic I and Q data. ML experiments are

also performed using the simulated radar variables for detecting and estimating IWC

values. The validations of the SCMC outputs require comparison with the radar data

(remote) collected during the flight tests. Since the SCMC outputs are based on

the in-situ measured PSDs, temporal as well as spatial (Radar PPI scans vs. flight

path in-situ data) correlations between radar and probe measurements are performed.

More insights into the HIWC measurements are obtained through this comparison

and validation, while errors in the sensor correlation process may still be an issue. The
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current NASA flight campaigns do not have dual-polarized radar measurements, so

the validations of polarimetric variables as features are mainly based on simulations.

Future flight campaigns with dual-polarized radar measurements will be necessary for

further system validations.
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Chapter 5

Environment Classification Based on

Vehicle-Mounted Radar and Machine-Learning

In this chapter, a challenge associated with automotive radar operations is addressed.

One of the issues of the automotive radar is its low resolution, which affects its target

classification performance. This chapter introduces techniques to improve angular

resolution and classification accuracy. First, a method called MIMO is implemented

for angular resolution improvement. Secondly, it is a huge issue for practical opera-

tions of automotive radar in actual street environment for the discrimination between

pedestrians and moving vehicles. Naturally, micro-Doppler signatures of different

types of radar targets are used for target classification here, while the previous stud-

ies are very limited in terms of classification accuracies. A new way to incorporating

the micro-Doppler features into the ML algorithms is used in this chapter.

5.1 Improvement of Angular Resolution via MIMO

5.1.1 Introduction

Autonomous vehicles have always been a field of considerable research interest. Past

research have demonstrated achievements assuring that self-driving cars are, in fact

the future of mobility. Self-driving cars have been made possible by sensor fusion
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technique, which incorporates sensors, including camera and radar. Cameras have

the best resolution. Nevertheless, their ability to sense may be affected in weather or

night conditions. Radars are not affected by these conditions but lack the resolution

when compared with other optical sensors (Engels et al. 2021; Gamba 2020; Patole

et al. 2017).

Most automotive radars are FMCW radars whose range resolution depends on the

bandwidth of the FMCW chirp, and angular resolution depends upon the number of

the receiving antennas. Having a higher number of receiving antenna elements will

improve the angular resolution. Instead of increasing physical receiving antennas, it

is possible to generate virtual receiving antennas by adding transmitting antennas,

commonly known as the MIMO technique (Li and Stoica 2008; Rao 2018). MIMO

requires orthogonal signals in multiple transmitting antennas. Previous research has

explored the possibility of using MIMO techniques in an FMCW radar. Various tech-

niques to implement orthogonality in an FMCW radar have been discussed in the

previous article (De Wit et al. 2011). Commercial automotive radars have imple-

mented the capability of MIMO using TDM and BPM in 2Tx and 4Rx systems (Rao

2018). Although the angular resolution is improved, the maximum unambiguous ve-

locity is reduced by half. This problem will only exacerbate when more Tx are added

to improve the angular resolution. The maximum unambiguous velocity reduces by

the factor equal to the number of Tx elements. Thus, it becomes necessary to explore

other multiplexing techniques. This study proposes the FDM technique to achieve

orthogonality. The theoretical concepts of FDM-based MIMO radar have been pre-

sented in articles (De Wit et al. 2011; Zwanetski et al. 2013). Frequency modulated

signal with different starting frequencies for two Tx antenna is used to create 8 Rx

virtual channels. However, the limitation of FDM is that it usually requires an incre-

ment in sampling frequency of Analog to Digital Converter (ADC), to accommodate

for the two frequencies. In this study, the choice of design parameters like the two
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starting frequencies is discussed to eliminate the drawbacks of FDM-MIMO identi-

fied in prior research. There have been limited studies on the FDM-MIMO-based

automotive radar. In this study, a full radar system has been simulated in MATLAB

environment, which shows the possibility of using FDM in automotive radars. FDM

is shown to achieve the same improvement in angular resolution as TDM-MIMO.

5.1.2 Theory of Operation

An automotive radar transmits FMCW chirps. When a chirp transmitted by FMCW

radar is reflected from a target, it returns to the radar receiver. The received signal is

the delayed version of the transmitted signal. The delay depends upon the distance of

the target from the radar. When mixed with the transmit reference signal, baseband,

or IF signal, the received signal is generated with the frequency corresponding to the

target range (f = S2d/c). Here, S is the slope of the chirp, d is the target’s distance,

and c is the propagation speed of light. The signal is sampled by an ADC and received

for multiple chirps and Rx antenna elements. FFTs and advanced techniques like

digital beamforming are applied to estimate the range, velocity, and AOA (Patole

et al. 2017; Richards 2005).

The angular resolution, the ability to resolve two targets in the angular domain,

depends upon the number of receiving antenna elements in an array system (Gamba

2020; Rao 2018). Angular resolution of a general antenna system is given by Equation

5.1.

∆Θ =
λ

Ndcosθ
, (5.1)

Here, λ is the transmitter wavelength, d is the spacing between elements, N is

the number of elements, and θ is the pointing angle. For antenna spacing of λ/2

and θ = 0◦ (boresight), the equation becomes ∆Θ = 2/N . Thus, it is clear that the

number of receiving antenna elements should be increased to have a better angular
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resolution. One intuitive way is to increase the number of receiving antenna elements.

However, due to the size constraints of automotive radars, it is not always pragmatic

to increase the number of receiving antenna elements. Another way is to add trans-

mitting elements. For two transmitting antenna elements separated by 2λ, as shown

in Figure 5.1.2, it is possible to create 8 virtual antennas. The phase difference in

each four Rx antenna elements will be the same as if 8 physical Rx antenna elements

were used. The signal transmitted from the first transmitting element will create the

first four virtual receiving array elements. The signal transmitted from the second

transmitting element will create the remaining four virtual receiving array elements.

Figure 5.1: Virtual array demonstration for the case of two transmitter and four

receiving array, which generates eight virtual receiving array elements.

The practical implementation of MIMO requires orthogonal waveforms transmit-

ted from at least two antennas. One of the simplest methods is to use TDM as used

in the previous report (Rao 2018). In this technique, two transmitting antenna trans-

mits the signal alternatively. Despite being the easiest to implement, the maximum
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velocity that can be measured is reduced. To overcome this issue, FDM can be im-

plemented. Instead of transmitting signals alternatively, signals with different carrier

frequencies are transmitted, thus creating an offset in the beat frequencies for two

signals corresponding to two antennas. In the case of a system containing two trans-

mit antennas, if the frequencies of the transmit signals are f and f±δf , and then the

received signal is mixed with the reference signal of frequency f , the baseband signals

of frequency S2d/c and S2d/c± δf are generated which can be separated digitally in

frequency domain (De Wit et al. 2011).

The IF signals are sampled by ADCs (analog-to-digital converters), whose sam-

pling rate plays an important role in determining the maximum range the radar can

measure. According to the Nyquist Sampling criteria, the maximum frequency that

can be sampled using an ADC with a sampling rate of fs is fs/2. The maximum

range that can be measured is Dmax = (c × fs)/(2 × S) (Gamba 2020). Adding

offset to frequency will require an increment in sampling rate by δf to sample signals

transmitted by two antennas in the receiver chain. This study demonstrates a tech-

nique to eliminate the need for adding the sampling rate. If the frequencies of the

transmitted signals are offset by half of the sampling rate (fs/2), with the techniques

of IQ demodulation, the same targets can be resolved in two halves of the spectrum

after doing a range FFT. In Figure 5.2, a target located at 8 meters is estimated to

be at 8 and -16 meters simultaneously. The negative range does not have any phys-

ical significance and is only the predetermined offset value in range measurement.

By considering this offset in the digital backend processing, the actual range can be

estimated.

5.1.3 Simulation

A practical automotive radar was simulated using MATLAB. MIMO was achieved

using two Tx and four Rx antennas, respectively. The simulator can perform the
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Figure 5.2: Range Profile demonstration whrn FDM MIMO is used.

TDM as well as FDM MIMO simulations. For TDM, two Tx antennas transmit the

signals alternatively. Similarly, for FDM, the two Tx antennas transmit the signals of

two different frequencies of 77 GHz and 76.995 GHz, respectively. The sampling rate

of the ADC is 10 KiloSamples Per Second (KSPS). The two transmit frequencies are

offset by half of the sampling rate. Basic radar parameters are shown in Table 5.1.

Based on the information about the target provided to the simulator, it can gen-

erate simulated I/Q time series output. There can be various targets at different

locations with different velocities. The simulator is based on the time domain sig-

nal modeling. The range information is encoded into the signal as time delay, while

velocity and angle information are encoded as phase shifts. The phase shift due to

a moving target can be observed in signals from different chirps, while the phase

shift due to the angular location can be observed in signals from receiving antenna

elements. A datacube is generated based on the I/Q signals containing complex in-

phase and quadrature data arranged in range, chirp, and antenna element directions.

Simple FFT techniques are used to extract range, velocity, and angular information.
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Table 5.1: Radar Simulation Parameters

Radar Parameters Values

Center Frequency 77 GHz

Bandwidth 1.798 GHz

Frequency Slope 29.982 MHz/µs

Number of Chirps 64

Number of Tx Antenna 2

Number of Rx Antenna 4

Idle Time 100 µs

Tx power 12 dBm

Maximum Unambiguous Range 24.99meters

Maximum Unambiguous Velocity 6.08 ms−1

Spatial Resolution with MIMO (Boresight) 14.323 ◦

FFT along range sample gives the range of the target. FFT along chirp (slow time)

gives velocity, and FFT along the antenna element direction gives the angular infor-

mation. As for comparisons, different Digital Beamforming techniques can also be

used to extract the AOA.

5.1.4 Experimental Results

Multiple experiments with various target scenarios were performed to validate the

performance of the MIMO mode for TI’s automotive radar. Two representative target

scenarios are presented here. In the first experiment, a single stationary target at 8

meters at boresight was considered. In the second experiment, three targets at 5

meters were considered. They were assumed to be moving with the radial velocities

of 2.5 ms−1, 5 ms−1, and 7.5 ms−1, respectively. Their angular locations were
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−18◦, 0◦, and 18◦, respectively. Figure 5.3 shows the range-AOA profile when a

single Tx antenna was considered, i.e., no MIMO was implemented. Figure 5.3 (a)

and Figure 5.3 (b) depicts the range-AOA profile for single target consideration and

three targets consideration, respectively. Without using the MIMO technique, the

three targets are not resolved spatially.

(a) (b)

Figure 5.3: Range-Angle of Arrival Map without using MIMO. (a) Single target (b)

Three targets

For TDM- based MIMO, each TX antenna was enabled alternatively. The range-

AOA profiles for the two experimental simulations are shown in Figure 5.4. Figure

5.4 (a) shows that the use of TDM MIMO provides better angular information about

the target. Also, the three targets are resolved, as shown in Figure 5.4 (b).

Similar results were observed from the results based on FDM MIMO. Figure 5.5

shows that compared to non-MIMO, the angular resolution is improved significantly

for both target scenarios.

Figure 5.6 compares the AOAs obtained using different MIMO schemes for the

three target scenarios. When MIMO was not used, only one peak at 0◦ is observed.

For both FDM and TDMMIMO, three targets (−18◦, 0◦, and 18◦) are resolved. This

is because the resolution has improved by a factor of 2 (28.64◦ to 14.32◦ at boresight).
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(a) (b)

Figure 5.4: Range-Angle of Arrival Map using TDM MIMO. (a) Single target (b)

Three targets

There are some biases in the estimation. This can be corrected by increasing FFT

points or by using digital beamforming techniques.

Although both TDM and FDM can achieve the orthogonality required by a MIMO

system, the use of TDM for MIMO affect the maximum velocity that can be measured

without any ambiguity. The maximum unambiguous velocity is given by Equation

2.22.

In Equation 2.22, the maximum unambiguous velocity (va) depends on the time

duration between two chirps (Tc). Since, in TDM, the effective duration between two

chirps transmitted by a TX antenna increases, the maximum unambiguous velocity

decreases. In this simulation, the maximum unambiguous velocities for TDM and

FDM-based MIMO are 3.04 and 6.08 ms−1. Out of three targets moving with veloc-

ities of 2.5, 5, and 7.5 ms−1, the TDM range-Doppler map shown in Figure 5.7 (a)

indicates only one velocity value (2.5 ms−1) is estimated accurately. But, the FDM

range-Doppler map shown in Figure 5.7 (b), two velocity values (2.5 and 5 ms−1)

are estimated accurately.
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(a) (b)

Figure 5.5: Range-Angle of Arrival Map using FDM MIMO. (a) Single target (b)

Three targets

5.1.5 TDM MIMO Implementation using TI’s AWR 1443

Radar

In addition to simulation results, Texas Instruments AWR 1443 Automotive radar

was used to implement TDM-MIMO. The specification of the radar is similar to the

simulator used and is shown in Table 5.1. The radar used and the experimental setup

is shown in Figure 5.8. A stationary sedan vehicle at boresight was used as a target.

The range-AOA map for the target at the range of 13 meters is shown in Figure 5.9.

As observed in the TDM and FDM-based MIMO simulation, the angular resolution

is improved when MIMO feature is enabled in TI radar. The angular resolution at

boresight decreases from 28.64◦ to 14.32◦ in both MIMO simulations and when TI

radar is used for measurement, thus validating the simulations.
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Figure 5.6: AOA comparison for different MIMO schemes.

5.1.6 Conclusion

To summarize, an end-to-end automotive radar with MIMO capability was simulated

and partially verified, and the results were partially validated with actual measure-

ments. The use of MIMO in radar systems can improve angular resolution. In this

section, orthogonality of MIMO channels is achieved using both TDM and FDM.

TDM is easier to implement but reduces the maximum unambiguous velocity. This

problem can be overcome by using FDM. FDM may require ADCs with a higher

sampling rate. Here, with IQ demodulation and using correct choices of frequencies

in two transmit channels, there is no need to increase the receiver sampling rates.

However, the implementation of FDM techniques can add some complexity to the

radar system design. The complexity increases with the increment in the number of

Tx elements. For future studies, other orthogonality techniques like phase division

multiplexing or code division multiplexing can be implemented to achieve MIMO
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(a) (b)

Figure 5.7: Range Doppler map for MIMO radars. (a) TDM (b) FDM

(a) (b)

Figure 5.8: Measurement using TI radar (a) Radar used for the measurement (b)

Experimental Setup
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(a) (b)

Figure 5.9: Range-Angle of Arrival Map of a single car target, measured using TI

AWR1443 radar. (a) Without MIMO (b) With MIMO

(Alaee-Kerahroodi et al. 2019; Rambach and Yang 2017). In addition, further stud-

ies about the feasibility of implementing these techniques in actual automotive radar

products are recommended.

5.2 Micro Doppler based Classification of Pedestrian

and Vehicle

5.2.1 Introduction

In addition to the radar’s capability to detect the targets’ bulk movement, it can also

detect small oscillations within the target. These oscillations are referred to as Micro-

Doppler. The source of Micro-Doppler can be swinging arms and legs in humans and

rotation of the wheels in a vehicle. A periodic Micro-Doppler modulation can induce

the modulation in Doppler frequency as the side-band shifts around the Doppler

frequency (Chen et al. 2014).
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This study focuses on the classification of a pedestrian and a vehicle. These

two classes of targets represent a simple traffic condition. The classification of the

targets is necessary for an autonomous system to make an optimum decision. Initial

classification strategies studied the classification of stationary and moving targets

based on the Doppler filtering (Hyun et al. 2017). But with the advancement in

autonomous vehicle technology, studies about the classification of the types of moving

targets are becoming popular. Target classification based on the Radar Cross Section

(RCS) has been popular (Mansukhani et al. 2021). However, the classification using

RCS may be affected by various factors like the size, and orientation of the target

and it may be computationally inefficient (Kim et al. 2018). Micro-Doppler based

classification has been implemented using the feature extraction on a target cluster

of a range-Doppler map (Prophet et al. 2018). However, target clustering might be

difficult. In this study, micro-Doppler is represented in the form of a spectrogram

and is used directly with CNNs for classification. This eliminates the need for feature

extraction and avoids any errors associated with the clustering and the manual feature

extraction process.

Figure 5.10 shows an example of the difference in the Micro-Doppler characteristics

of a pedestrian and a vehicle. The plots are simulated using MATLAB’s radar toolbox.

The simulation assumes that the 77 GHz FMCW radar is used. These features of the

different targets can be the basis of classification using machine learning algorithms.

5.2.2 Signal Processing for Pedestrian Detection

Figure 5.11 shows a high-level signal processing chain for the micro-Doppler analysis.

First, the base-band ADC data goes through a Range-FFT (FFT across the fast

time samples) and then the Doppler FFT (FFT across the chirps in a frame). From

Range-Doppler Maps, the targets are detected. Peak detection can be used with

only one target in a frame, or a Constant False Alarm Rate (CFAR) detection can
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(a) (b)

Figure 5.10: Micro Doppler characteristics of a Pedestrian (a) and a Vehicle(b), Gen-

erated using the Matlab’s Radar Toolbox

Figure 5.11: Signal Processing chain for the micro Doppler analysis.
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be applied to detect multiple targets in the Range-Doppler Map. Then for each

detected target, Short-time-Fourier Transform (STFT) is performed using the Range-

FFT data. STFT determines the variation of the frequency spectrum over time or

the target’s micro-Doppler characteristics.

TI 1443 FMCW radar was used to collect the data for a pedestrian and a car,

respectively. The start frequency of the radar was 77 GHz, with a frequency slope

of 29.982 MHz/µs. 64 chirps were collected for each frame, and the chirp repetition

time was 160 µs. The influence of the pedestrian’s gait can be clearly observed in the

Range-Doppler map as shown in Figure 5.12. For a pedestrian, the target velocity is

smeared across multiple Doppler bins. This is because a walking person, in addition

to the bulk Doppler phase information, exhibits the Doppler properties induced due

to the swinging arms and legs and the rotating torso. The rotation of wheels in the

car does not have notable Micro Doppler signatures. To interpret these signatures, it

is often convenient to use the time-frequency properties of the return signal. For this,

STFT is used. The spectrogram analysis of STFT generates the visual representation

of the frequency variation with time. The data for 64 chirps were divided into smaller

segments of 8 chirps using a repetition factor of 7. 1024 points FFT was performed

for each segment. This resulted in the frequency resolution of 781 Hz. As a result,

spectrogram plots of the size 1024× 57 were used.

Figure 5.13 shows the STFT spectrogram of a pedestrian and a car together,

collected using the 77 GHz Radar. The gait of a pedestrian can be identified in

the spectrum plots. The periodic frequency variations on the STFT spectrogram of

a pedestrian are due to the periodic movement of body parts. Such variations are

absent in the STFT spectrogram of a moving car. These differences can be used as

features for the target classification.
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(a) (b)

Figure 5.12: Range Doppler Map of a Pedestrian(a) and a Vehicle(b), Collected using

TI Radar

5.3 Classification of Person and Car Using CNN

In section 5.2.2, it is shown that the spectrograms of pedestrians and the vehicle in

front of the radar exhibit different micro-Doppler characteristics. The spectrogram

plots can be used with image classification algorithms like CNNs for the target classi-

fication. In this study, a 15-layers CNN was used for classification. The details of the

15 layers are shown in Table 5.2. The layer starts with the input spectrogram layer,

which goes through a series of CNNs, Batch Normalization Layers, ReLUs, and Max-

Pooling Layers before being unfolded into fully connected layers. Then with the help

of Softmax and cross-entropy functions, the final classification output is generated.

The data collected using the TI 1443 radar were first converted into their spectro-

grams and labeled appropriately (car vs. pedestrian). A car was driven towards and

away from the radar. Similarly, a person was made to walk towards and away from

the radar. Around 2142 micro-Doppler images (approximately 50% for each class)

were used for training and testing. Out of these images, 1200, 400, and 542 were

selected randomly for training, validation, and testing purpose, respectively. Figure

5.14 shows the performance of the micro-Doppler-based classification using CNN in
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Table 5.2: CNN Parameters

Layer number Layer type Description

1 Input layer Size of spectrogram (1024*57)

2 2D Convolution Layer 8 layers with size (3,3)

3 Batch Normalization Layer Batch Normalization

4 ReLU Rectified Linear Activation

5 Max Pooling (2,2) max Pooling with stride 2

6 2D Convolution Layer 16 layers with size (3,3)

7 Batch Normalization Layer Batch Normalization

8 ReLU Rectified Linear Activation

9 Max Pooling (2,2) max Pooling with stride 2

10 2D Convolution Layer 32 layers with size (3,3)

11 Batch Normalization Layer Batch Normalization

12 ReLU Rectified Linear Activation

13 Fully Connected Layer 2 fully connected layers

14 Softmax Softmax

15 Classification Output Cross Entropy
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Figure 5.13: Micro Doppler characteristics of a Pedestrian(a) and a Vehicle(b), Col-

lected using TI Radar

the form of confusion matrix. As shown in the plot, an accuracy level of 94% or

higher was achieved for training, testing, and cross-validation sets, respectively. This

establishes the foundation of target-classificaion using a radar.

5.3.1 Discussion and Conclusion

This section explored a classification strategy based on the micro-Doppler informa-

tion. The target classification using the standard visual approach in a range angle

domain may fail because of the lower radar resolution. As a result, the different

characters between two or more types of targets may not be learned by a machine

learning algorithm. The use of micro-Doppler information gives a distinct character.

These characters are not only easy to visually interpret but can form the features for

the target classification. The use of micro-Doppler for the target classification showed

encouraging results.

The limitation of this study, however can be the extensive computations required

by the CNNs. An automotive radar system has to be cost effective and adding

processors to support the computations required by a CNN can make the entire
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radar system expensive. Another limitation of this study is the use of only two

targets for classification. In future, more target scenarios need to be experimented.

For examples, to create a road-like scenario, different types of vehicles like motorcycle,

cars, trucks, etc. and different movement of pedestrians like walking, running, etc.

can be included. Similarly, targets moving at different angles in front of the radar

can also create a realistic road like target scenarios.
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Figure 5.14: Confusion Matrix for the Classification of the Pedestrian and a Car

Using Micro-Doppler Spectrum Data
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Chapter 6

Conclusions and Future Work

This chapter concludes this dissertation by summarizing the main research findings

and discussing their value and contribution. It also reviews the study’s limitations

and suggest opportunities for future research.

6.1 Summary of Contributions

This dissertation explores ML-based studies in radar meteorology and also in radar

algorithm development. Similar research has been done in the past but these studies

had some limitations. The dissertation studies seek to address some of those limita-

tions. For example, past research utilized ML technology to predict the occurrence

of lightning. However, there is a gap in the research as studies to quantify lighting

events are limited. In this study, utilizing ANN and feature variables derived from

polarimetric radars, accurate prediction of flash rate up to 30 minutes was achieved.

Similarly, for HIWC estimation, there is a need for a radar simulator to accurately

characterize the ice crystals. A novel microphysics-based, end-to-end radar simulator

was developed for this mission based on data collected from NASA flight campaigns.

Additionally, using data generated from this simulation, the ANN achieved 85% ac-

curacy in HIWC hazard detection, which is the first time to be reported in the science

community. Lastly, there is a need for the accurate classification of objects in ground
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traffic to improve the safety of an autonomous driving system. For this, the angular

resolution has to be improved. In this dissertation, an innovative FDM-based MIMO

solution has been proposed to improve the angular resolution. Also, with the novel

method of assimilating time-spectrum features, the initial classification accuracy of

better than 85% between pedestrians and vehicles has been achieved using measured

radar data. In general, the applications of this dissertation study have the potential

to reduce airborne accidents, and automotive casualties and improve overall weather

forecasting. The contributions of each mission are further discussed in detail in the

paragraphs below.

6.1.1 Prediction of Lightning Flash Rate Using Ground-based

Weather Radar Observations

This study used ML with the ground-based weather radar to predict the flash rate.

The lightning flash rate estimation is a novel application in itself, as previous studies

focused mainly on detecting lightning. Quantifying the lightning event aids in better

conveying the severity of lightning in the weather forecasts. It can also be an indicator

of other weather phenomena, such as tornado events. As a result, it provides insights

to weather forecasters and researchers alike. In addition, the nowcasting lead time

was increased to 30 minutes, compared to 15 minutes in the previous literature. This

helps to provide additional time to take necessary precautions in lightning events. In

addition, the importance of dual-pol features, like the presence of negative Kdp, is

demonstrated in the lightning studies. This information can be significant for weather

radar researchers in further studies of lightning events.
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6.1.2 Detection of HIWC Conditions Using AirborneWeather

Radar

In this study, a complete radar-based characterization of the HIWC was introduced.

The study started with the study of HIWC’s microphysical properties like PSD and

density, followed by the development of the radar variables for the HIWC, a full Radar

system simulation, and the estimation of HIWC using ML algorithms. The previous

studies primarily focused on the radar reflectivity factor and the temperature, while

studies using the dual-pol features are limited. To mitigate this gap, the dual-pol

features are used in this study which led to the observation of the significance of the

dual-pol features, particularly the Kdp. Although the temperature has significance

for HIWC conditions, the temperature dependency on HIWC is difficult to utilize in

a practical scenario. So the ”radar-only” detection of HIWC, as demonstrated in the

study, will be benefited from the dual-pol radar measurement features. An end-to-end

radar simulator is developed. The simulator can assist other radar developers and

researchers to characterize the HIWC conditions and to generate the radar variables

for the development of IWC retrieval algorithms. The outcome of this study may be

beneficial to FAA and RTCA to develop future airborne weather radar standards.

6.1.3 Target classification With Automotive Radars

In this study, the use of automotive radar for classification purposes has been dis-

cussed. The radar has been deemed inferior when compared to a camera in terms

of resolution, which affects the classification capabilities. The resolution can be im-

proved using MIMO technology. TDM-based MIMO, despite affecting the velocity

performance, has dominated the automotive radar segment. In this study, FDM-

based MIMO was introduced as an alternative MIMO technique. FDM-based MIMO

does not reduce the maximum unambiguous velocity. The results from the simula-

tion encourage the radar developers to explore the possibility of implementing FDM
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MIMO. Similarly, the difficulties in the visual classification techniques using radar can

be overcome by the micro-Doppler characterizations of the targets. Micro-Doppler

spectrogram is shown to be used directly with a CNN without the need of extract-

ing features manually. Thus, the classification should be done on the different(like

micro-Doppler) domains. This should encourage the researchers not to solely rely on

the techniques used for image classification in the visual domain, as in the case of

cameras.

6.2 Future Work

The use of ML techniques in radar technologies has shown impressive results. How-

ever, there are some limitations. The applications of ML (in any domain) can gen-

erate expected outcomes, with or without the knowledge of the domain. However,

the knowledge of the domain is fundamental as well. Additional care should be taken

while using ML as a research tool to fulfill scientific objectives. The domain knowl-

edge can be beneficial with the data pre-processing steps. The other limitation could

be the availability of data. Although the amount of data available for ML experi-

ments is increasing, the specific data required for a specific scientific study can be

expanded.

6.2.1 Lightning Detection Application

The lightning flash rate estimation using radar and ML showed some encouraging

results. However, the current study only used radar data for estimating lightning

flash rate. Since the radar data cannot provide the temperature estimation directly,

the temperature information was inferred from altitude. This was done by using the

echo top height as an input feature. The further usage of measured temperature may

improve the accuracy of the flash rate estimation. The input features can be modified
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to include only the region above freezing altitude, as this region is more significant

for the generation of lightning strikes. In addition, the inclusion of temperature will

also help in extracting more features like the presence of Zdr column. Also, this

study only focused on one geographical region of Hong Kong. Similar studies in other

geographical regions with different climatology would help to expand it to a more

generalized solution.

6.2.2 Monitoring HIWC as an Aviation Hazard

The HIWC estimation has used the simulated radar data in the ML implementation,

as there are limited direct radar measurement data. The use of measured data is

crucial for the accurate validation of the results. More HIWC flight campaigns using

the dual-polarized airborne weather radar are necessary. In addition, there are some

limitations in using flight campaign data. The association of the in-situ data and

remote-sensing radar data collected by different instruments (microphysics probe vs.

radar) may introduce errors as it is difficult to achieve exact temporal and spatial

data associations between these instruments. Future work would need to address this

data correlation challenge better.

6.2.3 Further Development of Automotive Radar

Different MIMO schemes like CDM, QPSK, or DCM can be explored to further

investigate angular resolutions’ impacts on ML processing. Future automotive radars’

classification performance and spatial resolution can benefit from imaging 4D multi-

domain radar sensing (range, Doppler, azimuth, and elevation).
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Appendix A - List Of Symbols

c Propagation Speed

∆R Range Resolution

∆Θ Angular Resolution

∆v Velocity Resolution

Kdp Specific Differential Reflectivity

λ Wavelength

Pr Radar Receiver Power

Pt Radar Transmit Power

ΦDP Differential Phase Shift

r Range to the target

ρ Pearson’s Correlation Coefficient

Ra Maximum Unambiguous range

ra Range ambiguity

R̂ Auto-Correation Function

ρHV Correlation Coefficient

Rx Receiver

Tc Time period between 2 FMCW chirps

Ts Pulse Repetition Frequency

Tx Transmitter

va Maximum Unambiguous Velocity

ZDR Differential Reflectivity
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Appendix B - List Of Acronyms and Abbreviations

2D-S 2D-Stereo

ACF Auto-Correlation Function

ADC Analog to Digital Converter

ADWRS Airborne Doppler Weather Radar Simulation

AI Artificial Intelligence

ANN Artificial Neural Network

AOA Angle of Arrival

AR Axial Ratio

BPM Binary Phased Modulation

CG Cloud to Ground

CINRAD China New Generation Weather Radar

CMOS Complementary Metal Oxide Semiconductor

CNN Convolutional Neural Network

CNN Convolutional Neural Network

DP Dual-Polarization

ELA Ensemble Learning Approach

FAA Federal Aviation Administration

FDM Frequency Division Multiplexing

FFT Fast Fourier Transform

FMCW Frequency Modulated Continuous Waveform

FOV Field of View

HIWC High Ice Water Content
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HKO HongKong Observatory

HPA High Power Amplifier

IC Intra-Cloud

IQ In-phase and Quad-phase

IWC Ice Water Content

LLIS Lightning Location Information System

MIMO Multiple Input Multiple Output

ML Machine Learning

mmWave Millimeter wave

MPE Mean Percentage Error

NASA National Aeronautics and Space Administration

NEXRAD Next Generation Radar

NI Non-Inductive

NN Neural Network

NWP Numeric Weather Prediction

PARADOX Polarimetric Airborne Radar Operating at X-

band

PASIM Phased Array radar SIMulator

PDF Probability Density Functions

PIP Precipitation and Imaging Probe

PPI Plan Position Indicator

PPP Pulse Pair Processing

PSD Particle Size Distribution

ReLU Rectified Linear Unit

RHI Range Height Indicator

RIWC Radar Estimated IWC

RTCA Radio Technical Commission for Aeronautics
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SAT Static Air Temperature

SCMC Single Cell Monte Carlo

STALO Stable Local Oscillator

STAR Simultaneous Transmission and Reception

STFT Short-Time Fourier Transform

SW Spectrum Width

TASS Terminal Area Simulation System

TAT Total Air Temperature

TDM Time Division Multiplexing

TI Texas Instrument

TINT TINT Is Not TITAN

TITAN Thunderstorm Identification, Tracking, Analysis,

and Nowcasting

VCP Volume Coverage Pattern
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