734 research outputs found

    Convex Global 3D Registration with Lagrangian Duality

    Get PDF
    The registration of 3D models by a Euclidean transformation is a fundamental task at the core of many application in computer vision. This problem is non-convex due to the presence of rotational constraints, making traditional local optimization methods prone to getting stuck in local minima. This paper addresses finding the globally optimal transformation in various 3D registration problems by a unified formulation that integrates common geometric registration modalities (namely point-to-point, point-to-line and point-to-plane). This formulation renders the optimization problem independent of both the number and nature of the correspondences. The main novelty of our proposal is the introduction of a strengthened Lagrangian dual relaxation for this problem, which surpasses previous similar approaches [32] in effectiveness. In fact, even though with no theoretical guarantees, exhaustive empirical evaluation in both synthetic and real experiments always resulted on a tight relaxation that allowed to recover a guaranteed globally optimal solution by exploiting duality theory. Thus, our approach allows for effectively solving the 3D registration with global optimality guarantees while running at a fraction of the time for the state-of-the-art alternative [34], based on a more computationally intensive Branch and Bound method.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Playing with Duality: An Overview of Recent Primal-Dual Approaches for Solving Large-Scale Optimization Problems

    Full text link
    Optimization methods are at the core of many problems in signal/image processing, computer vision, and machine learning. For a long time, it has been recognized that looking at the dual of an optimization problem may drastically simplify its solution. Deriving efficient strategies which jointly brings into play the primal and the dual problems is however a more recent idea which has generated many important new contributions in the last years. These novel developments are grounded on recent advances in convex analysis, discrete optimization, parallel processing, and non-smooth optimization with emphasis on sparsity issues. In this paper, we aim at presenting the principles of primal-dual approaches, while giving an overview of numerical methods which have been proposed in different contexts. We show the benefits which can be drawn from primal-dual algorithms both for solving large-scale convex optimization problems and discrete ones, and we provide various application examples to illustrate their usefulness

    Global Optimality via Tight Convex Relaxations for Pose Estimation in Geometric 3D Computer Vision

    Get PDF
    In this thesis, we address a set of fundamental problems whose core difficulty boils down to optimizing over 3D poses. This includes many geometric 3D registration problems, covering well-known problems with a long research history such as the Perspective-n-Point (PnP) problem and generalizations, extrinsic sensor calibration, or even the gold standard for Structure from Motion (SfM) pipelines: The relative pose problem from corresponding features. Likewise, this is also the case for a close relative of SLAM, Pose Graph Optimization (also commonly known as Motion Averaging in SfM). The crux of this thesis contribution revolves around the successful characterization and development of empirically tight (convex) semidefinite relaxations for many of the aforementioned core problems of 3D Computer Vision. Building upon these empirically tight relaxations, we are able to find and certify the globally optimal solution to these problems with algorithms whose performance ranges as of today from efficient, scalable approaches comparable to fast second-order local search techniques to polynomial time (worst case). So, to conclude, our research reveals that an important subset of core problems that has been historically regarded as hard and thus dealt with mostly in empirical ways, are indeed tractable with optimality guarantees.Artificial Intelligence (AI) drives a lot of services and products we use everyday. But for AI to bring its full potential into daily tasks, with technologies such as autonomous driving, augmented reality or mobile robots, AI needs to be not only intelligent but also perceptive. In particular, the ability to see and to construct an accurate model of the environment is an essential capability to build intelligent perceptive systems. The ideas developed in Computer Vision for the last decades in areas such as Multiple View Geometry or Optimization, put together to work into 3D reconstruction algorithms seem to be mature enough to nurture a range of emerging applications that already employ as of today 3D Computer Vision in the background. However, while there is a positive trend in the use of 3D reconstruction tools in real applications, there are also some fundamental limitations regarding reliability and performance guarantees that may hinder a wider adoption, e.g. in more critical applications involving people's safety such as autonomous navigation. State-of-the-art 3D reconstruction algorithms typically formulate the reconstruction problem as a Maximum Likelihood Estimation (MLE) instance, which entails solving a high-dimensional non-convex non-linear optimization problem. In practice, this is done via fast local optimization methods, that have enabled fast and scalable reconstruction pipelines, yet lack of guarantees on most of the building blocks leaving us with fundamentally brittle pipelines where no guarantees exist

    Graduated Non-Convexity for Robust Spatial Perception: From Non-Minimal Solvers to Global Outlier Rejection

    Full text link
    Semidefinite Programming (SDP) and Sums-of-Squares (SOS) relaxations have led to certifiably optimal non-minimal solvers for several robotics and computer vision problems. However, most non-minimal solvers rely on least-squares formulations, and, as a result, are brittle against outliers. While a standard approach to regain robustness against outliers is to use robust cost functions, the latter typically introduce other non-convexities, preventing the use of existing non-minimal solvers. In this paper, we enable the simultaneous use of non-minimal solvers and robust estimation by providing a general-purpose approach for robust global estimation, which can be applied to any problem where a non-minimal solver is available for the outlier-free case. To this end, we leverage the Black-Rangarajan duality between robust estimation and outlier processes (which has been traditionally applied to early vision problems), and show that graduated non-convexity (GNC) can be used in conjunction with non-minimal solvers to compute robust solutions, without requiring an initial guess. Although GNC's global optimality cannot be guaranteed, we demonstrate the empirical robustness of the resulting robust non-minimal solvers in applications, including point cloud and mesh registration, pose graph optimization, and image-based object pose estimation (also called shape alignment). Our solvers are robust to 70-80% of outliers, outperform RANSAC, are more accurate than specialized local solvers, and faster than specialized global solvers. We also propose the first certifiably optimal non-minimal solver for shape alignment using SOS relaxation.Comment: 10 pages, 5 figures, published at IEEE Robotics and Automation Letters (RA-L), 2020, Best Paper Award in Robot Vision at ICRA 202
    • …
    corecore