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Convex Relaxation of Optimal Power
Flow—Part II: Exactness

Steven H. Low, Fellow, IEEE

Abstract—This tutorial summarizes recent advances in the con-
vex relaxation of the optimal power flow (OPF) problem, focusing
on structural properties rather than algorithms. Part I presents
two power flow models, formulates OPF and their relaxations in
each model, and proves equivalence relations among them. Part II
presents sufficient conditions under which the convex relaxations
are exact.

Index Terms—Convex relaxation, optimal power flow, power
systems, quadratically constrained quadratic program (QCQP),
second-order cone program (SOCP), semidefinite program (SDP),
semidefinite relaxation.

I. INTRODUCTION

THE OPTIMAL power flow (OPF) problem is fundamental
in power systems since it underlies many applications,

such as economic dispatch, unit commitment, state estimation,
stability and reliability assessment, volt/var control, demand
response, etc. OPF seeks to optimize a certain objective func-
tion, such as power loss, generation cost, and/or user utilities,
subject to Kirchhoff’s laws as well as capacity, stability, and
security constraints on the voltages and power flows. There
has been a great deal of research on OPF since Carpentier’s
first formulation in 1962 [1]. Recent surveys can be found in,
e.g., [2]–[13].

OPF is generally nonconvex and NP-hard, and a large
number of optimization algorithms and relaxations have been
proposed. To the best of our knowledge solving OPF through
semidefinite relaxation is first proposed in [14] as a second-
order cone program (SOCP) for radial (tree) networks and in
[15] as a semidefinite program (SDP) for general networks in
a bus injection model. It is first proposed in [16] and [17] as
an SOCP for radial networks in the branch flow model of [18]
and [19]. While these convex relaxations have been illustrated
numerically in [14] and [15], whether or when they will turn
out to be exact is first studied in [20]. Exploiting graph sparsity
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to simplify the SDP relaxation of OPF is first proposed in [21]
and [22], and analyzed in [23] and [24].

Solving OPF through convex relaxation offers several ad-
vantages, as discussed in Part I of this tutorial [25, Sec. I]. In
particular, it provides the ability to check whether a solution
is globally optimal. If it is not, the solution provides a lower
bound on the minimum cost and, hence, a bound on how far any
feasible solution is from optimality. Unlike approximations, if a
relaxed problem is infeasible, it is a certificate that the original
OPF is infeasible.

This tutorial presents main results on convex relaxations of
OPF developed in the last few years. In Part I [25], we present
the bus injection model (BIM) and the branch flow model
(BFM), formulate OPF within each model, and prove their
equivalence. The complexity of OPF formulated here lies in the
quadratic nature of power flows, i.e., the nonconvex quadratic
constraints on the feasible set of OPF. We characterize these
feasible sets and design convex supersets that lead to three dif-
ferent convex relaxations based on semidefinite programming,
chordal extension, and second-order cone programming. When
a convex relaxation is exact, an optimal solution of the original
nonconvex OPF can be recovered from every optimal solution
of the relaxation. In Part II, we summarize main sufficient
conditions that guarantee the exactness of these relaxations.

Network topology turns out to play a critical role in deter-
mining whether a relaxation is exact. In Section II, we review
the definitions of OPF and their convex relaxations developed
in [25]. We also define the notion of exactness adopted in
this paper. In Section III, we present three types of sufficient
conditions for these relaxations to be exact for radial networks.
These conditions are generally not necessary and they have im-
plications on allowable power injections, voltage magnitudes,
or voltage angles as follows.

A) Power injections: These conditions require that not both
constraints on real and reactive power injections be bind-
ing at both ends of a line.

B) Voltages magnitudes: These conditions require that the
upper bounds on voltage magnitudes not be binding.
They can be enforced through affine constraints on power
injections.

C) Voltage angles: These conditions require that the voltage
angles across each line be sufficiently close. This is
needed also for stability reasons.

These conditions and their references are summarized in
Tables I and II. Some of these sufficient conditions are proved
using BIM and others using BFM. Since these two models are
equivalent (in the sense that there is a linear bijection between
their solution sets [24], [25]), these sufficient conditions apply
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TABLE I
SUFFICIENT CONDITIONS FOR RADIAL (TREE) NETWORKS

TABLE II
SUFFICIENT CONDITIONS FOR MESH NETWORKS

to both models. The proofs of these conditions typically do
not require that the cost function be convex (they focus on
the feasible sets and usually only need the cost function to
be monotonic). Convexity is required, however, for efficient
computation. Moreover, it is proved in [35] using BFM that
when the cost function is convex, then exactness of the SOCP
relaxation implies uniqueness of the optimal solution for radial
networks. Hence, the equivalence of BIM and BFM implies
that any of the three types of sufficient conditions guarantees
that, for a radial network with a convex cost function, there is a
unique optimal solution and it can be computed by solving an
SOCP. Since the SDP and chordal relaxations are equivalent to
the SOCP relaxation for radial networks [24], [25], these results
apply to all three types of relaxations. Empirical evidence
suggests that some of these conditions are likely satisfied in
practice. This is important as most power distribution systems
are radial.

These conditions are insufficient for general mesh networks
because they cannot guarantee that an optimal solution of
a relaxation satisfies the cycle condition discussed in [25].
In Section IV, we show that these conditions are, however,
sufficient for mesh networks that have tunable phase shifters at
strategic locations. The phase shifters effectively make a mesh
network behave like a radial network as far as convex relaxation
is concerned. The result can help determine whether a network
with a given set of phase shifters can be convexified and, if not,
where additional phase shifters are needed for convexification.
These conditions are also sufficient for direct current (dc) mesh
networks where all variables are in the real rather than complex
domain. Counterexamples are known where SDP relaxation
is not exact, especially for ac mesh networks without tunable
phase shifters [42]–[44]. We discuss three recent approaches
for global optimization of OPF when the relaxations discussed
in this tutorial fail.

We conclude in Section V. All proofs can be found in the
original papers or the arXiv version of this paper.

II. OPF AND ITS RELAXATIONS

We use the notations and definitions from Part I of this paper.
In this section, we summarize the OPF problems and their
relaxations developed there; see [25] for details.

We adopt in this paper a strong sense of “exactness” where
we require the optimal solution set of the OPF problem and
that of its relaxation to be equivalent. This implies that an
optimal solution of the nonconvex OPF problem can be re-
covered from every optimal solution of its relaxation. This
is important because it ensures any algorithm that solves an
exact relaxation always produces a globally optimal solution to
the OPF problem. Indeed, interior point methods for solving
SDPs tend to produce a solution matrix with a maximum
rank [45], so can miss a rank-1 solution if the relaxation has
non-rank-1 solutions as well. It can be difficult to recover
an optimal solution of OPF from such a non-rank-1 solution,
and our definition of exactness avoids this complication. See
Section II-C for detailed justifications.

A. Bus Injection Model

The BIM adopts an undirected graph G1 and can be formu-
lated in terms of just the complex voltage vector V ∈ Cn+1.
The feasible set is described by the following constraints:

sj ≤
∑

k:(j,k)∈E
yHjkVj

(
V H
j − V H

k

)
≤ sj , j ∈ N+ (1a)

vj ≤ |Vj |2 ≤ vj , j ∈ N+ (1b)

where sj , sj , vj , vj , possibly ±∞± i∞, are given bounds on
power injections and voltage magnitudes. Note that the vector
V includes V0 which is assumed given (v0 = v0 and ∠V0 = 0◦)
unless otherwise specified.

The problem of interest is

OPF :

min
V ∈Cn+1

C(V ) subject to V satisfies (1). (2)

For relaxations, consider the partial matrix WG defined on
the network graph G that satisfies

sj≤
∑

k:(j,k)∈E
yHjk

(
[WG]jj−[WG]jk

)
≤sj , j∈N+ (3a)

vj ≤ [WG]jj ≤ vj , j ∈ N+. (3b)

1We will use “bus” and “node” interchangeably and “line” and “link”
interchangeably.
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We say that WG satisfies the cycle condition if for every
cycle c in G

∑
(j,k)∈c

∠[WG]jk = 0 mod 2π. (4)

We assume the cost function C depends on V only through
V V H and use the same symbol C to denote the cost in terms of
a full or partial matrix. Moreover, we assume C depends on the
matrix only through the submatrix WG defined on the network
graph G. See [25] for more details including the definitions of
Wc(G) � 0 and WG(j, k) � 0. Define the convex relaxations

OPF -sdp :

min
W∈Sn+1

C(WG) subject to WG satisfies (3),W � 0 (5)

OPF -ch :

min
Wc(G)

C(WG) subject to WG satisfies (3),Wc(G)�0 (6)

OPF -socp :

min
WG

C(WG) subject to WG satisfies (3),

WG(j, k) � 0, (j, k) ∈ E. (7)

For BIM, we say that OPF-sdp (5) is exact if every optimal
solution W sdp of OPF-sdp is psd rank-1; OPF-ch (6) is exact if
every optimal solution W ch

c(G) of OPF-ch is psd rank-1 (i.e., the

principal submatrices W ch
c(G)(q) of W ch

c(G) are psd rank-1 for all
maximal cliques q of the chordal extension c(G) of graph G);
OPF-socp (7) is exact if every optimal solution W socp

G of OPF-
socp is 2 × 2 psd rank-1 and satisfies the cycle condition (4).
To recover an optimal solution V opt of OPF (2) from W sdp or
W ch

c(G) or W socp
G , see [25, Sec. IV-D].

B. Branch Flow Model

The BFM adopts a directed graph G̃ and is defined by the
following set of equations:

∑
k:j→k

Sjk =
∑
i:i→j

(
Sij − zij |Iij |2

)
+ sj , j ∈ N+ (8a)

Ijk = yjk(Vj − Vk), j → k ∈ Ẽ (8b)

Sjk =VjI
H
jk, j → k ∈ Ẽ. (8c)

Denote the variables in BFM (8) by x̃ := (S, I, V, s) ∈
C2(m+n+1). Note that the vectors V and s include V0 (given)
and s0, respectively. Recall from [25] the variables x :=
(S, �, v, s) ∈ R3(m+n+1) that are related to x̃ by the mapping
x = h(x̃) with �jk := |Ijk|2 and vj := |Vj |2. The operational
constraints are

vj ≤ vj ≤ vj , j ∈ N+ (9a)

sj ≤ sj ≤ sj , j ∈ N+. (9b)

We assume the cost function depends on x̃ only through x =
h(x̃). Then the problem in BFM is

OPF :

min
x̃

C(x) subject to x̃ satisfies (8), (9). (10)

For SOCP relaxation, consider
∑

k:j→k

Sjk =
∑
i:i→j

(Sij − zij�ij) + sj , j ∈ N+ (11a)

vj − vk =2Re
(
zHjkSjk

)
− |zjk|2�jk, j → k ∈ Ẽ (11b)

vj�jk ≥ |Sjk|2, j → k ∈ Ẽ. (11c)

We say that x satisfies the cycle condition if

∃θ ∈ Rn such that Bθ = β(x) mod 2π (12)

where B is the m× n reduced incidence matrix and, given
x := (S, �, v, s), βjk(x) := ∠(vj − zHjkSjk) can be interpreted
as the voltage angle difference across line j → k implied by x
(See [25, Sec. V]). The SOCP relaxation in BFM is

OPF -socp :

min
x

C(x) subject to x satisfies (11), (9). (13)

For BFM, OPF-socp (13) in BFM is exact if every optimal
solution xsocp attains equality in (11c) and satisfies the cycle
condition (12). See [25, Sec. V-A] on how to recover an optimal
solution x̃opt of OPF (10) from any optimal solution xsocp of
its SOCP relaxation.

C. Exactness

The definition of exactness adopted in this paper is more
stringent than needed. Consider SOCP relaxation in BIM as an
illustration (the same applies to the other relaxations in BIM
and BFM). For any sets A and B, we say that A is equivalent
to B, denoted by A ≡ B, if there is a bijection between these
two sets. Let M(A) denote the set of minimizers when a certain
function is minimized over A.

Let V and W+
G denote the feasible sets of OPF (2) and OPF-

socp (7), respectively:

V :=
{
V ∈ Cn+1|V satisfies (1)

}

W+
G := {WG|WG satisfies (3),WG(j, k) � 0, (j, k) ∈ E} .

Consider the following subset of W+
G:

WG := {WG|WG satisfies (3), (4),WG(j, k) � 0,

rank WG(j, k) = 1, (j, k) ∈ E} .

Our definition of exact SOCP relaxation is that M(W+
G) ⊆ WG.

In particular, all optimal solutions of OPF-socp must be 2 × 2
psd rank-1 and satisfy the cycle condition (4). Since WG ≡ V

(see [25]), exactness requires that the set of optimal solutions of
OPF-socp (7) be equivalent to that of OPF (2), i.e., M(W+

G) =
M(WG) ≡ M(V).
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If M(W+
G) � M(WG) ≡ M(V), then OPF-socp (7) is not

exact according to our definition. Even in this case, however,
every sufficient condition in this paper guarantees that an opti-
mal solution of OPF can be easily recovered from an optimal
solution of the relaxation that is outside WG. The difference
between M(W+

G) = M(WG) and M(W+
G) � M(WG) is often

minor, depending on the objective function; see Remarks 1
and 2 and comments after Theorems 5 and 8 in Section III.
Hence, we adopt the more stringent definition of exactness for
simplicity.

III. RADIAL NETWORKS

In this section, we summarize the three types of sufficient
conditions listed in Table I for semidefinite relaxations of
OPF to be exact for radial (tree) networks. These results are
important since most distribution systems are radial.

For radial networks, if SOCP relaxation is exact, then SDP
and chordal relaxations are also exact (see [25, Theor. 5, 9]).
We hence focus in this section on the exactness of OPF-socp in
both BIM and BFM. Since the cycle conditions (4) and (12) are
vacuous for radial networks, OPF-socp (7) is exact if all of its
optimal solutions are 2 × 2 rank-1 and OPF-socp (13) is exact
if all of its optimal solutions attain equalities in (11c). We will
freely use either BIM or BFM in discussing these results. To
avoid triviality, we make the following assumption throughout
this paper:

The voltage lower bounds satisfy vj > 0, j ∈ N+. The orig-
inal problems OPF (2) and (10) are feasible.

A. Linear Separability

We will first present a general result on the exactness of
the SOCP relaxation of general QCQP and then apply it to
OPF. This result is first formulated and proved using a duality
argument in [27], generalizing the result of [26]. It is proved
using a simpler argument in [31].

Fix an undirected graph G = (N+, E), where N+ :=
{0, 1, . . . , n} and E ⊆ N+ ×N+. Fix Hermitian matrices
Cl ∈ Sn+1, l = 0, . . . , L, defined on G, i.e., [Cl]jk = 0 if
(j, k) �∈ E. Consider QCQP

min
x∈Cn+1

xHC0x (14a)

subject to xHClx ≤ bl, l = 1, . . . , L (14b)

where C0, Cl ∈ C(n+1)×(n+1), bl ∈ R, l = 1, . . . , L, and its
SOCP relaxation where the optimization variable ranges over
Hermitian partial matrices WG

min
WG

tr C0WG (15a)

subject to tr ClWG ≤ bl, l = 1, . . . , L (15b)

WG(j, k) � 0, (j, k) ∈ E. (15c)

The following result is proved in [27] and [31]. It can be
regarded as an extension of [46] on the SOCP relaxation of

Fig. 1. Condition A2′ on a line (j, k) ∈ E. The quantities ([Φj ]jk, [Φk]jk,

[Ψj ]jk, [Ψk]jk) on the left-half plane correspond to finite upper bounds on
(pj , pk, qj , qk) in (16a) and (16b); (−[Φj ]jk,−[Φk]jk,−[Ψj ]jk,−[Ψk]jk)

on the right-half plane correspond to finite lower bounds on (pj , pk, qj , qk).
A2′ is satisfied if there is a line through the origin, specified by the angle
αjk , so that the quantities corresponding to finite upper or lower bounds on
(pj , pk, qj , qk) lie on one side of the line, possibly on the line itself. The
load over-satisfaction condition in [26], [30] corresponds to the Im-axis that
excludes all quantities on the right-half plane. The sufficient condition in [29,
Theor. 2] corresponds to the red line in the figure that allows a finite lower
bound on the real power at one end of the line, i.e., pj or pk but not both, and
no finite lower bounds on reactive powers qj and qk .

QCQP from the real domain to the complex domain. Consider
(see Fig. 1 for an illustration)2:

A1: The cost matrix C0 is positive definite.
A2: For each link (j, k) ∈ E, there exists an αjk such that

∠[Cl]jk ∈ [αij , αij + π] for all l = 0, . . . , L.

Let Copt and Csocp denote the optimal values of QCQP (14)
and SOCP (15), respectively.

Theorem 1: Suppose G is a tree and A2 holds. Then Copt =
Csocp and an optimal solution of QCQP (14) can be recovered
from every optimal solution of SOCP (15).

Remark 1: The proof of Theorem 1 prescribes a simple pro-
cedure to recover an optimal solution of QCQP (14) from any
optimal solution of its SOCP relaxation (15). The construction
does not need the optimal solution of SOCP (15) to be 2 × 2
rank-1. Hence, the SOCP relaxation may not be exact according
to our definition of exactness, i.e., some optimal solutions of
(15) may be 2 × 2 psd but not 2 × 2 rank-1. If the objective
function is strictly convex, however, then the optimal solution
sets of QCQP (14) and SOCP (15) are indeed equivalent.

Corollary 2: Suppose G is a tree and A1–A2 hold. Then
SOCP (15) is exact.

We now apply Theorem 1 to our OPF problem in a standard
form QCQP [27]

min
x∈Cn

V HC0V

s.t. V HΦjV ≤ pj , V
H(−Φj)V ≤ −p

j
(16a)

V HΨjV ≤ qj , V
H(−Ψj)V ≤ −q

j
(16b)

V HJjV ≤ −vj , V
H(−Jj)V ≤ −vj

2All angles should be interpreted as “mod 2π”, i.e., projected onto (−π, π].
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for some Hermitian matrices C0,Φj ,Ψj , Jj where j ∈ N+. A2
depends only on the off-diagonal entries of C0, Φj , Ψj (Jj are
diagonal matrices). It implies a simple pattern on the power
injection constraints (16a), (16b). Let yjk = gjk − ibjk with
gjk > 0, bjk > 0. Then we have (from [27])

[Φk]ij =

⎧⎨
⎩

1
2Yij = − 1

2 (gij − ibij) if k = i
1
2Y

H
ij = − 1

2 (gij + ibij) if k = j
0 if k �∈ {i, j}

[Ψk]ij =

⎧⎨
⎩

−1
2i Yij = − 1

2 (bij + igij) if k = i
1
2iY

H
ij = − 1

2 (bij − igij) if k = j
0 if k �∈ {i, j}.

Hence, for each line (j, k) ∈ E, the relevant angles for A2 are
those of [C0]jk and

[Φj ]jk = − 1

2
(gjk − ibjk)

[Φk]jk = − 1

2
(gjk + ibjk)

[Ψj ]jk = − 1

2
(bjk + igjk)

[Ψk]jk = − 1

2
(bjk − igjk)

as well as the angles of −[Φj ]jk,−[Φk]jk and −[Ψj ]jk,

−[Ψk]jk. These quantities are shown in Fig. 1 with their
magnitudes normalized to a common value and explained in
the caption of the figure.

Condition A2 applied to OPF (16) takes the following form
(see Fig. 1):
A2′: For each link (j, k) ∈ E, there is a line in the complex

plane through the origin such that [C0]jk as well as those
±[Φi]jk and ±[Ψi]jk corresponding to finite lower or upper
bounds on (pi, qi), for i = j, k, are all on one side of the
line, possibly on the line itself.

Let Copt and Csocp denote the optimal values of OPF (2) and
OPF-socp (7), respectively.

Corollary 3: Suppose G is a tree and A2′ holds.
1) Copt = Csocp. Moreover, an optimal solution V opt of

OPF (2) can be recovered from every optimal solution
W socp

G of OPF-socp (7).
2) If, in addition, A1 holds, then OPF-socp (7) is exact.
It is clear from Fig. 1 that condition A2′ cannot be satisfied

if there is a line where the real and reactive power injec-
tions at both ends are both lower and upper bounded (eight
combinations as shown in the figure). A2′ requires that some
of them be unconstrained even though in practice they are
always bounded. It should be interpreted as requiring that the
optimal solutions obtained by ignoring these bounds turn out
to satisfy these bounds. This is generally different from solving
the optimization with these constraints but requiring that they
be inactive (strictly within these bounds) at optimality, unless
the cost function is strictly convex. The result proved in [27]
also includes constraints on real branch power flows and line
losses. Corollary 3 includes several sufficient conditions in the
literature for exact relaxation as special cases; see the caption
of Fig. 1.

Corollary 3 also implies a result first proved in [16], using
a different technique, that SOCP relaxation is exact in BFM
for radial networks when there are no lower bounds on power
injections sj . The argument in [16] is generalized in [17, Part I]
to allow convex objective functions, shunt elements, and line
limits in terms of upper bounds on �jk. Assume
A3: The cost function C(x) is convex, strictly increasing in

�, nondecreasing in s = (p, q), and independent of branch
flows S = (P,Q).

A4: For j ∈ N+, sj = −∞− i∞.
Popular cost functions in the literature include active power

loss over the network or active power generations, both of
which satisfy A3. The next result is proved in [16] and [17].

Theorem 4: Suppose G̃ is a tree and A3–A4 hold. Then OPF-
socp (13) is exact.

Remark 2: If the cost function C(x) in A3 is only nonde-
creasing, rather than strictly increasing, in �, then A3–A4 still
guarantee that all optimal solutions of OPF (10) are (i.e., can be
mapped to) optimal solutions of OPF-socp (13), but OPF-socp
may have an optimal solution that maintains strict inequalities
in (11c) and, hence, is infeasible for OPF. Even though OPF-
socp is not exact in this case, the proof of Theorem 4 constructs
from it an optimal solution of OPF. (See the proof in the arXiv
version of this paper.)

B. Voltage Upper Bounds

While type A conditions require that some power injection
constraints not be binding, type B conditions require non-
binding voltage upper bounds. They are proved in [32]–[35]
using BFM.

For radial networks, the model originally proposed in [18]
and [19], which is (11) with the inequalities in (11c) replaced by
equalities, is exact. This is because the cycle condition (12) is
always satisfied since the reduced incidence matrix B is n× n
and invertible for radial networks. Following [35], we adopt the
graph orientation where every link points towards node 0. Then
(11) for a radial network reduces to

Sjk =
∑
i:i→j

(Sij − zij�ij) + sj , j ∈ N+ (17a)

vj − vk =2Re
(
zHjkSjk

)
− |zjk|2�jk, j → k ∈ Ẽ (17b)

vj�jk ≥ |Sjk|2, j → k ∈ Ẽ (17c)

where v0 is given and in (17a), k denotes the node on the unique
path from node j to node 0. The boundary condition is Sjk := 0
when j = 0 in (17a) and Sij = 0, �ij = 0 when j is a leaf
node.3

As before, the voltage magnitudes must satisfy

vj ≤ vj ≤ vj , j ∈ N. (18a)

We allow more general constraints on the power injections: they
can be in an arbitrary set Sj that is bounded above

sj ∈ Sj ⊆ {sj ∈ C|sj ≤ sj}, j ∈ N (18b)

3A node j ∈ N is a leaf node if there is no i such that i → j ∈ Ẽ.
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Fig. 2. Feasible set of OPF for a two-bus network without any constraint. It
consists of the (two) points of intersection of the line with the convex surface
(without the interior) and, hence, is nonconvex. SOCP relaxation includes the
interior of the convex surface and enlarges the feasible set to the line segment
joining these two points. If the cost function C is increasing in � or (p0, q0),
then the optimal point over the SOCP feasible set (line segment) is the lower
feasible point c and, hence, the relaxation is exact. No constraint on � or
(p0, q0) will destroy exactness as long as the resulting feasible set contains c.

for some given sj , j ∈ N .4 Then the SOCP relaxation is

OPF -socp :

min
x

C(x) subject to (17), (18). (19)

OPF-socp (19) is exact if every optimal solution xsocp attains
equality in (17c). In that case, an optimal solution of BFM (10)
can be uniquely recovered from xsocp.

We make two comments on Sj in (18b). First, Sj need
not be convex nor even connected for convex relaxations to
be exact. They (only) need to be convex to be efficiently
computable. Second, such a general constraint on s is useful in
many applications. It includes the case where sj are subject to
simple box constraints, but also allows constraints of the form
|sj |2 ≤ a, |∠sj | ≤ φj that is useful for volt/var control [47], or
qj ∈ {0, a} for capacitor configurations.

Geometric Insight: To motivate condition B2 below, we
first explain a simple intuition using a two-bus network on
why relaxing voltage upper bounds guarantees exact SOCP
relaxation. Consider bus 0 and bus 1 connected by a line with
impedance z := r + ix. Suppose without loss of generality that
v0 = 1 p.u. Eliminating S01 = s0 from (17), the model reduces
to (dropping the subscript on �01)

p0 − r� = −p1, q0 − x� = −q1, p20 + q20 = � (20)

and

v1 − v0 = 2(rp0 + xq0)− |z|2�. (21)

Suppose s1 is given (e.g., a constant power load). Then the
variables are (�, v1, p0, q0) and the feasible set consists of
solutions of (20) and (21) subject to additional constraints on
(�, v1, p0, q0). The case without any constraint is instructive
and shown in Fig. 2 (see explanation in the caption). The
point c in the figure corresponds to a power flow solution with
a large v1 (normal operation) whereas the other intersection
corresponds to a solution with a small v1 (fault condition). As
explained in the caption, SOCP relaxation is exact if there is no

4We assume here that s0 is unconstrained, and since V0 := 1∠0◦ p.u., the
constraints (18) involve only j in N , not N+.

Fig. 3. Impact of voltage upper bound v1 on exactness. (a) When v1 (corre-
sponding to a lower bound on �) is not binding, the power flow solution c is
in the feasible set of SOCP and, hence, the relaxation is exact. (b) When v1
excludes c from the feasible set of SOCP, the optimal solution is infeasible for
OPF and the relaxation is not exact.

voltage constraint and as long as constraints on (�, p0, q0) do
not remove the high-voltage solution c. Only when the system
is stressed so much that c becomes infeasible will relaxation
lose exactness. This agrees with the conventional wisdom that
power systems under normal operations are well behaved.

Consider now the voltage constraint v1 ≤ v1 ≤ v1. Substi-
tuting (20) into (21), we obtain

v1 = (1 + rp1 + xq1)− |z|2�

translating the constraint on v1 into a box constraint on �

1

|z|2 (rp1 + xq1 + 1− v1) ≤ � ≤ 1

|z|2 (rp1 + xq1 + 1− v1).

Fig. 2 shows that the lower bound v1 (corresponding to an upper
bound on �) does not affect the exactness of SOCP relaxation.
The effect of upper bound v1 (corresponding to a lower bound
on �) is illustrated in Fig. 3. As explained in the caption of the
figure, SOCP relaxation is exact if the upper bound v1 does not
exclude the high-voltage solution c and is not exact otherwise.

For a general radial network, recall from [25, Sec. VI] the
linear approximation of BFM for radial networks obtained by
setting �jk = 0 in (17): for each s

Slin
jk (s) =

∑
i∈Tj

si (22a)

vlinj (s) = v0 + 2
∑

(i,k)∈Pj

Re
(
zHikS

lin
ik (s)

)
(22b)

where Tj denotes the subtree at node j, including j, and Pj

denotes the set of links on the unique path from j to 0. The key
property we will use is from [25, Lemma 13 and Remark 9]:

Sjk ≤ Slin
jk (s) and vj ≤ vlinj (s). (23)

Define the 2 × 2 matrix function

Ajk(Sjk, vj) := I − 2

vj
zjk(Sjk)

T (24)

where zjk := [rjk xjk]
T is the line impedance and Sjk :=

[Pjk Qjk]
T is the branch power flows, both taken as real

vectors so that zjk(Sjk)
T is a 2 × 2 matrix with a rank less

or equal to 1. The matrices Ajk(Sjk, vj) describe how changes
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in branch power flows propagate towards the root node 0; see
comments below. Evaluate the Jacobian matrix Ajk(Sjk, vj) at
the boundary values

Ajk :=Ajk

([
Slin
jk (s)

]+
, vj

)

:= I − 2

vj
zjk

([
Slin
jk (s)

]+)T

. (25)

Here ([a]+)
T is the row vector [[a1]

+ [a2]
+] with [aj ]

+ :=
max{0, aj}.

For a radial network, for j �= 0, every link j → k identifies a
unique node k and, therefore, to simplify notation, we refer to
a link interchangeably by (j, k) or j and use Aj , Aj , zj , etc. in
place of Ajk, Ajk, zjk, etc., respectively. Assume
B1: The cost function is C(x) :=

∑n
j=0 Cj(Resj) with C0

strictly increasing. There is no constraint on s0.
B2: The set Sj of injections satisfies vlinj (s) ≤ vj , j ∈ N ,

where vlinj (s) is given by (22).
B3: For each leaf node j ∈ N , let the unique path from j to

0 have k links and be denoted by Pj := ((ik, ik−1), . . . ,
(i1, i0)) with ik=j and i0=0. Then Ait · · ·Ait′ zit′+1

>0
for all 1 ≤ t ≤ t′ < k.

The following result is proved in [35].
Theorem 5: Suppose G̃ is a tree and B1–B3 hold. Then OPF-

socp (19) is exact.
We now comment on the conditions B1–B3. B1 requires

that the cost functions Cj depend only on the injections sj .
For instance, if Cj(Resj) = pj , then the cost is total active
power loss over the network. It also requires that C0 be strictly
increasing but makes no assumption on Cj , j > 0. Common
cost functions, such as line loss or generation cost, usually
satisfy B1. If C0 is only nondecreasing, rather than strictly
increasing, in p0, then B1–B3 still guarantee that all optimal
solutions of OPF (10) are (effectively) optimal for OPF-socp
(19), but OPF-socp may not be exact, i.e., it may have an
optimal solution that maintains strict inequalities in (17c). In
this case, the proof of Theorem 5 can construct from it another
optimal solution that attains equalities in (17c).

B2 is affine in the injections s := (p, q). It enforces the upper
bounds on voltage magnitudes because of (23).

B3 has a simple interpretation: the power flows Sjk on all
branches should move in the same direction. Specifically, given
a marginal change in the complex power on line j → k, the
2 × 2 matrix Ajk is (a lower bound on) the Jacobian and
describes the effect of this marginal change on the complex
power on the line immediately upstream from line j → k. The
product of Ai in B3 propagates this effect upstream toward the
root. B3 requires that a small change, positive or negative, in
the power flow on a line affects all upstream branch powers in
the same direction. This seems to hold with a significant margin
in practice; see [35] for examples from real systems.

Theorem 5 unifies and generalizes some earlier results in
[32]–[34]. The sufficient conditions in these papers have the
following simple and practical interpretation: OPF-socp is exact
provided either

• there are no reverse power flows in the network, or
• if the r/x ratios on all lines are equal, or

• if the r/x ratios increase in the downstream direction from
the substation (node 0) to the leaves, then there are no
reverse real power flows, or

• if the r/x ratios decrease in the downstream direction, then
there are no reverse reactive power flows.

The exactness of SOCP relaxation does not require con-
vexity, i.e., the cost C(x) =

∑n
j=0 Cj(Resj) need not be a

convex function and the injection regions Sj need not be
convex sets. Convexity allows polynomial-time computation.
Moreover, when it is convex, the exactness of SOCP relaxation
also implies the uniqueness of the optimal solution, as the
following result from [35] shows.

Theorem 6: Suppose G̃ is a tree. Suppose the costs Cj ,
j = 0, . . . , n, are convex functions and the injection regions Sj ,
j = 1, . . . , n, are convex sets. If the relaxation OPF-socp (19)
is exact, then its optimal solution is unique.

Consider the model of [18] for radial networks, which is
(17) with the inequalities in (17c) replaced by equalities. Let
X denote an equivalent feasible set of OPF,5 i.e., those x ∈
R3(m+n+1) that satisfy (17), (18), and attain equalities in (17c).
The proof of Theorem 6 reveals that, for radial networks, the
feasible set X has a “hollow” interior.

Corollary 7: Suppose G̃ is a tree. If x̂ and x̃ are distinct
solutions in X, then no convex combination of x̂ and x̃ can be
in X. In particular, X is nonconvex.

This property is illustrated vividly in several numerical ex-
amples for mesh networks in [48]–[51].

C. Angle Differences

The sufficient conditions in [29], [36], and [37] require that
the voltage angle difference across each line be small. We
explain the intuition using a result in [36] for an OPF problem
where |Vj | are fixed for all j ∈ N+ and reactive powers are
ignored. Under these assumptions, as long as the voltage angle
difference is small, the power flow solutions form a locally con-
vex surface that is the Pareto front of its relaxation. This implies
that the relaxation is exact. This geometric picture is apparent in
earlier work on the geometry of power flow solutions, see e.g.,
[48], and underlies the intuition that the dynamics of a power
system are usually benign until it is pushed towards the bound-
ary of its stability region. The geometric insight in Figs. 2 and
3 for BFM and later in this subsectionfor BIM says that, when
it is far away from the boundary, the local convexity structure
also facilitates exact relaxation. Reactive power is considered
in [37, Theor. 1] with fixed |Vj | where, with an additional
constraint on the lower bounds of reactive power injections that
ensure these lower bounds are not tight, it is proved that if
the original OPF problem is feasible, then its SDP relaxation
is exact. The case of variable |Vj | without reactive power is
considered in [36, Theor. 7] but the simple geometric structure
is lost.

5There is a bijection between X and the feasible set of OPF (10) [when (18b)
is replaced by (9b)] [17], [25].
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Recall that yjk = gjk − ibjk with gjk > 0, bjk > 0. Let
Vj = |Vj |eiθj and suppose |Vj | are given. Consider

min
p,P,θ

C(p) (26a)

s.t. p
j
≤pj≤pj , j∈N+ (26b)

θjk≤θjk≤θjk, (j, k)∈E (26c)

pj=
∑
k:k∼j

Pjk, j∈N+ (26d)

Pjk= |Vj |2gjk−|Vj ||Vk|gjk cos θjk+|Vj ||Vk|bjk sin θjk
(j, k)∈E (26e)

where θjk := θj − θk are the voltage angle differences across
lines (j, k).

We comment on the constraints on angles θjk in (26). When
the voltage magnitudes |Vi| are fixed, constraints on real power
flows, branch currents, line losses, as well as stability con-
straints can all be represented in terms of θjk. Indeed, a line
flow constraint of the form |Pjk| ≤ P jk becomes a constraint
on θjk using the expression for Pjk in (26e). A current con-
straint of the form |Ijk| ≤ Ijk is also a constraint on θjk since
|Ijk|2 = |yjk|(|Vj |2 + |Vk|2 − 2|VjVk| cos θjk). The line loss
over (j, k) ∈ E is equal to Pjk + Pkj which is again a function
of θjk. Stability typically requires |θjk| to stay within a small
threshold. Therefore, given constraints on branch power or
current flows, losses, and stability, appropriate bounds θjk, θjk
can be determined in terms of these constraints, assuming |Vj |
are fixed.

We can eliminate the branch flows Pjk and angles θjk from
(26). Since |Vj |, j ∈ N+ are fixed, we assume without loss of
generality that |Vj | = 1 p.u.. Define the injection region

Pθ :=

⎧⎨
⎩p ∈ Rn|pj =

∑
k:k∼j

(gjk − gjk cos θjk + bjk sin θjk),

θjk ≤ θjk ≤ θjk, j ∈ N+, (j, k) ∈ E
}

(27)

Let Pp := {p ∈ Rn|p
j
≤ pj ≤ pj , j ∈ N}. Then (26) is

OPF :

min
p

C(p) subject to p ∈ Pθ ∩ Pp. (28)

This problem is hard because the set Pθ is nonconvex. To avoid
triviality, we assume OPF (28) is feasible. For a set A, let
convA denote the convex hull of A. Consider the following
problem that relaxes the nonconvex feasible set Pθ ∩ Pp of (28)
to a convex superset

OPF -socp :

min
p

C(p) subject to p ∈ conv(Pθ) ∩ Pp. (29)

We will show below that (29) is indeed an SOCP. It is said to
be exact if every optimal solution of (29) lies in Pθ ∩ Pp and is
therefore also optimal for (28).

Fig. 4. Feasible set of OPF (28) for a two-bus network without any constraint
when |Vj | are fixed and reactive powers are ignored. It is an ellipse without the
interior; hence, nonconvex. OPF-socp (29) includes the interior of the ellipse
and is hence convex. If the cost function C is strictly increasing in (pj , pk),
then the Pareto front of the SOCP feasible set will lie on the lower part of the
ellipse O(Pθ) = Pθ and, hence, OPF-socp is exact.

We say that a point x ∈ A ⊆ Rn is a Pareto optimal point in
A if there does not exist another x′ ∈ A such that x′ ≤ x with
at least one strictly smaller component x′

j < xj . The Pareto
front of A, denoted by O(A), is the set of all Pareto optimal
points in A. The significance of O(A) is that, for any increasing
function, its minimizer, if it exists, is necessarily in O(A)
whether A is convex or not. If A is convex, then xopt is a Pareto
optimal point in O(A) if and only if there is a nonzero vector
c := (c1, . . . , cn) ≥ 0 such that xopt is a minimizer of cTx over
A [52, pp.179–180].

Assume
C1: C(p) is strictly increasing in each pj .
C2: For all (j, k) ∈ E, − tan−1 (bjk/gjk) < θjk ≤ θjk <

tan−1(bjk/gjk).
The following result, proved in [36] and [37], says that (29)

is exact, provided that θjk are suitably bounded.
Theorem 8: Suppose G is a tree and C1–C2 hold.
1) Pθ ∩ Pp = O(conv(Pθ) ∩ Pp).
2) The problem (29) is indeed an SOCP. Moreover, it is

exact.
C1 is needed to ensure every optimal solution of OPF-socp

(29) is optimal for OPF (28). If C(p) is nondecreasing but not
strictly increasing in all pj , then Pθ ∩ Pp ⊆ O(conv(Pθ) ∩ Pp)
and OPF-socp may not be exact according to our definition.
Even in that case, it is possible to recover an optimal solution
of OPF from any optimal solution of OPF-socp.

Theorem 8 is illustrated in Figs. 4 and 5. As explained in
the caption of Fig. 4, if there are no constraints, then SOCP
relaxation (29) is exact under condition C1. It is clear from
the figure that upper bounds on power injections do not affect
exactness whereas lower bounds do. The purpose of condition
C2 is to restrict the angle θjk in order to eliminate the upper
half of the ellipse from Pθ. As explained in the caption of
Fig. 5, under C2, Pθ ∩ Pp = O(conv(Pθ) ∩ Pp) and, hence, the
relaxation is exact. Otherwise, it may not.

When the network is not radial or |Vj | are not constants, then
the feasible set can be much more complicated than ellipsoids
[49]–[51]. Even in such settings, the Pareto fronts might still
coincide, though the simple geometric picture is lost. See [48]
for a numerical example on an Australian system or [24] for a
three-bus mesh network.
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Fig. 5. With lower bounds p on power injections, the feasible set of OPF-socp (29) is the shaded region. (a) When the feasible set of OPF (28) is restricted to the
lower half of the ellipse (small |θjk|), the Pareto front remains on the ellipse itself Pθ ∩ Pp = O(conv(Pθ) ∩ Pp) and, hence, the relaxation is exact. (b) When
the feasible set of OPF includes the upper half of the ellipse (large |θjk|), the Pareto front may not lie on the ellipse if p is large, making the relaxation not exact.

D. Equivalence

Since BIM and BFM are equivalent, the results on exact
SOCP relaxation and uniqueness of the optimal solution apply
in both models. Recall the linear bijection g from BIM to BFM
defined in [25, end of Sec. V] by x = g(WG), where

Sjk := yHjk

(
[WG]jj − [WG]jk

)
, j → k

�jk := |yjk|2
(
[WG]jj+[WG]kk−[WG]jk−[WG]kj

)
, j → k

vj := [WG]jj , j ∈ N+

sj :=
∑
k:j∼k

yHjk

(
[WG]jj − [WG]jk

)
, j ∈ N+.

The mapping g allows us to directly apply Theorem 6 to
BIM. We summarize all of the results for type A and type B
conditions for radial networks.6

Theorem 9: Suppose G and G̃ are trees. Suppose conditions
A1–A2′, or A3–A4, or B1–B3 hold. Then

1) BIM: SOCP relaxation (7) is exact. Moreover, if C(WG)
is convex in ([WG]jj , [WG]jk), then the optimal solution
is unique.

2) BFM: SOCP relaxation (13) is exact. Moreover, if
C(x) :=

∑
j Cj(pj) is convex in p, then the optimal

solution is unique.

Since the SDP and the chordal relaxations are equivalent to
the SOCP relaxation for radial networks, these results apply to
SDP and chordal relaxations as well.

IV. MESH NETWORKS

In this section, we summarize a result of [17, Part II] on mesh
networks with phase shifters and of [17, Part I], [39], [41] on dc
networks when all voltages are non-negative.

To be able to recover an optimal solution of OPF from an op-
timal solution W socp

G /xsocp of SOCP relaxation, W socp
G /xsocp

6To apply type C conditions to BFM, one needs to translate the angles θjk to
the BFM variables x := (S, �, v, s) through βjk(x), though this will introduce
additional nonconvex constraints into OPF of the form θjk ≤ βjk(x) ≤ θjk .

must satisfy a local condition and a global cycle condition [(4)
for BIM and (12) for BFM]; see the definition of exactness in
Section II. The conditions of Section III guarantee that every
SOCP optimal solution will satisfy the local condition (i.e.,
W socp

G is 2 × 2 psd rank-1 and xsocp attains equalities in (11c)),
whether the network is radial or mesh, but do not guarantee that
it satisfies the cycle condition. For radial networks, the cycle
condition is vacuous and, therefore, the conditions of Section III
are sufficient for SOCP relaxation to be exact. The result of
[17, Part II] implies that these conditions are sufficient also
for a mesh network that has tunable phase shifters at strategic
locations.

Similar conditions also extend to dc networks where all
variables are real and the voltages are assumed non-negative.

A. AC Networks With Phase Shifters

For BFM, the conditions of Section III guarantee that every
optimal solution of OPF-socp (13) attains equalities in (11c)
but may or may not satisfy the cycle condition (12). If it does,
then it can be uniquely mapped to an optimal solution of OPF
(10), according to [17, Theor. 2]. If it does not, then the solution
is not physically implementable because it does not satisfy the
power flow equations (Kirchhoff’s laws). For a radial network,
the reduced incidence matrix B in (12) is n× n and invertible
and, hence, every optimal solution of the SOCP relaxation that
attains equalities in (11c) always satisfies the cycle condition
[17, Theor. 4]. This is not the case for a mesh network where B
is m× n with m > n.

It is proved in [17, Part II], however, that if the network
has tunable phase shifters, then any SOCP solution that attains
equalities in (11c) becomes implementable even if the solution
does not satisfy the cycle condition. This extends the sufficient
conditions A1–A2′, or A3–A4, or B1–B3, or C1–C2 from radial
networks to this type of mesh network.

For BIM, the effect of phase shifter is equivalent to in-
troducing a free variable φc in (4) for each basis cycle c so
that the cycle condition can always be satisfied for any WG.
The results presented here, however, start with a simple power
flow model (30) for networks with phase shifters. This model
makes transparent the spatial effect of phase shifters and its
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Fig. 6. Model of a phase shifter in line j → k.

impact on the exactness of SOCP relaxation. It may be useful
in other contexts, such as the design of a network of flexible ac
transmission systems (FACTS) devices.

BFM With Phase Shifters: We consider an idealized phase
shifter that only shifts the phase angles of the sending-end
voltage and current across a line, and has no impedance nor
limits on the shifted angles. Specifically consider an idealized
phase shifter parametrized by φjk across line j → k as shown
in Fig. 6. As before, let Vj denote the sending-end voltage at
node j. Define Ijk to be the sending-end current leaving node
j toward node k. Let i be the point between the phase shifter
φjk and line impedance zjk. Let Vi and Ii be the voltage at i
and the current from i to k, respectively. Then the effect of an
idealized phase shifter, parametrized by φjk, is summarized by
the following modeling assumptions:

Vi = Vj e
iφjk and Ii = Ijk e

iφjk .

The power transferred from nodes j to k is still (defined to be)
Sjk := VjI

H
jk, which is equal to the power ViI

H
i from nodes i

to k since the phase shifter is assumed to be lossless. Applying
Ohm’s law across zjk, we define the branch flow model with
phase shifters as the following set of equations:

∑
k:j→k

Sjk =
∑
i:i→j

(
Sij − zij |Iij |2

)
+ sj , j ∈ N+ (30a)

Ijk = yjk(Vj − Vk e
−iφjk), j → k ∈ Ẽ (30b)

Sjk =VjI
H
jk, j → k ∈ Ẽ. (30c)

Without phase shifters (φjk = 0), (30) reduces to BFM
(8). Let x̃ := (S, I, V, s) ∈ C2(m+n+1) denote the variables in
(30). Let x := (S, �, v, s) ∈ R3(m+n+1) denote the variables
in SOCP relaxation (13). These variables are related through
the mapping x = h(x̃) where �jk = |Ijk|2 and vj = |Vj |2. In
particular, given any solution x̃ of (30), x := h(x̃) satisfies (11)
with equalities in (11c).

Cycle Condition: If every line has a phase shifter, then the
cycle condition changes from (12) to: given any x that satisfies
(11) with equalities in (11c)

∃(θ, φ) ∈ Rn+m such that Bθ = β(x)− φ mod 2π. (31)

It is proved in [17, Part II] that, given any x that attains
equalities in (11c), there always exists a θ in (−π, π]n and a φ in
(−π, π]m that solve (31). Moreover, phase shifters are needed
only on lines not in a spanning tree.

Exact SOCP Relaxation: Recall the OPF problem (10)
where the feasible set X̃ without phase shifters is

X̃ := {x̃|x̃ satisfies (30) with φ = 0 and (9)} .

Phase shifters on every line enlarge the feasible set to

X := {x̃|x̃ satisfies (30) for some φ and (9)} .

Given any spanning tree T of G̃, let “φ ∈ T⊥” be the shorthand
for “φjk = 0 for all (j, k) ∈ T ”, i.e., φ involves only phase
shifters in lines not in the spanning tree T . Fix any T . Define
the feasible set when there are phase shifters only on lines
outside T

XT :=
{
x̃|x̃ satisfies (30) for some φ ∈ T⊥ and (9)

}
.

Clearly X̃ ⊆ XT ⊆ X. Define the (modified) OPF problem
where there is a phase shifter on every line

OPF -ps :

min
x̃,φ

C(x) subject to x̃ ∈ X, φ ∈ Rm (32)

and that where there are phase shifters only outside T

OPF -T :

min
x̃,φ

C(x) subject to x̃ ∈ XT , φ ∈ T⊥. (33)

Let Copt, Cps, and CT denote, respectively, the optimal values
of OPF (10), OPF-ps (32), and OPF-T (33). Clearly, Copt ≥
CT ≥ Cps since X̃ ⊆ XT ⊆ X. Solving OPF (10), OPF-ps
(32), or OPF-T (33) is difficult because their feasible sets are
nonconvex.

Recall the following sets defined in [25] for networks without
phase shifters

X+ :={x|x satisfies (9) and (11)}
Xnc :={x|x satisfies (9) and (11) with equalities in (11c)}
X :={x|x ∈ Xnc and satisfies the cycle condition (12)} .

Note that X is defined by the cycle condition without phase
shifters [φ = 0 in (31)]. As explained in [25, Theor. 9], X is
equivalent to the feasible set X̃ of OPF (10). Hence, X̃ ≡ X ⊆
Xnc ⊆ X+. A key result of [17, Part II] is

Theorem 10: Fix any spanning tree T of G̃. Then XT =
X ≡ Xnc.

The implication of Theorem 10 is that, for a mesh network,
when a solution of SOCP relaxation (13) attains equalities in
(11c) (i.e., it is in Xnc), then it can be implemented with an
appropriate setting of phase shifters even when the solution
does not satisfy the cycle condition (12). Define the problem

OPF -nc :

min
x

C(x) subject to x ∈ Xnc. (34)

Let Cnc and Csocp denote, respectively, the optimal values of
OPF-nc (34) and OPF-socp (13). Theorem 10 then implies the
following.

Corollary 11: Fix any spanning tree T of G̃. Then

1) X̃ ⊆ XT = X ≡ Xnc ⊆ X+.
2) Copt ≥ CT = Cps = Cnc ≥ Csocp.
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Hence, if an optimal solution xsocp of OPF-socp (13) attains
equalities in (11c), then xsocp solves the problem OPF-nc (34).
If it also satisfies the cycle condition (12), then xsocp ∈ X and
it can be mapped to a unique optimal of OPF (10). Otherwise,
xsocp can be implemented through an appropriate phase-shifter
setting φ and it attains a cost that lower bounds the optimal cost
of the original OPF without tunable phase shifters. Moreover,
this benefit can be attained with phase shifters only outside an
arbitrary spanning tree T of G̃. The result can help determine if
a network with a given set of phase shifters can be convexified
and, if not, where additional phase shifters are needed for
convexification [17, Part II]. If the SOCP is exact, then phase
shifters cannot further reduce the cost. This can help determine
when phase shifters provide benefits to system operations.

Hence, phase shifters in strategic locations make a mesh net-
work behave like a radial network as far as convex relaxation is
concerned. The results of Section III then imply the following:

Corollary 12: Suppose conditions A1–A2′, or A3–A4, or
B1–B3, or C1–C2 hold. Then any optimal solution of OPF-socp
(13) solves OPF-ps (32) and OPF-T (33).

B. DC Networks

In this subsection, we consider purely resistive dc networks,
i.e., the impedance zjk = rjk = y−1

jk , the power injections sj =
pj , and the voltages Vj are real. We assume all voltage magni-
tudes are strictly positive. Formally:
D0: Replace (1b) and (11b) by 0 < V j ≤ Vj ≤ V j , j ∈ N+,

and replace (3b) by 0 < V 2
j ≤ [WG]jj ≤ V

2
j , j ∈ N+.

Type A Conditions: Condition D0 immediately implies that
the cycle condition (12) in BFM is satisfied by every feasible x
of OPF-socp (13), for

βjk(x) :=∠
(
vj − zHjkSjk

)

=∠
(
vj − rjk

(
r−1
jk Vj(Vj − Vk)

))
= 0◦.

A3–A4 guarantee that any optimal solution of OPF-socp at-
tains equalities in (11c) for general mesh networks. Hence,
[25, Theor. 7] and Theorem 4 imply the following.

Corollary 13: Suppose A3–A4 and D0 hold. Then OPF-socp
(13) is exact.

For BIM, an OPF as a QCQP has real and symmetric matri-
ces in (16). Even though they satisfy condition A2′, Corollary 3
is not applicable as its proof constructs a complex (not real) V
from an optimal solution of OPF-socp. However, if there are no
lower bounds on the power injections, then only Φj are involved
in the QCQP so all of their off-diagonal entries are non-positive.
It is then observed in [39] that [46, Theor. 3.1] directly implies
(without needing D0) the following.

Corollary 14: Suppose A1 and A4 hold. Then OPF-sdp (5)
and OPF-socp (7) are exact.

Type B Conditions: The following result is proved in [41].
Consider:
B1′: The cost function is C(x) :=

∑n
j=0 Cj(Resj) with Cj

strictly increasing for all j ∈ N+. There is no constraint
on s0.

B2′: V 1 = V 2 = · · · = V n; Sj = [p
j
, pj ] with p

j
< 0, j ∈ N .

B2′′: V j = ∞ for j ∈ N .

Theorem 15: Suppose at least one of the following holds:

• B1, B2′′ and D0; or
• B1′, B2′ and D0.

Then OPF-socp (7) with the additional constraints Wjk ≥ 0,
(j, k) ∈ E, is exact. If, in addition, the problem is convex, then
its optimal solution is unique.

It is possible to enforce B2′′ by an affine constraint on the
power injections, similar to (but different from) condition B2
for radial networks; see [41] for details. See also [53] for a result
on the uniqueness of SOCP relaxation.

C. General AC Networks

Unfortunately, no sufficient conditions for exact semidefinite
relaxation for general mesh networks are yet known. There
are type A conditions on power injections for exact relaxation
only for special cases: a lossless cycle or lossless cycle with
one chord [29], or a weakly cyclic network (where every line
belongs to at most one cycle) of size 3 [54].

We close by mentioning three recent approaches for global
optimization of OPF when the relaxations in this tutorial fail.
First, higher-order semidefinite relaxations on the Lesserre
hierarchy for polynomial optimization [55] have been applied
to solving OPF when SDP relaxation fails [56]–[59]. By going
up the hierarchy, the relaxations become tighter and their so-
lutions approach a global optimal of the original polynomial
optimization [55], [60]. This, however, comes at the cost of
significantly higher runtime. Techniques are proposed in [58]
and [59] to reduce the problem sizes, e.g., by exploiting sparsity
or adding redundant constraints [59], [61], [62] or applying
higher-order relaxations only on (typically small) subnetworks
where constraints are violated [58].

Second, a branch-and-bound algorithm is proposed in [63]
where a lower bound is computed from the Lagrangian dual of
OPF and the feasible set subdivision is based on rectangular or
ellipsoidal bisection. The dual problem is solved using a sub-
gradient algorithm. Each iteration of the subgradient algorithm
requires minimizing the Lagrangian over the primal variables.
This minimization is separable into two subproblems—one
being a convex subproblem and the other having a nonconvex
quadratic objective. The latter subproblem turns out to be
a trust-region problem that has a closed-form solution. It is
proved in [63] that the proposed algorithm converges to a
global optimal. This method is extended in [64] to include
more constraints and alternatively use SDP relaxation for lower
bounding the cost.

Finally, a new approach is proposed in [65] based on convex
quadratic relaxation of OPF in polar coordinates.

V. CONCLUSION

We have summarized the main sufficient conditions for exact
semidefintie relaxations of OPF as listed in Tables I and II. For
radial networks, these conditions suggest that SOCP relaxation
(and, hence, SDP and chordal relaxations) will likely be ex-
act in practice. This is corroborated by significant numerical
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experience. For mesh networks, they are applicable only for
special cases: networks that have tunable phase shifters or
dc networks where all variables are real and voltages are
non-negative. Even though counterexamples exist where SDP/
chordal relaxation is not exact for ac mesh networks, numerical
experience suggests that SDP/chordal relaxation tends to be
exact in many cases. Sufficient conditions that guarantee exact
relaxation for ac mesh networks, however, remain elusive. The
main difficulty is in designing relaxations of the cycle condition
(4) or (12).
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