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A Fast Nonlinear MPC Solver for
Real-Time Control of Linear Motors

Antoni Riera
IDNR: 1033755 - Master: Systems and Control

Supervision: Dr. M. Lazar, Dr. T. Nguyen
Control Systems Group - Electrical Engineering Department

Abstract—Model Predictive Control (MPC) is a control tech-
nique which has traditionally been applied to systems with
slow dynamics, due to its high computational requirements. The
increase in computational power has recently opened the door to
applying MPC to areas requiring a high sampling rate, such as
mechatronic systems. One of such applications is the control of
Ironless Linear Motors (ILMs). When accounting for non-ideal
geometry, an ILM is modelled as a nonlinear system. Therefore,
applying Model Predictive Control requires solving a nonlinear
optimization problem at every sample. In this work, a tailor-
made algorithm for the fast solution of a class of Nonlinear
MPC problems for systems with input nonlinearities is developed,
a class which includes ILMs. The algorithm implements an
Interior Point scheme while exploiting the particular problem
structure in order to accelerate the required linear algebra
operations. Simulation results show that nonlinear MPC may
be used to control ILMs at sampling times in the microsecond
range. The derived algorithm and software outperforms other
freely available solvers for real-time nonlinear MPC.

I. INTRODUCTION

Model Predictive Control (MPC) is a control technique
which uses a system model to optimize a sequence of inputs
over future time instants (horizon). Its main advantages include
the possibility to consider constraints in the current and future
time instants, anticipate to future reference or system changes,
easily deal with multivariate systems, and in general deal with
a wide range of (nonlinear) systems which describe processes
in many disciplines, among others. Furthermore, the time
response of the controller can be adjusted intuitively by tuning
its parameters.

A MPC controller determines each input to the system from
the solution of an optimization problem, which needs to be
calculated in real time. The technique was originally developed
for the control of large-scale processes in the chemical and
petroleum industry, where the slow dynamics allowed for
sampling times which could be measured in minutes or hours.
Hence, the computation time required for solving the corre-
sponding optimization problems was not a problem. Recent
advances in computational power and numerical optimization
have opened the door to the application of MPC to systems
with fast dynamics [19], [20].

In general, the solution of a MPC controller can only be
pre-computed in the case of unconstrained problems which
use linear, time-invariant systems as prediction models. For
constrained problems, the solution can also be computed
explicitly for each combination of active constraints, this is

referred to as Explicit MPC [1]. The control input is then
described by a piecewise-affine function of the current state.
The number of regions grows exponentially with the total
number of constraints, making this approach competitive only
for problems with a modest control horizon and number of
variables and inequalities. For many applications, solving the
optimization problems in real time is the only option, or the
most efficient one.

Depending on the problem structure, the fastest approach to
solve MPC optimization problems will vary. Important deci-
sions to take into account are the algorithm type, the treatment
of the inequalities (for Newton methods, typically Interior
Point or SQP with Active Set techniques), the approach taken
to solve the required linear algebra operations, the use of
exact or approximated second order information, the real-time
implementation of the algorithm, and so on. The optimization
problem can be also modified beforehand, for example, in
other to preserve convexity or make it computationally easier
to solve. The computational (software) implementation of the
algorithm is equally important in achieving low computational
times. Recently, automatic code generation for optimization
solvers has become popular. The generation of tailor-made
code for each particular optimization problem provides signif-
icant gains since it can exploit the fact that the problem size
and structure are known beforehand. Examples of well-known
code generation tools are CVXGEN [13] and ACADO Toolkit
[10].

In this work, a custom solver for the solution of Nonlin-
ear Model Predictive Control (NMPC) problems for Ironless
Linear Motors (ILMs) is developed. We consider a nonlinear,
position dependent model which accounts for Lorentz and
Reluctance forces on the driving and non-driving directions
[15]. The model can account for non-perfect geometry, and
can be obtained via system identification techniques [14,
Chapter 3]. The use of NMPC allows the linear motor to
be controlled with optimal control sequences which take into
account constraints on the currents.

The developed solver implements a modified Interior Point
scheme which allows to be warm-started, with a custom
structure-exploiting solution of the required linear algebra
operations via block factorization. A code generation routine
accelerates the linear algebra operations by fixing the problem
size and performing off-line pre-computations to the best
extent possible. The developed algorithm can also be used
for a class of NMPC problems which use a prediction model
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consisting of a linear system with a (time-varying) input
nonlinearity. This includes Hammerstein systems as a general
case. The developed algorithm is particularly advantageous for
prediction models with more inputs than states, for prediction
models in which the input is determined by solving a system
of (linked) nonlinear equations, and for problems with a large
prediction horizon.

The remainder of this thesis is structured as follows.
Section II formulates a model predictive control problem
for a class of dynamical systems with input nonlinearities.
Section III introduces a fast NMPC algorithm and software for
the control of dynamical systems with the mentioned structure.
In Section IV, a NMPC controller for linear motors is designed
and validated in simulation, which makes use of the designed
algorithm. In section V, the conclusions are summarized.

A. Basic definitions

Let N and R denote the set of natural and real numbers,
respectively. Rn denotes the set of real column vectors of
dimension n, and Rm×n denotes the set of real matrices
of size m × n. A zero matrix of size m × n is denoted
as 0m×n, and a n × n identity matrix is denoted as In.
Let S+

n denote the set of symmetric, strictly positive definite
matrices of size n×n. Let blkdiag(X1 . . . Xn) denote a block
diagonal matrix, with submatrices X1 . . . Xn as the diagonal
elements. Given a vector x ∈ Rn, let diag(x) denote a n× n
diagonal matrix with the elements of x on the diagonal, and
let length(x) denote the length of the vector x, i.e. n. Given
X ∈ S+

n , let chol(X) denote a Cholesky factorization of X ,
i.e., chol(X) = LLT where L is a real, lower triangular
matrix of size n × n. Given a matrix A, the inverse of its
transpose is denoted as A−T . Given a vector x, its i-th element
is referenced as x[i]. A floating point operation (flop) is defined
as one addition, substraction, multiplication or division [3,
Appendix C].

II. PROBLEM FORMULATION

The main objective of this work is the development of
a fast, tailor-made algorithm for the solution of Nonlinear
Model Predictive Control (NMPC) problems for a class of
dynamical systems with input nonlinearities. The considered
class of nonlinear systems was selected based on the modeling
of Ironless Linear Motors for controller design purposes.
Such systems consist of a nonlinear quasi-static part, due
to electromagnetics, and a linear dynamical system, due to
moving mechanical parts.. More details about the modeling
of ILMs will be given in Section IV of this thesis, and an
application example will be provided.

Ku(t) = Ψ(x(t); w(t)) x(t+ 1) = Ax(t) +Bu(t)

Input LTI System

w(t) u(t) x(t+ 1)

nonlinearity

x(t)

Fig. 1: Linear dynamical system with state-dependent input
nonlinearities.

We consider discrete-time dynamical systems with the struc-
ture shown in Figure 1. A state-space representation is given
by

x(t+ 1) = Ax(t) +Bu(t), t = 0, 1, 2, . . . (1)

Ku(t) =

 Ψ1(w(t), x(t))
...

Ψnf
(w(t), x(t))

 := Ψ(w(t), x(t)), (2)

where t ∈ N denotes the discrete time index, x(t) ∈ Rnx

the state vector, w(t) ∈ Rnw the input vector to the overall
nonlinear system, and u(t) ∈ Rnu the input vector to the
linear dynamical subsystem. The matrices A ∈ Rnx×nx

and B ∈ Rnx×nu represent the linear, time-invariant sys-
tem described by (1). We assume that rank(A) = nx The
functions Ψi : Rnw×nx → Rnf describe a static nonlinear
relationship between the input terms w(t), the state x(t) and
Ku(t), with K ∈ Rnf×nu and rank(K) = nu. Note that
a proper discretization for the position-dependent terms is
required. Also, observe that the number of nonlinear equalities
is nf , which may be bigger than nu. Ψ is assumed to be
twice differentiable. The mapping w(t) → u(t) needs to be
surjective (each w(t) maps to some u(t)), but it might be non-
bijective and/or non-convex. In the latter case, the possible
implications will be outlined throughout the document. We
consider, without loss of generality, that the output of the linear
system is x(t), i.e., all the states can be measured. Throughout
this document, we refer to w(t) and u(t) as the nonlinear input
and the linear input, respectively, because that is how they
relate to the output signal x(t). The linear dynamical system
is assumed to have a number of inputs equal to or higher than
the number of states.

This problem formulation includes a subset of MPC prob-
lems for quasi-LPV systems that received an increased at-
tention recently, see [4] and the references therein. Note
that, when disregarding the position dependency of the terms
Ψ(x(t), w(t)), equations (1)-(2) describe a Hammerstein sys-
tem (linear dynamical system with a static nonlinear input
term).

A nonlinear model predictive control scheme with the
dynamical system (1) – (2) used as prediction model is con-
sidered in what follows. The associated optimization problem
determines the predicted states and inputs at time t, which are
given by

Uk =
(
u0|k, . . . , uN−1|k

)
∈ Rnu×N , (3a)

Wk =
(
w0|k, . . . , wN−1|k

)
∈ Rnw×N , (3b)

Xk =
(
x1|k, . . . , xN |k

)
∈ Rnx×N . (3c)

For brevity, we will omit the reference to current discrete time
index in the above sequences unless specified otherwise, i.e.,
pj|k is referred to as pj for any p ∈ {u,w, x}. The optimal
predicted inputs and states are noted by U∗k , W ∗k and X∗k , and
are given by the solution of the following problem:
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Optimization Problem 1 (State-dependent Input Nonlinearity
NMPC Controller).

min
Uk,Xk,Wk

N−1∑
j=0

Lj(xj , uj , wj) + LN (xN ), (4)

subject to

x0 = x(t), (5a)
xj+1 = Axj +Buj , ∀j = 0, . . . , N − 1, (5b)
Kuj = Ψ(wj , xj), ∀j = 0, . . . , N − 1, (5c)
Gu0u0 ≤ fu0 , (5d)

Gxuj
(
xTj , u

T
j

)T ≤ fxuj , ∀j = 1, . . . , N − 1, (5e)

Gwj wj ≤ fwj , ∀j = 0, . . . , N − 1, (5f)

GxNxN ≤ fxN , (5g)

with prediction horizon length N , and stage and terminal cost
functions Lj : Rnx+nu+nw → R+ and Ln : Rnx → R+.
Equations (5b) – (5c) represent the discretized system dynam-
ics as defined in this section, and equations (10e) – (10g)
represent linear inequality constraints on the predicted states
and inputs, with right hand sides fxj ∈ Rlx , fuj ∈ Rlu ,
fwj ∈ Rlw , and matrices Gxj , Guj , Gwj of appropriate size.
In total, the problem has mi = N(nx + nu + nw) inequality
constraints and m = N(nx + nf ) equality constraints. xj , wj
and uj refer to the predicted states and inputs at time t as
defined in (3a) – (3c), with the second subscript omitted for
clarity.

In a basic Model Predictive Control implementation, the
system is controlled with the policy w(t) = w∗0|t.

We consider the following stage and terminal cost formula-
tion:

Li(xi, ui, wi) =

[
xi − xri
ui − uri

]T [
Q S
ST Ru

] [
xi − xri
ui − uri

]
+ (wi − wri )

T
Rw (wi − wri ) ,

(6a)

LN (xN ) = (xN − xrN )
T
P (xN − xrN ) (6b)

with quadratic weight matrices Q, R, S, N , P , and reference
vectors xri , u

r
i , w

r
i of appropriate dimensions. Furthermore, we

assume the stage and terminal cost functions to be convex, this
is fulfilled when

( Q S

ST Ru

)
∈ S+, Rw ∈ S+, and P ∈ S+.

The stage cost formulation (6) comprises a large subset
of Model Predictive Control problems. The cross-term S is
typically used when penalizing an output channel with direct
feed-through. We do not consider any cross-terms for the
nonlinear input w.

A. Removal of the position dependency

In Optimization Problem 1, the constraint (5c) depends
on the current state. A technique used in model predictive
control formulations of position dependent systems is the pre-
evaluation of those terms at guess X̂k of Xk [4]. This tech-
nique will be applied to the Linear Motor in Section IV-B1 in
order to reduce the computational complexity of the problem

and in order to avoid non-convexity. This subsection gives the
structure of the modified NMPC optimization problem.

We consider the following change to the structure of Opti-
mization Problem 1: Equation (5c) is replaced by

Kuj = Ψ(wj , x̂j) := Ψj(wj) (7)

where

X̂k = Γ(X∗k−1) = (x̂1, . . . , x̂N ) (8)

and where Γ : RN+1 → RN is a function used to predict the
future states. This function is used to remove the dependency
on the current state from Ψ(wj , xj) in (5c), which is now
converted into a time-dependency across the predicted horizon.
The modified optimization problem is given by

Optimization Problem 2 (Time-varying Input Nonlinearity
NMPC Controller).

min
Uk,Xk,Wk

N−1∑
j=0

Lj(xj , uj , wj) + LN (xN ), (9)

subject to

x0 = x(t), (10a)
xj+1 = Axj +Buj , ∀j = 0, . . . , N − 1, (10b)

Kuj = Ψj(wj), ∀j = 0, . . . , N − 1, (10c)
Gu0u0 ≤ fu0 , (10d)

Gxuj
(
xTj , u

T
j

)T ≤ fxuj , ∀j = 1, . . . , N − 1, (10e)

Gwj wj ≤ fwj , ∀j = 0, . . . , N − 1, (10f)

GxNxN ≤ fxN , (10g)

where the nonlinear dynamics are now time-dependent
(Ψj(wj) in (10c)), and the rest of the terms are as in Op-
timization Problem 1. This modification avoids the potential
non-convexity issues caused by the position dependency of
(5c). Note that the problem remains non-convex, but now only
with respect to wj .

Note that an appropriate discretization of a continuous-time
system is difficult to express in the structure of Figure 1.
This is because the nonlinear terms Ψ(w(t), x(t)) may vary
between samples as x(t) varies continuously, which in turn
affects u(t), providing a feedback which is difficult to model.
This effect may be compensated for with a proper choice of
Γ.

III. FAST NONLINEAR MODEL PREDICTIVE CONTROL FOR
SYSTEMS WITH TIME-VARYING INPUT NONLINEARITY

In this chapter, a fast structure-exploiting algorithm is
derived for the solution of Optimization Problem 2, which de-
scribes nonlinear model predictive control problems involving
a time-dependent input nonlinearity in the prediction model.

An Interior Point scheme with fixed barrier term is imple-
mented in order to solve Optimization Problem 2. In order
to accelerate the required linear algebra operations, a block-
factorization scheme which exploits the sparsity pattern of
the problem will be used. The developed option is especially
favourable for problems with relatively large prediction hori-
zons, and problems with a number of inputs which is similar
or higher than the number of states.
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A. A modified interior point scheme for real time control

A primal-dual interior point scheme is implemented to
solve the optimization problem (9) – (10). In this section,
a standard version of the algorithm will be outlined, then a
variation favourable for real-time model predictive control will
be introduced. For simplicity, standard notation is used in this
section. In the next sections, the structure of the optimization
problem (9) – (10) will be taken into account. In order to
introduce the basics of the interior point method, consider the
following optimization problem in standard form

min
z
f(z) (11)

subject to gi(z) = 0, i = 1 . . .m, (12)
hi(z) > 0, i = 1 . . .mi, (13)

with optimization variables z ∈ Rn, cost f : Rn → R, m
functions gi : Rn → R and mi functions hi : Rn → R such
that the set defined by (13) is convex.

A barrier approach is taken to derive the interior point
method [17, Section 19.1]. The problem (11) – (13) is rewritten
as

min
z,s

f(z)− µ
mi∑
i=1

log si (14)

subject to gi(z) = 0, i = 1 . . .m, (15)
hi(z)− si = 0, i = 1 . . .mi, (16)

where µ > 0 is a parameter and the terms si ∈ R are slack
variables. The term −µ

∑mi

i=1 log si is a barrier term replacing
the inequality constraints. Note that this also introduces the
implicit constraint si > 0. Problems (14) – (16) and (11) have
the same solution when µ = 0 and the constraint si > 0 is
enforced.

The first order (KKT) optimality conditions for (14) can be
expressed as (when si > 0 ∀i)

∇f(z)− CT (z)ν − JT (z)λ = 0, (17a)
−µe+ Sλ = 0, (17b)

g(z) = 0, (17c)
h(z)− s = 0, (17d)

where g(z) = (g1(z), . . . , gm(z))T are all equality constraints
stacked, h(z) = (h1(z), . . . , hmi

(z))T are all inequality con-
straints stacked, s = diag(s1, . . . , smi) are slack variables,
λ ∈ Rmi , ν ∈ Rm are multipliers associated with the
inequality and equality constraints (such that ∀i, λi > 0),
e = (1, . . . , 1)T and

C(z) =
[
∇gT0 (z), . . . ,∇gTmi

(z)
]T
, (18)

J(z) =
[
∇hT0 (z), . . . ,∇hTmi

(z)
]T
. (19)

The solution of the original problem (11) may be obtained
by solving a sequence of modified problems (14) for a
decreasing value of µ. For low values of µ, the solution of the
modified problem lies closer to the one of the original problem.
Although an optimal solution of the modified problem will
not be an optimal solution of (11), all solutions are primal
feasible for the original problem, i.e. gi(z) = 0 and hi(z) > 0

are respected. When solving the NMPC problem (9) – (10),
gi(z) = 0 means that the model dynamics are respected across
the prediction horizon.

Problem (14) only has equality constraints, but with the
implicit constraint that si > 0 in the cost function. Applying
Newton’s method to (14) involves solving the system
∇2
xxL 0 −CT −JT
0 Z 0 S
C 0 0 0
J −I 0 0




∆z
∆s
∆ν
∆λ

 = −


∇f − CT ν − JTλ
−µe+ Sλ
g(z)

h(z)− s

 ,
(20)

with Z = diag(z), ∆z, ∆s, ∆ν and ∆λ represent Newton
steps, and ∇2

xxL denotes the Hessian of the Lagrangian of
problem (14), which is given by

L = f(z)− νT g(z)− λT (h(z)− s). (21)

The terms ∆s and ∆λ are removed from (20) by eliminating
the corresponding rows, resulting in the system (with the
dependency of each term on z, ν or µ)[

Φ(z, ν, µ) CT (z)
C(z) 0

] [
∆z
∆ν

]
=

[
−rd(z, ν, µ)
−g(z)

]
, (22)

with new terms

Φ(z, ν, µ) = ∇2
xxL(z, ν) + µJT (z)Σ(z)J(z), (23)

rd(z, ν, µ) = ∇f(z)− CT (z)ν − µJT (z)d(z), (24)

and in which

d(z) =

(
1

h1(z)
, . . . ,

1

hmi
(z)

)
, (25)

Σ(z) = diag(d(z))2. (26)

After the transformation, the first order optimality conditions
can be expressed as g(z) = 0 and rd(z, ν, µ) = 0. The
conversion from (20) to (22) reduces the size of the problem
and yields a favourable structure for solving the linear system.
The reduced system (22) may become ill conditioned because,
as µ → 0, some terms in d(z) diverge to ∞ while others
remain bounded. For MPC problems, the term Φ will be
block diagonal with relatively small blocks, which reduces
the effects of this ill-conditioning. Furthermore, high quality
solution approximations may be obtained with modest values
of µ, as will be shown in Section IV.

1) Standard Interior Point implementations: In standard
Interior Point implementations, the original problem (11) is
solved via the successive solution of approximate subproblems
(14) for decreasing values of µ. The method is started at a
guess z0 and ν0 which satisfies the inequality constraints.
Then, each subproblem is solved by performing multiple
iterations until the norm of the residual (rd, g) is small enough.
The solution of each subproblem is used to start the next.
The barrier parameter µ is typically reduced geometrically,
i.e. µ ← kµ with k ∈ (0, 1). Each iteration is performed
by computing the search directions ∆z and ∆ν with (22),
then determining a step size s ∈ (0, smax) by performing
a line search on the norm of a merit function or residual,
and then updating the current guess with z+

0 ← z0 + s∆z
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and ν+
0 ← ν0 + s∆ν (smax ∈ (0, 1) is an upper bound

which ensures that the updated point satisfies the inequality
constraints). See, for example, [17, Section 19.4] for a formal
definition.

The use of a decreasing sequence of values for µ is intended
to aid in convergence speed. For a value of µ too big, the
solution of the barrier problem differs too much from the one
of the original problem. On the other hand, when µ is too
small, the contribution of the barrier function to the overall
Hessian and optimality residuals is small until later iterations
(this contribution is given by the rightmost terms in (23) and
(24)). Starting with a small µ causes the search directions to
aim towards the solution of the unconstrained problem, until
the border of the inequality constraints is reached. Once in the
border, convergence is slowed down.

2) Modified interior point scheme: In order to apply MPC
in real time, the optimization problem (9) – (10) needs to
be solved successively and in a fixed time period. Each pair
of successive optimization problems (9) – (10) is similar,
and the predicted inputs and states Uk, Wk and Xk can be
used to compute an initial guess for the solution of the next
optimization problem (warm start). In other words, before
solving the problem for z and ν, we can obtain a zws and νws

which are sufficiently close. However, Interior Point methods
do not work well with warm start techniques, since the solution
of the previous problem was obtained with a different barrier
parameter µ.

A variation which uses a constant barrier parameter µ
is considered in Algorithm 1 given below. This allows the
problem to be warm-started. A value of µ relatively small
needs to be selected: this will provide a solution which is
close enough to the one of the original problem (11), but
the contribution of the barrier parameters to the Hessian and
optimality residuals will be significant since the method starts
at the points zws and νws. The value of µ will be selected
via simulations. A similar scheme with a fixed barrier term
has been applied to linear MPC problems in [19]. In the Real
Time Iteration scheme for Nonlinear MPC proposed in [5]
(implemented in the software ACADO Toolkit [11]), also a
limited number of SQP iterations are performed to solve the
MPC problem, achieving convergence in time thanks to the
warm start.

In Algorithm 1, zws and νws represent an initial guess for
the values of z and ν. The parameters α ∈ (0, 0.5) and β ∈
(0, 1) are used for the line search procedure, and γ ∈ (0, 1)
is used to numerically determine smax. The following merit
function is used for the line search procedure:

φ(z, τ) = f(z)− µ
mi∑
i=1

log hi(z) + τ ||g(z)||2, (27)

where τ ∈ R+ is a weighting parameter. Since, in real time,
the amount of computational time available is limited, the
number of iterations is truncated at Kmax. The use of a fixed
iteration number is also made possible by the use of a fixed
barrier parameter µ because, in case of early termination of
the algorithm (before convergence), the current z will be close
to the optimum.

Algorithm 1 Fixed Barrier Interior Point Method

given zws, νws, µ, α, β, δ, τ
1: z ← zws

2: ν ← νws

3: k ← 0
4: while k < Kmax do
5: Compute search directions ∆x, ∆ν using (22)
6: Calculate smax satisfying h(z) > 0

7: smax ← 1
8: while hi(z + smax∆z) ≤ 0, i ∈ (1, . . . ,mi) do
9: smax = δsmax

10: end
11: Perform line search on merit function
12: s← smax

13: while φ(z+s∆z, τ) > φ(z, τ)+αs∇zφ(z, τ)T∆z

14: s = βs

15: end
16: Update solution
17: z ← z + s∆z
18: ν ← ν + s∆ν

19: k ← k + 1

20: end

The amount of time required to execute Algorithm 1 is
largely determined by the solution time of step 5, which
involves the solution of (22). The complexity of this step
is iteration independent (it depends on the problem structure
and size, but not on any parameters of the algorithm). In the
following subsections, an efficient algorithm for the solution
of this step will be derived.

B. Problem structure

In this subsection, the structure the NMPC optimiztion
problem (9) – (10) is detailed in terms of the interior-point
problem (14) – (16). This structure will be used in the next
subsection to derive an efficient factorization method for the
KKT matrix (22).

The optimization variables Uk, Wk, Xk are sorted and
stacked in the optimization vector

z = (u0, w0, x1, . . . , uN−1, wN−1, xN ) ∈ Rn, (28)

where the dependency on k (second subscript) has been
omitted for ease of notation, and n = N(nx+nu+nw) is the
number of optimization variables. We assign a dual variable
(Lagrange multiplier) to each equality constraint, such that
νli ∈ Rnx are the Lagrange multipliers assigned to (10b) for
j = i, and similarly νnli ∈ Rnf are the ones assigned to
(10c). The dual variables are stacked in the vector

ν =
(
νl0, ν

nl
0 , . . . , ν

l
N−1, ν

nl
N−1

)
∈ Rm, (29)

where m = N(nx + nf ) is the number of equality con-
straints. This proposed arrangement of z and ν will reduce
the computational complexity of the subsequent linear algebra
operations.
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With the arrangement (28) of the optimization variables, the
Hessian of the Lagrangian has the structure

Φ(z, ν, µ) :=

Φ0(z, ν, µ) 0
. . .

0 ΦN (z, µ)

 ∈ Rn×n, (30)

where the blocks Φ0 = Φ0(z, ν, µ), Φi = Φi(z, ν, µ) and
ΦN (z, µ) = ΦN have the structure

Φ0 =

[
Φu0 0
0 Φw0

]
∈ R(nu+nw)2 , (31a)

Φi =

[
Φxui 0

0 Φwi

]
∈ R(nx+nu+nw)2 , i=1...N−1, (31b)

ΦN = ΦxN ∈ R(nx)2 , (31c)

with sub-blocks

Φu0 = R+ µGu0
TΣu0G

u
0 ∈ Rnu

2

, (32a)

ΦxN = P + µGxN
TΣxNG

x
N ∈ Rnx

2

, (32b)

Φwi = Ω + µGwi
TΣwi G

w
i +∇2

wwF (w)νnli ∈ Rnw
2

, (32c)

Φxui =

[
Q S
ST R

]
+ µGxui

TΣxui Gxui ∈ R(nx+nu)2 , (32d)

and in which the terms Σji are given by

Σji = blkdiag

(
1

σji
[1]
, . . . ,

1

σji
[k]

)2

, i = 0, . . . , N,

j ∈ {u, x, w, xu}, k = length(σji ), (33)

with

σxui = fxui −Gxui (xi, ui)
T , σwi = fwi −Gwi wi, (34a)

σxN = fxN −GxNxN , σu0 = fu0 −Gu0u0. (34b)

In equations (32a) – (32d), the terms with Σji represent the
contributions of the barrier function to the overall Hessian.

Remark 1 (Positive definiteness of the Hessian). In order
to satisfy the second order sufficient conditions (SOSCs) of
the intermediate Newton steps [17, Chapter 3], the Hessian
Φ needs to be positive definite on the null space of the
linearized constraints C. Note that the subterms Φwi are not
guaranteed to be positive definite, because they depend on
ν, which is unbounded. In case this assumption does not
hold, a number of techniques can be applied, such that using
an approximation Φ̃ = Φ + γI , which sacrifices part of
the second-order information (See e.g. [17, Section 19.3]).
With this problem structure, and adequate γ can be possibly
obtained analytically from (32b). We assume Φ to be positive
definite from this point onwards.

With the given arrangement of z and ν, the constraints
gradient matrix has the structure

C(z) :=


E0 F1 0 · · · 0 0
0 E1 F2 · · · 0 0
...

...
. . . . . .

...
...

0 0 · · · EN−2 FN−1 0
0 0 · · · 0 EN−1 FN

 ∈ Rm×n

(35)
with components

E0 :=

[
B 0nx×nw

K ψ0(w0)

]
=
[
EL0 ER0

]
, (36a)

Ei :=

[
A B 0nx×nw

0 K ψi(wi)

]
=
[
ELi ERi

]
, i=1...N−1

(36b)

Fi :=

[
−Inx

0nx×nu
0nx×nw

0nf×nx
0nf×nu

0nf×nw

]
=
[
FLi 0

]
, i=1...N

(36c)

FN :=

[
−Inx

0nf×nx

]
, (36d)

where the matrices E0, Ei and Fi have been partitioned as
shown, and ψi(wi) represents a linearization of the nonlinear
equality constraints at w = wi,

ψi(wi) :=
∂Ψi(w)

∂w
=


∂Ψi

1

∂w[1] · · · ∂Ψi
1

∂w[nw ]

...
...

∂Ψi
nf

∂w[1] · · ·
∂Ψi

nf

∂w[nw ]


w=wi

∈ Rnf×nw .

(37)

C. Structured solution of the Newton step

In this subsection, a structured algorithm for the solution of
Newton steps is derived. The greatest computational cost in
optimization algorithms lies in the calculation of the primal
and dual search directions ∆z ∈ Rn and ∆v ∈ Rm, which
are given by the solution of the KKT system[

Φ(z0, ν0, µ0) CT (z0)
C(z0) 0

] [
∆z
∆ν

]
=

[
−rd(z0, ν0, µ0)
−rp(z0)

]
, (38)

where Φ(z0, ν0, µ0) ∈ S+
n is either the actual Hessian of the

Lagrangian of problem (14), or a positive-definite approxima-
tion, and C(z0) ∈ Rm×n is the constraints gradient. Both
terms are evaluated at the current guess (z0, ν0) and for the
current barrier parameter µ = µ0.

The KKT matrix for this particular optimization problem
shows a specific structure which can be exploited. In particular,
Φ(z0, ν0) is positive-definite and block diagonal, the rows
and columns of C(z0) have been arranged such that only
consecutive terms are connected (in terms of horizon index),
and some terms in these matrices may be independent of
current guess (z0, ν0). We will use block elimination on the
KKT matrix in order to expose its sparsity pattern. Block
elimination has been applied to the solution of Linear MPC
optimization problems in [19] and [7, Chapter 4] (where it
is referred as the Schur Complement Method). In [6], the
same method is outlined with a more general notation and
some modifications. Here we derive a new formulation for
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the special case of Nonlinear MPC problems with the input
nonlinearity structure defined in this chapter.

From here onwards, the notation is simplified such that
Φ = Φ(z0, ν0, µ0) and C = C(z0). By taking the Schur
complement of the KKT matrix on the block Φ, the linear
system becomes

Y∆ν = β, (39)

Φ∆z = −rd − CT∆ν, (40)

with

Y = CΦ−1CT ∈ Rm×m, (41)

β = rp − CΦ−1rd ∈ Rm, (42)

in which both matrices involved in a linear system (Y and
ψ) are now positive definite. This provides a computational
advantage in solving the corresponding linear systems, since
Cholesky factorizations can be used.

Remark 2. Y = CΦ−1CT is positive definite when
null(CT ) = {0} and because of the assumption Φ ∈
Sn+. It can be verified that null(CT ) = {0} holds when
rank(

[
K ψi(wi)

]
) = nf ∀i, i.e. when the linearized

equality constraints at the current iteration are linearly inde-
pendent. It should be verified for every particular application
whether the rank of C can decrease for all possible values
of ψ. Note that, in some applications, dropping all but one
of the linearly dependent linearized constraints may suffice to
calculate a search direction, however, this could be a symptom
that the problem is converging towards a stationary point
which does not fulfill all equality constraints.

The structured solution of (39)-(42) comprises the following
steps:

i) Factorize Φ.
ii) Calculate Y and β.

iii) Factorize Y .
iv) Solve (39) for ∆ν.
v) Solve (40) for ∆z.

Each step will be outlined, commenting the possible structure
exploitations and the computational cost in terms of floating
point operations (flops). We use the definition of flop as one
addition, substraction, multiplication or division [3, Appendix
C]. Remarks about this definition are provided in Section
III-D. The considered costs for some basic linear algebra
operations are summarized in Table I.

Linear algebra operation costs (flops) [3]

Operation Input size Cost

Matrix multiplication C = AB A ∈ Rm×n, B ∈ Rn×p 2mnp
Cholesky decomposition Y = LLT Y ∈ Sn+ n3/3

Banded Cholesky Y = LLT Y ∈ Sn+, bw(Y ) = k � n nk2

Forward substitution XL = B L ∈ Rn×n, B ∈ Rn×m mn2

TABLE I: Basic linear algebra operation costs.

i) Factorization of Φ: A Cholesky factorization of Φ is
performed, such that Φ = LΦLΦT . Given the block diagonal

structure of Φ, each of its blocks can be factored indepen-
dently, that is

Φji = LjiL
j
i

T
, i = 0 . . . N, j ∈ {xu,w}. (43)

Assuming dense blocks, the total cost is
N
(
(nx + nu)3 + n3

w/3
)

flops. In case the problem is
state-input separable (in both the stage cost an inequality
constraints), the cost is lowered to 1/3N

(
n3
x + n3

u + n3
w

)
flops. In case of diagonal blocks (fulfilled when P,Q are
diagonal, S = 0, and box inequality constraints), there are no
costs associated with this step.

In special cases, it may be possible to pre-compute some
factorizations. In the general case, it is not possible because
Φ = Φ(z0, ν0, µ0). The dependence on z comes from the
contribution to the Hessian of the barrier function (terms with
Σ in Equations (32a) – (32d)). When some xi and ui is
not affected by any inequality constraints, the factorization
affecting its block (Φxui = LΦxu

i LΦxu

i

T
) can be pre-computed.

This is, in general, not the case for Φwi since it also depends
on the dual variables.

ii) Calculation of Y and β: With the arrangement (29) of
the Lagrange multipliers, Y = CΦ−1CT will have the block
tridiagonal structure

Y :=



Y11 Y T21 0 · · · 0 0
Y21 Y22 Y T32 · · · 0 0
0 Y32 Y33 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · YN−1,N−1 Y TN,N−1

0 0 0 · · · YN,N−1 YN,N


∈ Rm×m,

(44)
where

Yii = Ei−1Φ−1
i−1E

T
i−1 + FiΦ

−1
i−1F

T
i , (45a)

Yi+1,i = EiΦ
−1
i FTi , (45b)

with Yii, Yi+1,i ∈ R(nx+nf )2 . Each of the three terms in
(45a) – (45b) is solved with the block factorization of Φ.

The term EiΦ
−1
i ETi can be obtained by performing two in-

dependent operations. By dividing the blocks Ei =
[
ELi |ERi

]
as in (36a) – (36b), and considering the block diagonal
structure of Φi (see (31b)),

EiΦ
−1
i ETi = ELi Φxui

−1ELi
T

+ ERi Φwi
−1ERi

T
, (46)

where, by using the factorizations of each Φi block,

EiΦ
−1
i ETi

= ELi

(
Lxui Lxui

T
)−1

ELi
T

+ ERi

(
Lwi L

w
i
T
)−1

ERi
T
,

=
(
ELi L

xu−T

i

)
︸ ︷︷ ︸

πi

(
ELi L

xu−T

i

)T
+
(
ERi L

w−T

i

)
︸ ︷︷ ︸

θi

(
ERi L

w−T

i

)T
,

= πiπ
T
i + θiθ

T
i . (47)

Similarly, the term FiΦ
−1
i−1F

T
i takes the form

FLi Φ−1
i−1F

T
i =

(
FLi L

xu−T

i

)
︸ ︷︷ ︸

φi

(
FLi L

xu−T

i

)T
,

= φiφ
T
i . (48)
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The term EiΦ
−1
i FTi can be then expressed as a combination

of two of the previous terms,

EiΦ
−1
i−1F

T
i =

(
EiL

xu−T

i

)
︸ ︷︷ ︸

πi

(
FiL

xu−T

i

)T
︸ ︷︷ ︸

φT
i

,

= πiφ
T
i . (49)

Note that, in (48) and (49), the rightmost nw zeros from (36c)
have removed any influence from Φwi and ERi . The matrices
πi, θi, φi are obtained by solving

ELi = πiL
xuT

i (50a)

ERi = θiL
wT

i (50b)

FLi = φiL
xuT

i (50c)

which involves three backward substitution operations, since
the matrices Lj

T

i are lower triangular. Then, the components
of Y can be determined by

Yii = πi−1π
T
i−1 + θi−1θ

T
i−1 + φiφ

T
i , (51a)

Yi+1,i = πiφ
T
i . (51b)

The same operations are performed for i = 0 . . . N , note,
however, that the matrix sizes are different for i = 0 and i =
N , but for clarity we have used the same notation for all values
of i. The total cost for the 3N required forward substitution
operations is N (nx + nf )

(
2(nx + nu)2 + n2

w

)
flops, and the

matrix self-multiplications in (51a) – (51b) have a total cost of
2N(nx + nf )(nx + nu)2 + N

(
nx + nu)((nx + nf )2 + n2

w

)
flops. The leading terms, when considering both operations,
are 4N(nx + nf )(nx + nu)2 +Nn2

w(2nx + nu + nf ). On an
implementation side, note that the matrices ELi and FLi do not
depend on the current iterate.
β is obtained by solving (42). The term Φ−1rd is calculated

with the block factorization of Φ, and the structure of C
is exploited for the matrix multiplication. The cost of this
operation is negligible and grows linearly with N .

iii) Factorization of Y : Y is a block tridiagonal matrix
with the structure shown in (44). A Cholesky factorization
is performed, such that

Y = LY LY
T
. (52)

Given the block tridiagonal structure of Y , its factorization
takes the form

LY =



LY11 0 0 · · · 0 0
LY21 LY22 0 · · · 0 0
0 LY32 LY33 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · LYN−1,N−1 0

0 0 0 · · · LYN,N−1 LYNN


(53)

where LYii ∈ R(nx+nf )2 are lower triangular and LYi+1,i ∈
R(nx+nf )2 are, in general, dense. A Cholesky factorization of
a block tridiagonal matrix is performed by successively solving

LY11L
Y T

11 = Y11, (54a)

LYiiL
Y T

i+1,i = Yi+1,i, i = 1, . . . , N − 1, (54b)

LYiiL
Y T

i,i = Yii − LYi,i−1L
Y T

i,i−1, i = 2, . . . , N, (54c)

in which steps (54a) and (54c) involve obtaining LYii via a
Cholesky factorization of the right hand side, and step (54b)
involves a forward substitution in order to obtain LYi+1,i. The
total costs are 1/3N(nx+nf )3 for (54a) and (54c), and (N−
1)(nx + nf )3 for (54b).

In case the stage cost and inequality constraints are state-
input separable, and because of the particular input nonlinear-
ity structure, the cost of (54b) can be further reduced. The left
hand terms LYii and LY

T

i+1,i are partitioned in the blocks

LYii =

[
LA 0
VC LB

]
, LY

T

i+1,i =

[
WA WC

WD WB

]
, (55)

so that the upper left blocks are of size nx×nx and the lower
right ones are nf × nf , and the right hand term of (54b) is
partitioned as (see Appendix A)

Yi+1,i =

[
Y Ai+1,i 0

0 0

]
, (56)

with blocks of the same size. Then, LY
T

i+1,i can be obtained by
solving

LAWA = Y Ai+1,i (57a)

LBWD = −VCWA (57b)
WC = 0 (57c)
WB = 0 (57d)

which involves a forward substitution to obtain WA in (57a)
and a multiplication plus another forward substitution in (57b),
with a total cost of (N − 1)(n3

x + n2
xnf + nxn

2
f ), which

is notably inferior to the cost of a dense solution of (54b),
especially when nf > nx.

This comes directly from the multiplication of the terms
in (55), and the observation that null(LA) = {0} and
null(LB) = {0}. This step can also be performed (in theory
less efficiently) with a banded solver, see Appendix A.

iv-v) Calculation of ∆ν and ∆z: Equations (39) and (40)
are solved with the block factorizations of Y and Φ. The cost
of this operation is negligible and grows linearly with N .

D. Complexity analysis

In this section, the computational complexity of the block
factorization routine is assessed. The leading (asymptotic) cost
of the proposed structure-exploiting solution of the Newton
step, in terms of floating point operations and when consider-
ing the general case, is

N

(
5

3
(nx + nf )3 +

1

3

(
(nu + nx)3 + n3

w

)
+
(
2(nu + nx)2 + n2

w

)
(nf + nx)

+ 2(nf + nx)(nu + nx)2

+ (nu + nx)
(
(nf + nx)2 + n2

w

))
. (58)

The full cost (not just the leading terms) is shown in Figure 2
for different combinations of nx, nu, nf and nw, with N = 10
(note that the cost grows linearly with N ). This cost largely
dominates the cost of a full interior point step, as defined
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in Algorithm 1. In the figure, three cases are considered: the
general case, the case in which the stage cost and inequality
constraints are input-state separable, and the case with diag-
onal stage cost and box constraints. The proposed approach
is especially effective when considering over-actuated systems
(nw similar or bigger than nu or nx).

The proposed block factorization approach is compared
with the solution of (22) via a banded LDLT factorization
(after rearranging its rows and columns). This is one of
the main approaches used in fast (linear) MPC [7, Chapter
2.2.2]. With this approach, the computational complexity also
grows linearly with N . In this particular problem, a favourable
rearrangement of the KKT matrix can be obtained with a band-
width (maximum distance from the diagonal of its non-zero
elements) of 2nx+nu+nf +nw. The (again theoretical) cost
of performing an Interior Point operation with this approach
is added to Figure 2. This approach offers no gains for the
special cases considered. In terms of (raw) flops, the block
factorization approach is shown to be between 50% and 85%
faster for the parameter combinations considered, due to the
better exploitation of the sparsity pattern. Another approach
to factorize a KKT matrix consists on removing the equality
constraints and some variables in order to form smaller, dense
quadratic programs, with a cost of order O(N3n3

w) [12]. For
nonlinear problems, the condensing needs to be performed
online at each iteration. This approach has not been analysed
in this section because our problem formulation focuses on
systems with more inputs than states, for which the removal
of variables does not outweight breaking the sparsity pattern.
(A solver which utilizes condensing will be benchmarked in

IP iteration computational cost (N=10)
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Fig. 2: Computational cost of an Interior Point iteration, in
number of floating point operations, for different values of
nx, nu, nf and nw, with N = 10. In each of the subplots, all
values are fixed, except the one labeled in the horizontal axis.

Section V).
While the number of required floating point operations is

a good indicator of the algorithm complexity, it is not an
exact predictor of the required computational time. A modern
processor can usually perform multiple operations in one
instruction if the required data is properly arranged in memory,
on the other hand, retrieving scattered data in the memory
may require a handful of instructions. In high speed optimal
control, the arrangement of the data in memory is the biggest
bottleneck, outweighing the algorithmic cost. See e.g. [8]. For
a better implementation, focus is punt on algorithms which
allow sequential access to the required data. Most steps of the
block factorization algorithm of this chapter can be executed
in a sequential and parallelized way, as will be explained in
Appendix B. In contrast, the LDLT factorization of a medium-
large matrix requires row pivoting operations. This involves a
non-sequential access to the elements in the matrices when
they are stored in memory and, at some point, the memory
access operations bottleneck the floating point operations. This
makes the LDLT approach less favourable, especially for
problems with a large size.

E. Algorithm implementation

A software implementation of the algorithm described in
this section has been developed and is described in Ap-
pendix B. It comprises a code generation routine which, given
a problem structure, generates efficient, tailor-made C code for
every particular problem, and makes use of fast routines for the
required linear algebra operations. The appendix also describes
the approaches taken by other implementations of fast MPC
solvers and compares them with the developed solver.

The derived software tool generates solvers which are tailor-
made for the structure (9) – (10) with dynamics (1)-(2), being
especially advantageous for cases in which nw > nx or nf >
nx, and can also generate solvers for linear MPC problems,
being the block-factorization procedure especially useful for
LMPC problems with high prediction horizons.

IV. APPLICATION: FAST NONLINEAR MODEL PREDICTIVE
CONTROL FOR LINEAR MOTORS

In this section, a Nonlinear Model Predictive Control
scheme for Linear Motors is implemented with the fast al-
gorithm derived in Section III, validated by simulation. A
collection of techniques are applied in order to achieve a
balance between solution speed and accuracy for the NMPC
optimization problem.

This work focuses on a fast application of Model Predictive
Control. Topics regarding the quality of the control (stability,
reference tracking, etc.) are not the main goal of this thesis.

A. System description and modelling

In this subsection, the dynamics of a Ironless Linear Motor
(ILM) are introduced, together with the model and assump-
tions that we consider. Figure 3 shows a cross-section view
of a ILM. The stator contains two arrays of permanent mag-
nets mounted on alternating directions. The translator moves
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A- C-

z

xy A+ B+ B- C+

Fig. 3: Cross-section representation of a coreless linear motor
with one set of coils [15].

linearly between the permanent magnets and contains one or
more sets of three-phase coils (one set is represented in the
figure).

A position-dependent model of the linear motor that takes
into account the Lorentz and reluctance forces is used [15],
[16]. The model can be identified from a physical system [14],
and allows using the Lorentz and reluctance forces to control
the non-driving directions.

A continuous-time model of the system is given by

ẋ(t) = Ax(t) +Bux(t), (59a)
ux(t) = Fx (x(t), i(t)) , (59b)
uz(t) = Fz (x(t), i(t)) , (59c)
ut(t) = Ft (x(t), i(t)) , (59d)

where the input to the system is given by the current vector
i ∈ Rnc , with nc the number of coils, the intermediate
state ux(t) ∈ R, uz(t) ∈ R represent the forces applied
to the translator in the driving and normal directions, re-
spectively, ut(t) ∈ R the torque applied to the translator.
A ∈ R2×2 and B ∈ R2×1 represent a state space realization
of the translator dynamics in the driving direction, such that
x(t) = (xv(t), xp(t)) represent the velocity and position of
the translator in the driving direction. The model is decoupled
into two independent parts: the translator itself is modelled as a
linear mass system, described in (59a), and the electromagnetic
part is modelled as the static nonlinearity defined by (59b) –
(59d), which relates currents and forces. The coordinates are
given as defined in Figure 3: x and z represent the position and
normal offset of the translator, and ry represents the rotation
over y.

1) Electromagnetic part modelling: The relationships be-
tween currents and forces are modelled via a Fourier approxi-
mation [14, Chapter 2]. This model evaluates the Lorentz and
reluctance forces at a given position. It can be determined
from the geometry of the motor via first principles modelling
methods, or via system identification methods. The problem
is analyzed in the x-z plane. Using the model and notation
of [16], the net forces and torque to the translator can be
expressed as

Fx(x, i) = Kx(x)i, (60a)
Fz(x, i) = Kz(x)i+ iTGzi, (60b)
Ft(x, i) = Kt(x)i+ iTGti, (60c)

where Fx(x, i) is the function describing the propulsion
force, Fz(x, i) is the normal force, and Ft(x, i) is the torque
to the translator. The linear terms Kx(x) ∈ Rnc , Kz(x) ∈ Rnc

and Kt(x) ∈ Rnc represent the Lorentz force functions and the

weights Gz ∈ RNc×Nc , Gt ∈ RNc×Nc represent a quadratic
relationship between the currents and the reluctance force and
torque. The vector i ∈ Rnc represents the currents through the
coils,

i(t) =
(
iA1(t), iB1(t), iC1(t), . . . , iANc

(t), iBNc
(t), iCNc

(t)
)T
,

(61)
where Nc is the number of coil sets, and nc the total number
of currents (so nc = 3Nc). It is enforced that the sum of the
three currents through every coil set is zero, i.e.

iAj
+ iBj

+ iCj
= 0, j = 1 . . . Nc. (62)

This is required because of the star connection of the three-
phase coils.

At a given position, the propulsion force depends linearly on
the currents, while the normal force and torque are quadratic
functions of i because they are caused, in part, by the reluc-
tance forces. The model considers no displacements in the z
and ry directions. In this case, the linear terms depend only
on x and the quadratic terms Gz , Gt are constant.

The position dependency of each of the terms Kx(x), Kz(x)
and Kt(x) is described by a Fourier model [14]. Each term is
given by

Kj(x) =



lj∑
i=0

(
aij1 cos

(
ixp πτp

)
+ bij1 sin

(
ixp πτp

))
...

lj∑
i=0

(
aijnc

cos
(
ixp πτp

)
+ bijnc

sin
(
ixp πτp

))



T

,

(63)
for j = x, z, t, where τp represents the magnet pole pitch,
lj defines the number of harmonics used, and the terms aijk
and bijk are identified parameters, for i = 1 . . . lj and
k = 1 . . . nc. Therefore, a total of 2×3×nc× lj parameters
are identified.

2) Mechanical part modelling: The translator is modelled
as a linear time-invariant dynamical system described by the
state space representation ẋ(t) = Ax(t) +Bux(t) with

A =

[
−d/m 0

1 0

]
, B =

[
1/m

0

]
, (64)

where m is the mass of the translator and d is a viscous friction
parameter. Note that the dynamical model only considers the
driving direction. The displacement in the directions z and ry
may be modelled as a mass-spring-damper system with high
stiffness, but we consider the displacements in z and ry to be
unobservable, and we desire them to be zero. No dynamical
model is used for those directions, instead, the constraints
Fz = 0 and Ft = 0 will be enforced.

B. Problem formulation

A Nonlinear Model Predictive Controller is designed in
order to control a linear motor with current constraints, by
posing an optimization problem with the structure of (9) –
(10). The predicted states of previous executions are used to
discretize the problem and remove the position dependency.
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The Linear Motor model defined in (59a) – (59d) is used
as a prediction model. We consider Nc = 2 sets of coils. The
optimization problem at time t is posed as

Optimization Problem 3 (Linear Motor NMPC Problem).

min
Uk,Xk,Wk

N−1∑
j=0

(
(xi − xrj)TQx(xj − rj)

+ (uj − urj)TRu(uj − urj) + (wj − wrj )TRw(wj − wrj )
)

+ (xN − xrN )TP (xN − xrN ), (65)

subject to

x0 = x(t), (66a)
xj+1 = Adxj +Bduj , ∀j = 0, . . . , N − 1, (66b)
uj = Fx(x̂j , wj), ∀j = 0, . . . , N − 1, (66c)
0 = Fy(x̂j , wj), ∀j = 0, . . . , N − 1, (66d)
0 = Ft(x̂j , wj), ∀j = 0, . . . , N − 1, (66e)

−wmax ≤ wj ≤ wmax, ∀j = 0, . . . , N − 1, (66f)
−umax ≤ uj ≤ umax, ∀j = 0, . . . , N − 1, (66g)
−xmax ≤ xj ≤ xmax, ∀j = 1, . . . , N, (66h)

0 = w
[k+1]
j + w

[k+2]
j + w

[k+3]
j ,

∀k = 0, 3, ∀j = 0, . . . , N − 1, (66i)

with prediction horizon length N , state cost Qx ∈ R2×2,
current cost Rw ∈ R6×6, force cost Ru ∈ R, position refer-
ence rk (k = 1 . . . N ). The input nonlinearity terms (66c) –
(66e) represent the electromagnetic model defined in (60a) –
(60c). The position dependency of these terms is evaluated
at the guess x̂ before solving the optimization problem, as
defined below. The constraints (66d) – (66e) impose that the
normal force and torque are zero. The constraint (66i) imposes
that the sum of currents through every coil set is zero. The
terms in (66b) represent the linear dynamics. wmax ∈ R6,
umax ∈ R and xmax ∈ R2 represent box constraints on the
predicted currents, forces, and states, respectively.

1) Discretization and treatment of the position dependency:
The linear dynamical system (64) is discretized with a zero-
order hold on the force with discretization time Td, which is
described by the equations x(t+ 1) = Adx(t) +Bdu(t).

The position-dependent terms Fx(xj , wj), Fz(xj , wj), and
Ft(xj , wj) are pre-evaluated at x = x̂ before solving the
optimization problem. x̂ is a guess that is derived from the
previous predicted state vector X∗k−1. This solves a double
purpose: the position-dependent terms of the model are con-
verted into time-varying terms, which reduce the complexity
of the problem, and serve as a discretization of the position-
dependent functions. A zero-order hold is implemented on the
currents w(t) between samples, therefore, the zero-order hold
assumed in the predicted forces uk is an approximation, which
is only exact when x(t) is constant between xk and xk+1 due
to the position-dependency of the input terms. We propose to

evaluate Fx(xj , wj), Fz(xj , wj), and Ft(xj , wj) functions at
xj = x̂j , which is given by

x̂j =
x∗j+1|k−1 + x∗j|k−1

2
, j = 1, . . . , N − 1, (67)

i.e. the average between the predicted xj and xj+1 at time
k− 1. Therefore, the predicted currents wj are modelled (and
implemented) with a zero-order hold, and the predicted forces
ui are assumed to be also (approximately) constant between
sampling periods. This assumption is valid when Kj(x(t))−
Kj(x(t+Td)) is relatively small. This is verified in simulation
results. In practice, the variation of u(t) between samples is
very small, and the discretization error is also small when
considering the simpler approximation x̂j = xj|k−1, see [14,
Chapter 5].

The technique of using a pre-computed sequence of pre-
dicted states to remove the state dependency at the next time
instant has been successfully implemented in a number of
applications, particularly quasi-LPV systems (see e.g. [4]). Al-
though the recursive convergence of this technique is difficult
to prove, it provides good results in practice.

Remark 3 (Including the position dependency in the optimiza-
tion problem). Although the identified functions Kx(x), Kz(x)
and Kt(x) are smooth and easily differentiable, they are eval-
uated before they are introduced in the nonlinear optimization
problem. Specifically, the full model of (63) is not introduced
in the problem because the computational cost of doing so
does not compensate the gains, and especially because the
introduction of such functions makes the optimization problem
highly non-convex.

C. Optimization problem solution

In this subsection, a solution for the optimization problem
(65) – (66) is described, which makes use of the algorithm
derived in Section III and allows to control the motor in real
time.

1) Variable elimination: The three-phase coil constraints
(66i) are removed with the transformation

iA1

iB1

iC1

iA2

iB2

iC2


︸ ︷︷ ︸
wk

=


1 0 0 0
0 1 0 0
−1 −1 0 0
0 0 1 0
0 0 0 1
0 0 −1 −1


︸ ︷︷ ︸

T


iA1

iB1

iA2

iB2


︸ ︷︷ ︸
wk

(68)

which is applied to condense the problem by removing the
inputs iC1 and iC2 , by replacing the following variables with
their overlined correspondent (e.g. Rw → Rw)

Rw = TRwT
T , (69a)

Gz = TGzT
T , (69b)

Gt = TGtT
T , (69c)

w = TTw, (69d)

wmax = TTwmax. (69e)
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This operation preserves the sparsity of the problem, except
for the terms Φwi which become dense (but still positive
definite, if originally), also in the case of diagonal Rw and box
constraints, but 2N optimization variables and 2N equality
constraints are removed from the problem. No further variables
nor constraints are removed from the problem in order to
preserve and exploit its sparsity pattern.

2) Problem size and notation: The optimization problem
is expressed in the notation of (2) in Section II. The problem
size is given by nx = 2, nu = 1, nf = 3, nw = 4, and the
input nonlinearity can be described in the syntax of (2) by
considering

K =
[
1 0 0

]T
, (70a)

Ψj(wj) =

Fx(x̂j , T w̄j)
Fz(x̂j , T w̄j)
Ft(x̂j , T w̄j)

 . (70b)

3) Real-time strategy: The system is controlled, at time
t0, by reading/estimating the current state x(t0), solving the
optimization problem (65), and applying the first predicted
input w0|t0 with a zero-order hold, until the next sampling
instant t0 + Ts. The state x(t0) is assumed to be known.

The system is sampled at a fixed period Ts, and that
is the time limit to solve the optimization problem (65),
which is solved with the interior point scheme formulated in
Algorithm 1. The problem is solved for a fixed number of
iterations Kmax, in this case, the solution is only guaranteed
to satisfy the inequality constraints.

The full solution (predicted states and inputs) of the opti-
mization problem at time t0 is used as an initial guess for the
optimization problem at time t0 + Ts (warm-start). The dual
variables (ν in Algorithm 1) are also used in the warm-start.
This is made possible by the constant value of µ. Note that
we consider different discretization (prediction) and sampling
times, Td and Ts. In the case Td = Ts, the predicted sequences
X∗k−1, U∗k−1, W ∗k−1 can be shifted one sample ahead for
a more accurate warm start. No shifting is required when
Td � Ts.

D. Closed-loop simulation example

The scheme described in this chapter is implemented in
simulation, and the consequences of the design decisions
previously taken are commented.

1) Example problem: The electromagnetic model from [15]
is used (terms Kx(x), Kz(x), Kt(x), Gz , Gt). The first three
terms (given by Eq. 63) are shown in Figure 4. A mass m =
20kg and a damping of s = 100kg/s are considered.

The MPC controller is designed with prediction horizon
length T = 10, weighting matrices Qx = 108I2, Ru = 1,
Rw = I6T , and current inequality constraints wmax =
(1, . . . , 1)TA. The system tracks a step reference from x =
0.1m to x = 0.3m, which activates the input constraints.
The reference is not known in advance (before t = 0). The
reference currents and forces are set to zero. The system is
discretized at Td = 10ms, therefore, the prediction horizon
comprises the next NTd = 100ms.

Position dependency of Lorentz forces
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Fig. 4: Identified terms Kx(x), Kz(x) and Kt(x), showing the
position dependency of the Lorentz forces, each term divided
in two plots for both coil sets.

Interior Point parameters

µ 102 α 0.01
β 0.95 γ 0.95
τ 108 Kmax 8

TABLE II: Parameters for Algorithm 1.

In order to solve (65), Algorithm 1 is used with the
parameters given in Table II.

We consider a sampling period of Ts = 500µs (2000Hz).
In general, each interior point iteration requires one evaluation
of the model and KKT matrix and multiple merit function
evaluations for the line search procedure. We allocate 420µs
to the solution of the optimization problem. This limit is
translated to an iteration limit for the different steps of the
Interior Point algorithm, Kmax = 8 in Algorithm 1, The
overall computation times are shown in Table III. The numbers
on the first column serve as a demonstration. They need to
be adjusted for every particular embedded platform, and have
been orientatively picked as twice as much the values obtained
with the computer from Appendix B.

Interior point solution time (upper bound)

Cost/iter Max Sum

Solve KKT system 50 µs 8 400µs
Line search step 0.75µs 24 18µs
Evaluate model 1µs 1 1µs

Total 419 µs

TABLE III: Interior point solution time with iteration limit.

The system is simulated with an outer loop running at 20Ts,
which simulates the dynamics, and an inner loop running at
Ts, which simulates the controller. The inter-sample behavior
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is not shown in the figures, but is taken into account in the
simulations.

2) Results: Figure 6 shows the position of the translator,
the currents through the coils (inputs), and the produced
forces and torque. It can be seen that the system respects the
inequality constraints, and is also able to anticipate to future
constraint violations: the system starts braking about 100ms
before reaching the reference value. With a lower prediction
horizon, this would have resulted in a larger overshoot. The
described trajectory is similar to a second order motion profile,
but more efficient since the highest possible force is developed
at every sample, taking into account the position dependency
of the model and the current constraints.

Although it cannot be appreciated in the figure, the currents
saturate at 0.998A instead of 1A. This is due to the use of a
the fixed barrier parameter for the inequality constraints. This
difference is considered acceptable.

Figure 7 shows the discrepancy between the predicted
positions xk|t for k = 1, 4, 7 across all t, and the actual values
x(t + kTd), i.e. k Td

Ts
samples later. This is used to evaluate

the accuracy of the prediction model. Since the system has
been simulated without any noise, this discrepancy represents
the accuracy losses due to the pre-evaluation of the terms
(66c) – (66e) with (67) and its heuristic discretization. The
prediction error peaks between 0% and 2%, depending on k.
This is considered acceptable. The horizon is primarily used
for predicting future constraints violations on the currents (in
this example, the optimization of Xk and Uk (dynamics) is
independent from Wk when the constraints are not active,
since Qx � Rw).

E. Solver performance

For the Linear Motor problem (with problem size nx = 2,
nu = 1, nf = 3, nw = 4), the achieved solution times for the
solution of the KKT system (38) with the block factorization
routine from Section III-C are shown in Figure 5 for different
values of N . These numbers represent a large part of the
cost of performing an interior point iteration. The numbers
correspond to the implementation defined in Appendix B. The
achieved computational times are up to 3 orders of magnitude
lower than what was achieved in previous work [14, Chapter
5], where computational times in the order of 100ms were
achieved for the same problem (with N = 8).

The achieved computational times are compared with the
time required to solve Optimization Problem 3 with a solver
generated with ACADO Toolkit [10], making use of the dense
QP (Quadratic Program) solver qpOASES [9]. The tools are
used to generate source code used to solve NMPC problems
in real time. We have identified those as the best tools
which support NMPC problems with the structure of (9) –
(10) out of the box. ACADO and qpOASES implement a
SQP (Sequential Quadratic Programming) scheme in which
the inequality constraints are treated with an Active Set
technique. The intermediate QPs are condensed by removing
the equality constraints, which makes this approach more
favourable for problems with more states than inputs, and
makes the computational times grow cubically with N . Note
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Fig. 5: Achieved times for the solution of the KKT system
(38), and comparison with the costs of SQP iterations with
ACADO + qpOASES.

that ACADO is meant for generic NMPC problems with
nonlinear dynamics, for which a discretization and integration
needs to be done online at every sample. This makes the tool
not fully appropriate for the problem structure analyzed in this
chapter, in which the dynamics are linear.

F. Solution accuracy

In order to achieve a fast solution of the optimization
problems, multiple compromises have been made, which could
result in suboptimal or inaccurate solutions: the use of a
fixed barrier parameter does not guarantee that the achieved
solutions are optimal for the original problem (Optimization
Problem 3), the use of a fixed iteration limit can potentially
cause the algorithm to prematurely stop at infeasible solutions,
and the collapse of (20) into (22) is a potential source of
numerical conditioning problems.

In the simulation solutions are feasible with respect to
all constraints. Figure ?? shows the worst (highest) equality
constraint residual of the optimization problem. The equality
constraints (66b) – (66e) represent the system dynamics. The
residual is negligible in comparison with the numerical values
of the parameters in (66b) – (66e), meaning that the system
dynamics are respected in all optimization problems solved.

A second closed-loop simulation has been performed by
solving Optimization Problem 3 with the general purpose
nonlinear solver IPOPT [18], which is considered to be
numerically robust and accurate, but is not appropriate for a
real-time implementation. We consider the solution obtained
with IPOPT to be the true solution of the original optimization
problem. In Figure 8, the IPOPT results are compared with
those obtained with the solver in Section III, showing a
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difference of up to a 0.2%. This difference is caused by
the use of a fixed barrier parameter. If necessary, the error
may be reduced by picking a smaller µ, which needs to
be compensated with a higher iteration limit Kmax, hence
reducing the attainable sampling rate.

The loss in accuracy in the solution of the optimization
problems is considered to be small, and is outweighed by the
high sampling rates which can be achieved.

V. CONCLUSIONS

In this work, a fast Nonlinear Model Predictive Control
algorithm has been developed which considers a class of dy-
namical systems with input nonlinearities as prediction model,
a class which includes Hammerstein systems. The algorithm
implements an Interior Point scheme in which the required
linear algebra operations are performed via block Cholesky
factorizations on a reduced KKT matrix. This approach ex-
ploits the sparsity pattern of the problem and is especially
favourable for problems with relatively large prediction hori-
zons, and problems with a number of inputs which is similar
or higher than the number of states. The interior point scheme
is implemented in real time via a fixed-barrier approach.

This work is motivated by the Nonlinear Model Predictive
Control for Ironless Linear Motors problem. A model account-
ing for reluctance forces and multiple degrees of freedom has
been considered. The problem has been solved in simulation
with the developed algorithm, showing that it is possible to
control ILMs with sampling times in the microsecond range
while satisfying multiple constraints. The proposed approach
shows an insignificant loss in numerical accuracy of the
solution, while achieving solution times 3 orders of magnitude
lower than in previous approaches taken to solve the same
problem.

The developed algorithm and software filled a small gap in
the available solver implementations for fast nonlinear model
predictive control. For the particular problem structure of the
ILM NMPC problem (over-actuated system with an input
nonlinearity), no other freely available solvers have been con-
sidered adequate, and a new implementation of the algorithm
described in this paper has been created with the intention
of running it in an embedded platform. The developed solver
can be used for solving NMPC problems with the described
structure, and it can also be used for solving linear MPC
problems, being especially competitive when dealing with
problems with large prediction horizons and systems with
more inputs than states.
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APPENDIX A
STRUCTURE OF Y

The structure of Y = CΦ−1CT will be analyzed. First, let
the structure of Φ−1 to be explicitly defined as

Φ−1 =



R̃0

Ω̃0

Q̃1 S̃1

S̃T1 R̃1

Ω̃1

. . .
Q̃N


∈ Rn×n

(71)
where the terms S̃ only appear in the case where the stage
cost or the inequality constraints are not state-input separable.
Then, Y = CΦ−1CT takes the form

Y :=



Y11 Y T21 0 · · · 0 0
Y21 Y22 Y T32 · · · 0 0
0 Y32 Y33 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · YN−1,N−1 Y TN,N−1

0 0 0 · · · YN,N−1 YN,N


∈ Rm×m,

(72)
where each block is

Y11 =

[
Q̃1 +BR̃0B

T BR̃0K
T

KR̃0B
T ψΩ̃0ψ

T +KR̃0K
T

]

Yi+1,i+1 :=

[
Y Ai+1,i+1 Y Bi+1,i+1

Y Ci+1,i+1 Y Di+1,i+1

]

=


Q̃i+1 +AQ̃iA

T

+BR̃iB
T +BS̃Ti A

T BR̃iK
T +AS̃Ti K

T

+AS̃iB
T

KR̃iB
T +KS̃Ti A ψΩ̃iψ

T +KR̃iK
T


(73)

Yi+1,i :=

[
Y Ai+1,i Y

B
i+1,i

Y Ci+1,i Y
D
i+1,i

]
=

[
−BS̃T −AQ̃1 0nx×nf

−KS̃T 0nf×nf

]
(74)

and where each of the blocks is square, and each block
partitioned in sub-blocks so that the upper left ones are of
size nx × nx and the lower right ones are nf × nf .

Remark 4 (Treatment of Y as a banded matrix). An alterna-
tive approach to step iii) is treating Y as a banded matrix and
using a banded solver. As shown in Appendix A, the matrix
Y has a maximum bandwidth of 2(nx + nf ) in the general
case, and of nx + nf + lbw(A) in the case of diagonal and
box constraints (where lbw(A) is the lower bandwidth of A).
Depending on the dynamical system, it may be possible to
rearrange the states such that A is as close as possible to
upper triangular, which reduces the cost of this step.

The cost of the factorization is then 4N(nx + nf )3 for the
first case, and N(nx+nf )(nx+nf + lbw(A))2 for the second
case. Although the number of required operations is higher
than in the block tridiagonal approach, in some situations the

use of machine-optimized banded solvers may be more efficient
than the use of tailor-made matrix routines.

APPENDIX B
ALGORITHM IMPLEMENTATION

A software implementation of the algorithm described in
Section III has been developed. It comprises a code generation
routine, which automatically generates C code for the solution
of the algorithm. The code generation routine hardcodes all
constants and the sizes of all the intermediate arrays before
compilation (given by nx, nu, nf , nw and N ), pre-allocates
memory for all the required intermediate computations, and
generates matrix operation functions for those sizes. Then the
generated loops can be further optimized by the compiler. The
code can be run on an embedded platform. The operations are
performed in an order such that the access to intermediate
values is grouped (i.e. instead of solving steps i-v in order,
first steps i-iii are solved for i = 0, then again for i = 1,
and so on). This reduces the number of memory operations
between the memory and the cache of the microcontroller,
which is the main bottleneck when performing linear algebra
operations on a computer [8]. This also the operations to be
parallelized if the compiler/platform supports it.

The current implementation relies on a few calls to the linear
algebra libraries BLAS and LAPACK [2], but we are working
to remove that dependency since auto-generated code is faster
for small scale operations, and more portable. In particular, the
factorization of Y is performed with a factorization routine for
banded, positive definite matrices. The computational times
reported in previous chapters correspond to a computer with
an Intel Core i7 3630QM processor, and the code is compiled
with the Intel C Compiler 16.0 with the -O2 option. The
calls to MA57 and LAPACK are done via the Intel Math
Kernel Library 2017.0.31. Equivalent compilers and libraries
are available for embedded platforms.

To the author’s best knowledge, there are no comparable
code generation routines for the solution of NMPC problems
with the structure defined in Section II. Neither is the author
aware of the existence of freely available code generation tools
for the structure-exploiting solution of KKT systems for MPC
problems via block factorizations (for linear or nonllinear
systems). A popular code generation tool for linear MPC
problems is CVXGEN [13], however, the approach taken is
different. CVXGEN generates code that solves convex QPs by
performing an LDLT factorization of the full KKT matrix.
An LDLT factorization is usually performed via Gaussian
elimination, which requires row permutation operations. These
operations involve a memory bottleneck since the elements
of the matrix are being accessed in a non-sequential way.
CVXGEN uses a fixed-permutation algorithm in order to
overcome this problem. This approach is fast and numerically
stable for small problems, and becomes unsuitable for large
problems. CVXGEN only supports linear systems.


