20 research outputs found

    Dreaming neural networks: forgetting spurious memories and reinforcing pure ones

    Full text link
    The standard Hopfield model for associative neural networks accounts for biological Hebbian learning and acts as the harmonic oscillator for pattern recognition, however its maximal storage capacity is α0.14\alpha \sim 0.14, far from the theoretical bound for symmetric networks, i.e. α=1\alpha =1. Inspired by sleeping and dreaming mechanisms in mammal brains, we propose an extension of this model displaying the standard on-line (awake) learning mechanism (that allows the storage of external information in terms of patterns) and an off-line (sleep) unlearning&\&consolidating mechanism (that allows spurious-pattern removal and pure-pattern reinforcement): this obtained daily prescription is able to saturate the theoretical bound α=1\alpha=1, remaining also extremely robust against thermal noise. Both neural and synaptic features are analyzed both analytically and numerically. In particular, beyond obtaining a phase diagram for neural dynamics, we focus on synaptic plasticity and we give explicit prescriptions on the temporal evolution of the synaptic matrix. We analytically prove that our algorithm makes the Hebbian kernel converge with high probability to the projection matrix built over the pure stored patterns. Furthermore, we obtain a sharp and explicit estimate for the "sleep rate" in order to ensure such a convergence. Finally, we run extensive numerical simulations (mainly Monte Carlo sampling) to check the approximations underlying the analytical investigations (e.g., we developed the whole theory at the so called replica-symmetric level, as standard in the Amit-Gutfreund-Sompolinsky reference framework) and possible finite-size effects, finding overall full agreement with the theory.Comment: 31 pages, 12 figure

    Interacting Dreaming Neural Networks

    Full text link
    We study the interaction of agents, where each one consists of an associative memory neural network trained with the same memory patterns and possibly different reinforcement-unlearning dreaming periods. Using replica methods, we obtain the rich equilibrium phase diagram of the coupled agents. It shows phases such as the student-professor phase, where only one network benefits from the interaction while the other is unaffected; a mutualism phase, where both benefit; an indifferent phase and an insufficient phase, where neither are benefited nor impaired; a phase of amensalism where one is unchanged and the other is damaged. In addition to the paramagnetic and spin glass phases, there is also one we call the reinforced delusion phase, where agents concur without having finite overlaps with memory patterns. For zero coupling constant, the model becomes the reinforcement and removal dreaming model, which without dreaming is the Hopfield model. For finite coupling and a single memory pattern, it becomes a Mattis version of the Ashkin-Teller model. In addition to the analytical results, we have explored the model with Monte Carlo simulations.Comment: 23 pages , 4 figure

    Dynamics analysis and applications of neural networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Associative neural networks: properties, learning, and applications.

    Get PDF
    by Chi-sing Leung.Thesis (Ph.D.)--Chinese University of Hong Kong, 1994.Includes bibliographical references (leaves 236-244).Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Background of Associative Neural Networks --- p.1Chapter 1.2 --- A Distributed Encoding Model: Bidirectional Associative Memory --- p.3Chapter 1.3 --- A Direct Encoding Model: Kohonen Map --- p.6Chapter 1.4 --- Scope and Organization --- p.9Chapter 1.5 --- Summary of Publications --- p.13Chapter I --- Bidirectional Associative Memory: Statistical Proper- ties and Learning --- p.17Chapter 2 --- Introduction to Bidirectional Associative Memory --- p.18Chapter 2.1 --- Bidirectional Associative Memory and its Encoding Method --- p.18Chapter 2.2 --- Recall Process of BAM --- p.20Chapter 2.3 --- Stability of BAM --- p.22Chapter 2.4 --- Memory Capacity of BAM --- p.24Chapter 2.5 --- Error Correction Capability of BAM --- p.28Chapter 2.6 --- Chapter Summary --- p.29Chapter 3 --- Memory Capacity and Statistical Dynamics of First Order BAM --- p.31Chapter 3.1 --- Introduction --- p.31Chapter 3.2 --- Existence of Energy Barrier --- p.34Chapter 3.3 --- Memory Capacity from Energy Barrier --- p.44Chapter 3.4 --- Confidence Dynamics --- p.49Chapter 3.5 --- Numerical Results from the Dynamics --- p.63Chapter 3.6 --- Chapter Summary --- p.68Chapter 4 --- Stability and Statistical Dynamics of Second order BAM --- p.70Chapter 4.1 --- Introduction --- p.70Chapter 4.2 --- Second order BAM and its Stability --- p.71Chapter 4.3 --- Confidence Dynamics of Second Order BAM --- p.75Chapter 4.4 --- Numerical Results --- p.82Chapter 4.5 --- Extension to higher order BAM --- p.90Chapter 4.6 --- Verification of the conditions of Newman's Lemma --- p.94Chapter 4.7 --- Chapter Summary --- p.95Chapter 5 --- Enhancement of BAM --- p.97Chapter 5.1 --- Background --- p.97Chapter 5.2 --- Review on Modifications of BAM --- p.101Chapter 5.2.1 --- Change of the encoding method --- p.101Chapter 5.2.2 --- Change of the topology --- p.105Chapter 5.3 --- Householder Encoding Algorithm --- p.107Chapter 5.3.1 --- Construction from Householder Transforms --- p.107Chapter 5.3.2 --- Construction from iterative method --- p.109Chapter 5.3.3 --- Remarks on HCA --- p.111Chapter 5.4 --- Enhanced Householder Encoding Algorithm --- p.112Chapter 5.4.1 --- Construction of EHCA --- p.112Chapter 5.4.2 --- Remarks on EHCA --- p.114Chapter 5.5 --- Bidirectional Learning --- p.115Chapter 5.5.1 --- Construction of BL --- p.115Chapter 5.5.2 --- The Convergence of BL and the memory capacity of BL --- p.116Chapter 5.5.3 --- Remarks on BL --- p.120Chapter 5.6 --- Adaptive Ho-Kashyap Bidirectional Learning --- p.121Chapter 5.6.1 --- Construction of AHKBL --- p.121Chapter 5.6.2 --- Convergent Conditions for AHKBL --- p.124Chapter 5.6.3 --- Remarks on AHKBL --- p.125Chapter 5.7 --- Computer Simulations --- p.126Chapter 5.7.1 --- Memory Capacity --- p.126Chapter 5.7.2 --- Error Correction Capability --- p.130Chapter 5.7.3 --- Learning Speed --- p.157Chapter 5.8 --- Chapter Summary --- p.158Chapter 6 --- BAM under Forgetting Learning --- p.160Chapter 6.1 --- Introduction --- p.160Chapter 6.2 --- Properties of Forgetting Learning --- p.162Chapter 6.3 --- Computer Simulations --- p.168Chapter 6.4 --- Chapter Summary --- p.168Chapter II --- Kohonen Map: Applications in Data compression and Communications --- p.170Chapter 7 --- Introduction to Vector Quantization and Kohonen Map --- p.171Chapter 7.1 --- Background on Vector quantization --- p.171Chapter 7.2 --- Introduction to LBG algorithm --- p.173Chapter 7.3 --- Introduction to Kohonen Map --- p.174Chapter 7.4 --- Chapter Summary --- p.179Chapter 8 --- Applications of Kohonen Map in Data Compression and Communi- cations --- p.181Chapter 8.1 --- Use Kohonen Map to design Trellis Coded Vector Quantizer --- p.182Chapter 8.1.1 --- Trellis Coded Vector Quantizer --- p.182Chapter 8.1.2 --- Trellis Coded Kohonen Map --- p.188Chapter 8.1.3 --- Computer Simulations --- p.191Chapter 8.2 --- Kohonen MapiCombined Vector Quantization and Modulation --- p.195Chapter 8.2.1 --- Impulsive Noise in the received data --- p.195Chapter 8.2.2 --- Combined Kohonen Map and Modulation --- p.198Chapter 8.2.3 --- Computer Simulations --- p.200Chapter 8.3 --- Error Control Scheme for the Transmission of Vector Quantized Data --- p.213Chapter 8.3.1 --- Motivation and Background --- p.214Chapter 8.3.2 --- Trellis Coded Modulation --- p.216Chapter 8.3.3 --- "Combined Vector Quantization, Error Control, and Modulation" --- p.220Chapter 8.3.4 --- Computer Simulations --- p.223Chapter 8.4 --- Chapter Summary --- p.226Chapter 9 --- Conclusion --- p.232Bibliography --- p.23

    Identification and control of dynamic systems using neural networks.

    Get PDF
    The aim of this thesis is to contribute in solving problems related to the on-line identification and control of unknown dynamic systems using feedforward neural networks. In this sense, this thesis presents new on-line learning algorithms for feedforward neural networks based upon the theory of variable structure system design, along with mathematical proofs regarding the convergence of solutions given by the algorithms; the boundedness of these solutions; and robustness features of the algorithms with respect to external perturbations affecting the neural networks' signals. In the thesis, the problems of on-line identification of the forward transfer operator, and the inverse transfer operator of unknown dynamic systems are also analysed, and neural networks-based identification schemes are proposed. These identification schemes are tested by computer simulations on linear and nonlinear unknown plants using both continuous-time and discrete-time versions of the proposed learning algorithms. The thesis reports about the direct inverse dynamics control problems using neural networks, and contributes towards solving these problems by proposing a direct inverse dynamics neural network-based control scheme with on-line learning capabilities of the inverse dynamics of the plant, and the addition of a feedback path that enables the resulting control scheme to exhibit robustness characteristics with respect to external disturbances affecting the output of the system. Computer simulation results on the performance of the mentioned control scheme in controlling linear and nonlinear plants are also included. The thesis also formulates a neural network-based internal model control scheme with on-line estimation capabilities of the forward transfer operator and the inverse transfer operator of unknown dynamic systems. The performance of this internal model control scheme is tested by computer simulations using a stable open-loop unknown plant with output signal corrupted by white noise. Finally, the thesis proposes a neural network-based adaptive control scheme where identification and control are simultaneously carried out

    A study of the design and analysis of feed-forward neural networks

    Get PDF
    This thesis shows that a design and analysis system for feed forward neural networks is desirable, and that the currently available techniques do not work. Methods have been presented that solve the problem of analysis, showing that analysis is possible and desirable for classification networks. The biggest limitation is the size of the network and that the analysis tools are only applicable to properly designed classification systems. A method of reducing the size of classification networks is presented along with a design methodology for non classification systems

    Training Methods for Shunting Inhibitory Artificial Neural Networks

    Get PDF
    This project investigates a new class of high-order neural networks called shunting inhibitory artificial neural networks (SIANN\u27s) and their training methods. SIANN\u27s are biologically inspired neural networks whose dynamics are governed by a set of coupled nonlinear differential equations. The interactions among neurons are mediated via a nonlinear mechanism called shunting inhibition, which allows the neurons to operate as adaptive nonlinear filters. The project\u27s main objective is to devise training methods, based on error backpropagation type of algorithms, which would allow SIANNs to be trained to perform feature extraction for classification and nonlinear regression tasks. The training algorithms developed will simplify the task of designing complex, powerful neural networks for applications in pattern recognition, image processing, signal processing, machine vision and control. The five training methods adapted in this project for SIANN\u27s are error-backpropagation based on gradient descent (GD), gradient descent with variable learning rate (GDV), gradient descent with momentum (GDM), gradient descent with direct solution step (GDD) and APOLEX algorithm. SIANN\u27s and these training methods are implemented in MATLAB. Testing on several benchmarks including the parity problems, classification of 2-D patterns, and function approximation shows that SIANN\u27s trained using these methods yield comparable or better performance with multilayer perceptrons (MLP\u27s)

    The Shallow and the Deep:A biased introduction to neural networks and old school machine learning

    Get PDF
    The Shallow and the Deep is a collection of lecture notes that offers an accessible introduction to neural networks and machine learning in general. However, it was clear from the beginning that these notes would not be able to cover this rapidly changing and growing field in its entirety. The focus lies on classical machine learning techniques, with a bias towards classification and regression. Other learning paradigms and many recent developments in, for instance, Deep Learning are not addressed or only briefly touched upon.Biehl argues that having a solid knowledge of the foundations of the field is essential, especially for anyone who wants to explore the world of machine learning with an ambition that goes beyond the application of some software package to some data set. Therefore, The Shallow and the Deep places emphasis on fundamental concepts and theoretical background. This also involves delving into the history and pre-history of neural networks, where the foundations for most of the recent developments were laid. These notes aim to demystify machine learning and neural networks without losing the appreciation for their impressive power and versatility
    corecore