384 research outputs found

    Extremal Choice Equilibrium: Existence and Purification with Infinite-Dimensional Externalities

    Get PDF
    We prove existence and purification results for equilibria in which players choose extreme points of their feasible actions in a class of strategic environments exhibiting a product structure. We assume finite-dimensional action sets and allow for infinite-dimensional externalities. Applied to large games, we obtain existence of Nash equilibrium in pure strategies while allowing a continuum of groups and general dependence of payoffs on average actions across groups, without resorting to saturated measure spaces. Applied to games of incomplete information, we obtain a new purification result for Bayes-Nash equilibria that permits substantial correlation across types, without assuming conditional independence given the realization of a finite environmental state. We highlight our results in examples of industrial organization, auctions, and voting.

    Implicit regularization of dropout

    Full text link
    It is important to understand how dropout, a popular regularization method, aids in achieving a good generalization solution during neural network training. In this work, we present a theoretical derivation of an implicit regularization of dropout, which is validated by a series of experiments. Additionally, we numerically study two implications of the implicit regularization, which intuitively rationalizes why dropout helps generalization. Firstly, we find that input weights of hidden neurons tend to condense on isolated orientations trained with dropout. Condensation is a feature in the non-linear learning process, which makes the network less complex. Secondly, we experimentally find that the training with dropout leads to the neural network with a flatter minimum compared with standard gradient descent training, and the implicit regularization is the key to finding flat solutions. Although our theory mainly focuses on dropout used in the last hidden layer, our experiments apply to general dropout in training neural networks. This work points out a distinct characteristic of dropout compared with stochastic gradient descent and serves as an important basis for fully understanding dropout.Comment: arXiv admin note: text overlap with arXiv:2111.0102

    FAST CONVEX OPTIMIZATION VIA A THIRD-ORDER IN TIME EVOLUTION EQUATION

    Get PDF
    In a Hilbert space H, we develop fast convex optimization methods, which are based on a third order in time evolution system. The function to minimize f : H → R is convex, continuously differentiable, with argmin f = ∅, and enters the dynamic via its gradient. On the basis of Lyapunov's analysis and temporal scaling techniques, we show a convergence rate of the values of the order 1/t 3 , and obtain the convergence of the trajectories towards optimal solutions. When f is strongly convex, an exponential rate of convergence is obtained. We complete the study of the continuous dynamic by introducing a damping term induced by the Hessian of f. This allows the oscillations to be controlled and attenuated. Then, we analyze the convergence of the proximal-based algorithms obtained by temporal discretization of this system, and obtain similar convergence rates. The algorithmic results are valid for a general convex, lower semicontinuous, and proper function f : H → R ∪ {+∞}

    Information Recovery In Behavioral Networks

    Get PDF
    In the context of agent based modeling and network theory, we focus on the problem of recovering behavior-related choice information from origin-destination type data, a topic also known under the name of network tomography. As a basis for predicting agents' choices we emphasize the connection between adaptive intelligent behavior, causal entropy maximization and self-organized behavior in an open dynamic system. We cast this problem in the form of binary and weighted networks and suggest information theoretic entropy-driven methods to recover estimates of the unknown behavioral flow parameters. Our objective is to recover the unknown behavioral values across the ensemble analytically, without explicitly sampling the configuration space. In order to do so, we consider the Cressie-Read family of entropic functionals, enlarging the set of estimators commonly employed to make optimal use of the available information. More specifically, we explicitly work out two cases of particular interest: Shannon functional and the likelihood functional. We then employ them for the analysis of both univariate and bivariate data sets, comparing their accuracy in reproducing the observed trends.Comment: 14 pages, 6 figures, 4 table

    Optimization as a design strategy. Considerations based on building simulation-assisted experiments about problem decomposition

    Full text link
    In this article the most fundamental decomposition-based optimization method - block coordinate search, based on the sequential decomposition of problems in subproblems - and building performance simulation programs are used to reason about a building design process at micro-urban scale and strategies are defined to make the search more efficient. Cyclic overlapping block coordinate search is here considered in its double nature of optimization method and surrogate model (and metaphore) of a sequential design process. Heuristic indicators apt to support the design of search structures suited to that method are developed from building-simulation-assisted computational experiments, aimed to choose the form and position of a small building in a plot. Those indicators link the sharing of structure between subspaces ("commonality") to recursive recombination, measured as freshness of the search wake and novelty of the search moves. The aim of these indicators is to measure the relative effectiveness of decomposition-based design moves and create efficient block searches. Implications of a possible use of these indicators in genetic algorithms are also highlighted.Comment: 48 pages. 12 figures, 3 table
    corecore