
Algorithms and hardness results for geometric problems
on stochastic datasets

A THESIS

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Jie Xue

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Advisor: Ravi Janardan

July, 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Minnesota Digital Conservancy

https://core.ac.uk/display/228204967?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

c© Jie Xue 2019

ALL RIGHTS RESERVED

Acknowledgements

First of all, my great gratitude goes to my advisor Prof. Ravi Janardan for his con-

tinuous support, guidance, and encouragement during my entire Ph.D. life. Without

his advice, this thesis can never be completed. I have learned a lot from him about

how to do research in theoretical computer science.

Second, I would like to thank Prof. Qie He, Prof. Rui Kuang, Prof. Andrew

Odlyzko, and Prof. Shashi Shekhar for serving in my thesis committee and for their

valuable feedback to my thesis.

I am also grateful to my lab mates, Akash Agrawal, Rahul Saladi, and Yuan

Li, for their friendship and support. By discussing and collaborating with them, I

largely deepened my understanding of the research subjects. They helped me a lot

during my Ph.D. study in many aspects.

Next, I would like to thank Prof. Haitao Wang, Prof. Timothy M. Chan, and

Prof. Pankaj K. Agarwal for hosting my visits to Utah State University, University of

Illinois, and Duke University, respectively. These fruitful visits resulted in wonderful

collaborations, which broadened significantly the scope of my research.

I would also like to thank the Department of Computer Science & Engineering at

the University of Minnesota for the generous funding support over years, including

teaching/research assistantships and a Doctoral Dissertation Fellowship.

Furthermore, I am thankful to Prof. Subhash Suri and Prof. Daniel Lokshtanov

for offering me a postdoctoral position at University of California, Santa Barbara.

I look forward to starting my postdoc life with them after my graduation.

Finally, my deep thanks go to Mr. Fu and Mr. Pan. They are great seers who

always guide me to the right direction and give me inspirations. Their wisdom and

loftiness have deeply influenced me and benefited me in my life.

i

Dedication

To my parents, Wenbin Xue and Jiqin Zhou.

ii

Abstract

Traditionally, geometric problems are studied on datasets in which each data

object exists with probability 1 at its location in the underlying space. However, in

many scenarios, there may be some uncertainty associated with the existence or the

locations of the data points. Such uncertain datasets, called stochastic datasets, are

often more realistic, as they are more expressive and can model the real data more

precisely. For this reason, geometric problems on stochastic datasets have received

significant attention in recent years. This thesis studies three sets of geometric

problems on stochastic datasets equipped with existential uncertainty. The first set

of problems addresses the linear separability of a bichromatic stochastic dataset.

Specifically, these problems are concerned with how to compute the probability

that a realization of a bichromatic stochastic dataset is linearly separable as well as

how to compute the expected separation-margin of such a realization. The second

set of problems deals with the stochastic convex hull, i.e., the convex hull of a

stochastic dataset. This includes computing the expected measures of a stochastic

convex hull, such as the expected diameter, width, and combinatorial complexity.

The third set of problems considers the dominance relation in a colored stochastic

dataset. These problems involve computing the probability that a realization of a

colored stochastic dataset does not contain any dominance pair consisting of two

different-colored points. New algorithmic and hardness results are provided for the

three sets of problems.

iii

Contents

Acknowledgements i

Dedication ii

Abstract iii

List of Figures vii

1 Introduction 1

1.1 Problem statement . 2

1.2 Related work . 5

1.3 Our contributions . 7

1.4 Organization . 9

2 Stochastic separability problems 10

2.1 Preliminaries . 10

2.2 Separable-probability . 12

2.2.1 Extreme separator . 12

2.2.2 Computing the separable-probability 16

2.2.3 Improving the SP algorithm 18

2.2.4 Witness-based lower bound for separable-probability 21

2.3 Expected separation-margin . 26

2.3.1 Computing the expected separation-margin 28

2.3.2 Improving the ESM algorithm 30

2.3.3 Hardness of computing expected separation-margin 33

2.4 Extension to general geometric objects 36

iv

2.4.1 Reducing polytopes to points 36

2.4.2 Handling balls . 37

3 Stochastic convex hull problems 43

3.1 Preliminaries . 43

3.2 Approximating the expected diameter 44

3.2.1 The witness sequence . 44

3.2.2 An (n, d)-polynomial-time approximation algorithm 48

3.2.3 A polynomial-time approximation scheme 51

3.2.4 #P-hardness of the expected-diameter problem 53

3.3 Approximating the expected width 55

3.3.1 The witness simplex . 55

3.3.2 An O(1)-approximation algorithm 58

3.3.3 A fully polynomial-time randomized approximation scheme . 61

3.3.4 A polynomial-time approximation scheme 63

3.4 Computing the expected combinatorial complexity 65

3.4.1 Reduction to SCH membership probability queries 66

3.4.2 Handling the cases k = d− 2 and k = d− 1 68

3.4.3 Computing the S-statistics for E 70

4 Stochastic dominance problems 72

4.1 Preliminaries . 72

4.2 The colored stochastic dominance problem 73

4.2.1 An algorithm for d = 2 . 73

4.2.2 Hardness results in higher dimensions 82

4.2.3 A simple FPRAS . 101

4.3 The free-basis colored stochastic dominance problem 103

4.3.1 Reduction from the CSD problem 103

4.3.2 Reduction to the CSD problem for d = 2 111

5 Conclusion and future work 116

5.1 Conclusion . 116

5.2 Future work . 117

v

References 119

vi

List of Figures

2.1 Illustrating U∗ in R2. Note that P1 is not shown to avoid confusion. 13

2.2 Illustrating the extreme separator in R2. 16

2.3 Illustrating the location of o. The space in the figure is the 2-dim

subspace of Rd that is parallel to the x1x2-plane and contains r̂, b̂. . 18

2.4 Illustrating how to use duality and topological sweep to eliminate the

log factor in runtime. 19

2.5 An example of support set and support plane, in R2 28

2.6 A separability problem for a set of bichromatic general objects in R2 36

3.1 The locations of x, p, q and y in the proof of Lemma 17. 45

3.2 An illustration of Bu, Bv, Bv′ in the proof of Lemma 18. 47

3.3 The regular double-simplex in the proof of Lemma 24. 54

4.1 Illustrating A and Z(A). 73

4.2 Illustrating (i, j)↘ and (i, j)↖ for a legal pair (i, j). 78

4.3 Illustrating Lemma 41. The orange color is only used to highlight

each range and does not represent the color of each point. Dashed

(resp. solid) boundaries are exclusive (resp. inclusive). 80

4.4 Inserting new vertices into each edge of G. 87

4.5 An orthogonal grid drawing. 89

4.6 The construction of Pe. 91

4.7 The minimal standard triangle in R2 containing a set of points. . . . 92

4.8 The case that s is horizontal. 92

4.9 The case that s is vertical. 92

4.10 A local structure of fp in the box Bi. 97

4.11 Deleting a vertex and adding three new edges. 100

vii

4.12 An example of witness pair. l = a1 − a8 = a2 − a5. wit(R) = (a1, a8). 113

viii

Chapter 1

Introduction

Computational geometry is concerned with design and analysis of efficient algorithms

and data structures to model and manipulate geometric objects (such as points,

lines, segments, polygons, polyhedra, etc.), which are ubiquitous in the real world

[1, 2]. In traditional computational geometry, the geometric data involved is usually

assumed to be deterministic; that is, each point (or more generally, geometric object)

in the given dataset exists with probability 1 at its location in the underlying space.

However, such an assumption is not reasonable in many scenarios. For instance, due

to limitations of sensing devices, sometimes the existence or the locations of the data

points cannot be determined precisely. Due to this uncertainty, the conventional

deterministic dataset may fail to model the real data accurately.

For the purpose of resolving this issue, researchers have generalized the conven-

tional dataset to the so-called stochastic dataset (or probabilistic dataset), which

allows the data points to have some uncertainty. There are two main models of

uncertainty in the literature. In the existential uncertainty model, a data point

has a known location but can have an uncertain existence, which is modeled by an

existence probability. The existential uncertainty model is useful in the case where

the data points obtained are not totally reliable (the existence probabilities express

the reliabilities of the data points). In the locational uncertainty model, a data

point can have an uncertain location in the underlying space, which is modeled by a

probability distribution (either discrete or continuous). The locational uncertainty

model is useful in the case where the locations of the data points cannot be uniquely

1

2

determined. Compared with conventional datasets, stochastic datasets can model

the real data more precisely, and hence are more preferable in many scenarios. In re-

cent years, stochastic datasets have received considerable attention in computational

geometry. Many classical geometric problems have been investigated on stochastic

datasets. However, due to the uncertainty, the problems on stochastic datasets are

usually quite challenging. For example, the closest-pair problem, which aims to find

the pair of points with minimum distance among a given set of n (non-stochastic)

data points, can be solved in O(n log n) time, while many stochastic versions of the

closest-pair problem have been proved to be NP-hard or #P-hard even in R2.

In this thesis, we study several classical geometric problems on stochastic datasets.

The first set of problems considers the linear separability of a bichromatic stochas-

tic dataset. The second set of problems considers the convex hull of a stochastic

dataset, which we call stochastic convex hull (SCH). The third set of problems

considers the dominance relation among the points in a stochastic dataset. These

problems are described in detail in Section 1.1. We investigate these problems on

stochastic datasets equipped with existential uncertainty, and present new algorith-

mic and hardness results. We remark that some of our algorithms can be extended to

more general uncertainty models (e.g., the discrete distribution model in which the

existence and location of each data point are both uncertain and the probabilistic

location of each point is depicted by a discrete distribution).

1.1 Problem statement

In order to describe the problems we study, we need to formally define stochas-

tic datasets (equipped with existential uncertainty) and some related notions. A

stochastic dataset in Rd is a pair S = (S, π) where S ⊆ Rd is a finite set of points

and π : S → (0, 1] is a function indicating the existence probability of each point in

S. A realization of S is a random subset of S obtained by including each point a ∈ S
independently with its existence probability π(a). A bichromatic dataset in Rd is

a pair T = (TR, TB) where TR ⊆ Rd (resp. TB ⊆ Rd) is a finite set of red (resp.,

blue) points. The size of T is a pair (n,N) of integers where n = min{|TR|, |TB|}
and N = max{|TR|, |TB|}. A subset of T is a bichromatic dataset T ′ = (T ′R, T

′
B)

where T ′R ⊆ TR and T ′B ⊆ TB. A bichromatic stochastic dataset in Rd is a triple

3

S = (SR, SB, π) where (SR, SB) is a bichromatic dataset and π : SR ∪ SB → (0, 1]

is the existence-probability function. The size of S is the size of the bichromatic

dataset (SR, SB). A realization of S is a random subset of (SR, SB) obtained by

including each point a ∈ SR ∪SB independently with its existence probability π(a).

By further generalizing the notion of bichromatic datasets, we can define colored

datasets and colored stochastic datasets. A colored dataset in Rd is a pair T = (T, cl)

where T ⊆ Rd is a finite set of points and cl : T → N is the coloring (or coloring func-

tion) indicating the color labels of the points. A subset of T is a colored dataset

T ′ = (T ′, cl′) where T ′ ⊆ T and cl′ = cl|T ′ , i.e., cl restricted to T ′. A colored

stochastic dataset in Rd is a triple S = (S, cl, π) where (S, cl) is a colored dataset

and π : S → (0, 1] is the existence-probability function. A realization of S is a

random subset of (S, cl) obtained by including each point a ∈ S independently with

its existence probability π(a).

Stochastic separability. Linear separability, which is concerned with whether a

bichromatic dataset can be separated by a hyperplane into two sets (one of each

color), is a basic notion studied in computational geometry, and has many applica-

tions. It is also strongly related to the classification task in machine learning and

data mining. In this thesis, we study two problems regarding the linear separability

of a given bichromatic stochastic dataset S = (SR, SB, π) in Rd, both of which are

natural generalizations of the classical linear separability problems.

• Separable-probability. The first problem aims to compute the separable-

probability (SP) of a realization of S, i.e., the probability that a realization

of S is linearly separable by a hyperplane. A bichromatic dataset is linearly

separable if there exists a hyperplane h such that the red points and blue

points are on opposite sides of h.

• Expected separation-margin. The second problem aims to compute the

expected separation-margin (ESM) of a realization of S. Roughly speaking,

the separation-margin of a (separable) bichromatic dataset is the maximum

distance between a separator and the data points. (This notion will be formally

defined in Chapter 3.)

Stochastic convex hull. The convex hull of a set A of points is, by definition, the

smallest convex set containing A [3]. It is one of the most fundamental structures

4

in computational geometry and has a wide range of applications in areas as diverse

as computer graphics, pattern recognition, statistics, robotics, and computer-aided

design, among others. A stochastic convex hull (SCH) refers to the convex hull of

a realization of a stochastic dataset, which is a probabilistic convex polytope. In

this thesis, we study three problems regarding a SCH of a given stochastic dataset

S = (S, π) in Rd, each of which aims to compute the expectation of some basic

statistic of a SCH.

• Expected diameter. The first problem aims to (approximately) compute

the expected diameter of a SCH of S. The diameter of a convex polytope is

the maximum distance between its two vertices.

• Expected width. The second problem aims to (approximately) compute the

expected width of a SCH of S. The width of a convex polytope is the minimum

distance between two parallel hyperplanes that enclose it.

• Expected combinatorial complexity. The third problem aims to compute

the expected combinatorial complexity of a SCH of S. The combinatorial

complexity of a convex polytope is the total number of its faces (of dimensions

0, 1, . . . , d− 1).

Stochastic dominance. A point p ∈ Rd is said to dominate another point q ∈ Rd if

the coordinate of p is greater than or equal to the coordinate of q in every dimension.

The dominance relation is an important notion in multi-criteria decision-making,

and has been well-studied in computational geometry, database, optimization, and

other related areas. In this we study two problems regarding the dominance relation

among the points in a realization of a given colored stochastic dataset S = (S, cl, π)

in Rd.

• Inter-color dominance-free probability. The first problem aims to com-

pute the probability that a realization of S does not contain an inter-color

dominance pair, that is, a pair of points of distinct colors in which one point

dominates the other. We call this the colored stochastic dominance (CSD)

problem.

• Free-basis inter-color dominance-free probability. The second problem

aims to compute the probability that a realization of S does not contain an

5

inter-color dominance pair with respect to some orthogonal basis of Rd. We

call this the free-basis colored stochastic dominance (FBCSD) problem.

1.2 Related work

The study of geometric problems under uncertainty is a relatively new topic, and

has attracted a lot of attention in recent years. Many classical geometric problems

have been investigated on stochastic datasets, e.g., nearest-neighbor search [4, 5, 6],

convex hulls [7, 8, 9, 10, 11, 12], minimum spanning trees [13], closest pair [8, 14, 6],

range search [15, 16], clustering [17], Voronoi diagrams [18, 5], line arrangements

[19], line separability [20, 21, 22], skylines [23], dominance relations [24], etc. In

what follows, we sample some existing results which are strongly relevant to this

thesis.

Stochastic separability. Linear separability related-problems have been well stud-

ied for years in computational geometry, and also arisen during data classification

in machine learning and data mining. Linear separability on stochastic datasets has

been studied in [20, 21, 22]; this thesis presents the results in [22]. The work [20]

considered some separability problems in R2 where the locations of the points are

uncertain: it is assumed that each point is drawn uniformly from an axis-parallel

rectangle. Specifically, the work [20] studied how to find certain separators, pos-

sible separators, most-likely separators, and maximal separators, for such a set of

uncertain points. In [21], Fink et al. studied the separable-probability problem in

Rd under existential uncertainty, which is also investigated in this thesis (and thus

in [22]). An O(nNd−1)-time algorithm was given in [21] to compute the separable-

probability of a bichromatic stochastic dataset in Rd of size (n,N). Our algorithm

presented in this thesis and in [22] achieves the same bound, and the two results

were in fact obtained simultaneously and independently. In terms of techniques,

however, our algorithm is quite different from the algorithm in [21]. The latter

algorithm computes the separable-probability by adding a dummy anchor point

and using an inclusion-exclusion strategy. On the other hand, our algorithm solves

the problem more directly: it does not introduce any additional points and the

separable-probability is computed using a simple addition principle. The paper [21]

6

also gave some hardness results for the separable-probability problem, and a reduc-

tion from the SCH membership probability problem to the separable-probability

problem.

Stochastic convex hull. The convex hull is one of the most fundamental structures

in computational geometry, and has been well-studied over years (see, for example,

[3] for a survey). Convex hulls under uncertainty have been studied in [7, 8, 9,

10, 11, 12]; this thesis presents the results in [12] (and some additional results).

The work [7] studied how to compute the probability that a given point is inside

a SCH, called SCH membership probability. The paper [11] considered the problem

of finding the most likely convex hull of a stochastic dataset. In [10], Löffler and

van Kreveld investigated the largest and smallest convex hull of a set of uncertain

points in R2. More relevantly, the problem of computing the expected diameter of a

SCH was studied in [8] and [9]. Huang and Li [8] provided a fully polynomial-time

randomized approximation scheme (FPRAS) for computing the expected farthest-

pair distance of a stochastic dataset in a metric space, which directly implies an

FPRAS for computing the expected diameter of a SCH, since in Euclidean space

the farthest-pair distance of a set of points is just the diameter of their convex hull.

Li et al. [9] gave a deterministic (2/
√

3)-approximation algorithm for computing the

expected diameter of a SCH, which is based on an (exact) algorithm for computing

the expected diameter of the stochastic smallest enclosing ball. Although the work

[9] only considered the case in R2, the algorithm can be naturally extended to

compute a (
√

2d/
√
d+ 1)-approximation of the expected diameter of a SCH in Rd.

Nevertheless, the runtime of this algorithm grows exponentially as d increases, since

computing the expected diameter of the stochastic smallest enclosing ball requires

nΩ(d) time [25]. The width and combinatorial complexity of a SCH had not yet been

investigated previously, to the best of our knowledge.

Stochastic dominance. Classical studies regarding the dominance relation can

be found in many works such as [26, 27, 28]. Recently, there have been efforts to

consider the dominance relation on stochastic datasets [29, 23, 30, 31]. The main

focus of these efforts is the behavior of the skyline points (i.e., the points that are

not dominated by any other points) of a stochastic dataset. The problems and

results presented in this thesis are based on the work reported in the manuscript

7

[24]. To the best of our knowledge, these problems, which consider the probability

that a realization of a stochastic probability is dominance-free, have not been studied

before.

1.3 Our contributions

In this thesis, we present new algorithms for the three sets of problems defined in

Section 1.1, as well as some hardness results. In most of the problems studied, we

assume the dimension d is a fixed constant.

Stochastic separability. We study the separable-probability (SP) problem and

the expected separation-margin (ESM) problem, which are defined in Section 1.1.

We obtain the following results.

• We give an O(nNd−1)-time (resp., O(min{nN logN,N2})-time) algorithm for

computing the SP of a given bichromatic stochastic dataset in Rd of size (n,N)

for d ≥ 3 (resp., d = 2). An application of this algorithm to the SCH mem-

bership probability problem is provided. On the other hand, we show that the

time complexity of any so-called witness-based algorithm for the SP problem

in Rd is Ω(nNd−1) for d ≥ 3.

• We propose an O(nNd)-time algorithm for computing the ESM of a given

bichromatic stochastic dataset in Rd of size (n,N) for d ≥ 2. We also pro-

vide a hardness result showing that further improving our algorithm might be

difficult.

• We show that our algorithms above can be extended to solve the separability

problems for bichromatic stochastic datasets consisting of general geometric

objects (specifically, polytopes of constant complexity and balls), resulting in

an O(nNd)-time SP algorithm and an O(nNd+1)-time ESM algorithm.

Stochastic convex hull. We study how to compute the expected diameter, width,

and combinatorial complexity of a SCH, which are defined in Section 1.1. We obtain

the following results.

• We give a 1.633-approximation algorithm for computing the expected diameter

of a SCH of a given stochastic dataset in Rd of size n. The time complexity

8

of the algorithm is (n, d)-polynomial (i.e., polynomial in both n and d); here

we do not assume d is a fixed constant. We also provide a polynomial-time

approximation scheme (PTAS) for computing the expected diameter when d

is a constant. Finally, we prove that, when d is not a constant, computing the

expected diameter exactly is #P-hard. Roughly speaking, the complexity class

#P consists of the problems that can be formulated as counting the number

of accepting paths of a polynomial-time non-deterministic Turing machine. A

problem is #P-hard if every other problem in #P can be reduced to it in

polynomial time.

• We propose an O(nd+1 log n)-time constant-approximation algorithm for com-

puting the expected width of a SCH of a given stochastic dataset in Rd of size

n, when d is a constant. We also provide a fully polynomial-time randomized

approximation scheme (FPRAS) and a PTAS for the expected width when d

is a constant.

• We give an O(nd)-time exact algorithm for computing the expected combina-

torial complexity of a SCH of a given stochastic dataset Rd of size n, when d

is a constant.

Stochastic dominance. We study the colored stochastic dominance (CSD) prob-

lem and the free-basis colored stochastic dominance (FBCSD) problem in Rd, as

defined in Section 1.1. We obtain the following results.

• We give an O(n2 log2 n)-time exact algorithm to solve the CSD problem for

d = 2. On the other hand, we show that even the CSD problem with a re-

stricted color pattern is #P-hard for d ≥ 3. Furthermore, even if the existence

probabilities of the points are restricted to be 1
2 , the problem remains #P-hard

for d ≥ 7. We also give a FPRAS for the problem in any dimension.

• We show that the CSD problem is polynomial-time reducible to the FBCSD

problem in the same dimension, which implies the #P-hardness of the latter

for d ≥ 3. For d = 2, we give an O(n4 log2 n)-time exact algorithm for solving

the FBCSD problem.

9

1.4 Organization

The rest of the thesis is organized as follows. Chapter 2 presents our results for the

stochastic separability problems. Chapter 3 presents our results for the stochastic

convex hull problems. Chapter 4 presents our results for the stochastic dominance

problems. Finally, in Chapter 5, we conclude the thesis and suggest some potential

directions for future study.

Chapter 2

Stochastic separability problems

Let S = (SR, SB, π) be a given bichromatic stochastic dataset in Rd, and (n,N) be

the size of S. Set S = SR∪SB. In this chapter, we study the problems of computing

the separable-probability and the expected separation-margin of S; see Section 1.1

for the statement of these problems.

2.1 Preliminaries

Let T = (TR, TB) be a bichromatic dataset in Rd. We say T is strongly separable

if there exists a hyperplane h such that all the points in TR are in one connected

component of Rd\h while all the points in TB are in the other connected component

of Rd\h; we call h a strong separator of T . Also, We say T is weakly separable if

there exists a hyperplane h such that, except the points lying on h, all the points

in TR are in one connected component of Rd\h while all the points in TB are in the

other connected component of Rd\h; we call h a weak separator of T . Note that

when the points in TR ∪ TB are in general position, T is strongly separable iff T
is weakly separable. The following classical lemma gives a criterion for the strong

separability of a bichromatic dataset.

Lemma 1. A bichromatic dataset T = (TR, TB) is strongly separable iff CH(TR) ∩
CH(TB) = ∅, where CH(·) denotes the convex hull.

Proof. We first prove the “only if” part. Suppose we have a strong separator h

for T . Let H be the half space bounded by h which contains TR and H ′ be the

10

11

other half space bounded by h which contains TB. Since both H\h and H ′\h are

convex, we have CH(TR) ⊆ H\h and CH(TB) ⊆ H ′\h. It immediately follows that

CH(TR) ∩ CH(TB) = ∅. To prove the “if” part, assume CH(TR) ∩ CH(TB) = ∅. Let

(r, b) be the closest pair of points where r ∈ CH(TR) and b ∈ CH(TB). We denote

the midpoint of the segment [r, b] by s and define h as the hyperplane going through

s and perpendicular to [r, b]. We claim that h is a strong separator for T . Assume h

does not strongly separate T . That means there are two points in TR (or TB) that

are not on the same (open) side of h. Without loss of generality, we just assume

such two points are in TR. Thus, we can find a point r∗ ∈ CH(TR) that is on h.

Consider the triangle 4brr∗. Since r∗ is on h, we have ∠brr∗ < π/2. Therefore,

there exists a point t on the segment [r, r∗] such that dist(t, b) < dist(r, b). This

contradicts the fact that (r, b) is the closest pair, because t ∈ CH(TR). Thus, h is a

strong separator for T .

If h is a separator (either strong or weak) of T , the margin Mh(T) of h is defined

as Mh(T) = mina∈T dist(a, h), where T = TR ∪TB. The separation-margin Mar(T)

of T is defined as Mar(T) = suphMh(T) where h is taken over all separators of T
(if T is trivial or is not separable, we set Mar(T) = 0). We say a separator h of T
is a maximum-margin separator if its margin is equal to Mar(T).

If U is a (d − 1)-dim linear subspace (i.e., a hyperplane) of Rd and X ⊆ Rd

is a set of points, we write XU = {p(x) : x ∈ X}, where p : Rd → U is the

orthogonal projection function; in other words, XU is the set of points in U obtained

by orthogonally projecting the points in X to U . Now we introduce a notion called

derived separator.

Definition 2. Let T = (TR, TB) be a bichromatic dataset in Rd, and U be a (d−1)-

dim linear subspace of Rd. Suppose h is a strong (resp., weak) separator of (TUR , T
U
B)

in the space U . It is easy to see that the pre-image h′ of h under the orthogonal

projection function p : Rd → U is a strong (resp., weak) separator of T in Rd. We

call h′ the derived separator of h in Rd.

12

2.2 Separable-probability

We study the problem of computing the separable-probability (SP) of S (denoted by

SP(S)), i.e., the probability that a realization of S is (strongly) separable. Trivially,

SP(S) can be computed by simply enumerating all the 2n+N possible realizations of

S and summing up the probabilities of the separable ones, which takes exponential

time. In order to solve the problem more efficiently than by brute-force, one has

to categorize all the separable realizations of S into a reasonable number of groups

such that the sum of the probabilities of the realizations in each group can be easily

computed. A natural approach is to charge each separable realization to a unique

separator, and use that as the key to do the grouping. The uniqueness requirement

here is to avoid over-counting. In addition, all these separators should be easy to

enumerate and the sum of the probabilities of those separable realizations charged

to each separator should be efficiently computable. In R1 and R2, this is easy to

achieve. For example, in R1, given a separable bichromatic dataset, all the possible

separators form a segment, and we can choose the leftmost endpoint as the unique

separator; in R2, we can choose the most counterclockwise separator, which goes

through exactly one red and one blue point, as the unique separator. It is easy

to see that, with the separators chosen above, SP(S) can be easily computed by

considering the sum of the probabilities of the realizations charged to each such

separator. However, to define such a separator in higher dimensions turns out to be

challenging. To solve this problem, we define an important notion called extreme

separator.

2.2.1 Extreme separator

For convenience, we assume that the points in S have the strong general position

property (SGPP), which is defined as follows. Let I = {i1, . . . , i|I|} be any subset

of the index set {1, . . . , d} where i1 < · · · < i|I|. We define a projection function

φI : Rd → R|I| as

(x1, . . . , xd) 7→ (xi1 , . . . , xi|I|).

Also, for any X ⊆ Rd, we define ΦI(X) = {φI(x) : x ∈ X}. Let A be a set of

points in Rd. When d ≤ 2, we say A has SGPP if it is in general (linear) position,

13

i.e., affinely independent. When d ≥ 3, we say A has SGPP if (1) A is in general

(linear) position and (2) ΦJ(A) has SGPP for J = {3, . . . , d}.
Recall that in R2 we define the extreme separator of a separable bichromatic

dataset as the (weak) separator with the most counterclock-wise counterclockwise

position. In the general case, we essentially follow this basic idea: we try to define

the extreme separator as a separator with an “extreme” location. However, to find

such a separator requires nontrivial effort.

u∗

⇒ ⇒
x1

x2

P0
U∗

x1

x2x2

x1

Figure 2.1: Illustrating U∗ in R2. Note that P1 is not shown to avoid confusion.

Suppose we are given a separable bichromatic dataset T = (TR, TB) in Rd for

d ≥ 2 such that T = TR ∪ TB has SGPP. Let V be the collection of the (d− 1)-dim

linear subspaces of Rd whose equations are of the form ax1 + bx2 = 0, where a

and b are constants not equal to 0 simultaneously. In other words, V contains all

the (d − 1)-dim linear subspaces that are perpendicular to the x1x2-plane and go

through the origin. Then there is a natural one-to-one correspondence between V
and P1 (i.e., the 1-dim projective space) given by

σ : [ax1 + bx2 = 0]←→ [a : b].

For convenience, we use σ to denote the maps in both directions. Define a map

ρT : V → {0, 1} as

ρT (V) =

{
1 if (T VR , T

V
B) is strongly separable,

0 otherwise.

The map ρT induces another map ρ∗T : P1 → {0, 1} via the composition ρ∗T =

ρT ◦ σ. Let P0 and P1 be the pre-images of {0} and {1} under ρ∗T , respectively (see

Figure 2.1). By applying Lemma 1, it is easy to prove the following.

14

Lemma 3. P0 is a connected closed subspace of P1. Also, P0 = ∅ iff (ΦJ(TR),ΦJ(TB))

is strongly separable in Rd−2 for J = {3, . . . , d}.

Proof. We define a subset of CH(TR)× CH(TB) as

D = {(r, b) ∈ CH(TR)× CH(TB) : φJ(r) = φJ = (b)},

where J = {3, . . . , d}. Also, define a continuous function f : D → P1 as

f : (r, b) 7−→ [(r(1) − b(1)) : (r(2) − b(2))],

where r(i) and b(i) denote the i-th coordinates of r and b, respectively. We shall

first prove that P0 is equal to the image Imf of f . Let u = [a : b] be a point in

P1 and U = σ(u). According to Lemma 1, u ∈ P0 iff CH(TUR) ∩ CH(TUB) 6= ∅.
It is clear that CH(TUR) ∩ CH(TUB) 6= ∅ iff u is in the image of f , which implies

P0 = Imf . Then it suffices to prove the lemma regarding Imf instead of P0. Because

of the connectedness and compactness of D, Imf is also connected and compact.

Furthermore, since P1 is Hausdorff (i.e., any two distinct points in P1 have disjoint

open neighborhoods), Imf is closed in P1. Thus, the first statement of the lemma

is proved. To prove the second statement, we first assume Imf = ∅, which implies

D = ∅. It then immediately follows that (ΦJ(TR),ΦJ(TB)) is strongly separable

in Rd−2 for J = {3, . . . , d}. On the other hand, if (ΦJ(TR),ΦJ(TB)) is strongly

separable, CH(TUR) ∩ CH(TUB) = ∅. In this situation, D has to be empty and thus

Imf = ∅.

If P0 = ∅, we say the extreme separator of T is not defined. Assume P0 6= ∅.
Since P0 is a connected closed subspace of P1, it has a unique clockwise boundary

point u∗ (i.e., the last point of P0 in the clockwise direction). Let U∗ = σ(u∗) be

the linear subspace in V corresponding to u∗ (see Figure 2.1 again). The following

lemma reveals the separability property of T U∗ = (TU
∗

R , TU
∗

B).

Lemma 4. There exists a unique weak separator for T U∗ in U∗. This separator

goes through exactly d points in T U∗, of which at least one is in TU
∗

R and one is in

TU
∗

B .

Proof. Suppose that α~v = minr∈TR{~v ·r}, α′~v = maxr∈TR{~v ·r}, β~v = minb∈TB{~v ·b},
β′~v = maxb∈TB{~v · b}. Define a function f : P1 → R as

f(u) = sup
~v∈Ū

max{(α~v − β′~v), (β~v − α
′
~v)},

15

where Ū = Sd−1 ∩ σ(u) (Sd−1 denotes the unit sphere in Rd). It is easy to see

that f is continuous. Furthermore, according to the definition of P0, we know that

u ∈ P0 iff f(u) ≤ 0. Since u∗ is a boundary point of P0, we have f(u∗) = 0. Thus,

T U∗ is weakly (but not strongly) separable. To prove there exists a unique weak

separator satisfying the desired properties, we introduce a definition called degree.

Let X be a polytope and x be a point on the boundary of X. We define the degree

of x in X, denoted by degXx, to be the minimum of the dimensions of all the

simplices that are spanned by some vertices of X and contain x. Since T U∗ is not

strongly separable, by Lemma 1, we can find a point x∗ ∈ CH(TU
∗

R) ∩ CH(TU
∗

B).

Let C1 = CH(TU
∗

R) and C2 = CH(TU
∗

B). We claim that degC1
x∗ + degC2

x∗ ≥ d− 2.

According to the definition of degree, we can find degC1
x∗ + 1 (resp., degC2

x∗ + 1)

points in TU
∗

R (resp., TU
∗

B) such that the simplex spanned by these points, say s̄R

(resp., s̄B), contains x∗ in its interior. Let g : Rd → U∗ and g′ : U∗ → Rd−2 be the

orthogonal projection functions. Clearly, we have φJ = g′ ◦ g for J = {3, . . . , d}.
Then the convex hull of the g′-images of the vertices of s̄R (resp., s̄B) contains the

point g′(x∗). The g′-images of the points in TU
∗

are just the points in ΦJ(T). If

degC1
x∗ + degC2

x∗ < d − 2, we can always find two simplices with the vertices in

ΦJ(T) such that they intersect at β(x∗) and the sum of their dimensions is less

than d − 2. This contradicts the fact that ΦJ(T) is in general position (note that

T has SGPP by our assumption). Thus, degC1
x∗ + degC2

x∗ ≥ d − 2. Now let h

be a weak separator of T U∗ . Since x∗ ∈ C1 ∩ C2, x∗ must be on h. Note that x∗

is in the interiors of s̄R and s̄B. This implies that h must go through all of the

degC1
x∗+ degC2

x∗+ 2 vertices of s̄R and s̄B. Since degC1
x∗+ degC2

x∗+ 2 ≥ d, and

T is in general position, the weak separator h is unique and goes through exactly d

points in TU
∗

(of which at least one is in TU
∗

R and one is in TU
∗

B).

Let h∗ be the unique weak separator of T U∗ described in Lemma 4. We define

the extreme separator of T as the derived separator of h∗ in Rd (see Figure 2.2).

At the same time, we call U∗ the auxiliary subspace defining the extreme separator.

Clearly, the extreme separator and the auxiliary subspace are perpendicular to each

other.

To once again understand the intuition for the extreme separator, let us consider

the case d = 3. Imagine there is a plane rotating clockwise around the z-axis.

16

x1

x2

U∗

h∗ x1

x2

U∗

h∗

⇒
the extreme
separator

h: the unique
weak separator
in U∗

Figure 2.2: Illustrating the extreme separator in R2.

We keep projecting the points in T (orthogonally) to that plane and track the

separability of the projection images. If the images are always separable, then the

extreme separator is not defined. Otherwise, there is a closed period of time in

which the images are inseparable, which is subsequently followed by an open period

in which the images are separable. At the junction of the two periods (from the

inseparable one to the separable one), the images are weakly separable by a unique

weak separator. Then the rotating plane at this point is just the auxiliary subspace,

and the extreme separator is obtained by orthogonally “extending” the unique weak

separator to R3.

2.2.2 Computing the separable-probability

Set J = {3, . . . , d}. Consider a realization T = (TR, TB) of S. If T is separable,

then there are two cases: (1) the extreme separator of T is not defined and (2) the

extreme separator of T is some hyperplane in Rd. The SP of S is clearly equal to

the sum of the corresponding probabilities of the two cases. By applying Lemma 3,

the probability of the first case is equal to the SP of ΦJ(S), i.e., the bichromatic

stochastic dataset obtained by projecting S via ΦJ (the existence probabilities pre-

serve after projection). On the other hand, if the extreme separator is defined, it

must go through exactly d points (of which at least one is in SR and one is SB)

according to Lemma 4. Thus, the SP of S can be computed as

SP(S) = SP(ΦJ(S)) +
∑
h∈HS

τS(h),

where HS is the set of the hyperplanes that go through exactly d points in S (of

which at least one is in SR and one is SB) and τS(h) is the probability that h is the

17

extreme separator of a realization of S.

To compute SP(ΦJ(S)) is equivalent to solving the SP problem in Rd−2. So

it suffices to consider how to compute τS(h) for all h ∈ HS . Let h ∈ HS be a

hyperplane and T = (TR, TB) be a realization of S. Clearly, there is a unique

element U∗ ∈ V perpendicular to h (note that all hyperplanes in HS are not parallel

to the x1x2-plane due to the SGPP of S). If h is the extreme separator of T , then

U∗ must be the corresponding auxiliary subspace. Let E = ER ∪ EB be the set of

the d points on h (where ER ⊆ SR and EB ⊆ SB). We investigate the conditions

for h to be the extreme separator of T . First, we must have E ⊆ TR ∪ TB. Second,

because T should be weakly (but not strongly) separable after being projected to

U∗, there must exist r̂ ∈ CH(ER) and b̂ ∈ CH(EB) whose projection images on U∗

coincide, according to Lemma 1 (actually, such r̂ and b̂ are unique if they exist, due

to the SGPP of S). Finally, since the extreme separator should weakly separate the

existent points, all the points in TR must lie on one side of h while all the points in

TB must lie on the other side, except the points in E. Also, the sides for TR and TB

are specific, as σ(U∗) must be the clockwise boundary of P0. To distinguish the two

sides, we define, based on the points r̂ and b̂, an indicator o = (o(1), . . . , o(d)), where

o(1) = r̂(1) + (b̂(2) − r̂(2)),

o(2) = r̂(2) + (r̂(1) − b̂(1)),

o(i) = r̂(i) = b̂(i) for all j ∈ J.

(See Figure 2.3 for the location of o.) It is easy to see that, when all the points

in TR (resp., TB) appear on the same (resp., opposite) side of h with respect to o,

σ(U∗) is the clockwise boundary of P0. Therefore, we can summarize that h is the

extreme separator of a realization R iff

(i) R contains all the points in E;

(ii) there are r̂ ∈ CH(ER) and b̂ ∈ CH(EB) such that their projection images on U∗

coincide;

(iii) R contains no point in SR (resp., SB) that is on the opposite (resp., same) side

of h with respect to o.

Among the three conditions, the second one has nothing to do with the real-

ization R and can be verified in constant time. If h violates this condition, then

18

x2

x1

r̂
b̂

o

Figure 2.3: Illustrating the location of o. The space in the figure is the 2-dim
subspace of Rd that is parallel to the x1x2-plane and contains r̂, b̂.

τS(h) = 0. Otherwise, τS(h) is just equal to the product of the existence proba-

bilities of the points in E and the non-existence probabilities of the points that R

should not contain due to condition (iii). The simplest way to compute it is to scan

every point in S once, which takes linear time. This results in an O(nNd) overall

time for computing SP(S), since |HS | = O(nNd−1).

2.2.3 Improving the SP algorithm

To improve the running time of the above algorithm, we can apply the idea of

radial-order sort in [7]. Specifically, when enumerating the hyperplanes spanned

by d points, we first determine d − 1 points and sort, in O(N logN) time, all the

remaining points around the (d−2)-dim subspace spanned by the those d−1 points

(similar to polar-angle sorting around a point in R2). Then we consider the last

point in that sorted order and maintain a sliding window on the sorted list to record

the points on one side of the current hyperplane. In this way, each τS(h) can be

computed in amortized constant time by modifying the previous result computed.

The time complexity is then reduced to O(nNd−1 logN).

Inspired by [21], we can further improve the algorithm by taking advantage of

duality [1] and topological sweep [32] as follows. We first enumerate d− 2 points (of

which at least one is red and at least one is blue), and these points span a (d−3)-dim

subspace D, corresponding to a 2-dim dual subspace D∗. By duality, each remaining

point p maps to a (d − 1)-dim hyperplane p∗ in the dual space, whose intersection

with D∗ is a line l. (Since there is a clear one-to-one correspondence between p∗ and

l, with a slight abuse of notation, we use p∗ to represent l below.) It then follows

19

that there are n+N − d+ 2 = O(N) lines in D∗, forming a line arrangement, and

the dual of each intersection point f∗ formed by two lines p∗1 and p∗2 is the span f of

some (d− 1)-dim facet in the primal space. We define the statistic of f∗ as a tuple

of the form (R−,R+,B−,B+, T), where R− and R+ (resp., B− and B+) denote the

product of the non-existence probabilities of the remaining red (resp., blue) points

on either side of f , and T is the set of all the points on f . Given the statistic for f∗,

the probability for f∗ can be computed in constant time. Thus, it suffices to show

how to compute the statistics for all f∗ efficiently.

D∗

p∗
1

p∗
2

p∗
3

p∗
4

f∗
2 f∗

3

f∗
4

(a) An example of the arrange-
ment in D∗

f∗
l

D∗

f∗r1
f∗r2

(b) A elementary step in
topological sweep

Figure 2.4: Illustrating how to use duality and topological sweep to eliminate the
log factor in runtime.

Assume the lines in D are p∗1, . . . , p
∗
m, and the intersection points on p∗1 are

f∗2 , . . . , f
∗
m. Without loss of generality, assume f∗2 , . . . , f

∗
m are sorted from left to right

in D∗. We first compute the statistic for f∗2 by brute-force, which takes O(N) time.

Then, we move through f∗3 , . . . , f
∗
m in order (see Figure 2.4(a) for an illustration).

By duality, the movement from f∗i−1 to f∗i corresponds to the hyperplane rotation

from fi−1 to fi with respect to the dual of the line p∗1, which is a (d−2)-dim subspace

in the primal space. More importantly, the rotation does not hit any other points

except the two points corresponding to p∗i−1 and p∗i . In this way, the statistics of all

the intersections along p∗1 can be computed in O(N) time without considering the

sorting.

In fact, we cannot afford to sort the intersections on each line since that will

take O(N2 logN) time. Instead, we compute the entire line arrangement using

O(N2) time and space, then we can visit the intersections on each line in the correct

20

order (though not necessarily consecutively). To further reduce the space from

O(N2) to O(N), one can perform a topological sweep on the arrangement [32]. The

topological sweep maintains a cut of size O(N), and sweeps it from left to right over

the entire line arrangement usingO(N2) so-called elementary steps, each takingO(1)

amortized time (see Figure 2.4(b) for details). Based on this, we find the leftmost

intersection point f∗l in D∗, and compute its statistic by brute-force. This step takes

O(N2) time. Afterwards, when an elementary step is triggered, the statistic for the

current intersection point, p∗, can be reported, and we can compute, in O(1) time,

the statistics for two more intersections points (e.g., f∗r1 and f∗r2 in Figure 2.4(b)) for

future reporting. Thus, as we advance from the leftmost cut to the rightmost one,

the statistics of all the intersection points are reported on the fly. Therefore, the

runtime of our algorithm is improved to O(nNd−3 ·N2) = O(nNd−1), using linear

space.

Remark. Note that, in R2 only, the above method actually runs in O(N2) instead

of O(nN). However, the runtime of our previous method based on radial-order sort

still remains O(nN logN).

Theorem 5. The separable-probability of S can be computed in O(nNd−1) time for

d ≥ 3 and in O(min{nN logN,N2}) time for d = 2.

2.2.3.1 Application to the SCH membership probability problem

In this section, we give a new reduction from the SCH membership probability

problem to the SP problem. By plugging in our SP algorithm presented before, we

then obtain a new algorithm for computing the SCH membership probability.

The SCH membership probability problem was introduced for the first time in

[7]. The problem can be described as follows. Given a stochastic dataset S in Rd

and a query point q ∈ Rd, compute the probability that q is inside a SCH of S,

which we call the SCH membership probability (SCHMP) of q with respect to S.

It has been shown in [21] that one can reduce the SCHMP problem in Rd to the

SP problem in Rd−1. Here, we provide a more direct and simpler reduction. Let

S = (S, π) be a stochastic dataset and q be a query point. Set m = |S|. Clearly,

q is outside the SCH of S iff it can be separated from the realization of S by a

hyperplane. Thus, we construct a bichromatic stochastic dataset S ′ = (SR, SB, π
′),

21

where SR = {q}, SB = S, and

π′(a) =

{
1 if a = q,

π(a) otherwise.

Then the SCHMP of q with respect to S is just equal to 1 − SP(S ′). It can be

computed in O(md−1) time for d ≥ 3 and O(m logm) time for d = 2 by applying

our SP algorithm (since |SR| = 1 and |SB| = m), matching the time bound in [21].

Theorem 6. One can compute the SCH membership probability of a point with

respect to a stochastic dataset of size m in Rd in O(md−1) time.

Interestingly, this method for computing SCHMP is a generalization of the

witness-edge method in [7] to the case d > 2, where the latter was the first known

approach that solves this problem in R2 and was thought to be difficult to be gener-

alized to higher dimensions [7]. This can be seen as follows. When plugging in our

SP algorithm, we enumerate all the possible extreme separators of {q} ∪ R, where

R is a realization of S. The extreme separator goes through d points, in which one

is q. These d points corresponds to a facet of the convex polytope CH({q} ∪ R)

adjacent to q. This facet is uniquely determined by CH({q} ∪ R). We call it the

witness-facet of q in CH({q} ∪ R). Then enumerating the possible extreme sepa-

rators is equivalent to enumerating the possible witness-facet of q in CH({q} ∪ R).

When d = 2, the notion of witness-facet coincides with the notion of witness-edge

defined in [7]. Thus, our method is identical to the witness-edge method in R2, and

both methods have the same O(m logm) runtime. For d ≥ 3, a different method

was given in [7] for computing SCHMP, whose time complexity is O(md). In this

case, our O(md−1)-time algorithm improves the bound by a factor of m.

2.2.4 Witness-based lower bound for separable-probability

When solving the SP problem, the key idea of our algorithm is to group the prob-

abilities of those separable realizations which share the same extreme separator so

that the SP can be efficiently computed by considering the extreme separators in-

stead of single realizations. By extending and abstracting this idea, we are able to

get a general framework for computing SP, which we call the witness-based frame-

work. Let S be the given stochastic dataset and IS be the set of all the separable

22

realizations of S. The witness-based framework for computing the SP of S is the

following. Here P(·) denotes the power set.

1. Define a set W = {h1, . . . , hm} of hyperplanes (called witness separators) with

specified weights w1, . . . , wm and an implicitly specified witness rule f : W →
P(IS) such that

• the elements in f(hi) are (either strongly or weakly) separated by hi;

• the witness probability (see Step 2 below) of each hi is efficiently com-

putable;

• any element I ∈ IS satisfies
∑

∀i(I∈f(hi))

wi = 1.

We say the witness separator hi witnesses the elements in f(hi).

2. Compute efficiently the witness probability of each hi ∈W , which is defined

as

witP(hi) =
∑

I∈f(hi)

Pr(I),

where Pr(I) is the probability that I is a realization of S.

3. Compute SP(S) by linearly combining the witness probabilities with the spec-

ified weights, i.e.,

Sep(S) =
m∑
i=1

(wi · witP(hi)) =
∑
I∈IS

Pr(I).

Note that the witness-based framework is very general. The ways of defining wit-

ness separators and specifying witness rules may vary among different witness-based

algorithms. Our algorithm and the one introduced in [21], which are the only two

known algorithms for computing SP at this time, both belong to the witness-based

framework. Similar frameworks are also used to solve other probability-computing

problems. For example, the two algorithms in [7] for computing convex hull mem-

bership probability are both implemented by defining witness edges/facets and sum-

ming up the witness probabilities. To the best of our knowledge, up to now, most

probability-computing problems for geometric uncertain datasets are solved by ap-

plying ideas close to this framework.

23

Now we show that any SP computing algorithm following the witness-based

framework takes at least Ω(nNd−1) time in the worst case, and thus our algorithm

is optimal among this category of algorithms for any d ≥ 3. Clearly, the runtime

of a witness-based algorithm is at least |W | = m, i.e., the number of the witness

separators. Then a question naturally arises: how many witness separators do we

need for computing SP? From the above framework, one restriction for W is that

each separable instance of S must be witnessed by at least one witness separator

hi ∈ W , i.e., IS =
⋃m
i=1 f(hi). Otherwise, the probabilities of the unwitnessed

instances in IS will not be counted when computing SP(S). It then follows that

each separable realization of S must be separated by some hi ∈ W . We prove

that, in the worst case, we always need Ω(nNd−1) hyperplanes to separate all the

separable realizations of S, which implies an Ω(nNd−1) lower bound on the runtime

of any witness-based SP computing algorithm. We say a hyperplane set H covers

a bichromatic dataset T = (TR, TB) iff for any non-trivial separable subset V ⊆ T
(i.e., V contains at least one red point and one blue point), there exists h ∈ H that

separates V. We define χ(T) as the cardinality of the smallest set of hyperplanes that

cover T . The following theorem completes the discussion, and is also of independent

interest.

Theorem 7. Let Ddn,N be the collection of all the bichromatic datasets in Rd of size

(n,N). Define

Γd(n,N) = sup
T ∈Dd

n,N

χ(T).

Then for all constant d, we have Γd(n,N) = Ω(nNd−1).

Proof. To prove this theorem, it is more convenient to work on “directed” hyper-

planes. A directed hyperplane in Rd is a hyperplane with one side (half-space)

specified to be red and the other side specified to be blue. It can be represented as a

(d+1)-tuple (a0, a1, . . . , ad) of real numbers (not all equal to 0 simultaneously) such

that the inequality a0+
∑d

i=1 aixi < 0 indicates the red side. We say the directed hy-

perplane (a0, a1, . . . , ad) separates a bichromatic dateset T = (TR, TB) iff there is no

point located on the side of different color, i.e., for each point x = (x1, . . . , xd) ∈ T

24

where T = TR ∪ TB, we have

a0 +

d∑
i=1

aixi

{
≤ 0 if x ∈ TR,
≥ 0 if x ∈ TB.

Since a (undirected) hyperplane can be replaced with two directed hyperplanes, the

number of the directed hyperplanes required for covering a dataset is at most twice

the number of the undirected ones. Thus, it suffices to prove the result with respect

to directed hyperplanes. In the rest of the proof, the notation χ(T) is used to denote

the size of the smallest set of directed hyperplanes (instead of hyperplanes) which

cover T .

We show that, for all constant d, there exists some bichromatic dataset T ∈ Ddn,N
with general position such that χ(T) = Ω(nNd−1). Specifically, we use induction

on the dimension d. The base case d = 1 is trivial. Assume the argument holds for

d = k − 1, and we consider the case of d = k. We want to construct a bichromatic

dataset T in Rk of size (n,N) such that χ(T) = Ω(nNk−1).

Our first step is to construct a bichromatic dataset T ′ in Rk of size (1, N) such

that χ(T)′ = Ω(Nk−1). By our induction hypothesis, there exists a bichromatic

dataset U = (UR, UB) in Rk−1 (in general position) of size (N,N) such that χ(U) =

Ω(Nk−1). Define two functions fR, fB : Rk−1 → Rk as

fR : (x1, . . . , xk−1) 7→ (−x1, . . . ,−xk−1,−1),

fB : (x1, . . . , xk−1) 7→ (x1, . . . , xk−1, 1).

Let r be the origin of Rk. We then define T ′ = (T ′R, T
′
B) where T ′R = {r} and

T ′B = fR(UR) ∪ fB(UB). We claim that χ(T ′) ≥ χ(U), which implies χ(T ′) =

Ω(Nk−1). For any nontrivial separable subset V = (VR, VB) ⊆ U , define f(V) =

({r}, fR(VR) ∪ fB(VB)) as a bichromatic dataset in Rk. It is easy to see that V
is separable iff f(V) is. Indeed, if a non-horizontal (i.e., not parallel to the plane

xk = 0) directed hyperplane (a0, a1, . . . , ak) in Rk separates f(V), then we have a

corresponding directed hyperplane (a0 + ak, a1, . . . , ak−1) in Rk−1 that separates V.

We call the latter the induced plane of the former. Now let H = {h1, . . . , hχ(T ′)}
be a set of directed hyperplanes in Rk which cover T ′. Assume they are all non-

horizontal (if any of them is horizontal, we can always slightly rotate it without

changing the subsets of T ′ it separates). Then let H ′ = {h′1, . . . , h′χ(T ′)} be a set of

25

directed hyperplanes in Rk−1 in which h′i is the induced plane of hi. Then H ′ covers

U , which implies that χ(U) ≤ χ(T ′).
The next step is to extend T ′ into another set T of size (n,N) in Rk such that

χ(T) = Ω(nNk−1). Recall that r is the only point in T ′R, which is the origin of

Rk. We denote by b1, . . . , b2N the 2N points in T ′B. We first slightly perturb each

bi without changing χ(T ′) to make the points r, b1, . . . , b2N in general position. For

convenience, we now use T ′ to denote the new dataset after the perturbation. Then

we find an ε-ball centered at the origin of Rk with a sufficiently small ε > 0 such

that if the point r perturbs inside that ball, χ(T ′) does not change. The value of

ε can be determined as follows. For each (k − 1)-dim linear subspace spanned by

k points bπ1 , . . . , bπk , we compute the distance from the origin to it. Then we set

ε to be a number less than the minimum of those distances. Inside this ε-ball, we

pick n points r1, . . . , rn such that all the points r1, . . . , rn, b1, . . . , b2N are in general

position. Define TR = {r1, . . . , rn}. Next, we find another small number ε′ > 0 such

that for any hyperplane h in Rk, there are at most k points among r1, . . . , rn whose

distances to h are less than or equal to ε′. We can determine ε′ as follows. For each

(k + 1)-tuple t = (rπ1 , . . . , rπk+1
), we define

δt = inf
h

k+1
max
i=1

dist(h, rπi).

The we set ε′ to be a number less than the minimum of all δt. Clearly, ε′ satisfies

the desired property. Now, for each ri, we find k + 1 points b′i,1, . . . , b
′
i,k+1 inside

the ε′-ball centered at ri such that the simplex spanned by b′i,1, . . . , b
′
i,k+1 contains

ri in its interior. We carefully determine the locations of these points to guarantee

the general-position property. Then we define TB as the set consisting of b1, . . . , b2N

and all b′i,j for i ∈ {1, . . . , n} and j = {1, . . . , k + 1}. Set T = (TR, TB), which

is of size (n, 2N + (k + 1)n). We show that χ(T) = Ω(nNk−1). Let H be any

set of directed hyperplanes which cover T . Also, let Hi ⊆ H be the subset of

the directed hyperplanes whose distances to the point ri are at most ε′. We claim

that |Hi| ≥ χ(T ′) for all i ∈ {1, . . . , n}. Set T ′′ = (T ′′R, T
′′
B) where T ′′R = {ri} and

T ′′B = {b1, . . . , b2N}. Recall that ri is inside the ε-ball centered at the origin of Rk,
which implies χ(T ′′) = χ(T ′). Assume that |Hi| < χ(T ′′). Then Hi does not cover

T ′′. Let V ⊆ T ′′ be a nontrivial separable subset that is not separated by any h ∈ Hi.

Let h∗ be a directed hyperplane which goes through ri and weakly separates V.

26

Consider the points b′i,1, . . . , b
′
i,k+1. Since ri is in the interior of the simplex spanned

by b′i,1, . . . , b
′
i,k+1, we can find at least one point b′i,j such that (VR, VB ∪ {b′i,j}) is

also separated by h∗ (and thus separable). We show that (VR, VB ∪ {b′i,j}) is not

separated by any h ∈ H, which contradicts the fact that H covers T . We consider

two cases: h ∈ Hi and h ∈ H\Hi. Any h ∈ Hi is not a separator of (VR, VB ∪{b′i,j})
because it does not separate V. For any h ∈ H\Hi, we notice that dist(h, ri) > ε′.

Thus, both ri and b′i,j are on the same side of h, which implies that h is not a

separator of (VR, VB ∪ {b′i,j}). As a result, we have |Hi| ≥ χ(T ′′) = χ(T ′). Now

recall that for any hyperplane h in Rk, there are at most k points among r1, . . . , rn

whose distances to h are less than or equal to ε′. This implies that

|H| ≥
n∑
i=1

|Hi|
k
≥ nχ(T ′)

k
.

Therefore, we know that χ(T) is Ω(nNk−1). Note that the size of T is now (n, 2N+

(k + 1)n). To make it exactly (n,N), we only need to choose n0 = n/(3k + 3) and

N0 = N/3, and use the same method to construct a bichromatic dataset T of size

(n0, 2N0 +(k+1)n0) in general position such that χ(T) = Ω(n0N
k−1
0) = Ω(nNk−1).

Then by adding some dummy points, we eventually obtain T ∈ Ddn,N with χ(T) =

Ω(nNk−1).

2.3 Expected separation-margin

We study the problem of computing the expected separation-margin (ESM) of S
(denoted by ESM (S)), i.e., the expectation of the separation-margin of a realization

of S (which was defined formally in Section 2.1). We begin by introducing some

notions. Let T = (TR, TB) be a nontrivial bichromatic dataset.

Lemma 8. There exists a unique maximum-margin separator h of T . Furthermore,

for any closest pair (r, b) of points where r ∈ CH(TR) and b ∈ CH(TB), h is he

bisector of the segment [r, b] connecting r and b.

Proof. Let (r, b) be any closest pair of points where r ∈ CH(TR) and b ∈ CH(TB).

Also, let h be the bisector of the segment [r, b]. Then Mh(T) = dist(r, b)/2. Let

h′ 6= h be another separator of T . We have that

min{dist(r, h′),dist(b, h′)} < dist(r, b)/2.

27

Furthermore, since r ∈ CH(TR) and b ∈ CH(TB), Mh′(T) must be less than or equal

to min{dist(r, h′),dist(b, h′)}. Therefore,

Mh′(T) ≤ min{dist(r, h′),dist(b, h′)} < dist(r, b)/2 = Mh(T).

So h′ is not a maximum-margin separator of T . It follows that h is the unique

maximum-margin separator of T , though the closest pair (r, b) may be not unique.

Let h be the maximum-margin separator of T andM = Mar(T) be its separation-

margin. Define CR = {r ∈ TR : dist(r, h) = M} and CB = {b ∈ TB : dist(b, h) =

M}. We define Supp(T) = (CR, CB) and call this the support set of T . Note that

all the points in CR ∪ CB have the same distance to h. Thus, there exist two par-

allel hyperplanes hr and hb (both of which are parallel to h) where hr goes through

all the points in CR and hb goes through all the points in CB. We call hr and hb

the support planes of T . Including the maximum-margin separator h, they form a

group of three parallel and equidistant hyperplanes (hr, h, hb) (see Figure 2.5). Since

the maximum-margin separator is unique, the support set and support planes are

also unique. We shall show that the maximum-margin separator can be uniquely

determined via the support set.

Lemma 9. Let C = (CR, CB) = Supp(T). Then T and C share the same maximum-

margin separator as well as the same separation-margin. Furthermore, Supp(C) = C.

Proof. Let h be the maximum-margin separator of T and M be the separation-

margin of T . Also, let (r, b) be any closest pair of points where r ∈ CH(TR) and

b ∈ CH(TB). From the proof of Lemma 8, we know that dist(r, h) = dist(b, h) = M .

It immediately follows that r ∈ CH(CR) and b ∈ CH(CB). Since CH(CR) ⊆ CH(TR)

and CH(CB) ⊆ CH(TB), (r, b) is also a closest pair of points for r ∈ CH(CR)

and b ∈ CH(CB). Thus, h is also the maximum-margin separator of C, and the

separation-margin of C is equal to that of T . Furthermore, because all of the points

in C have the same distance to h, we have Supp(C) = C.

28

hr

hb

h
sep. margin

support set

Figure 2.5: An example of support set and support plane, in R2

2.3.1 Computing the expected separation-margin

According to Lemma 9, the separation-margin of a separable bichromatic dataset is

equal to that of its support set. Thus, the ESM of S can be computed as

ESM (S) =
∑
C
ξS(C) ·Mar(C), (2.1)

where ξS(C) is the probability that a realization of S is separable with the support

set C. Since S has the general position property, the size of the support set of a

separable realization of S can be at most 2d (d points in SR and d points in SB at

most). It follows that the total number of the possible support sets to be considered

is bounded by O(ndNd). Indeed, we can further improve this bound.

Lemma 10. The total number of the possible support sets of the realizations of S
is O(nNd). As a result, the number of the (distinct) possible separation-margins is

also bounded by O(nNd).

Proof. The number of possible support sets of size smaller than or equal to d is

clearly bounded by O(nNd). So we only need to bound the number of the ones

of sizes are larger than d. We first arbitrarily label all the points in S from 1 to

n+N . For any subset (CR, CB) ⊆ S with |CR ∪CB| > d, define the representation

of (CR, CB) as the set of the d + 1 points in CR ∪ CB with the smallest labels.

Let {a1, . . . , ad+1} ⊆ S be a subset of d + 1 points, where a1, . . . , ak ∈ SR and

ak+1, . . . , ad+1 ∈ SB. We consider the possible support sets whose representation is

{a1, . . . , ad+1}. If k = 0 or k = d + 1, there is no possible support set represented

by {a1, . . . , ad+1}, because number of the red/blue points in a support set can at

most be d. Now consider the case that 1 ≤ k ≤ d. It is easy to see that there exists

29

a unique pair of parallel hyperplanes (hr, hb) such that hr goes through a1, . . . , ak

and hb goes through ak+1, . . . , ad+1, since S is in general position. If (CR, CB) is the

support set of a separable realization of S represented by {a1, . . . , ad+1}, then hr

and hb must be the corresponding support planes of that realization. That means

all the points in CR and CB must lie on hr and hb, respectively. Note that there are

at most 2d points on hr ∪hb, which implies that the number of the possible support

sets represented by {a1, . . . , ad+1} is constant. Since the number of such subsets is

O(nNd), S can have at most O(nNd) possible support sets. Finally, because the

separation-margin is uniquely determined by the support set, the number of the

possible separation-margins is also bounded by O(nNd).

By applying Equation 2.1, we can enumerate all the O(nNd) possible support

sets to compute the ESM of ESM (S). The O(nNd) possible support sets can be

enumerated as follows. For the ones of sizes less than d + 1, we enumerate them

in the obvious way. For the ones of sizes larger than or equal to d + 1, we first

enumerate a subset {a1, . . . , ad+1} ⊆ S (in which at least one point is in SR and

one point is in SB), which would be the representation of the support sets (see

the proof of Lemma 10). Via this subset, we can uniquely determine two parallel

hyperplanes hr and hb where hr goes through the points in {a1, . . . , ad+1} ∩SR and

hb goes through the points in {a1, . . . , ad+1} ∩ SB. We then find all the points on

hr and hb, the number of which is at most 2d, including {a1, . . . , ad+1}. Once we

have those points, we are able to enumerate all the possible support sets represented

by {a1, . . . , ad+1}. For each such possible support set C = (CR, CB), Mar(C) can

be straightforwardly computed in constant time since the size of C is constant. To

compute ξS(C), we observe that C is the support set of a realization R of S iff

1) all the points in CR (resp., CB) lie on hr (resp., hb);

2) R contains all the points in C = CR ∪ CB;

3) none of the points in SR (resp., SB) on the same side of hr (resp., hb) as h is

contained in R;

4) except the points in C, none of the points in SR (resp., SB) on hr (resp., hb) is

contained in R.

The first condition can be easily verified. If C violates this condition, then ξS(C) = 0.

Otherwise, ξS(C) is just equal to the product of the existence probabilities of the

30

points in C (the second condition) and the non-existence probabilities of those points

that should not be contained a realization (the last two conditions). If we use the

simplest way, i.e., scanning all the points in S, to find the points on hr and hb (for

enumerating the possible support sets represented by a set of d + 1 points) as well

as to compute each ξS(C), then the total time for computing ESM (S) is O(nNd+1).

2.3.2 Improving the ESM algorithm

It is easy to improve the running time of the above algorithm to O(nNd logN) by

slightly modifying the sort method we used for improving our SP algorithm. When

enumerating d+ 1 points in S, we first determine d points (of which at least one is

in SR and one is in SB). Let r1, . . . , rk ∈ SR and b1, . . . , bd−k ∈ SB denote these d

points. We can uniquely determine two parallel (d−2)-dim linear subspaces Xr and

Xb of Rd such that r1, . . . , rk ∈ Xr and b1, . . . , bd−k ∈ Xb. We sort all the remaining

points in SR around Xr and those in SB around Xb. Then we consider the last point

in that sorted order (say the ones in SR first and then those in SB) and meanwhile

maintain two sliding windows (for the points in SR and SB respectively). In this

way, we are able to use amortized constant time to consider each set of d+ 1 points,

i.e., to compute the probabilities of all the possible support sets represented by the

d+ 1 points and add the portions contributed by these possible support sets to the

ESM. Thus, the computation of ESM can be done in O(nNd logN) time.

To further improve the time complexity to O(nNd) requires more work. We

can still apply the duality and topological sweep techniques but the approach is

somewhat different from that in the SP problem. For convenience, we simply call

the points in SR (resp., SB) red (resp., blue) points. We define the red (resp.,

blue) statistics of a hyperplane h as a tuple consisting of the set of the red (resp.,

blue) points on h and the product of the non-existence probabilities of all the red

(resp., blue) points on each side of h. As we see, in the process of computing the

separable-probability, the object enumerated is one hyperplane spanned by d points

and what we want to compute is the red and blue statistics of the hyperplane.

In this situation, the idea of duality and topological sweep can be directly used to

improve the efficiency of each computation. However, when computing the expected

separation-margin, the situation is different. At each step, we have three parallel

31

and equidistant hyperplanes (hr, h, hb) determined by d + 1 points, and what we

want to compute is the red statistics of hr and the blue statistics of hb. Thus, in

order to apply the duality and topological sweep techniques, our idea is to transform

the problem from the latter form to the former one. We consider two different cases:

d ≥ 3 and d = 2.

Suppose d ≥ 3. In this case, when enumerating d+ 1 points, we first determine

two of them, of which one is in SR (say r) and the other is in SB (say b). Let c be

the midpoint of the segment [r, b]. Then for each ri ∈ SR, we construct a new point

r′i = ri+
−→rc, and for each bi ∈ SB, we construct a new point b′i = bi+

−→
bc. We denote

by S′R the set of all r′i and by S′B the set of all b′i. We construct a new bichromatic

stochastic dataset S ′ = (S′R, S
′
B, π

′) where π′(r′i) = π(ri) and π′(b′i) = π(bi), and

set S′ = S′R ∪ S′B. Now consider a set of d + 1 points in S including r and b. Let

(hr, h, hb) be the three hyperplanes determined by these d + 1 points. In order to

complete the computation, what we need to know is the red statistics of hr and the

blue statistics of hb. According to the construction of S ′, one can easily verify the

following facts.

• A point ri ∈ SR (resp., bi ∈ SB) is on hr (resp., hb) iff its corresponding point

r′i ∈ S′R (resp., b′i ∈ S′B) is on h. So each of the d+ 1 points corresponds to a

point in S′ that is on h.

• The points in SR (resp., SB) on each side of hr (resp., hb) correspond to the

points in S′R (resp., S′B) on each side of h.

Based on the above observations, the red statistics of hr and the blue statistics of

hb with respect to S just correspond to the red and blue statistics of h with respect

to S ′. In other words, to consider all the possible support sets represented by these

d + 1 points, it suffices to know the red and blue statistics of h with respect to

S ′. Now the problem we face is similar to that in the SP problem. We want to

compute, for each hyperplane h spanned by the point c and other d − 1 points in

S′, the red and blue statistics of h. By applying the idea of duality and topological

sweep, this can be done in O(Nd−1) time. This is the runtime for a fixed pair (r, b).

To compute the ESM, we need to enumerate all O(nN) such pairs, so the overall

time is O(nNd).

32

For the case of d = 2, however, the above method does not work. Since we

enumerate three points when d = 2, if we first determine two of them (say a and b),

we are not able to create the line arrangement in the dual space and use topological

sweep to complete the computation work for the pair (r, b) in O(N) time. So we need

to deal with the case of d = 2 separately. Without loss of generality, we only consider

the case where one of the three points enumerated is in SR and the other two are

in SB (as the two-red one-blue case is symmetric). Let nr = |SR| and nb = |SB|.
When enumerating three points, we first determine a point r ∈ SR and sort all the

other points in SR around r; let L be the resulting sorted list. Then for all the

points in SB, we construct their dual lines to form a line arrangement. Each vertex

(i.e., intersection point) of the arrangement corresponds to a pair (bi, bj) of points

in SB. We want to apply topological sweep on the arrangement and consider each

set {r, bi, bj} of three points at the time we visit the vertex corresponding to (bi, bj).

Fix {r, bi, bj}, and let (hr, h, hb) be the three hyperplanes determined by {r, bi, bj}.
In order to complete the computation, we need the red statistics of hr and the blue

statistics of hb. We note that the hyperplane hb is actually determined only by bi and

bj (and independent of r). Thus, the blue statistics of hb can be directly computed

in the process of topological sweep. The crucial part is to compute the red statistics

of hr. What we do is to maintain nb sliding windows w1, . . . , wnb
on the sorted list

L, where wi corresponds to the point bi. During the topological sweep, the sliding

window wi dynamically indicates the red points on one side of the hyperplane hr

determined by the set {r, bi, b∗}, where (bi, b
∗) is the most recently visited vertex

on the dual line of bi. At each time a new vertex (bi, bj) is visited, we update wi

and wj , and meanwhile compute the red statistics of the hyperplane hr determined

by the set {r, bi, bj}. It is easy to see that both updating the sliding windows and

computing the statistics can be done in amortized constant time. Therefore, for

each red point r, the computations take O(n2
b) time. The total time for considering

all the red points is then O(nrn
2
b), which is bounded by O(nN2). Symmetrically,

the work for enumerating two red points and one blue point can also be done in

O(nN2) time.

Theorem 11. The expected separation-margin of S can be computed in O(nNd)

time.

33

2.3.3 Hardness of computing expected separation-margin

We show that the bound achieved in Lemma 10 is tight, which suggests that our algo-

rithm for computing ESM may be difficult to be further improved. For a bichromatic

stochastic dataset S, define κ(S) as the total number of the possible separation-

margins of the realizations of S.

Theorem 12. For any constant d, there exists some bichromatic stochastic dataset

S in Rd of size (n,N) such that κ(S) = Θ(nNd).

Proof. First, we construct (d+ 1) points c0, c1, . . . , cd ∈ Rd as

c0 = (0, . . . , 0),

ci = (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
d−i

), for i = 1, . . . , d.

Define B0, B1, . . . , Bd as the ε-balls (ε is a sufficiently small positive constant) cen-

tered at c0, c1, . . . , cd respectively. We randomly generate a bichromatic stochastic

dataset S∗ = (S∗R, S
∗
B, π) with |S∗R| = n and |S∗B| = N (where n ≤ N) as follows.

The function π is set to be a constant function assigning all points an identical

existence probability equal to 0.5. The points in S∗R are drawn from the uniform

distribution on B0. For the points in S∗B, we evenly separate them into d groups

each of which contains N/d points (for convenience, assume N is a multiple of d).

The points in the i-th group are drawn from the uniform distribution on Bi. All the

points are drawn independently.

We show that

Pr

[
κ(S∗) ≥ n

(
N

d

)d]
> 0,

which implies the existence of a bichromatic stochastic dataset S of size (n,N)

satisfying κ(S) = Θ(nNd). We denote by r1, . . . , rn the n random points in S∗R
and by bi,1, . . . , bi,N/d the N/d random points in S∗B that are drawn from Bi for

i ∈ {1, . . . , d}. Consider all the (d + 1)-tuples (j, π1, . . . , πd) where j ∈ {1, . . . , n}
and π1, . . . , πd ∈ {1, . . . , N/d}. Clearly, we have in total n(N/d)d = Θ(nNd) such

tuples. For each such tuple τ = (j, π1, . . . , πd), define Mτ as the separation-margin

of {rj , b1,π1 , . . . , bd,πd}, which is a real-valued random variable.

34

We claim that Pr[Mτ = Mτ ′] = 0 for any two distinct tuples τ and τ ′ (though

Mτ = Mτ ′ is not an impossible event). Let τ = (j, π1, . . . , πd) be a tuple where

j ∈ {1, . . . , n} and π1, . . . , πd ∈ {1, . . . , N/d}. Let h denote the (probabilistic) hy-

perplane going through b1,π1 , . . . , bd,πd . We first observe that Mτ = dist(rj , h)/2.

Indeed, due to the sufficiently small radius ε of the balls B0, . . . , Bd and their spa-

tial locations (recall that rj is drawn from the uniform distribution on B0 and

each bi,πi is drawn from the uniform distribution on Bi), the point on h closest

to rj (say o) is always inside CH({b1,π1 . . . bd,πd}), no matter what the exact lo-

cations of rj , b1,π1 , . . . , bd,πd are. Thus, o is also the point in CH({b1,π1 . . . bd,πd})
closest to rj , and the maximum-margin separator of {rj , b1,π1 . . . bd,πd} is the bisec-

tor of the segment [rj , o] by Lemma 8. It then follows that Mτ = dist(rj , h)/2.

Now let τ ′ = (j′, π′1, . . . , π
′
d) be a tuple different from τ (where j′ ∈ {1, . . . , n}

and π′1, . . . , π
′
d ∈ {1, . . . , N/d}). Let h′ denote the (probabilistic) hyperplane going

through b1,π′1 , . . . , bd,π′d . We have Mτ ′ = dist(rj′ , h
′)/2 as argued above. Therefore,

to show Pr[Mτ = Mτ ′] = 0, it suffices to show Pr[dist(rj , h) = dist(rj′ , h
′)] = 0. We

consider two cases separately: j 6= j′ or j = j′.

Assume j 6= j′. Without loss of generality, we may assume j = 1 and j′ = 2.

The idea is to fix the locations of r2, . . . , rn and all blue points, and then show the

conditional probability for dist(rj , h) = dist(rj′ , h
′) is 0. Formally, let r∼i ∈ B0 for

i ∈ {2, . . . , n} and b∼i,π ∈ Bi for i ∈ {1, . . . , d} and π ∈ {1, . . . , N/d} be arbitrary

points. We show that

Pr

dist(r1, h) = dist(r2, h
′)

∣∣∣∣∣∣
(

n∧
i=2

(ri = r∼i)

)
∧

 d∧
i=1

N/d∧
π=1

(bi,π = b∼i,π)

 = 0.

Since the points r∼i ’s and b∼i,π’s are arbitrarily chosen, the above equation immedi-

ately implies Pr[dist(r1, h) = dist(r2, h
′)] = 0. We use Γ to denote the condition in

the above conditional probability. Let h∼ and h′∼ be the hyperplanes going through

b∼1,π1
, . . . , b∼d,πd and b∼1,π′1

, . . . , b∼d,π′d
, respectively. Set δ = dist(r∼2 , h

′∼). Then under

the condition Γ , dist(r1, h) = dist(r2, h
′) iff dist(r1, h

∼) = δ. Since r1 is uniformly

drawn from a ball, it is clear that dist(r1, h
∼) = δ happens with probability 0.

Therefore, Pr[dist(r1, h) = dist(r2, h
′)|Γ] = 0 and Pr[dist(r1, h) = dist(r2, h

′)] = 0.

The other case j = j′ is handled similarly by using conditional probability.

If j = j′, then πi 6= π′i for some i ∈ {1, . . . , d}, since τ 6= τ ′. Without loss of

35

generality, assume π1 6= π′1. Again, we fix the locations of all random points but

b1,π1 , and consider the conditional probability for dist(rj , h) = dist(rj′ , h
′). As in

the last paragraph, let r∼i ∈ B0 and b∼i,π ∈ Bi be arbitrary points. Define Γ as the

event that all red points ri have the locations r∼i and all blue points bi,π except

b1,π1 have the locations b∼i,π. We show that Pr[dist(rj , h) = dist(rj′ , h
′)|Γ] = 0.

Let h′∼ be the hyperplane going through b∼1,π′1
, . . . , b∼d,π′d

, and δ = dist(r∼j′ , h
′∼).

Then under the condition Γ , dist(rj , h) = dist(rj′ , h
′) iff dist(r∼j , h) = δ. Also,

dist(r∼j , h) = δ iff h is tangent to the δ-ball centered at r∼j . Note that under the

condition Γ , h is the hyperplane going through b1,π1 , b
∼
2,π2

, . . . , b∼d,πd (in which only

b1,π1 is a random point). There are at most two hyperplanes which are tangent to

the δ-ball centered at r∼j and going through b∼2,π2
, . . . , b∼d,πd , say h1 and h2. So h

is tangent to the δ-ball centered at r∼j iff h = h1 or h = h2. It follows that h is

tangent to the δ-ball centered at r∼j only if b1,π1 ∈ h1 ∪ h2. Clearly, the probability

of b1,π1 ∈ h1 ∪ h2 is 0, since b1,π1 is uniformly drawn from a ball. Therefore,

Pr[dist(rj , h) = dist(rj′ , h
′)|Γ] = 0. Because the locations r∼i and b∼i,π are arbitrarily

chosen, we have Pr[dist(rj , h) = dist(rj′ , h
′)] = 0.

Now we see that Pr[Mτ = Mτ ′] = 0 for any two distinct tuples τ and τ ′. By the

union bound, we then have

Pr[Mτ = Mτ ′ for some τ 6= τ ′] ≤
(
nNd

2

)
· 0 = 0.

This further implies that

Pr[Mτ 6= Mτ ′ for all τ 6= τ ′] = 1.

Note that if all Mτ are distinct, then κ(S∗) is at least n(N/d)d. So we conclude

Pr

[
κ(S∗) ≥ n

(
N

d

)d]
≥ Pr[Mτ 6= Mτ ′ for all τ 6= τ ′] = 1.

This completes the proof of the theorem.

From the above theorem, we can conclude that any algorithm that explicitly

considers every possible separation-margin of the bichromatic stochastic dataset

requires at least Ω(nNd) time to compute the ESM. This in turn implies that our

algorithm is optimal among this category of algorithms. To do better, the only hope

36

is to avoid considering every possible separation-margin explicitly. However, this is

fairly difficult (though it may not be impossible) because of the lack of an explicit

relationship among distinct separation margins.

2.4 Extension to general geometric objects

In the previous sections, we studied the separability problems for bichromatic stochas-

tic datesets consisting of only points. In fact, the two problems can be naturally

generalized to the case of general geometric objects (see Figure 2.6). In this pa-

per, the general geometric objects to be considered include polytopes with constant

number of vertices, and/or d-dim closed balls with various radii. We show that, with

some effort, our methods can be extended to solve the generalized versions of the

SP and ESM problems. Let S = (SR, SB, π) be a bichromatic stochastic datesets

consisting of general geometric objects; in other words, each element in SR and SB

is either a polytope or a ball.

x1

x2

Figure 2.6: A separability problem for a set of bichromatic general objects in R2

2.4.1 Reducing polytopes to points

To deal with polytopes is easy, because of the fact that the entire polytope is on

one side of a (hyperplane) separator iff all its vertices are. Thus, we can simply

replace each polytope in SR and SB by its vertices and associate with each vertex

an existence probability equal to that of the polytope. In this way, we may assume

that each element in SR and SB is a ball in Rd (a point can be regarded as a ball

of radius 0). It should be noted is that, once we reduce the polytopes to points,

the existence of the vertices of each polytope are dependent upon each other, i.e., a

realization no longer includes each point independently. However, this issue can be

37

easily handled without any increase in time complexity, because each polytope only

has a constant number of vertices.

2.4.2 Handling balls

Now it suffices to solve the separability problems for the case that S is a bichromatic

stochastic dateset consisting of balls. Before we discuss how to handle balls, we need

a definition of general position for a ball-dataset. We say a set of balls in Rd is in

general position (or has the general position property) if (1) the centers of the balls

are in general position and (2) no (d+ 1) balls have a common tangent hyperplane.

Furthermore, we say a ball-dataset has strong general position property (SGPP) if

it satisfies the two conditions above and all of the 0-radius balls in it have SGPP (as

defined in Section 2.2.1) when regarded as points. When solving the SP problem

in Section 2.4.2.1, the given ball-dataset S is required to have SGPP. When solving

the ESM problem in Section 2.4.2.2, we only need the assumption that S has the

(usual) general position property.

2.4.2.1 Separable-probability (ball-version)

Let T = (TR, TB) be a bichromatic dataset of balls with SGPP and set J =

{3, 4, . . . , d}. With similar proofs, Lemma 1 and 3 can be directly generalized to

ball-datasets (the meaning of CH(TR) and CH(TB) should be modified as the convex

hull of all the balls in TR and TB). The ball-version of Lemma 4 (and also its proof)

is slightly different, which is presented as follows. We follow the notations used in

Section 2.2.1.

Lemma 13. There exists a unique weak separator for T U∗ in U∗. This separator

either goes through exactly d 0-radius balls in T U∗ (of which at least one is in TU
∗

R

and one is TU
∗

B) or is tangent to at least one ball in T U∗ of radius larger than 0.

Proof. By applying the same approach used in the proof of Lemma 4, we can directly

show that T U∗ is weakly separable. However, to prove the remaining part, we need

to slightly change the approach in the proof of Lemma 4. First, we modify the

definition of “degree” in that proof as follows. Let X be the convex hull of a finite

set of balls and x be a point on the boundary of X. Also, let Y be the union of

38

those balls. We define the degree of x in X, denoted by degX x, to be the minimum

of the dimensions of all the simplices that contain x and use only the points in Y as

their vertices. Note that degX x is well-defined. Indeed, as x ∈ X = CH(Y), there

exists at least one simplex with vertices in Y that contains x. Since T U∗ is not

strongly separable, by Lemma 1, there exists a point x∗ ∈ CH(TU
∗

R)∩CH(TU
∗

B). Let

C1 = CH(TU
∗

R) and C2 = CH(TU
∗

B). Define k1 degC1
x∗ and k2 = degC2

x∗. Then we

can find a k1-dim (resp. k2-dim) simplex s̄R (resp. s̄B) satisfying

(i) s̄R (resp. s̄B) contains x∗ in its interior;

(ii) each vertex of s̄R (resp. s̄B) is contained in at least one ball in TU
∗

R (resp. TU
∗

B).

Consider the balls that contain the vertices of s̄R and s̄B. We have two cases. First,

all of those balls are 0-radius balls. Second, at least one of them has the radius

larger than 0. In the first case, the proof of Lemma 4 is sufficient to show that the

weak separator of T U∗ is unique and goes through d points (0-radius balls). In the

second case, without loss of generality, we may assume that there is a vertex v of s̄R

contained in a ball a ∈ TU∗R with radius larger than 0. Since any weak separator of

T U∗ must go through v, v must be on the boundary of a. Thus, T U∗ has a unique

weak separator, which is the tangent hyperplane of a on v (so it is tangent to at

least one ball with radius larger than 0).

Given the above results, we are immediately able to generalize the concept of

extreme separator to ball-datasets. As we do in Section 2.2.1, if P0 6= ∅, we define

the extreme separator of T as the derived separator of the unique weak separator

of T U∗ . If P0 = ∅, we say the extreme separator of T is not defined. If the extreme

separator is defined, we call the subset of T consisting of all the balls tangent to

extreme separator the critical set. Later, we shall use the following lemma to solve

the ball version of the SP problem.

Lemma 14. Let T = (TR, TB) be a separable bichromatic dataset of balls in Rd

whose extreme separator is defined and let C be its critical set. Then the extreme

separator of C is also defined. Furthermore, T and C share the same extreme sepa-

rator and auxiliary subspace.

Proof. Recall the ρ-function defined in Section 2.2.1. Let P0 and P1 be the pre-

images of {0} and {1} under the map ρ∗T respectively. Also, let P ′0 and P ′1 be the

39

pre-images of {0} and {1} under the map ρ∗C . Suppose u∗ is the clockwise boundary

of P0. Since C ⊆ T , we have P ′0 ⊆ P0. On the other hand, as C is the critical set

of T , it is easy to see that CH(CU
∗

R) ∩ CH(CU
∗

B) 6= ∅, where U∗ = σ(u∗). This in

turn implies u∗ ∈ P ′0. Now because P ′0 is nonempty, the extreme separator of C is

directly defined. Furthermore, from the fact that u∗ ∈ P ′0 ⊆ P0, we know u∗ is also

the clockwise boundary of P ′0 so that U∗ is the auxiliary subspace of both T and

C. To prove T and C share the same extreme separator, we assume h is the unique

weak separator of T U∗ . Since CU∗ ⊆ T U∗ , h is also a weak separator of CU∗ . More

precisely, h is the unique weak separator of CU∗ , due to the uniqueness of the weak

separator of CU∗ (Lemma 13). Consequently, the derived separator of h in Rd is the

extreme separator of both T and C.

Lemma 14 implies that the extreme separator is uniquely determined by the

critical set. This then gives us the basic idea to solve the problem: enumerating all

possible critical set. As in Section 2.2.2, we can compute the SP of S as

SP(S) = SP(ΦJ(S)) +
∑
C
λS(C),

where λS(C) is the probability that the critical set of a realization of S is C. Since

the balls in S have SGPP, the size of the critical set can be at most d. Furthermore,

the critical set should contain at least one ball in SR and one ball in SB. Thus, it

suffices to compute λS(C) for all the subsets C ⊆ (SR, SB) of size at most d that

contains at least one ball in SR and one ball in SB. We consider two cases separately.

First, all the balls in C have radius 0. Second, there is at least one ball in C with

radius larger than 0.

In the first case, according to Lemma 13, λS(C) > 0 only if C contains exactly

d balls. Since the balls in C are actually points, the situation here is similar to

what we confronted in the point-version of the problem. We can uniquely determine

a hyperplane h which goes through the d points in C, and a subspace U∗ ∈ V
perpendicular to h. Then λS(C) is just equal to the probability that h is the extreme

separator of the existent balls. The conditions for h to be the extreme separator of

a realization R of S are very similar to those in Section 2.2.2, which are

(i) R contains all the balls in C;
(ii) there exist r ∈ CH(CR) and b ∈ CH(CB) such that their projection images on

40

U∗ coincide;

(iii) R contains no ball in SR (resp., SB) that is on the opposite (resp. same)

side of h with respect to the point o, where the definition of o is similar to that in

Section 2.2.2;

(iv) R contains no ball intersecting with h, except the ones in C.
If C violates the second condition, then λS(C) = 0. Otherwise, λS(C) is just equal

to the product of the existence probabilities of the balls in C and the non-existence

probabilities of the balls that R should not contain.

In the second case, however, the size of C may be less than d. According to

Lemma 14, if C is the critical set of a realization of S, then the extreme separator

and auxiliary subspace of the realization are the same as those of C. In particular,

this implies that λS(C) = 0 if C is not separable or the extreme separator of C is not

defined. So we only need to consider the situation that the extreme separator of C
is defined. Assume that C has the extreme separator h with the auxiliary subspace

U∗ ∈ V. Let c be any ball in C with radius larger than 0. Then it is easy to see that

C is the critical set of a realization R iff

(i) R contains all the balls in C;
(ii) all the balls in C are tangent to h;

(iii) R contains no ball with the same color as (resp. different color from) c but on

the opposite (resp. same) side of h∗ with respect to c;

(iv) R contains no ball intersecting with h, except the ones in C.
Because of the constant size of C, h and U∗ can be computed in constant time.

Similarly, if C satisfies the second condition, λS(C) is equal to the product of the

existence probabilities of the balls in C and the non-existence probabilities of the

balls that R should not contain.

In both the cases, λS(C) can be computed in linear time by simply scanning

all the balls in S. Thus, SP(S) can be finally computed in O(nNd) time, as the

number of the subsets C considered is bounded by O(nNd−1). Unfortunately, the

improvement techniques used in the point-version of the problem cannot be general-

ized to ball-datasets so that our eventual time bound for computing the separable-

probability of general stochastic geometric objects remains O(nNd).

Theorem 15. One can compute the separable-probability of a bichromatic stochastic

41

dataset consisting of general geometric objects in Rd of size (n,N) in O(nNd) time.

2.4.2.2 Expected separation-margin (ball-version)

Let T = (TR, TB) be a bichromatic dataset of balls in general position. Clearly,

the definitions given in Section 2.3 (maximum-margin separator, separation-margin,

support set/points/planes, etc.) can be directly generalized to the ball case. Also,

with these definitions, the ball-versions of Lemma 8 and 9 can be easily verified

(using the same proofs).

To extend the previous algorithm to the ball case, we need to establish the ball

version of Lemma 10. The first step is the same as that in the original proof of

Lemma 10: we arbitrarily label the balls in S and define the representation of C as

the d+1 balls in C with the smallest labels, for a subset C ⊆ (SR, SB) of size at least

d+1. We show that the number of possible support sets represented by any group of

d+1 balls is O(1). Let a1, a2, . . . , ad+1 be any d+1 balls in S where a1, . . . , ak ∈ SR
and ak+1, . . . , ad+1 ∈ SB, for some 1 ≤ k ≤ d as before. Suppose each ball ai has

center ci and radius δi. If some possible support set C is represented by these d+ 1

balls, then the support plane hr (resp. hb) must be tangent to a1, . . . , ak (resp.

ak+1, . . . , ad+1). Furthermore, the balls a1, . . . , ak (resp. ak+1, . . . , ad+1) must be

on the open side of hr (resp. hb), i.e., the side different from the one containing

the area in between hr and hb. Formally, suppose the equations of hr and hb are

~ω · x+ b1 = 0 and ~ω · x+ b2 = 0. We then have the following system of equations
~ω · ci + b1 = −ri for i ∈ {1, . . . , k},
~ω · ci + b2 = ri for i ∈ {k + 1, . . . , d+ 1},
|~ω| = 1,

b1 < b2.

The d + 1 linear equations are linearly independent, as the centers are in general

position. Thus, by limiting the norm of ~ω to be 1, this system has at most two

solutions. In other words, there are at most two possibilities for the support planes

hr and hb. By following the reasoning in the proof of Lemma 10, we then know the

number of the possible support sets represented by these d+1 balls is constant, which

immediately implies that the total number of all possible support sets is bounded

by O(nNd).

42

To enumerate these possible support sets, we can directly use the same method

as in Section 2.3.1, i.e., first enumerate d+ 1 balls and then enumerate the possible

support sets represented by them. Again, because the improvement techniques used

in the point-version of the problem do not work for ball-datasets, we have to scan all

the balls once for computing the corresponding probability of each possible support

set, which makes the overall time O(nNd+1) for computing the ESM of general

geometric objects.

Theorem 16. One can compute the expected separation-margin of a bichromatic

stochastic dataset consisting of general geometric objects in Rd of size (n,N) in

O(nNd+1) time.

Chapter 3

Stochastic convex hull problems

Let S = (S, π) be a given stochastic dataset in Rd where S = {a1, . . . , an}. In this

chapter, we study the problems of computing the expected diameter, width, and

combinatorial complexity of a stochastic convex hull of S; see Section 1.1 for the

statement of these problems.

3.1 Preliminaries

Let P be a convex polytope in Rd. If u is a unit vector in Rd, we define the directional

width of P with respect to u as

widu(P) = sup
p,q∈P

(〈u, p〉 − 〈u, q〉) ,

where 〈·, ·〉 denotes the inner product. Let U be the set of unit vectors in Rd. Then

the diameter of P is defined as diam(P) = supu∈U widu(P), and the width of P is

defined as wid(P) = infu∈U widu(P). It is clear that the diameter of P is also the

distance between the farthest-pair of points in P . The combinatorial complexity (or

simply complexity) of P , denoted by |P |, is defined as the total number of faces of

P (the dimensions of the faces vary from 0 to d− 1).

For two points x = (x1, . . . , xd) and y = (y1, . . . , yd) in Rd, we define x ≺ y if the

d-tuple (x1, . . . , xd) is smaller than the d-tuple (y1, . . . , yd) in lexicographic order.

Then ≺ induces a (strict) total order on Rd, called ≺-order.

43

44

3.2 Approximating the expected diameter

Let S = (S, π) be a stochastic dataset in Rd (d is not assumed to be fixed), and

suppose |S| = n. Our goal in this section is to (approximately) compute the expected

diameter of a SCH of S, defined as

diamS =
∑
R⊆S

Pr(R) · diam(CH(R)),

where Pr(R) denotes the probability that R occurs as a realization of S.

3.2.1 The witness sequence

In order to approximate diamS , we introduce the notion of witness sequence. Let P

be a convex polytope in Rd, and V be the vertex set of P . For any point x ∈ Rd, we

define ΦP (x) as the set of all points in P farthest from x. Formally, ΦP (x) = {y ∈
P : dist(x, y) ≥ dist(x, y′) for any y′ ∈ P}. Note that ΦP (x) ⊆ V , and in particular

ΦP (x) is finite. Our first observation about diam(P) is the following.

Lemma 17. Let x ∈ Rd be a point. If there exist p, q ∈ P such that dist(p, q) =

diam(P) and ∠pxq = θ > π/2, then for any y ∈ ΦP (x) and z ∈ ΦP (y) we have

dist(y, z) ≥ diam(P)

2 sin(π/2− θ/4)
.

Proof. Let x ∈ Rd be a point, and suppose we have p, q ∈ P such that dist(p, q) =

diam(P) and ∠pxq > π/2. Also, let y ∈ ΦP (x) be any point. Since dist(y, z) ≥
max{dist(y, p),dist(y, q)} for any z ∈ ΦP (y), it suffices to show

max{dist(y, p),dist(y, q)} ≥ diam(P)

2 sin(π/2− θ/4)
.

Without loss of generality, we may assume x = (0, . . . , 0), p = (α, β, 0, . . . , 0), q =

(α, γ, 0, . . . , 0), where α ≥ 0 (if this is not the case, one can properly apply an

isometric transformation on Rd to make it true). Furthermore, we may also assume

dist(x, y) = 1, hence α2 +β2 ≤ 1 and α2 +γ2 ≤ 1. Since ∠pxq > π/2, we must have

βγ < 0 (so suppose β > 0 and γ < 0). We first claim that max{dist(y, p),dist(y, q)}
is minimized when

y =

(√
1− (β + γ)2

4
,
β + γ

2
, 0, . . . , 0

)
. (3.1)

45

Let y be the point with the above coordinates (see Figure 3.1), and r = (r1, . . . , rd)

be another point satisfying dist(x, r) = 1 (i.e.,
∑d

i=1 r
2
i = 1). First consider the case

of r2 ≤ (β + γ)/2. In this case, we show that dist(r, p) ≥ max{dist(y, p),dist(y, q)}.
Since dist(y, p) = dist(y, q), it suffices to show dist(r, p) ≥ dist(y, p). We have the

equations

dist2(r, p) = 1 + α2 + β2 − 2r1α− 2r2β,

dist2(y, p) = 1 + α2 + β2 − 2y1α− 2y2β,

where y1 and y2 are the first two coordinates of y defined above. Now we only need

to show r1α + r2β ≤ y1α + y2β. Note that r1α + r2β ≤ α
√

1− r2
2 + r2β as α ≥ 0.

Define vectors v = (α, β), u = (
√

1− r2
2, r2), w = (y1, y2). Since α ≥ 0, y1 > 0,

and r2 ≤ y2 < β, the angle between v and u is greater than that between v and w.

Furthermore, ‖u‖2 = ‖w‖2 = 1. Therefore, α
√

1− r2
2 + r2β = 〈u,v〉 ≤ 〈w,v〉 =

y1α+y2β, which implies r1α+r2β ≤ y1α+y2β. In the other case, r2 ≥ (β+γ)/2, we

have symmetrically dist(r, q) ≥ max{dist(y, p), dist(y, q)}. Therefore, we know that

max{dist(y, p),dist(y, q)} is minimized when y has the coordinates in Equation 3.1.

Note that when y has these coordinates,

dist(y, p) = dist(y, q) =
dist(p, q)

2 sin(∠pyq/2)
=

diam(P)

2 sin(∠pyq/2)
. (3.2)

x

y
p

q

Figure 3.1: The locations of x, p, q and y in the proof of Lemma 17.

Next, we show that ∠pyq ≤ π−θ/2 where θ = ∠pxq. Since dist(x, p) ≤ dist(x, y),

∠xyp ≤ ∠xpy. Also, since dist(x, q) ≤ dist(x, y), ∠xyq ≤ ∠xqy. It follows that

∠pyq = ∠xyp + ∠xyq ≤ ∠xpy + ∠xqy. But ∠pxq + ∠pyq + ∠xpy + ∠xqy = 2π

and ∠pxq = θ, which implies that 2∠pyq ≤ 2π − θ, as desired. Using Equation 3.2,

46

we can conclude that dist(y, p) ≥ diam(P)/(2 sin(π/2− θ/4)), which completes the

proof.

Basically, Lemma 17 states that for a point x ∈ Rd, if we take y ∈ P farthest

from x and z ∈ P farthest from y, then the distance between y and z gives us a good

approximation for diam(P) as long as there exists a pair p, q ∈ P defining diam(P)

with a large angle ∠pxq. However, without the existence of such a pair p, q ∈ P ,

the approximation fails. To handle this, we need our second observation.

Lemma 18. Let v ∈ V be a vertex of P , and u ∈ ΦP (v), w ∈ ΦP (u) be two points.

Suppose r is the ray with initial point u which goes through v, and x is the point

on r which has distance dist(u,w)/2 from u. Then if there exist p, q ∈ P with

dist(p, q) = diam(P) and ∠pxq = θ, we have

dist(u,w) ≥ min

{
diam(P),

diam(P)√
3 sin(θ/2)

}
.

Proof. Let Bv be the (closed) ball centered at u with radius dist(v, u), and Bu be

the (closed) ball centered at u with radius dist(u,w). Then we have P ⊆ Bu ∩ Bv,
because u ∈ ΦP (v) and w ∈ ΦP (u). Now let r and x be the ray and the point

defined in the lemma. Define v′ as the point on r which has distance dist(u,w)

from u, so x is the midpoint of the segment connecting v′ and u. Set Bv′ to be the

(closed) ball centered at v′ with radius dist(u,w). See Figure 3.2 for an illustration

of the balls Bu, Bv, Bv′ . Note that Bv ⊆ Bv′ , since rad(Bv′) ≥ rad(Bv) + dist(v, v′)

where rad(·) denotes the radius of a ball. Therefore, P ⊆ Bu ∩ Bv′ . Next, we

claim that Bu ∩ Bv′ ⊆ Bx, where Bx is the (closed) ball centered at x with radius
√

3 ·dist(u,w)/2. Suppose y ∈ Bu∩Bv′ is a point, and assume dist(y, u) ≥ dist(y, v′)

without loss of generality (so ∠yxu ≥ π/2). Define µ = dist(u, x) and γ = dist(y, x).

Then γ = µ · sin∠yux/ sin∠uyx. Note that we have the restrictions ∠yxu ≥ π/2

and dist(u, y) ≤ dist(u, v′) = 2µ. Under these restrictions, it is easy to see that

γ is maximized when dist(u, y) = 2µ and ∠yxu = π/2. In this case, γ =
√

3µ =

rad(Bx). Consequently, Bu ∩ Bv′ ⊆ Bx, which in turn implies P ⊆ Bx. With this

observation, we now show the inequality in the lemma. Let p, q ∈ P ⊆ Bx be two

points satisfying dist(p, q) = diam(P) and ∠pxq = θ. If dist(p, q) ≤ dist(u,w),

we are done, so assume dist(p, q) > dist(u,w). But both dist(x, p) and dist(x, q)

are at most rad(Bx) =
√

3 · dist(u,w)/2. Therefore, θ is the largest angle of the

47

triangle 4pxy. In this case, it is easy to see that dist(p, q) is maximized when

dist(x, p) = dist(x, q) = rad(Bx). It follows that dist(p, q) ≤
√

3 sin(θ/2) ·dist(u,w),

which completes the proof.

v u

w

v′

Bu

Bv′

Bv
P

Figure 3.2: An illustration of Bu, Bv, Bv′ in the proof of Lemma 18.

Lemma 18 states that for a vertex v ∈ V , if we take u ∈ P farthest from v

and w ∈ P farthest from v, then the distance between u and w gives us a good

approximation for diam(P) as long as there exists a pair p, q ∈ P defining diam(P)

with a small angle ∠pxq (see the lemma for the definition of x). The approximation

is not satisfactory when ∠pxq is large. Fortunately, we already have Lemma 17,

which is helpful for this case. Indeed, in the case that ∠pxq is large, if we further

take y ∈ P farthest from x and z ∈ P farthest from y, then Lemma 17 implies

that the distance between y and z is a good approximation for diam(P). Therefore,

intuitively, by taking max{dist(u,w),dist(y, z)}, we can well-approximate diam(P)

no matter whether ∠pxq is small or large. We formally state this as follows.

Corollary 19. Let v, u, w, x be the points defined in Lemma 18. Also, let y ∈ ΦP (x)

and z ∈ ΦP (y) be any two points. Then we have

diam(P)

2
√

2/
√

3
≤ max{dist(u,w), dist(y, z)} ≤ diam(P).

Proof. It is clear that max{dist(u,w),dist(y, z)} ≤ diam(P), because u,w, y, z ∈ P .

Let p, q ∈ P be two points such that dist(p, q) = diam(P). Set θ = ∠pxq. If θ ≤ π/2,

then Lemma 18 implies dist(u,w) ≥ diam(P)/(
√

3/
√

2). So assume θ > π/2. By

48

Lemma 17, we have

dist(y, z) ≥ diam(P)

2 sin(π/2− θ/4)
=

diam(P)

2 cos(θ/4)
.

Also, by Lemma 18, we have dist(u,w) ≥ diam(P)/(
√

3 sin(θ/2)). Therefore,

max{dist(u,w),dist(y, z)} ≥ diam(P)

min{2 cos(θ/4),
√

3 sin(θ/2)}
.

Note that for θ ∈ (π/2, π], the function 2 cos(θ/4) is monotonically decreasing and

the function
√

3 sin(θ/2) is monotonically increasing. Thus, the right side of the

above inequality is minimized when 2 cos(θ/4) =
√

3 sin(θ/2). We have this equality

when sin(θ/4) = 1/
√

3, because sin(θ/2) = 2 sin(θ/4) cos(θ/4). By some direct

calculations, we obtain the inequality in the corollary.

With the five points v, u, w, y, z (which are in fact the vertices of P) in hand,

Corollary 19 allows us to approximate diam(P) within a factor of 2
√

2/
√

3 ≈ 1.633.

In other words, the diameter information of P is well “encoded” in those five vertices.

However, the choice of v, u, w, y, z is not unique in our above construction. For later

use, we need to make it unique, which can be easily done by considering ≺-order. We

define v ∈ V as the largest vertex of P under ≺-order. Also, we require u ∈ ΦP (v),

w ∈ ΦP (u), y ∈ ΦP (x), z ∈ ΦP (y) to be the largest under ≺-order. In this way,

we obtain a uniquely defined 5-tuple (v, u, w, y, z) for the polytope P . We call this

5-tuple the witness sequence of P , denoted by ψP . For a 5-tuple ψ = (x1, . . . , x5)

of points in Rd, define Λ(ψ) = max{dist(x2, x3),dist(x4, x5)}. Then Corollary 19

implies
diam(P)

2
√

2/
√

3
≤ Λ(ψP) ≤ diam(P) (3.3)

for any convex polytope P in Rd.

3.2.2 An (n, d)-polynomial-time approximation algorithm

With the notion of witness sequence defined above, we can now present our algorithm

for the expected-diameter problem. Given the stochastic dataset S = (S, π), we first

do a preprocessing to sort all the points in S in ≺-order and compute the pair-wise

distances of the points in S. This preprocessing can be done in O(dn2) time. Now

49

we consider how to approximate diamS . We define

diam∗S =
∑
R⊆S

Pr(R) · Λ(ψCH(R)).

Inequality 3.3 implies diamS/(2
√

2/
√

3) ≤ diam∗S ≤ diamS . Thus, in order to

achieve a 1.633-approximation diamS , it suffices to compute diam∗S . Computing

diam∗S by directly using the above formula takes exponential time, as S has 2n

subsets. However, since for any R ⊆ S the witness sequence ψCH(R) must be a

5-tuple of points in S, we can also write diam∗S as

diam∗S =
∑
ψ∈ΨS

Pr(ψ) · Λ(ψ), (3.4)

where ΨS is the set of all 5-tuples of points in S and

Pr(ψ) = Pr
R∼S

[ψCH(R) = ψ]

is the probability that the witness sequence of a SCH of S is ψ. Note that |ΨS | =

O(n5). Thus, we can efficiently compute diam∗S as long as Pr(ψ) and Λ(ψ) can

be computed efficiently for every ψ ∈ ΨS . Clearly, Λ(ψ) can be directly com-

puted in constant time (after our preprocessing). To compute Pr(ψ), suppose

ψ = (p1, . . . , p5) ∈ ΨS . It is easy to check that if p1 = p2, then either Pr(ψ) = 0 or

Λ(ψ) = 0. So we may assume p1 6= p2. In this case, we give the following criterion

for checking if ψ is the witness sequence of a SCH of S. For three points a, b, c ∈ Rd,
we write a ≺b c if dist(a, b) < dist(c, b), or dist(a, b) = dist(c, b) and a ≺ c.

Lemma 20. Let ψ = (p1, . . . , p5) ∈ ΨS with p1 6= p2. Suppose r is the ray with

initial point p2 which goes through p1, and x is the point on r which has distance

dist(p2, p3)/2 from p2. For a realization R of S, we have ψ = wit(CH(R)) iff the

following two conditions hold.

(1) R contains p1, . . . , p5.

(2) R does not contain any point a ∈ S satisfying p1 ≺ a or p2 ≺p1 a or p3 ≺p2 a or

p4 ≺x a or p5 ≺p4 a.

Proof. Let R be a realization of S, and set C = CH(R). The proof of the lemma

is somewhat straightforward by using the definition of witness sequence. To see

the “if” part, assume the two conditions in the lemma hold. Then p1 must be

50

the largest point in R under ≺-order, which must be a vertex of C. Furthermore,

p2, p3, p4, p5 must be the largest points in ΦC(p1),ΦC(p2),ΦC(x),ΦC(p4) under ≺-

order, respectively. Thus, by definition, ψ = (p1, . . . , p5) = ψC . To see the “only if”

part, assume ψC = ψ. Then p1, . . . , p5 are vertices of C and must be contained in

R, which implies condition (1). By definition, p1 is the largest vertex of C under

≺-order, and p2, p3, p4, p5 are the largest points in ΦC(p1),ΦC(p2),ΦC(x),ΦC(p4)

under ≺-order respectively, which implies condition (2).

By Lemma 20, it is quite easy to compute Pr(ψ) in linear time, just by multiply-

ing the existence probabilities of the points in ψ and the non-existence probabilities

of all the points which should not be included in R (according to condition (2) in

the lemma). Using Equation 3.4, we obtain an (n, d)-polynomial-time algorithm to

compute diam∗S . This algorithm runs in O(n6 + dn2) time. But we can easily im-

prove the runtime to O(n5 log n+ dn2) as follows. Fixing p1, p2, p3, p4 ∈ S, we show

how to compute Pr(ψ) for all ψ ∈ ΨS of the form ψ = (p1, . . . , p4, ·) in O(n log n)

time. As argued before, we may assume p1 6= p2. Let r be the ray with initial point

p2 which goes through p1, and x be the point on r which has distance dist(p2, p3)/2

from p2. First, we determine a subset A ⊆ S consisting of p4 and all the points

a ∈ S satisfying p1 ≺ a or p2 ≺p1 a or p3 ≺p2 a or p4 ≺x a. It is clear that Pr(ψ) > 0

for ψ = (p1, . . . , p4, q) only if q ∈ S\A. For each q ∈ S\A, we denote by Bq the set

of all points b ∈ S\A with q ≺p4 b. By Lemma 20, we have

Pr(ψq) =

(
4∏
i=1

π(pi) ·
∏
a∈A

(1− π(a))

)
·

π(q) ·
∏
b∈Bq

(1− π(b))

 , (3.5)

where ψq = (p1, p2, p3, p4, q). Note that the left part of the above formula is in-

dependent of q and thus only needs to be computed once. To compute the right

part efficiently, suppose S\A = {c1, . . . , cr}. We relabel these points such that

c1 ≺p4 · · · ≺p4 cr. This can be done by sorting in O(n log n) time, or more precisely,

O(r log r) time. We then compute
∏r
j=i(1 − π(cj)) for all i ∈ {1, . . . , r} (note that

this can be done in linear time). With this in hand, we consider each q ∈ S\A. We

must have q = ci for some i ∈ {1, . . . , r}. In this case, the right part of Equation 3.5

is just π(ci) ·
∏r
j=i+1(1−π(cj)) and hence can be computed in constant time. There-

fore, we can compute Pr(ψq) for all q ∈ S\A in linear time. Including the time for

51

sorting, this gives us the O(n5 log n)-time 1.633-approximation algorithm for com-

puting diamS .

Theorem 21. One can achieve a 1.633-approximation of diamS in (n, d)-polynomial

time. Specifically, the approximation can be done in O(n5 log n+ dn2) time.

3.2.3 A polynomial-time approximation scheme

In this section, we design a PTAS for computing diamS . We first consider a special

case in which diamS = Ω(diam(S)) and then consider the general case. Let c be

a constant such that diamS ≥ c · diam(S). We first compute an 2-approximation,

diam∼(S), of diam(S) in O(n) time. This can be done by taking an arbitrary point

a ∈ S and the point b ∈ S farthest to a and defining diam∼(S) = ‖a− b‖2. Then we

build a grid Γ on Rd consisting of hyper-cube cells with side-length (cε/4)·diam∼(S),

where ε is the approximation factor of our PTAS. If � is a cell of Γ , we define

the notation S� = S ∩ �. A cell � of Γ is called nonempty if S� 6= ∅. For

each nonempty cell � of Γ , let c� denote its center. Now we construct a new

stochastic dataset (equipped with existential uncertainty) S ′ = (S′, π′) as S′ =

{c� : � is a nonempty cell of Γ} and

π′(c�) = 1−
∏
a∈S�

(1− π(a)).

We have the following observation.

Lemma 22. (1− ε) · diamS ≤ diamS′ ≤ (1 + ε) · diamS .

Proof. Consider the map f : S → S′ defined as f(a) = c� where � is the cell

containing a. Note that for any a ∈ S, we have ‖a − f(a)‖2 ≤ (cε/2) · diam(S). A

subset P of S is then mapped to a subset P ′ = f(P) of S′. Suppose the points p, q

define diam(P). Then we have

diam(P ′) ≥ ‖f(p)−f(q)‖2 ≥ ‖p−q‖2−‖p−f(p)‖2−‖q−f(q)‖2 ≥ diam(P)−ε·diam(S).

Using a similar argument, we can also deduce that diam(P) ≥ diam(P ′)−ε·diam(S).

Therefore, we have |diam(P)− diam(P ′)| ≤ cε · diam(S). Furthermore, it is easy to

verify the equation

Pr
R′∼S′

[R′ = P ′] =
∑

P,f(P)=P ′
Pr
R∼S

[R = P]

52

from the existence-probability function π′ defined above. It follows that

diamS′ =
∑
P ′⊆S′

Pr
R′∼S′

[R′ = P ′] · diam(P ′) =
∑
P ′⊆S′

∑
P,f(P)=P ′

Pr
R∼S

[R = P] · diam(P ′).

On the other hand, we have

diamS =
∑
P⊆S

Pr
R∼S

[R = P] · diam(P) =
∑
P ′⊆S′

∑
P,f(P)=P ′

Pr
R∼S

[R = P] · diam(P).

Therefore,

|diamS′−diamS | ≤
∑
P ′⊆S′

∑
P,f(P)=P ′

Pr
R∼S

[R = P]·|diam(P ′)−diam(P)| ≤ cε·diam(S).

Since cε ·diam(S) ≤ ε ·diamS , we have (1−ε) ·diamS ≤ diamS′ ≤ (1+ε) ·diamS .

Using the above lemma to approximate diamS , it suffices to compute diamS′ .

This is much easier because of the small size of S ′. We notice that |S′| = O(ε−d).

Indeed, |S′| is just the number of the nonempty cells of Γ , which is bounded by

O(ε−d) since the side-length of the cells is O(ε · diam(S)). Therefore, we can ap-

ply brute-force to compute diamS′ in O(ε−d · 2ε−d
) time. Including the time for

constructing S ′, the total time cost of the above procedure is O(n+ ε−d · 2ε−d
).

Next, we consider the general case. Let R be a realization of S. For i, j ∈
{1, . . . , n}, define Ei,j as the event that the point in R with the smallest index is ai

and the point in R farthest from ai is aj . Let E = {Ei,j : i 6= j}. We can write

diamS =
∑
Ei,j∈E

Pr
R∼S

[Ei,j] · ER∼S [diam(R)|Ei,j]. (3.6)

Note that Ei,j happens iff ai, aj exist and all the points in Ti,j = {ak : k <

i or dist(ak, ai) > dist(aj , ai)} do not exist, which implies that PrR∼S [Ei,j] is equal

to the product of the nonexistence probabilities of the points in Ti,j . Therefore,

PrR∼S [Ei,j] can be computed efficiently in O(n) time. To approximate diamS , it suf-

fices to (approximately) compute ER∼S [diam(R)|Ei,j] for all Ei,j ∈ E . We show that

this can be solved using our previous algorithm for the case diamS = Ω(diam(S)).

For each Ei,j ∈ E , we define a stochastic dataset Si,j = (Si,j , πi,j) where Si,j = S\Ti,j
and

πi,j(a) =

{
1 if a = ai or a = aj ,

π(a) otherwise.

53

As argued before, Ei,j happens iff ai, aj exist and all the points in Ti,j do not

exist. Thus, we have the equation ER∼S [diam(R)|Ei,j] = diamSi,j . We claim that

diamSi,j = Ω(diam(Si,j)), whence we can compute an approximation of diamSi,j
using our algorithm mentioned above. First, we have diam(Si,j) ≤ 2dist(ai, aj)

because aj is the point in Si,j farthest from ai and hence all the points in Si,j are

contained in the ball centered at ai with radius dist(ai, aj). On the other hand, we

have diamSi,j ≥ dist(ai, aj) since every possible realization of Si,j contains ai and aj .

As a result, diamSi,j = Ω(diam(Si,j)). With this observation in hand, we can apply

our previous algorithm to approximate diamSi,j . Combining this with Equation 3.6,

we obtain a PTAS for computing diamS .

Theorem 23. There exists a PTAS for computing the expected diameter of a

stochastic data set in Rd.

3.2.4 #P-hardness of the expected-diameter problem

We prove the #P-hardness of computing diamS exactly when the dimension d is

not assumed to be fixed. Our result strengthens a result in [8] which states that

computing the expected farthest-pair distance of a stochastic dataset in a (general)

metric space is #P-hard.

By the definition of #P-hardness, it suffices to give a polynomial-time reduction

from some known #P-hard problem to the the problem of computing diamS . Our

reduction is from the problem of counting independent sets of a graph, which is a

well-known #P-hard problem. We first establish the following two lemmas.

Lemma 24. For an integer k > 0, there exists two positive real numbers αk, βk with

αk < βk and a map f : {0, 1, . . . , k, k + 1} → Rk such that dist(f(i), f(j)) = αk for

any i 6= j except that dist(f(k), f(k + 1)) = dist(f(k + 1), f(k)) = βk.

Proof. Let ∆ be a regular k-simplex (i.e., a k-simplex with edges of length 1) with

vertices v0, . . . , vk, ∆′ be another regular k-simplex with vertices v′0, . . . , v
′
k. We

form a regular double-simplex by identically gluing the face (v0, . . . , vk−1) of ∆ with

the face (v′0, . . . , v
′
k−1) of ∆′ (see Figure 3.3). Clearly, this double-simplex

can be (isometrically) embedded into Rk via an embedding map σ. Now we define

f(k) = σ(vk), f(k + 1) = σ(v′k), and f(i) = σ(vi) = σ(v′i) for all i ∈ {0, . . . , k − 1}.

54

v0=v
0

0 v1=v
0

1

v2=v
0

2

v3

v03

Figure 3.3: The regular double-simplex in the proof of Lemma 24.

By taking αk = dist(f(0), f(1)) and βk = dist(f(k), f(k+1)), we complete the proof

(the desired properties of αk, βk, f can be easily verified).

Lemma 25. For a graph G = (V,E), one can compute in polynomial time a map

f : V → R|V |−1 such that

dist(f(u), f(v)) =

{
α if (u, v) /∈ E,
β if (u, v) ∈ E,

for some α, β with α < β.

Proof. Suppose V = {v1, . . . , vn} and E = {e1, . . . , em}. Using Lemma 24, we find

the real numbers αn−2, βn−2. For each e ∈ E, let ge : V → Rn−2 be a map such that

dist(ge(u), ge(v)) =

{
αn−2 if e 6= (u, v),

βn−2 if e = (u, v).

Note that ge exists by Lemma 24. We then define g : V → (Rn−2)m by setting

g(v) = (ge1(v), . . . , gem(v)). Let α =
√
m · αn−2 and β =

√
(m− 1)αn−2 + βn−2. It

is easy to check that α < β and

dist(g(u), g(v)) =

{
α if (u, v) /∈ E,
β if (u, v) ∈ E.

To further construct f , we note that the image of g consists of only n points, which

should span a (n−1)-dim hyperplane in (Rn−2)m. If we (isometrically) identify this

hyperplane with Rn−1 and use h : (Rn−2)m → Rn−1 to denote the projection map,

f : V → Rn−1 is constructed as the composition h ◦ g.

55

With the above result in hand, we can now describe the reduction. Given a

graph G = (V,E) with V = {v1, . . . , vn}, we first use Lemma 25 to compute the

function f : V → Rn−1 and obtain α, β. Let S be the n points in the image of

f . We construct a stochastic dataset S = (S, π) by defining π : S → (0, 1] as

π(a) = 0.5 for all a ∈ S. Now the subsets of V are in one-to-one correspondence

with the realizations of S. By the construction of f , it is clear that a realization

R ⊆ S has a diameter diam(R) = α if R corresponds to an independent set of G,

and has a diameter diam(R) = β otherwise. Furthermore, every subset of S occurs

as a realization with an equal probability 2−n. Hence, we immediately obtain the

equation

diamS = β + 2−nInd(G) · (α− β),

where Ind(G) is the number of the independent sets of G. In this way, counting the

independent sets of G is reduced to computing diamS , which implies the following

hardness result.

Theorem 26. Computing diamS is #P-hard if the dimension d is not fixed.

Note that our reduction above does not work when d is fixed, as the stochastic

dataset S that we construct is (n − 1)-dimensional, where n is the number of the

points and is not fixed.

3.3 Approximating the expected width

Let S = (S, π) be a stochastic dataset in Rd with d fixed, and suppose |S| = n. Our

goal in this section is to (approximately) compute the expected width of a SCH of

S, defined as

widS =
∑
R⊆S

Pr(R) · wid(CH(R)),

where Pr(R) denotes the probability that R occurs as a realization of S.

3.3.1 The witness simplex

Recall that when solving the expected-diameter problem, we developed the notion

of witness sequence, which well-captures the diameter of a polytope and satisfies (1)

the total number of the possible witness sequences of a SCH is polynomial (though

56

there are exponentially many realizations), and (2) the probability of a sequence

being the witness sequence of a SCH can be easily computed. We apply this basic

idea again to the expected-width problem by defining the so-called witness simplex.

Let P be a convex polytope in Rd with wid(P) > 0, and V be the vertex set of P .

We choose d+1 vertices v0, . . . , vd ∈ V of P inductively as follows. Define v0 ∈ V as

the largest vertex of P under ≺-order. Suppose v0, . . . , vi are already defined. Let

Ei be the (unique) i-dim hyperplane in Rd through v0, . . . , vi (or the i-dim linear

subspace of Rd spanned by v0, . . . , vi). We then define vi+1 ∈ V as the vertex of P

which has the maximum distance to Ei, i.e., vi+1 = arg maxv∈V dist(v,Ei). If there

exist multiple vertices having maximum distance to Ei, we choose the largest one

under ≺-order to be vi+1. In this way, we obtain the vertices v0, . . . , vd. The witness

simplex ∆P of P is defined as the d-simplex with vertices v0, . . . , vd. The (ordered)

sequence (v0, . . . , vd) is said to be the vertex list of ∆P . Note that the vertex list is

determined by only ∆P and is independent of P . In other words, if we only know

∆P without knowing the original polytope P , we can still recover the vertex list of

∆P , just by ordering the d+1 vertices of ∆P into a sequence (v0, . . . , vd) such that v0

is the largest under ≺-order, and each vi+1 is the one having the maximum distance

to Ei (the linear subspace spanned by v0, . . . , vi). A useful geometric property of

the witness simplex ∆P is that it well-captures the width of P .

Lemma 27. Let P be a convex polytope in Rd with wid(P) > 0, then we have

widu(∆P) = Θ(widu(P)) for all unit vectors u ∈ Rd, and in particular, wid(∆P) =

Θ(wid(P)). (The constant hidden in Θ(·) could be exponential in d.)

Proof. Note that widu(∆P) ≤ widu(P) for all unit vectors u ∈ Rd, since ∆P ⊆ P .

It suffices to show that widu(∆P) = Ω(widu(P)). Let (v0, . . . , vd) be the vertex

list of ∆P . Also, let Ei be the i-dim hyperplane in Rd through v0, . . . , vi. Suppose

each vi has the coordinates vi = (yi,1, . . . , yi,d). Without loss of generality, we

may assume that yi,j = 0 for j > i, that is, v0 = (0, . . . , 0), v1 = (y1,1, 0, . . . , 0),

v2 = (y2,1, y2,2, 0, . . . , 0), and so forth (if this is not the case, one can properly apply

an isometric transformation on Rd to make it true). With this assumption, Ei is

nothing but the i-dim linear subspace of Rd spanned by the axes x1, . . . , xi. Note

that |yi,i| = dist(vi, Ei−1) ≥ dist(vi+1, Ei−1) ≥ |yi+1,i+1|. Therefore, |y1,1| ≥ · · · ≥
|yd,d|. Furthermore, let v ∈ V be any vertex of P with coordinates v = (z1, . . . , zd).

57

For every i ∈ {1, . . . , d}, we have that dist(vi, Ei−1) ≥ dist(v,Ei−1) ≥ |zi|, which

implies −|yi,i| ≤ zi ≤ |yi,i|. Based on this observation, we now show that wid(∆P) ≥
c ·wid(P) for some constant c. It suffices to show that there exists a constant c such

that widu(∆P) ≥ c · widu(P) for all unit vectors u ∈ Rd. We use induction to

achieve this. First, for u = (0, . . . , 0, 1), we have

widu(∆P) = |yd,d| ≥ widu(P)/2,

because the d-th coordinate of any v ∈ V has absolute value at most |yd,d|. It follows

that widu(∆P) ≥ cd ·widu(P) for a constant cd = 1/2. Using this as a base case, we

may assume that there exists a constant ci+1 ∈ (0, 1) such that widu(∆P) ≥ ci+1 ·
widu(P) for all unit vectors u ∈ Rd whose first i coordinates are all 0. Our goal is to

find a new constant ci ∈ (0, 1) such that widu(∆P) ≥ ci ·widu(P) for all unit vectors

u ∈ Rd whose first i − 1 coordinates are all 0. Let u = (0, . . . , 0, ui, . . . , ud) ∈ Rd

be such a unit vector, and define u′ = (0, . . . , 0, u′i+1, . . . , u
′
d) ∈ Rd as a unit vector

where u′j = uj/
√

1− u2
i for j ∈ {i + 1, . . . , d}. We may assume ui ≥ 0 because

widu(∆P) = wid−u(∆P). Set ci = ci+1/5. We verify that widu(∆P) ≥ ci · widu(P)

by considering two cases, ui|yi,i| ≥ ci · widu(P) and ui|yi,i| < ci · widu(P). In the

case of ui|yi,i| ≥ ci · widu(P), we immediately have

widu(∆P) ≥ |〈u, vi〉 − 〈u, vi−1〉| = ui|yi,i| ≥ ci · widu(P).

In the case of ui|yi,i| < ci · widu(P), we consider the unit vector u′ defined above.

Let α, β ∈ {0, . . . , d} be indices such that widu′(∆P) = 〈u′, vα〉 − 〈u′, vβ〉. We claim

that 〈u, vα〉 − 〈u, vβ〉 ≥ ci · widu(P). First, since the i-th coordinates of vα and vβ

have absolute values at most |yi,i| (as observed before), we have

〈u, vα〉 − 〈u, vβ〉 ≥
√

1− u2
i · widu′(∆P)− 2ui|yi,i|.

On the other hand, since the i-th coordinates of all vertices of P have absolute

values at most |yi,i|, we have

widu(P) ≤
√

1− u2
i · widu′(P) + 2ui|yi,i|.

Furthermore, we have ui|yi,i| < ci · widu(P) = (ci+1/5) · widu(P) by assumption

and widu′(∆P) ≥ ci+1 · widu′(P) by the induction hypothesis. Using these four

58

inequalities, we deduce that

〈u, vα〉 − 〈u, vβ〉 ≥
√

1− u2
i · widu′(∆P)− 2ui|yi,i|

≥ ci+1

√
1− u2

i · widu′(P)− 2ui|yi,i|

≥ ci+1widu(P)− 2ci+1ui|yi,i| − 2ui|yi,i|

≥ ci+1widu(P)− 4ui|yi,i|

> ci+1widu(P)− (4ci+1/5) · widu(P)

= (ci+1/5) · widu(P)

= ci · widu(P).

Since widu(∆P) ≥ 〈u, vα〉 − 〈u, vβ〉, we have widu(∆P) ≥ ci · wid(P). In both of

the cases, we have widu(∆P) ≥ ci · wid(P). Therefore, we can use this induction

argument to finally obtain the constant c1 (note that c1 is truly a constant as d

is fixed), which satisfies widu(∆P) ≥ c1 · widu(P) for all unit vectors u ∈ Rd.
As a result, widu(∆P) = Θ(widu(P)) for all unit vectors u ∈ Rd. In particular,

wid(∆P) = Θ(wid(P)).

The idea used for constructing the witness simplex is standard, and was previ-

ously used to construct approximate minimum-volume bounding boxes [33]. In fact,

the approximate minimum-volume bounding box constructed in [33] can also be used

here as witness objects for approximating the expected width, because it approxi-

mates the directional width with respect to any direction. However, the resulting

algorithm will have a higher time complexity, because there can be Ω(n2d) possible

approximate minimum-volume bounding boxes of a SCH of n stochastic points (a

bounding box is determined by 2d points), while the number of the possible witness

simplices is O(nd+1).

3.3.2 An O(1)-approximation algorithm

With the notion of witness simplex defined above, we now use the witness approach

to establish an approximation algorithm for computing widS . The basic idea is

similar to what we use for approximating diamS . We define

wid∗S =
∑
R⊆S

Pr(R) · wid(∆CH(R)),

59

Lemma 27 implies wid∗S = Θ(widS). Thus, in order to approximate widS within a

constant factor, it suffices to compute wid∗S . To compute wid∗S by directly using the

above formula takes exponential time, as S has 2n subsets. However, since ∆CH(R)

must be a d-simplex with vertices in S, wid∗S can also be written as

wid∗S =
∑

∆∈Γ d
S

Pr(∆) · wid(∆), (3.7)

where Γ dS is the set of all d-simplices in Rd whose vertices are (distinct) points in S

and

Pr(∆) = Pr
R∼S

[∆CH(R) = ∆]

is the probability that the witness simplex of a SCH of S is ∆. Note that |Γ dS | =

O(nd+1), which is polynomial. So the above formula allows us to compute wid∗S in

polynomial time, as long as we are able to compute Pr(∆) efficiently for each ∆ ∈ Γ dS .

Fixing ∆ ∈ Γ dS , we now investigate how to compute Pr(∆). As argued before, we

can recover the vertex list (v0, . . . , vd) of ∆. By the construction of ∆, v0, . . . , vd

are points in S. For i ∈ {0, . . . , d− 1}, we denote by Ei the i-dim hyperplane in Rd

through v0, . . . , vi. We give the following criterion for checking if ∆ is the witness

simplex of a SCH of S. For a hyperplane H (of any dimension) in Rd and two points

a, b ∈ Rd, we write a ≺H b if dist(a,H) < dist(b,H), or dist(a,H) = dist(b,H) and

a ≺ b.

Lemma 28. For a realization R of S, ∆ is the witness simplex of CH(R) (i.e.,

∆ = ∆CH(R)) iff the following two conditions hold.

(1) R contains v0, . . . , vd.

(2) R does not contain any point a ∈ S satisfying v0 ≺ a or vi+1 ≺Ei a for some

i ∈ {0, . . . , d− 1}.

Proof. Let R be a realization of S, and set C = CH(R). The proof of the lemma is

somewhat straightforward by using the definition of witness simplex. To see the “if”

part, assume the two conditions in the lemma hold. Then v0 must be the largest

point in R under ≺-order, which must be a vertex of C. Furthermore, vi+1 must

be a vertex of C (for it is the farthest from Ei and the points in S are in general

position) which has the maximum distance to Ei (in addition, if there exists another

vertex v of C having the same distance to Ei as vi+1, then v ≺ vi+1). Thus, by

60

definition, ∆ = ∆C . To see the “only if” part, assume ∆ = ∆C . Then v0, . . . , vd

are vertices of C and must be contained in R, which implies condition (1). Since

(v0, . . . , vd) is the vertex list of ∆, v0 is the largest vertex of C under ≺-order. Also,

for any i ∈ {0, . . . , d − 1}, vi+1 is a vertex of C which has the maximum distance

to Ei (in addition, if there exists another vertex v of C having the same distance to

Ei as vi+1, then v ≺ vi+1), so R cannot contain any point a with vi+1 ≺Ei a. So we

have condition (2).

Using the above lemma, we can, in a straightforward way, compute Pr(∆) in

linear time, just by multiplying the existence probabilities of v0, . . . , vd and the non-

existence probabilities of all a ∈ S which should not be included in R (according to

condition (2) in the lemma). Therefore, we obtain an O(nd+2)-time algorithm for

computing wid∗S . It is easy to improve the runtime to O(nd+1 log n) as follows. We

enumerate all ∆ ∈ Γ dS by considering their vertex lists. Fixing d (distinct) points

v0, . . . , vd−1 ∈ S, we show how to compute Pr(∆) for all ∆ ∈ Γ dS whose vertex lists

are of the form (v0, . . . , vd−1, ·) in O(n log n) time. First, we determine a subset V ⊆
S\{v0, . . . , vd−1} consisting of all v ∈ S\{v0, . . . , vd−1} such that (v0, . . . , vd−1, v)

is the vertex list of the d-simplex whose vertices are v0, . . . , vd−1, v. Clearly, this

step can be completed in linear time by enumerating all v ∈ S\{v0, . . . , vd−1} and

verifying for each v whether v ∈ V . If V = ∅, we are done because there is no

∆ ∈ Γ dS whose vertex list is of the form (v0, . . . , vd−1, ·). So suppose V 6= ∅. For

i ∈ {0, . . . , d−1}, we denote by Ei be the i-dim hyperplane in Rd through v0, . . . , vi.

We then compute a subset A ⊂ S consisting of all a ∈ S such that v0 ≺ a or

vi+1 ≺Ei a for some i ∈ {0, . . . , d− 2}. Now for any v ∈ V , we denote by Bv the set

of all b ∈ S\A such that v ≺Ed−1
b. By Lemma 28, we have

Pr(∆v) =

(
d−1∏
i=0

π(vi) ·
∏
a∈A

(1− π(a))

)
·

π(v) ·
∏
b∈Bv

(1− π(b))

 , (3.8)

where ∆v is the d-simplex with vertices v0, . . . , vd−1, v. Note that the left side of

the above formula is independent of v and thus only needs to be computed once.

To compute the right side efficiently, suppose S\A = {c1, . . . , cr}. We relabel these

points such that c1 ≺Ed−1
· · · ≺Ed−1

cr. This can be done by sorting in O(n log n)

time, or more precisely, O(r log r) time. We then compute
∏r
j=i(1 − π(cj)) for all

61

i ∈ {1, . . . , r} (note that this can be done in linear time). With this in hand, we

consider each v ∈ V . Since V ⊆ S\A, we must have v = ci for some i ∈ {1, . . . , r}.
In this case, the right side of Equation 3.8 is just π(ci) ·

∏r
j=i+1(1−π(cj)) and hence

can be computed in constant time. Therefore, we can compute Pr(∆v) for all v ∈ V
in linear time. Including the time for sorting, this gives us an O(nd+1 log n) time

algorithm for computing wid∗S , i.e., approximating widS within a constant factor.

Theorem 29. One can O(1)-approximate widS in O(nd+1 log n) time. The constant

approximation factor could be exponential in d.

3.3.3 A fully polynomial-time randomized approximation scheme

In this section, we develop a fully polynomial-time randomized approximation scheme

(FPRAS) for computing widS . An FPRAS should take S and a real number ε > 0

as input and should output a (1 + ε)-approximation of widS in time polynomial in

the size of S and 1/ε with probability at least 2/3.

We first introduce some notations. As defined in the preceding section, Γ dS is

the set of all d-simplices in Rd whose vertices are (distinct) points in S, and for

each ∆ ∈ Γ dS the notation Pr(∆) denotes the probability that the witness simplex

of a SCH of S is ∆. Let R be a realization of S and ∆ ∈ Γ dS be a simplex. From

Lemma 28, we know that ∆ = ∆CH(R) iff R contains the vertices of ∆ but does not

contain some other points in S according to condition (2) in the lemma. We now use

V∆ to denote the set of the vertices of ∆, X∆ to denote the set of the points in S that

R must not contain if ∆ = ∆CH(R). Let F∆ = S\(V∆ ∪X∆), which is the set of the

points in S whose presence/absence in R does not influence whether ∆ = ∆CH(R).

Define F∆ as the sub-dataset of S with the point-set F∆. Our FPRAS works as

follows. First, for each ∆ ∈ Γ dS , we randomly generate m = γ log n/ε2 realizations

of F∆, where γ is a large enough constant to be determined. Let R∆
1 , . . . , R

∆
m be

the generated realizations of F∆, and set T∆
i = R∆

i ∪ V∆. Note that the witness

simplex of CH(T∆
i) is ∆ by Lemma 28. We then compute

wid′S =
∑

∆∈Γ d
S

Pr(∆) ·

(
m∑
i=1

wid(CH(T∆
i))

m

)
, (3.9)

and output wid′S as the approximation of widS .

62

Next, we discuss the choice of the constant γ and verify the correctness of our

FPRAS. By Lemma 27, we can find positive constants k1, k2 such that k1·wid(∆P) ≤
wid(P) ≤ k2 · wid(∆P) for any convex polytope P in Rd with wid(P) > 0. We set

γ = d(k2/k1)2. With this choice of γ, we claim the following, which shows the

correctness of our FPRAS.

Lemma 30. (1− ε)widS ≤ wid′S ≤ (1 + ε)widS with probability at least 2/3.

Proof. Indeed, we can write

widS =
∑

∆∈Γ d
S

Pr(∆) ·E∆,

where E∆ is the conditional expected width of a SCH of S under the condition that

the witness simplex of the SCH is ∆. Since wid′S is computed using Equation 3.9,

it suffices to show that

(1− ε)E∆ ≤
m∑
i=1

wid(CH(T∆
i))

m
≤ (1 + ε)E∆ (3.10)

for all ∆ ∈ Γ dS with probability at least 2/3. Fixing ∆ ∈ Γ dS , we can regard

wid(CH(T∆
1)), . . . ,wid(CH(T∆

m)) as i.i.d. random variables. By Lemma 28 and

the construction of each T∆
i , we know that the expectation of wid(CH(T∆

i)) is E∆.

Furthermore, we have k1 · wid(∆) ≤ wid(CH(T∆
i)) ≤ k2 · wid(∆), since the witness

simplex of CH(T∆
i) is ∆ as argued before. Based on these observations, we can

apply Hoeffding’s inequality to obtain

Pr

[∣∣∣∣∣
m∑
i=1

wid(CH(T∆
i))

m
−E∆

∣∣∣∣∣ ≥ εE∆

]
≤ 2 exp

(
− 2m · (εE∆)2

(k2 − k1)2 · wid(∆)2

)
.

Note that m = γ log n/ε2 = d(k2/k1)2 log n/ε2. Therefore,

− 2m · (εE∆)2

(k2 − k1)2 · wid(∆)2
≤ −2d log n,

since E∆ ≥ k1 ·wid(∆). It follows that Equation 3.10 fails with probability O(n−2d)

for a specific ∆. Therefore, by union bound, Equation 3.10 holds for all ∆ ∈ Γ dS
with probability 1−O(n−d+1), which is greater than 2/3 for large n (assume d ≥ 2).

As a result, the inequality in the theorem is proved.

Theorem 31. There exists an FPRAS for computing widS .

63

3.3.4 A polynomial-time approximation scheme

In this section, we design a PTAS for computing widS . The high-level strategy to de-

sign such a PTAS is similar to that in the expected-diameter problem (Section 3.2.3).

We shall first establish a formula for widS using conditional expectation, and then

compute the conditional expectations using the grid technique as in the last section.

Consider a realization R of S. For a simplex ∆ in Rd, define E∆ as the event that the

witness simplex of R is ∆. Let E = {E∆ : ∆ is a simplex whose vertices are in S}.
Then we can write

widS =
∑
E∆∈E

Pr
R∼S

[E∆] · ER∼S [wid(R)|E∆]. (3.11)

Note that |E| = O(nd+1). As argued before, the probability PrR∼S [E∆] can be com-

puted in O(n) time. Thus, it suffices to (approximately) compute ER∼S [wid(R)|E∆]

for all E∆ ∈ E . Fix E∆ ∈ E . Similar to the approach used in the expected-

diameter problem, we shall first build a stochastic dataset S∆ = (S∆, π∆) such that

ER∼S [wid(R)|E∆] = widS∆
. Let (v0, . . . , vd) be the vertex list of ∆, and T∆ be the

subset of S consisting of all the points to the left of v0 or farther from Fi than vi+1

for some i ∈ {0, . . . , d− 1}. We define S∆ = S\T∆ and

π∆(a) =

{
1 if a ∈ {v0, . . . , vd},
π(a) otherwise.

Clearly, E∆ happens iff v0, . . . , vd exists and all the points in T∆ do not exist. Thus,

we have the equation ER∼S [wid(R)|E∆] = widS∆
. It suffices to have a PTAS for

computing widS∆
. To this end, we apply the grid technique used in the expected-

diameter problem: building a grid and “compressing” the stochastic points in each

cell. By [34], we can compute (in constant time) a bounding box B of ∆ such that

widu(B) = Θ(widu(∆)) for all directions u ∈ Sd−1. Without loss of generality, we

assume that B =
∏d
i=1[0, δi]. Now we build a grid Γ on Rd consisting of hyper-

rectangle cells of size (c · εδ1)× · · · × (c · εδd) where c is a sufficiently small constant

and ε is the approximation factor. In other words, each cell � of Γ is an axis-

parallel hyper-rectangle whose side-length in the i-th dimension is c · εδd. For each

cell �, we denote by c� as the center of �. We construct a new stochastic dataset

64

S ′∆ = (S′∆, π
′
∆) as S′∆ = {c� : S∆ ∩� 6= ∅} and

π′∆(c�) =
∏

a∈S∆∩�
(1− π∆(a)).

In what follows, we shall bound the size of S ′∆ and show that widS′∆ is a good

approximation of widS∆
. We first observe the following.

Lemma 32. For all possible realizations R of S∆ and all directions u ∈ Sd−1,

widu(R) = Θ(widu(B)).

Proof. As argued before, for a subset S′ ⊆ S, the witness simplex of S′ is ∆ if

v0, . . . , vd ∈ S′ and T∆ ∩ S′ = ∅. Since π∆(a) = 1 if a ∈ {v0, . . . , vd}, any possible

realization R of S∆ must contain v0, . . . , vd. Furthermore, T∆ ∩ S∆ = ∅. Therefore,

the witness simplex of any possible realization R of S∆ is ∆. By Lemma 27, we

have widu(R) = Θ(widu(∆)) for all directions u ∈ Sd−1. Since the box B satisfies

widu(B) = Θ(widu(∆)) for all u ∈ Sd−1, the statement in the lemma holds.

The above lemma implies widu(S∆) = Θ(widu(B)) for all u ∈ Sd−1. Let

e1, . . . , ed ∈ Sd−1 be the standard basis of Rd. Then we have widei(S∆) = Θ(δi) for

all i ∈ {1, . . . , d}, which implies that the points in S∆ are contained in an orthogonal

box B′ whose side-length in the i-th dimension is Θ(δi). Since the side-length of each

grid cell of Γ in the i-th dimension is c ·εδi, the number of the grid cells intersecting

B is O(ε−d). It follows that the number of the grid cells � satisfying S∆ ∩ � 6= ∅
is O(ε−d), and hence |S′∆| = O(ε−d). To see that widS′∆ is a good approximation of

widS∆
, we establish a lemma similar to Lemma 22.

Lemma 33. (1− ε) · widS∆
≤ widS′∆ ≤ (1 + ε) · widS∆

.

Proof. Consider the map f : S∆ → S′∆ defined as f(a) = c� where � is the cell

containing a. A subset P of S∆ is then mapped to a subset P ′ = f(P) of S′∆. Let

R be a possible realization of S∆ and R′ = f(R). We first show that 1 − ε/2 ≤
wid(R′)/wid(R) ≤ 1 + ε/2. Let u ∈ Sd−1 be the direction defining wid(R′), that

is wid(R′) = widu(R′), and a, a′ ∈ R be the two points defining widu(R), that is,

widu(R) = widu({a, a′}). Denote by � and �′ the grid cells containing a and a′,

respectively. Then f(a) = c� and f(a′) = c�′ . Note that

widu({a, a′}) ≤ widu({c�, c�′}) + widu(�) + widu(�′),

65

and widu(�) = widu(�′) = c · εwidu(B). It follows that

wid(R′)
wid(R)

≥ widu(R′)
widu(R)

≥ widu({c�, c�′})
widu({a, a′})

≥ 1− 2c · εwidu(B)

widu({a, a′})
.

By Lemma 32, we have widu(R) = Θ(widu(B)). Since c is sufficiently small,

we have wid(R′)/wid(R) ≥ 1 − ε. Using a similar argument, we can show that

wid(R′)/wid(R) ≤ 1 + ε.

Based on this, we can complete the proof using the same approach as in the

proof of Lemma 22. From the construction of S ′∆, we have

Pr
R′∼S′∆

[R′ = P ′] =
∑

P,f(P)=P ′
Pr

R∼S∆

[R = P].

It follows that

widS′∆ =
∑

P ′⊆S′∆

Pr
R′∼S′∆

[R′ = P ′] · wid(P ′) =
∑

P ′⊆S′∆

∑
P,f(P)=P ′

Pr
R∼S∆

[R = P] · wid(P ′).

On the other hand, we have

widS∆
=
∑
P⊆S∆

Pr
R∼S∆

[R = P] · wid(P) =
∑

P ′⊆S′∆

∑
P,f(P)=P ′

Pr
R∼S∆

[R = P] · wid(P).

As argued above, if f(P) = P ′ and PrR∼S∆
[R = P] > 0, then 1−ε ≤ wid(P ′)/wid(P) ≤

1 + ε. Therefore, we have (1− ε) · widS∆
≤ widS′∆ ≤ (1 + ε) · widS∆

.

The fact that |S′∆| = O(ε−d) allows us to compute widS′∆ inO(ε−d·2ε−d
) time. By

the above lemma, this results in a PTAS for computing widS∆
. Further combining

this with Equation 3.11, we obtain a PTAS for computing widS .

Theorem 34. There exists a PTAS for computing widS .

3.4 Computing the expected combinatorial complexity

Let S = (S, π) be a stochastic dataset in Rd with d fixed, and suppose |S| = n. Our

goal in this section is to (exactly) compute the expected complexity of a SCH of S,

defined as

compS =
∑
R⊆S

Pr(R) · |CH(R)|,

where Pr(R) denotes the probability that R occurs as a realization of S.

66

3.4.1 Reduction to SCH membership probability queries

Given a stochastic dataset T in Rd and a query point q ∈ Rd, the SCH membership

probability (of q with respect to T) refers to the probability that q lies in a SCH of

T , which we denote by memT (q). It is known that memT (q) can be computed in

O(md−1) time for d ≥ 3 [21, 22] and O(m logm) time for d ∈ {1, 2} [7], where m is

the number of the stochastic points in T .

In this section, we reduce our problem of computing compS to SCH membership

probability queries. Let R be a realization of S. It is clear that the faces of CH(R)

must be simplices with vertices in S. Therefore, we can rewrite the formula for

compS as

compS =
∑
R⊆S

Pr(R) ·

∑
∆∈ΓS

σ(R,∆)

 =
∑

∆∈ΓS

F∆, (3.12)

where ΓS is the set of all simplices (of dimension less than d) with vertices in S, σ is

an indicator function such that σ(R,∆) = 1 if ∆ is a face of CH(R) and σ(R,∆) = 0

otherwise, and F∆ is the probability that ∆ is a face of a SCH of S. We now show

that for each ∆ ∈ ΓS , the computation of F∆ can be reduced to a SCH membership

probability query. Suppose Y is a set of m (m ≥ d + 1) points in Rd in general

position. Let y0, . . . , yk ∈ Y be k + 1 points where 0 ≤ k ≤ d − 1, and ∆ be the

k-simplex with vertices y0, . . . , yk. Define vectors ui = yi− y0 for i ∈ {1, . . . , k}. By

the general position assumption, u1, . . . ,uk generate a k-dim linear subspace H of

Rd. Set H∗ to be the orthogonal complement of H in Rd, which is by definition the

(d − k)-dim linear subspace of Rd orthogonal to H. We then orthogonally project

the points in Y to H∗, and denote the set of the projection images by Y ∗. Note

that y0, . . . , yk are clearly projected to the same point in H∗, which we denote by

ŷ. We have the following observation.

Lemma 35. ∆ is a face of CH(Y) iff ŷ is a vertex of CH(Y ∗) in H∗.

Proof. Suppose Y = {y0, y1, . . . , ym}, and let P = CH(Y), P ∗ = CH(Y ∗). Then

any point x ∈ P can be represented as a linear combination x =
∑m

i=0wi · yi where

wi ≥ 0 and
∑m

i=0wi = 1, which we call convex representation. It is easy to check

that x is on the boundary of P iff x has a unique convex representation and in which

there are at most d nonzero wi’s. We first show the “if” part. Assume ∆ is not a

67

face of CH(Y). Then there must exist x ∈ ∆ which is not on the boundary of P .

Since ∆ is a simplex, there is a unique convex representation of x satisfying wi = 0

for all i > k. But this should not be the only convex representation of x, because x

is not on the boundary of P . Therefore, x has another convex representation with

wi > 0 for some i > k (without loss of generality, assume wm > 0). Let ρ : Rd → H∗

be the orthogonal projection map. We have

ŷ = ρ(x) = ρ

(
m∑
i=0

wi · yi

)
=

m∑
i=0

wi · ρ(yi).

Note that all ρ(yi) are points in P ∗. Furthermore, by general position assumption,

ρ(ym) 6= ŷ. Therefore, ŷ is not a vertex of P ∗. Next, we consider the “only if”

part. Assume ŷ is not a vertex of P ∗. Then we have P ∗ = CH(Y ∗\{ŷ}). It follows

that ŷ has a convex representation ŷ =
∑m

i=0wi · ρ(yi) with w0 = · · · = wk = 0.

Lifting this representation, we obtain a point x =
∑m

i=0wi · yi ∈ P . Since ρ(x) = ŷ,

x is in the k-dim hyperplane L spanned by y0, . . . , yk. Now assume ∆ is a face of

P , so we must have L ∩ P = ∆, which implies x ∈ ∆. This means that x has a

convex representation with wk+1 = · · · = wm = 0. Since x has two different convex

representations, it is not on the boundary of P , contradicting that x ∈ ∆. As a

result, ∆ is not a face of P .

By the above lemma, we can reduce the computation of F∆ for any ∆ ∈ ΓS to a

SCH membership query as follows. For each i ∈ {0, . . . , d− 1}, let Γ iS ⊆ ΓS be the

subset consisting of all i-simplices in ΓS (then ΓS =
⋃d−1
i=0 Γ

i
S). Suppose ∆ ∈ Γ kS is

a k-simplex with vertices v0, . . . , vk ∈ S. As before, we define vectors ui = vi − v0

for i ∈ {1, . . . , k}. Then u1, . . . ,uk generate a k-dim linear subspace H of Rd, and

set H∗ to be the orthogonal complement of H in Rd. Let ρ : Rd → H∗ be the

orthogonal projection map. We define a multi-set S′ = {ρ(a) : a ∈ S\{v0, . . . , vk}}
of points in H∗, which in turn gives us a stochastic dataset S ′ = (S′, π′) in H∗ where

π′(ρ(a)) = π(a). Set q = ρ(v0) = · · · = ρ(vk).

Corollary 36. F∆ =
∏k
i=0 π(vi) · (1−memS′(q)).

Proof. Let R be a realization of S. If ∆ is a face of CH(R), then v0, . . . , vk must

68

be contained in R. Furthermore, by Lemma 35, q must be a vertex of the projec-

tion image of CH(R) in H∗. By the general position assumption, this is equiva-

lent to saying that q is outside the projection image of CH(R\{v0, . . . , vk}). Con-

versely, if v0, . . . , vk are contained in R and q is outside the projection image of

CH(R\{v0, . . . , vk}), then ∆ is a face of CH(R) by Lemma 35. The probability that

R contains v0, . . . , vk is
∏k
i=0 π(vi), and the probability that q is outside the pro-

jection image of CH(R\{v0, . . . , vk}) is 1−memS′(q). These two events are clearly

independent. Therefore, we have the formula in the corollary.

Since H∗ is linearly homeomorphic to Rd−k, computing memS′(q) is nothing

but answering a SCH membership probability query in Rd−k. Therefore, using the

algorithms for answering SCH membership probability queries [21, 22], F∆ can be

computed in O(nd−k−1) time if k ∈ {0, . . . , d − 3}. Note that |Γ kS | = O(nk+1),

so we can compute the sum
∑d−3

i=0

∑
∆∈Γ i

S
F∆ in O(nd) time. In order to further

compute compS by Equation 3.12, we now only need to compute
∑

∆∈Γ d−2
S

F∆ and∑
∆∈Γ d−1

S
F∆. Answering SCH membership probability queries in R1 and R2 requires

O(m logm) time [7] (where m is the size of the given stochastic dataset). Thus, if we

use the algorithm in [7] to calculate SCH membership probabilities, our computation

task cannot be done in O(nd) time. The next section discusses how to handle this

issue.

3.4.2 Handling the cases k = d− 2 and k = d− 1

Set λ1 =
∑

∆∈Γ d−1
S

F∆ and λ2 =
∑

∆∈Γ d−2
S

F∆. For simplicity of exposition, we first

fix a point o ∈ Rd such that S ∪ {o} is in general position. For every hyperplane E

with o /∈ E, we denote by E+ the connected component of Rd\E containing o, and

by E− the other one. Define the S-statistic of E as a 3-tuple statS(E) = (p+, p−, A)

where p+ =
∏
a∈S∩E+(1 − π(a)), p− =

∏
a∈S∩E−(1 − π(a)), A = S ∩ E. Let E

be the collection of the hyperplanes in Rd which go through exactly d points in S.

Since S ∪ {o} is in general position, stat(E) is defined for every E ∈ E . We say an

algorithm computes the S-statistics for E if it reports statS(E) for all E ∈ E in an

arbitrary order (without repetition).

Lemma 37. If there exists an algorithm computing the S-statistics for E in O(t(n))

time and O(s(n)) space, then one can compute λ1 and λ2 in O(t(n)) time and

69

O(s(n)) space.

Proof. We first consider the computation of λ1. Let ∆ ∈ Γ d−1
S and E ∈ E be the

hyperplane through the d vertices of ∆. Suppose q and S ′ are the point and the

stochastic dataset defined in Corollary 36 for computing F∆. Since memS′(q) is a

SCH membership query in R1, it is clear that 1 − memS′(q) = p+ + p− − p+p− if

stat(E) = (p+, p−, A). Hence F∆ can be computed from statS(E) in constant time.

Consider the algorithm provided for computing the S-statistics for E . At every time

it reports some statS(E) = (p+, p−, A), we use it to compute the corresponding F∆

(note that ∆ can be recovered from A) in constant time. By summing up all F∆, we

obtain λ1, which is done in O(t(n)) time and O(s(n)) space. To consider λ2, we need

a careful analysis of the witness-edge method in [7] for computing SCH membership

probability in R2. Let T = (T, τ) be a stochastic dataset in R2, and q ∈ R2 be

a query point. The witness-edge method computes 1 − memT (q) as a summation

in which the summands correspond one-to-one to the hyperplanes (i.e., lines) that

go through q and one point in T . Furthermore, the summand corresponding to a

hyperplane E can be computed from statT (E) in constant time. See [7] for the

details. Now we consider the computation of λ2. Let ∆ ∈ Γ d−2
S . Suppose q and

S ′ are the point and the stochastic dataset defined in Corollary 36 for computing

F∆. We can regard (S ′, q) as a SCH membership probability query in R2. Thus,

by our observation about the witness-edge method and Corollary 36, F∆ can be

expressed as a summation with summands one-to-one corresponding to the lines

through q and one point in the point-set of S ′ (we denote by L the collection of

these lines). Note that there is also an one-to-one correspondence between L and

a sub-collection E∆ ⊂ E containing the hyperplanes through all the d − 1 vertices

of ∆. Moreover, statS′(L) for L ∈ L can be recovered from statS(E) for E ∈ E∆

corresponding to L in constant time. Therefore, we may charge each summand of

F∆ to the corresponding hyperplane E ∈ E∆. Now consider the algorithm provided

for computing the S-statistics for E . At every time it reports statS(E) for some

E ∈ E , we use it to compute all summands charged to E. Note that each E ∈ E
belongs to exactly d − 1 E∆’s, and hence is charged with exactly d − 1 summands.

Therefore, this computation can be done in constant time. By summing up all

summands charged to all E ∈ E , we finally obtain λ2, which is done in O(t(n)) time

70

and O(s(n)) space.

By the above lemma, it now suffices to establish an efficient algorithm for com-

puting the S-statistics for E . We do this in the next section.

3.4.3 Computing the S-statistics for E

We describe an algorithm which computes the S-statistics for E in O(nd) time

and O(n) space. Suppose S = {a1, . . . , an}. Then every hyperplane E ∈ E can

be uniquely represented as a d-tuple (ai1 , . . . , aid) where ai1 , . . . , aid are the points

on E and i1 < · · · < id. We first describe an algorithm using O(nd log n) time

and O(n) space. Fixing d − 1 points ai1 , . . . , aid−1
∈ S with i1 < · · · < id−1,

we show how to report, in O(n log n) time and O(n) space, the S-statistics of all

hyperplanes (i.e., lines) in E which are represented as the form (ai1 , . . . , aid−1
, ·).

Define Y as the (d − 2)-dim hyperplane in Rd spanned by ai1 , . . . , aid−1
. Let Z be

the (unique) vertical (d − 1)-dim hyperplane containing Y (by “vertical” we mean

that Z is perpendicular to the hyperplane xd = 0), and E ′ ⊆ E be the sub-collection

consisting of all hyperplanes in E which contain Y . Note that |E ′| = n− d+ 1. We

then sort the hyperplanes in E ′ in the rotation order around Y , that is, we assign

to each hyperplane E ∈ E ′ a key value equal to the rotation angle from Z to E

(the rotation is taken around Y with a fixed direction), and sort the lines by their

key values. Assume E1, . . . , En−d+1 is the sorted list. Observe that stat(Ej+1) can

be computed in constant time if stat(Ej) is already in hand, basically because the

points on each side of Ej+1 are almost the same as those on each side of Ej except

two points. By this observation, we may compute the S-statistics of E1, . . . , En−d+1

in O(n) time. Once stat(Ej) is computed, we report it if Ej is represented as the

form (ai1 , . . . , aid−1
, ·). In this way, we obtain an O(nd log n)-time and O(n)-space

algorithm.

To eliminate the log n factor in the time bound, we need to further apply the

techniques of duality and topological sweep [32]. This approach heavily relies on an

idea in [21] (which was used to improve the algorithm for computing the separability-

probability), so here we only provide a sketch. Instead of fixing d − 1 points, we

fix d − 2 points ai1 , . . . , aid−2
∈ S with i1 < · · · < id−2, and want to report, in

O(n2) time and O(n) space, stat(E) for all E ∈ E which are represented as the

71

form (ai1 , . . . , aid−2
, ·, ·). Note that if this can be done, we immediately obtain

an O(nd)-time and O(n)-space algorithm. Consider the point-set S in the dual

space of Rd. Every point ai ∈ S is dual to a (d − 1)-dim hyperplane a∗i in the

dual space. Furthermore, a (k − 1)-dim hyperplane spanned by k (distinct) points

aj1 , . . . , ajk ∈ S is dual to a (d − k)-dim hyperplane in the dual space, which is in

fact the intersection of a∗j1 , . . . , a
∗
jk

. Let D be the (d − 3)-dim hyperplane spanned

by ai1 , . . . , aid−2
, which is dual to a 2-dim hyperplane (i.e., a plane) D∗ in the

dual space. For each ai ∈ S\{ai1 , . . . , aid−2
}, the intersection of a∗i and D∗ is a

line in D∗ (which should be the dual of the (d − 2)-dim hyperplane spanned by

ai1 , . . . , aid−2
, ai). These n−d+2 lines form a line arrangement in D∗. Suppose l∗i is

the line corresponding to ai. In the line arrangement, there are n−d+1 intersection

points on l∗i , each of which is the dual of a hyperplane through ai1 , . . . , aid−2
, ai in

the original space. The order of these intersection points appearing on l∗i is just the

rotation order of the corresponding hyperplanes in the original space. Therefore, if

these intersection points are already sorted, we can compute the S-statistic of each of

the corresponding hyperplanes in amortized O(1) time. But we cannot use sorting,

as it takes O(n log n) time per line and we have O(n) lines in the arrangement.

Instead, we use topological sweep to visit the intersection points in the arrangement.

In the process of topological sweep, the intersection points on each line is visited in

order along the line (though not consecutively). When the first intersection point on

a line is visited, we use brute-force to compute the S-statistic of the corresponding

hyperplane in O(n) time. Then when we go to the next intersection point on the line,

we can compute the S-statistic of the corresponding hyperplane in constant time

from the S-statistic of the hyperplane corresponding to the previous intersection

point. Once a S-statistic is computed, we report it if the hyperplane is represented

as the form (ai1 , . . . , aid−2
, ·, ·). The topological sweep takes O(n2) time and O(n)

space. Thus, we obtain an algorithm computing the S-statistics for E in O(nd) time

and O(n) space.

With the above algorithm in hand, Lemma 37 implies that we can compute λ1

and λ2 in O(nd) time and O(n) space. By further combining this with what we have

in Section 3.4.1, we can finally conclude the following.

Theorem 38. One can compute the exact value of compS in O(nd) time.

Chapter 4

Stochastic dominance problems

Let S = (S, cl, π) be a given colored stochastic dataset in Rd where S = {a1, . . . , an}.
In this chapter, we study the CSD problem and the FBCSD problem for S; see

Section 1.1 for the statement of these problems. For convenience, throughout this

section, when denoting a colored dataset T = (T, cl), we simply use the notation T

if the color function cl is clear.

4.1 Preliminaries

We formally define some notions about the dominance relation. We say a point

p ∈ Rd dominates another point q ∈ Rd (denoted by p � q) if the coordinate of

p is greater than or equal to the coordinate of q in every dimension. In a colored

dataset T = (T, cl), an inter-color dominance is a pair (a, b) of points in T such

that cl(a) 6= cl(b) and a � b. By naturally generalizing the conventional dominance

relation, one can define the dominance relation with respect to a specific orthogonal

basis of Rd. Specifically, a point p ∈ Rd dominates another point q ∈ Rd with

respect to an orthogonal basis B = (b1, . . . ,bd) of Rd (denoted by p �B q) if

〈bi, p〉 ≥ 〈bi, q〉 for all i ∈ {1, . . . , d}, where 〈·, ·〉 is the inner product. With this

generalized definition, the conventional dominance relation is just the dominance

relation with respect to the standard basis E = (e1, . . . , ed) of Rd.

72

73

4.2 The colored stochastic dominance problem

Define ΛS as the probability that a realization of S contains inter-color dominances.

Set ΓS = 1− ΛS , which is the inter-color dominance-free probability, i.e., the prob-

ability that a realization of S contains no inter-color dominances. The goal of the

CSD problem is to compute ΛS (or ΓS).

4.2.1 An algorithm for d = 2

The näıve method for solving the CSD problem is to enumerate all subsets of S and

“count” those containing inter-color dominances. However, it requires exponential

time, as there are 2|S| subsets of S to be considered. In this section, we show that

the CSD problem in R2 can be solved much more efficiently. Specifically, we propose

an O(n2 log2 n)-time algorithm to compute ΓS . For simplicity, we assume that the

points in S have distinct x-coordinates and y-coordinates (if this is not the case, we

can first “regularize” S as shown later in Lemma 55).

Z(A) A

Figure 4.1: Illustrating A and Z(A).

When computing ΓS , we need to consider the realizations which contain no inter-

color dominances. As we will see, in the case where d = 2, these realizations have

good properties, which allows us to solve the problem efficiently in a recursive way.

For any point a ∈ R2, we use x(a) (resp., y(a)) to denote the x-coordinate (resp.,

y-coordinate) of a. Suppose the points a1, . . . , an ∈ S are already sorted such that

x(a1) < · · · < x(an). For convenience of exposition, we add a dummy point a0 to

S with x(a0) < x(a1) and y(a0) > y(ai) for all i ∈ {1, . . . , n}. The color cl(a0) is

defined to be different from cl(a1), . . . , cl(an), and π(a0) = 1. Note that including

a0 does not change ΓS . For a subset A = {ai1 , . . . , air} of S with i1 < · · · < ir,

we define Z(A) = ∅ if A is monochromatic, and otherwise Z(A) = {ai1 , . . . , ail}

74

such that cl(ail) 6= cl(ail+1
) = · · · = cl(air). In other words, Z(A) is the subset of A

obtained by dropping the “rightmost” points of the same color as air ; see Figure 4.1.

We have the following important observation.

Lemma 39. A realization R of S contains no inter-color dominances iff Z(R)

contains no inter-color dominances and for any a ∈ Z(R), b ∈ R\Z(R) it holds that

y(a) > y(b).

Proof. To see the “if” part, assume that Z(R) contains no inter-color dominances

and y(a) > y(b) for any a ∈ Z(R), b ∈ R\Z(R). In this case, any two points in Z(R)

cannot form an inter-color dominance. Also, any two points in R\Z(R) cannot form

an inter-color dominance for R\Z(R) is monochromatic. It suffices to show that any

a ∈ Z(R) and b ∈ R\Z(R) cannot form an inter-color dominance. By assumption,

we have y(a) > y(b). But by the definition of Z(S), we also have x(a) < x(b). Thus,

a and b do not dominate each other. To see the “only if” part, assume R contains

no inter-color dominances. Since Z(R) is a subset of R, it also contains no inter-

color dominances. Let a ∈ Z(R) and b ∈ R\Z(R) be two points. As argued before,

we have x(a) < x(b). If cl(a) 6= cl(b), then it is clear that y(a) > y(b) (otherwise

(a, b) forms an inter-color dominance). The only remaining case is cl(a) = cl(b).

Since a ∈ Z(R), by the definition of Z(R), we may find a point o ∈ Z(R) such that

x(a) < x(o) < x(b) and cl(o) 6= cl(a) = cl(b). If y(a) < y(b), then either y(a) < y(o)

or y(o) < y(b), i.e., either (a, o) or (o, b) forms an inter-color dominance. Because R

contains no inter-color dominances, we must have y(a) > y(b).

With this in hand, we then consider how to compute ΓS . For a nonempty subset

A ⊆ S, we define the signature, sgn(A), of A as a pair (i, j) such that ai, aj ∈ A
and ai (resp., aj) has the greatest x-coordinate (resp., smallest y-coordinate) among

all points in A. Let Ei,j be the event that a realization R of S contains no inter-

color dominances and satisfies sgn(R) = (i, j). Note that if a realization R contains

no inter-color dominances, then either R = {a0} or some Ei,j happens for i, j ∈
{1, . . . , n}. So we immediately have

ΓS =

n∏
i=1

(1− π(ai)) +

n∑
i=1

n∑
j=1

Pr[Ei,j].

75

Now the problem is reduced to computing all Pr[Ei,j]. Instead of working on the

events {Ei,j} directly, we consider a set of slightly different events {E′i,j} defined

as follows. For p ∈ {0, . . . , n}, set Sp = {a0, . . . , ap}, and we use Sp to denote the

sub-dataset of S with point set Sp ⊆ S. Define E′i,j as the event that a realization

R of Si contains no inter-color dominances and satisfies sgn(R) = (i, j). It is quite

easy to see the equations

Pr[Ei,j] = Pr[E′i,j] ·
n∏

t=i+1

(1− π(at)).

Set F (i, j) = Pr[E′i,j]. We show how to compute all F (i, j) recursively by applying

Lemma 39. Observe that F (i, j) = 0 if x(ai) < x(aj) (equivalently, i < j) or

y(ai) < y(aj) or cl(ai) 6= cl(aj). Thus, it suffices to compute all F (i, j) with i ≥ j,

y(ai) ≥ y(aj), cl(ai) = cl(ai) (we say the pair (i, j) is legal if these three conditions

hold). Let (i, j) be a legal pair. Trivially, for i = j = 0, we have F (i, j) = 1. So

suppose i, j > 0. Let R be a realization of Si. To compute F (i, j), we consider

the signature sgn(Z(R)) under the condition that E′i,j happens. First, when E′i,j
happens, we always have Z(R) 6= ∅, because R at least contains a0, ai, aj (possibly

i = j) and cl(a0) 6= cl(ai) = cl(aj). Therefore, in this case, sgn(Z(R)) is defined and

must be a legal pair (i′, j′) for some i′, j′ ∈ {0, . . . , i−1}. It follows that F (i, j) can be

computed by considering for each such pair (i′, j′) the probability that R contains no

inter-color dominances and sgn(R) = (i, j), sgn(Z(R)) = (i′, j′), and then summing

up these probabilities. Note that if sgn(R) = (i, j) and sgn(Z(R)) = (i′, j′), then

i′ < j and cl(i′) 6= cl(i). In addition, if R contains no inter-color dominances, then

we must have y(ai) < y(aj′) by Lemma 39. As such, we only need to consider the

legal pairs (i′, j′) satisfying i′ < j, y(ai) < y(aj′), cl(i′) 6= cl(i) (we denote the set of

these pairs by Ji,j). Fixing such a pair (i′, j′) ∈ Ji,j , we investigate the corresponding

probability. By the definition of Z(R) and Lemma 39, we observe that if R contains

no inter-color dominances and sgn(R) = (i, j), sgn(Z(R)) = (i′, j′), then

• R ∩ Si′ contains no inter-color dominances and sgn(R ∩ Si′) = (i′, j′);

• R ∩ (Si\Si′) includes ai and aj , but does not include any point at for t ∈ {i′ +
1, . . . , i} satisfying cl(at) 6= cl(ai) or y(at) < y(aj) or y(aj′) < y(at).

Conversely, one can also verify that if a realization R of Si satisfies the above two

conditions, then R contains no inter-color dominances (by Lemma 39) and sgn(R) =

76

(i, j), sgn(Z(R)) = (i′, j′) (note that Z(R) = R ∩ Si′). Therefore, the probability

that R contains no inter-color dominances and sgn(R) = (i, j), sgn(Z(R)) = (i′, j′)

is just the product F (i′, j′) · π∗i,j · Πi,j,i′,j′ , where π∗i,j = π(ai) · π(aj) if i 6= j and

π∗i,j = π(ai) if i = j, and Πi,j,i′,j′ is the product of all (1−π(at)) for t ∈ {i′+1, . . . , i}
satisfying cl(at) 6= cl(ai) or y(at) < y(aj) or y(aj′) < y(at). Based on this, we can

compute F (i, j) as

F (i, j) =
∑

(i′,j′)∈Ji,j

(
F (i′, j′) · π∗i,j ·Πi,j,i′,j′

)
= π∗i,j ·

∑
(i′,j′)∈Ji,j

(
F (i′, j′) ·Πi,j,i′,j′

)
.

(4.1)

The straightforward way to compute each F (i, j) takes O(n3) time, which results in

an O(n5)-time algorithm for computing ΓS .

Indeed, the runtime of the above algorithm can be drastically improved to

O(n2 log2 n), by properly using dynamic 2D range trees with some tricks. For-

mally, we use a 2D range tree T built on a fixed collection of planar points and

maintains the weights of these points. It supports the following three operations.

• Query(T , r): return the sum of weights of all the points in the query range

r.

• Update(T , p, w): update the weight of point p to w.

• Multiply(T , r, δ): multiply by a factor of δ the weight of every point in the

range r. Note that this operation is reversible and the inverse of Multiply(T , r, δ)
is Multiply(T , r, 1/δ).

We will show later that all of these operations can be done in O(log2 n) time.

Two more notations are defined. For a legal pair (i, j), we use (i, j)↘ (resp.

(i, j)↖) to represent the point (x(ai), y(aj)) (resp. (x(aj), y(ai))); see Figure 4.2.

Also, let Quad(p) denote the northwest open quadrant of point p, i.e., (−∞, x(p))×
(y(p),∞). We give the complete solution in Algorithm 1 followed by the correctness

analysis.

Correctness analysis. We compute F (i, j) for each legal pair (i, j) by first enu-

merating i from 1 to n and then j in an order such points are visited from bottom

to top; see the nested loop at Lines 8 and 14. For now, assume the fact, which we

prove later, that the inner j-loop correctly computes F (i, j) for all legal pairs (i, j)

when i is fixed. We then have the following lemma.

77

Algorithm 1 Computing ΓS in O(n2 log2 n) time.

1: procedure Compute-ΓS(S) . Recall S = (S, cl, π).
2: Sort all points in S such that x(a1) < · · · < x(an).
3: Let T be the 2D range tree built on {(i, j)↘ : (i, j) is legal} with initial

weights 0.
4: Let Tk be the 2D range tree built on {(i, j)↘ : (i, j) is legal and cl(ai) =

cl(aj) = k} with initial weights 0, for every color k.
5: prod =

∏n
i=1 (1− π(ai))

6: ΓS ← prod
7: Update(T , a0, 1). This implies F (0, 0) = 1. Also, no need to update Tcl(a0).
8: for i← 1 to n do
9: prod← prod · (1− π(ai))

−1

10: k ← cl(ai)
11: Multiply(T ,Quad(aj), (1 − π(aj))

−1) for all j ∈ {1, . . . , i} such that
cl(aj) = k.

12: Multiply(Tk,Quad(aj), (1 − π(aj))
−1) for all j ∈ {1, . . . , i} such that

cl(aj) = k.
13: Let (`1, . . . , `i) be a permutation of (1, . . . , i) such that y(a`1) < · · · <

y(a`i).
14: for j ← `1 to `i do
15: if (i, j) is a legal pair then . This implies that cl(aj) = k.
16: F (i, j)← Query(T ,Quad((i, j)↖))−Query(Tk,Quad((i, j)↖)
17: F (i, j)← F (i, j) · π∗i,j
18: ΓS ← ΓS + F (i, j) · prod
19: Multiply(T ,Quad(aj), 1− π(aj))
20: Multiply(Tk,Quad(aj), 1− π(aj))
21: end if
22: end for
23: Reverse all Multiply operations executed in Lines 12, 19, 20.
24: Update(T , (i, j)↘, F (i, j)) and Update(Tk, (i, j)↘, F (i, j)) for every j ∈
{1, . . . , i} such that pair (i, j) is legal.

25: Multiply(T , (−∞, x(ai))× R, 1− π(ai))
26: Multiply(Tk, (−∞, x(ai))× R, 1− π(ai))
27: end for
28: return ΓS
29: end procedure

78

ai

aj (i, j)↘

(i, j)↖

Figure 4.2: Illustrating (i, j)↘ and (i, j)↖ for a legal pair (i, j).

Lemma 40. At the beginning of the i-th iteration of Line 8, the weight of (i′, j′)↘

in T , such that i′ < i, is equal to F (i′, j′) ·
∏
p∈S∩‖ (1− π(p)), where ‖ denotes the

open strip (x(ai′), x(ai))× R. (See Figure 4.3(a).)

Proof. This statement is trivially true for i = 1 as all the weights in T are equal to

zero except that F (0, 0) = 1. Assume the statement is true for the i-th iteration,

we show it also holds for the (i + 1)-th iteration. First, we can safely consider T
unchanged throughout Lines 10-23 because although Lines 12 and 19 modify T ,

these side-effects are reversed immediately in Line 23. After the inner j-loop is

done, by our early assumption, we obtain the value of F (i, j) for every legal pair

(i, j) when i is fixed. These values are not currently stored in T but are needed for

the next iteration. Thus, we update the weight of each (i, j)↘ ∈ T to F (i, j), as

stated in Line 24. We also need to multiply by the factor (1− π(ai)) the weight of

each (i′, j′)↘ ∈ T that is to the left of ai because ai will be included in the strip as

we proceed from i to i + 1. This is handled by Line 25. As such, the statement is

maintained for the (i+ 1)-th iteration, which completes the proof.

With Lemma 40 in hand, we now give the proof of our aforementioned statement,

as restated in Lemma 41.

Lemma 41. Lines 16-17 correctly compute F (i, j).

Proof. Recall that F (i, j) = π∗i,j ·
∑

(i′,j′)∈Ji,j F (i′, j′) ·Πi,j,i′,j′ . By Lemma 40, at the

beginning of the i-th round, the weight of each (i′, j′)↘ ∈ T , where i′ < i, is equal to

F (i′, j′) ·
∏
p∈S∩‖ (1− π(p)). This product is off from the ideal one, F (i′, j′) ·Πi,j,i′,j′ ,

by a factor of
∏
p∈S(i)∩� (1− π(p)), where S(i) = {p ∈ S : cl(p) = cl(ai)} and �

denotes the box (x(ai′), x(ai)) × [y(aj), y(aj′)]; see Figure 4.3(b). To cancel this

79

factor, we observe that∏
p∈S(i)∩�

(1− π(p)) =
∏

p∈S(i)∩u1

(1− π(p))

/ ∏
p∈S(i)∩u2

(1− π(p)),

where u1 and u2 respectively denote the three-sided rectangle (x(ai′), x(ai)) ×
(−∞, y(aj′)] and (x(ai′), x(ai)) × (−∞, y(aj)); see Figure 4.3(c) and 4.3(d). The

former product (u1) is canceled in Line 12, and the latter (u2) is gradually accu-

mulated back via (j − 1) calls of Line 19 as a`1 , . . . , a`j−1
are all below a`j . Thus,

the weight of each (i′, j′)↘ ∈ T is equal to F (i′, j′) × Πi,j,i′,j′ right before F (i, j)

gets evaluated. Finally, the range query in Line 16 sums up the weight of every

(i′, j′)↘ ∈ T such that (i′, j′) ∈ Ji,j . (Note that the subtraction in Line 16 is needed

because Query(T ,Quad((i, j)↖)) also counts the probabilities of those legal pairs

that have the same color as cl(ai).) Therefore, the value of F (i, j) is correctly

computed after Line 17.

Both the above lemmas can directly apply to the Tk’s as we always query/update

T and the Tk’s in the same way. Finally, all F (i, j)’s are computed and added up

into ΓS , which completes the correctness proof of the entire algorithm.

The overall runtime of Algorithm 1 is O(n2 log2 n) since there are O(n2) range

queries and updates, each of which takes O(log2 n) time. The space occupied by

T , denoted by |T |, is O(n2 log n2) = O(n2 log n) as there are O(n2) legal pairs.

Similarly, let nk be the number of points in color k, and then Tk costs O(n2
k log nk)

space. Assume there are K colors in total. We have n1 + · · · + nK = n and thus

|T1|+ · · ·+ |TK | = O(n2 log n). The overall space complexity is O(|T |+ |T1|+ · · ·+
|TK |) = O(n2 log n).

Finally, we discuss how to implement the augmented 2D range tree T to dynam-

ically support the three operations Query,Update, and Multiply in O(log2m)

time, where m is the input size, and hence in O(log2 n) time. We first describe how

to implement a dynamic 1D range tree, T1D, built on the y-coordinates of a set of

planar points, P , to support the three operations, where the range used in Query

and Multiply is a 1D interval. The leaves, sorted by increasing y-coordinates, of

T1D are points in P with initial weight equal to 0. In addition, in each internal node,

u, we store two fields, sum(u) and mul(u), where the former is the sum of weights

in the subtree rooted at u and the latter is the multiplication factor that needs to

80

ai′
aj′

(i′, j′)↘
ai

aj (i, j)↘

‖

(a) Points in ‖.

ai′
aj′

(i′, j′)↘
ai

aj
(i, j)↘

�

(b) Points in �.

ai′

aj′

(i′, j′)↘
ai

aj (i, j)↘

u1

(c) Points in u1.

ai′
aj′

(i′, j′)↘
ai

aj (i, j)↘

u2

(d) Points in u2.

Figure 4.3: Illustrating Lemma 41. The orange color is only used to highlight each
range and does not represent the color of each point. Dashed (resp. solid) boundaries
are exclusive (resp. inclusive).

be applied to all the nodes in the subtree. For simplicity we use the notion sum(u)

to denote the weight of u if it is a leaf. Also, we set sum(u) = 0 and mul(u) = 1

initially.

Given a query/update range, we first identify O(logm) canonical nodes, C, of

T1D via a recursive down-phase traversal. We then aggregate or modify the data in

each canonical node. Finally, we refine the fields of those nodes along the path from

every canonical node up to the root, as the recursion gradually terminates.

In the down-phase, when a non-leaf node u is visited, we call the following Push

method to revise sum(u) based on mul(u) and then push the factor further to its

two children. In the up-phase, we apply the Combine method to each node to

readjust the sum. Between the down and up phase, we perform one of the following

three operations.

• Add up sum(u) for every u ∈ C for Query(T1D, p).

• Update sum(u) to w for the only element u ∈ C for Update(T1D, p, w).

• Multiply mul(u) by a factor of δ for every u ∈ C for Multiply(T1D, p, δ).

81

Algorithm 2 Implementation details of Push and Combine.

1: procedure Push(u) . Only called in the down-phase.
2: sum(u)← sum(u) ·mul(u)
3: if u is not a leaf then
4: mul(lchild(u))← mul(lchild(u)) ·mul(u)
5: mul(rchild(u))← mul(rchild(u)) ·mul(u)
6: end if
7: mul ← 1
8: end procedure
9: procedure Combine(u) . Only called in the up-phase and we must have

mul(u) = 1.
10: sum(u)← sum(lchild(u)) + sum(rchild(u))
11: end procedure

Next, we build our 2D range tree, T , on the x-coordinates of the given input.

For each node u ∈ T , we build the aforementioned 1D range tree w.r.t. the set of

points in u. We also store at u a tag indicating the multiplication factor that needs

to be applied to the 1D range tree stored at u as well as all u’s descendants. Given

a 2D range query, we do a down-phase traversal identifying O(logm) canonical

nodes of T . For each visited node u during the traversal, we should apply the

multiplication tag to the 1D tree stored at u and push it further to u’s two children.

This takes O(logm) time. Then, for every canonical node u, we spend another

O(logm) time querying the 1D range tree stored at u, as stated above. Therefore,

all three operations can be done in O(log2m) time, and T occupies O(m logm)

space.

Remark. One may notice that the implementation above contains a flaw for

Multiply(T , r, δ) when δ = 0 because the inverse of this operation does not exist

as 1/0 is undefined. We can overcome this issue by adding in each node a zero-

counter and counting the number of zero factors separately. That is, if Multiply

multiplies a factor of zero, we increment the zero-counter of each canonical node

instead of modifying sum and mul fields; if Multiply divides a factor of zero, we

decrement the corresponding zero-counters. Also, when a Query is triggered, we

simply return zero for those canonical nodes whose zero-counter is positive. This

solves the problem without increasing the runtime of all three operations.

With the above argument, we conclude the following.

82

Theorem 42. The CSD problem for d = 2 can be solved in O(n2 log2 n) time.

4.2.2 Hardness results in higher dimensions

In this section, we prove the #P-hardness of the CSD problem for d ≥ 3. Indeed,

our hardness result is even stronger in that it applies to restricted versions of the

CSD problem. There are two specializations of the CSD problem: in one all data

points have distinct colors, in the other data points are bichromatic. We want our

hardness result to cover these two specializations. Towards this end, we need to

introduce a notion called color pattern.

A partition of a positive integer p is defined as a multi-set ∆ of positive integers

whose summation is p. In a colored stochastic dataset S = (S, cl, π), the coloring cl

naturally induces a partition of n = |S| given by the multi-set {|cl−1(p)| > 0 : p ∈
N}, which we denote by ∆(S). Let P = (∆1, ∆2, . . .) be an infinite sequence where

∆p is a partition of p. We say P is a color pattern if it is “polynomial-time uniform”,

i.e., one can compute ∆p for any given p in time polynomial in p. In addition, P
is said to be balanced if p−max∆p = Ω(pc) for some constant c > 0 (here max∆p

denotes the maximum in the multi-set ∆p). Then we define the CSD problem with

respect to a color pattern P = (∆1, ∆2, . . .) as the (standard) CSD problem with

the restriction that the input dataset S = (S, cl, π) must satisfy ∆(S) = ∆n where

n = |S|.
Besides specializing the CSD problem using the color pattern, we may also make

assumptions for the existence probabilities of the points. An important case is that

all points have the same existence probability of 1
2 . In this case, each of the 2n subsets

of S occurs as a realization of S with the same probability 2−n, and computing ΛS

(or ΓS) is equivalent to counting the subsets of S satisfying the desired properties.

Our hardness result is presented in the following theorem.

Theorem 43. Let P be any balanced color pattern. Then the CSD problem with

respect to P is #P-hard for d ≥ 3. In addition, even if the existence probabilities

of the points are all restricted to be 1
2 , the CSD problem with respect to P remains

#P-hard for d ≥ 7.

Note that our result above implies the hardness of both the distinct-color and

bichromatic specializations. The former can be seen via a balanced color pattern

83

P = (∆1, ∆2, . . .) with ∆p = {1, . . . , 1} (i.e., a multi-set consisting of p 1’s), while

the latter can be seen via a balanced color pattern P = (∆1, ∆2, . . .) with ∆p =

{p2 ,
p
2} for even p and ∆p = {p−1

2 , p+1
2 } for odd p. The proof of Theorem 43 is

nontrivial, so we break it into several stages.

4.2.2.1 Relation to counting independent sets

For a colored stochastic dataset S = (S, cl, π), define GS = (S,ES) as the (undi-

rected) graph with vertex set S and edge set ES = {(a, b) : a, b ∈ S with cl(a) 6=
cl(b) and a � b}. Since the edges of GS correspond one-to-one to the inter-color

dominances in S, it is clear that a subset A ⊆ S contains no inter-color dominances

iff A corresponds to an independent set of GS . If π(a) = 1
2 for all a ∈ S, then we

immediately have the equation ΓS = Ind(GS)/2n, where Ind(GS) is the number of

the independent sets of GS . This observation intuitively tells us the hardness of

the CSD problem, as independent-set counting is a well-known #P-complete prob-

lem. Although we are still far away from proving Theorem 43 (because for a given

graph G it is not clear how to construct a colored stochastic dataset S such that

GS ∼= G, i.e., GS is isomorphic to G), it is already clear that we should reduce from

some independent-set-counting problem. Regarding independent-set counting, the

strongest known result is the following theorem obtained by Xia et al. [35], which

will be used as the origin of our reduction.

Theorem 44. Counting independent sets for 3-regular planar bigraphs is #P-

complete.

For a graph G = (V,E), we say a map f : V → Rd is a dominance-preserving em-

bedding (DPE) ofG to Rd if it satisfies the condition that (u, v) ∈ E iff f(u) � f(v) or

f(v) � f(u). We define the dimension, dim(G), of G as the smallest number d such

that there exists a DPE of G to Rd (if such a number does not exist, we say G is of

infinite dimension). We have seen above the relation between independent-set count-

ing and the CSD problem with existence probabilities equal to 1
2 . Interestingly, with

general existence probabilities, the CSD problem can be related to a much stronger

version of independent-set counting, which we call cardinality-sensitive independent-

set counting.

84

Definition 45. Let c be a fixed integer. The c-cardinality-sensitive independent-set

counting (c-CSISC) problem is defined as follows. The input consists of a graph

G = (V,E) and a c-tuple Φ = (V1, . . . , Vc) of disjoint subsets of V . The task of the

problem is to output, for every c-tuple (n1, . . . , nc) of integers where 0 ≤ ni ≤ |Vi|,
the number of the independent sets I ⊆ V of G satisfying |I ∩ Vi| = ni for all

i ∈ {1, . . . , c}. We denote the desired output by IndΦ(G), which can be represented

by a sequence of
∏c
i=1(|Vi|+ 1) integers. Note that the 0-CSISC problem is just the

conventional independent-set counting.

Lemma 46. Given any graph G = (V,E) with a DPE f : V → Rd and a c-tuple

Φ = (V1, . . . , Vc) of disjoint subsets of V , one can construct in polynomial time

a colored stochastic dataset S = (S, cl, π) in Rd, with cl injective, such that (1)

GS ∼= G and (2) IndΦ(G) can be computed in polynomial time if ΓS is provided. In

particular, the c-CSISC problem for a class G of graphs is polynomial-time reducible

to the CSD problem in Rd, given an oracle that computes for any graph in G a DPE

of that graph to Rd.

Proof. Suppose |V | = {v1, . . . , vn}. We construct the colored stochastic dataset S =

(S, cl, π) as follows. Define S = {a1, . . . , an} where ai = f(vi) ∈ Rd and set cl(ai) = i

(so cl is injective). Let S1, . . . , Sc be the (disjoint) subsets of S corresponding to

V1, . . . , Vc respectively, i.e., Si = {aj : vj ∈ Vi}. Without loss of generality, we may

assume S1, . . . , Sc are all nonempty. For all points a ∈ Si, we define π(a) = 4−n
c−i+1

(note that this real number can be represented in polynomial length). Then for all

points a ∈ S\(
⋃c
i=1 Si), we define π(a) = 1

2 . With S constructed above, we already

have GS ∼= G, since f is a DPE and all the points in S have distinct colors. It suffices

to show how to “recover” IndΦ(G) from ΓS . Equivalently, we have to compute, for

every c-tuple φ = (n1, . . . , nc) of integers where 0 ≤ ni ≤ |Si|, the number of the

subsets A ⊆ S containing no inter-color dominances and satisfying |A∩ Si| = ni for

all i ∈ {1, . . . , c} (we use Aφ to denote the collection of these subsets). For each

c-tuple φ = (n1, . . . , nc) with 0 ≤ ni ≤ |Si|, we notice that any A ∈ Aφ occurs as a

realization of S with probability

Pφ =
1

2n−m

c∏
i=1

(
1

4nc−i+1

)ni
(

1− 1

4nc−i+1

)|Si|−ni

,

85

where m =
∑c

i=1 |Si|. By setting N =
∏c
i=1(|Si| + 1), we have in total N c-tuples

φ1, . . . , φN (of integers) to be considered (N is polynomial in n as c is constant).

Suppose φ1, . . . , φN are already sorted in lexicographical order from small to large.

Our first key observation is that Pφi > 2nPφi+1
for all i ∈ {1, . . . , N − 1}. To see

this, assume φi = (n1, . . . , nc) and φi+1 = (n′1, . . . , n
′
c). Note that φ1, . . . , φN are

sorted in lexicographical order, so there exists k ∈ {1, . . . , c} such that nj = n′j for

all j < k and n′k = nk + 1. Then it is easy to see that

Pφi
Pφi+1

≥ 1− 4−n
c−k+1

4−nc−k+1

c∏
j=k+1

(4−n
c−j+1

)|Sj |.

If k = c, we already have Pφi > 2nPφi+1
. For the case of k < c, since

∑c
j=k+1 |Sj | ≤

n− 1, the above inequality implies that

Pφi
Pφi+1

≥ (1− 4−n
c−k+1

) · 4−(n−1)·nc−k

4−nc−k+1 > 2n.

With this observation in hand, we now consider how to compute |Aφi | for all i ∈
{1, . . . , N} from ΓS . It is clear that

ΓS =
N∑
i=1

Pφi · |Aφi |.

For j ∈ {1, . . . , N}, we set γj =
∑N

i=j+1 Pφi · |Aφi |. By the facts that Pφi > 2nPφi+1

and
∑N

i=1 |Aφi | ≤ 2n, we can deduce Pφi > γi for all i ∈ {1, . . . , N}. Then we

are ready to compute |Aφ1 |, . . . , |AφN | in order. Since Pφ1 > γ1, |Aφ1 | must be

the greatest integer that is smaller than or equal to ΓS/Pφ1 , and hence can be

immediately computed. Suppose now |Aφ1 |, . . . , |Aφm−1 | are already computed, and

we consider |Aφm |. Via |Aφ1 |, . . . , |Aφm−1 | and ΓS , we may compute γm−1. Because

Pφm ≥ γm, |Aφm | must be the greatest integer that is smaller than or equal to

γm−1/Pφm , and hence can be computed directly. In this way, we are able to compute

all |Aφ1 |, . . . , |AφN | and equivalently IndΦ(G) (in polynomial time). The statements

in the lemma follow readily.

Another ingredient to be used in the proof of Theorem 43 is a lemma regarding

color patterns.

86

Lemma 47. Let P = (∆1, ∆2, . . .) be a balanced color pattern. Given a colored

stochastic dataset S = (S, cl, π) in Rd, with cl injective, if GS is a bipartite graph,

then one can construct in polynomial time another colored stochastic dataset S ′ =

(S′, cl′, π′) in Rd satisfying (1) ΓS′ = ΓS , (2) S ⊆ S′, (3) π′(a) = 1
2 for any a ∈ S′\S,

(4) 〈S ′〉 is an instance of the CSD problem with respect to P.

Proof. Since P is balanced, we can find an constants c > 0 such that n−max∆n ≥ nc

for any sufficiently large n. Suppose GS = (V ∪V ′, E) where |V | = n and |V ′| = n′.

We may write S = {a1, . . . , an+n′} where a1, . . . , an correspond to the vertices in

V and an+1, . . . , an+n′ correspond to those in V ′. Because cl is injective (i.e., the

points in S are of distinct colors), we have that a1, . . . , an do not dominate each

other, and the same holds for an+1, . . . , an+n′ . Set N = max{2n+ n′, (n′)1/c}. Now

we construct S ′ = (S′, cl′, π′) as follows. First, we pick a set A of N − (n + n′)

points in Rd which do not dominate each other and do not form dominances with

any points in S. Set S′ = S ∪ A, so S ⊆ S′ and |S′| = N . The points in A are

used as dummy points, and can never influences ΓS′ (since they are not involved

in any dominances). With a slight abuse of notation, we also use a1, . . . , an+n′ to

denote the non-dummy points in S′. We then define π′ as π′(a) = π(a) for a ∈ S
and π′(a) = 1

2 for a ∈ A. It suffices to assign colors to the points in S′, i.e., define

the coloring function cl′. Since we want 〈S ′〉 to be an instance of the CSD problem

with respect to P, the coloring cl′ must induce the partition ∆N of N . Suppose

∆N = {r1, . . . , rk} (as a multi-set) where r1 ≥ · · · ≥ rk. Let l be the smallest

integer such that
∑l

i=1 ri ≥ n. It is easy to see that
∑k

i=l+1 ri ≥ n′. Indeed, if l = 1,

then we have
m∑
i=2

ri = N −max∆N ≥ N c ≥ n′

by assumption. In the case of l > 1, we have that
∑l

i=1 ri < 2n and thus
∑k

i=l+1 ri >

N−2n ≥ n′. This fact implies that we are able to define the coloring function cl′ with

image {1, . . . , k} such that (1) there are exactly ri points in S′ mapped to the color

i by cl′, (2) cl′(a) ∈ {1, . . . , l} for any a ∈ {a1, . . . , an}, (3) cl′(a) ∈ {l + 1, . . . ,m}
for any a ∈ {an+1, . . . , an+n′}. With this cl′, we have that cl′(ai) 6= cl′(aj) for any

i ∈ {1, . . . , n} and j ∈ {n + 1, . . . , n + n′}. Therefore, if two points ai, aj ∈ S form

an inter-color dominance in with respect to cl, then they also form an inter-color

dominance with respect to cl′, and vice versa. Since the dummy points in A can

87

never contribute inter-color dominances, we have ΓS′ = ΓS , which completes the

proof.

4.2.2.2 #P-hardness for d ≥ 3

In this section, we prove the first statement of Theorem 43, by providing a reduction

from the independent-set counting problem for 3-regular planar bipartite graphs.

Let G = (V ∪ V ′, E) be a 3-regular planar bipartite graph. Suppose |V | = |V ′| = n

(note that we must have |V | = |V ′| for G is 3-regular); then |E| = 3n. Instead of

working on G directly, we shall first construct a new graph G∗ based on G, and try

to embed G∗ into R3. Set λ = 100n2. We define G∗ as the graph obtained from G

by inserting 2λ new vertices into each edge of G, i.e., replacing each edge of G with

a chain of 2λ new vertices (see Figure 4.4). With an abuse of notation, V and V ′

are also used to denote the corresponding subsets of the vertices of G∗. Note that

G∗ is also bipartite, in which V and V ′ belong to different parts. We use U (resp.,

U ′) to denote the set of the inserted vertices of G∗ which belong to the same part

as V (resp., V ′). Then the two parts of G∗ are V ∪ U and V ′ ∪ U ′. For each edge

e ∈ E of G, we denote by Ue (resp. U ′e) the set of the λ vertices in U (resp., U ′)

which are inserted into the edge e.

v v′

v v′

2λ

Figure 4.4: Inserting new vertices into each edge of G.

It is not surprising that the independent sets of G are strongly related to those

of G∗. Indeed, as we will show, counting independent sets for G can be done by

solving the 4-CSISC instance 〈G∗, (V, V ′, U, U ′)〉. Define Indp,p′ as the number of

the independent sets I of G such that |I∩V | = p, |I∩V ′| = q. Also, define Ind∗p,p′,q,q′

as the number of the independent sets I∗ of G∗ such that |I∗∩V | = p, |I∗∩V ′| = p′,

|I∗ ∩ U | = q, |I∗ ∩ U ′| = q′.

Lemma 48. For any p, p′ ∈ {0, . . . , n}, we have Indp,p′ = Ind∗p,p′,3λp,3λn−3λp. In

88

particular,

Ind(G) =
n∑
i=0

n∑
j=0

Ind i,j =
n∑
i=0

n∑
j=0

Ind∗i,j,3λi,3λn−3λi.

Proof. Fixing p, p′ ∈ {0, . . . , n}, we denote by I the collection of the independent

sets I of G such that |I ∩V | = p, |I ∩V ′| = p′. Also, we denote by I∗ the collection

of the independent sets I∗ of G∗ such that |I∗∩V | = p, |I∗∩V ′| = p′, |I∗∩U | = 3λp,

|I∗ ∩ U ′| = 3λn− 3λp. It suffices to establish a one-to-one correspondence between

I and I∗.
Let I ∈ I be an element. If e = (v, v′) ∈ E is an edge of G (where v ∈ V and

v′ ∈ V ′), we say e is of Type-1 if v ∈ I (and hence v′ /∈ I), otherwise of Type-2.

Recall that for each e ∈ E, Ue (resp., U ′e) denotes the set of the λ vertices in U

(resp., U ′) which are inserted to the edge e. Now let I∗ be the set consists of the

vertices in I, the vertices in Ue for all Type-1 edges e, and the vertices in U ′e for

all Type-2 edges e. Clearly, I∗ is an independent set of G∗. Furthermore, by the

definition of I and the fact that G is 3-regular, we know that G has 3p Type-1 edges

and 3n−3p Type-2 edges. It follows that |I∗∩V | = p, |I∗∩V ′| = p′, |I∗∩U | = 3λp,

|I∗ ∩ U ′| = 3λn− 3λp. Thus, I∗ ∈ I∗. By mapping I to I∗, we obtain a map from

I to I∗, which is obviously injective.

To see it is surjective, let I∗ ∈ I∗ be an element. Set I = I∗ ∩ (V ∪ V ′).
We claim that I ∈ I and I is mapped to I∗ by our map defined above. First,

since I∗ is an independent set of G∗, we must have |I∗ ∩ (Ue ∪ U ′e)| ≤ λ for any

edge e = (v, v′) ∈ E of G (with equality only if at least one of v and v′ is in

I). But |I∗ ∩ (U ∪ U ′)| = 3λn = λ|E|, which implies |I∗ ∩ (Ue ∪ U ′e)| = λ for all

e ∈ E. It follows that for every edge e = (v, v′) ∈ E, v and v′ are not included in I

simultaneously, i.e., I is an independent set of G. In addition, |I∩V | = |I∗∩V | = p,

|I ∩V ′| = |I∗∩V ′| = p′. Therefore, I ∈ I. To see I is mapped to I∗, we apply again

the fact that |I∗ ∩ (Ue ∪ U ′e)| = λ for any e ∈ E. Based on this, we further observe

that for any e ∈ E, either Ue ⊆ I∗ or U ′e ⊆ I∗ (since I∗ is an independent set of G∗).

As before, we say an edge e = (v, v′) ∈ E (with v ∈ V and v′ ∈ V ′) is of Type-1

if v ∈ I, otherwise of Type-2. Note that if an edge e ∈ E is of Type-1, we must

have Ue ⊆ I∗ (and then I∗ ∩U ′e = ∅). Since G has 3p Type-1 edges, |I∗ ∩U | ≥ 3λp.

But in fact |I∗ ∩ U | = 3λp as I∗ ∈ I∗. So the only possibility is that Ue ⊆ I∗ (and

I∗ ∩ U ′e = ∅) for all Type-1 edges e and U ′e ⊆ I∗ (and I∗ ∩ Ue = ∅) for all Type-2

89

edges e. As a result, I is mapped to I∗ and |I| = |I∗|, completing the proof.

Now it suffices to reduce the 4-CSISC instance 〈G∗, (V, V ′, U, U ′)〉 to an instance

〈S〉 of the CSD problem in R3 with respect to a given balanced color pattern P.

Due to Lemmas 46 and 47, the only thing we need for the reduction is a DPE of G∗

to R3. Therefore, our next step is to show dim(G∗) ≤ 3 and construct explicitly a

DPE of G∗ to R3 (in polynomial time), which is the most non-obvious part of the

proof.

Recall that the two parts of G∗ are V ∪ U and V ′ ∪ U ′. The DPE that we are

going to construct makes the image of each vertex in V ′∪U ′ dominate the images of

its adjacent vertices in V ∪U . We first consider the embedding for the part V ∪U .

Our basic idea is to map the vertices in V ∪ U to the plane H : x + y + z = 0 in

R3. Note that by doing this we automatically prevent their images from dominating

each other. However, the locations of (the images of) these vertices on H should

be carefully chosen so that later we are able to further embed the part V ′ ∪ U ′

(to R3) to form a DPE. Basically, we map V ∪ U to H through two steps. In the

first step, the vertices in V ∪ U are mapped to R2 via a map ϕ : V ∪ U → R2

to be constructed. Then in the second step, we properly project R2 onto H via

another map ψ : R2 → H. By composing ψ and ϕ, we obtain the desired map

ψ ◦ ϕ : V ∪ U → H, which gives us the embedding for V ∪ U .

v1

v2

v3

v4

v5

v6

v1 v6

v2

v3

v4 v5

Figure 4.5: An orthogonal grid drawing.

To construct ϕ, we need a notion about graph drawing. Let K = (Z × R) ∪
(R × Z) ⊂ R2 be the grid. An orthogonal grid drawing (OGD) of a (planar) graph

is a planar drawing with image in the grid K such that the vertices are mapped

to the grid points Z2. Note that an OGD draws the edges of the graph as (non-

intersecting) orthogonal curves in R2 consisting of unit-length horizontal/vertical

segments each of which connects two adjacent grid points (see Figure 4.5). We will

apply the following result from [36].

90

Theorem 49. For any t-vertex planar graph of (maximum) degree 3, one can com-

pute in polynomial time an OGD with image in K∩Q3t where Qi denotes the square

[1, i]2 ⊂ R2.

Consider the original 3-regular planar bipartite graph G = (V ∪ V ′, E). By

applying the above theorem, we can find an OGD g for G with image in K ∩Q6n.

For each vertex v ∈ V ∪ V ′ of G, we denote by g(v) the image of v in R2 under the

OGD g. Also, for each edge e = (v, v′) ∈ E of G, we denote by g(e) the image of

e under g, which is an orthogonal curve in R2 connecting g(v) and g(v′). With the

OGD g in hand, we construct the map ϕ as follows.

For all v ∈ V , we simply define ϕ(v) = g(v). To determine ϕ(u) for u ∈ U , we

consider the vertices in Ue for each edge e ∈ E of G separately. Suppose e = (v, v′)

and Ue = {u1, . . . , uλ} where u1, . . . , uλ are sorted in the order they appear on e

(from v to v′). Consider the curve g(e). Since g is an OGD, g(e) must consist of unit-

length horizontal/vertical segments (each of which connects two grid points). The

total number m of these unit segments is upper bounded by (6n)2 as g(e) ⊂ K∩Q6n.

Now we pick a set Pe of λ (distinct) points on g(e) as follows.

• The m−1 grid points in the interior of g(e) are included in Pe (see Figure 4.6(a)).

• On each unit vertical segment of g(e), we pick the point with distance 0.3 from

the bottom endpoint and include it to Pe (see Figure 4.6(b)).

• On the unit segment of g(e) adjacent to g(v′), we pick the point with distance

0.01 from g(v′) and include it to Pe (see Figure 4.6(c)).

• Note that the number of the above three types of points is at most 2m ≤ 72n2 < λ.

To make |Pe| = λ, we then arbitrarily pick more (distinct) points on g(e) which have

distances at least 0.4 to any grid point, and add them to Pe.

Suppose Pe = {r1, . . . , rλ} where r1, . . . , rλ are sorted in the order they appear on

the curve g(e) (from g(v) to g(v′)). We then define ϕ(ui) = ri. We do the same

thing for every edge e ∈ E of G. In this way, we determine ϕ(u) for all u ∈ U and

complete defining the map ϕ.

The next step, as mentioned before, is to project R2 onto H. The projection

map ψ : R2 → H is defined as ψ : (x, y) 7→ (x+y, y−x,−2y). Then the composition

ψ ◦ ϕ : V ∪ U → H gives us the first part of our DPE. The remaining task is to

embed the part V ′ ∪ U ′ to R3, which completes the construction of our DPE. We

91

g(v′)

g(v)

(a)

g(v′)

(b)

g(v′)

(c)

Figure 4.6: The construction of Pe.

must guarantee that the image of each vertex w′ ∈ V ′ ∪ U ′ dominates and only

dominates the images of the vertices in V ∪ U adjacent to w′. To achieve this, we

first establish an important property of the map ψ ◦ ϕ : V ∪ U → H constructed

above. For a finite set A of points in Rd, we define a point c-max(A) ∈ Rd as the

coordinate-wise maximum of A, i.e., the i-th coordinate of c-max(A) is the maximum

of the i-th coordinates of all points in A, for all i ∈ {1, . . . , d}.

Lemma 50. For each vertex w′ ∈ V ′ ∪ U ′, let Adjw′ ⊆ V ∪ U be the set of the

vertices adjacent to w′ in G∗, and Aw′ = (ψ ◦ ϕ)(Adjw′) ⊂ R3 be the set of the

corresponding images under ψ ◦ ϕ. Then for any w ∈ V ∪ U and w′ ∈ V ′ ∪ U ′, the

point c-max(Aw′) ∈ R3 dominates (ψ ◦ ϕ)(w) iff w ∈ Adjw′.

Proof. The “if” part is obvious, because c-max(A) clearly dominates every point in

A for any (finite) A ⊂ Rd with |A| ≥ 2 (note that |Aw′ | ≥ 2 for any w′ ∈ V ′ ∪ U ′).
It suffices to prove the “only if” part. For a point p ∈ R3, we denote by Hp the set

of the points on the plane H which are dominated by p. We first observe that if

Hp 6= ∅, then the preimage ψ−1(Hp) of Hp under ψ (which is a region in R2) must be

a (closed) right-angled isosceles triangle in R2 whose hypotenuse is horizontal (we

call these kinds of triangles standard triangles). To see this, assume p = (xp, yp, zp)

and Hp 6= ∅ (this is equivalent to saying xp + yp + zp > 0). Then ψ−1(Hp) consists

of all the points (x, y) ∈ R2 satisfying x + y ≤ xp, y − x ≤ yp, y ≥ −zp/2, and

hence is a standard triangle. Furthermore, it is easy to see that if p = c-max(A)

for a finite set A ⊂ H with |A| ≥ 2, then Hp 6= ∅ and ψ−1(Hp) is the minimal

standard triangle containing ψ−1(A) (by “minimal” we mean that any standard

triangle containing ψ−1(A) is a superset of ψ−1(Hp), both as subsets of R2, see

Figure 4.7). Therefore, we only need to show that for any vertex w′ ∈ V ′ ∪ U ′, the

92

minimal standard triangle containing ψ−1(Aw′) = ϕ(Adjw′) does not contain ϕ(w)

for any vertex w ∈ (V ∪ U)\Adjw′ . We consider two cases, w′ ∈ V ′ and w′ ∈ U ′.

Figure 4.7: The minimal standard triangle in R2 containing a set of points.

ri−1 ri

s

Figure 4.8: The case that s is horizontal.

ri−1

ri

s

s

s′

Figure 4.9: The case that s is vertical.

In the case of w′ ∈ V ′, Adjw′ consists of three vertices (for G is 3-regular) in

U , say w1, w2, w3. Recall that g is the OGD of G used in constructing the map

ϕ. By recalling our construction of ϕ, we see that each of ϕ(w1), ϕ(w2), ϕ(w3) has

distance 0.01 from g(w′). On the other hand, one can easily verify that for any vertex

w ∈ (V ∪U)\Adjw′ , ϕ(w) is “far away” from g(w′) (more precisely, with distance at

least 0.3). Therefore, the minimal standard triangle containing ϕ(w1), ϕ(w2), ϕ(w3)

does not contain ϕ(w) for any vertex w ∈ (V ∪ U)\Adjw′ .

In the case of w′ ∈ U ′, we may assume w′ ∈ U ′e for some edge e = (v, v′) ∈ E of

G. Then Adjw′ consists of two vertices in {v}∪Ue, say w1, w2. Recall that Pe is the

93

set of the λ points chosen on the curve g(e) for sake of defining ϕ(u) for u ∈ Ue. As

before, we suppose Pe = {r1, . . . , rλ} where r1, . . . , rλ are sorted in the order they

appear on the curve g(e) (from g(v) to g(v′)). For convenience, set r0 = g(v). Then

we may assume ϕ(w1) = ri−1 and ϕ(w2) = ri for some i ∈ {1, . . . , λ}. Let s = ri−1ri

be the segment in R2 with endpoints ri−1 and ri, and 4 be the minimal standard

triangle containing ri−1 and ri. Since all the grid points on g(e) are included in

Pe, s must be a horizontal or vertical segment contained in g(e). Furthermore, the

interior of s does not contain ϕ(w) for any vertex w ∈ V ∪U and in particular does

not contain any grid points. We discuss two cases separately: s is horizontal and s

is vertical. Recall that K = (Z× R) ∪ (R× Z) ⊂ R2 is the grid.

If s is horizontal, then 4 is just the standard triangle having s as its hypotenuse

(see Figure 4.8). In this case, we have 4 ∩K = s, which implies that 4 does not

contain ϕ(w) for any vertex w ∈ (V ∪ U)\{w1, w2}.
For the case that s is vertical, assume that ri−1 is the top endpoint and ri is

the bottom one. Then ri−1 is the right-angled vertex of 4, and ri is the midpoint

of the hypotenuse of 4. If ri is not a grid point, we again have 4 ∩ K = s and

thus we are done (see the left part of Figure 4.9). If ri is a grid point, the distance

between ri−1 and ri must be 0.3, by our construction of Pe. In this situation, 4∩K
consists of s and a horizontal segment s′ of length 0.6 which is the hypotenuse of 4
(see the right part of Figure 4.9). We claim that ϕ(w) is not on s′ for any vertex

w ∈ (V ∪ U)\{w2}. Indeed, by our construction of ϕ, if ϕ(w) is in the interior of

some unit horizontal segment, then ϕ(w) is either with distance 0.01 from g(v′) for

some v′ ∈ V ′ or with distance at least 0.4 from any grid point.

Thus, in each of the cases, ϕ(w) is “far away” from ri (more precisely, with dis-

tance at least 0.4). But any point on s′ has distance at most 0.3 from ri. Therefore,

ϕ(w) is not on s′. It immediately follows that 4 does not contain ϕ(w) for any

vertex w ∈ (V ∪ U)\{w1, w2}, which completes the proof.

Once the above property is revealed, the construction of the map V ′ ∪ U ′ → R3

is quite simple: we just map each vertex w′ ∈ V ′∪U ′ to the point c-max(Aw′) ∈ R3.

Now we complete constructing the embedding of G∗ to R3, and need to verify it is

truly a DPE. Lemma 50 already guarantees that the image of each w′ ∈ V ′ ∪ U ′

dominates (the images of) the vertices in Adjw′ (i.e., the vertices in V ∪ U that are

94

adjacent to w′) but does not dominate (the images of) any other vertices in V ∪U .

So it suffices to show that the images of the vertices in V ′∪U ′ do not dominate each

other. Let w′1, w
′
2 ∈ V ′ ∪ U ′ be two distinct vertices, and assume that c-max(Aw′1)

dominates c-max(Aw′2). Then we must have c-max(Aw′1) dominates the points in

Aw′2 . By Lemma 50, this implies that Adjw′2 ⊆ Adjw′1 . However, as one can easily

see from the structure of G∗, it never happens that Adjw′2 ⊆ Adjw′1 unless w′1 = w′2.

Thus, we conclude that the map constructed is a DPE of G∗ to R3. With the DPE

in hand, by applying Lemmas 46 and 47, the first statement of Theorem 43 is readily

proved.

4.2.2.3 #P-hardness for d ≥ 7 with existence probabilities equal to 1
2

In this section, we prove the second statement of Theorem 43. When the existence

probabilities are restricted to be 1
2 , we are no longer able to apply the tricks used in

the previous section, as the reduction from the CSISC problem (Lemma 46) cannot

be done under such a restriction. This is the reason for why we have to “loosen”

the dimension to 7 in this case.

As we have seen, for a colored stochastic dataset S = (S, cl, π) with π(a) = 1
2

for all a ∈ S, computing ΓS is totally equivalent to counting independent sets for

GS . Therefore, we complete the proof by establishing a more direct reduction from

independent-set counting for 3-regular planar bipartite graphs, which constructs

directly a DPE of the input graph to R7. However, it is non-obvious that any 3-

regular planar bipartite graph G has dimension at most 7 and how to construct a

DPE of G to R7 in polynomial time. To prove this, we introduce a new technique

based on graph coloring. Indeed, we consider a more general case in which the graph

G is an arbitrary bipartite graph. The graph coloring to be used is slightly different

from the conventional notion, which we call halfcoloring. Let G = (V ∪ V ′, E) be

a bipartite graph. For any two distinct vertices u, v ∈ V , we define u ∼ v if there

exists a vertex in V ′ adjacent to both u and v.

Definition 51. A k-halfcoloring of G on V is a map h : V → {1, . . . , k}. The

halfcoloring h is said to be discrete if h(u) 6= h(v) for any u, v ∈ V with u ∼ v,

to be semi-discrete if it satisfies the condition that for any distinct u, v, w ∈ V with

u ∼ v and v ∼ w, h(u), h(v), h(w) are not all the same. Symmetrically, we may also

95

define a k-halfcoloring on V ′.

We may relate halfcoloring to the conventional graph coloring as follows. Define

G′ = (V,E′) with E′ = {(u, v) : u ∼ v in G}. Clearly, a discrete k-halfcoloring of G

on V corresponds to a (conventional) k-coloring of G′ satisfying the condition that

no two adjacent vertices share the same color, i.e., the subgraph of G′ induced by

each color form an independent set of G′. Similarly, a semi-discrete k-halfcoloring

of G on V corresponds to a k-coloring of G′ satisfying that the subgraph of G′

induced by each color consists of connected components of sizes at most 2. If h is a

k-halfcoloring of G on V , then for each v′ ∈ V ′ we denote by χh(v′) the number of

the colors “adjacent” to v′ (the color i is said to be adjacent to v′ if there is a vertex

v ∈ V adjacent to v′ with h(v) = i). The following theorem establishes a relation

between halfcoloring and graph dimension.

Theorem 52. Let G = (V ∪ V ′, E) be a bipartite graph.

(i) If there exists a semi-discrete k-halfcoloring h : V → {1, . . . , k} of G (on V),

then dim(G) ≤ 2k. Furthermore, with h in hand, one can compute in polynomial

time a DPE of G to R2k.

(ii) If, in addition to (1), we have χh(v′) < k for all v′ ∈ V ′, then dim(G) ≤ 2k−1.

Also, with h in hand, one can compute in polynomial time a DPE of G to R2k−1.

Proof. Suppose n = |V ∪ V ′|. Let h : V → {1, . . . , k} be a semi-discrete k-

halfcoloring of G (on V). We show dim(G) ≤ 2k by explicitly constructing a DPE

f : V ∪V ′ → R2k of G. For i ∈ {1, . . . , k}, we define Vi = h−1({i}) ⊆ V (i.e., Vi con-

sists of the vertices in V colored with color i by h) and define Gi as the subgraph of G

with the vertex set Vi ∪ V ′. We first construct k functions f1, . . . , fk : V ∪ V ′ → R2,

and then obtain the DPE f by identifying R2k with (R2)k and “combining” the

functions f1, . . . , fk, i.e., setting

f(v) = (f1(v), . . . , fk(v))

for all v ∈ V ∪V ′. Fixing p ∈ {1, . . . , k}, we describe the construction of fp. Suppose

the graph Gp consists of m connected components. For each i ∈ {1, . . . ,m}, let Ci

be the set of the vertices in the i-th connected component of Gp. Also, for each

i ∈ {1, . . . ,m}, let

Bi = {(x, y) ∈ R2 : i− 1 < x < i,m− i < y < m− i+ 1}

96

be an open box in R2 (see the left part of Figure 4.10). The function fp to be

constructed maps the vertices in Ci to points in Bi as follows. Since h is semi-

discrete, we know that |Ci∩V | ≤ 2. If |Ci∩V | = 0, then Ci only contains an isolated

vertex v′ ∈ V ′, and we set fp(v
′) to be an arbitrary point in Bi. If |Ci ∩ V | = 1,

let v be the only vertex in Ci ∩ V and suppose Ci ∩ V ′ = {v′1, . . . , v′r}. In this

case, we set fp(v
′
1), . . . , fp(v

′
r) to be a sequence of r points in Bi with increasing

x-coordinates and decreasing y-coordinates, and fp(v) to be an arbitrary point in

Bi dominated by all of fp(v
′
1), . . . , fp(v

′
r). See the middle part of Figure 4.10 for

an intuitive illustration for this case. If |Ci ∩ V | = 2, let v1, v2 be the two vertices

in Ci ∩ V and again suppose Ci ∩ V ′ = {v′1, . . . , v′r}. We may assume that the

vertices in Ci ∩V ′ adjacent to v1 (resp., v2) are exactly v′1, . . . , v
′
α (resp., v′β, . . . , v

′
r)

for some α, β ∈ {1, . . . , r} with α ≥ β (if not, one can easily relabel the points to

achieve this). Again, we set fp(v
′
1), . . . , fp(v

′
r) to be a sequence of r points in Bi

with increasing x-coordinates and decreasing y-coordinates. Then we set fp(v1) to

be a point in Bi which is dominated by exactly fp(v
′
1), . . . , fp(v

′
α), and set fp(v2)

to be a point in Bi which is dominated by exactly fp(v
′
β), . . . , fp(v

′
r). Note that

we can definitely find such two points, since fp(v
′
1), . . . , fp(v

′
r) have increasing x-

coordinates and decreasing y-coordinates. In addition, by carefully determining

the locations of fp(v1) and fp(v2) in Bi, we may further require that fp(v1) and

fp(v2) do not dominate each other. See the right part of Figure 4.10 for an intuitive

illustration for this case. After considering all Ci, the function fp is defined for all

vertices in Vp ∪ V ′ (which is the vertex set of Gp). So it suffices to define fp on

V \Vp. For each v ∈ V \Vp, we simply set fp(v) to be an arbitrary point in the box

[−N,−N + 1] × [−N,−N + 1] for a sufficiently large integer N > 10n (recall that

n = |V ∪ V ′|), which completes the construction of fp. We observe that fp has the

following properties.

(1) For any v ∈ V and w ∈ Vp, fp(v) � fp(w).

(2) For any v′ ∈ V ′, fp(v′) is not dominated by any point in the image of fp.

(3) For any v ∈ Vp and v′ ∈ V ′, fp(v′) � fp(v) iff v and v′ are adjacent in G.

We do the same thing for all p ∈ {1, . . . , k} and obtain the functions f1, . . . , fk. As

mentioned before, we then define f : V ∪ V ′ → R2k as f(v) = (f1(v), . . . , fk(v)).

We now prove that f is a DPE of G. First, for any v ∈ V , we claim that f(v) does

not dominate any point in the image of f . Indeed, f(v) � f(v′) for any v′ ∈ V ′,

97

since f1(v′) is not dominated by any point in the image of f1 by property (2) above.

Also, f(v) � f(w) for any w ∈ V , since fp(v) � fp(w) for p = h(w) by property (1)

above. Second, for any v′ ∈ V ′, we have that f(v′) is not dominated by any point

in the image of f , simply because f1(v′) is not dominated by any point in the image

of f1 by property (2) above. Finally, consider two vertices v ∈ V and v′ ∈ V ′. We

claim that f(v′) � f(v) iff v and v′ are adjacent in G. If v and v′ are adjacent, then

fi(v
′) � fi(v) for all i ∈ {1, . . . , k} by property (3) above, and hence f(v′) � f(v).

If v and v′ are not adjacent, then fp(v
′) � fp(v) for p = h(v) by property (3) above,

and hence f(v′) � f(v). In sum, we have f(v′) � f(v) iff v ∈ V , v′ ∈ V ′, v and v′

are adjacent in G. Therefore, f is a DPE of G to R2k. Clearly, f can be constructed

in polynomial time if the k-halfcoloring h is provided, which completes the proof of

the first part of the theorem.

Next, we prove the second part of the theorem. Again, let h : V → {1, . . . , k}
be a semi-discrete k-halfcoloring of G (on V). Suppose χh(v′) < k for all v′ ∈ V ′.
If k = 1, then χh(v′) = 0 for all v′ ∈ V ′, which implies that G has no edges and

thus the statement is trivial (any constant map f : V ∪ V ′ → R is a DPE of G).

So assume k ≥ 2. We show dim(G) ≤ 2k − 1 by explicitly constructing a DPE

f : V ∪ V ′ → R2k−1 of G. In the same way as before, we define the functions

f1, . . . , fk : V ∪ V ′ → R2. But we need a different way to define f . To this end,

we first construct k − 1 functions f ′1, . . . , f
′
k−1 : V ∪ V ′ → R2 based on f1, . . . , fk

as follows. Fixing p ∈ {1, . . . , k − 1}, we describe the construction of f ′p. For all

v ∈ V \Vk, we set f ′p(v) = fp(v). For all v ∈ Vk, we set f ′p(v) = fk(v) − (n, n), that

is, if fk(v) = (x, y) ∈ R2 then f ′p(v) = (x − n, y − n). Now consider the vertices

in V ′. If a vertex v′ ∈ V ′ is “adjacent” to the color p (recall that v′ is said to

be “adjacent” to the color p if there exists v ∈ V adjacent to v′ with h(v) = p),

. . .

B1

B2

B3

Bm

Bi

fp(v
′
r)

fp(v)

fp(v
′
1)

Bi

fp(v1) fp(v2)

fp(v
′
1)

fp(v
′
r)

fp(v
′
β)

fp(v
′
α)

Figure 4.10: A local structure of fp in the box Bi.

98

then we set f ′p(v
′) = fp(v

′), otherwise f ′p(v
′) = fk(v

′)− (n, n). By doing this for all

p ∈ {1, . . . , k−1}, we complete constructing f ′1, . . . , f
′
k−1. However, if we “combine”

f ′1, . . . , f
′
k−1, we only obtain a map V ∪V ′ → R2k−2 which is not guaranteed to be a

DPE. So the last ingredient needed for defining f is a function ρ : V ∪V ′ → R. The

definition of ρ is quite simple. We set ρ(v) = 1 for all v ∈ V \Vk, and ρ(v) = 3 for

all v ∈ Vk. For v′ ∈ V ′, if v′ is “adjacent” to the color k or χh(v′) = 0, then we set

ρ(v′) = 4, otherwise ρ(v′) = 2. Finally, f : V ∪ V ′ → R2k−1 is defined by identifying

R2k−1 with (R2)k−1 × R and “combining” the functions f ′1, . . . , f
′
k−1, ρ, i.e., setting

f(v) = (f ′1(v), . . . , f ′k−1(v), ρ(v))

for all v ∈ V ∪ V ′. We need to verify that f is truly a DPE of G to R2k−1.

First, we show that for any v ∈ V , f(v) does not dominate any point in the

image of f . Let v ∈ V be a vertex. We consider two cases, v ∈ V \Vk and v ∈ Vk.
In the case of v ∈ V \Vk, we first notice that f(v) � f(w) for any w ∈ Vk ∪ V ′,
simply because ρ(v) < ρ(w). To see this f(v) � f(w) for any w ∈ V \Vk, set

p = h(w) 6= k. Then f ′p(v) = fp(v) does not dominate f ′p(w) = fp(w) by property

(1) above, and hence f(v) � f(w). In the case of v ∈ Vk, we first claim that

f(v) � f(w) for any w ∈ V . If w /∈ Vk, then by setting p = h(w) 6= k we have

f ′p(v) = fk(v)−(n, n) does not dominate f ′p(w) = fp(w), which implies f(v) � f(w).

If w ∈ Vk, then f ′1(v) = fk(v)−(n, n) does not dominate f ′1(w) = fk(w)−(n, n) since

fk(v) � fk(w) by property (1) above, which also implies f(v) � f(w). It suffices

to show that f(v) � f(v′) for any v′ ∈ V ′. Indeed, we have either f ′1(v′) = f1(v′)

or f ′1(v′) = fk(v
′) − (n, n). In each case, f ′1(v) = fk(v) − (n, n) does not dominate

f ′1(v′) (the former case is obvious and the latter case follows from property (2)

above). Thus f(v) � f(v′).

Second, we show that for any v′ ∈ V ′, f(v′) is not dominated by any point in the

image of f . Let v′ ∈ V ′ be a vertex. By the argument above, it suffices to verify that

f(w′) � f(v′) for any w′ ∈ V ′. If v′ is “adjacent” to some color p ∈ {1, . . . , k − 1},
then we are done because f ′p(v

′) = fp(v
′) is not dominated by f ′p(w

′) for any w′ ∈ V ′.
Suppose v′ is not “adjacent” to any color in {1, . . . , k − 1}. In this case, we must

have ρ(v′) = 4 and f ′i(v
′) = fk(v

′)− (n, n) for all i ∈ {1, . . . , k − 1}. We first notice

that f(w′) � f(v′) for any w′ ∈ V ′ such that χh(w′) > 0 and w′ is not “adjacent”

to the color k, simply because ρ(w′) = 2 < ρ(v′). Then we consider the case that

99

w′ ∈ V ′ is “adjacent” to the color k or χh(w′) = 0. By the assumption χh(w′) < k,

we know that w′ cannot be “adjacent” to all the k colors. In other words, if w′ is

“adjacent” to the color k or χh(w′) = 0, w′ must miss some color in {1, . . . , k − 1}.
Without loss of generality, we may assume w′ is not “adjacent” to the color 1. Thus,

f ′1(v′) = fk(v
′)− (n, n) is not dominated by f ′1(w′) = fk(w

′)− (n, n) by property (2)

above, and hence f(w′) � f(v′).

Finally, we show that for any v ∈ V and v′ ∈ V ′, f(v′) � f(v) iff v and v′ are

adjacent in G. Let v ∈ V and v′ ∈ V ′ be two vertices. If v and v′ are adjacent

in G, one can easily verify (by checking various cases) that ρ(v′) > ρ(v) and f ′i(v
′)

dominates f ′i(v) for all i ∈ {1, . . . , k− 1}, which implies f(v′) � f(v). Now suppose

v and v′ are not adjacent in G. We consider two cases, v ∈ V \Vk and v ∈ Vk.

In the case of v ∈ V \Vk, set p = h(v) 6= k. Then f ′p(v) = fp(v). Besides, we

have either f ′p(v
′) = fp(v

′) or f ′p(v
′) = fk(v

′)− (n, n). For the former, f ′p(v
′) � f ′p(v)

follows from property (3) above, while for the latter f ′p(v
′) � f ′p(v) follows obviously.

Thus, f(v′) � f(v). In the case of v ∈ Vk, we have f ′i(v) = fk(v) − (n, n) for all

i ∈ {1, . . . , k} and ρ(v) = 3. If v′ is not “adjacent” to the color k and χh(v′) > 0,

then ρ(v′) = 2 < ρ(v) and hence f(v′) � f(v). If v′ is “adjacent” to the color

k or χh(v′) = 0, then as argued before v′ must miss some color in {1, . . . , k − 1}.
Without loss of generality, we may assume w′ is not “adjacent” to the color 1. Thus,

f ′1(v′) = fk(v
′) − (n, n) does not dominate f ′1(v) = fk(v) − (n, n) by property (3)

above, which implies f(v′) � f(v).

In sum, two vertices in G share a common edge iff their images under f form a

dominance. Therefore, f is a DPE of G to R2k−1. It is clear that the construction

of f can be done in polynomial time if the k-halfcoloring h is provided.

We then apply the halfcoloring technique to show that dim(G) ≤ 7 for any 3-

regular planar bipartite graph G, which will give us a proof for the second statement

of Theorem 43. To achieve this, the only missing piece is the following observation.

Lemma 53. Every 3-regular planar bipartite graph has a discrete 4-halfcoloring,

which can be computed in polynomial time.

Proof. Let G = (V ∪ V ′, E) be a 3-regular planar bipartite graph. As before, we

define the graph G′ = (V,E′) by setting E′ = {(a, b) : a ∼ b in G}. Then a discrete

100

k-halfcoloring of G on V corresponds to a (conventional) k-coloring of G′ satisfying

that no two adjacent vertices share the same color. We first show that G′ is planar.

Fix a planar drawing ϕ of G. Let v′ ∈ V ′ be a vertex. Since G is 3-regular, v′ must be

adjacent to three vertices v1, v2, v3 ∈ V . We now delete v′ as well as its three adjacent

edges from G and add three new edges (v1, v2), (v2, v3), (v3, v1) to G. We claim that

the resulting graph is still planar. Indeed, in the drawing ϕ, after we remove ϕ(v′)

and its adjacent edges, ϕ(v1), ϕ(v2), ϕ(v3) will share a common face, which is the

one previously containing ϕ(v). So we can draw the edges (v1, v2), (v2, v3), (v3, v1)

inside this face along with the image of the deleted edges (see Figure 4.11). In this

way, we keep deleting the vertices in V ′ (as well as the adjacent edges) and adding

new edges. In this process, the planarity of the graph is always maintained. When

all the vertices in V ′ are deleted, the resulting graph, which is still planar, is nothing

but G′, as two vertices u, v ∈ V are connected (in the resulting graph) iff u ∼ v in G.

By applying the well-known Four Color Theorem, we know that G′ is 4-colorable.

Furthermore, to find a 4-coloring for G′ can be done in quadratic time using the

approach in [37]. As a result, a discrete 4-halfcoloring of G can be computed in

polynomial time, completing the proof.

v′

v1

v2

v3

v1

v2

v3

Figure 4.11: Deleting a vertex and adding three new edges.

Now it is quite straightforward to prove the second statement of Theorem 43. Let

G be a 3-regular planar bipartite graph. By combining Theorem 52 and Lemma 53,

we can compute a DPE of G to R7 in polynomial time. By taking the images of the

vertices of G under the DPE, we obtain a set S of points in R7. Using the point set

S, we further construct a colored stochastic dataset S = (S, cl, π) by choosing an

injection cl : S → N and defining π(a) = 1
2 for any a ∈ S. It is clear that GS ∼= G

and thus Ind(G) = 2|S|ΓS . Then by applying Lemma 47, we can compute another

colored stochastic dataset S ′ = (S′, cl′, π′) such that ΓS′ = ΓS and π′(a) = 1
2 for any

101

a ∈ S′, and more importantly, 〈S ′〉 is an instance of the CSD problem with respect

to P. With this reduction, the second statement of Theorem 43 is proved.

4.2.3 A simple FPRAS

In this section, we describe a simple FPRAS (i.e., fully polynomial-time random-

ized approximation scheme) for approximating ΛS in any dimension. Recall that

a FPRAS is a randomized algorithm which takes the input of the problem with

an additional parameter ε > 0, and computes an ε-approximation of the answer in

polynomial (in both the size of the problem and 1/ε) time with high probability

(say at least 2/3).

A natural idea to design a FPRAS for approximating ΛS is to randomly generate

a large number of realizations of S, and estimate ΛS using the proportion of the

number of the realizations containing inter-color dominances to the total number of

the realizations. However, since we are only allowed to generate a polynomial num-

ber of realizations, this method does not guarantee to produce an ε-approximation

of ΛS with high probability. For instance, if ΛS = 2−n, then the estimation of ΛS

obtained by generating polynomial number of realizations would be 0 with probabil-

ity almost 1 (as one can easily verify using union bound). Interestingly, by slightly

making some changes to this simple method, we can truly obtain a FPRAS for

computing ΛS .

Our FPRAS works as follows. Suppose the points a1, . . . , an are already sorted

by their existence probabilities from large to small, i.e., π(a1) ≥ · · · ≥ π(an). Instead

of estimating ΛS directly, what we do is to estimate a set of conditional probabilities

and use them to compute an estimation of ΛS . For any i, j ∈ {1, . . . , n} with i < j,

we define Ei,j as the event that a realization R of S includes ai, aj and any other

points in R have indices smaller than i. Then we immediately have

ΛS =

n−1∑
i=1

n∑
j=i+1

Pr[Ei,j] · Cond i,j , (4.2)

where Cond i,j is the conditional probability that a realization of S contains inter-

color dominances under the condition that Ei,j happens. The probabilities Pr[Ei,j]

can be straightforwardly computed. But we are not able to exactly compute Cond i,j

in polynomial time, so we try to estimate them by randomly generating realizations.

102

For p ∈ {0, 1, . . . , n}, set Sp = {a1, . . . , ap}, and we use Sp to denote the sub-dataset

of S with point set Sp ⊆ S. We randomly generate N = 10n5/ε2 realizations of Sp
for each p ∈ {0, 1, . . . , n}. Let Rp,q be the q-th realization of Sp. We compute an

estimation Est i,j for each Cond i,j as

Est i,j =
N∑
k=1

σ(Ri−1,k ∪ {ai, aj})
N

,

where σ(R) = 1 if R contains inter-color dominances and σ(R) = 0 otherwise. Then

we can apply Equation 4.2 to compute an estimation Λ of ΛS , simply by replacing

each Cond i,j with its estimation Est i,j . It is quite surprising that Λ is, with high

probability, an ε-approximation of ΛS (note that each Est i,j is not necessarily an ε-

approximation of Cond i,j with high probability). The following theorem completes

the discussion.

Theorem 54. We have (1− ε)ΛS < Λ < (1 + ε)ΛS with probability at least 2/3.

Proof. We show that for any i, j ∈ {1, . . . , n} with i < j,

Pr[Ei,j] · |Est i,j − Cond i,j | <
ε

n2
ΛS (4.3)

with probability 1 − O(e−n). As long as this is true, by using union bound, we

can immediately conclude that |Λ−ΛS | < εΛS with probability at least 2/3, which

completes the proof. Consider a realization R of Si−1. Clearly, the probability that

R ∪ {ai, aj} contains inter-color dominances is nothing but Cond i,j . Therefore, by

Hoeffding’s inequality and the definition of Est i,j , we have that

Pr
[
|Est i,j − Cond i,j | ≥

ε

n2

]
≤ 2e−2Nε2/n4

= 2e−2n.

If Pr[Ei,j] ≤ ΛS , we are done because the above already implies that Inequality 4.3

holds with probability 1−O(e−n). So assume Pr[Ei,j] > ΛS . Note that π(ai)·π(aj) ≥
Pr[Ei,j], which implies π(ai) · π(aj) > ΛS . We claim that Cond i,j = 0. It suffices

to show that for any realization R of Si−1, R ∪ {ai, aj} contains no inter-color

dominances. Let ap, aq ∈ R∪{ai, aj} be two distinct points. Assume cl(ap) 6= cl(aq)

and ap � aq. Then we must have ΛS ≥ π(ap) · π(aq) because a realization of S does

contain inter-color dominances if it includes both ap and aq. However, recall that

π(a1) ≥ · · · ≥ π(an). Thus, π(ap) · π(aq) ≥ π(ai) · π(aj) > ΛS , which gives us a

103

contradiction. Since Cond i,j = 0, Est i,j is for sure 0. It follows that Inequality 4.3

holds with probability 1 in this case. As a result, (1− ε)ΛS < Λ < (1 + ε)ΛS with

probability at least 2/3.

4.3 The free-basis colored stochastic dominance prob-

lem

Define Λ∗S as the probability that a realization of S contains inter-color dominances

with respect to any orthogonal basis of Rd. Set Γ ∗S = 1−Λ∗S , which is the probability

that a realization of S contains no inter-color dominances with respect to some

orthogonal basis of Rd. The goal of the FBCSD problem is to compute Λ∗S (or Γ ∗S).

4.3.1 Reduction from the CSD problem

In this section, we show that the (standard) CSD problem in Rd is polynomial-time

reducible to the FBCSD problem in the same dimension, which implies the latter

is #P-hard for d ≥ 3. Given a colored stochastic dataset S = (S, cl, π) in Rd as

an instance of the CSD problem, our reduction tries to construct another colored

stochastic dataset S ′ = (S′, cl′, π′) in Rd such that Λ∗S′ = ΛS . The intuition for our

reduction is the following. First, consider the given colored stochastic dataset S.

Clearly, we have Λ∗S ≤ ΛS , as every realization of S counted in Λ∗S is also counted in

ΛS . The reason for why Λ∗S may be smaller than ΛS is that perhaps some realization

contains inter-color dominances with respect to the standard basis E of Rd but does

not contain inter-color dominances with respect to some other basis. To handle

this, our basic idea is to add a set Ψ of (colored) auxiliary points with existence

probabilities 1 to S, that is, we want S′ = S ∪ Ψ with π′(b) = 1 for all b ∈ Ψ (and

π′(a) = π(a), cl′(a) = cl(a) for all a ∈ S). The goal of adding these auxiliary points

is to guarantee that a subset A ⊆ S contains inter-color dominances with respect to

the standard basis E iff A∪ Ψ ⊆ S′ contains inter-color dominances with respect to

any orthogonal basis. Note that as long as Ψ has this property, it obviously holds

that Λ∗S′ = ΛS . Therefore, the critical part of our reduction is to construct such a

set Ψ with the desired property. We achieve this through several steps.

First of all, we need to make the point set S “regular”. Formally, we say a

104

(finite) point set X ⊂ Rd is regular if X ⊂ {1, 2, . . . , |X|}d and any two distinct

points x, x′ ∈ X have distinct coordinates in all dimensions. It is easy to see that

one can always “regularize” a point set without changing the dominance relation

(with respect to E) among the points.

Lemma 55. Given a set S = {a1, . . . , an} ⊂ Rd of distinct points, one can construct

in O(n log n) time a regular set Snew = {â1, . . . , ân} ⊂ Rd such that âi �E âj iff

ai �E aj.

Proof. Fixing p ∈ {1, . . . , d}, we determine the p-th coordinates of â1, . . . , ân as

follows. For all i ∈ {1, . . . , n}, define a triple φi = (γi, σi, i) where γi is the p-th

coordinate of ai and σi is the sum of the d coordinates of ai. Then we sort all φi

in lexicographic order from small to large, and suppose φi1 , . . . , φin is the resulting

sorted sequence. We have φi1 < · · · < φin under lexicographic order, since there

exist no ties. Now we simply set the p-th coordinates of âi1 , . . . , âin to be 1, . . . , n

respectively. In this way, we obtain the new set Snew = {â1, . . . , ân} ⊂ Rd in

O(n log n) time (note that d is assumed to be constant). It is clear that Snew is

regular. We verify that Snew satisfies the desired property. Assume ai �E aj . Then

in each dimension, the coordinate of ai is greater than or equal to the coordinate

of aj . In addition, the sum of the d coordinates of ai is greater than that of aj .

Therefore, in all dimensions, the coordinates of âi are greater than the coordinates

of âj , i.e., âi �E âj . Assume ai �E aj . Then there exists p ∈ {1, . . . , d} such that

the p-th coordinate of ai is smaller than the p-th coordinate of aj . By definition,

the p-th coordinate of âi is also smaller than the p-th coordinate of âj . Therefore,

âi �E âj .

Now we may assume S is regular. To construct Ψ , we need to introduce some

new notions.

Definition 56. Let B = (b1, . . . ,bd) be an orthogonal basis of Rd. We define the

cone CB of B as

CB =

{
d∑
i=1

βibi : β1, . . . , βd ≥ 0

}
∪

{
d∑
i=1

βibi : β1, . . . , βd ≤ 0

}
⊂ Rd.

Also, we define the projective cone PCB ⊂ Pd−1 as the image of CB\{0} in Pd−1

under the standard quotient map Rd\{0} → Pd−1.

105

Intuitively, the cone CB consists of the points whose coordinates are all positive

or all negative under the basis B, and the projective cone PCB consists of all lines

through the origin that lie in CB. For a point x ∈ Rd with x 6= 0, we denote by x its

image in Pd−1 under the quotient map Rd\{0} → Pd−1. The notion of (projective)

cone defined above gives us another way to view dominance relations with respect

to an orthogonal basis. Consider two distinct points p, q ∈ Rd, and an orthogonal

basis B of Rd. It is easy to see that p, q form a dominance with respect to B (i.e.,

p �B q or q �B p) iff p− q ∈ CB, or equivalently, p− q ∈ PCB. Another notion we

need is a metric on any projective space Pk.

Definition 57. For two points l, l′ ∈ Pk, we define ang(l, l′) ∈ [0, π2] to be the angle

between l and l′ as lines in Rk+1 through the origin (there are two supplementary

angles, take the smaller one which is in [0, π2]). It is easy to see that ang(·, ·) defines

a metric on Pk.

The following lemmas establish some geometric properties of the projective cone

and the ang-metric, which will be helpful for constructing Ψ .

Lemma 58. Let B be an orthogonal basis of Rd, and l be a point in Pd−1. If

l /∈ PCB, then there exists x ∈ PCB perpendicular to l, i.e., ang(l, x) = π
2 .

Proof. Without loss of generality, we may assume B = E. Let [r1 : · · · : rd] be the

homogeneous coordinates of l. Since l /∈ PCB, we may find rp and rq such that

rp > 0 and rq < 0. Now we define r′1, . . . , r
′
d ∈ R by setting r′p = −rq, r′q = rp, and

r′i = 0 for any i /∈ {p, q}. Consider the point x = [r′1 : · · · : r′d] ∈ Pd−1. Note that r′p
and r′q are nonzero so that x is well-defined. Since r′1, . . . , r

′
d are nonnegative, we have

x ∈ PCB. Furthermore, we know that ang(l, x) = π
2 , because

∑d
i=1 rir

′
i = 0.

Lemma 59. For any orthogonal basis B of Rd, any point x ∈ PCB, and any real

number ε ∈ (0, π2], there exists y ∈ PCB with ang(x, y) < ε such that the ε
3
√
d
-ball

at y, i.e., the set {z ∈ Pd−1 : ang(z, y) ≤ ε
3
√
d
}, is contained in PCB.

Proof. Without loss of generality, we may assume B = E. Let [r1 : · · · : rd] be

the homogeneous coordinates of x such that
∑d

i=1 r
2
i = 1. Since x ∈ PCB, the

coordinates can be chosen such that r1, . . . , rd are nonnegative. Consider the point

106

y = [r′1 : · · · : r′d] ∈ Pd−1 where r′i = ri + ε√
d
. It is clear that y is well-defined and in

PCB. Set θ = ang(x, y). To see θ < ε, we note that

sin2 θ = 1− cos2 θ = 1−
(
∑d

i=1 rir
′
i)

2∑d
i=1(r′i)

2
=

(d− γ2)ε2

d+ 2ε
√
dγ + dε2

,

where γ =
∑d

i=1 ri ≥ 1. Therefore, sin2 θ < ε2/(1 + ε2) and sin θ < ε/
√

1 + ε2,

which implies θ < ε. It suffices to show that the ε
3
√
d
-ball at y is contained in

PCB. Equivalently, we want that ang(z, y) > ε
3
√
d

for any z ∈ Pd\PCB. Let

z = [s1 : · · · : sd] be a point in Pd\PCB and assume
∑d

i=1 s
2
i = 1. We have that

cos2(ang(z, y)) =

(∑d
i=1 r

′
isi

)2

∑d
i=1(r′i)

2
.

Because z ∈ Pd\PCB, there must exist some p, q such that sp > 0 and sq < 0. Since

r′1, . . . , r
′
d > 0 and

∑d
i=1 s

2
i = 1, we have that(∑d

i=1 r
′
isi

)2

∑d
i=1(r′i)

2
≤

(∑d
i=1 r

′
i|si|

)2
− η2∑d

i=1(r′i)
2

≤
∑d

i=1(r′i)
2 − η2∑d

i=1(r′i)
2

,

where η = min{|r′p|, |r′q|}. It follows that

sin2(ang(z, y)) ≥ η2∑d
i=1(r′i)

2
≥ ε2/d

(1 + ε)2
>
ε2

9d
.

Therefore, ang(z, y) ≥ sin(ang(z, y)) > ε
3
√
d
.

Lemma 60. Let l be a point in Pd−1 and ε ≥ ξ > 0 be two real numbers. Then one

can compute m = O(ε/ξd−1) points l1, . . . , lm ∈ Pd−1 in O(m) time such that (1)

ang(l, li) >
π
2 − ε for all i ∈ {1, . . . ,m} and (2) for any y ∈ Pd−1 with ang(l, y) >

π
2 − ε, there exists some li satisfying ang(li, y) < ξ.

Proof. By taking ε > π
2 , the statement in the theorem implies that for any ξ > 0,

one can compute m = O(1/ξd−1) points l1, . . . , lm ∈ Pd−1 in O(m) time such that

mini ang(li, y) < ξ for any y ∈ Pd−1. With this observation, we complete the proof by

applying induction on the dimension. In P1, the statement is quite obvious. Without

loss of generality, we may assume l = [0 : 1]. Set γ = bε/ξc and m = 2γ + 1. Then

one can simply take the m points [cos(iξ) : sin(iξ)] for all i ∈ {−γ, . . . , 0, . . . , γ}

107

as l1, . . . , lm. The two desired properties of l1, . . . , lm can be readily verified. Now

suppose the theorem holds in Pk−1, and we consider the case in Pk. Similarly, we

may assume l = [0 : · · · : 0 : 1] ∈ Pk. As argued at the beginning, our induction

hypothesis implies that we can compute m′ = O(1/ξk−1) points l′1, . . . , l
′
m′ ∈ Pk−1 in

O(m′) time such that mini ang(l′i, y) < ξ/2 for any y ∈ Pk−1. We then use these m′

points to achieve our construction in Pk as follows. For any real number α ∈ [0, 1),

we define the inclusion map fα : Pk−1 → Pk as

fα : [r1 : · · · : rk] 7→

[
r1 : · · · : rk :

√
t

1− α2

]
,

where t =
∑k

i=1 r
2
i (note that fα is well-defined). Set γ = b2ε/ξc and m = (2γ +

1)m′ = O(ε/ξk). Also, set αi = sin(iξ/2) for i ∈ {−γ, . . . , 0, . . . , γ}. Then we take

them points fαi(l
′
j) for all i ∈ {−γ, . . . , 0, . . . , γ} and all j ∈ {1, . . . ,m′} as l1, . . . , lm.

It suffices to show that l1, . . . , lm satisfy the two desired conditions. Clearly, for any

i = {−γ, . . . , 0, . . . , γ} and j = {1, . . . ,m′}, we have that ang(l, fαi(l
′
j)) = π

2−iξ/2 >
π
2 − ε. To verify the condition (2), let y = [r1 : · · · : rk+1] be a point in Pk where∑k+1
i=1 r

2
i = 1. Suppose ang(l, y) > π

2 − ε, so |rk+1| < sin ε. If rk+1 ≥ 0, we

define p as the largest integer in {0, . . . , γ} such that sin(pξ/2) ≤ rk+1, otherwise

define p as the smallest integer in {−γ, . . . , 0} such that sin(pξ/2) ≥ rk+1. Set

y′ = [r1 : · · · : rk] ∈ Pk−1. Then by assumption, there exists some q ∈ {1, . . . ,m′}
such that ang(l′q, y

′) < ξ/2. We claim that ang(fαp(l′q), y) < ξ. Indeed, we consider

the point fαp(y′) ∈ Pk. We have ang(fαp(l′q), fαp(y′)) ≤ ang(l′q, y
′) < ξ/2. Also, we

have ang(fαp(y′), y) = | arcsin(rk+1) − pξ/2| < ξ/2. Therefore, ang(fαp(l′q), y) < ξ,

which implies that the points l1, . . . , lm satisfy the condition (2). The induction

argument then completes the proof.

With the above lemmas in hand, we now describe the construction of Ψ . We

look at all pairs (a, a′) of points in S such that cl(a) 6= cl(a′) and a �E a′. For each

such pair (a, a′), we do the following. Set l = a− a′ ∈ Pd−1, ε = arcsin(1√
dn

), and

ξ = ε
3
√
d
. By applying Lemma 60 with l, ε, ξ, we compute m = O(ε/ξd−1) = O(nd−2)

points l1, . . . , lm ∈ Pd−1 satisfying the conditions (1) and (2) in the lemma. In

addition, we observe the following.

• li /∈ PCE for all i ∈ {1, . . . ,m}.
• For any orthogonal basis B of Rd, if l /∈ PCB, then there exists some li ∈ PCB.

108

To see the first observation, recall that S is already regular. Since a �E a′ and

S is regular, l can be represented by homogeneous coordinates [α1 : · · · : αd] with

α1, . . . , αd ∈ {1, . . . , n − 1}. Based on this, one can easily verify that ang(l, l′) <

arccos(1√
dn

) for any l′ ∈ PCE . But we have ang(l, li) >
π
2 − ε = arccos(1√

dn
) by

Lemma 60. Thus, li /∈ PCE .

To see the second observation, let B be an orthogonal basis of Rd with l /∈ PCB.

By Lemma 58, there exists x ∈ PCB with ang(l, x) = π
2 . Then by Lemma 59,

there exists y ∈ PCB such that ang(x, y) < ε and the ε
3
√
d
-ball at y is contained in

PCB. Since ang(l, x) = π
2 and ang(x, y) < ε, we have ang(l, y) > π

2 − ε. Therefore,

according to the condition (2) in Lemma 60, there must exist some li such that

ang(li, y) < ξ. Recall that ξ = ε
3
√
d
, so li is in the ε

3
√
d
-ball at y and hence in

PCB. These two observations will be used later to verify that Ψ satisfies the desired

property.

Now we continue to discuss the construction of Ψ . We have computed m points

l1, . . . , lm ∈ Pd−1 for a specific pair (a, a′). We do the same thing for all pairs (a, a′)

of points in S with cl(a) 6= cl(a′) and a �E a′. After this, we obtain M = O(n2m) =

O(nd) points in Pd−1 (with an abuse of notation, we denote them by l1, . . . , lM).

The set Ψ we construct consists of 2M points b1, . . . , bM , b
′
1, . . . , b

′
M ∈ Rd where

bi, b
′
i correspond to li for i ∈ {1, . . . ,M}. We set the coordinates of each bi in

Rd to be (−i, . . . ,−i, n + i). Then we choose location for each b′i in Rd such that

‖b′i − bi‖2 < 0.1 and b′i − bi = li (there are infinitely many choices, we arbitrarily

pick one of them). Finally, we need to define the coloring of the points in Ψ , i.e.,

cl′(b) for all b ∈ Ψ . We arbitrarily color the points in Ψ under the only restriction

that bi and b′i must have different colors, i.e., cl′(bi) 6= cl′(b′i), for all i ∈ {1, . . . ,M}.
It suffices to verify the property that A ⊆ S contains inter-color dominances with

respect to E iff A ∪ Ψ ⊆ S′ contains inter-color dominances with respect to any

orthogonal basis.

To see the “if” part, let A ⊆ S be a subset such that A ∪ Ψ ⊆ S′ contains

inter-color dominances with respect to any orthogonal basis. Since S ⊂ [1, n]d (as

S is regular) and li /∈ PCE for all i ∈ {1, . . . ,M} (as observed above), the points

in Ψ do not dominate each other and do not form dominance with any points in S,

with respect to E. But by assumption, A ∪ Ψ contains inter-color dominances with

respect to E. So the inter-color dominances must be formed by the points in A, i.e.,

109

A contains inter-color dominances with respect to E.

To see the “only if” part, let A ⊆ S be a subset containing inter-color dominances

with respect to E. Suppose a, a′ ∈ A are two points such that cl(a) 6= cl(a′) and

a �E a′. Consider an orthogonal basis B of Rd, and we must show that A ∪ Ψ
contains inter-color dominances with respect to B. If a �B a′ or a′ �B a, then we

are done. Otherwise, recall that we have m points in {l1, . . . , lM} which are chosen

for the pair (a, a′) (assume they are l1, . . . , lm without loss of generality). By our

observation above, one of these m points must be in PCB, say l1 ∈ PCB. Then the

two points b1, b
′
1 ∈ Ψ form an inter-color dominance with respect to B.

By the above construction, we obtain a colored stochastic dataset S ′ = (S ∪
Ψ, cl′, π′) in Rd satisfying Λ∗S′ = ΛS . Clearly, this reduction can be done in poly-

nomial time. Thus, the FBCSD problem is #P-hard for d ≥ 3. In fact, with some

efforts, one can make this result stronger by considering the FBCSD problem with

respect to a balanced color pattern.

Theorem 61. Let P ′ = (∆′1, ∆
′
2, . . .) be a balanced color pattern. Then for any

fixed d, there exists a balanced color pattern P = (∆1, ∆2, . . .) such that the CSD

problem in Rd with respect to P is polynomial-time reducible to the FBCSD problem

in Rd with respect to P ′. In particular, the FBCSD problem in Rd with respect to

P ′ is #P-hard for d ≥ 3.

Proof. To prove the result, we first determine some constants. Since P ′ is balanced,

there is a constant c1 < 1 such that N −max∆′N ≥ N c1 for any sufficiently large N .

Recall that our construction of the auxiliary point set Ψ satisfies |Ψ | = 2M = O(nd)

where n = |S|. So we can find a constant c2 such that |S ∪Ψ | ≤ c2n
d. We construct

the desired balanced color pattern P = (∆1, ∆2, . . .) as follows. For an integer p > 0,

in order to determine ∆p, set q = (c2p
d)2/c1 . We consider two cases, |∆′q| ≥ c2p

d and

|∆′q| < c2p
d. In the case of |∆′q| ≥ c2p

d, we define ∆p = {1, . . . , 1}, i.e., a multi-set

consisting of p 1’s. In the case of |∆′q| < c2p
d, we define ∆p = {p2 ,

p
2} if p is even and

∆p = {p−1
2 , p+1

2 } if p is odd. This completes the construction of P.

We claim that the CSD problem in Rd with respect to P is polynomial-time

reducible to the FBCSD problem in the same dimension with respect to P ′. Let

S = (S, cl, π) be a colored stochastic dataset in Rd such that 〈S〉 is an instance of the

CSD problem with respect to P. Suppose |S| = n and set N = (c2n
d)2/c1 . We want

110

to construct another colored stochastic dataset S ′ = (S′, cl′, π′) in Rd with |S′| = N

such that Λ∗S′ = ΛS and 〈S ′〉 is an instance of the FBCSD problem with respect to P ′.
As before, we first construct the auxiliary point set Ψ = {b1, . . . , bM , b′1, . . . , b′M}.
By our assumption, we have |S ∪ Ψ | = n + 2M ≤ c2n

d < N . In order to have

|S′| = N , we then arbitrarily choose a set D of N − (n+ 2M) dummy points in Rd

(these points can be chosen arbitrarily as we will assign them existence probabilities

0 later) and set S′ = S ∪ Ψ ∪D. The existence probabilities of the points in S′ are

defined as

π′(a) =

π(a) if a ∈ S,
1 if a ∈ Ψ,
0 if a ∈ D.

It suffices to define the coloring cl′ of S′. Since we need 〈S ′〉 to be an instance of

the FBCSD problem with respect to P ′, cl′ must induce the partition ∆′N . Besides,

it should be guaranteed that cl′(a) = cl(a) for all a ∈ S and cl′(bi) 6= cl′(b′i) for

i ∈ {1, . . . ,M} (as observed previously, Λ∗S′ = ΛS as long as we have this).

We consider two cases, |∆′N | ≥ c2n
d and |∆′N | < c2n

d. In the case of |∆′N | ≥
c2n

d, we have ∆n = {1, . . . , 1} by definition and therefore all the points in S have

distinct colors (under the coloring cl). Note that |S ∪ Ψ | ≤ c2n
d ≤ |∆′N |. As such,

one can easily find a coloring cl′ inducing ∆′N which assigns distinct colors to the

points in S ∪ Ψ and satisfies cl′(a) = cl(a) for all a ∈ S (note that the coloring

on D is “free”, so we can easily make cl′ induces ∆′N). This cl′ completes our

reduction. In the case of |∆′N | < c2n
d, we have that ∆n = {n2 ,

n
2 } if n is even

and ∆n = {n−1
2 , n+1

2 } if n is odd. Without loss of generality, we may assume that

cl(S) = {1, 2}. Suppose ∆′N = {r1, . . . , rm} where m < c2n
d and r1 ≥ · · · ≥ rm. We

claim that r1 ≥ r2 ≥ c2n
d. Indeed, if r2 < c2n

d, then
∑m

i=2 ri < mc2n
d < (c2n

d)2

and hence N ≤ (N−r1)1/c1 < (c2n
d)2/c1 , contradicting the fact that N = (c2n

d)2/c1 .

With this observation, we try to construct cl′ with cl′(S′) = {1, . . . ,m} such that

cl′ assigns color i to exactly ri points in S′. We define cl′(a) = cl(a) for all a ∈ S,

cl′(bi) = 1 and cl′(b′i) = 2 for i ∈ {1, . . . ,M}. Note that by doing this we do not

“exhaust” the colors 1 and 2, because r1 ≥ r2 ≥ c2n
d ≥ |S ∪Ψ |. So we can carefully

determine cl′(a) for all a ∈ D such that exactly ri points in S′ have color i. By the

defined cl′, we completes our reduction and the proof.

111

4.3.2 Reduction to the CSD problem for d = 2

In this section, we study the FBCSD problem for d = 2 and show that an instance

of the FBCSD problem in R2 can be reduced to O(n2) instances of the CSD problem

in R2. By combining this reduction with our algorithm given in Section 4.2.1, we

directly obtain an O(n4 log2 n)-time algorithm for the FBCSD problem in R2. For

simplicity of exposition, we assume that S is in general position in R2, i.e., no three

points are collinear.

We try to compute Γ ∗S . When computing Γ ∗S , we need to consider the realizations

of S which contain no inter-color dominances with respect to some orthogonal basis

of R2 (these realizations are said to be good). We first establish a criterion for

testing whether a realization is good. Recall that for a nonzero point x ∈ Rd, the

notation x denotes the image of x in Pd−1 under the quotient map Rd\{0} → Pd−1.

For a subset A ⊆ S, we define LA = {ai − aj : ai, aj ∈ A and cl(ai) 6= cl(aj)} ⊂ P1.

For two points l, l′ ∈ P1, we denote by θ(l, l′) the angle between l and l′ whose

counterclockwise boundary is l and clockwise boundary is l′ (when talking about

angle we regard l and l′ as lines in R2 through the origin). Then we have the

following observation.

Lemma 62. A realization R of S is good iff LR = ∅ or there exists a unique l ∈ LR
such that θ(l, l′) > π

2 for any l′ ∈ LR not equal to l.

Proof. We first consider the “if” part. If LR = ∅, then R is monochromatic and

hence is good. If there exists l ∈ LR such that θ(l, l′) > π
2 for any l′ ∈ LR not equal to

l, one can slightly rotate l clockwise to obtain l0 ∈ P1 such that θ(l0, l
′) > π

2 for any

l′ ∈ LR. Suppose the homogeneous coordinates of l0 is [α : β] with α2+β2 = 1. Take

the orthogonal basis B = (b1,b2) of R2 with b1 = (α, β) and b2 = (β,−α). Since

θ(l0, l
′) > π

2 for any l′ ∈ LR, we know that R contains no inter-color dominances

with respect to B.

To see the “only if” part, let R be a good realization of S. Suppose R contains

no inter-color dominances with respect to some orthogonal basis B = (b1,b2) of

R2 (assume b2 is in the clockwise direction of b1 with angle π
2). Let b ∈ P1 be

the point corresponding to b1 (i.e., b is the image of b1 under the quotient map

S1 → P1). If LR = ∅, we are done. So assume LR 6= ∅. Define l ∈ LR as the point

which minimizes θ(l, b). We claim that θ(l, l′) > π
2 for any l′ ∈ LR not equal to l.

112

Let l′ ∈ LR be a point not equal to l. If θ(l, l′) ≤ π
2 , then either θ(l′, b) < θ(l, b)

or l′ ∈ PCB (recall that PCB is the projective cone of B defined in Section 4.3.1).

The former contradicts the definition of l while the latter contradicts the fact that

R contains no inter-color dominances with respect to B.

Note that LR = ∅ iff R is monochromatic. Based on the above lemma, we now

define a notion called witness pair as follows. Let R be a good but not monochro-

matic realization of S. Then by Lemma 62, there exists a unique l ∈ LR such that

θ(l, l′) > π
2 for any l′ ∈ LR not equal to l. According to the definition of LR, we

must have l = ai − aj for some ai, aj ∈ R with cl(ai) 6= cl(aj). Note that the choice

of ai, aj is not necessarily unique (though l is unique). Let Y be the set of all pairs

(ai, aj) with ai, aj ∈ R satisfying cl(ai) 6= cl(aj) and l = ai − aj . We claim that

there exists a unique pair (ai∗ , aj∗) ∈ Y such that for any (ai, aj) ∈ Y we have

j∗ ≥ j. The existence is obvious, so it suffices to show the uniqueness. Indeed, if

(ai, aj) and (ai′ , aj) are two pairs in Y , then the points ai, ai′ , aj must be collinear

in R2. However, because of the general position assumption for S (and hence for

R), we must have i = i′. It follows that for any j ∈ {1, . . . , n} there is at most one

pair (ai, aj) ∈ Y , which further implies the uniqueness of (ai∗ , aj∗). We define the

pair (ai∗ , aj∗) as the witness pair of R, denoted by wit(R). See Figure 4.12 for an

example. Now it is clear that

Γ ∗S = Prmono +
n∑
i=1

n∑
j=1

Pr i,j ,

where Prmono is the probability that a realization R of S is monochromatic, and Pr i,j

is the probability that R is good (but not monochromatic) with wit(R) = (ai, aj).

It is easy to compute Prmono in linear time. The problem remaining is how to

compute Pr i,j for all i, j ∈ {1, . . . , n}. Fix a pair (i∗, j∗). Obviously, if cl(ai∗) =

cl(aj∗), we immediately have Pr i∗,j∗ = 0. So suppose cl(ai∗) 6= cl(aj∗). We try to re-

duce the the task of computing Pr i∗,j∗ to an instance of the CSD problem in R2. Let

b1 = (ai∗−aj∗)/‖ai∗−aj∗‖2 be a unit vector of R2, and b2 be another unit vector ob-

tained by rotating b1 clockwise with angle π
2 . Clearly, B = (b1,b2) is an orthogonal

basis of R2. We define n points a′1, . . . , a
′
n ∈ R2 as follows. Let δ be a small enough

real number such that for any i, j ∈ {1, . . . , n} we have |〈b2, ai〉 − 〈b2, aj〉| > δ

113

a1

a8
a2

a5
a4

Figure 4.12: An example of witness pair. l = a1 − a8 = a2 − a5. wit(R) = (a1, a8).

unless 〈b2, ai〉 = 〈b2, aj〉. Consider a specific index p ∈ {1, . . . , n}. If p ≤ j∗ and

there exists q ≤ j∗ satisfying cl(ap) 6= cl(aq), ap �B aq, 〈b2, ap〉 = 〈b2, aq〉, then

we set the coordinates of a′p in R2 to be (〈b2, ap〉 − δ, 〈b1, ap〉). Otherwise, we set

the coordinates of a′p to be (〈b2, ap〉, 〈b1, ap〉). Based on this, we can construct

a colored stochastic dataset S ′ = (S′, cl′, π′) in R2 by defining S′ = {a′1, . . . , a′n},
cl′(a′i) = cl(ai) for all i ∈ {1, . . . , n}, and π′(a′i∗) = π′(a′j∗) = 1, π′(a′i) = π(ai) for

all i ∈ {1, . . . , n}\{i∗, j∗}. We observe the following equation, which allows us to

compute Pr i∗,j∗ by solving the instance 〈S ′〉 of the CSD problem in R2.

Lemma 63. Pr i∗,j∗ = π(ai∗) · π(aj∗) · ΓS′.

Proof. First, we observe (Observation 1, hereafter) that a realization R of S is

good with wit(R) = (ai∗ , aj∗) iff (1) ai∗ , aj∗ ∈ R and (2) for any ai, aj ∈ R with

cl(ai) 6= cl(aj) and ai �B aj , we have max(i, j) ≤ j∗ and 〈b2, ai〉 = 〈b2, aj〉. To

see the “if” part, assume R satisfies the conditions (1) and (2). Since ai∗ , aj∗ ∈ R,

we know that ai∗ − aj∗ ∈ LR. Set l = ai∗ − aj∗ . The condition (2) guarantees that

θ(l, l′) > π
2 for any l′ ∈ LR not equal to l. Thus, by Lemma 62, R is good (but not

monochromatic since ai∗ , aj∗ ∈ R). Furthermore, it is easy to see that the conditions

(1) and (2) also guarantee wit(R) = (ai∗ , aj∗). To see the “only if” part, assume R

is good with wit(R) = (ai∗ , aj∗). By the definition of witness pair, we immediately

have ai∗ , aj∗ ∈ R. Again, set l = ai∗ − aj∗ . Let ai, aj ∈ R be two points such

that cl(ai) 6= cl(aj) and ai �B aj . By the definition of B, we have θ(l, l′) ≤ π
2 for

l′ = ai − aj . According to Lemma 62, it implies that l = l′, i.e., 〈b2, ai〉 = 〈b2, aj〉.
Besides, we must have max(i, j) ≤ j∗, otherwise (ai∗ , aj∗) is not the witness pair of

R.

Second, we observe (Observation 2, hereafter) that our construction of S ′ satisfies

114

the following property. Let i, j ∈ {1, . . . , n} be any indices such that cl(ai) 6= cl(aj),

or equivalently, cl′(a′i) 6= cl′(a′j). Then we have a′i �E a′j iff (1) ai �B aj and (2)

〈b2, ai〉 > 〈b2, aj〉 or max(i, j) > j∗. To see the “if” part, assume ai �B aj . In

this case, we have y(a′i) = 〈b1, ai〉 ≥ 〈b1, aj〉 = y(a′j). If 〈b2, ai〉 > 〈b2, aj〉, then

x(a′i) ≥ 〈b2 − δ, ai〉 > 〈b2, aj〉 ≥ x(a′j) so that a′i �E a′j . If 〈b2, ai〉 = 〈b2, aj〉 and

max(i, j) > j∗, we also have x(a′i) = 〈b2, ai〉 > 〈b2, aj〉 = x(a′j) (recall the general

position assumption) so that a′i �E a′j . To see the “only if” part, first assume

ai �B aj . In this case, we have either y(a′i) < y(a′j) or x(a′i) < x(a′j), which implies

a′i �E a′j . Now assume ai �B aj , 〈b2, ai〉 ≤ 〈b2, aj〉, and max(i, j) ≤ j∗. Because

ai �B aj , it must be the case that 〈b2, ai〉 = 〈b2, aj〉 and 〈b1, ai〉 > 〈b1, aj〉. By our

construction, we have x(a′i) = 〈b2, ai〉 − δ. But x(a′j) = 〈b2, aj〉 (recall the general

position assumption). Thus, a′i �E a′j .
With the above two observations, we prove the equation Pr i∗,j∗ = π(ai∗) ·π(aj∗) ·

ΓS′ . Define a natural one-to-one correspondence µ : S → S′ as µ(ai) = a′i. First, it

is clear that for any subset A ⊆ S including ai∗ , aj∗ , the probability that A occurs

as a realization of S is equal to the product π(ai∗) ·π(aj∗) ·Pr[µ(A)], where Pr[µ(A)]

the probability that µ(A) occurs as a realization of S ′. Let R be a realization of

S. We claim that R is good with wit(R) = (ai∗ , aj∗) iff a′i∗ , a
′
j∗ ∈ µ(R) and µ(R)

contains no inter-color dominances (with respect to E).

To see the “if” part, assume a′i∗ , a
′
j∗ ∈ µ(R) and µ(R) contains no inter-color

dominances with respect to E. Then ai∗ , aj∗ ∈ R. Let ai, aj ∈ R be two points such

that cl(ai) 6= cl(aj) and ai �B aj . Since µ(R) contains no inter-color dominances

with respect to E, Observation 2 above implies that max(i, j) ≤ j∗ and 〈b2, ai〉 ≤
〈b2, aj〉 (the latter further implies 〈b2, ai〉 = 〈b2, aj〉 since ai �B aj). Thus, by

Observation 1 above, R is good with wit(R) = (ai∗ , aj∗).

To see the “only if” part, assume R is good with wit(R) = (ai∗ , aj∗). Then

Observation 1 implies ai∗ , aj∗ ∈ R and hence a′i∗ , a
′
j∗ ∈ µ(R). Let ai, aj ∈ R

be two points such that cl(ai) 6= cl(aj). If ai �B aj , then by Observation 2 we

have a′i �E a′j . If ai �B aj , then Observation 1 implies that max(i, j) ≤ j∗ and

〈b2, ai〉 = 〈b2, aj〉. By using Observation 2, we also have a′i �E a′j . Therefore, µ(R)

contains no inter-color dominances with respect to E. This argument shows that

µ induces a one-to-one correspondence between the good realizations of S and the

realizations of S ′ which include a′i∗ , a
′
j∗ and contain no inter-color dominances (with

115

respect to E). Note that π′(a′i∗) = π′(a′j∗) = 1, hence a realization of S ′ for sure

includes a′i∗ , a
′
j∗ . As a result, we have Pr i∗,j∗ = π(ai∗) · π(aj∗) · ΓS′ .

In this way, an instance of the FBCSD problem in R2 is reduced to O(n2)

instances of the CSD problem in R2. By plugging in our O(n2 log2 n) algorithm for

solving the CSD problem in R2, we have the following result.

Theorem 64. The FBCSD problem in R2 can be solved in O(n4 log2 n) time.

Chapter 5

Conclusion and future work

5.1 Conclusion

In this thesis, we investigated three classes of geometric problems on stochastic

datasets that are equipped with existential uncertainty. The first class of problems

considers the linear separability of a bichromatic stochastic dataset, the second class

of problems considers the expected measures of a stochastic convex hull, and the

third class of problems considers the dominance relation in a colored stochastic

dataset.

For the stochastic separability, we studied the separable-probability (SP) prob-

lem and the expected separation-margin (ESM) problem, which are defined in Sec-

tion 1.1. We designed efficient algorithms for computing the SP and ESM of a

bichromatic stochastic dataset, and also provided hardness results for these prob-

lems.

For the stochastic convex hull, we studied the problem of computing the expected

diameter, width, and combinatorial complexity of a SCH of a stochastic dataset. We

gave efficient approximation algorithms for the expected diameter and width prob-

lems, and an exact algorithm for the expected complexity problem. Also, we showed

that exactly computing the expected diameter is #P-hard when the dimension is

not fixed.

For the stochastic dominance, we studied the colored stochastic dominance

116

117

(CSD) problem and the free-basis colored stochastic dominance (FBCSD) prob-

lem for a colored stochastic dataset. We established efficient algorithms for both

problems when d = 2 and showed #P-hardness for both problems when d ≥ 3. Also,

we gave an FPRAS for the CSD problem in any dimension.

In sum, our results demonstrated that geometric problems on uncertain (i.e.,

stochastic) datasets are significantly more difficult than their counterparts on con-

ventional datasets: many problems that are efficiently solvable on conventional

datasets require much more time to be solved or even become #P-hard on un-

certaint datasets.

5.2 Future work

In this section, we list some directions for future study on geometric computing in

stochastic settings. For the stochastic separability-related problems, one direction

for future study is to propose efficient approximation algorithms. As we have seen

in Section 2, the running times of our algorithms are exponential in d, and it might

be difficult to further improve our algorithms. However, if we only want an approx-

imation of the SP or ESM, it might be possible to design more efficient algorithms.

For example, one may seek a constant-approximation algorithm or even a (1 + ε)-

approximation algorithm for computing the SP or ESM; whether there exist such

algorithms with time complexity polynomial in n, N , and d is still an open question.

Another direction is to study other problems related to the separability of a bichro-

matic stochastic dataset. For example, one can study the problem of finding the

most likely maximum-margin separator of a given bichromatic stochastic dataset,

i.e., the hyperplane with the maximum probability of being the maximum-margin

separator of a realization.

For the stochastic convex hull-related problems, one direction for future study

is to propose fully polynomial-time approximation schemes (FPTAS), i.e., deter-

ministic (1 + ε)-approximation algorithms whose time complexity is polynomial in

both n and 1/ε, for computing the expected diameter and width of a SCH. An-

other direction is to prove hardness results for computing the expected diameter

and width. We have proved in Section 3.2.4 that computing the expected diameter

exactly when d is not fixed is #P-hard. However, when d is fixed, it is not clear

118

whether the problem is NP-hard/#P-hard or polynomial-time solvable. Also, no

hardness result for the expected-width problem is currently known.

For the stochastic dominance-related problems, one open question is whether the

hardness result presented in Section 4.2.2.3 can be further extended to the case of

d ≥ 3. Another direction for future study is to further improve the time complexity

of the algorithms in Section 4.2.1 and 4.3.2.

Besides the aforementioned problems, one can also investigate other kinds of

geometric problems on stochastic datasets. Here we list some potential problems

for future study.

Stochastic range-counting problems. Let S = (S, π) be a stochastic dataset

in Rd. For a range Q ⊆ Rd, define a random variable nQ = |R ∩ Q| where R is a

realization of S. The stochastic range-counting problems aim to preprocess S into

some data structure such that given a query range Q, the information about nQ can

be computed efficiently. For example, one may ask for the expectation of nQ, the

probability that nQ equals to (or greater/smaller than) a specified constant k, etc.

Stochastic connecting-distance problems. For a set S of points in Rd, the con-

necting distance of S is the smallest real number δ such that for any a, a′ ∈ S, there

is a sequence b1, . . . , br of points in S satisfying dist(a, b1) ≤ δ, dist(br, a
′) ≤ δ, and

dist(bi, bi+1) ≤ δ for all i ∈ {1, . . . , d− 1}. Let S = (S, π) be a stochastic dataset in

Rd. The stochastic connecting-distance problems involve computing the information

about the connecting distance of a realization of S (which is a random variable).

For example, one may ask for the expected connecting distance, the probability that

the connecting distance equals to (or greater/smaller than) a specified constant k,

etc.

References

[1] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Cheong

Schwarzkopf. Computational Geometry: Algorithms and Applications. Springer,

2000.

[2] Franco P Preparata and Michael I Shamos. Computational Geometry: An

Introduction. Springer Science & Business Media, 2012.

[3] Raimund Seidel. Convex hull computations. Handbook of Discrete and Com-

putational Geometry (edited by Jacob Goodman and Joseph O’Rourke), pages

495–512, 2004.

[4] Pankaj K Agarwal, Boris Aronov, Sariel Har-Peled, Jeff M Phillips, Ke Yi,

and Wuzhou Zhang. Nearest-neighbor searching under uncertainty II. ACM

Transactions on Algorithms, 13(1):3, 2016.

[5] Subhash Suri and Kevin Verbeek. On the most likely voronoi diagram and

nearest neighbor searching. International Journal of Computational Geometry

& Applications, 26:151–166, 2016.

[6] Jie Xue and Yuan Li. Stochastic closest-pair problem and most-likely nearest-

neighbor search in tree spaces. In Proceedings of the 15th International Sym-

posium on Algorithms and Data Structures, pages 569–580. Springer, 2017.

[7] Pankaj K Agarwal, Sariel Har-Peled, Subhash Suri, Hakan Yıldız, and Wuzhou

Zhang. Convex hulls under uncertainty. In Proceedings of the 22nd European

Symposium on Algorithms, pages 37–48. Springer, 2014.

[8] Lingxiao Huang and Jian Li. Approximating the expected values for combina-

torial optimization problems over stochastic points. In Proceedings of the 42nd

119

120

International Colloquium on Automata, Languages, and Programming, pages

910–921. Springer, 2015.

[9] Chao Li, Chenglin Fan, Jun Luo, Farong Zhong, and Binhai Zhu. Expected

computations on color spanning sets. Journal of Combinatorial Optimization,

29(3):589–604, 2015.

[10] Maarten Löffler and Marc van Kreveld. Largest and smallest convex hulls for

imprecise points. Algorithmica, 56(2):235, 2010.

[11] Subhash Suri, Kevin Verbeek, and Hakan Yıldız. On the most likely convex

hull of uncertain points. In Proceedings of the 21st European Symposium on

Algorithms, pages 791–802. Springer, 2013.

[12] Jie Xue, Yuan Li, and Ravi Janardan. On the expected diameter, width, and

complexity of a stochastic convex hull. Computational Geometry: Theory and

Applications, 82:16–31, 2019.

[13] Pegah Kamousi, Timothy M Chan, and Subhash Suri. Stochastic minimum

spanning trees in euclidean spaces. In Proceedings of the 27th Annual Sympo-

sium on Computational geometry, pages 65–74. ACM, 2011.

[14] Pegah Kamousi, Timothy M Chan, and Subhash Suri. Closest pair and the

post office problem for stochastic points. Computational Geometry: Theory

and Applications, 47(2):214–223, 2014.

[15] Pankaj K Agarwal, Siu-Wing Cheng, and Ke Yi. Range searching on uncertain

data. ACM Transactions on Algorithms, 8(4):43, 2012.

[16] Pankaj K Agarwal, Nirman Kumar, Stavros Sintos, and Subhash Suri. Range-

max queries on uncertain data. Journal of Computer and System Sciences,

94:118–134, 2018.

[17] Lingxiao Huang and Jian Li. Stochastic k-center and j-flat-center problems.

In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algo-

rithms, pages 110–129. SIAM, 2017.

121

[18] Nirman Kumar, Benjamin Raichel, Subhash Suri, and Kevin Verbeek. Most

likely voronoi diagrams in higher dimensions. In Proceedings of the 36th IARCS

Annual Conference on Foundations of Software Technology and Theoretical

Computer Science (FSTTCS 2016). Schloss Dagstuhl-Leibniz-Zentrum für In-

formatik, 2016.

[19] Yuan Li, Jie Xue, Akash Agrawal, and Ravi Janardan. On the arrangement of

stochastic lines in R2. Journal of Discrete Algorithms, 44:1–20, 2017.

[20] Mark de Berg, Ali D Mehrabi, and Farnaz Sheikhi. Separability of imprecise

points. In Proceedings of the 14th Scandinavian Workshop on Algorithm Theory,

pages 146–157. Springer, 2014.

[21] Martin Fink, John Hershberger, Nirman Kumar, and Subhash Suri. Hyperplane

separability and convexity of probabilistic point sets. Journal of Computational

Geometry, 8(2):32–57, 2017.

[22] Jie Xue, Yuan Li, and Ravi Janardan. On the separability of stochastic geomet-

ric objects, with applications. In Proceedings of the 32nd Annual Symposium

on Computational Geometry. ACM, 2016.

[23] Akash Agrawal, Yuan Li, Jie Xue, and Ravi Janardan. The most-likely skyline

problem for stochastic points. In Proceedings of the 29th Canadian Conference

on Computational Geometry, pages 78–83, 2017.

[24] Jie Xue and Yuan Li. Colored stochastic dominance problems. arXiv preprint

arXiv:1612.06954, 2016.

[25] Allan Jørgensen, Maarten Löffler, and Jeff M Phillips. Geometric computations

on indecisive points. In Proceedings of the 12th Workshop on Algorithms and

Data Structures, pages 536–547. Springer, 2011.

[26] Harold N Gabow, Jon Louis Bentley, and Robert E Tarjan. Scaling and related

techniques for geometry problems. In Proceedings of the 16th Symposium on

Theory of Computing, pages 135–143. ACM, 1984.

[27] Hsiang-Tsung Kung, Fabrizio Luccio, and Franco P Preparata. On finding the

maxima of a set of vectors. Journal of the ACM, 22(4):469–476, 1975.

122

[28] Christos H Papadimitriou and Mihalis Yannakakis. Multiobjective query op-

timization. In Proceedings of the 20th SIGMOD Symposium on Principles of

Database Systems, pages 52–59. ACM, 2001.

[29] Peyman Afshani, Pankaj K Agarwal, Lars Arge, Kasper Green Larsen, and

Jeff M Phillips. (Approximate) uncertain skylines. Theory of Computing Sys-

tems, 52(3):342–366, 2013.

[30] Jian Pei, Bin Jiang, Xuemin Lin, and Yidong Yuan. Probabilistic skylines on

uncertain data. In Proceedings of the 33rd International Conference on Very

Large Data Bases, pages 15–26. VLDB Endowment, 2007.

[31] Wenjie Zhang, Xuemin Lin, Ying Zhang, Muhammad Aamir Cheema, and Qing

Zhang. Stochastic skylines. ACM Transactions on Database Systems, 37(2):14,

2012.

[32] Herbert Edelsbrunner and Leonidas J Guibas. Topologically sweeping an ar-

rangement. In Proceedings of the 18th Symposium on Theory of Computing,

pages 389–403. ACM, 1986.

[33] Gill Barequet and Sariel Har-Peled. Efficiently approximating the minimum-

volume bounding box of a point set in three dimensions. Journal of Algorithms,

38(1):91–109, 2001.

[34] Sariel Har-Peled. Geometric approximation algorithms. Number 173. American

Mathematical Society, 2011.

[35] Mingji Xia and Wenbo Zhao. #3-regular bipartite planar vertex cover is #P-

complete. In Proceedings of the 2nd International Conference on Theory and

Applications of Models of Computation, pages 356–364. Springer, 2006.

[36] Leslie G Valiant. Universality considerations in VLSI circuits. IEEE Transac-

tions on Computers, 100(2):135–140, 1981.

[37] Neil Robertson, Daniel P Sanders, Paul Douglas Seymour, and Robin Thomas.

Efficiently four-coloring planar graphs. In Proceedings of the 28th Symposium

on Theory of Computing, pages 571–575. ACM, 1996.

