2,253 research outputs found

    Application of coupled-wave Wentzel-Kramers-Brillouin approximation to ground penetrating radar

    Get PDF
    This paper deals with bistatic subsurface probing of a horizontally layered dielectric half-space by means of ultra-wideband electromagnetic waves. In particular, the main objective of this work is to present a new method for the solution of the two-dimensional back-scattering problem arising when a pulsed electromagnetic signal impinges on a non-uniform dielectric half-space; this scenario is of interest for ground penetrating radar (GPR) applications. For the analytical description of the signal generated by the interaction of the emitted pulse with the environment, we developed and implemented a novel time-domain version of the coupled-wave Wentzel-Kramers-Brillouin approximation. We compared our solution with finite-difference time-domain (FDTD) results, achieving a very good agreement. We then applied the proposed technique to two case studies: in particular, our method was employed for the post-processing of experimental radargrams collected on Lake Chebarkul, in Russia, and for the simulation of GPR probing of the Moon surface, to detect smooth gradients of the dielectric permittivity in lunar regolith. The main conclusions resulting from our study are that our semi-analytical method is accurate, radically accelerates calculations compared to simpler mathematical formulations with a mostly numerical nature (such as the FDTD technique), and can be effectively used to aid the interpretation of GPR data. The method is capable to correctly predict the protracted return signals originated by smooth transition layers of the subsurface dielectric medium. The accuracy and numerical efficiency of our computational approach make promising its further development

    Separable Subsurface Scattering

    Get PDF
    In this paper, we propose two real-time models for simulating subsurface scattering for a large variety of translucent materials, which need under 0.5 ms per frame to execute. This makes them a practical option for real-time production scenarios. Current state-of-the-art, real-time approaches simulate subsurface light transport by approximating the radially symmetric non-separable diffusion kernel with a sum of separable Gaussians, which requires multiple (up to 12) 1D convolutions. In this work we relax the requirement of radial symmetry to approximate a 2D diffuse reflectance profile by a single separable kernel. We first show that low-rank approximations based on matrix factorization outperform previous approaches, but they still need several passes to get good results. To solve this, we present two different separable models: the first one yields a high-quality diffusion simulation, while the second one offers an attractive trade-off between physical accuracy and artistic control. Both allow rendering of subsurface scattering using only two 1D convolutions, reducing both execution time and memory consumption, while delivering results comparable to techniques with higher cost. Using our importance-sampling and jittering strategies, only seven samples per pixel are required. Our methods can be implemented as simple post-processing steps without intrusive changes to existing rendering pipelines

    Discrimination of Free Space and Subsurface Canonical Metallic Targets Using Hybrid E-Pulse Method

    Get PDF
    Abstract—Radar scattered time domain response can be modeled by natural poles using singularity expansion method (SEM) in resonance region. In this paper, limitation of the conventional Extinction pulse method is brought out, and a hybrid of conventional Extinction pulse and auto-regressive (AR) method is proposed for robust discrimination of radar targets. A new target discrimination number (TDN) is suggested, which gives very good discrimination margin for enhanced decision process. The Hybrid Extinction pulse technique is applied on the free space targets as well as subsurface canonical metallic targets and the result obtained shows good discrimination margin. The free space target response was obtained using FDTD simulation and the subsurface target response was obtained using frequency domain measurement done for the targets buried under dry sand. 1

    The Impact of Surface Normals on Appearance

    Get PDF
    The appearance of an object is the result of complex light interaction with the object. Beyond the basic interplay between incident light and the object\u27s material, a multitude of physical events occur between this illumination and the microgeometry at the point of incidence, and also beneath the surface. A given object, made as smooth and opaque as possible, will have a completely different appearance if either one of these attributes - amount of surface mesostructure (small-scale surface orientation) or translucency - is altered. Indeed, while they are not always readily perceptible, the small-scale features of an object are as important to its appearance as its material properties. Moreover, surface mesostructure and translucency are inextricably linked in an overall effect on appearance. In this dissertation, we present several studies examining the importance of surface mesostructure (small-scale surface orientation) and translucency on an object\u27s appearance. First, we present an empirical study that establishes how poorly a mesostructure estimation technique can perform when translucent objects are used as input. We investigate the two major factors in determining an object\u27s translucency: mean free path and scattering albedo. We exhaustively vary the settings of these parameters within realistic bounds, examining the subsequent blurring effect on the output of a common shape estimation technique, photometric stereo. Based on our findings, we identify a dramatic effect that the input of a translucent material has on the quality of the resultant estimated mesostructure. In the next project, we discuss an optimization technique for both refining estimated surface orientation of translucent objects and determining the reflectance characteristics of the underlying material. For a globally planar object, we use simulation and real measurements to show that the blurring effect on normals that was observed in the previous study can be recovered. The key to this is the observation that the normalization factor for recovered normals is proportional to the error on the accuracy of the blur kernel created from estimated translucency parameters. Finally, we frame the study of the impact of surface normals in a practical, image-based context. We discuss our low-overhead, editing tool for natural images that enables the user to edit surface mesostructure while the system automatically updates the appearance in the natural image. Because a single photograph captures an instant of the incredibly complex interaction of light and an object, there is a wealth of information to extract from a photograph. Given a photograph of an object in natural lighting, we allow mesostructure edits and infer any missing reflectance information in a realistically plausible way

    Real-Time Realistic Skin Translucency

    Full text link
    • …
    corecore