13 research outputs found

    Convex Hulls under Uncertainty

    Get PDF
    We study the convex-hull problem in a probabilistic setting, motivated by the need to handle data uncertainty inherent in many applications, including sensor databases, location-based services and computer vision. In our framework, the uncertainty of each input site is described by a probability distribution over a finite number of possible locations including a \emph{null} location to account for non-existence of the point. Our results include both exact and approximation algorithms for computing the probability of a query point lying inside the convex hull of the input, time-space tradeoffs for the membership queries, a connection between Tukey depth and membership queries, as well as a new notion of \some-hull that may be a useful representation of uncertain hulls

    Computing Volumes and Convex Hulls: Variations and Extensions

    Get PDF
    Geometric techniques are frequently utilized to analyze and reason about multi-dimensional data. When confronted with large quantities of such data, simplifying geometric statistics or summaries are often a necessary first step. In this thesis, we make contributions to two such fundamental concepts of computational geometry: Klee's Measure and Convex Hulls. The former is concerned with computing the total volume occupied by a set of overlapping rectangular boxes in d-dimensional space, while the latter is concerned with identifying extreme vertices in a multi-dimensional set of points. Both problems are frequently used to analyze optimal solutions to multi-objective optimization problems: a variant of Klee's problem called the Hypervolume Indicator gives a quantitative measure for the quality of a discrete Pareto Optimal set, while the Convex Hull represents the subset of solutions that are optimal with respect to at least one linear optimization function.In the first part of the thesis, we investigate several practical and natural variations of Klee's Measure Problem. We develop a specialized algorithm for a specific case of Klee's problem called the “grounded” case, which also solves the Hypervolume Indicator problem faster than any earlier solution for certain dimensions. Next, we extend Klee's problem to an uncertainty setting where the existence of the input boxes are defined probabilistically, and study computing the expectation of the volume. Additionally, we develop efficient algorithms for a discrete version of the problem, where the volume of a box is redefined to be the cardinality of its overlap with a given point set.The second part of the thesis investigates the convex hull problem on uncertain input. To this extent, we examine two probabilistic uncertainty models for point sets. The first model incorporates uncertainty in the existence of the input points. The second model extends the first one by incorporating locational uncertainty. For both models, we study the problem of computing the probability that a given point is contained in the convex hull of the uncertain points. We also consider the problem of finding the most likely convex hull, i.e., the mode of the convex hull random variable

    On the expected diameter, width, and complexity of a stochastic convex-hull

    Full text link
    We investigate several computational problems related to the stochastic convex hull (SCH). Given a stochastic dataset consisting of nn points in Rd\mathbb{R}^d each of which has an existence probability, a SCH refers to the convex hull of a realization of the dataset, i.e., a random sample including each point with its existence probability. We are interested in computing certain expected statistics of a SCH, including diameter, width, and combinatorial complexity. For diameter, we establish the first deterministic 1.633-approximation algorithm with a time complexity polynomial in both nn and dd. For width, two approximation algorithms are provided: a deterministic O(1)O(1)-approximation running in O(nd+1logn)O(n^{d+1} \log n) time, and a fully polynomial-time randomized approximation scheme (FPRAS). For combinatorial complexity, we propose an exact O(nd)O(n^d)-time algorithm. Our solutions exploit many geometric insights in Euclidean space, some of which might be of independent interest

    Approximating the Distribution of the Median and other Robust Estimators on Uncertain Data

    Get PDF
    Robust estimators, like the median of a point set, are important for data analysis in the presence of outliers. We study robust estimators for locationally uncertain points with discrete distributions. That is, each point in a data set has a discrete probability distribution describing its location. The probabilistic nature of uncertain data makes it challenging to compute such estimators, since the true value of the estimator is now described by a distribution rather than a single point. We show how to construct and estimate the distribution of the median of a point set. Building the approximate support of the distribution takes near-linear time, and assigning probability to that support takes quadratic time. We also develop a general approximation technique for distributions of robust estimators with respect to ranges with bounded VC dimension. This includes the geometric median for high dimensions and the Siegel estimator for linear regression.Comment: Full version of a paper to appear at SoCG 201

    Convex Hull for Probabilistic Points

    Get PDF
    We analyze the correctness of an O(n log n) time divide-and-conquer algorithm for the convex hull problem when each input point is a location determined by a normal distribution. We show that the algorithm finds the convex hull of such probabilistic points to precision within some expected correctness determined by a user-given confidence value phi. In order to precisely explain how correct the resulting structure is, we introduce a new certificate error model for calculating and understanding approximate geometric error based on the fundamental properties of a geometric structure. We show that this new error model implies correctness under a robust statistical error model, in which each point lies within the hull with probability at least φ, for the convex hull problem

    Algorithms and hardness results for geometric problems on stochastic datasets

    Get PDF
    University of Minnesota Ph.D. dissertation.July 2019. Major: Computer Science. Advisor: Ravi Janardan. 1 computer file (PDF); viii, 121 pages.Traditionally, geometric problems are studied on datasets in which each data object exists with probability 1 at its location in the underlying space. However, in many scenarios, there may be some uncertainty associated with the existence or the locations of the data points. Such uncertain datasets, called \textit{stochastic datasets}, are often more realistic, as they are more expressive and can model the real data more precisely. For this reason, geometric problems on stochastic datasets have received significant attention in recent years. This thesis studies three sets of geometric problems on stochastic datasets equipped with existential uncertainty. The first set of problems addresses the linear separability of a bichromatic stochastic dataset. Specifically, these problems are concerned with how to compute the probability that a realization of a bichromatic stochastic dataset is linearly separable as well as how to compute the expected separation-margin of such a realization. The second set of problems deals with the stochastic convex hull, i.e., the convex hull of a stochastic dataset. This includes computing the expected measures of a stochastic convex hull, such as the expected diameter, width, and combinatorial complexity. The third set of problems considers the dominance relation in a colored stochastic dataset. These problems involve computing the probability that a realization of a colored stochastic dataset does not contain any dominance pair consisting of two different-colored points. New algorithmic and hardness results are provided for the three sets of problems
    corecore