44 research outputs found

    A tension approach to controlling the shape of cubic spline surfaces on FVS triangulations

    Get PDF
    We propose a parametric tensioned version of the FVS macro-element to control the shape of the composite surface and remove artificial oscillations, bumps and other undesired behaviour. In particular, this approach is applied to C1 cubic spline surfaces over a four-directional mesh produced by two-stage scattered data fitting methods

    Bivariate Hermite subdivision

    Get PDF
    A subdivision scheme for constructing smooth surfaces interpolating scattered data in R3\mathbb{R}^3 is proposed. It is also possible to impose derivative constraints in these points. In the case of functional data, i.e., data are given in a properly triangulated set of points {(xi,yi)}i=1N\{(x_i, y_i)\}_{i=1}^N from which none of the pairs (xi,yi)(x_i,y_i) and (xj,yj)(x_j,y_j) with iji\neq j coincide, it is proved that the resulting surface (function) is C1C^1. The method is based on the construction of a sequence of continuous splines of degree 3. Another subdivision method, based on constructing a sequence of splines of degree 5 which are once differentiable, yields a function which is C2C^2 if the data are not 'too irregular'. Finally the approximation properties of the methods are investigated

    Shape preserving approximation using least squares splines

    Full text link
    Least squares polynomial splines are an effective tool for data fitting, but they may fail to preserve essential properties of the underlying function, such as monotonicity or convexity. The shape restrictions are translated into linear inequality conditions on spline coefficients. The basis functions are selected in such a way that these conditions take a simple form, and the problem becomes non-negative least squares problem, for which effecitive and robust methods of solution exist. Multidimensional monotone approximation is achieved by using tensor-product splines with the appropriate restrictions. Additional inter polation conditions can also be introduced. The conversion formulas to traditional B-spline representation are provided. <br /

    On C2 cubic quasi-interpolating splines and their computation by subdivision via blossoming

    Get PDF
    We discuss the construction of C2 cubic spline quasi-interpolation schemes defined on a refined partition. These schemes are reduced in terms of degrees of freedom compared to those existing in the literature. Namely, we provide a rule for reducing them by imposing super-smoothing conditions while preserving full smoothness and cubic precision. In addition, we provide subdivision rules by means of blossoming. The derived rules are designed to express the B-spline coefficients associated with a finer partition from those associated with the former one."Maria de Maeztu" Excellence Unit IMAG (University of Granada, Spain) CEX2020-001105-MICIN/AEI/10.13039/501100011033University of Granada University of Granada/CBU

    Quadratic Spline Quasi-interpolants on Powell-Sabin Partitions

    No full text
    2004-16International audienceIn this paper we address the problem of constructing quasi-interpolants in the space of quadratic Powell-Sabin splines on nonuniform triangulations. Quasi-interpolants of optimal approximation order are proposed and numerical tests are presented

    Convexity-preserving scattered data interpolation

    Get PDF
    This study deals with constructing a convexity-preserving bivariate C1 interpolants to scattered data whenever the original data are convex. Sufficient conditions on lower bound of Bezier points are derived in order to ensure that surfaces comprising cubic Bezier triangular patches are always convex and satisfy C1 continuity conditions. Initial gradients at the data sites are estimated and then modified if necessary to ensure that these conditions are satisfied. The construction is local and easy to be implemented. Graphical examples are presented using several test functions

    Monotone approximation of aggregation operators using least squares splines

    Full text link
    The need for monotone approximation of scattered data often arises in many problems of regression, when the monotonicity is semantically important. One such domain is fuzzy set theory, where membership functions and aggregation operators are order preserving. Least squares polynomial splines provide great flexbility when modeling non-linear functions, but may fail to be monotone. Linear restrictions on spline coefficients provide necessary and sufficient conditions for spline monotonicity. The basis for splines is selected in such a way that these restrictions take an especially simple form. The resulting non-negative least squares problem can be solved by a variety of standard proven techniques. Additional interpolation requirements can also be imposed in the same framework. The method is applied to fuzzy systems, where membership functions and aggregation operators are constructed from empirical data.<br /
    corecore