408 research outputs found

    Geometry of Power Flows and Optimization in Distribution Networks

    Full text link
    We investigate the geometry of injection regions and its relationship to optimization of power flows in tree networks. The injection region is the set of all vectors of bus power injections that satisfy the network and operation constraints. The geometrical object of interest is the set of Pareto-optimal points of the injection region. If the voltage magnitudes are fixed, the injection region of a tree network can be written as a linear transformation of the product of two-bus injection regions, one for each line in the network. Using this decomposition, we show that under the practical condition that the angle difference across each line is not too large, the set of Pareto-optimal points of the injection region remains unchanged by taking the convex hull. Moreover, the resulting convexified optimal power flow problem can be efficiently solved via }{ semi-definite programming or second order cone relaxations. These results improve upon earlier works by removing the assumptions on active power lower bounds. It is also shown that our practical angle assumption guarantees two other properties: (i) the uniqueness of the solution of the power flow problem, and (ii) the non-negativity of the locational marginal prices. Partial results are presented for the case when the voltage magnitudes are not fixed but can lie within certain bounds.Comment: To Appear in IEEE Transaction on Power System

    Conic Optimization Theory: Convexification Techniques and Numerical Algorithms

    Full text link
    Optimization is at the core of control theory and appears in several areas of this field, such as optimal control, distributed control, system identification, robust control, state estimation, model predictive control and dynamic programming. The recent advances in various topics of modern optimization have also been revamping the area of machine learning. Motivated by the crucial role of optimization theory in the design, analysis, control and operation of real-world systems, this tutorial paper offers a detailed overview of some major advances in this area, namely conic optimization and its emerging applications. First, we discuss the importance of conic optimization in different areas. Then, we explain seminal results on the design of hierarchies of convex relaxations for a wide range of nonconvex problems. Finally, we study different numerical algorithms for large-scale conic optimization problems.Comment: 18 page

    Branch Flow Model: Relaxations and Convexification—Part II

    Get PDF
    We propose a branch flow model for the analysis and optimization of mesh as well as radial networks. The model leads to a new approach to solving optimal power flow (OPF) that consists of two relaxation steps. The first step eliminates the voltage and current angles and the second step approximates the resulting problem by a conic program that can be solved efficiently. For radial networks, we prove that both relaxation steps are always exact, provided there are no upper bounds on loads. For mesh networks, the conic relaxation is always exact but the angle relaxation may not be exact, and we provide a simple way to determine if a relaxed solution is globally optimal. We propose convexification of mesh networks using phase shifters so that OPF for the convexified network can always be solved efficiently for an optimal solution. We prove that convexification requires phase shifters only outside a spanning tree of the network and their placement depends only on network topology, not on power flows, generation, loads, or operating constraints. Part I introduces our branch flow model, explains the two relaxation steps, and proves the conditions for exact relaxation. Part II describes convexification of mesh networks, and presents simulation results

    Branch Flow Model: Relaxations and Convexification (Parts I, II)

    Get PDF
    We propose a branch flow model for the anal- ysis and optimization of mesh as well as radial networks. The model leads to a new approach to solving optimal power flow (OPF) that consists of two relaxation steps. The first step eliminates the voltage and current angles and the second step approximates the resulting problem by a conic program that can be solved efficiently. For radial networks, we prove that both relaxation steps are always exact, provided there are no upper bounds on loads. For mesh networks, the conic relaxation is always exact but the angle relaxation may not be exact, and we provide a simple way to determine if a relaxed solution is globally optimal. We propose convexification of mesh networks using phase shifters so that OPF for the convexified network can always be solved efficiently for an optimal solution. We prove that convexification requires phase shifters only outside a spanning tree of the network and their placement depends only on network topology, not on power flows, generation, loads, or operating constraints. Part I introduces our branch flow model, explains the two relaxation steps, and proves the conditions for exact relaxation. Part II describes convexification of mesh networks, and presents simulation results.Comment: A preliminary and abridged version has appeared in IEEE CDC, December 201

    Convex Relaxation of Optimal Power Flow, Part II: Exactness

    Get PDF
    This tutorial summarizes recent advances in the convex relaxation of the optimal power flow (OPF) problem, focusing on structural properties rather than algorithms. Part I presents two power flow models, formulates OPF and their relaxations in each model, and proves equivalence relations among them. Part II presents sufficient conditions under which the convex relaxations are exact.Comment: Citation: IEEE Transactions on Control of Network Systems, June 2014. This is an extended version with Appendex VI that proves the main results in this tutoria

    Exact Convex Relaxation of Optimal Power Flow in Tree Networks

    Get PDF
    The optimal power flow (OPF) problem seeks to control power generation/demand to optimize certain objectives such as minimizing the generation cost or power loss in the network. It is becoming increasingly important for distribution networks, which are tree networks, due to the emergence of distributed generation and controllable loads. In this paper, we study the OPF problem in tree networks. The OPF problem is nonconvex. We prove that after a "small" modification to the OPF problem, its global optimum can be recovered via a second-order cone programming (SOCP) relaxation, under a "mild" condition that can be checked apriori. Empirical studies justify that the modification to OPF is "small" and that the "mild" condition holds for the IEEE 13-bus distribution network and two real-world networks with high penetration of distributed generation.Comment: 22 pages, 7 figure
    corecore