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Abstract: This research presents a blended system implemented by the Vietnam National Center for
Hydro-Meteorological Forecasting to enhance the nowcasting and forecasting services of quantitative
precipitation forecasts (QPFs) of tropical cyclone (TC) landfalls on Vietnam’s coast. Firstly, the
extrapolations of rain/convective systems from multiple radars in Vietnam in ranges up to 6 h
were carried out using Short-Range Warning of Intense Rainstorms in Localized Systems (SWIRLS)
developed by the Hong Kong Observatory. Secondly, the forecast from the numerical weather
prediction (NWP) system, based on the WRF-ARW model running at 3 km horizontal resolution, was
blended with radar-based quantitative precipitation estimates and nowcasts of SWIRLS. The analysis
showed that the application of the nowcast system to TC-related cloud forms is complicated, which
is related to the TC’s evolution and the different types and multiple layers of storm clouds that can
affect the accuracy of the derived motion fields in nowcast systems. With hourly accumulated rainfall
observation, skill score validation conducted for several TCs that landed in the center of Vietnam
demonstrated that the blending of nowcasting and NWP improve the quality of the QPFs of TCs in
forecast ranges up to 3 h compared to the pure NWP forecasts.

Keywords: very short range forecast of precipitation; nowcasting; radar extrapolation; blending
radar–numerical weather prediction; SWIRLS

1. Introduction

Vietnam is located in Southeast Asia, with a high level of exposure to extreme weather
events; this country is hit by an average of 10–12 tropical cyclones (TCs) every year [1–6].
Some of the main consequences of TCs in Vietnam are heavy rainfall, strong winds, and
storm surges, specifically when TCs make landfall [4,5]. According to a recent survey of
loss due to natural disasters, 30–35% of human loss and 50–55% of disaster-damage cost
are caused by storms (including flood by storms) [7]. TCs that are active near the coast
or landfall will cause torrential precipitation events in association with narrow fields and
steep topography, as in Central Vietnam, and this is the primary trigger mechanism for
landslide, fast flood, and urban inundation [8,9]. Therefore, it is recognized that TC-induced
rainfall forecasts and quantitative TC-induced rainfall forecasts have been considered
to be one of the key issues in terms of providing early flood and landslide warnings,
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preventing disasters, and mitigating flood damage and operating warning systems for TCs.
Quantitative TC-induced rainfall forecasts and their accuracy are the most important input
data for hydrological predictions.

TC-induced rainfall is associated with convective cloud spiral bands that develop in
eye walls and spiral cloud bands that extend outward from the center of the TC. Rainstorm
bands can cause prolonged rain when developing continuously and cause moderate-
to-heavy rain, especially in areas where the TC makes landfall 12 to 36 h in advance.
Consequently, enhancing the nowcasting of quantitative TC-induced rainfall or rainbands
when a storm starts to hit the land has a significant role in triggering other early warn-
ing/forecasting systems [10–12].

Quantitative precipitation forecasts (QPFs), in general, and quantitative TC-induced
rainfall forecasts, in particular, are mainly generated by numerical weather prediction
(NWP) models. There are two typical types of NWPs: global-scale and regional-scale
models. Compared to global-scale models, the regional-scale models or other names are
often referred to as limited-area models (LAMs) or high-resolution NWP systems that
can provide a better representation of sub-grid processes and the initial conditions via
advanced data assimilation technologies [13,14]. With high-spatiotemporal-resolution
observation networks such as automatic weather stations (AWSs), radar and lidar data
can be rapidly assimilated into high-resolution NWP systems, whereas they cannot be
assimilated into global NWP systems [15]. However, the computation costs of a data
assimilation system are usually far more expensive than those of a pure model integration,
especially for rapid update cycle (RUC) systems with a 1–3 h assimilation cycle. Moreover,
the data organization, observation data collection, and data processing in these systems
can become very complex. Another issue that arises for the TC prediction problem is a
complex spin-up process in the early model initialization times. The spin-up time of the
model is also connected to the capacity to reproduce the storm vortex in the model (location,
intensity, and moisture/cloud/rain structure of the initial status of TCs) [16–18].

To reduce the errors of QPFs from NWPs, especially in short-range forecasts, the
use of nowcast products has been proposed [19]. Prior to 2015, there were two typical
approaches of using radar data in existing nowcasting methods: extrapolating for very
short range forecasts based only on weather radar data (radar-based nowcasting), and
blending with forecasting products from NWP (radar–NWP nowcasting). Radar-based
nowcasting is carried out through object tracking and extrapolating methodologies in
image-processing fields. General algorithms use a time series of radar images to calculate
the motion fields. Tracking radar echoes by correlation (TREC) was one of the very first
radar-based nowcasting methods [20]. TREC computes the correlation coefficient (CC)
matrix between sequential images of radar data based on the maximum CC values to
retrieve the motion vectors. In fact, TREC is purely an image-processing methodology
and almost neglects the complex motions of the atmosphere, for example, cloud decay
or the layer structure of the cloud system. Many improvements for TREC have been
proposed, such as continuity of TREC vectors (COTREC) [21], differential image-based
TREC (DITREC) [22], and multiscale TREC (MTREC) [23,24].

Conversely, radar–NWP nowcasting does not face the problem of a very short use-
ful lead time, due to the use of physical-constraint rules to forecast a future status [25].
Consequently, its predictions are expected to have robust reliability. Taking advantage
of extrapolation techniques and NWP, this approach is now becoming more and more
widely used; examples include the Auto-Nowcaster [26], Nowcasting and Initialization of
Modelling Using Regional Observation Data System [27], Short-Range Warning of Intense
Rainstorms in Localized Systems (SWIRLS) [28], and the Japan Meteorological Agency
(JMA) very-short-range forecast (VSRF) of precipitation system [29]. In fact, the second
approach, which involves blending the forecasts from high-resolution NWP models with
rainfall nowcasting (up to 6 h forecast ranges) based on dense AWS, radar, and satellite data,
is the most feasible method to fill the gap between NWP and quantitative precipitation
estimation (QPE) [29–31].
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With the strong application development of machine learning (ML)/deep learning
(DL), the weather forecasting problem, in particular, and for rainfall forecast has been
studied and has initial positive results at wide forecasting ranges. For example, for short-
to-medium range, Ridwan et al. (2020) used ML and station data to provide precipitation
prediction for a 10-day forecast range [32]; and for a monthly forecast range, Sedigheh et.
al. (2022) showed that multiple/ensemble models of DL can be used as a robust prediction
tool [33], and Salaeh et. al. (2022) used the Long-Short-Term Memory technique of ML [34]
to provide monthly rainfall forecasting.

For the nowcasting problem, around 2015, ML approaches for nowcasting started to
become more popular [35]. Some studies showed that they were superior to extrapolation-
based methods [36,37]. The main difference between deep-learning approaches and other
methods is the reliance on data fed to the learning network. The launch of convolutional
neural networks enabled researchers to better extract features from huge amounts of
data [38]. Kim et al. (2021) proposed a 3D convolutional neural network (CNN) model
to provide a precipitation nowcast using 3D radar data, while TREC-type methods usu-
ally only use radar data at a specific level [38]. Liu et al. (2020) used the self-attentive
mechanism with a Convolutional Long-Short-Term Memory model to forecast rainfall for a
3 h forecast range, using radar data, and showed that this system can provide efficiently
nowcasting guidance for precipitation for urban regions [39]. In addition, Zhang et al.
(2019) introduced a multi-channel 3D-cube successive convolution network named 3D-SCN
to nowcast storm initiation, growth, and advection from 3D radar data [40]. Recently,
research has confirmed the capability of CNNs to carry out radar-based precipitation now-
casting [41,42]. As a consequence, in parallel with the improvement from radar-based to
machine-learning/deep-learning-based systems in nowcast problems, blended NWP-based
nowcasting systems can also be improved in terms of quality.

In Vietnam, the National Center for Hydro-Meteorological Forecasting (NCHMF) has
implemented a high-resolution NWP system to produce QPFs with a lead time of up to
3 days and an update cycle every 6 h [43]. Establishing a rapid update cycle system is still
a challenging task for regional centers such as the NCHMF; consequently, blending QPF
products from high-resolution systems with rainfall nowcasting based on radar data is
the most feasible approach to improve the reliability of quantitative TC-induced rainfall
forecasting in very short term forecasts. In this research, via the World Meteorological
Organization (WMO) Severe Weather Forecasting Programme (SWFP) for Southeast Asia
(SWFP-SeA), we applied the nowcast system developed by the Hong Kong Observatory
(HKO). Under the SWFP-SeA, HKO experts utilized the SWIRLS nowcasting system by
using Vietnam’s data, including rain gauge stations, multiple radars, and NWPs.

This research focused on TC-induced heavy rainfall in the central region of Vietnam
in recent years, validating the capabilities of blended radar–NWP forecasts in SWIRLS to
improve QPFs of TCs.

The structure of the paper is as follows: Section 2 describes, in detail, the numerical
model system and the nowcasting system adopted in this paper, and Section 3 explains
the observational data, evaluation methods, and experimental design. Section 4 provides
the validation results for the nowcasts, NWPs, and blended forecasts in all experiments.
Section 5 presents the main conclusions of this research.

2. The Numerical Weather Prediction System at NCHMF and Short-Range Warning of
Intense Rainstorms in Localized Systems
2.1. The Numerical Weather Prediction System at NCHMF

At the NCHMF, the regional NWP system is based on the Weather Research and
Forecasting (WRF) model using Advanced Research dynamical cores (ARW) version 3.9.1.1.
The WRF-ARW model has been developing by the National Center for Atmospheric
Research (NCAR) and the National Oceanic and Atmospheric Administration (NOAA)
of the United States. A wide research community has contributed to the WRF-ARW,
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integrating various recent advancements in NWPs, such as physical parameterization
schemes and data assimilation [44].

The 3D initial and lateral boundary conditions are provided by the European Centre
for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS) with
3 h intervals up to 72 h, a horizontal resolution of 9 km, and up to 1 hPa level, and the IFS
data are available for 00UTC and 12UTC. More information about the IFS can be found
at https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-
model (accessed on 15 June 2023).

The current horizontal resolution run in the WRF-ARW at the NCHMF is 3 km for
the domain covering Vietnamese lands and the South China Sea or East Sea of Vietnam
(4◦ N–27◦ N; 97◦ E–127◦ E), and the number of vertical levels is 41 (up to 5 hPa). To
enhance the initial condition, the WRF-ARW’s data assimilation system (WRFDA) [44]
was used with both the Global Telecommunications System (GTS) data (via the National
Centers for Environmental Prediction FTP service in PREBUFR format (link for data:
ftp://ftp.ncep.noaa.gov/pub/data/nccf/com/obsproc/prod, accessed on 15 June 2023)
and additional surface observations of Vietnam. In the variational data assimilation method,
there are two important parts of statistical information needed for optimizing the initial
fields: the observation error information and the error of the model’s forecast for a given
computing domain, which is termed as background errors. In this research, the background
errors were generated using the gen_be package [45] of WRFDA, using the NMC method
based on 12 h and 24 h forecast ranges of the WRF-ARW for the domain above Vietnam
over 2 weeks [46]. The WRF-ARW was cycled every 6 h, and the initial conditions for the
next assimilated runs were taken from the latest run (6 h forecast).

For the post-processing output of the WRF-ARW to the nowcast system, we used
the already available theNCAR Command Language (NCL) procedure to calculate the
equivalent reflectivity factor (in decibels—dBZ) at each WRF-ARW model grid point based
on MM5′s Reisner-2 bulk microphysical scheme [47], using 3D model fields (temperature,
pressure, water-vapor-mixing ratio, rain-mixing ratio, snow-mixing ratio, and graupel-
mixing ratio).

2.2. Short-Range Warning of Intense Rainstorms in Localized Systems (SWIRLS)

The HKO has been developing SWIRLS since 1999 and released the community version
named Com-SWIRLS [31,48]. This system has been widely used to provide QPFs, as well
as TC-induced rainfall forecasts [49–53].

There are some main steps to using SWIRLS to generate pure nowcast products and
blended radar–NWP forecasts:

(1) Preparing individual radar data in the universal format (UF): This research used data
at the 2 km Constant Altitude Plan Projection Indicator (CAPPI) level; the domain
is within the radius of influence of 250 km, which then be used to generate a grid of
500 × 500 pixels.

(2) Generating the main grids with a 3 km horizontal resolution and then composing all
individual radar stations by picking the maximum values of radar data at each grid
point (in case of an overlap covering two or more radar stations).

(3) Applying the Real-Time Optical Flow by Variational Methods for Echoes of Radar
(ROVER) for each radar station to calculate the motion fields: (i) the radar reflec-
tivity data are converted to the gray level [54], and (ii) the variational optical flow
technique [55] is used to calculate 2D motion vectors.

(4) Based on the 2D motion vectors, the extrapolation or forecast of radar echoes is
calculated using the semi-Lagrangian advection scheme.

(5) Before blending the nowcast data and NWP data, based on the quantile mapping
(QM) method, the bias correction is processed using a transfer function that maps
quantiles of equivalent reflectivity converted from the NWP output to those of the
radar data.

https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model
https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model
ftp://ftp.ncep.noaa.gov/pub/data/nccf/com/obsproc/prod
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(6) The blending procedure (QPFBLEND) for the extrapolation product from SWIRLS
(QPFSWIRLS) and NWP data (QPFNWP) is given by a hyperbolic tangent curve weight
function of the forecasting time (t):

QPFBLEND = (1− w(t))×QPFSWIRLS + w(t)×QPFNWP (1)

where the w(t) function is formulated as

w(t) = g× α× (β− α)

2
[1 + tan h(γ(t− 9))] (2)

The values for parameters g, α, β, and γ are 145, 0.01, 0.65, and 0.24, respectively, and
the parameter γ has the most effective nowcast skill with the forecast time.

(7) Finally, the Marshall–Palmer relationship, Z = aRb, is used to revert the echo reflectiv-
ity (Z) to the rainfall rate (R, unit mm/h). In this research, the values for the a and b
parameters were 200 and 1.6, respectively [56].

The flowchart for generating blended radar–NWP forecasts is shown in Figure 1.
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3. Forecasting Verification: Observational Data, Verification Methods, and Experiments
3.1. Precipitation Observation Data

In addition to more than 189 surface rain gauge stations, of which about 21 interna-
tionally report to the WMO, in recent years, Vietnam has been equipped with many AWSs
with the ability to provide 10 min accumulative rainfall data [57]. AWS systems not only
allow increased real-time rain monitoring capabilities but also enable the calibration and
generation of gridded rain maps from radar and satellite data.

In this research, AWS rainfall was processed and accumulated at the scale of 1 h to
evaluate the 1 h accumulated precipitation forecast of the NWP and nowcast system. A
total of 1023 AWSs in the central region and the central highlands of Vietnam were used
(Figure 2) which related to landed regions of selected TCs for this research.
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3.2. Radar Data

In Vietnam, there are ten meteorological radars operated by the Aero-Meteorological
Observatory (AMO), and these almost cover the whole country. The radar network includes
two types: S-band radar and eight C-band radars. With the exception of one conventional
radar, there are six Doppler radars and three dual-polarized Doppler radars [58]. In this
research, we used five radars from the stations of Dong Ha, Tam Ky, Quy Nhon, Tam Ky,
Pleiku, and Nha Trang to generate the nowcast and blended products. The locations of
these radar stations and their coverages are plotted in Figure 2.

3.3. Validation Methods

When calculating the forecast of a given station, the nearest grids were searched in
each station location, and then the accumulated rainfall from the WRF-ARW forecasts,
SWIRLS nowcast, and blended products was assigned. The verification was carried out for
the 1023 AWSs for 1 h of accumulated rainfall for 1 h in forecast ranges up to 6 h.

The validation scores used in this research were the probability of detection (POD),
false-alarm ratio (FAR), threat score (TS) or critical success index (CSI), and equitable threat
score (ETS). For a given rainfall threshold, by defining H as the hit rate of occurred rainfall
both for the forecast and observation, M as the missed rate of occurred rainfall for the
forecast, and F as the false-alarm rate of the forecast, the above scores were calculated using
the following equations:

POD = H/(H + M), perfect value = 1 (3)
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FAR = F/(H + F), perfect value = 0 (4)

TS = H/(H + M + F), perfect value = 1, no skill = 0. (5)

Setting Hitsrandom = (H + F) × (H + M)/T, where T is the sum of H, M, F, and the
number of non-occurred rainfall events both for the forecast and observation, the ETS was
calculated as follows:

ETS = (H-Hitsrandom)/(H + M + F-Hitsrandom), perfect value = 1, no skill ≤ 0. (6)

All information on the validation methods used in this research can be found in [59].

3.4. Experiments

Normally, derived motion vectors related to vortex systems such as tropical cy-
clones/tropical depressions or other convection systems that develop rapidly and locally
will encounter a lot of errors for nowcasting systems. To see this more clearly, this research
first explored the performance of SWIRLS for TC ETAU in November 2020 affecting the
south center of Vietnam. The assessments considered vortex motion fields consistent with
the TC’s main circulation, as well as the outflows of the TC system. This case was only
tested with a single radar station from Nha Trang Station.

Then, the skill scores of QPFs of the nowcast for three TCs (DIANMU, NORU, and
SONCA) in 2021 and 2022 from SWIRLS and the effectiveness of the blended product
between SWIRLS and the high-resolution NWP for the 1 h of accumulated rainfall forecast
in Central Vietnam were evaluated, where these three storms caused direct extreme heavy
rain, flood, and landslides and made historical widespread damages both to property
and lives.

As it is known that the QPFs of TCs are greatly influenced by the track forecast of
TCs, the ability to simulate the curved rainbands of clouds and thunderstorms that trail
away from the TC’s eye wall in a spiral fashion, determine the tropical cyclone’s size,
and analyze the initial location of the storm in the model, as mentioned, was evaluated;
therefore, we used three consecutive forecast cycles before ~18 h, where TCs approached
the shore. Details of the international names and forecast cycles of these three TCs are
presented in Table 1.

Table 1. List of the forecast cycles relating to tropical cyclone events used in this research.

Tropical Cyclone Name Forecast Cycles

DIANMU 00Z, 06Z and 12Z on 23 September 2021

NORU 00Z, 06Z and 12Z on 27 September 2022

SONCA 00Z, 06Z and 12Z on 14 October 2022

4. Results and Discussions
4.1. Nowcast Performances

SWIRLS for TC ETAU was carried out on 10 November 2020, with forecast ranges
up to 3 h. Regarding the circulation characteristics of ETAU, based on the 10 m ocean
surface wind vector data of 50 km resolution derived from the Level-1B Advanced Scatter
meter (ASCAT) instrument on the Metop-A satellite product of the NOAA/National
Environmental Satellite, Data, and Information Service (NESDIS)/Center for Satellite
Applications and Research [60] shown in Figure 3, circulation is clearly visible to the north
of the TC’s center (12.3◦ N; 109.3◦ E) with easterly winds, while below the center of the TC
are the south and southeast winds.
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Figure 3. Ocean surface satellite winds at the time when the storm ETAU approached to the coast
of the south center of Vietnam on 10 November 2020 (source https://manati.star.nesdis.noaa.gov,
accessed on 15 June 2023).

Figure 4 is an illustration of SWIRLS’s performance for TC ETAU, and it is clear (for
example, for the forecast initialized at 09:10 Local Standard Time (LST), middle row of
Figure 3) that the motions effectively capture the circulation around the eye and ETAU’s
outflow, leading to reasonable shifts in ETAU’s west sector into a deeper territory. Outflow-
related rain tends to have an actual effect on the northern and southern areas of ETAU.

Although the ROVER algorithm greatly improves the generating motion vector fields
compared to other methods, such as TREC, in reality, calculating the motion suitable for
the TC’s circulation is very complicated, and then it affects the semi-Lagrangian advection
extrapolating procedure [51]. As shown in the test case at 09:00 LST or at 09:20 LST
(Figure 3), the calculated motion field hardly matches the TC’s circulation motion (north is
south wind instead of east wind). Here, the main field of motion is captured (dominate)
according to the dispersion of the upper cloud rings, instead of following the actual torsion
structure of the TC’s cloud bands.

Moreover, after the ~2 and 3 h forecast ranges (Figure 4, third column), the movement
effect when assuming brightness constancy in solving the optical flow constraint will lead
to unrealism in the extrapolation fields. In reality, the forecast field is like a pseudo-fluid
form, not a cloud pattern; therefore, the same issues as those for calculated rainfall fields
are encountered, and, thus, keeping the forecasts from the NWP in the blended products
will ensure a more reasonable rain field, especially for rainfall from TCs. These issues need
to be further investigated, as mentioned in [61], by considering more source/sink terms
representing the growth or decay of cloud systems during the extrapolating procedure.

https://manati.star.nesdis.noaa.gov


Atmosphere 2023, 14, 1201 9 of 21Atmosphere 2023, 14, x FOR PEER REVIEW 9 of 21 
 

 

 

 

Figure 4. Reflectivity nowcasting (dBZ) for the tropical cyclone ETAU on 10 November 2020 issued 

at three different times (the 1st row is for 09:00 Local Standard Time (LST), the 2nd row is for 09:10 

LST, and the 3rd row is for 09:20 LST). The 1st column is the initial derived motion field, and the 

2nd and 3rd columns are nowcasting for 1 h and 2 h forecast range products, respectively. 

Even when there are issues with the vortex system while generating motion fields for 

a nowcast system, the estimation of the rain rate from the radar will be very effective in 

estimating the TC’s precipitation because the main feature of rainstorms is the strongly 

developed convective cloud system. Returning to the three TC test cases (DIANMU, 

NORU, and SONCA), which were forecast through NWP and also tested with the blended 

product of SWIRLS, for each TC, the sample for validation was 3069 (1023 stations × 3 

cycles) to calculate the skill scores, which are presented in Table 2 under different 

Figure 4. Reflectivity nowcasting (dBZ) for the tropical cyclone ETAU on 10 November 2020 issued
at three different times (the 1st row is for 09:00 Local Standard Time (LST), the 2nd row is for 09:10
LST, and the 3rd row is for 09:20 LST). The 1st column is the initial derived motion field, and the 2nd
and 3rd columns are nowcasting for 1 h and 2 h forecast range products, respectively.

Even when there are issues with the vortex system while generating motion fields for
a nowcast system, the estimation of the rain rate from the radar will be very effective in
estimating the TC’s precipitation because the main feature of rainstorms is the strongly
developed convective cloud system. Returning to the three TC test cases (DIANMU, NORU,
and SONCA), which were forecast through NWP and also tested with the blended product
of SWIRLS, for each TC, the sample for validation was 3069 (1023 stations × 3 cycles) to
calculate the skill scores, which are presented in Table 2 under different thresholds for
the first 3 h forecast ranges. Under the threshold of 1–5 mm/1 h, the POD scores were
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approximately 60–80% in the first 3 h of forecasting, and the TS scores were approximately
0.2 to 0.4. Under a higher threshold of 5 mm/1 h, the TS decreased quite quickly to below
0.2 for most of the forecasting ranges; however, the POD still reached about 40–60% under
the 10 mm/1 h threshold. For thresholds >10 mm/h, the PODs reached approximately
30–40%, but the skill of the nowcast was very low (TS and ETS scores << 0.1). Another
point to note is that, for each threshold, the change in the value of the skill scores between
the forecast ranges of 1 h, 2 h, and 3 h was only about 8–10%, showing a reasonably steady
performance of the nowcast products.

Table 2. Skill scores of SWIRLS performances for 3 TCs under different thresholds (mm) per hour.

Thresholds Forecast Time
DIANMU NORU SONCA

TS ETS POD FAR TS ETS POD FAR TS ETS POD FAR

1 mm

+1 h 0.32 0.20 0.68 0.62 0.38 0.27 0.79 0.57 0.43 0.28 0.75 0.49

+2 h 0.31 0.17 0.66 0.64 0.37 0.24 0.81 0.60 0.44 0.28 0.81 0.51

+3 h 0.28 0.14 0.63 0.66 0.35 0.21 0.77 0.61 0.40 0.25 0.79 0.56

5 mm

+1 h 0.26 0.21 0.70 0.70 0.31 0.25 0.76 0.66 0.32 0.25 0.64 0.62

+2 h 0.20 0.14 0.67 0.78 0.24 0.17 0.85 0.75 0.23 0.14 0.68 0.74

+3 h 0.20 0.12 0.63 0.78 0.24 0.16 0.76 0.74 0.22 0.13 0.63 0.75

10 mm

+1 h 0.12 0.10 0.45 0.86 0.14 0.12 0.42 0.83 0.18 0.15 0.40 0.75

+2 h 0.10 0.07 0.59 0.89 0.14 0.11 0.69 0.85 0.18 0.14 0.61 0.80

+3 h 0.11 0.07 0.54 0.88 0.17 0.12 0.62 0.81 0.18 0.12 0.57 0.80

15 mm

+1 h 0.06 0.05 0.25 0.92 0.12 0.11 0.30 0.84 0.15 0.14 0.33 0.77

+2 h 0.07 0.05 0.47 0.93 0.10 0.08 0.56 0.89 0.17 0.14 0.54 0.80

+3 h 0.08 0.06 0.52 0.91 0.13 0.10 0.56 0.86 0.15 0.11 0.45 0.82

20 mm

+1 h 0.08 0.08 0.21 0.88 0.08 0.08 0.17 0.86 0.13 0.12 0.24 0.78

+2 h 0.06 0.05 0.45 0.93 0.10 0.08 0.41 0.89 0.17 0.15 0.54 0.81

+3 h 0.06 0.04 0.40 0.93 0.07 0.05 0.33 0.92 0.11 0.09 0.32 0.85

4.2. NWP Performances

Figure 5 shows the detailed 6 h rain accumulation maps and the corresponding 6 h
accumulated rainfall forecast of the model corresponding to the three times when TCs
caused the most extreme rain in the central territory of Vietnam (TC DIANMU affected
Quang Ngai Province, TC NORU affected Quang Nam Province, and TC SONCA affected
Thua Thien Hue and Quang Nam Provinces). In Figure 5a–c, the mean sea level pressure
fields from the fifth-generation ECMWF reanalysis data [62] were additionally contoured
with the AWS rainfall. TC DIANMU’s forecast was quite consistent with the reality of the
weakening in intensity, narrow TC clouds, and concentrated rainfall to the southwest of
the TC’s center. TC NORU was a very strong storm even when moving close to the shore
(when close to Da Nang City, it still reached a speed of 160 km/h on 04Z 28 September
2022); thus, the forecast from the WRF-ARW was quite suitable. However, there was a
tendency to forecast excessive rain in the southwest of the TC (to Quang Ngai Province),
where most of the interior of Quang Ngai had not yet caught the rain. The TC SONCA also
returned a good rain distribution forecast in Quang Nam, but due to the forecast of the
landfall, it tended to shift to the south compared to the real distribution of precipitation.
The extreme rain in Thua Thien Hue was forecast to be less than 50 mm, but the forecast
rain for the southern provinces was too high compared to the real observations.
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Figure 5. Maps of 06 h accumulated rainfall (unit: mm): (a) AWS rain from 06Z to 12Z 23 September
2021; (b) AWS rain from 12Z to 18Z 27 September 2022; (c) AWS rain from 12Z to 18Z 14 October 2022;
(d) WRF-ARW forecast issued at 06Z 23 September 2021 for TC DIANMU; (e) WRF-ARW forecast
issued at 12Z 27 September 2022 for TC NORU; (f) WRF-ARW forecast issued at 12Z 14 October 2022
for TC SONCA.

For a more detailed assessment, Figures 6 and 7 show charts of the ETS and POD
skill scores for the forecast range of up to 6 h under specific thresholds of the NWP
(NWP_QPF, red color charts) and averaged over three forecast cycles for each storm for
the 1 h accumulated precipitation forecast. It can be seen that out of the three TCs, TC
DIANMU returned better results, with relatively stable skill score values for the first 6 h,
where the ETS ranged from 0.1 to 0.15 under thresholds up to 15–20 mm/h. The remaining
two TCs, NORU and SONCA, had very low skills, most of which were only significant
under thresholds of 1–5 mm/1 h, with ETS values of ~0.1. In terms of detection, the POD
of TC DIANMU reached about 40–50% for most thresholds up to 20 mm/h, while the
POD of TC NORU reached only 40%, and that of TC SONCA reached 40–60% under a low
threshold, <5 mm/h. Under thresholds higher than 1 mm/h, the POD of TCs NORU and
SONCA was very low, indicating a very high FAR or missing rate. In the following analysis,
the results from blending NWP and SWIRLS clearly show that the NWP forecast error is
related to both overestimation when TCs closely approach shore and the missing forecast
of TCs’ rainfall when their cloud bands are too narrow or rain sectors are not suitable for
real observations, and these are the main sources of error when forecasting these three TCs.
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Figure 6. ETS charts for three TC cases (1st, 2nd, and 3rd column are for DIANMU, NORU, and
SONCA, respectively) under different thresholds (0.1 mm to 30 mm/1 h, x-axis on each chart)
for 1 h (1st row) up to 6 h (6th row) forecast time (FT) of WRF-ARW, SWIRLS, and blended be-
tween SWIRLS and WRF-ARW (denoted as NWP_QPF (red), SWIRLS (green), and SWIRLS_NWP
(orange), respectively).
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4.3. Blended Product Performances

In the case of TC DIANMU, on 23 September 2021, the first forecast cycle was selected
as 00Z when the storm was still more than 100 km from the shore, but it caused 10–15 mm/h
of rain over Central Vietnam (Figure 8 for forecast reflectivity, and Figure 9 for forecast
rainfall). In this case, the model tended to forecast rainbands near the center of the TC,
therefore missing rain over the land (PODs were all below 50%, Figure 7). By blending
SWIRLS and WRF-ARW, the blended product allowed the method to take advantage of
rain-estimate data from the radar and nowcast from SWIRLS to compensate for the missing
rainfall in the model. The only high reliability in the first 1–2 h of the nowcast product led to
the possibility of increasing the QPF quality in the first 2 h, after which the missing forecast
on land was kept unchanged from the WRF-ARW. In the subsequent forecast cycles, 06Z
and 12Z on 23 September 2021, the WRF-ARW tended to overestimate the TC’s rainfall,
as shown in the reflectivity simulation in the NWP plots, showing extremes values over
50–55 dBZ, while the reflectivity scanned by the radar and nowcast in the first 3 h was only
~40–45 dBZ (Figure 8). The blended product also helped to reduce the overestimation from
the WRF-ARW in the main areas of rainfall and eliminate the high-false-alarm-forecasting
areas of the WRF-ARW where no rainfall occurred (Figure 9).
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Figure 8. Forecast reflectivity (in dBZ) from SWIRLS (left column), NWP forecast from WRF-ARW
(middle column), and blended product (right column) for +1 h (first row), +2 h (second row), and
+3 h (third row) forecast ranges for TC DIANMU in forecast cycle 00Z 23 September 2021.
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Figure 9. Same as Figure 8 but for forecast rainfall (in mm) for TC DIANMU in forecast cycle 00Z
23 September 2021.

Regarding TC NORU on 27 September 2022, this fast-moving TC results in heavy
rain over the territory of Vietnam. In fact, this TC caused rain quite early; however, for
fast-moving TCs in a narrow territory such as Central Vietnam, the wrong time to landfall
or the wrong landfall location may be estimated, leading to a very low forecasting skill for
the WRF-ARW. This is a distinct feature of QPFs of TCs compared to general QPFs. This can
be seen clearly for the NORU storm at 00z (Figure 10), where there was rain on land, but
the model mainly predicted rain at sea in the first hours. Moreover, the rain areas within
the radar’s scanning radius were also corrected through the blending product, which is
most clearly shown in the 2 h forecast period (Figure 10, second row). Regarding the skill
scores from the three forecast cycles of TC NORU (Figure 6), the WRF-ARW’s skill under
thresholds over 10 mm/1 h was almost ~0, as mentioned, while the nowcast system in the
forecast range up to 3 h returned an ETS of ~0.2–0.3 for thresholds of 1–5 m/1 h and an ETS
of ~0.1–0.15 for thresholds of 10–15 mm/1 h. For the 1–3 h forecast ranges, the blended
products for TC NORU increased the POD by 40–50% for thresholds of 10–15 mm/1 h, and
the POD remained stable at 70–80% for thresholds of 1–5 mm/1 h.
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Regarding TC SONCA (Figure 11), when making landfall, the WRF-ARW in the early
forecasting hours tended to overestimate in the southern areas, as mentioned, while there
was no actual heavy rain. As a consequence, the application of the nowcast allowed for
the overestimation over land to be reduced. The FAR score for the WRF-ARW was mostly
greater than 90%, and the application of the blended products helped the FAR score drop to
50–70% in the first 1–2 h forecast range for the thresholds of 5–15 mm/1 h. The ETS scores
of the blended products were 0.15–0.2 for thresholds up to 30 mm/h in the +1 h forecast
range and approximately 0.1–0.15 in the +2 h and +3 h forecast ranges; these improvements
to the models, which initially had almost no skill, were contributed to by the nowcasting
parts (Figure 6).

As a brief summary, in the first 2–3 h forecast range, under the threshold below
15 mm/1 h, it is clear to see that the blending was effective in terms of the ability of SWIRLS
to capture the distribution, as well as the QPFs, of the TCs.
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5. Conclusions

This research presents a nowcast system based on radar data to reduce QPF errors
from NWPs in the early hours of forecasting. This is one of the effective solutions for
bridging the gap between NWP and QPE in very short range forecasts, thereby effectively
inputting the QPF product for early warning of natural disasters associated with extreme
rain, in general, and for hydrological problems, in particular. Through the SWIRLS system,
this research performed nowcast product blending with the WRF-ARW forecast for storms
that caused extreme rain in Central Vietnam in recent years. The results were compared
with those of AWSs and clearly showed an improvement with the blended product up to 3 h
forecast range compared with the WRF-ARW product. To improve the blending product,
the optimizing procedure for converting between reflectivity and precipitation should be
considered by using AWS data in calibrating R–Z relationships and take advantages of
observations from dual-polarization weather radars [63] or applying ML/DL techniques.
This research was tested with strong TCs and needs more performances with weak TCs,
which can cause severe rainfall events.

In the context of rainstorms, it is clear that radar observations play an important role
when the storm is in the radar’s scanning area and when the model has not been able
to update the actual location of the storm (especially for storms close to the coast), as
well as the model spin-up time for tropical cyclone simulation. Although there are still
limitations when applying the nowcast system to vortex-like rain patterns and complex
cloud structures such as storms, the nowcast product’s ability to calibrate through the
blending product was shown in both the compensation of early rainfall areas that were not
captured (regarding the size of the storm and the storm’s cloud band) and also in areas
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where the rain was affected by underestimation or overestimation by the model (regarding
the storm’s landfall location or the storm’s landfall direction relative to the shoreline).
These limitations can be reduced by applying more post-processing for derived vector
fields before applying extrapolation procedures, e.g. adding TC’s motion vector to motion
fields [51]. Moreover, to extend the reliability of the nowcast contribution to the 3–4 h
forecast range, the consideration for the rate of change of source/sink terms is need for the
extrapolation scheme [61].
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