
I

I ,

I .

I

I

I

I

I

I •

'

" I

LOUGHBOROUGH
UNIVERSITY OF TECHNOLOGY

LIBRARY

AUTHOR/FILING TITLE

f lf"1'CI-f ~CZ G-. p · ------------------------1---------------------
---------------------·--------------------------

ACCESSION/COPY NO.

~01 (~90~ ----------------- -------------------·------------
VOL. NO. CLASS MARK

L~~
2't JAN 1996
2 8 JUN 1g95

2 8 JUii 199 2 6 ·' 'I 1 98

2 7 JUN 1997
I&MAR 1999

1 4 JAN 2000
"' li.;_:~-:;_-r3
.! f - ,_ ,,

llllllllllllllllllllllll

A Study of the Design and Analysis of
Feed Forward Neural Networks

by

Graham Paul Fletcher

B. Se. (HONS).

A Doctoral Thesis

Submitted in Partial Fulfilment of the Requirements

For the A ward of Doctor of Philosophy

of Loughborough University of Technology

1995

Lough~cr~!!}{i~ tJr~'JOi'"!!t'/
c.~ Tor } w, ... , ' •;. ·~-j

.... '. '"'' . '..-:' '!,..: _,1

.... ., ... ~_ ~, ,...___ ~ ~ ,,..-l\
1

Date kw '1{ __ _ --
Class

Ace.
(}\ti)II~C!o!i:' NQ.

I_

Declaration

I declare that this thesis is a record of research work carried out by me, and

that this thesis is my own composition. I also certify that neither this thesis nor the

original work contained therein has been submitted to tlns or any other institution for

a higher degree.

Graham Paul Fletcher

Acknowledgements

I wish to express my gratitude to my parents, my bank manager and the

engineering and physical sciences research council who's joint

sponsorship has made this research possible.

I would also like to thank my supervisor Dr C.J.Hinde for his help, advice

and, most importantly, the training on how to survive in academia.

Thanks also to the many other staff at the university who have helped

with either suggestions or employment.

Finally the moral support and proof reading provided by my family and

friends has been instrumental in helping me finish this thesis.

Abstract

This thesis shows that a design and analysis system for feed forward neural networks

is desirable, and that the currently available techniques do not work. Methods have

been presented that solve the problem of analysis, showmg that analysis is possible

and desirable for classification networks.

The biggest limitation is the size of the network and that the analysis tools are only

applicable to properly designed classification systems. A method of reducing the size

of classification networks is presented along with a design methodology for non

classification systems.

CONTENTS

Literature Review 1

MotivatiOn of Study 39

The Analysis of Transfer Functions 43

The Activation Function 99

Modelling Continuous Functions 122

Conclusions 145

Appendix A 156

LITERATURE REVIEW
CHAPTER 1

Outline Of Chapter

The aim of this chapter is three fold. Firstly it is to provide an introduction to artificial

neural networks in sufficient detail to allow a non specialist access to the work

contained m the later chapters. Secondly this chapter maps out the development of

artificial neural networks by charting the major contnbutions to the field. Lastly, and

most importantly, the chapter contains several of my own interpretations of the history,

and predictions about the current and possible future directions of research.

The chapter is split into three major sections.

Section 1. An overview of the biological systems that formed the original

neural networks.

Section 2. This section charts the development of feed forward neural models.

This model is the best understood of all the current neural models

and is the model used for the majority of this thesis.

Section 3. In section three some of the other models are explored.

The Biological Foundations

The term neural network has grown to represent a large number of very different

connectionist strategies for solving machine learning and other artificial mtelligence

problems. Originally they were developed as a method of modelling the neural

construction of the brain, m the hope that computers could be built that would emulate

Literature Review 1 GP Fletcher

the brain's capacity for learning, content addressability and conceptual leap. The

starting point for any study of artificial neural networks should begin with a simple

understanding of the mechanisms and structures used in biological neural networks. It

is these biological systems that prov1ded the anginal neural models.

The brain is composed of about 1011 neurons , figure 1.1 shows a simple neuron.

Each neuron consists of the dendrites which are the inputs, the nucleus or processing

unit and the axon and synapses which make up the output to the neuron and connect it

to the dendrites of the next neuron.

Synapse

Cell Body
Axon

Nucleus

Figure l.l A diagram of a simple neuron.

Griffith [1966] provides a simple explanation of the biochemical basis of neurons;

"The cell is bounded by a surface membrane which is senu-permeable.

This means that the membrane will allow certain ions and molecules to

pass through it, but not others. The semi-permeability has certam

consequences which can be understood using the theory of

thermodynamics. One of these is that the interior of the cell normally has

a negative electrostatic potential of about -70m V with respect to its

Literature Review 2 G.P.Fletcher

extenor. However, If tlus potential difference is artificially altered above

a threshold value of about -60mV, the membrane suddenly becomes

permeable This change of permeability is self-propagating, it starts

at one point and spreads to adJacent points and so on. Shortly

afterwards the membrane recovers its semi-permeability. Thus a

transient burst of electrochemical activity is generated."

The membrane of the cell covers the cell nucleus, but also extends down the axons to

the synapse. The axons and the synapse form the link between one nerve cell and its

neighbours. Griffith further explains

"Once a cell has fired, the activity passes out to the uttermost extremes

(the synapse), which then spew out small quantities of chemicals called

transmitters. These pass across narrow gaps to adjacent cells where they

alter the permeability of the membranes of those cells."

The potential difference across the cell membrane increases as quantities of the

transmitter chemicals are absorbed. However the neuron does not fire until the potential

difference reaches -60mV.

The transmission of information around the brain is a complex electro-chemical

process, where chemicals are released from the synapses on the sending side of the

junctions. This causes the raising or lowering of the electrical potential inside the body

of the nucleus. If the potential reaches a threshold a pulse of fixed strength is sent down

the axon to the next set of synapses. After firing a cell cannot fire again immediately,

but has to wrut a fixed length of time called the "refractory period" before It can fire

again.

Literature Review 3 G P.Fletcher

The Development of Feed Forward Models

McCulloch and Pitts [1943] published a now famous paper proposing a simple

mathematical model of the neuron, known as the idealised neuron model. Each cell

calculated a weighted sum of its inputs and set its output to 1 or 0 depending on

whether this sum was above or below a threshold. See figure 1.2 for a schematic

representation of the idealised neuron. Formally this is written

where

Output = f (L(Input, * Weight,) - Jl)

J.1 is the threshold

f(X) =I if X ~0
0 otherwise.

Figure 1.2 A simple idealised neuron

Output

The idealised neuron is a simplification of the real neuron descnbed in the first section.

At first glance they appear to be very similar, how do they differ? Figures 1.3 and 1.4

demonstrate the very real gap between the idealised neuron and the neuron descnbed

earlier.

Literature Rev1ew 4 G.P.Fletcher

Value

Figure 1.3 The output of an idealised neuron in relation to input value and time. Note

that the output value does not change with time.

Input Vector

Figure 1.4 A more accurate representation of the activation in real neurons. Note that

the output is time dependant.

In a real neuron any value of input will eventually cause 1t to fire as the neuron stores

the chemicals that cause the breakdown of the semi-permeability. A higher input causes

a higher frequency of activity as the build-up time between pulses is reduced. By

comparison the idealised neuron has no time complexity. A set of inputs will produce

an output, this output will not change until the mputs change.

Ltterature Revtew 5 G.P.Fletcher

Given the large short fall in complexity the idealised neuron was still a very important

mathematical model. It allowed the development of the first training algonthms and

analysis techniques.

The simple perceptron model

The most popular use for idealised neurons was the simple perceptron model. The

model is a simplification of the full perceptron model proposed by Rosenblatt [1958].

The simpler version allowed the development of training algorithms, these algorithms

were not extensible to the full model. Consequently, Rosenblatt's full model was never

popular, mainly due to its over complexity. Figure 1.5 shows a simple perceptron

model.
Input
Retina

Feature
Detectors

Figure 1.5 The simple perceptron model.

In the simple model all cells output a binary value, there are no connections between

cells of the same layer and only the weights between the feature detectors and the output

neuron are modified during training. This means that the feature detectors are not

modifiable and so correspond to fiXed feature sensors. In the simple model the mput

retina is normally left out and the feature sensors referred to as the input cells.

The simple perceptron model cuts the possible inputs mto two categories. Those that

make it return true and those that don't. Therefore the model is performing a set

membership function that idenufies a subset of its inputs as members.

Literature Review 6 G PF!etcher

The border between these categories, known as the decision plane, is built up using the

decision planes of the output and feature detector idealised neurons. The decision plane

of an idealised neuron is always a straight line in D dimensions when the neuron has D

inputs.

The development of a simple trruning algorithm by Rosenblatt [1962] is, in my opinion,

the single most important step in the development of artificial neural networks.

Although his work has now been far superseded it was his ideas that caused the first

explosion m connectiorust research. The rum of the training algorithm was to calculate a

set of weights for the connections between the feature detectors and the output node that

allowed correct classification of a set of traimng examples. For example the decision

plane shown in figure 1.6 could have been calculated as a response to the example

points.

®
®

Figure 1.6 A possible decision plane and training exrunples for the s1mple perceptron

model.

The perceptron modelleams by means of a supervised learning process. In other words

it is necessary to supply the correct classificatiOn for each example mput. For each

training example the required output is D, and the actual output is R.

Literature ReVIew 7 G PF!etcher

If R = D then the perceptron has made the correct decision and no changes need to be

made. However if R "# D then some changes need to be made so as to correct the error.

An example ts made up of the values supplied by the fixed feature detectors and the

required output value D. If the followmg changes are made to the input weights m turn

then the decision plane will have moved.

t:. W .= -a(R . Input.)

The algorithm is repeated until all the training examples gtve the correct classification. a
is a small positive number that dictates the rate of convergence on the answer. If a is
too small then a large number of iterations will be requrred, but if it is too big then the

algorithm will become unstable and fail to converge. The choice of correct value for a
can be difficult and requires some insight. The diagram below shows a simple training

sequence.

""' ~: li~f~ "-~1

- ,~"~:

~0 < ~ {;.">--

~~~' ~' "; ~:1 
' ,~:,~/;;, '~~' 

Figure I. 7 The result after each training iteration when the perceptron convergence 

algorithm is used with a simple problem. 

Literature ReVIew 8 G P.Fletcher 

. 
f 
< 
\ 

' y 



Limitations Of the simple perceptron model 

"Perceptrons: An introduction to Computational Geometry" [Minsky & Papert, 1969] 

provided the most complete mathematical treatment of perceptrons to that date. The 

review by Block [1970] states 

" The theory is carefully formulated and focuses on the theoretical 

capabilities and limitations of these machines... .. .. They ask novel 

questions and find some difficult answers". 

The most important result exposed the lirrutatlons of perceptrons and caused a major 

sluft in research away from neural networks to other forms of artificial mtelligence. 

Minsky & Papert concentrated their work on analysing the limitations of the simple 

perceptron model. As the feature detectors are fixed they can be thought of as the inputs 

to the model. Therefore the simple perceptron model is really a single idealised neuron 

and the training algonthm for chscovenng the correct weights for its inputs. The best, 

and most used, example of the lirrutations of the idealised neuron was first presented by 

them in the book. It shows that a simple perceptron network with limited diameter 

feature detectors cannot recognise whether a figure 1s connected, that is if all points in a 

figure are connected or are some separate. The left two examples in figure 1.9 are 

connected but the right pair are not. 

A perceptron network has a limited diameter 1f each of its feature detectors is only 

connected to inputs w1thin an area on the retina (figure 1.8). 

Literature Review 9 G P.Fietcher 



Limited Diameters 
for the feature detectors 

Feature 
Detectors 

Figure 1.8 A perceptron model with limited diameter feature detectors. 

••••••• •••• ••••• 
•••• ••••• •••• ••• 

Output 

Figure 1.9 The input patterns used to prove the lunitations of perceptrons. 

Consider the four patterns in figure 1.9 imposed on the retina shown m figure 1.8. If a 

perceptron network of linuted diameter M is to test for connectivity, where M< length 

of the retina then the conjunctive cells fall into three categories. 

I) cells that cover the left hand end of the retina 

2) cells that cover the right hand end of the retina 

3) cells that cover neither end of the retina 

Literature Rev1ew 10 G PFietcher 



Cells falling into category 3 always see the same input in all four examples and so do 

not need to be considered as they present no evidence. The cells that view the sides of 

the retina can see two different patterns. Let these cells differentiate between the 

patterns returning 1.0 for one of them and 0.0 for the other (figures 1.10 & 1.11). 

•• ••• 
Feature Detector 

= 1.0 
Feature Detector 

=0.0 

Figure 1.10 The two patterns seen at the left end of the input retina. 

Feature Detector 
=0.0 

Figure 1.11 The two patterns seen at the right end of the input retina. 

The output to the simple perceptron model is calculated by a single neuron. This neuron 

has two weights and a bias associated with it, let these be W" W, & B. Comparing the 

required outputs and the values supplied by the feature detectors over the four examples 

we can achieve four inequalities. 

Literature Rev1ew 

1.0 Wt + 1.0 W, - B > 0 

1.0 W1 + 0.0 W, - B < 0 

0.0 W1 + 0.0 W, - B > 0 

0.0 W1 + 1.0 W, - B < 0 

11 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

G P.Fletcher 



Solving this set of inequalities gives the values of W~o W, & B that can correctly 

calculate the required output function (is the shape connected). 

Adding (1.1) and (1.3) 1.0 w, + 1.0 W, > 2 B 

Adding (1.2) and (1.4) 1.0 w, + 1.0 W, < 2 B 

(1.5) 

(1.6) 

(1.5) and (1.6) are inconsistent. Therefore the set of inequalities has no solutions and 

there are no possible values of W~o W, & B that can correctly calculate the required 

output. This means that a perceptron with limited diameter can never test for 

connectivity. 

The full perceptron model removes some of the limitations of the simple perceptron 

model. In the simple model all cells output a binary output, there are no connections 

between cells of the same layer and only the input weights to nodes in the last layer are 

modified during training. This limits the number of training examples that can always 

be correctly classified. 

The full perceptron model 

The full perceptron model originally presented by Rosenblatt [1958] contained none of 

the restrictions listed for the simple perceptron model. This allows much greater 

freedom in constructing the perceptron. As the cells in layer 1 can now lmk any weights 

to the input cells they can compute any conjunction of the input vanables in the retina. 

A similar statement can be said for the cells in layer two; that can compute any 

disJunction over their inputs. 

Any Boolean function can be represented in conjunctive normal form (CNF). 

Therefore, if the featllre recognition neurons are connected to every cell in the retina, 

then the full perceptron model is capable of representing any Boolean transformation 

from its input retina to its output cells. 
Literature Rev1ew 12 G.P Fletcher 



Unfortunately at thts time there were' no trainmg algorithms for the full perceptron 

model, making the system nearly useless. This more than any other problem caused a 

massive reduction in connectionist research between the late sixties and the mid 

nineteen eighties. However, another major factor was that Minsky and Papert had 

found all the easy to medium results, leaving little for other people to research. 

Enhancements to the simple perceptron model 

Durmg the lull in connectionist work there were still some people trying to enhance the 

simple perceptron model. One of the major problems of the simple perceptron model is 

that it can only compute linearly separable functions. i.e. There must be a straight line 

solution between the acceptable and unacceptable inputs. Figure 1.12 shows some non 

linearly separable functions . 

0 • oe • oe 0 

• 0 oe • 
0000 0 oe 
0 • 0 • • o•o on no 

Figure 1.12 Non linearly separable functions 

Because a problem is not linearly separable over the inputs given does not mean that a 

single layer neuron cannot solve it. The problem may be separable over a quadratic of 

the inputs. To solve this type of problem it is necessary to increase the number of 

Literature Review 13 G P.Fletcher 



inputs to the neuron. For example the fourth problem in figure 1.12 could be solved 

using a neuron with inputs of X2 and y2 in addluon to X and Y. This produces an oval 

shaped area as shown in figure 1.13 

Figure 1.13 A solution using polynomial inputs. 

This sort of neuron is known as a Polynomial ADAptive Linear NEuron or a 

PAD ALINE. They give considerably more power to a single layer network and solve 

some of the problems associated with perceptrons. However, it reqmres the network 

designer to decide which polynomials should be included in the network structure or to 

use a heuristic method that adds different polynoffilal mputs and removes others that 

offer nothing to the discrimination. 

Back Propagauon 

Work on developing a learning system for multi layer networks faded, but did not die 

all together. The method of error back propagation for the solution of mulu layer 

problems was first published by Bryson and Ho in 1969. This work was presented in a 

very formal manner and, perhaps due to its inaccessibility, went unnoticed by the 

connecuonist research community. Due to this lack of publicity, connectionist research 

was not revived until it was rediscovered, named "back propagation" and properly 

publicised by Rumelhart, Hinton and Williarns [1986 a,b]. 

Ltterature Revtew 14 G P.Fietcher 



ut put 

put 

Figure 1.14 The replacement for the threshold function used in back propagation 

The idealised neuron used in the perceptron model used a threshold as its activation 

function. Back propagation calculates an error for each training example. To do this 

neurons must produce a differentiable continuous output. The threshold of the idealised 

neuron is normally replaced with the sigmoid function shown figure 1.14. 

Cons1der the function g where g has a parameter P. E.g .. 

g(X)=X+PX2 

If we wanted to modify the functiOn g so that it matched some training examples then it 

would be necessary to calculate a value for P. If an example told us that g(X) should 

equal Y then it is necessary to find the correct value of P such that 

g(X)= y 

Let the actual result of g(X) = S. Therefore we have an error of E. 

E = (Y- S) (1.7) 

Literature ReVIew 15 G.P.Aetcher 



The effect of changing P in the value of g(X) can be found by differentiation with 

respect toP. Let this be called D. 

D = dC&CXU 
dP 

(1.8) 

The error can be reduced by adding the value ~p to P where B is a small positive 

number and 

Example 

~ =B.E.D 

= B • (Y - S) . dC&CX)) 
dP 

g(X) = X+pX2 p=0.1 

the correct value of g(1) IS 2.1. 

Iteration 1 

s = g(l) 

= 1.1 

D = dC&CXU 
dP 

= dCl+P.ll 
dP 

= 1 

The new value of P after iteration 1 is 

Pncw = Pold + ~ 

= 0.1 +0.5 

=0.6 

E =2.1-1.1 

= 1.0 

B=0.5 

= 0.5 * 1.0 * 1.0 

= 0.5 

(1.9) 

The table below shows several iterations, notice how the error, E, reduces after every 

iteration. 

Literature Review 16 G.P.Fletcher 



p Is E D JM' lp,_ 
0.1 1.1 1.0 1 0.5 0.6 

0.6 1.6 0.5 1 0.25 0.85 

0.85 1.85 0.25 1 0.125 0.975 

This was a very simple example, but it illustrates how a parameter can be modified in 

order to match a training example. Now cons1der a neuron in a feed forward neural 

network. 

s 

Figure 1.15 The ins1de of a neuron. The diagram identifies several intermediate values 

used in the calculations. 

Here we have inputs, outputs a transfer function and parameters Weightl & Weight2. It 

1s the parameters that need to be modified to reduce the errors on the training set, 

producing a correct neuron. Using equation (1.9) we get 

where 

Literature Review 

AWtl =B. E. D 

= B • (Y - S) . d(g(Jn,. Inz)) 
dWt1 

g(In1, Inu) = sig( Jn,*Wti + Iru*Wu) 

17 

(1.10) 

(1.11) 

G.P.Fletcher 



therefore 

dCgfint. Imll = dCsigC Im*Wtt + Im*Wtill 
dWtt dWtt 

- dCim*Wtt + Im*W12l. dCsigC lnt*Wtt + Im*Wtz.)) 
dWtt d(lnt *Wtt + Im*WI2) 

= Im . dCsigCK)) 
dK 

(1.12) 

where K is the product of the inputs and weights (see diagram). Substituting (1.12) 

into ( 1.10) gives the equation for calculating il Wtt 

t.Wtt =B. (Y- S) . lnt . dCsigCKl) 
dK 

'This rule generalises to give the update rule for all the input weights. 

ilWt. = B • (Y - S) . Inn . dCsigCK)) 
dK 

or 
f>.Wt. =B.Inn.dn 

where 
(). = E • dCsigCK)) 

dK 

El 

E2 

Figure 1.16 Part of a feed forward network 

Literature ReVIew 18 

(1.13) 

(1.14) 

(1.15) 

(1.16) 

G P.Fletcher 



In the network shown the errors of the two right most neurons are known, and the 

weights Wl and W2 can be changed using the update rule (1.14). However, as yet, we 

have no way of improving on the input Wa and Wb. Firstly consider just one of the 

right hand side nodes . ....--.....,..-----------. 

El 

Figure 1.17 A small part of the network shown in figure 1.16 

The effect of changing S 1 on the output of the neuron IS given by 
dg = Wl. d(sigfKll 
dSl dK 

Therefore to reduce the error we would make the change AS 1 to S 1 
ASl = B. El . Wl . d(sigfKll 

dK 

However S 1 affects the output through more than one route, If we add all the changes 
together we get 

ASl =LB. En. Wn. dfSigfKn)) 
dKn 

Substituting in (1.16) gives 

This gives the error associated with Sl, the weights Wa and Wb can now be updated 

using the rule in equation (1.15). Putting all the parts of the algonthm together gives:-

AW =B. Input-to-Node. a 

for output nodes 

a = (Y -S) . d(sigfK)) 
dK 

for midnodes 

a= <L Wn .an) d(sig(K)) 

dK 

Literature ReVIew 19 G.P.Fletcher 



Back Propagation and the Error Surface 

Let En be a value that represents the error for training example 'n', where Yn is the 

requrred output and Sn is the actual output for example n. 

En = 112 (Y n- Sn)2 

The total error over the whole training set is E where 

E=LEn 
n 

If the network gets all the examples exactly correct then the error E is zero, as the 

difference between the examples and the actual output increases then the size of E 

increases. The onginal papers introducing back propagation introduced this error tenn 

and derived the update rules from it. They also showed that every iteratton reduced the 

value of E. If E is reduced every iteration then the network must become more correct 

after every iteration. 

Back propagation changes the network by a small amount in each iteration. It can be 

descnbed as perfonrung grad!ent descent on a functton whose parameters are the 

weights between neurons and whose result is E. 

Problems with Back Propagation 

The largest problem associated with back propagation is local minima. Each iteration of 

the back propagation algorithm reduces the value of E. However that does not mean 

that there is always a path from the starting point to the global mimmum. Consider the 

graph shown in figure 1.18. If the networks started at points A or C then the correct 

answer B would be achieved by back propagation. However if E was the starting point 

then the best achievable answer would be D. This is because there is no mechanism 

Literature Review 20 G P.Fietcher 



within standard back propagation that can increase the value of E making it imposstble 

to climb from point D to C. 

' 
Error 

E 

Figure 1.18 An example of an error surface in one dimension. 

Similarly a very flat plateau on the error surface will cause the algorithm to converge 

very slowly. The gradient of the surface is one of the terms in the update rule. If the 

gradient is very close to zero then the update will be very small. 

Enhancement of the learning algorithm 

Back propagation has been one of the major research topics since its publ!cation in the 

mid 1980s. Many extensions and modifications have been considered as the basic 

algorithm can be exceedingly slow to converge. 

Alternative cost functions 

The update rules were originally derived from the error function 

En = 112 (Y n- Sn)2 

Literature ReVlew 21 G PF!etcher 



This is called the quadratic error function, but is not the only possible function. It can 

be replaced by any function that is minimal when the network correctly classifies the 

examples and grows as errors are introduced. Solla et all988 used the cost function 

En= IYn-Snl 

Deriving the update rules for back propagation gives the equation 

a=(Yn-Sn) 

for the blame assignment function. The gradient term has disappeared. Since the 

gradient term becomes small when IKI is large, leaving it out accelerates progress in 

large IKI regions, where the cost surface is relatively flat. On the other hand it gives no 

acceleration when the cost surface is more sharply curved- when K is near zero. 

Fahlman [1989] showed that a compromise was more effective, he derived the update 

rule 

a = (Y n-Sn) . ( dCsigCK)) + 0.1) 
dK 

This form restores some of the effect of the differential term, but eliminates the flat 

spots when IKI is very large. 

Finally, we could add parameters to the cost function so as to adjust 1ts steepness 

during training. It should be possible to smooth out the surface at the expense of detail, 

and then gradually add in the detail as the network attains the correct region of weight 

space. One way of doing this is based on the simulated annealing approach [Kirkpatrick 

et a!, 1983]. Here the sigmoid contains the temperature function T. This term has the 

affect of changing the severity of the sigmoid, as is shown in figure 1.19. The larger 

the value ofT the slower the transformation from zero to one. The new equation is 

0 

Literature Review 

l 
X 

l+e T 

22 G.P.Fletcher 



Output 

Temperature 

Figure 1.19 The effect of the temperature tenn T on the sigmoid function. 

A high value ofT reduces the depth of the minimum in the energy function reducing the 

likelihood of getttng stuck in them. By slowly lowering the values ofT during the 

learning the chances of arriving at a correct solution are very greatly improved. 

Standard back propagation modifies the weights and the threshold of the neurons. 

Using the semanucs developed by J. Horejs et al [1993] this is descnbed by BP[W,V] 

where 

W is the sum of weights 

V is the threshold. 

in this paper J. Horejs states 

"It is clear that by extending the number of parameters and thus the 

degree of freedom of the network, we can expect a better convergence 

of the algorithm". 

Literature Review 23 G.P.Fletcher 



By allowing the temperature to be modified by back propagation in the same way as the 

weights, BP[W,V,T] a considerable saving in processing was demonstrated. For the 

X -or problem 

BP[W,V] 5000 iterations 0.001 sum squares error 

BP[W,V,T] 2000 iterations 0.0006 sum squared error 

This type of approach shows a lot of promise, though at the moment there are only 

empirical results alluding to its success. Work is necessary to produce a theoretical 

basis for accepting the gams that the extra freedom delivers before it can be relied upon. 

Gradient descent IS one of the simplest optimisation techniques, but not a very good 

one. There are many more powerful techniques available, but most are computationally 

intense and are only suitable for initial off-line training. The simplest approach is the 

steepest descent line search. Here 1f we are minimising E(x) we find the direction of 

steepest descent from the current point, P. 

Figure 1.20 A two dimensional error surface. Q is the lowest point on the line of 

steepest descent from point P. 

Literature ReVIew 24 G.P.Fletcher 



Searching along this line produces the point Q, which is the minimum value of E(x) on 

Figure 1.21 The following steps after fmding point Q in diagram 1.20. 

Several different approaches have been published for finding the one dimensional 

minimisation of E(x) along the line in a neural network [Luenberger, 1986, Hush and 

Salas 1988]. 

The problems With training come from local minima and plateaux on the error surface. 

All the methods described above have attempted to solve these problems. However, a 

much simpler approach, adding momentum [Rumelhart and McClelland 1986,Watrous 

1987] is commonly and effectively used. The algorithm is to give each weight some 

inertia, so that it tends to change in the direction of the overall downhill force and not 

oscillate. On a plateau this means that the weights will accelerate, crossmg the flat 

region much faster. Momentum can also allow back propagation to escape from a 

shallow local minimum because it is now possible to travel a short distance uphill. 

Literature Rev1ew 25 G P.Fletcher 



A summary of the feed forward paradigm 

Some of the limitations of neural networks, shown by Minsky and Papert in 1969, can 

only be overcome using hidden layers. However, a multi-layer model of neural 

networks needs an algorithm which 1s capable of resolving the blame assignment 

problem for the hidden neurons. The model, back propagation, successfully uses the 

differential of the activation function to assign blame, thus producing a gradient descent 

optimisation. Back propagation has enabled the limitations of the original perceptron 

model to be overcome and is now a useful general learning algorithm. 

Many questions remain unanswered, notably those of speed and reliability. Active 

research is underway in an attempt to solve these problems by modifying back 

propagation or changing the optimisation algorithm. Alternative models that modify the 

structure of the network during the learning stage are also showing some promise 

[Mezard and Nadal1990]. 

Other Neural Models 

The models so far descnbed are based on modelling the motor control and perceptive 

areas of the brain. The biggest area not covered by these models is probably memory. 

The model by Hopfield [1982] is an attempt to fill this gap. 

Figure 1.22 A small Hopfield network 

Literature Review 26 G.P.Fietcher 



Each node in the network is a simple tdealised neuron with bi-polar outputs. The 

network is fully connected, i.e. every node is connected to every other node. Node X is 

connected to node Y with weight Wxy. and Wxy = Wyx· A node fires if the sum of its 

inputs is greater than its threshold. E.g. Node P4 will fire if 

P3.W34 + PJ.WI4 + P2.W24 >Threshold of P4 

If a node fires its output is set to +I else it is set to -1. When the model is run a random 

node is selected, and a test is made to see if, given the values of all the other nodes, the 

selected node should ftre. The output of the selected node is then set to the correct 

value. Another node is then randomly selected and the process repeated. 

There will be states in which every node has a correct value gtven the state of the other 

nodes. These states are known as local minima. The aim of the Hop field model is to 

design networks in such a way as to represent memories as individual local minima. 

Content addressability is possible in a Hopfield network by setting the values of known 

nodes to their correct value. These nodes are never selected for updating as they are 

guaranteed correct. By updating the other unknown nodes in the usual way they w11l 

ftnd the local minima that corresponds to the known nodes. In this way it is possible to 

recall a whole picture from a small proportion. 

The pictures shown in figure 1.23 have been produced by a 23400 node network, 

where each node represents a single pixel. The network has been constructed so that 

there are seven local minima that correspond to seven different images. The images on 

the right are the minima reached after starting the model with the starting pomts shown 

in the left hand column. The model has restored the entire image after being presented 

with a small proportion of it, this is slow but effective content addressability. 

Literature ReVIew 27 G.P.Fletcher 



Figure 1.23 Images being recalled after storage in a Hopfield network. The network 

was constructed to contain 7 different images. By presenting the portion of the image 

shown m the left column the network restored the rest of the image( right column). The 

rruddle column is an intermediate step. 

Conceptual Leap and the Ho_pfield energy function 

Conceptual leap IS the process of building hitherto non-existent links between data 

items. The local minima or stored information are local rmruma on an energy curve. The 

Hopfield update rule moves around on the energy curve in the same manner that back 

propagation moved on an energy curve. Similar concepts will be close to one another, 

for example the two local minima indicated in figure 1.24 are very s1milar. With 

conceptual leap it should be possible for the model to link these two concepts. 

Literature Revtew 28 G PFietcher 



Figure 1.24 Close local minima represent very similar concepts. 

The mechanism is very simple. Take a network in a local minima, changing some of its 

nodes at random, and then let It find a new local minimum. The new minimum will 

either be the same as the old one or a different but close one. The more random changes 

that are made the longer the links that are possible and the more tenuous the link 

between the concepts. 

Hopfield originally suggested the Hebb rule [ 1944] as a training mechanism for the 

Hopfield model. This can introduce stable states which are not desired. Different 

solutions have been put forward for solving this problem. Poppel [ 1987] suggested a 

trial and error method. The weights are modified in order to widen the basin of 

attraction of the desired states while reducing that of the undesirable states. 

Hopfield [1983] updated his original learning method and introduced the idea of 

unleaming. The network is randomised, if the network converges to an "unwanted" 

stable state, then weights are modified so as to unlearn that state. This is the reverse of 

the original Hebb learning rule. 

Literature Review 29 G PF!etcher 



Another model of significance is due to Teuvo Kohonen [1984]. The model uses a 

standard sigmoid neuron, but does not use back propagation. Instead it uses a 

mechanism based loosely on the Hebb rule. 

Figure 1.25 Simple four input neuron 

The learning mechanism operates as follows; if the neuron receives a signal from 

connection i and the neuron fires then W, is reinforced. If the neuron receives no signal 

from connection i or receives a signal and does not fire then W, is diminished. 

Kohonen was attempting to reproduce the perception systems found in mammals. It 

covers the reception of the inputs and the processing of the mformation within the 

cortex. The main characteristic of these cortices is that neighbouring regions encode 

similar input signals. Studies have shown that in biological cortices each logical cell 

encodes a very specific input pattern [Messenger] and there is a lateral interaction 

dependant on distance [Kohonen, 1984]. 

Neurons in this model are placed in a two dimensional grid. Each node is connected to 

every input. When an input pattern is presented the node that gives the highest output 

value is found. This node is then slightly modified to make its output even higher, 

making the node represent tlus input slightly more. If each input is shown many times 

the neurons will learn to represent all the different types of input. For example, given 

Literature Review 30 G.P.Fletcher 



an mput space of the English vowel letters, a map hke that shown in figure 1.26 may be 

produced . .------------------------. 
Letter Neuron 
Responds too 

Input Ret1na 

::::::::::::::::::: ...... , ........ , ....... . .... ... . .... . -. ..... . ... _ ..... . ····· ...... , ... . •••••• 1 ••••••• ...... . .......... . ...... . .......... . ...... , ...... ,~ ... . ...... .... . .. . 
==~· ---- . ~==: ...... ·---- ...... :::::: :::::~::::::~ ...... ...... ············ ....... ' .... . ... -- .. . ... - ... -· .... , ... ... . .. . 
::::.~:::: -~-:::: .......... . ..... . ---------- ------

Figure 1.26 The type of map produced when no lateral connection is used in training. 

Each neuron has learnt to respond to one individual input, but the model called for 

similar inputs to be classified by adjacent neurons. This is achieved by training every 

neuron for every example by a factor, IJ.. The higher the value of IJ. the more the neuron 

is trained to correspond to the input. The best neuron still wants to be trained by the 

same_ amount as before so for this neuron I! =1. Neurons that are adjacent to the best 

neuron need to be tramed slightly less, and neurons that are further away less stlll. The 

most common function for I! against distance from the best neuron is given in figure 

1.27, this is known as the Mexican hat function. 

Literature Revtew 31 G PAetcher 



Distance from strongest 
neuron 

Figure 1.27 The Mexican hat function 

This type of lateral influence between the nodes in the map encourages nodes close to 

each other to respond to sinular inputs and those further away to different ones. The 

resultant map for the English vowels looks something like 

Input Retma 

Letter Neuron 
Responds too 

c 

U E 

Figure 1.28 The type of map produced when lateral connections are taken mto 

consideration during training. 

Literature Review 32 G.P.Fietcher 



-------------------------------- - -

Now, mstead of the neurons responding to each of the letters being distnbuted across 

all of the output nodes, neurons corresponding to the same letter have grouped 
-

together. This model is most interesting because it IS an example of unsupervised 

learning. The neurons have spread out to cover the whole of the input space. The 

examples contained no indication of what the outputs should be, directly contrastmg 

with the back propagation and Hop field models. 

Applied research 

The vast majority of research work since the advent of back propagation has been in 

applying the technology to problems and faster implementations of the ex1stmg 

algorithms on parallel machines and dedicated hardware. By comparison, further 

theoretical development and improvement of the algorithms has been limited to a few 

small centres. To give an idea of the current uses of neural networks some applications 

and the papers that present them are listed: 

Speech: NETTALK Sejnowski and Rodenberg [1986] developed a 

network capable of taking written English and producing the phoneme codes required 

for speech. The success rate was approximately 80% with general English text and was 

understandable by a human listener. 

Adaptive control: Grant and Zhang [1989] developed a network capable 

of solving the pole balancing problem. This problem is only a toy example but 

demonstrates all the requirements for developing full control systems for industnal 

systems. 

Forecasting: A share price prediction system. Using data on the 

fluctuations of a single company the network was able to predict the future changes 

with a precision of 80%. 
Literature Revtew 33 G.P.Fletcher 



,----------------------------------- -

There are also many thousands of other uses but 1t is hoped that the three given show 

the breath of applications currently under active research. 

Engineering Considerations 

Even though neural networks are being used in wider and different applications every 

day there are still some major limitations. Perhaps the largest of these is the amount of 

trust that can be placed on the hypothesis constructed by a neural network. Messom 

[1992] produced a systematic method of designing the architecture in an attempt to 

increase the quality of the engineering involved. This goes some way towards 

guaranteeing the suitability of the hypothesis as 1ts shape is bound by the network 

architecture. If the network architecture does not match the needs of the problem then 

the hypothesis cannot be of the correct shape. The learning algorithm cannot overcome 

hardware implementation errors. Consider the following problem 

0000 

•••• 
•••• 
_._._._. 

Figure 1.29 The difference between a two and one dimensional implementation. 

A node is required to calculate a linear threshold on a single variable input. If a one 

dimensional implementation is used then this can easily be used, but the two 

dimensional version requires the weight on the second input to be exactly zero for a 

Literature Review 34 G.P.Fletcher 



correct answer. This is very difficult to achieve. The answer will probably be correct 

almost all the time but cannot be guaranteed. 

There are two differing opinions about how to spread the information about the 

networks. There are those that favour a localist representation where each node 

corresponds to a meanmgful concept and others that view a distributed paradigm as 

correct. While I believe that the distributed paradigm is biologically correct, I think that 

the advantages of the localist representations outweigh the disadvantages. 

Distributed representations have a major advantage in robustness. Damage to the 

system causes a slow degradation of performance as the quantity of damage increases. 

Localised systems collapse catastrophically when they are damaged. The best example 

of a distributed system is the brain, which can recover and continue to work after 

severe injuries. 

The major criticism of distributed systems is the unintelligibility of the hypothesis. With 

a localised paradigm it is sometimes possible is assign meanings to the nodes. However 

as the networks grow in size beyond several different layers it can be very difficult. 

Hinton [1990] expresses the view 

" ... the problem is to devise effective ways of representing complex 

structures in connectionist networks without sacrificing the ability to 

learn the representations. My own view is that connectionists are still a 

very long way from solving this problem ... ". 

Effective representation of the network as Hinton asks for will be a major step towards 

provability of the hypothesis, which in turn I think will allow the connectionist 

approach to be used in environments hitherto hindered by a lack of trust. 

Uterature Review 35 G P.Fietcher 



Figure 1.30 The training set used in the two spirals problem 

A good example of a problem that does not produce a perfect hypothesis is the spiral 

problem. The aim is to correctly classify pomts as being on the black or the white spiral 

using a network which has only two inputs, the X and Y co-ordinate of the point. The 

network used to implement this problem is shown below 

Output 

Figure 1.31 The network used in the two spirals problem. Only the connections from 

the darker shaded nodes are illustrated. 

Each node is connected to every node in every subsequent layer. So the X input is 

connected to every node in layers 1, 2, 3 and the output node. In the diagram only the 

Literature Review 36 G PF!etcher 

-

I 



connections from the darker shaded nodes are drawn. The diagram below shows the 

output values for each X and Y pair in the input space after the network has been 

trained. While the network returns the correct value for every training example the 

network is not an exact representation of the spirals. The hypothesis may be good 

enough for most applications but must be improved upon for safety critical work. 

Figure 1.32 The output function of the network used in the two spirals problem. 

Summary 

The study of neural networks originates from the biological sciences. Artificial neural 

networks were originally developed as a mathematical model of the activity within the 

brain. This chapter started by exploring the link between early models and their 

biological foundations. 

The first major step forward came With the simple perceptron model; the simple 

perceptron model could be trained effectively. This encouraged a huge amount of work 

by many different research teams leading to several different models of different areas 

of the brain (the Hopfield and Kohonen models). One of the groups working with the 

perceptron model were attempting to explore the limitations of perceptrons. Minsky and 

Literature Review 37 G P Fletcher 



Papert showed that a simple model had many lnnitations and that a multi layer model 

would be needed for most problems. As no effective training algorithm existed for 

these models many people turned towards more promising research and the study of 

artificial neural networks died. 

In the mid nineteen eighties the training problem for multi layer models was solved, and 

widely publicised. The back propagation algorithm once again revived research in this 

area. More recently the considerations of correct engineering have started to affect the 

design of the networks. Chapter Two of tlus thesis considers these problems in more 

detail, showing the motivation for the research contained in chapters Three Four and 

Five. 

Literature Review 38 GP Fletcher 



MOTIVATION OF STUDY 
CHAPTER2 

Outline Of Chapter 

The study that is presented in this thesis is motivated by the lack of reliability that can 

be placed on a trained neural network. The lack of formal design tools in neural 

computing has led to the advent of many ad hoc approaches, such as the oversupply 

and reduction of neurons [Tanii et al. 1989]. These techniques lead to networks that 

correctly classify their training sets, but no knowledge about their general internal 

representations has been gained during training. 

Neural network training has been well studied, while network reliability and 

interpretation has received little attention. This chapter examines the elements of a 

neural network system that are Important when verifying tts actions over an input 

domain not in the trainmg set. The differences in verifying correctly engineered and 

"ad hoc" networks are discussed. Having provided the motivation for the 

investigations in this thesis an outline of the contents is given, highlighting the new 

contributions to the field. 

Design and Verification 

Neural systems have been used in many situations, such as pattern recogmtion [ 

Ruturnelhart et al. 1986], fault detection [Govekar et al. 1989, Venkatasubramanian & 

Chan 1989] and industrial control [Anderson et al. 1990 1991, Jalel at al1991]. In all 

these fields is is important that the neural system correctly models the physical 

properties over the whole operating domain and not just over those elements that 

appeared in the training set; consider the consequences of producing a network that 

rnisclassifies faults on parts that go on to become part of a safety critical device (such 

Mottvatton of Study 39 G PF!etcher 



as an aeroplane) or a network that acts incorrectly when faced with unusual 

cucumstances as the controller of a chemical plant. 

There has been work studying the properties of neural networks [Rurnrnelhart et al. 

1986, Minsky et al. 1969, Rosenblatt 1962]. More recently most of the research has 

switched to reporting the Implementations of problems usmg neural networks [Bailey 

et al. 1988], but there has been little work presenting ngorous design or verification 

techniques. A general methodology for both problems is needed before neural 

systems can be successful and become an accepted and trusted problem solving 

technique in the industrial, technical and commercial domains. 

Some design methods have started to be developed [Messom 1992]. The use of such 

methods significantly simplifies the internal representation of a neural network. In 

essence a designed network assigns a simple concept to each neuron, thus movmg 

away from the idea of a distributed hypothesis. Damage to a designed net is 

catastrophic as opposed to the slow degradation seen m other neural systems. 

However, given that damage to the network is unlikely in an industrial setting 

verification would appear to be a more important goal. 

Verification and design are strongly interdependent. It is very difficult to verify an ad 

hoc "hacked" network, and there is little point designing a system 1f there are no 

acceptable methods for checking the design. A greater need for verification will help 

to force the use of a rigorous design methodology in the same way that full software 

verification has forced the nse of formal methods in software engineering. When 

designers and customers alike can compare the clean and elegant representation 

derived from a properly designed network compared to that from an ad hoc system 

there will be much greater pressure for their use. 

Monvanon of Study 40 G PFletcher 



Network Structure 

Neural systems have a topology. This topology heavily influences the hypothesis that 

the network can derive. The design systems aim to calculate the correct topology for a 

given problem. It has been repeatedly stated in th1s chapter (and shown later) that 

large networks are harder to analyse. As part of a design analysis and verification 

system some attention should be given to the size of the network. 

Many researchers have looked at network topology [Messom 1992, Tanii et al. 1989]. 

One area that has not been so popular is the topology within a neuron. Horejs et al. 

[1993] showed that by changing the sigmoid function dynamically they could alter the 

learning algorithm. Others have shown that modifying the activation function can 

produce faster learning. If the topology inside the neurons can alter these 

characteristics then correct selection of an activation function could reduce the size 

required in a network. 

Thesis Overview 

This chapter has argued that there has been a lack of research in the design and 

verification of neural networks. The previous work that has been undertaken has 

concentrated on designing Boolean class1fication networks. It is these networks that 

are currently most common as control or classification systems. 

Chapter three of this thesis looks at how Boolean classification can be analysed. It 

deals with some !united work presented by Mihalaros [1992] and then goes on to 

describe a more robust system. A neural network can 1mplement very complex 

hypotheses. The chapter also looks at how to simphfy the ideas extracted from a 

network, so that they can be used to verify the network or generate more examples to 

correct the errors. 

Mobvabon of Study 41 G PF!etcher 



Boolean classification does not always lend itself to the "Rule extraction" method 

described in chapter three. Image recogmtion is one example where a rule has very 

little meaning. Chapter three closes by considering how these types of problem could 

be examined. 

Whereas chapter three looked at analysing a designed network, chapter four deals 

with one of the areas not fully explored in the design tools. It constders the internal 

structure of the neurons that make up a neural network. The aim is to reduce the 

number of neurons required to correctly model a physical system. 

Chapter five also attempts to fill a hole in the current design tools. This chapter looks 

at how to build a network for modelling Real valued functions, not the simpler 

Boolean functions. Between the three chapters the analysis of a large class of 

networks is covered and several holes in the design tools filled. 

Monvahon of Study 42 G PAetcher 



THE ANALYSIS OF 
TRANSFER FUNCTIONS 

Chapter 3 

Outline of Chapter 

The chapter starts by explaining the concept of representing the action of a neuron as a 

form of Boo lean function. The chapter proceeds by introducmg some of the previous 

work in this vem, analysing it to show several faults. 

Boolean functions are adopted as a representational framework, and a fast algorithm is 

presented for denving the transfer function. These functions are then used to convert a 

neural network into a rule based system. The rule bases are then simplified using 

techniques similar to noise reduction in image enhancement to extract infonnation about 

the internal hypothesis of the original network. 

The limitations of rule induction from networks are identified and then demonstrated. 

An approximate solution IS shown for analysing networks that are too big for precise 

analysis. 

The analysis of transfer funcuons 43 G P.Fietcher 



Boolean representation of a neuron 

Neural networks are able to accept continuous valued inputs. In the idealised neuron 

model, thresholding means that all transformations beyond the first are Boolean 

transformations, whereas the first layer may be regarded as a quantisation layer. The 

quantisation layer splits the input space into regions which are then combined logically 

by the subsequent layers. In attempting to analyse neural networks only the 

transformations of the second and subsequent layers are addressed; the frrst layer may 

be interpreted as the results of relational operators comparing real valued inputs. The 

frrst layer results can be stored as a set of inequalities which can be substituted into the 

analysis of the later layers. 

The use of a sigmoid function in later, more powerful models changes the view of 

thresholding somewhat. However, with a fully trained network the sigmoid function 

will behave as a very close approximation to the threshold function. There are two 

reasons for the close approximation to the threshold function :-

1) As the networks hardens the weights grow in size. This 

makes the range of inputs for which the output is not 

close to Boolean very small. 

2) If simulated annealing is used to speed up training then 

as the temperature approaches zero the activation curve 

becomes very close to a threshold. 

The analysis of transfer funcuons 44 G.P.Fietcher 



Booleans through truth tables 

It is possible to produce a correct Boolean representation by applying every possible 

pattern to the inputs of the network, calculate the matching output value for each one 

producing a truth table. This truth table can then be turned into a Boolean function 

using an algorithmic implementauon of Karnaugh maps [Dowsing et a!, 1986]. Both 

stages of this method have a time complexity of 0(2•), givmg a total time complexity of 

2•+1. The time complexity is prohibitively large, preventing this approach being used 

on any reasonably sized network. 

0 and A operators 

Although a threshold neuron can always be represented as a Boolean function, the form 

of this function cannot be restricted to a representation where each mput variable is 

mentioned only once. The interest in such representations sterns from scalabihty, as the 

search space for the correct Boolean function grows exponentially as the number of 

inputs rises. If a set of operators can be found that represents any neuron while 

mentioning each operand only once, then an effective algorithm could be produced for 

fmding a concise representation. 

Previous invesUgations into this problem used a piece meal approach, splitting off the 

Boolean problem space into a class of operators which are referred to as the 0 and A 

operators as they are generalisations of OR and AND. This produced interesting results 

on small test data sets in two dimensions, but work presented in this chapter shows 

they fail to generalise properly to problems in higher dimensions. 

The analysts of transfer functions 45 G P.Fletcher 



The problem space covered by the operators was shown to be complete in up to three 

dimensions by Mihalaros [1992] and therefore to provide a means of representing all 

possible neurons with an input dimensiOn of three or less. This work by Mihalaros 

presented no complete analysis of how to find the 0-0perator that matched a general 

neuron, or even if all poss1ble neurons in higher dimensions were covered. Perhaps 

more significantly, and what encouraged further work, is that the traditionally hard 

problem of n-input parity neural networks can be simply represented using 0-0perators 

[Messom 1992]. 

Structure of 0 and A operators 

An 0-0perator 1s a Boolean function (therefore it can only evaluate to True or False) 

and is written 

where the evaluation is 1RUE if at least n of the m inputs are true. For example a three 

input "OR" functton (11 v 12 v 13} could be represented as 

0 13(lh l2, l3) 

In another example the 0-0perator 

0 23(lh l2, l3) 

is one representation of the Boolean function 

(1, A l2 ) V (1, A l3) V (12 A l3) 

The analys1s of transfer functions 46 G.P.Fletcher 



The A operators are effectively the complementary function based on AND, 

A•m(I~> .•. , lm) 

The evaluation is true if at least 1 input is TRUE from every combination of n inputs, 

for example 

is a representation of the Boolean function 

(II A I2 A I3) 

and 

is one representation of the Boolean function 

(I I V I2 ) A (I I V Il) A (I2 V Il) 

The analys1s of transfer funcuons 47 G PF!etcher 



Matching a general neuron to an 0 operator 

All the calculations shown in tlus chapter assume that the neuron has outputs in the 

range 0 to 1 as opposed to -1 to 1. The choice of 0 .. 1 neurons simplifies many of the 

arguments and proofs. As 0 .. 1 and -1..1 neurons are isomorphic the proofs are equally 

valid for -1..1. The poss1ble functions that can be represented by a single neuron of 

this type fall into distinct groups. Each of these groups will contam exactly one natural 

neuron and poss1bly some real ones. Where we define Natural and Real to be :-

Natural: All the weights and the bias of the neuron are pos1tive, i.e. 

The activation function is W! *Input!+ W2*Input2 + ... +Wn*lnputn > B and 

W!;?; 0 ,W2;?; 0 , ... ,Wn;?; 0 ,B ;?; 0. 

Real: At least one of the weights or the bias of the neuron is negative, i e. 

The activation function is W! *Input! + W2*Input2 + ... +Wn*lnputn > B and 

W1 < 0 orW2< 0 or ... orWn< 0 orB< 0. 

The 0-0perator representations of all the neurons in a group are sinular, the only 

difference being that for a real neuron some of the input variables will be negated. All 

the 0-0perators below represent neurons in the same group, the first is the natural 

neuron, subsequent 0-0perators represent some of the real neurons. 

025(A, B, C, E,U) The Natural Neuron 

0 2
5(A, -.B, C, E,U) A Real Neuron 

0 2
5(A, B, -,C, -,E,U) 

0 2
5(-,A, -,B, -,C, -,E,-,U) -

The analysis of transfer funcuons 48 

A Real Neuron 

A Real Neuron 

G.P.Fletcher 



One way to match a real neuron to an 0-0perator is to convert the real neuron into a 

similar natural neuron. Matching this new problem to an 0-0perator gives a solution 

that can be modtfied to represent the original problem by negating some of the inputs. 

This means that the target of matching a neuron to an 0-0perator has been reduced to 

two separate problems:-

1) How to find the solution for a real neuron by solving a similar natural one. 

2) How to find an 0-0perator that matches with a natural neuron. 

Finding the solution for a real neuron by solving a similar natural one 

0 

0 0.5 1.0 
1 

Figure 3.1. A two dimensional neuron with one negative and one positive weighted 

m put, represented as a hyperplane on the graph. 

The shaded region m figure 3.1 is represented by the inequation 

Input 2 - Input 1 ~ 0.5 

The analysis of transfer functions 49 G.P.Fletcher 



To convert this representation of a real neuron into a natural form it is necessary to 

remove the negative weight without affecting its Boolean characteristics. The negative 

weight associated with Input 1 can be modified by moving the origin of the axis to 

position ( 1,0) and then reflecting them. The equation for the graph using the new axes 

is 

Input 2 + Input 3 ~ 1.5 

where 

Input 3 = ...., Input 1 

This gives a new diagram shown in figure 3.2. If an 0-0perator, F, is found for this 

new neuron then all instances of Input 3 in F could be replaced by .... Input 1 to give a 

correct solution for the onginal problem 

1.0 

Input 2 

0.5 

~----------------~0 
1.0 0.5 0 

Input 3 

Figure 3.2. The transformed hyperplane w1th all positive weights. 

The analysis of transfer functions 50 G PF!etcher 



Any inequality can be converted in this way. In general let the original inequality be 

Let the new inequality be 

then 

Where 

Wa=lw.l 

D=B- Lf(w.) 

{
0 if X<:: 0 

f(X)= XifX<O 

How to find an 0-operator that correctly represents a natural neuron 

The function represented by the natural neuron can be illustrated on a layered graph that 

represents the possible Boolean input space. The nodes of the graph are connected if 

they differ by only one input and are on the same layer if they have the same number of 

inputs set to true (figure 3.4). The four dimensional function shown in figure 3.3 

would be represented as the graph shown in figure 3.4. 

Il 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

Inputs 12 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 

13 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 

14 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

Outputs 0 0 0 1 0 0 0 1 0 0 0 1 0 1 1 1 

Figure 3.3. An arbitrary four dimensional linearly separable function. 

The analysis of transfer funcllOns 51 G PF!etcher 



Figure 3.4. The four dimensional function tabulated in figure 3.3 shown as a graph. 

Figure 3.5. The darker shaded nodes represent the infunums of the shaded nodes in 

figure 3.4. 

The analysis of transfer funcuons 52 G P.Fletcher 



Only graph nodes that have no children need to be represented in the 0-operator; we are 

only interested in infunums. The threshold is an "at least function" and the infimums 

are the "least" elements. Finding the 0-0perator for these nodes automatically covers 

the others. Figure 3.5 shows the set of infimums taken from the lattice shown in figure 

3.4. 

Each of the infimums on the graph can be represented by an 0-0perator 

O•.(I, ... I.) 

where I 1 ••• I. are the inputs that are set to one in the required node. e.g. if the required 

infimum is (1,0,1,1) then the 0-0perator is 

0 3
3(1" I3, ~) 

Where there is more than one infimum any one of them is sufficient to cause a TRUE 

evaluation. If there are Z infunums than the 0-0perator 

0 1z(0•1•1(A1 ••• A.1), 0•2•2(B1 •.• Bn2), ..... , o.z.z(K1 •.• K.z)) 

correctly represents this property. This 0-0perator needs to be simplified in such a way 

as to remove multiple references to the same input. Some of the transformation rules 

given by Mihalaros [1992] can be used to achieve this. 

1) X 

The analys1s of transfer funcuons 53 G PFietcher 



2) 

where I= {I1 •• Im} and all possible sets of n elements from I were the 

operands for one of the original 0-operators. 

This rule represents the main power of 0-0perators, the ability to 

represent some complex Boolean functions very simply. 

where I1 .... J.t are sets of operands, 

I, n I2 n l3 n ... n I.t = {x~ox2, ... ,x •. d 

Iw = Iw- {xhx2, ... ,x •. d 

rw = nw -l{xhx2, ... ,x •. I} I 

Rule 3 removes common operands from the infunurns. If a set of 

operands appears in every infimum then they can be simplified so that 

they only appear once in the equation. 

The analysiS of transfer functiOns 54 GP Fletcher 



4) 0 1d{0•1nl{I1) .. Ondnd(IJ)"' 

0 12( 0 1,(0•1ni(I1) .. Ooa,.(I,)), Olb(O•< .. n,< .. n(l{ .. 1)) .. O••,.(IJ)) 

where I1 .... l.J are sets of operands, 

d=a+b 

This rule is splitting the problem into two smaller problems. As the aim 

of the simplification is to remove multiple references to input variables 

this rule should not be used if 

(I1 u I2 ui3 u ... u I.) ('\ (I<•••l u l{a+2) u ... u IJ 'i' 0 

Doing so in this case causes references to the same variable in both sub 

problems, where there is no way of recombining them. 

The other transformation rules presented by Mihalaros[1992] e1ther introduce or rely on 

a combination of an input and its negation. In the representation of a neuron it is not 

possible for a variable and its negation to appear in different infimums, we also do not 

want to introduce a variable's negation as we are then using two references. All the 

other rules are not suitable for use when trying to remove multiple references. If none 

of the flfSt four rules can be used on the current 0-0perator then no further 

simphficatlon is possible. 

The analysis of transfer functions 55 G P.Fletcher 



Example 1 

Calculate the 0-0perator for the four dimensional function with the infunum nodes 

(1,1,0,0) and (1,0,1,1). The 0-0perators calculated for the two mfimums are 

0 22 (1~o h) & ()33 (11, 13,14) 

making the starting point for simplification 

Step 1 

Step 2 

0 12 (022 (lh h), 0 33 (lh 13.14)) 

Applying rule 3 gives 

Q22(1h 0 12 (011 (h), 0 22 (13.14))) 

Apply rule l. There is now no more simplification necessary, the fmal 

answer is 

0 22(11, 0 12(12, 0 22(13,14))) 

The analysis of transfer funcuons 56 G.P Fletcher 



Example2 

Calculate the 0-0perator for the four dimensional function shown in figure 3.6. 

Figure 3.6. A four dimensional function. 

The three infimums are (1,1,1,0) , (1,1,0,1) , (1,0,1,1). Therefore the starting 0-

0peratoris 

Step 1 

Step2 

Applying rule 3 gives an answer of 

022(11> 0 13(022(12, l3), 0 22(12, 1..), 0 22(13, 1..))) 

Applying rule 2 gives an answer of 

022(lh 0 23(l2, l3, 1..)) 

The analysis of transfer funcuons 57 G PF!etcher 



Counter example of 0-operator completeness 

For the function represented by the graph 

Figure 3.7. A four dimensional function that cannot be represent by 0-0perators. 

The infimums are (1,1,0,Q), (1,0,1,1) and (0,1,1,1). Therefore the initial 0-0perator 

is 

None of the first four rules can be applied for the followmg reasons: 

Rule 1: There is more than one 0-0perator in the group. 

Rule2: 

Rule 3: 

Rule4: 

Not all the values of n are the same. 

No operand is common to every member of the group. 

The group cannot be split as every member would be in the same 

subgroup. 

.. 

The analysis of transfer functions 58 G P.Fletcher 



Therefore the function cannot be represented without using a negated version of one of 

the inputs, breaking the restriction of multiple representation. An exhaustive search of 

all possible 4 input 0-0perators provides an alternative verification. As the function is 

linearly separable it can be represented using a neuron. Therefore 0-operators are 

incomplete. Unfortunately the incomplete elements of the 0-operator are not 

representable using A-Operators, as 0 and A operators are only transformations of each 

other [Mihalaros, 1992]. 

It has been shown that 0-0perators are not complete for four or more dimensions and 

cannot, in general, be used to analyse networks in higher dimensions. Where it is 

possible to use 0-0perators they provide a concise and clear representation and are 

ideal for large networks with a low connectivity. Unfortunately, as the number of 

dimensions increases the proportion covered by 0 and A operators falls until they are 

virtually useless. 

Boolean functions as the representation 

0 and A operators are incomplete, they do not have the flexibility to represent all 

possible neurons. The aim of finding some form of representation that mentions each 

input once is, in the authors opinion, basically flawed. A more general technique must 

be adopted. The best understood technique for representing logical functions is 

traditional Boolean Logic. Although the representation for a complex neuron can grow 

unacceptably long, Boolean logic can still provide a powerful tool. The aim of the next 

section of work is to produce a system for analysing neurons in terms of a Boolean 

rule. 

The analysiS of transfer funclions 59 G P.Fletcher 



Converting natural neurons to Boolean functions 

Natural neurons can be turned into Boolean functions with relatively little effort. It is 

necessary to find which sets of inputs are the minimum required to fire the neuron 

(these are the same infimums that it was necessary to model when using 0-0perators). 

This problem is similar to the classic knapsack problem which has an exponential time 

complexity . 

0 2 4 6 8 10 

I1 

Input I2 

Input l3 

Input I4 

Figure 3.8. Representing a natural neuron as a knapsack problem where the input 

"parcels" are fitted into the bias "package". 

Instead of trying to find the set of inputs that exactly fits the bias, the required answer is 

all the sets of inputs that just exceed the bias. For example in figure 3.8 (I1 & ~) just 

exceeds the bias, as 9+ 7 > 14, but if either of the inputs were to be removed then the 

total falls below the required threshold, (I1 & I3 & ~) does not just exceed the bias as 

removing I3 would not make the total fall below 14. The complete set of infimums for 

the problem shown in figure 3.8 is 

I1 & !3 

I1&~ 

I2& !3&~ 

The analysiS of transfer functions 

9+6>14. 

9 + 7 > 14. 

4+6+7> 14. 

60 G P.Fietcher 



This represents the required Boolean function and can be transformed easily to the 

conventional Boolean format: 

(It AIl) V <It A 14) V (12 AIl A 14) 

An algorithm to produce one part of the result is given as a pseudo code procedure 

below. By backtracking the procedure it is possible to denve each part in turn until all 

the infimums have been produced. 

knapsack(Array_of_Inputs, Bias, Answer) 

If Bias ~ 0 then 

for each element, X, in Array_of_Inputs 

New_Array = All elements after X in Array_of_Inputs 

knapsack(New_Array, (Bias- X), Sub_Answer) 

Answer= append([X], Sub_Answer) 

else 

Answer = [] 

end 

Complexity analysis of proposed system 

Let C(X) be a measure of complexity proportional to the time taken to calculate the 

answers. To produce an answer when there is one weight requires one call to the 

algorithm. 

C(l)= 1 

To produce an answer when there are two weights requires two calls to the algorithm. 

C(2)=2 

The analysts of transfer funcuons 61 G.P.Fletcher 



To produce an answer when there are N weights requrres P calls to the algorithm. 

C(N) = p 

where P is the initial procedural call plus the sum of the recursive calls made to solve 

each sub problem. The algorithm produces N-1 subproblems for a problem with N 

inputs. The subproblerns are smaller knapsack problems over the last X origmal inputs 

for X = (N-1), (N-2), .. , 2, 1. 

A 

C(N) = 1 + L C(A) 
I N-1 

C(N) = 2N-1 

The worst case time complexity for the solution of a natural neuron is 0(2N-1). This is 

still exponential, but unlike the exhaustive search method described earher this can be 

reduced further, or left with a complexity saving of approXImately four times compared 

to the 0(2N+l) of exhaustive search. 

Methods of reducing the complexity 

~ The algorithm will only start to approach the maximum complexity when most of the 

weights are required to make the neuron flre, i.e. the decision hyperplane is a long way 

from the origin. This means an improvement can be made on solution time by moving 

it closer. If the hyperplane is closer to the opposite corner of the umt hypercube than 

the origin then viewing the problem from the opposite corner and solving the opposite 

problem is more efficient. Reflecting the axis along the line y = 1-x will bring the 

hyperplane less than half way from the new origin. The procedure will then need less 

recursive loops to find its answers. 

e.g. 

The analysis of transfer funcuons 62 G.P.Fletcher 



Figure 3.9. Example of a hyperplane implemented by a neuron requiring reflection. 

The neuron in figure 3.9, let us call it P, represents a hyperplane that is more than 

halfway from the origm (dl > d2). Let G be second neuron such that 

G= ..,p 

and then rotate the axis so that G is Natural, figure 3.10. 

Figure 3.10. the hyperplane shown in figure 3.9 after reflection. 

The analysis of transfer functions 63 G.P.Fletcher 



We know dl> d2 therefore the hyperplane is less than halfway to the opposite corner. 

Once the Boo lean function for G, B(G), has been calculated the Boolean function for P 

is -,B(G). Using this method it is possible to find the solution for long problems in a 

vastly reduced time. 

When to solve the opposite problem 

It has been stated that the problem should be reflected if the hyperplane is more than 

halfway to the opposite corner of the unit hyper cube. The problem of deciding what 

constitutes being more than half way from the origin is not simple. The obvious, and 

best method, would be to decide if more than half of the volume of the hypercube is cut 

off from the ongin by the hyperplane. This can seem a very complex task, but analysis 

shows that if the boundary is flat, which it must be as it is a single hyperplane, then the 

side of the hyperplane with most volume is the side that contains the point exactly in the 

centre of the cube. Therefore to test if reflection is necessary it is only necessary test to 

see if the point halfway from the origin IS above or below the hyperplane. If it is above 

then no reflection is necessary, otherwise reflect. To perform this test, reflect if 

Lweights <Bias 
2 

The analysis of transfer funcuons 64 G.P.Fletcher 



Forcing the derived expression into a minimal representation 

The algorithm so far descnbed will return a correct solution. For the purposes of a 

useful system the returned answer must not only be correct but also minimal. This can 

be achieved by sorting the weights into decreasing size before entering them. A further 

advantage of this is that sorting is a good heuristic for reducing the average processing 

time to fmd the solution (figure 3.11). Let the input to the algorithm be weights 

Wt, W2, W3, ... W. 

and the bias value B. The mistakes that cause the answer to be non minimal occur 

when 

Wt+ W2+ W3+ ... +Wm >B 

W2+ W3+ ... +Wm >B 

Because the algorithm stops as soon as the bias is achieved 

Wt+ W2+ W3+ ... +Wm -Wm <B 

If the weights were in sorted order then 

Wt>Wm 

Substituting [3.4] into [3.3] gives 

Wt + W2+ W3+ ... +Wm- Wt <B 

W2+ W3+ ... +Wm <B 

[3.1] 

[3.2] 

[3.3] 

[3.4] 

[3.5] 

which contradicts [3.2], therefore, if the weights are sorted, the two requirements for 

added complication in the answer cannot occur. 

The analysis of transfer funcllons 65 G.P.Fietcher 



-------------------------------------------------------------------------------

Number of iterations to find solution 
~w 

..... 

.... 

.... 
720 

• • • 7 • • 10 11 l:l 
Number of Inputs 

Figure 3.11. Companng the speed of execution with sorted and unsorted weights. 

Although the lines appear close together the steepness of the curve masks a decrease in 

calculation time of 30 percent for the 12 input problem. 

Examples of Boolean function derivation 

Example 1 

Consider the neuron in figure 3.12 representing a neural network implementation of a 

two input OR gate. 

Bias =0.63 

Figure 3.12 A two input OR gate implemented as a neural network. 

The analysts of transfer functions 66 G P.Fletcher 



This neuron implements an OR function. Applying the algorithm to find the minimum 

inputs to fire this neuron shows that either A or B on their own will cause the neuron to 

fire. Therefore the Boolean transfer function is 

A vB 

Example2 

A more complex example is the case of three dimensiOnal parity. A neural network to 

calculate this function is shown in figure 3.13. The Boolean function for each neuron 

is calculated separately 

O=H 

G=-,(-,Av-,Bv-,C) 

D =-,(A 1\ B) V -,(A 1\ C) V -,(B 1\ C) 

combining these gives 

0 = -,(-,A V -,B V -,C) V 

H=GvF 

F = -,( -,D V --.E) 

E=AvBvC 

-,(-,(-,(A 1\ B) V -,(A 1\ C) V -,(B 1\ C)) V -,(A VB V C)) 

Figure 3.13. Implementation of three input parity as a neural network. 

The analysis of transfer functions 67 G P.Fletcher 



A1111lication of Boolean rule extraction to rule induction on an adhesive 

dis11ensing machine controller 

This application is the dispensmg of adhesive in the manufacture of "mixed technology" 

P.C.B.s in which through hole and surface mount components are present on the same 

board. The surface mount components are secured to the board, prior to a wave 

soldering operation, by a small (0.0002 to 0.005 ccs depending on component) amount 

of adhesive. The amount of adhesive dispensed is critically dependent upon several 

process environment variables, (e.g. temperature, humidity, erratic thixotropic 

behaviour of the adhesive, rur bubbles m the flow and variations in the P.C.B. 

substrate ). 

The dispensing unit consists of a syringe of adhesive coupled to a pressure control unit. 

The unit is made up of a solenoid valve, pressure regulator, temperature sensor and a 

pressure transducer to monitor the variation of pressure within the syringe. The 

dispensing unit is fixed to a SEIKO RT3000 robot which moves the syringe to 

locations of the P.C.B. where the adhesive has to be dispensed. Feedback data 

collection is carried out by an image processmg system (lmaging Technology mt51) 

coupled to a Pu1nix TM-460 CCD camera incorporating a magnifying optical system. 

The system consists of four processors (one SUN, two Target processors and one 

robot processor) with a pipeline vision processing system attached to the VME bus of 

the SUN. Communication between the software modules is either Via the VME bus, 

serial line communications or the UNIX sockets mechanism. The "m-house" built 

Target was designed to allow the cell controller software, developed on the SUN to be 

ported to a "black box" solution swtable for an mdustrial system. 

The analysis of transfer functions 68 G P.Fletcher 



-------------------------------------------------------------------------

Messom et al. [1992] produced a neural network system for controlling the adhesive 

dispensing machine (figure 3.14). This is the sort of problem that has typically been 

tackled by the use of a rule induction package. The trained neural network should 

therefore be equivalent to a set of rules that could have been learnt by such a package. 

~ l: ~ 5 ~ 0 ~ 

~ "' ¥, ~ 
E < la :1 5 ~ ~ ~ 

~ ~ !!l .;! ~ a: 
~ .. < .. 
s 

Figure 3.14. The net implemented by Messom et. al. for controlling a gluing machine. 

The fust layer of neurons receive real valued inputs, but produce outputs that are very 

nearly bi-polar. These neurons are effectively quantifying the input region, and are 

therefore called quantisation nodes. The actions of the quantisation nodes are described 

as a set of inequalities. This step does not simplify the information but does display it in 

a manner that is much more natural to read than a set of weights on a diagram. 

Examples of the rules resulting from these inequalities are show in figure 3 15. 

The analysts of transfer funcllons 69 G P.Fietcher 



IF rise_tlme <1.25 

THEN nse-timeflag 

ELSE --.nse_timeflag 

IF pulse_ width< 1.0429 

THEN pulse_widthflag 

ELSE -,pulse_ widthflag 

IF area > 1.0258 

THEN midnode 1 

ELSE -.rrudnode 1 

IF pulse_height < 1.025 

THEN midnode3 

ELSE --,midnode3 

IF area_change < 0.5500 

THEN midnode5 

ELSE --,midnode5 

IF fall_time > 1.1 

THEN fall_timeflag 

ELSE --,fall_timeflag 

IF boxarearatio > 

THEN boxarearatioflag 

ELSE --,boxarearatioflag 

IF area > 0.9722 

THEN midnode2 

ELSE --,nudnode2 

IF pulse_height > 0.975 

THEN midnode 4 

ELSE --,nudnode4 

IF area_change > 0.4499 

THEN midnode6 

ELSE --,midnode6 

Figure 3.15 The rules representing the first layer of neurons from the network in 3.14 

The remainder of the network receives inputs that are close to bi-polar and delivers bi

polar outputs; as such they can be said to be implementing Boolean transfer functions. 

The results from expressing these transfer functions as rules are very similar in fonnat 

to the first layer inequalities. Examples of the denved rules for the subsequent layers 

are shown in figure 3.16. 

The analySIS of transfer functions 70 G.P.Fletcher 



IF (midnodel v -.(midnode2)) 

THEN action 

ELSE -.action 

IF -.((midnodel v midnode2)) 

THEN change 

ELSE -.action 

IF -.((-.(midnode4) v -.(midnode3))) IF -.((midnode3 v -.(midnode4))) 

THEN pulse_heightflag 

ELSE -.pulse_heightflag 

THEN pulse_heightdecision 

ELSE -.pulse_heightdecision 

IF -.((-.(midnode6) v -.(midnode5))) IF -.((-.(midnode6) v midnode5)) 

THEN bubbleflag 

ELSE -.bubblefla 

THEN bubbledecision 

ELSE -.bubbledecision 

Figure 3.16 The rules representing the second and subsequent layers of neurons from 

the network in 3.14. 

It is now possible to directly implement this set of rules in a rule base without altering 

the action of the system. For clarity some general simplification of the Boolean rules is 

required, also substituting the inequalities produces much more natural looking results. 

The analysis of transfer functions 71 G.P.Fletcher 



IF rise_time < 1.25 

THEN rise_timeflag 

ELSE -.rise_timeflag 

IF pulse_ width< 1.0429 

THEN pulse_w1dthflag 

ELSE -.pulse_ wJdthflag 

IF area_change > 0.5500 

THEN bubbledecision 

ELSE -.bubbledecision 

IF fall_time < 1.1 

THEN fall_t!meflag 

ELSE -Jall_timeflag 

IF boxarearatio > 0.8520 

THEN boxarearatioflag 

ELSE -.boxarearatioflag 

IF (area> 1.02581 v area< 0.9722) 

THEN action 

ELSE -.action 

IF (area_change > 0.4499" area_change < 0.5500) IF pulse_height > 1.025 

THEN bubbleflag THEN pulse_heightdecision 

ELSE -.bubbleflag ELSE -.pulse_heightdecision 

IF (pulse_height > 0.975 "pulse_height < 1.025) IF area< 0.9722 

THEN pulse_heightflag 

ELSE -.pulse heightflag 

THEN change 

ELSE -.change 

Figure 3.17 The complete set of rules derived from the network in 3.14. 

The relative ease with which the transformation, from control network to rule set, can 

be made illustrates the usefulness of the interpretation system for medium sized control 

networks. This type of result is most useful to check that the hypothesis is reasonable, 

it also allows the network to explain its actions, something that classically they cannot 

do. 

The analys1s of transfer funcuons 72 G.P.Fietcher 



Noise Immunity of Neural Network Derived Rules 

A good connectionist based solution should exhibit fewer overall noise connected 

problems than the currently available symbolic systems. A useful quantitative measure 

of noise immunity is the average percentage of the learnt hypothesis that matches the 

underlying training hypothesis. A correct function is represented by the truth table 

shown in table 3.1a, and a noisy version with one output incorrect is represented by 

table 3.1b. As these truth tables match in 87% of the outputs the noisy hypothesis is 

defmed to have an integnty of 87%. 

I1 00000000 00000000 

INPUTS I2 01010101 01010101 

I3 00110011 00110011 

I4 OQQQ1111 QQOQ111l 

OUTPUT 01010101 01010111 

Table 3.1a Table 3.lb 

Table 3.1a is a truth table representing a Boo lean function, whereas table 3.1 b 

represents a noisy hypothesis. Note the change of the seventh bit in the output !me (in 

bold). 

Figure 3.18 shows the correctness of rules derived from networks that were trained to 

represent conjunction and parity, using examples containing different amounts of noise. 

Although live applications will normally be more complex than those illustrated, they 

will typically be trained on nmsy data and will react in a sinnlar manner. 

The analys1s of transfer funcbons 73 G.P Fletcher 



% Integrity of Learnt Function 

90 

70 

50 

30 

10 

20 

Three Input 
Parity 

40 

Three Input 
Conjunction 

60 

% Error in Training 
Data 

80 

Figure 3.18 The response of a neural network derived from a 3 dimensional 

conjunction training set with differing amounts of noise, superimposed on the response 

of the neural network derived from 3 dimensional parity trairung set. 

The Pole Balancing Problem 

So far this chapter has argued for the extraction of Boolean rules from neural networks, 

and demonstrated how this may be accomplished. One of the major uses env1s1oned is 

the verification of the original neural network. The pole balancing problem is used to 

demonstrate the usefulness of the network derived rules in verifying the action of 

networks. 

The analysis of transfer functions 74 G P.Fletcher 



The pole balancing problem is an example of applied adaptive control and has become a 

standard tutorial problem. The control system must balance a pole on a motorised cart 

by moving the cart forward and back in a confined space. The implementation of most 

interest here is the neural network [Grant & Zhang 1989] shown in figure 3.19. This 

was successful in balancing the pole under a variety of circumstances. The inputs to 

this system are Boolean, so there is no quantisation layer and no need for inequalities in 

the rule set. 

~ 
bJ) ~ ,g bJ) c g c 

"ij ~ ·~ 
bJ) 

~ ..... u ~ 
c 0 8 .£ - u - 0 

~ .s 0 ,g ~ :2 
13 "' "' ~ ~ ·- 0 -0 ~ 

.c - bJ) ~ u 
~ 0 ·c: 

~ ~ 
c ~ 0 

~ -
~ u 

Figure 3.19 A neural network developed by Zhang and Grant [1989] to solve the pole 

balancing problem. 

The analys1s of transfer functions 75 G P.Fletcher 



----------------------------------------------------------------------

The analysis of the pole balancing net resulted in the following rule. Careful analysis of 

the rule will make it possible to find, and therefore correct, the errors in the network. 

IF (Top of pole is to nght A ...,Pole is falling over A 

...,Pole speed increasing A Cart accelerating) 

V 

(Top of pole is to right A ...,Pole is falling over A 

...,Pole speed increasing " Cart on right side of track " 

Cart moving away from centre) 

V 

(Top of pole is to right " Pole is falling over " 

Pole speed increasing) 

THEN Apply right force 

ELSE A I left force 

Figure 3.20. The rule resulting from an analysis of the network shown in figure 3.19 

Simple image enhancement techniques can be used to simplify the rules, resulting in the 

underlymg functions of the network and a list of exceptions. The underlymg function 

can be verified and the exceptiOns indicate possible problems with the network 

hypothesis. 

The analysis of transfer functions 76 G P.Fletcher 



AJ:!plying simple image enhancement techniques to rules 

The rule represented as a Kamaugh map in figure 13.21 has a fairly complex Boolean 

expression (figure 3.22), the map gives a better understanding of the simple basic 

concept. The aim of using image enhancement techniques is to allow high 

dimensionality problems to be represented in their original form but with much of the 

complexity removed. Enhancement will alter the rules, maintaining the main underlying 

objectives while removing superfluous small cases. This makes the analysis of the 

network hypotheses tractable for much larger networks. 

Figure 3.21 A function with a very simple basic concept but a relatively complex 

Boo1ean representation. 

(11A 13 1\ 1.4) V (-.12/\ --.13 1\ 1.4) 

V 

Figure 3.22 The expression represented in figure 3.21 

For example the Boolean expression represented in figure 3.21 could be simplified to 

become the one represented in figure 3.23. 

The analysis of transfer functions 77 G.P Fletcher 



Figure 3.23 An enhanced version of the Boolean rule in figure 3.21. 

There are two separate processes required to enhance a Boolean rule. The first reduces 

it by removmg burrs. A burr is an area on the Karnaugh map that is separate from or 

smaller than the main body of the function. The example of 3.21 would become figure 

3.24 after having its burr removed. The second process is the reverse, removing burrs 

from the inverse function fills any holes m the rules. Hole filling on figure 3.24 would 

give the result shown in figure 3.23. 

I 4 I 4 ..., 14 ..., 

Figure 3.24 The example of figure 3.21 after having its burr removed. 

The analysis of transfer funcuons 78 G P.Fietcher 



The removal of burrs from a Boolean rule can be achieved easily if the Boolean 

expression is in a minimal disjunction of conjunctions. The example in figure 3.21 was 

represented as shown m figure 3.22. The Boo lean representation for the version of the 

functJon shown in figure 3.24 after the burrs have been removed is shown below 

(11 A l3 A 4) V (-,12 A --.13 A 4) 

Figure 3.25 The Boolean representation for the "after the burrs have been removed" 

version of the function shown in figure 3.24. 

Each of the conjunctions in the Boolean equauon represents an area on the Kamaugh 

map. The size of this area is inversely proportional to the length of the conjunction. By 

removing the longer conjunctions from the Boolean rule it is possible to remove the 

smaller areas on the map, thus removing the burrs from the rule. The Boolean equation 

in figure 3.22 is converted to the one in figure 3.25 by removing the longest of the 

conjunctions. Hole filling is an equally simple task. In effect hole filling is burr 

removal of the inverse function, which is exactly how it is implemented. 

Using enhancement to explain the action of the pole balancing network 

By using the simple image enhancement techniques on the rules derived for the pole 

balancing network it is possible to reveal information about the internal hypothesis. The 

rules for the network in their raw form were. 

11 -Top of pole to right 14- Cart on right side of track 

12 - Pole is falling over 

13 - Pole speed increasing 

The analysis of transfer functions 

15 - Cart movmg away from centre 

16 - Cart accelerating 

79 G P.Fietcher 



IF 

THEN 

ELSE 

IF ( Il A -,12 A 13) V (Il A -,12 A 14) V (Il A 13 A 14) V 

(Il A 13 A 15) V (Il A -,12 A 16) V (Il A 13 A 16) 

THEN 

Ml=True 

ELSE 

Ml =False 

(Il A -,12 A 13) IF (Ml vM2) 

THEN 

M2=True Apply right force to cart 

ELSE 

M2=False Apply left force to cart 

Figure 3.26 The rules for each of the neurons in the pole balancing network. 

Repeatedly enhancing these rules gives the following three versions. Each is enhanced 

one step further than the preceding copy. 

IF ( 11 A -,12 A 13) V (Il A -,12 A 14) V 

(Il A -,12 A 16) V (Il A 13) 

THEN 

Ml =True 

ELSE 

Ml =False 

IF (Il A -,12 A 13) 

THEN 

M2=True 

ELSE 

M2=False 

Figure 3.27 The rules for each of the neurons in the pole balancing network, where the 

longest conjunction has three elements. 

The analysis of transfer funcuons 80 G.P.Fletcher 



IF ( 11 " -.12 ) V (11 " 13) 

THEN 
Ml =True 

ELSE 

Ml =False 

IF (11 " -.12 A 13) 

THEN 

M2=True 

ELSE 

M2=False 

Figure 3.28 The rules for each of the neurons in the pole balancing network, where the 

longest conjunction has two elements. 

IF 11 

THEN 

Ml =True 

ELSE 

Ml =False 

IF True 

THEN 

M2=True 

ELSE 

M2=False 

Figure 3.29 The rules for each of the neurons in the pole balancing network. where the 

longest conJunction has one element. 

Substituting the simplest rules for M I & M2 into the top level rule gives 

The analysis of transfer functions 8 1 G PF!etcher 



IF Top of the pole is to right 

THEN 

Apply right force 

ELSE 

Apply left force 

Figure 3.30 The simplest most basic rule for pole balancmg. 

The basic mam rule is saying follow the top of the pole. As an expert in pole balancing 

you must agree that this is the correct basic rule. Secondly, and equally importantly, at 

a higher complexity we can check that the shape of the more important mput variables 

are correct using a Kamaugh map. e.g. at an intermediate level of simplification the rule 

for applying force IS 

IF (Top of pole is to right A Pole speed increasing) v 

(Top of pole is to right A Pole is falling over) 

THEN 

Apply right force 

ELSE 

Aoolv left force 

Figure 3.31 A rule for pole balancing of intermediate complexity. 

The map for tlus rule is shown in figure 3.32. The map shows that the rule is not 

symmetric. This means that the network will respond differently to the same Situation 

on different sides. Although the network balanced the pole under test conditions it 

cannot be exactly correct. The reasons for moving the cart to the right should mirror the 

reasons for moving the cart to the left, so one of the rules must be wrong. 

The analysis of transfer funcuons 82 G.P.Fietcher 



------------------------------

Figure 3.32 The map of the rule after some simplification. This shows an asymmetrical 

response. 

The part of the rule missed by the network corresponds to accelerating right when the 

top is to the left so as to slow down the movement of the pole if it is about to overshoot 

the centre line. It is not surprising this has been Inlssed as it is not a common case. 

However, the training could be modified to force this example to occur. 

Limits of Boo lean rule conversion 

The nature of neurons means that as the number of inputs grows so does the length of 

the Boolean description. In the worst case the number of conJunctions m the disJunctive 

normal form grows at a rate of 2•·1 where there are n mputs to the neuron. The time 

taken to derive a rule is proportional to the number of conJunctions. The rules become 

mtractable to compute for neurons with more that 40 inputs, and meaningless for a 

human far earlier, see figure 3.33. A different method is needed to enable the network 

designer to interactively train and study the hypothesis of larger networks. 

The analysis of transfer funcuons 83 G.P.Fletcher 



----------------------------------------------------------- - -

(lp20 A lpi9 A -.lpi8 A ~•pi7 A ~lpi2 A -.lpll A 1pi0 A ip9 A lp4 A~lp3 A ~lp2 A ~lpi) 

or 

( -.lp26 A lp25 A lpi9 A ~ipi8 A ~lpi7 A ~lpi2 A ~lpll A lpi0 A lp9 A ip4 A -.lp2 A ~lpi) 

or 

hlp26 A lp25 A lp7 A ip!O A lp5 A lp4 A -.lp3 A ~lp2 A ~lp22) 

or 

(-.ip26 A lp2i A lpi9 A-.lpi8 A~ipi7 A~ipi2 A~lpll A ip!O A lp9) 

or 

(~lp2i A ipi3 A ipi2 A lpii A ~ip!O A ip9 A lp4 A ~ip3 A lp2 A lpi) 

Figure 3.33 Showing the uruntelligibility of the rules derived from a large character 

recognition network. This illustrates the difficulty of interpretmg larger networks as 

Boolean functions. This Boolean rule has several thousand conJunctions, only the first 

few are shown here. 

Analysing large optical character recognition networks 

The method of describing the output function of a neural network should match the 

purpose for which the network was designed. The example being developed here is for 

the venfication and testing of visual pattern recognition networks such as O.C.R. In 

these types of application the best form of verification is to get the network to draw 

what it thinks a typical input pattern should look like. If this matches with the 

developer's ideas then there is some justification for accepting the hypothesis as 

correct. Verification in this manner could be described as a form of feed backward 

network, trying to fmd the typical input firing pattern. 

The analysis of transfer functions 84 G PF!etcher 



The ideal answer would be something along the lmes of figure 3.34. The darker areas 

represent an area that has a stronger link with the output than the lighter areas. The 

hypothesis in figure 3.34 would be a good result from a network that has been trained 

to recognise the letter capital E. The figure 3.35 could represent a network that correctly 

classifies all the training examples but could do with some further training. 

Figure 3.34 The target. ..... This is what a feed backward analysis of a network that has 

correctly learnt to recognise the letter E should look like. The darker the region the 

closer the link to the hypothesis. 

Figure 3.35 A feed backward analysis of a network that has correctly learnt to 

recognise the letter E. Some areas could do with further training examples. 

The analysis of transfer functions 85 G PF!etcher 



The Simplest way of finding the typical input patterns that cause firing is to experiment. 

While this is an excellent solution for small networks it soon becomes intractable for 

larger systems. Even with a simple O.C.R. network with 64 inputs there are 1.8*1019 

different input patterns to test. This section of the chapter presents a tractable method 

for extracting a usable input pattern. 

Finding the evidence for a neuron's output from its inputs 

The output of a Boolean function is linked to each of its input parameters with different 

strengths. Given the function 

Output= (11 A 12 A 13) V (12 A -.lJ A --.14) V 

( --.11 A 12 A I•) V (11 A --.12 A -.13 A I•) 

represented by the map in figure 3.36 it is possible to say the output is strongly linked 

to 12 with an index of 5, where the index is calculated as the number of positive outputs 

with 12 TRUE, mmus the number with --.12 in the map. A complete list of the indices for 

this example is given in table 3.2. 

Figure 3.36 map of an example function 

The analysis of transfer functiOns 86 G.P.Fletcher 



In ut Index 

11 1 

12 5 

b -1 

14 1 

Table 3.2 Indices of the different inputs to the function illustrated in figure 3.36 

These indices uniquely identify any linearly separable function, however in this form 

they are not very useful for solving the defined problem. A better indicator is the 

proportion of evidence each mput provides for identifying the function. This value is 

calculated as the proportion of the total indices attributed to each input. These figures 

have been calculated and shown in table 3.3 

Inout Index Evidence 

11 1 0.125 

12 5 0.625 

b -1 -0.125 

14 1 0.125 

Table 3.3. Proportion of evidence supplied by each input to the function in figure 3.29. 

The evidence figure is the weight of importance attached to each input. This is a very 

similar idea to the original weight, raising the question why the original weights are not 

used. This is easily demonstrated with the two input conjunction implemented in the 

neuron shown in figure 3.37. As this is a conJunction each of the inputs is equally 

important in deciding the output but one of the weights is several thousand times the 

size of the other. Converting the neuron into a Boolean function and then calculating the 

evidences from that allows anomalies of this type to be removed. 

The analySIS of transfer functions 87 G.P.Fietcher 



Bias = 230548 

Output 

Figure 3.37 A simple conjunction implemented by a neuron with very uneven weights. 

Feeding back the evidence for a networks output 

Given the evidence that the inputs for each neuron provide for its output it is possible to 

combine the evidences to form global evidences for the fmal net output. 

e(N1,N2) 

Figure 3.38 Part of a neural network illustrating the feeding backward of evidence. 

The analysts of transfer funcuons 88 GPF!etcher 



Given two connected nodes No and N, where the output of No is an input to N., some 

proportion of the evidence for the output of N, can be attributed to the inputs of No . 

Let the evidence for the output of No attributed to the output of N, be called 

e(No, N,) 

Then the evidence E, provided by the Kth input to N, for the output of No is given by 

e(No , N,) * e(lnput K, No) 

e.g. The evidence E for the output of Nt given by h in figure 3.38 is 

E = e(Nt, N2) * e(Input h, Nt). 

It 12 13 

Figure 3.39 Part of a neural network illustrating the combination of evidences. 

When the output of a node is connected via more than one route to the output then the 

evidence this output provides for the final output is the sum of the evidences on the 

inputs it is connected to. e.g. in figure 3.39 the evidence for the output given by N3 is 

calculated as e13 + e23. This makes the evidence provided by I1 = (e13+e23) * e31. 

The analysis of transfer functions 89 G P.Fletcher 



In general given a fully connected network (figure 3.40) 

N21 

N3t 

~······~ 
Figure 3.40 A fully connected network 

Let the evidence for the final output passed between nodes N,J and Nim be represented 

by 

And the index of the input to node N'J that comes from node Ntm be represented by 

j(N,"N!m) 

Then the evidence supplied by the input of a node for the fmal output is 

V 

* re(N(•·I)V,N,,) 
I m 

V 

r f (N,"N'•·tlv) 
I m 

The analysts of transfer funcnons 90 G PF!etcher 



~---------------------------------------------------------------------

Finding an approximation for the evidence quickly 

The system so far illustrated for feeding back the evidences for a particular output value 

gives an accurate picture of the hypothesis within the connectionist network. The 

algorithm as it stands could be implemented, except that for nodes with a large number 

of inputs the function f(X, Y) becomes intractable. This is the problem that the 

technique was developed to overcome. Therefore some approximation must be derived 

for the term :-

V 

L j(N,,N(I·I)v) 
I m 

Looking at the equation represented in the Kamaugh map illustrated in figure 3.36 

Output= (IlA 12 1\ 13) V (12 1\ -,13 1\ -,14) V 

(-,Ill\ 12/\ 14) V (IlA -,12/\-,13 1\ 14) 

Any four of the conjunctions could cause this function to become true. Taking the first 

of these conjunctions. 

(IlA 12 1\ 13) 

each of the terms can be said to supply ...L of the total evidence to the output. 
23 

A good approximation of the total evidences is given by the summing evidence for each 

term over all the conjunctions in the mmimal Boolean equation. If a term appears in a 

conjunction that has N terms, which in turn appears in a Boolean equation with M 

conjunctions then the evidence attributed to that occurrence of the term is 

1 
M*2• 

The analys1s of transfer functions 91 G.P.Fietcher 



This is calculated for each term in every conjunction in the Boolean equation and the 

total evidences are accumulated. Figure 3.34 shows a graph comparing the actual 

evidences between a node's inputs and outputs and those calculated by this approximate 

procedure for a set of randomly generated 5 input neurons. 

1.0 

0.8 

0.6 

0.4 

0.2 

0.1 0.3 0.5 0.7 0.9 

Figure 3.41 A graph showing approximate against actual evidences as calculated using 

the presented procedure for a set of five dimensional neurons. 

Wlule any approximation is not ideal the presented system finds a figure reasonably 

close to the actual value. This figure is good enough to produce acceptable results. 

Example of tutorial O.C.R. neural network analysis 

The first example, figure 3.42, has been carefully trained with a very expansive training 

set. This prevents any errors in the representation being attnbuted to the derived 

hypothesis. Figure 3.43 shows the training set used, this contains every combination of 

bars possible in a 5x4 grid an so should completely define the character. Only the first 

example is to be accepted as the letter E. 

The analys1s of transfer funcl!ons 92 GP Fletcher 



The net used contains 20 input nodes, 12 midnodes in a single layer and 1 output node. 

Each midnode is connected to 10 randomly selected input nodes and so the net, while 

being highly connected is not fully connected (figure 3.42). 

Output Node 

Mid Nodes 

---
Input Nodes --

Figure 3.42 The small character recognition network used to produce theE hypothesis. 

The analys1s of transfer functions 93 G.P.Fletcher 



Figure 3.43 Training set used for the letter E. 

Figure 3.44 shows the representation of the hypothesis derived by the approximation 

system. This shows that the latter has been faithfully represented by both the network 

and by the presented algorithm. This is strong evidence for accepting the system as 

correct. 

The analysis of transfer funcllons 94 G.P.Fietcher 



The second demonstration example used the same network but with all the training 

examples reflected in the vertical axis, and then added to the originals. Thus glVlng two 

positive training examples of the letter E. One wntten forward and the other backward. 

The analysis of the derived network is shown in figure 3.45. The input nodes that are 

true in 50% of the positive training examples have been assigned approximately zero 

evidence for the output. This is correct as these nodes offer no evidence to determine if 

the input is the letter E. 

Figure 3.44 The analysis of a neural network that has been trained to recognise the 

letter E. 

Figure 3.45 The analysis of a neural network that has been trained to recognise the 

letter E written either forwards or backwards. 

The analysis of transfer funcuons 95 G.P Fletcher 



Example of real O.C.R. network analysis 

This example is also based on the letter E, but this time using a larger network trained 

on hand written images. This has been done with two separate independent subjects, 

the results of the analysis are shown in figures 3.46 and 3.47. The network used had 

64 inputs, 12 midnodes each connected to 16 randomly selected input nodes and to the 

one output node. 

Figure 3.46 Hypothesis resulting from the first subject's hand-wntten E's. 

The analysis of transfer funcllons 96 G.P.Fietcher 



Figure 3.47 Hypothesis resulting from the second subject's hand-written E's. 

Both subjects were asked for 12 versions of the letter E and 12 versions of objects not 

acceptable as the letter E. In both cases the networks were fully converged and classify 

their own training examples correctly. 

It can be seen that in the flrst case the hypothesis formed has started to approach a 

correct answer, while in the second case a lot of further training will be reqmred. This 

technique has demonstrated that the hypothesis formed by the first subject's hand 

writing is better than that formed by the second's. This is something that hitherto has 

not been possible. 

The analys1s of transfer funcuons 97 G.P.Fietcher 



Summary 

The chapter has introduced some of the previous work rumed at representing neural 

networks as Boolean type functions. An analysis of one of these has shown a major 

representational flaw, indicating that simple Boo lean functions are perhaps the best 

system to use. 

A method for extracting the Boolean function from the weights and bias of a neuron has 

been presented. This algorithm has been expanded to make it faster and more flexible. 

The chapter also proved how to make sure that the answers delivered were minimal, 

allowing easier analyses and further increasing the speed. 

The Boolean rules can be used to implement a rule base to replace the neural network 

controller, as illustrated by the adhesive dispensing machine, or to analyse and verify 

the hypotheses of the network (the pole balancing network). To aid the analysis of the 

Boolean function this chapter introduces the ideas of image enhancement to logical 

systems. 

Finally the limitations of Boolean analyses are explored. Larger networks require a 

different system, the chapter closes by introducing a mechanism for interpreting large 

O.C.R. networks. 

The analysts of transfer funcuons 98 G.P Fletcher 



THE ACTIVATION FUNCTION 
CHAPTER 4 

Outline Of Chapter 

The previous chapter demonstrated several methods and the major limitations for 

analysing neural networks. Perhaps the most important point to draw from the work is 

that if a network is properly designed then the analysis is easy. Badly designed 

networks produce complex and most often wrong hypotheses that become too big for 

accurate analysis. 

The activation function inside the neuron is an important part of the network 

architecture. The sigmoid, in the guise of back propagation, was developed as a 

replacement for the threshold activation function to solve many of the then prevalent 

training problems [Bryson and Ho 1969, and Rumelhart et al1986a,b]. Since this large 

and very significant step, very little work has been followed through to mvestigate the 

properties of other alternative activation functions. Most research aimed at improving 

the quality of the hypothesis or the speed at which it is obtained has concentrated on the 

topology of the network [Sietsma and Dow 1988, Marchand et al1990, Frean 1990 

and Mezard and Nadal1990] or on enhancing the learning algorithm (normally back 

propagation) [Cater 1987]. 

The type of hypothesis that a network forms is heavily influenced by the activation 

function. Selecting the correct one has the same effect on analysis as selecting the 

correct topology; networks that use the correct activation functions are smaller and 

simpler than those that don't, and are therefore easier to analyse. This chapter looks at 

some of the properties of activation functions and at methods for dynamically selecting 

the correct one for individual neurons within feed forward networks during trauung. 

The Acttvatton Functton 99 GP Fletcher 



Biological basis and other views 

The sigmoid function is intended to be an approximation to a biological neuron's 

response. This is a large and wholly inaccurate assumption. [Griffith 1966] provides a 

simple explanation of the biochemical basis of neurons; "The cell is bounded by a 

surface membrane which is semi-permeable. This means that the membrane will allow 

certain ions and molecules to pass through it, but not others. The semi-permeability has 

certain consequences which can be understood using the theory of thermodynamics. 

One of these is that the interior of the cell normally has a negative electrostatic potential 

of about -70mV with respect to its exterior. However, if this potential difference is 

artificially altered above a threshold value of about -60mV, the membrane suddenly 

becomes permeable ....... This change of permeability is self-propagating, it starts at 

one pomt and spreads to adjacent points and so on. Shortly afterwards the membrane 

recovers its semi-permeability. Thus a transient burst of electrochemical activity is 

generated." 

The membrane of the cell covers the cell nucleus, but also extends down the axons to 

the dendrites. The axons and the synapses form the link between one nerve cell and its 

neighbours. Griffith further explains, "Once a cell has fired, the activity passes out to 

the uttermost extremes (the synapses), which then spew out small quantities of 

chemicals called transmitters. These pass across narrow gaps to adjacent cells where 

they alter the permeability of the membranes of those cells." 

The potential difference across the cell membrane increases as quantities of the 

transnntter chemicals are absorbed. However the neuron does not fire until the potential 

difference reaches -60mV. The true activation function of a natural neuron is therefore a 

threshold function and not the sigmoid. For a close model of the activation of real 

neurons, asynchronous time dependant networks are required. The sigmoid should not 

be thought of as an approximation to biological systems, as the old threshold was a 

The ActivatiOn Function 100 G PF!etcher 



--------------------------------------------------------------------------

closer model. Given that the sigmoid is only an abstract activation function, developed 

to rud training, there is no reason why it should not be changed. The changes could be 

used to improve the accuracy and reliability of training and hypothesis. 

Real neural networks model very complex information by using huge numbers of 

neurons, our own brain contruns approximately 10,000 million neurons [Griffith 

1966]. By developing a set of more complex activation functions it should be possible 

to produce better models of complex mformat10n, resulting in smaller and faster 

networks and the development of more powerful application areas for artificial neural 

networks. 

Other recent work has presented the idea of parametnsation of the sigmoid function 

[Horejs & Kufudaki 1993]. By altering the parameters it is possible to affect the 

sigmoid's characteristics; i.e. such things as the maximum and mid values of the 

function. The idea was developed as a method of trying to remove the input weights as 

a trruning parameter, thus reducing the complexity in large networks. Each neuron is 

less powerful as it cannot affect its input weights, therefore this method results in 

massive networks of low complexity. The previous chapter argued that neural 

networks must be analysable, massive networks make analysing much harder as the 

information becomes more distributed. The aim should be to produce smaller not larger 

networks. 

Sine as an Activation Function For Back Propagation 

Back propagation relies on the use of a differentiable function as the activation function. 

The sigmoid was onginally chosen because of its similarity to the then popular 

threshold activation function of the simple perceptron model [McCulloch and Pitts, 

1943]. There is no reason why back propagation needs to use the sigmoid, replacing it 

The Act1vauon Functton 101 G PF!etcher 



with another differentiable function such as the sine function does not affect the theory 

of back propagation, but it does affect the types of hypotheses that can be represented. 

Consider a single neuron with just two inputs (figure 4.1) 

Output 

2 

Figure 4.1 Simple two input neuron. 

If this neuron uses a sigmoid as its activation function then it is perfectly able to model 

transfer functions such as "Boolean AND" and "Boolean OR", in fact it is difficult to 

imagine a better activation function for these two problems. 

The "Boolean XOR" or two input parity is the simplest problem that cannot be 

modelled in a single neuron usmg a s1gmmd activation function. The sine activation 

function is ideal for this problem. However, the sine activation is not very effective 

when trying to model "Boolean OR". Figures 4.2 a,b&c show how the sine function 

and the weights interact to give the "Boolean XOR" function. The dashed arrows 

represent the bias of the neuron and the solid arrows the input weights. 

When both inputs are set to -1, the sum of the inputs outweighs the bias. The inputs 

sum to a negative value and the resultant output is negative. 

The Acbvauon Funcuon 102 G P.Aetcher 



Figure 4.2a Demonstration of how the sine activation function and the correct input 

weights give the output for Boo lean XOR when both inputs are FALSE. 

If the inputs have different values and the input weights are the same then the inputs 

cancel out. The btas gives the correct input sum for a positive output. 

-----------Result 

I The two mput 
:cancel out ... ...") 

ves the • 
wer 

Figure 4.2b Demonstration of how the sine activation function and the correct input 

weights give the output for Boolean XOR when the inputs have different values. 

When both inputs are true the mput sum becomes larger, reaching the next trough in the 

sine function and therefore giving a negative answer again. 

The Acttvatton Funcuon 103 GP Fletcher 



utput 

I r - - - - -Result 
The mput wetghts and the 
bias combine to reach the I 
next nuruma., gtvmg a negatlvq answer. . .. . -

Figure 4.2c Demonstrauon of how the sine activauon function and the correct input 

weights give the output for Boo lean XOR when both inputs are TRUE. 

Each of the possible activation functions have different convergence characteristics. The 

advantages of using an activation function that easily models the required problem must 

be offset against the difficulties of achieving correct convergence with the back 

propagation training algorithm. 

A Comparison of the Convergence Properties of the 

Sine and Sigmoid Activation Functions 

The sine function produces a htgher level of complexity m the back propagation 

algorithm. Consider the case of a single training example that is required to give an 

output value of zero. 

Figure 4.3 Comparison of convergence properties with one training example. 

The Acttvatton Functton 104 GP Fletcher 



----------------------------------------

In both cases back propagation w1ll reduce the size of the input vector to produce a 

closer answer. If the problem is now expanded to two training examples, they are both 

required to return zero as the correct answer. 

Figure 4.4 Comparison of convergence properl!es with two training examples. 

Here the two examples are pushing in the same direction for s1gmoid but are opposing 

each other when the sine activation function is used. This is because in the sigmoid's 

case there is only one possible direction for reducing the output values but in the sine 

function's case there are multiple points with the same output value. So when using a 

sine activation funclion the neuron must not only learn to give the correct answer for a 

particular training example but to use the correct cycle to allow correct learning of all the 

others. 

In general a network using sine as its activation function contains many more local 

rnimma than a network that uses sigmoid. Therefore sine should not be used in a 

neuron when it is possible to model the data correctly using sigmoid, but there are 

problems that can be modelled only by adopting sine. 

Selecting the correct activation function 

Given a large network it is not feasible for the designer to allocate the correct activation 

function to every neuron. Therefore it becomes necessary to develop a "combmed 

The Activation Funcuon 105 G P.Fletcher 



parametrised activation function" with enough flexibility to be able to model many 

different types of activation function. If the parameters of the general activation function 

are trained together with the input weights the neuron will develop the activation 

function that most easily models the data 

An example of a combined parametrised activation function can be constructed using 

both the traditional sigmoid and the sme activation functions. Let the activation function 

be f(B) where B is the product of the weights and input values. i.e .. 

B = bias + L weightn . inputn 

/(B)= cc.sigmoid(B) + (1-cc).sine(B) 

Each element of the activation function has a -1 to + 1 range. The output of the neuron 

has been maintained in the traditional -1 to + 1 range by making the sum of the 

activation function weights equal l. By back propagating the errors and usmg them to 

modify the parameter 'a' in each neuron the individual neurons can be made to take on 

different characteristics. If cc is high, e.g. 0.9, then the activation function becomes 

close to the traditional sigmoid. This is very good when attemptmg to model problems 

like the "Boolean AND". Dropping the value of cc to 0.1 produces an activation 

function easily capable of representing the "Boolean XOR" problem. 

Back propagation and the combined activation function 

Back propagation assigns an error to each node in a feed forward neural network. In 

the output nodes this error is the deviation between the actual and required output 

values. In previous layers the error is a calculated share of the blame for the output 

error. Simply, the error assigned to each node can be thought of as showing whether it 

should have retilmed a higher or lower result. An explanation of exactly how back 

propagation assigns an error to each node can be found in chapter l. 

The Acuvauon Function 106 G P.Fietcher 



Mter the error on a neuron has been calculated, the weights assigned to its inputs are 

modified so as to make the error smaller and so bring the output slightly closer to the 

correct value. Let 'y' be the output of the neuron and '¥' be the error assigned to the 

neuron by back propagation. The amount a weight, W n should change IS given by 

Where Jl is a small positive constant. By enumerating values for the variables it is 

possible to see how this update rule always creates a better answer. 

If¥ is positive then the output was too high. If fJy/fJW n is also positive 

then making W n smaller will produce a lower and closer answer. The 

R.H.S. of the update rule becomes 

/:i W n = Negative . Positive . Positive 

/:i W n is a negative number, therefore W n is smaller after the update 

and the output is closer to the required value. 

If¥ is positive then the output was too high. If fJy/fJW n is negative 

then making W n bigger will produce a lower and closer answer. The 

R.H.S. of the update rule becomes 

/:i W n = Negative . Positive . Negative 

/:i W n is a Positive number, therefore W n is bigger after the update 

and the output is closer to the reqmred value. 

The Acuvauon Funcuon 107 G P.Fietcher 



If¥ is negative then the output was too low. If oy/oWn is also 

negative then making W n smaller will produce a higher and closer 

answer. The R.H S. of the update rule becomes 

11 W n = Negative . Negative . Negative 

11 W n is a negative number, therefore W n is smaller after the update 

and the output is closer to the required value. 

If¥ is negative then the output was too low. If oy/oW n is positive then 

making W n bigger will produce a higher and closer answer. The R.H.S. 

of the update rule becomes 

11Wn =Negative. Negative. Positive 

11 W n is a positive number, therefore W n 1s smaller after the update 

and the output is closer to the required value. 

The same update rule can be used with any adaptive parameter. The transfer function of 

the combined activation functton was 

y = ""· sigmoid(B) + (1-<><).sine(B) 

where B was the input value. The update rule for the parameter a is therefore 

11a= -(.1.~.¥ 
0<>< 

Partially differentiating the transfer function with respect to a gives 

A = sigmoid(B) - sine(B) 
0<>< 

Therefore with each trammg iteration the parameter 'ce' can be updated along with all 

the other adaptive input weights using an identical method. 

The Acuvatmn Funct:ton 108 G P.Fletcher 



Examples of training with the combined activation function 

All two dJmensional Boo lean problems can be represented using just a single neuron 

with a combined activation function. To demonstrate the neuron's abtlity to derive the 

correct activation function, the solutions for "Two input AND" and "Two input XOR" 

are presented. 

Two Input AND 

Number 

1 2 3 4 

1 -1.0 

2 -1.0 -1.0 +1.0 +1.0 

-1 

Figure 4.5 The set of training examples used for two input AND 

Output 

Figure 4.6 The neuron derived using back propagation for two m put AND 

The Acttvatton Function 109 GP Fletcher 



utput 

-1 0 

Figure 4.7 The activation function of the neuron derived using back propagation for 

two input AND 

Two Input XOR 

1 2 3 4 

1 -LO +LO -LO +LO 

2 + +LO 

Figure 4.8 The set of training examples for two input XOR 

The Acuvauon Funcuon 110 G P.Fletcher 



Output 

IC~-w::::-2= +1.5776 
o< =00943 

Figure 4.9 The neuron derived using back propagation for two input XOR. 

utput 

Figure 4.10 The activation function of the neuron derived using back propagauon for 

two input XOR. 

Both the neurons have developed activation funcuons capable of representing their own 

training sets; one has produced a threshold type function and the other a cyclic funcuon, 

ideal for the two different problems. 

The two very simple examples show that neurons which use a combined activation 

function are more flexible in the representations they can adopt. If individual neurons 

are more flexible then networks built using these neurons must also be more flexible. If 

it is easier to represent information within the network, the time required to find an 

acceptable representation should be reduced. Below is a four input, three midnodes and 

The Activation Funcllon 111 G PF!etcher 



----------------------------------------------------------------------------

. , 
I 

i 

' 

" ' 

,_ 

I~ 

one output network that 1s the basis for an experiment designed to demonstrate the 

improvement in training times achievable using a combined activation function . 

Output 
~-..... ~ 

Figure 4.11 The network used for 3 input training experiments. 

In this example 20 randomly chosen 3 dimensional functions were learnt by the 

network shown above. The graphs show the average of the sum of squares error over 

these 20 training sets for both the traditional and combined activation function. The 

same training sets and starting points were used for both experiments. 

A sum of squares error of zero shows a perfect hypothesis; this is practically 

unobtainable. If the sum of squares error is below one then every example is on the 

correct side of zero, allowing thresholding to produce the correct answers. It is normal 

to attempt a sum of squares error of approximately 0.1 as this moves all of the 

examples away from zero allowing a middle region of 'Unknown'. 

The ActivatiOn Function 112 G P.Fletcher 



3 Average Error 

2 

1 

0 100 

Number of 
Iterations 

200 

Figure 4.12 Average sum squared error when using a combined activation function 

3 Average Error 

2 

1 

0 100 

Number of 
Iterations 

200 

Figure 4.13 Average sum squared error when using a traditional sigmoid activation 

function. 

The results show the potential for very large savings in training time. The combined 

activation function reaches an error of below 1.0 (all examples correct) approximately 

six times faster than the traditional sigmoid activation function. 

The Acttvatton FunctiOn 113 G PAetcher 



----------------------------------------------------------------------------------

The Colour Modelling Problem 

To further demonstrate the added powers of the combined activation function, a larger 

industrial application is presented. Here the problem is to model the way the human eye 

perceives colour in different ambient lighting conditions, and when printed on different 

materials. 

It is well known that perception of colour is different under different conditions, 

viewing angle, lighting and texture are just some of the aspects that contnbute towards 

different perceptions of the "same" colour. This presents problems for many people, 

catalogues for example which show a different colour in their pages from that of the 

garment or product itself. 

The complexity of predictive colour modelling has exercised researchers for some time. 

For the purposes of the research reported here we have been given a data set to 

determine Colourfulness, Brightness and Hue from the basic tristimulus values under 

constant viewing conditions. The data were derived from a well researched model of 

colour perception and based on the work ofLuo et al. [1991] and Wang and Malakooti 

[1992]. The science of colour perception dates back to the 19th century With work by 

Young [1802] and later by Helmholtz [1924]. This work gave rise to the theory that 

only three colour receptors existed in the human eye, red, green and blue. More recent 

models by Hunt [1987] are based on a simplified theory of colour vision for chromatic 

adaptation together with a uruform colour space. 

We are grateful to Luo and Wang for supplying the data without winch the subsequent 

development of the neural network based models would not have been possible. 

The Acuvatton Functton 114 GP Fletcher 



- 1.2 

~ 
• ! 1 0 • g 
0 0.8 

~ .. 
06 

04 

0.2 

oo+-------------~------~------, 
0 1000 2000 

Tl'lllnlng lteratiOM 

Figure 4.15 The errors while training a network with two hidden nodes 

.1.2 g 
w 

• !10 
• g 

'"Q OB 

e 
cil 

06 

04 

0.2 

oo+-------------~--------------~ 
0 1000 2000 

Training tteratlone 

Figure 4.16 The errors while training a network with four hidden nodes 

The Activation Function 116 G.P.Fletcher 



~ 12 s 
~ 1 0 -M\'{ra<fi1lona1 
~ Actrvatlon 
g unction 

"S 08 

e 
~ 

"' 06 

04 

0.2 

Comb 
Activab 
Function 

oo+--------------r------------~ 
0 1000 2000 

Training Iteration• 

Figure 4.17 The errors while training a network with six hidden nodes 

~1.2 
g 
w 

'<I\Tradd1011al 
Ac11va1oon 
Funct•on 

!10 
• & 
"' "S 08 

E 
~ 

"' 06 

04 Con-b 

02 

Ac11va1 
Func1looi 

oo+-------------~-------------, 
0 1000 2000 

Training Iteration• 

Figure 4.18 The errors wlule traimng a network with eight hidden nodes 

The Acttvauon Funcuon 117 G P.Fletcber 



~ 1.2 s 
• e 1 o • : 
0 08 

e , .. 
06 

Actlvatton 
F""""'" N
radmonal 

Corn 
0 4 Actlva 

Functio 

0.2 

oo+-------------~------------~ 
0 1000 2000 

Training tteratlona 

Figure 4.19 The errors while training a network with ten hidden nodes 

In each graph the quality of the answers obtained by the combined activation function 

are very similar after 2000 training iterations. However, the combined activation 

function is achieving these results much faster than the trachtional one. Figures 4.20 

and 4.21 demonstrate the observed acceleration in learning. The presented graphs show 

that a significantly smaller number of iterations are required to reach the target error 

tolerances, resulting in much faster training. 

f 
.5 • •• ~! 

60 

0 ~ 60 
~ . 
:= 
E , 
z 

40 

20 

---Q- Traditional 
Activation 
Funcllon 

--o- Combined 
Activation 
Function 

Number of mldnodes 

Figure 4.20 The number of training iterations requrred to achieve a sum of squares 

error of 0.5 for different sizes of hidden mid layer. 

The ActivatiOn Function 118 G P.Fletcher 



Combined 
200 .-o-- Activation .. • Fundion 

:5 • 
e • Traditional ,_ 0 _.., -o- Activation 
0 ~ Function 
~ . . -..,-
E • z 

100 

o+-~~-T-T~--~~~~-T-T~ 
0 2 4 8 8 10 12 

Number of mldnodes 

Figure 4.21 The number of trainmg Iterations required to achieve a sum of squares 

error of 0.2 for different sizes of hidden mid layer. 

As well as increasing the speed of convergence, swapping to the combined activation 

function vastly reduces the size requirement of the network. The peak performance of 

the networks varies with the network size; getting the correct size of network results in 

a better answer than one provided by a smaller or larger network. By looking at the 

final error it is possible to find the best network size for the different activation 

functions (figure 4.22). This shows that the best size for the combined activation 

function is 2 midnodes and that for the traditional activation function it is more than ten. 

Moving to the combined activation function has allowed a neural network with only 

two neurons in its middle layer to model data that would have used more than ten 

traditional neurons. The training is faster and the fmal result closer to zero error. 

The Activation Function 119 GP Fletcher 



-----------------------------------------------------------

020 
--o- Traditional .. .s Activabon 

.s 019 SJ ... 
p 018 

Funbon 

-o- Combined 
Achvabon 
Function 

, 
z 

017 

016 

015 

014 
0 2 4 6 8 10 12 

Number of mid node• 

Figure 4.22 The fmal error for different network sizes after 2000 training iterations. 

Summary 

This chapter has looked at the activation function within the neurons that build up 

neural networks. By selecting the correct activation function it is possible to vastly 

reduce the size and complexity of the network required for a particular problem; 

demonstrating the similarities in effect between selecting the correct activation function 

and correctly designing other aspects of the architecture. 

As with all changes there are problems as well as advantages. While it is easier to 

model certain hypotheses using non-standard activation functions they can be very 

difficult to train, making the correct choice of activation function a problem of great 

importance. 

The combined activation function was presented as a method of selecting an activation 

function. SelectiOn works by allowing each neuron to dynamically change its own 

activation function during the training process. This 1s achieved by extending back 

propagation to cover the activation function as well as the weights that interconnect 

neurons. 

The Acuvauon Funcuon 120 G P.Fletcher 



A more general neuron gives a more powerful neuron. By increasing the power it is 

possible not only to reduce the size of the networks, but also to increase the training 

speed. Neurons using a combined activation function train faster and use smaller 

networks. The previous chapter showed that network size was the limiting factor when 

analysing the hypotheses. The production of an analysis technique for the combined 

activation function could therefore allow analysis and verification of more complex 

systems. The production of an analysis tool for the more complex neuron presents one 

path of possible continued research. 

The Acuvatton Funcuon 121 GP Fletcher 



Training for continuous models consists of calculating the correct output values for a 

set of example inputs and then using back propagation in the same manner as for 

classification problems. A simple tutorial problem is that of calculating the distance a 

ball will travel if thrown at a fixed velocity but at a variable angle I. The figure below 

shows how the angle at which the ball is thrown affects the distance it will travel. 

Figure 5.1 : The trajectory of a ball thrown at different angles but with a common 

speed. Note the different distances that the ball travels 

Angle from Distance to 

Horizontal first bounce 

5 0.1739 

15 0.5000 

25 0.7671 

35 0.9404 

45 1.0000 

55 0.9404 

65 0.7671 

75 0.5000 

Figure 5.2 The different distances that the ball travels 

I The figures used as training examples assume the expenment takes 
place in a vacuum, g = 10.0 ms·Is·I and that the inittal speed of the 
ball is ./10. 

Modelling Contmuous Funcuons 123 G P.Fletcher 



Problems with Continuous Modelling 

Given that we require the correct answer to within a fairly small tolerance then a neuron 

has a small range of acceptable output values. The tolerance on the input vector must 

become very tight to meet this requirement. Figure 5.4 shows that requiring a real 

answer within even a fairly loose tolerance results m a very tight input tolerance. A tight 

tolerance on the input vector makes the values assigned to the input weights critical. If 

exactly correct values are required for the weights, training becomes a much harder, 

and therefore longer, problem. 

Required Output Output 

V Tolerance f 

• m put 

__/ 
Input ~ .... 
Tolerance 

Figure 5.4 The small input tolerance required to give a much looser output tolerance for 

a continuous network. 

The very tight tolerances required to give reasonable answers suggest that the 

continuous model will be harder to train. There are many other problems with this type 

of network, including an even greater lack of tools for analysing the hypotheses 

described earlier in this chapter. 

Modelbng Continuous Funcuons 125 G PF!etcher 



-------

Output 

n ~ 
m put 

.6 The approximatlon used to model the function in figure 5.5 

he approximation shown in figure 5. would produce the correct answer over 

the domain there are regions around the pomts of discontinuity where the error 

me large. If a tight tolerance is required then the normal feed forward networks 

e used. These represent another class of impossible funcuons. 

n size 

forward neural network is capable of calculating an output for every possible 

herefore there are problems for which a network will deliver a real answer 

o real answer exists. Given that no real answer exists, the network must be 

g outside of the requtred tolerance. An example of such a function is 

y= J9-x 2 

nation represents a circle of radius 3, centred at the origin. A neural network 

return a value for y given that x = 100. No real answer should exist in this case, 

nting yet another class of problems for which feed forward neural networks 

be used in the classical manner. 

ng Contmuous Funcnons 127 G P.Fietcher 



' '\ 
'' 

" 

STOR-A-FILE IMAGING LID 

DOCUMENTS 
OF POOR 

ORIGINAL 
HARD 
COPY 

.. . 
I 
• 

Date 12102/08 AuthoriSed by. S1mon Cock bill Issue 2 Page I oft 

li m hard copy, this poge is UNCOi',..i'ROLLJID and only valid on date oi issue 16-May-08 



networks. The problem IS to map a continuous function f that has inputs, I, and 

returns outputs, 0, in a Boolean space. There is a predicate, P, denoting that a 

particular mstantiation of I and 0 are consistent with each other. By constructing a 

network to model the predicate P, with both I and 0 as inputs, it IS possible to 

reproduce the original function f in a R => B network. 

The simple ball throwing example given earlier would require a two input network. 

These would be the original input, angle of throw, and a new input, distance to first 

bounce. The networks output would classify the inputs as consistent with each other or 

as an impossible combination. The hypothesis denved from such a network is shown 

below. The dark region show possible combinations. 

Distance to first bounce 
1.2 

1.0 

08 

06 

0.4 

02 

oo+-~--~-r--r-~-,--~~--~-, 
0 20 40 60 80 100 

Angle of 
proJection 

Figure 5.10 The hypothesis formed by a Boolean network when trying to model the 

data in figure 5.2. 

Training Problems 

The method as described above works with small tutonal examples. However, it does 

not extend well to bigger problems. Consider the example continuous function shown 

in figure 5.11. The positive examples (shown as heavy crosses) are the onginal training 

Modelling Contmuous Funcllons 131 G P.Fietcher 



Figure 5.12 The lightly shaded region is the area that is learnt from the training points 

shown. Although this is a correct solution to the training problem it does not correctly 

model the continuous function. 

Producing an even covering of training points and limiting the width of the model 

produces a much larger training set. An example of the number and position of a correct 

set can be seen in figure 5.13. 

:o~ 

:s~ 

)ol :113 

Figure 5.13 The training points required to produce a correct Boolean model of the 

continuous function. 

Although the method of creating a correct training set works, we have introduced a new 

problem. As the size of the problem mcreases the Boolean training set can become 

Modelling Continuous Funcuons 133 G P.Fletcher 



extremely large, leading to very slow training. Further, the proportion of positive and 

negative examples will become very biased. In large problems less than one percent of 

the examples may be positive. Thus, the output neuron will return false irrespective of 

its inputs. The small proportion of pos1tive examples makes it almost impossible for the 

network to converge past this easily found local minimum. 

Training Solutions 

The problems connected with the training and production of examples detailed in the 

last section prevent raw computing power being used to compute a satisfactory Boolean 

network. It 1s necessary to construct a specialist training mechanism capable of 

producing networks of this type in an acceptable time. The problem of producing a thin 

accepted region can be split into two parts (figure 5.14). The answers are then 

combined later using a single neuron that computes a simple Boolean AND function. 

This mechanism produces a much larger percentage of positive examples in both sub 

problems, removing the difficult local minimum of Output= False. 

Figure 5.14 Showing how a continuous model can be split into two sub problems. 

Modelling Continuous Functions 134 G PF!etcher 



them a better solution. Justification for their use can be gained by considering the 

classes of problems that continuous output neural networks cannot or have difficulty in 

modelling. 

Single verses multi-valued functions -- The solution 

The example of a multi-valued function given earlier was 

y = .r;:-

This could not be modelled because a feed forward neural network can only perform a 

one to one mapping. Therefore it is possible only to build a network to return either the 

positive or negative answers, but not both. Once the real valued output becomes part of 

the input space it is possible to map both of the possible answers to give a true 

response. This effectively models a multi-valued function. 

Continuous and dis-continuous functions 

Discontinuous functions could not be modelled using the traditional techruque because 

of the limitation imposed by the learrung algonthm. Boolean functions, by comparison, 

are very good at implementing discontinuous functions. A simple example is three input 

parity; this function has two discontinuous regions that require the output to fire. 

If a Boolean classification network can produce discrete regions then different regions 

can be used to represent different portions of a discontmuous function. The example 

used earlier to demonstrate the d!fficulties w1th these functions could be modelled in 

five different regions, figure 5.17. 

Modelling Continuous Funcuons 136 G.P Fletcher 



Range size 

The Boo lean network uses the old output as an input. Neural networks can operate over 

any input domain, so the limitations of range size on the original function do not apply. 

An example demonstrates the advantages gained when modelling over a larger range. 

Here the network has been trained to model the function y = x2 over the domain -3 .. 3. 

The result is shown in figure 5.18. 

10 

-4 4 

Figure 5.18 The hypothesis resulting from combining the sub problems for y = x2. The 

maximum error between this and the correct answer is 0.15. 

The greatest deviation from the correct answer for any point Within the training region 

given by this network was 0.10385. This compares extremely favourably with the 

same function trained as a tradJtional continuous network (figure 5.19). The errors in 

this example are large because it is necessary to multiply the network's result by 10 to 

get a large enough range, therefore any small errors in the hypothesis get magnified by 

10. The Boolean version does not suffer from this problem. 

Modelling Conunuous Funcuons 138 G P.Fietcher 



--- - - - -- ------------

611 

If average temp < 
Average Temp Reqwred Temp 

>--....;;..-...:..-; TURNHEATERON 

FIRE 

Figure 5.20 A VERY simple control system 

What is most important is that the model of the continuous function must deliver the 

real value of the temperature. It is necessary to construct a method of extracting a 

continuous value from the Boo lean models that thi!> chapter conjectures should replace 

the continuous versions. 

Extracting Continuous Output from a Boolean Model 

The extraction of the correct real output value from a Boolean model consists of 

calculating the input value that causes the network to return true. This calculauon can be 

performed by usmg a modification of the back propagation training rule to change the 

input values instead of the interconnecting weights. 

Modelling Contmuous Funcuons 140 G PFletcher 



If this method is used to search for an set of inputs that give the output value of one, 

then the inputs have been forced into consistent values. Further, if no updates are made 

to the original inputs and only the old "output" is modified then it is possible to denve a 

correct "output" for any inputs. 

Worked Example 

Returning to the colour perception problem from chapter four. The problem is to model 

perceived values of hue, brightness and colourfulness from the many different 

parameters that effect the way the human eye performs. This very hard problem has be 

the subject of research for well over 100 years [Young, Luo, Hunt, Helmholtz]. Each 

output is a complex continuous function varying between 0 and 1. 

A set of 120 traming points were used to train networks to model the hue output. 

Different versions of the network were trained using the continuous and Boolean 

paradigms. The graph below shows the errors between the network results and the 

correct answers for a test set of 50 test points. 

r.rror on output 
006 

Maximum Con"iiiniOu~-;;5 -
Square Error 

---·--
0 04 a 

Maximum Boolean ° 03 " 

--a--

I a• Continuous Network 
11 Boolean Network 

SquareError - - - - ... - - - - - - - - ,.. - -
002 

a ,.a • • 001 
• a 

·!: i ;. 
000 

a •. 

.02 00 02 04 06 OB 10 12 

Correct value of 
output 

Figure 5.22 A comparison of the accuracy achieved usmg a Boolean model and a 

traditional real valued model. 

Modelling Contmuous Functions 142 G P.Fietcher 



These results were obtamed after 30000 training iterations on both models, giving them 

adequate time to achieve their optimum solutions. As such, both models had reached 

local nunima and further training would produce no change. The results show that the 

Boolean model is capable of returning a lower average error and, more importantly, a 

much smaller maximum error. In the example, the traditional network could return the 

correct answer to a tolerance of ±0.235 compared to the Boo lean tolerance of ±0.158. 

The Boolean network represents a large improvement m performance. 

Summary 

This chapter has investigated methods of increasing the robustness of neural networks 

that are modelling continuous functions. These were the largest class of problems that 

could not be dealt with using the techniques developed in chapters 2 & 3. 

There are several problems with traditional models of continuous functions. They are 

limited to single valued continuous functions over an infinite domain, i.e. they cannot 

model multi-valued, discontinuous functions or those with smaller domains. Further 

they have a limited range; the output of the final neuron is limited to -1.0 ... + 1.0. If 

scaling is used to increase the range then accuracy becomes a major problem. 

The method of representing a continuous function as a Boo lean predicate overcomes all 

of these problems. This is achieved by modelling a predicate that calculates whether a 

supplied input/output pair is self consistent. The old output has now become an input to 

the new network; the network tells us if our guess was correct. 

In some circumstances a real valued output IS necessary and the Boolean predicate is 

insufficient. This chapter closes by showing how back propagation can be modified to 

Modelhng Continuous Functions 143 G P.Fletcher 



- --- ----------------------

complete a search for the correct "output" value, thus returning to a continuous model 

but now without the limitation detailed earlier in the chapter. 

Modelling Conunuous FunctiOns 144 G PF!etcher 



CONCLUSION 

CHAPTER6 

While neural networks have demonstrated an ability to implement many complex 

systems, they cannot as yet be relied upon. Until the design and verification systems 

for neural networks become robust they cannot be widely used in the important 

industrial, commercial or safety critical environments. This thesis demonstrates that 

analysis is both possible and useful,. Further it shows that there is a strong link 

between analysis and design, and demonstrates how the good practice of design can 

be extended to cover several new classes of problem. 

Chapter two attempts to show that there is a strong link between design and 

verification. Both fields strongly encourage the other, and to a certain extent rely on 

the other; design is improved if it is possible to check the design works and it is easier 

to venfy networks that are properly designed. The currently available systems for 

network design are limited in scope. The work has therefore addressed two separate 

problems 

To demonstrate that is possible, and useful, to analyse trained feed 

forward networks. 

To extend the good practice of design to classes other than Boo lean 

classification feed forward networks. 

There have been some previous results aimed at representing classificatlon networks 

as Boolean type functions. Analysis of one of these shows major representational 

flaws. While simple Boolean functions can be a very long winded description of a 

network it is always possible to produce a correct analysis. I feel that the ability to 

describe any classification network indicates that simple Boolean functions are 

Conclusmn 145 G P.Fletcher 



perhaps the best system to use. A method for extracting a Boolean function from the 

weights and bias of a neuron makes up one of the major arms of this thesis. The 

Boolean representations of the neurons can be combined to represent the whole 

network, demonstrating that is possible to calculate a model of a neural classificatlon 

system. 

The extraction of a Boolean representation for a network is possible, but is it useful? 

The answer to this question is fairly complex. In a classification network the Boolean 

representation can be used to build a rule based system. In chapter three the thesis 

shows how such a system can be simplified and tested using simple image 

enhancement strategies. This is best illustrated by a simple controller used to control a 

pole balancing machine (figure 3.17). While the neural controller acted correctly in all 

of the test cases, an analysis of shows that it cannot be 100% correct because it has an 

asymmetric response and the problem is symmetric. So, for classification systems, the 

analysis system appears to be both possible and useful. 

Image recognition is one class of classification system for which a rule based 

approach appears to have little meaning; consider trying to write down the rules for 

how you recognise somebody's face or how you can 'see' a tree. These problems need 

a different mechanism for viewing the analysis. The Boolean rules still contain all the 

information but in an inappropriate form. 

The method of interpreting the rules must change depending on the domain of the 

neural system, but the actual 'rule extracuon' idea is appropriate across many fields. 

Optical character recognition is an example of a classification network for which the 

derived rules are nearly meaningless to a human observer. A different method of 

delivering the information to the user is presented, demonstrating that by changing the 

representation of the rules for different domams, the 'rule extraction' methods of 

analysis is still useful. 

Conclusion 146 G P.Fietcher 



One of the major limitations of rule extraction is the size of the network. As the size 

grows the Boolean representation becomes increasmgly complex. While this 

limitation is discussed in some detrul in chapter three It is also the motivation for the 

work m chapter four. If the size of a network is the lirruting factor then a method of 

reducing this must be valid goal. Increasing the power of m individual neuron means 

that fewer of them are required. Chapter four introduces a more powerful neuron and 

shows how they cm be trained using stmdard back propagation. 

It has already been shown that Boolem malysis is useful. Using the more powerful 

'general activation neurons' does not effect the representation of the rules. However, 

the methods used to extract the raw Boolem rules from the neurons must be updated 

to cope with the added complexity. This represents the next step necessary to further 

expmd the class of problems that cm be fully malysed. 

The last chapter investigated perhaps the most useful set of networks not covered by 

the use of Boolem classification systems, namely those that are modelling Real to 

Real mappings. There are several problems with traditional models of contmuous 

functions. They are limited to single valued continuous functions over m infinite 

domain, i.e. they crumot model multi-valued, discontinuous functions or those With 

"' 
smaller domains. The final piece of work demonstrated a method of representing a 

continuous function as a Boolem predicate overcomes all of these problems. The 

correct design of networks for these problems may make it possible to produce m 

malysis system, but until this was achieved it is unlikely that malysis would be 

possible. As a Boolem mapping is used within the new model it may be possible to 

extend the work contained in the earlier chapters to cover contmuous models. 

In conclusion this thesis has tried to show that design md malysis for connectionist 

systems are desirable, md that there were several holes in the avrulable techniques. 

Concluswn 147 G.P.Fietcber 



Methods have been presented that show that analysis is poss1ble and desirable for 

classification networks. The biggest limitations are the size of the networks and that 

they are only applicable to classification systems. A method of reducing the size of 

classification networks 1s presented along w1th a design methodology for non

classification systems. The extension of the analysis tools to cover these new 

architectures could be a subject of further study. 

Conclusion 148 G P.Fletcher 



REFERENCES 

Anderson, K., Cook, 1990 Artificial neural networks applied to arc welding 

G .E., and Gabor, K. process modelling and control. IEEE Transactions on 

Industrial Applications, 26, pp 824-830. 

Anderson, K., 1991 Applications of artificial neural networks for arc 

welding. In Intelligent engineering systems through 

artificial neural networks, Dagli, Kumara and Shin 

(eds.), New York, pp 717-728. 

Cook, G.E., 

Springfield, J.F. and 

Barnett, R.J. 

Bailey, D.L., 1988 Options trading using Neural Networks, Transaction 

from Neuro Nimes Tompson, D.M. and 

Feinstein, J .L. 

Bryson, A.E. and 

Ho, Y.C. 

Burke, L.I. and 

Rangwala, S. 

Cater,J.P. 

References 

1969 Applied Optimal Control. New York 

1991 Tool condition monitoring in metal cutting: a neural 

network approach. Journal of intelligent 

Manufacturing, 2, pp 269-280 

1987 Successfully using peak learning rates for 10 (and 

greater) in back propagation networks with the 

heuristic learning algorithm. IEEE first international 

conference on Neurhl networks, 2, pp 645-651. 

149 G P.Fletcher 



--------------------------------------------------------------

Dowsing, R.J., 

Rayward-Smith, 

V.J., and Waiter, 

C.D. 

Block, H.D. 

Fahlman, S.E. 

Frean, M. 

Govekar, E., 

Grabec, I., and 

1986 A flrst course in formal logic and its applications in 

Computer Science, Blackwell Scienuflc Publications. 

1970 The Perceptron: A model for Brain Functioning, 

Reviews of Modem Physics, 34, pp 123-135 

1989 Fast-Learning Variations on Back propagauon: An 

Empirical Study, Proceedings of the 1988 

Connectionest Models, pp 38-51, eds. Touretzky, 

Hinton & Sejnowski, Pub. Morgan Kaufmann 

1990 The Upstart Algorithm. A method for construction 

and training feedforward neural networks. Neural 

computation, 2, pp 198- 209. 

1989 Monitoring of a drilling process by a neural network. 

The 21st CIRP International Seminar on 

Peklenic, J. Manufactunng Systems, Stockholm, Sweden. 

Grant, E., and Zhang 1989 A neural net approach to supervised learning of pole 

balancing, Proc. 4th International Symposium on 

Intelligent Control, 25-27 September, Albany, New 

York. 

Grifflth, J.G. 

References 

1966 Inaugural Lecture for the Chair of Applied 

Mathematics, Bedford College, University of 

London. 

!50 G.P Fletcher 



Hall, J.W., and 

Lu, S.C.Y., 

Hebb, D.O. 

Helmoltz, H.V., 

Hinton, G.E. 

Hopfield, J.J. 

1992 Emulating human process control functions with 

neural networks. Knowledge-Based Engineering 

Systems Research Lab. University of lllinois. pp 

145-152. 

1944 The Organisation of Behaviour, Wiley, 

New York 

1924 Handbook of physiological objects, Vol. 2, ed. 

Southall, J.P.C., Optical society of Amenca, New 

York. 

1990 Preface to the Special Issue on Connectionist Symbol 

Processing, Artificial Intelligence 46 pp 1-5 

1982 Neural Networks and Physical Systems with 

Emergent Collective Computational Abilities, 

Proceedings of the National Academy of Sciences, 

USA, 79, pp 2554-2558. 

Hopfield, J.J., 1983 Unlearning Has a Stabilising Effect m Collective 

Memories, Nature, 304, pp 158-159. Feinstein , D.l., and 

Palmer, R.G. 

Horejs and Kufudaki 1993 

References 

Neural networks with local distnbuted parameters 

Neurocomputing, 5, pp 211 - 219 

151 G PFletcher 



Hunt, R.W.G. 

Hush, D.R., and 

Salas, J.M. 

1987 A model of colour vision for predicting colour 

appearance in various viewing conditions, Colour 

Research Applications, 12, pp. 297-314. 

1988 Improving the learning rate of Back Propagation with 

the gradient reuse algorithm, IEEE International 

conference of Neural Networks, 1, 441-447. 

Jalel, N.A., Mirzai, 1991 Application of neural networks in process control. In 

A.R., Leigh, J.R., Neural network applications, J.G.Taylor (ed.), 

and Nicholson, H. Springer, pp 101-113. 

Kamarthi, S.V., 1991 On-line tool wear monitoring usmg a Kohonen 

Cohen, G.S., and feature map. In intelligent Engineering Systems 

Kumara, S.R.T. 

Kirkpatrick, S., 

Gelatt, C.D., and 

Vecchi, M.P. 

Kohonen, T. 

Luenberger, D.G. 

References 

through Artificial Neural Networks, New York, pp 

639-644. 

1983 Optimisation by Simulated Annealing, Science 220, 

671-680. 

1984 Self-organisation and Associative Memory. 

Springer-Verlag, Berlin. 

1986 Linear and Nonlinear Programming, Addison

Wesley. 

!52 G.P Fletcher 



----------------------------------------

Luo, M.R., Clarke, 1991 

A.A., Rhodes, P.A., 

Schappo, A., 

Quantifying colour appearance, part 1, LUTCHI 

colour appearance data, Colour Research 

Applications, 16, pp. 166-179. 

Scrivener, S.A.R., 

and Tait, C.J. 

Marchand, M., 

Golea, M., and 

Rujan, P. 

McCulloch, W.S. 

and Pitts, W. 

Messenger, J.B. 

Messom, C.H., 

Hinde, C.J., 

West, A.A., and 

Williams, D .J. 

Messom, C.H. 

Mezard, M., and 

Nadal, J.P. 

References 

1990 A convergence Theorem for Sequential Learning in 

Two Layer Perceptrons. Euro Physics Letters,ll, 

pp 487-492. 

1943 A Logical Calculus of the Ideas Inunanent in 

Nervous Activity, Bulletin of Mathematical 

Biophysics, 5, pp 115-133. 

Nerves, Brains and Behaviour, Studies in Biology, 

114. 

1992 Designing neural networks for manufacturing 

process control systems,Proc. 1992 International 

Symposium on Intelligent Control, August 1992, 

I.E.E.E. Publishers. 

1992 PhD Thesis, Dept Computer studies, Loughborough 

University of Technology. 

1990 Learning in Feedforward neural networks: The Tilmg 

Algorithm. Journal of Physics A : Maths & General. 

!53 G P .Fletcher 



Mihalaros, M.N. 1992 MSc Thesis, Dept Computer studies, Loughborough 

University of Technology. 

Minsky, M.L., and 1969 Perceptrons: an Introductton to Computational 

Geometry, MIT Press. Papert, S.A. 

Poppel, G., and 1987 Dynamically Learning Processes for Recognition of 

Correlated Patterns in Symmetric Spin Glass Models, 

Europhysics Letters, 4(9), 979-985 

Krey, U. 

Rosenblatt, F. 1958 The perceptron: a Probabilistic Model for Information 

Storage and Organisation in the Brain. Psychological 

Review, 65, pp 386-408. 

Rosenblatt, F. 

Rumelhart, D.E., 

Hinton, G.E., and 

Williams, R.J. 

Rumelhart, D.E., 

Hinton, G.E., and 

Williams, R.J. 

1962 Principles of Neurodynarnics, Spartan, New York. 

1986a Learning Internal Representations by Error 

Propagation, in Rumelhart and McClelland (Eds.), 

Parallel Distributed Processing: Explorations m the 

Microstructures of Cognition, Vol. 1: Foundations. 

MITpress. 

1986b Learning Representations by Back-propagating 

Errors, Nature 323, pp 533-536. 

Rumelhart, D.E. and 1986 On learning past tenses of English Verbs. PDP vol. 2 

McClelland, J.L. MIT press. 

References !54 G.P.Fletcher 



Sejnowski, T.J., and 1986 Parallel Networks that Learn to Pronounce English 

Rodenberg, C.R., Text, Complex Systems 1, pp 145-168. 

Sietsma, J., and 

Dow, R.J.F. 

1988 Neural net pruning- Why and How. In IEEE 

International conference on Neural Networks, 1, pp 

665-672. 

So!la, S.A., Levin, 1988 Accelerated learning in Layered neural networks. 

Complex systems, 2, pp 625-639. E., and Fleisher, M. 

Tanni, J ... Hirobe, 

K., Niida, K., 

Koshijima, I., and 

Murakanu, H. 

Venkatasubrarnanian, 

V., and Chan, K. 

Wang, J., and 

Malakooti, B. 

Watrous, R.L. 

Young, T. 

References 

1989 New learning algorithm for rule extraction by neural 

network and its application. Proceedings of 

American Association for Artificial Intelligence. 

1989 A neural network methodology for process fault 

diagnosis, AIChE Journal, December 1989. 

1992 A feed forward neural network for multiple criteria 

decision making. Computers and Operauons 

Research, 19, pp 151-166 

1987 Learning Algorithms for Connectionest Networks: 

Applied Gradient Methods of Nonlinear 

Optimisation. IEEE Conference on Neural Networks, 

San Diego, CA, USA. 2, pp 619-627 

1802 On the theory of light and colours, Royal 

Plulosophical Society, 92 (12). 

155 G P.Fletcher 



References !56 G P.Fletcher 



Appendix A 

The following papers, containing results from this thesis, have either been 

published or have been accepted for publication. 



Interpretation of Neural networks as Boolean transfer functions 

Knowledge-Based Systems 

Volume 7, Number 3, September 1994 

pp 207-213 



Interpretation of neural networks 
as Boolean transfer functions 

G P Fletcher and C J Hinde 

An algonthm for convertmg neural networks IDtO Boolean 
functmns JS presented. The absence of such an algonthm has 
been 1dent•fied ID the literature as a s1gmficant problem, and the 

' solutiOn shown ID the paper IS both complete and effiCient. The 
analySIS of the algonthm shows 1t to have a t1me complexity of 
better than 2.v-•-2cv21-1 + 1. 

Keywords: neural networks, rule extraction, rule induction 

In order to achieve the full potential of arttficial intelli
gence tt ts necessary to use results from both symbolic 
and connectlomst work. Both offer dtfferent v1ews and 
netther can be expected to encompass the full power of 
the other'. There have been many reports over the past 
few years on methods of training neural networks to 
emulate different rule based systems~•. The two method
ologtes are seen to be complementary and can be com
bmed m to hybnd systems's The modelling of neural 
networks using Boo lean algebra ts the natural obverse of 
earher results allowmg Boolean rules to be expressed as a 
network', and 11 is a central issue in connecttomst 
research". Venkatsubramaman7 in 1989 suggested that 
'the combmat10n of neural-based and knowledge based 
systems may Improve the performance speed and reduce 
the complexity and time requtred for building intelligent 
systems'. Zhang er a/.8 stated more recently m 1992 that 
'the combmed use of knowledge based expert systems 
techmques with the neural-network technique could 
enhance the advantages in both areas and would be a 
useful future research toptc'. Hmton4 m 1990 expresses 
the view that 'the problem •s to devise effective ways of 
representmg complex structures tn connectionist 

Depanment of Computer Studies. Umversny of Technology. Lough~ 
borough, Lotcs. LE! I 3TU, UK 
Paper recerved 4 March 199J Revrsed paper recer~d 28 May /993 
Accepted /9 July /993 

networks Without sacnficing the abiltty to learn the rep
resentations My own VIew ts that connectionists are a 
very long way from solving thiS problem'. 

Mathematical proof of the properties of neural 
networks would allow them to be mtroduced mto safety 
cntical environments where, at the moment, all work 
must be of a symbohc nature: this addresses the trust that 
can reasonably be placed m tramed neural networks'. 
The Boolean derivation of the network could then be 
used to check that the basic architecture IS correct and 
that the we•ghts selected are of the correct order of 
magmtude and s•gn. If mistakes are found then the result 
can be used to help select new traimng examples, speed
mg up the learning cycle by preventmg useless examples 
bemg presented. 

BOOLEAN REPRESENTATION OF 
NETWORK 

Neural networks are able to accept continuous valued 
mputs. Thresholdmg beyond the first layer means that all 
transformations beyond the first are Boolean transfor
mations, whereas the first layer may be regarded as a 
quantisat1on layer splitting the mput space mto regtons 
which are then combined logically by the subsequent 
layers. In this paper we only address the transformations 
of the second and subsequent layers; the first layer may 
be mterpreted as the restilt of relatiOnal operators com
panng real valued inputs. The use of a sigmoid funCtion 
changes thts v1ew of thresholdmg somewhat, but With a 
fully tramed network the s1gmo•d function Will behave as 
a very close approximation to a threshold function. 

BOO LEANS THROUGH TRUTH TABLES 

It is possible to produce a correct Boo lean representation 
by applying every mput pattern and producing a truth 
table. This truth table can then be turned mto a Boolean 

0950-7051/94/03/0207-{)8 © 1994 Butterworth-Hememann Ltd 
Knowledge-Based Systems Volume 7 Number 3 September 1994 207 



InterpretatiOn of neural networks as Boolean transfer functiOns GP Fletcher and C J Hinde 

funcuon usmg an algonthmtc tmplementattOn of Kar
naugh maps10• Both stages of this method have a time 
complextty of 0(2'), giving a mimmum total ume com
plextty of 2"•'. Thts ume complextty ts prohtbittvely 
large and prevents thts approach being used on any reas
onably stzed network. 

OOPERATORS 

Initial mvestigations mto this problem used a piecemeal 
approach, sphtting off the Boo lean operators one by one. 
Thts produced mteresting results for small test data sets 
usmg two input nodes but fat led to generalize properly to 
larger systems. The mtenuon ts to transform each neuron 
mto a Boo lean functton, back subsutute, and then apply 
a simphficauon procedure to the resulting collectton of 
rule sets to denve the overall transformauon funcuon 
that the net represents Although a thresholded neuron 
beyond the first layer can always be represented as a 
Boolean funcuon, the form of this funcuon cannot be 
restncted to a simple representauon where each mput ts 
menuoned only once: n mput AND and OR are exam
ples of such stmple funcuons. The mterest m such func
ttons stems from the problems of scalabthty whtch 
become mcreasingly relevant as the number of inputs 
rises and the search space for the correct Boolean func
tion grows exponenttally. If a set of operators can be 
found that represents any neuron Wtth thts restncuon 
then an etrecuve algonthm could be dtscovered and a 
conetse representauon would be found. A class of opera
tors whtch we refer to as the 0 and A operators, as they 
are generalizauons of OR and AND, has consequently 
been mvesUgated and presented", where 

ts true tf at least n of the m m puts are true. 
For example, a three mput 'or' functton becomes 

Ol(I" I,, I3) 

and this can be represented as the sunple Boolean func· 
tion / 1 v I, v I, 

Ol(I" I,, /3) 

ts represented as the stmple Boolean functiOn (11 A I2) v 
(12 A I3) v (I1 A I3). 

Ol(/1, / 2, I3) 

ts represented as the stmple Boolean function (/1 A I 2 A 

I3) v (!1 A I, A I3) v (I1 A I 2 A I3), or, more stmply, as 
(!, A I2 A I3). 

The A operators are effecuvely the complementary 
function based on AND. 

is true if at least one element m each combmat10n of n 
out of the m mputs is true. For example 

Aj(I" I,, !,) 

ts represented as the Boolean funcuon (I1 A I2 A / 3). 

Al(l" l,, !,) 

is represented as the Boolean functton (I1 v Ii) A (I2 v 
l,) A (I, V I,). 

Both these operators can be represented by a single 
neuron demonstratmg that a neuron is more complex 
than a simple n mput AND or OR. They are complete up 
to three inputs and therefore provtde a means of repre
sentmg all posstble neurons With an mput dtmension of 
three or less. Perhaps more stgnificantly, and what 
encouraged further work, ts that all n-mput panty neural 
netwo~ks can be tmplemented by 0 operators". The 
work presented by Mthalaros11 presented no complete 
analysts of how to find the 0 operator that matched a 
general neuron even tf all the posstble neurons m higher 
dtmenstons were covered. 

MATCHING NEURON TO 0 OPERATOR 

The posstble funcuons that can he represented by a smgle 
neuron fall into distmct groups. Each of these groups Will 
contam exactly one natural neuron and posstbly some 
real ones, where we define 'natural' and 'real' as follows. 
Natural means that all the wetghts and the btas of the 
neuron are posttive. Real means that at least one of the 
weights or the btas of the neuron ts negative. 

The 0 operator representauons of all the neurons in a 
group are stmtlar, the only dtfference bemg that, for a 
real neuron, some of the mput vanables wtll be negated. 
two statements can be made about the connection 
between the 0 operators and natural neurons. 

• 0 operators that do not contam negated mputs repre
sent natural neurons: Increasmg the number of inputs 
set to true can only cause the output to stay stattc or 
change from false to true. This ts exactly the same 
behavtour as that for a natural neuron. Natural 
neurons monotomcally become 'more true' as more 
mputs are set to true. 

• 0 operators that contazn negated znputs represent rea 
neurons There must be a set of the m puts set to tru 
such that there ts a negative mput whtch when sett 
true Will cause the output to change from true t 
false. This sttuation cannot be represented by 
natural neuron and so represents a real neuron Rea 
neurons do not monotomcally become 'more true' a 
more mputs are set to true. 

One way to match a real neuron to an 0 operator is t 
convert the neuron m to a natural neuron, match this ne 

208 Knowledge-Based Systems Volume 7 Number 3 September 1994 



lnterpretatron of neural networks as Boolean transfer functrons GP Fletcher and C J Hrnde 

Figure 1 Two dtmenstonal hyperplane With one negattve and one 
positive wetght 

Figure 2 Transfonned hyperplane wub all wetghts posttlve 

problem to an 0 operator, and then convert the 0 opera
tor back to match the onginal by negatmg some of the 
inputs 

CONVERTING REAL NEURON INTO 
1 NATURAL NEURON 

1 The crosshatched regton m Figure I is represented by the 
equation 

I1 - I 1 > 0.5 

To change the negative weight from I,, 1t 1s necessary to 
move the origin to position (1,0). The new equation for 
the graph 1s therefore 

I,+I,>l.5 

where 

I3 =-I, 

This gtves the new diagram shown m Figure 2. If an 0 
operator Fis found for this new neuron then all mstances 
of I3 in F should be replaced by - I,. 

1 
NPUTS 2 

3 
4 

UTPUTS 

0101010101010101 
0011001100110011 
0000111100001111 
0000000011111111 

0001000100010111 

Figure 3 Arbttrary four dtmenstonal functton 
rrhe funcUOD IS hnearly separable and SO can be Implemented by 8 
stngle neuron 1 

Any inequahty can be treated m th1s manner using the 
followmg algonthm Let the mequality be 

Let the new mequahty be 

W1I1 + W,I, + ... W,I, > D 

For all n m I .. d, 

W, = lw.l 

and 

D = B- L f(w,) 

where 

{ ox f(X) = 
X>O 

x.;;o 

MATCHING NATURAL NEURONS TO 
OOPERATORS 

If the funct1on represented by the natural neuron were to 
be drawn onto a layered graph that represents the poss
ible Boolean input space, where graph nodes are con
nected 1f they d1ffer by only one m put and graph nodes 
are m the same layer 1f they have the same number of 
mputs set to true, then only graph nodes that have no 
children need to be represented: we are only interested m 
the mfimums. The four d1mens10nal function shown in 
Figure 3 would be represented as the latuce shown m 
Frgure 4. 

Figure 5 shows the set of mfimums taken from the 
lattice shown m Frgure 4, these are the only nodes that 
need to be represented. This IS because m an 'at least 
function', all the others are automatically covered, as the 
tmted nodes are the 'least' elements. Findmg the 0 oper
ator for these nodes on the graph can be done usmg the 
following algonthm. 

• Step I: If only a smgle node 1s marked, then the 0 
operator IS 

Knowledge-Based Systems Volume 7 Number 3 September 1994 209 



l

lnterpretallon of neural networks as Boolean transfer functions· G P Fletcher and C J Hlnde 

1111 
operator o;( C) m the ongmal group Then the 

I 

answer 1s 0::, ([). 
o Step 2.3: If the intersection of all the operands of 

the d1fferent 0 operators m the group IS non
empty then calculate th1s mtersecuon and call this 

Figure 4 
lattice 

Four dimensional function tabulated m. Figure J shown as 

{The tmted nodes correspond to an output of 1 ] 

FigureS Infimums 
rrhe more heavily tinted nodes represent the mfimums of the tmted 
nodes m Frgure 4) 

0:(I1 • I.) 

where / 1 ••• I. are the dimensions that are set to I m 
the reqmred node For example, if the reqmred node 
is (1,0,1,1), then the 0 operator IS 

OJ(l, / 3, !,) 

• Step 2 Where there are Zsource nodes, Z> I, calcu
late the 0 operator for each source node ignonng the 
others; group these together. To find a smgle 0 oper
ator that represents all other 0 operators m a group, 
do the followmg: 

o Step 2 1. If there IS only one 0 operator m the 
group, then that 0 operator is the answer. 

o Step 2.2. If the 0 operators m a group all form a 
rotary set then they can be expressed as a smgle 
0 operator. That IS when every 0 operator ts of 
the form 

0: (1 •. •. I,) 

where every 0 operator has the same value of n, 
and there is a set of operands I = {/1 ••• lm) 
such that the input operands I • ... I, of every 0 
operator are members of/, and, for every combi
natiOn C of n elements from /, there ts an 0 

set K1• Remove th1s set from the ongmal 0 opera-
tors to form new groups of 0 operators S If K1 1s 
not empty then the answer is o; (K, P(S)), where 
P(S) is the smgle 0 operator that IS the Slmphfica
uon of the group S. n IS the length (K1) + I 
Apply the algonthm to S to denve P( S). 

o Step 2.4: If the group can be spht m to subgroups 
such that members of subgroups share common 
operands w1th each other and not with members 
of any other subgroup then do th1s. For example, 
the 0 operators O::,(J, / 2), o::,(/2, / 3) and 0::,(/3, / 9) 

are all in the same group, and the 0 operator 
o::,(l,, I,) is m a d1fferent subgroup. For each 
subgroup find the 0 operator that is the Slmphfi
cauon of all the members, by starting the algor
Ithm again on the subgroup. The answer IS O!( 0 1 

. . O.). where there are n subgroups and O, IS 
the 0 operator that IS the s1mphficauon of the 
Kth subgroup. 

o Step 2.5: If the group does not match w1th any 
one of the first four cases then there IS no smgle 
0 operator to represent all the members 

Example 1 

Calculate the 0 operator for the four d1mens10nal func
tiOn wtth the infimum nodes (l,l,O,Q) and {1,0,1,1). The 
0 operators are therefore Ol(l, /2) and Ol(/1, I3, !,) 

• Step 1 Apply the thtrd rule. The answer IS Ol(l, P), 
where PIS the stmphficatlOn of the group containing 
the 0 operators o:(l,) and Oj(/3, I,) 

• Step 2· Apply the fourth rule to P. Each element of 
the group contams d1fferent operands and IS there
fore m a separate group. The answer ts O~(R, S), 
where R 1s the stmphficauon of the subgroup [0:(/2)] 

and S ts the stmplificat1on of the subgroup [Ol(/3, I,). 
• Step 3· Apply the first rule toR and S. Now no more 

stmphficatlOn IS necessary, and the final answer ts 
ol(l,, o~co:(l,J, <>l<I,, I,m 

Example 2 

Calculate the 0 operator for the four dtmenstonal func
tion shown m Fzgure 6 

The three source nodes are (l,l,l,O), {1,1,0,1) and 
(1,0,1,1) Therefore the startmg group contams the three 
0 operators Ol(I, I,, I3), Ol (/, 12, 1,) and Ol(I, /3, /,). 

• Step I Apply the thtrd rule. The answer ts Ol(l, P), 
where P ts the s1mphficauon of the group containing 
the 0 operators Ol(/2, / 3), Ol(/2, I,) and Oj(/3, / 4). 

210 Knowledge-Based Systems Volume 7 Number 3 September 1994 



Interpretation of neural networks as Boolean transfer funct1ons GP Fletcher and C J Hmde 

Figure 6 Four dimensional function 

Figure 7 Four dimensiOnal function that cannot be represented by 0 
operators 

• Step 2 Apply the second rule to P. ThiS gives an 
answer ofOi(l2,!3, I.) Now no more simplificatiOn IS 
necessary, and the final answer IS Oi(I, Oi(l,, !3, I.)) 

WHERE 0 OPERATORS BREAK DOWN 

For the functiOn represented by the graph shown m 
F1gure 7, the source nodes are (I,I,O,Q), (1,0,1.1) and 
(0, I, I, I) Therefore the initial group contams the 0 oper
ators Oj(l, 12), Ol(l, !3,!,) and Ol(l2, 13,1,). None of the 
first four rules can be apphed for the followmg reasons· 
(a) for the first rule, there IS more than one 0 operator m 
the group, (b) for the second rule. not all the values of n 
are the same, (c) for the third rule, no operand IS 
common to every member of the group, and (d) for the 
fourth rule, the group cannot be spht, as every member 
would be m the same subgroup. 

Accordmg to the fifth rule, the function cannot be 
represented. An exhaustive search provides an alterna
tive venfication of this. As the functiOn is linearly separ
able, it can be represented using a neuron. Therefore 0 
operators are mcomplete, and this IS similarly true for A 
operators. Unfortunately the mcomplete elements of the 
0 operator set are not representable usmg A operators. 

CONCLUSION ON USEFULNESS OF 0 
OPERATORS 

How to find the 0 operator, 1f1t exists, for any neuron of 
a neural network has been shown This has been 

11 si 

INPUTS 
12 si 
13 si 
14 zl 

BIAS 

Figure 8 Natural neuron as knapsack problem 
[It IS necessary to fit the mput 'parcels mto the b1as 'package·] 

achieved by findmg a similar problem that can be solved 
and convertmg this back to provide a solution for the 
required problem. However we have also shown that 0 
operators are not complete for four or more dimensiOns, 
and thus they cannot m general be used to analyse such 
networks 

Where It IS possible to use 0 operators, they provide a 
conCise and clear representation. and thus they are Ideal 
for large networks with low connectivity 

SOLVING NATURAL NODES CORRECTLY 

Natural perceptrons can be turned mto Boolean func
tions with relatively httle effort. It IS necessary to find 
which sets of inputs are the m1mmum required to turn on 
the output. (These are the same sets that It was necessary 
to model usmg the 0 operators) This problem IS similar 
to the classic knapsack problem. which has an exponen
tial time complexity". 

Instead of an attempt bemg made to find a set of 
mputs that exactly fit the bias. the required answer IS all 
the sets of inputs that JUSt exceed the b1as. For example, 
! 1 and l4 JUSt exceed the b1as as 9 + 7 > 14, but If either of 
the mputs IS removed, then the total falls below the 
required threshold. The complete set for the problem 
shown m F1gure 8 IS 11 & !3, I, & !4 and I, & I3 & I,. 

This represents the reqmred Boo lean function and can 
be transformed easdy to the conventional Boolean 
format (11 & !,) or (11 & I,) or (12 & I, & !4) 

An algonthm to produce one of the parts of the result 
is g~ven as a pseudocode procedure below. By backtrack
mg, the procedure will yield each part m turn until the 
whole function has been produced 

knapsack(Array_of_Inputs.Bias.Answer) 
1f Bias ;. 0 then 

for each element X m Array_of_inputs 
New_Array = all elements after X m 

Array_of_inputs. 
knapsack(New_Array. 

(Bias - X),Sub_Answer) 

Knowledge-Based Systems Volume 7 Number 3 September 1994 211 



Interpretation of neural networks as Boolean transfer functions G P Fletcher and C J Hlnde 

Answer = append(X,Sub_Answer) 
else 

Answer=[] 
end 

COMPLEXITY ANALYSIS 

Let C(X) be a measure of complexity that ts proportional 
to the ttme taken to calculate the answers usmg the 
algonthm gtven above. To produce an answer when 
there ts one weight requtres one call to the algorithm: 

C(l) = I 

To produce an answer when there are two wetghts 
requtres two calls to the algonthm: 

C(2) = 2 

To produce an answer when there are Nwetghts requtres 
P calls to the algonthm · 

C(N) = p 

C(N) = I + L C(A) 
A•l N-t 

Therefore the worst-case ttme complexity for the solu
tton of a natural neuron is 0(2N). Thts ts still exponential, 
but unhke the exhaustive search method descnbed earher 
thts can be reduced further, or left with a saving m 
complexity of approximately four ttmes. 

REDUCTION OF COMPLEXITY 

The algonthm wtll only start to approach the maxtmum 
complextty when most of the wetghts are required to 
make the perceptron fire This means an Improvement 
can be made m the solutton ttme tf the hyperplane ts 
more than halfway from the origm. The way to do this ts 
to VIew the problem from the opposite corner of the umt 
hypercube and solve the opposite problem. Thts wtll 
bring the hyperplane less than halfway from the new 
ongm. The procedure w1ll then need fewer recurstve 
loops to find tts answers. For example, the neuron m 
Figure 9 (let us call it P) represents a hyperplane that is 
more than halfway from the ongm. Let G be the second 
neuron such that 

G= -P 

and then rotate the axts so that G ts natural (see Ftgure 
10) 

Thts hyperplane is less than halfway to the oppostte 
corner. Once the Boolean functiOn for G, B(G), has been 
calculated, the Boolean function for P ts - B(G). 

Figure 9 Example of hyperplane Implemented by neuron requtnng 
rotauon 

Figure 10 Hyperplane shown m Ftgure 9 after rotation 

Using this method 1t wtll never be necessary to use 
more than half of the wetghts to find any part of the 
solutton Th1s changes the values of C(N}, as only half of 
the we1ghts are reqmred, to 

C(N} = I + L C(A) 
A•N-l N/2 

let 

D(N) = I + L D(A) 
A•l ~N-l 

D(l) = I 

D(N} = 2N-I 

Therefore, 

C(N) = D(N) - D(N//2) + I 

C(N} = 2N-I - 2<NI2)-I + I 

WHEN TO SIMPLIFY BY ROTATION 

It has been stated that the problem should be rotated 1f 
the hyperplane 1s more than halfway to the oppoSite 

212 Knowledge-Based Systems Volume 7 Number 3 September 1994 



Interpretation of neural networks as Boolean transfer functtons: G P Fletcher and C J Hmde 

corner of the hypercube. The problem of decidmg what 
constitutes bemg more than halfway from the origin is 
not simple. The obvtous, and best, method would be to 
dectde tfmore than half of the volume of the hypercube is 
cut off from the ong~n by the hyperplane. This can seem 
a very complex task, but analysts shows that, tf the 
boundary ts flat, which tt must be as tt is a smgle hyper
plane, then the stde of the hyperplane wtth the most 
volume ts the side that contams the point exactly in the 
centre of the cube. Therefore, to test tf rotatiOn is neces
sary, tt ts only necessary to test to see tfthe pomt halfway 
from the ong~n ts above or below the hyperplane. If it is 
above then no rotation is necessary, otherwtse, rotate. To 
perform thts test, add all the weights together and dtvtde 
by two. If the total is above the bias then do not rotate, 
i e. if (rweight,)/2 < btas, then rotate. 

FINDING THE MINIMAL ANSWER 

The algonthm so far descnbed will return a correct solu
tion. For the purposes of a useful system, the returned 
answer must not only be correct but also minimal. This 
can be achteved by sorting the wetghts into decreasmg 
stze before entenng them (see the proof). A funher 
advantage of this ts that soning is a good heuristic for 
reducing the average processing time to find the solution 
(see Figure I 1). 

Let the mput to the algonthm be the weights 

and the btas value B. The mistakes that cause the answer 
to be nonmmimal occur when 

W, + W, + W, + ... + Wm > B 

W, + W, + .. + Wm > B 

(I) 

(2) 

Because the algonthm stops as soon as the bias ts 
achieved, 

W, + W, + W, + ... + Wm - Wm < B (3) 

However, tf the wetghts are m soned order, then 

W, > Wm (4) 

Substitutmg Equation 4 into Equatton 3 gives 

W, + W, + W, + ... + Wm - W, < B 

W, + W, + ... + Wm < B 

which contradicts Equation 2. Therefore, tf the weights 
are soned, the two requtrements for added complication 
in the answer cannot occur. 

SOLVING REAL NEURONS 

Finding the function of a real neuron ts a much more 
complex problem. To solve thts, tt must be convened 

Number Of tens tlede To Ftnd A Solution 

211150 

2640 

2400 

21150 

1920 

1680 

1440 

1200 

960 

720 

480 

240 

• I 
I 

0 4:::!:!:~~~~--:-:' 
4 5 6 7 11 9 10 11 12 

Number tlf Input Weights 

Figure 11 Companson of speed of execuuon wtth sorted and unsorted 
wetghts 
[Although the hnes appear to be close together, the steepness of the 
curve masks a decrease m calculauon time of 30% for the 12 mput 
problem. The graph also shows the 1mpracucabdtty oftrymg to analyse 
neurons wnh many more than 12 mputs) 

m to a natural neuron that gives the same results over the 
Boolean input range. 

This is the same tdea as was descnbed in denvtng the 0 
operator for a real neuron. The answer ts stmtlar to the 
answer for the new question (the natural neuron derived 
from the real problem}, but some of its vanables are 
negated. The vanables to be negated are the ones that 
refer to mputs wnh negative weights. If the btas is nega
tiVe, then the problem can be convened to an tdentical 
problem, but with a postttve btas, by multiplymg all 
values by - I. 

EXAMPLES 

Consider the neuron in Ftgure I 2 representing a neural 
network implementation of a two mput OR gate. 

This neuron Implements an OR function. Applymg the 
algorithm to find the nunimum mputs to fire this neuron 
returns two answers A and B whtch are convened into 
the correct Boolean functton A v B. 

Knowledge-Based Systems Volume 7 Number 3 September 1994 213 



Interpretation of neural networks as Boo lean transfer functions G P Fletcher and C J Hmde 

0 

A B 
Figure 12 Two mput OR gate Implemented as neural network 

0 

Figure 13 lmplementatiOD of three m put par1ty as neural network 

A more complex example IS the case of three dimen
sional panty A neural network to calculate this functiOn 
is shown m Fzgure 13. The Boolean function for each 
neuron IS calculated separately: 

O=H 

H=GvF 

G = -<-A V -B V -C) 

F= -(-DV -E) 

D = -(A v B) v -(A v C) 

V -(B V C) 

E=AvBvC 

Combming these g~ves 

0 =-(-A v -B V -C) v -(-(-(A&B) 
V -(A & C) v -(B & C)) v -(A v B V C)) 

which is the correct function expressed m terrns of NOR 
gates. 

Once the neural network has been transforrned to an 
eqmvalent Boolean functzon, or set of functions, there 
are many ways of expressmg this function. We have 
chosen to leave this exerase to the reader, as, although 1t 
1s nontnVIal, 1t 1s well documented. 

CONCLUSIONS 

An algonthm for convertmg neural networks into Boo
lean functions has been g~ven The absence of such an 
algonthm has been identified in the hterature as a signifi
cant problem and the solution shown m th1s paper ts 
both complete and efficient. Prev10us attempts, descnbed 
m the paper, were either incomplete or inefficient. In 
particular the exploration of generahsed Boolean opera
tors proved incomplete above three dzmens10ns and a 
truth table analysts IS mefficient for any reasonably sized 
neuron. The development of the final algorithm proceeds 
from convertmg a 'natural' neuron mto a Boolean func
tion to generahsing thts to 'real' neurons. The analysis of 
the algonthm shows 1t to have a time complexity of 
better than 2N-I - 2<Ni2l- 1 + I if the we1ght vector IS 

sorted. 

REFERENCES 

1 Smolensky, P ·on the proper treatment of connecuonism' Beha· 
vroural & Bram Sc1 11 (1988) pp 1-23 

2 Grant, E and Zhang, B 'A neural net approach to supemsed 
leammg of pole balancmg' Proc 4th International Sympostum on 
fnlel/!genz Conlrol Albany, NY, USA (25--27 Sep 1989) 

3 Donne, J D and Ozgunner, U 'A comparattve study of neural vs 
conventional methods for modellmg and prediction' Proc. 1992 
International Svmpostum on lntellrgent Control IEEE (Aug 1992) 

4 Hmton, G E 'Preface' Aruftczallnzelilgence 46 (1990) pp 1-5 (spe· 
e~al1ssue on connecuomst symbol processmg) 

S Messom, CH, Hmde, C J, West, A A and Wdbams, DJ "Des1gnmg 
neural networks for manufactunng process control systems' Proc 
1992 lnternallonal Symposzum on lntelllgent Control IEEE (Aug 
1992) 

6 Hmde, C J • A comparative rev1ew of neural nets and rule based 
systems' Techmcal Report LUT TR 575 Depanment of Computer 
Stud1es, Loughborough Umvers1ty, UK (1990) 

7 Venkatsubramaman. V and Chan, K 'A neural network methodo
logy for process fault diagnosiS' A/ChE Journal 35 12 (1989) pp 
1993-2002 

8 Zhang, J and Roberts, P D 'On-hne process fault d1agnos1s usmg 
neural network techmques' Trans Jnst Measurement and Control 
14 4 (1992) pp 179-188 

9 Baum, E B and Haussler 'What s1ze net giVes vahd generahzatton"' 
Neural Comput I (1989) pp 151-160 

10 Dowsmg, R D. Rayward·Sm1th, V J and Waiter, C D A F1W 
Course rn Formal Logrc and zts Applzcatzons rn Computer Sczence 
Black well SCientific Pubhcatlons ( 1986) 

11 M1halaros, M 'Stud}'lng the mterpretauon of feedforward neural 
networks usmg log~cal funcuons' MSc Thesrs Depanment of 
Computer Studaes, Loughborough Umvers1ty, UK (1992) 

12 Messom, C H 'Engmeenng rehable neural network systems' PhD 
Thesrs Depanment of Computer Stud1es, Loughborough Umver
slty, UK (1992) 

13 Garey, M Rand Johnson, D S Computers and lntractabzlzty W H 
Freeman. USA (1979) 

214 Knowledge-Based Systems Volume 7 Number 3 September 1994 



Neural Networks as a Paradigm for Knowledge Elicitation 

Proceedings of the International Conference on 

Artificial Neural Networks, 1994 

Maria Marinaro and Pietro Morasso (Eds.) 

Springer-Verlag (Pub.) 

pp207- 213 



Neural Networks as a Paradigm for Knowledge Elicitation. 

1 Introduction 

G.P .Fletcher & CJ.Hinde 
DepL Computer Swdies 

A.A.. West & DJ.WiUiams 
DepL Manufacturmg Engineering 

Universtty of Technology 
Loughborough. 

It has been consistently slaled that the hardest part of cons1n1cting any knowledge 
based system is extraCting the information from the "expert" (Hart 1986). Rule 
based systems are one genre of expert systems, in this paper we demonsll3te a 
method for converting a neural network into a set of rules. This maintains the basic 
advantages of neural networks but redresses some of the disadvantages. 

2 The Gluing Machine 

The fust real applicauon (Chandrakcr et al. 1990) is the dispensmg of adhesive m 
the manufacture of "mixed technology" P .C.B.s m whtch through hole and surface 
mount components are present on the same board. The surface mount components 
are secured to the board, prior to a wave soldcnng operauon, by a small amount of 
adhesive. The amount of adhestve dtspensed ts cnucally dependent upon several 
process envU'01llllent vanables. 

Messom et al. 1992 produced a sparsely connected 7 input, 5 output neural network 
system for controlling the adhesive dispensmg machine. The tramed neural network 
should therefore be equivalent to a set of rules !hat could have been learnt by a rule 
induction package. 

SICp one in the analysts is to examine the ftrst layer of the network and to express 
this part as a set of incqualtties. This step does not simphfy the mformauon but does 
display tt much more naturally than a set of wetghts on a dtagrarn. 

JP rise_ame < 1.25 
1lii!N nse_amellag 
ELSE -<~oe_umdlag 

IF IUU > I 0258 
1l!EN mtdnodel 
ELSE -mtdnodel 

. . 
The remainder of the network can then be convened to a set of Boolcan funcuons 
(fletcher et al. 1993a). Substituung the above mcqualities gtves rules of the form: 

JP (pulse_hellht>097S Apulsc_hoght<1.02S) 
mEN pulse_hoghlflq 
ELSE ~_hetghlllag 

. . 
These rules serve to illustrate the usefulness of the interpretauon system for a 
medium sized control network. This type of result is most useful when tt is 
necessary to check that what the network has learnt is reasonable and when it IS 

necessary for a system to explain its actions, something classic neural networks 



243 

cannot normally do. 

3 Noise Immunity of Neural Network Derived Rules 

A good coMecuonist based solution should exhtbit fewer overall problems than lhe 
currendy available symbolic systems. A useful quantitative measure of noise 
immunity is lhe average percentage of lhe learnt hypolhesis !hat matches lhe 
requtred hypolhesis. A correct funcuon is represented by lhe truth table shown in 
table la. and a notsy version w11h one output mcorrect is represented in table lb. As 
lhese uulh tables match in 87% of lhe outputs lhe noisy hypolhesis is defined 10 
have an integruy of 87%. 

INPITI'S 

OITI'PUTS 

00000000 
01010101 
00110011 
00001)1) 
01010101 
Table la 

00000000 
01010101 
00110011 
0000))11 
01010111 
Table lb 

Tlble la 11 a truth table n:prcscnung a Boolean funcucn. whc:ruslable lb ~se:nu a nmsy hypahcs11. 
ao&c the chlnsc of lhc seventh b1t m the OUTPUTS line. 

Figure 1 shows lhe responses of a neural network after ttaimng for conjunction and 
panty wilh differing amounts of noise. This demonstrates lhe immunuy 10 noise 
usmg a neural network inducuon system, although live applications wtll be more 
complex than the illusttaUons above !hey wtll typtcally be ttamed on noisy data. 

·-·"--•• 
•• 
• 
• 

• 

...... ,., ••••• " •• 1'0 I'll. 

··-·--FilUM 1 1be response of a neural network denved frcm a tnmllll set for conJUDCUOII w1th chffcnng 
lmOUdl of DOI.IG supcnmpoaed on the sesponse of the neural network denved. from a 3 dmu:llllOR&l ---
4 The Pole Balancing Problem 

The pole halancmg problem (Michie et al. 1968) is an example of applied adaptive 
contto1 and has become a standard tutonal problem. The contto1 system must 
balance a pole on a motorised cart by moving lhe cart back and forward in a 
confmed space. The implementation of most mterest here is the neural network 
(Zhang et al. 1989) shown m figure 2 whtch was successful in a balancmg the pole 
under a varicry of circumstances. 



----------------------------------------------------------

244 

-5. .. ~ 
ii2 t " i r ,;= > ·~ .. 

0 : ... < ! ·= .. 
~ 

.5 i~ 
.. .. ~ "5 l ] ... - .si5 'S ·= ::s~ < 

~ ! .. ilia i~ d ;e U::t: uu 
F11ure 2. A .......U notworic devdopcd by Zhong and Gru1110 solve the pcle bolancmg problem. 

Fletcher et al. (1993b) descnbe a method for applying s1mple unage enhancement 
techniques to Boolean functions m order to expose the underlying emphasis. The 
analysis of the pole balancmg net resulted in the followmg vers10ns of the output 
funcuon under different levels of sunpbfication. 

IF (Top of pole IS to nght A~Pole!S falling over A -.Pole Speed lncremngA Cart 
Accderallllg) v 
(Top of pole u to nghlA-,Pole il falhng ewer A -J»ole Speed lncreumg A Cart In 
Right Hand HolfOfTnck A Can M<Mng Away From Cenm:)v 
(Top of pcle IS 10 nght A Pole P fallm1 rrver A Pole Speed incru~U~&) 

THEN Apply nght fora: 
EUiE Apply left fora: 

Set of rules generated with no sunplification 

IF (Top of pole 11 10 nghtA....J'ole 11 falling over A Pole Speed lnc:rcasm&) v 
(-,Top of pole 1110 nghl.I\Pole u falling over A -.Pole Speed lncrcasms)v 
(~olc Speed Increasang,....£art In Right Hand Half Of Track A -Cart 
Accdera1111g) 

THEN Apply nght fora: 
EUiE Apply left for= 

This shows us that the function attaches 1mponance to mput vanables that should 
have no beanng on the outcome for the cases analysed. Thts means that the output is 
not correctly computed. 

IF (Top of pcle P 10 nght A Pole Speed lnaeumg) v 
(Top of pcle1110 nght A Pole" fallml over) 

THEN Applynghtfora: 
EUiE Apply left fon:e 

This shows the net has unplemented an asymmetric funcuon m response to a 
symmetric problem. This means that there are some areas that will need further 
ttaining for completeness. 

IF Topofpoleu10nght 
THEN Apply nght fora: 
EUiE Apply left for= 

This shows that the network is basically correcL 



245 

S Limits of Boolean Rule Conversion 

The nature of neurons means that as the number of inputs grows so does the length 
of the Boolean descnption. In the worst case the numbers of conJuncuons m a 
mimmal disjuncuon of conJunctions representauon grows at a rate of 2n-1 where 
there are n inputs. The ume taken to calculate an answer 1s exactly proporuonal to 
its SIZe. The answer becomes mtractable to compute for neurons with more than 20 
inputs, and meaningless for a human far earlier. Current work is mmed at 
implemenung systems which will enable the user to mteractively tram and study the 
hypotheses of large networks (Fietcher et al. 1993c). 

6 Conclusion 

Results have been demonstrated that Illustrate the extracuon of Boolean based rules 
from a neural networlc. These rules were also used to check that the hypopthes1s of 
the neural network was consistent w1th the problem. The rule induction system has 
also been shown to have a h1gh mtegr1ty m the presence of nmse. malcing neural 
networks an 1deal method for rule mducuon m nmsy problem domams. 

7 References 

Chandraker. R •• West, A.A .• & Wilhams. DJ., 1990,1ntelligent control of Adhesive 
Dispensmg, UCIM, special issue m Intelligent Control, 3, No I, pp. 24-34. 

Fletcher, G.P. & Hinde, CJ .. 1993a, Interpretation of neural networks as Boolean 
transfer funcuons. Dept. Computer Stud1es research repon 779, to be published in 
Knowledge-Based Systems. 

Fletcher, G.P. & Hinde CJ .. 1993b, Using neural networks as a tool for 
construcung rule based systems, Dept. Compu!er Studies research repon 781. 

Fletcher, G.P. & Hinde CJ .. 1993c, Providmg ev1dence for the hypothesis of large 
neural networks, Dept. Computer Studies research repon 793, submitted in reVIsed 
fonn to Neurocompuung. 

Hart, A., 1986, Knowledge Acqwsition for Expen Systems, Kogan Page. 

Messom, C.H .. Hinde. CJ., West, A.A. & Williams, DJ .. 1992. Designing neural 
Networks for Manufacturing Process Control Systems, Proc. 1992 lnternauonal 
Sympos1um on Intelligent Control, August 1992,l.E.E.E. Publishers. 

Micltie, D. & Chambers, R. A .• 1968, BOXES: An Expenment in Adaptive Control. 
Machine Intelligence 2, ed. Dale, E. and Michie, D., Oliver and Boyd, Edinburgh 
University Press. 

Zhang, B. & Grant, E., 1989, A Neural Net Approach to Autonomous Machine 
Leanung of Pole Balancmg. Proc. IEEE conference on Intelligent Control. pp 123. 



Learning the Activation Function for the neurons in 

Neural Networks 

Proceedings of the International Conference on 

Artificial Neural Networks, 1994 

Maria Marinaro and Pietro Morasso (Eds.) 

Springer-Verlag (Pub.) 

pp 611-614 



Learning the Activation Function for the Neurons in 
Neural Networks 

G.P. Fle!Cher & CJ.Hindc 
Department of Computer Studies 

Loughborough University 
Loughborough 

1 Introduction 

Ever since the sigmoid replaced the tlueshold as the main acuvation funcuon used 
in aruficial neural networks, the properues of the activation function have been 
largely ignored. Most research aimed at improvmg the quality of the hypothesis or 
the speed at which it is oblalncd has concenuatcd on the topology or enhancmg the 
leammg algonthm (normally back propagauon). 

Even though the sigmoid function is intended to be an approximation to a real 
neurons response, aruficial systems do not necessanly need to copy. Real neural 
networi:s model very complex informauon by usmg huge numbers of neurons. By 
devclopmg a set of more complex acuvation funcuons it should be posstble to 
produce beuer models of complex informauon resulting in smaller and faster 
networks and the development of more powerful applicauon areas for aruficial 
nemal netwlrics. 

Other recent work has presented the tdea of parametnsation of the stgmoid funcuon 
(Hore)s et al. 1993). By tratnmg these parameters using back propagauon it is 
posstble to alter the stgmotd's charactensucs: t.e. such things as the maxtmum and 
mid values of the funcuon. The idea was developed as a method of aying 10 remove 
the input wetghts as a tratning parameter. Instead of auempung to produce smaller 
networks with more powerful nodes the other work was atmcd at allowmg 1113SS1Ve 
nets of very low complextty to be tratncd. The results show that although these 
nets wtll converge they requtrc many more tterations. This paper shows that, by 
taking the converse vtew and improvmg the power of each neuron. the number of 
bllllllllg itellltions is signifteantly reduced. 

2 Sine as an activation function for back propagation 

Back propagation relies on the use of a differentiable activation funcuon. The 
sigmotd function was originally chosen because of its simtlarity to the then popular 
threshold activation function of the stmple pen:cpuon model (Rosenblatt 1962). 
1berc ts no reason why back propagauon needs to use the stgmotd. replacing it 
with another diffcrenuable funcuon such as sine does not affect the convergent 
piope.t tics but does affect the types of hypotheses that can be represented. 

If a two input neuron uses a sigmoid then it is perfectly able to modellili.IISfer 
functions such as "Boolean AND" and "Boolean OR", in fact tt is difficult to 
imagme a beuer activation function for these two problems. 

The "Boo lean X-OR • or two input panty ts the simplest problem that cannot be 
modelled in a stngle neuron using a sigmoid activation function. Figure 1 shows 
how the sine and weights interact to model the X-OR funcuon in a single neuron. 



612 

Case 'A' shows that the threshold with two inputs set to false give 'Sum' a 
value of -'lt/2, and thezefore an output value of -1.0 or flllse. 

Case 'B' shows that if one of the inputs is uue and the othec false then 
'Sum" IS 'lt/2, and the output value is 1.0 or uuc. 

Case 'C' shows that with both inputs set to uue then sum is 31r/2 and 
output is -1.0 or false. 

··~ 

... 

~--- - ~ v .... .,... v .. .,.... ,...... 
.... w-. ........ 

Fipre 1 De:monalnbOD of the amc acuvaaon funcaon. and lhe combmauon of wqhtl and ba1 &o 
p!Oduce die X .OR funcDcm. 

Howevec, the sine activation funcuon does not effectively model "Boolean OR". 
Even usmg such a Simple nelwork, it is apparent that by choosmg the correct 
activation funcuon for the problem, modelling becomes much cas1ec. 

3 The general activation function 

Given a large network it is not feas1ble for the designer to allocate the correct 
acuvanon funcuon to every neuron. lt therefore becomes necessary to develop a 
general paramelrised activation function with enough flexilnhty to be able to model 
many diffem~t types of transfer function. If the parameters of the genernl acuvauon 
funcuon arc tramed together w1th the mput wc1ghts the neuron will develop the 
acuvalion function that most easily models the data. 

An example acuvauon funcuon is consuuctcd using both the trachtional sigmoid 
and the sin acuvation functions. Let the acuvation funcuon be /(B) where 8 is the 
product of the WCight and input vectors. i.e. 

8 =bias+ weight1*input1 + weight2*input2 ....... 
/(8) • a. sigmoid(B) + (1 -a) • sin(B) 

Each clement of the activation function has a -1 to + 1 range. The outpUt of the 
nemm has been maintained in the aachlional -1 to + 1 range by malang the sum of 
the activation function weights equal 1. By back propagaung the errors and using 
them to modify the parameter 'a' in each neuron the individual neurons will develop 
different charactcrtstics.lf a is high, i.e. 0.9, then the acuvalion function becomes 



613 

very close to the aadltional sigmmd. This is very good when auempung to model 
problems hkc the "Boolean AND". Droppmg the value of a to 0.1 produces an 
aaivauon funcuon easily capable of represcnung the "Boo lean X-OR • problem. 

4 Training with the general activation function with two 
dimensional problems 

All two dimenston problems can be rejlresenred using just a single neuron with a 
gcncral activation function. To demonstrate the neurons ability to derive the corm:t 
activalion funcuon the soluuons for "Two input AND" and "Two mput X-OR" are 
preserued. 

TWO INpiii AND 

Input I Weight : +1.7142 
Input 2 Weight : +1.7159 
Bias : -1.7126 
Acuvation Funcnon 

fison:: 2a: The acuvatton funcuon m 
rapanae 10 lhe '"AND• lrawDIICL 

TWO INpiJT X.QB 

Input 1 Weight : + 1.5881 
Input 2 Weight : +1.5776 
Bias : + 1.5718 
Activauon Funcaon 

to 

Fiaun 2b: The acuvauoe functJ.oa m 
n:spoDICIO the "X .OR" tramms Id. 

Both of the neurons have developed acnvation functions capable of represenung the 
problems being demonstrated. One havmg produced a threshold type funcuon and 
the other a cyclic funcuon, ideal for the two chffcrent problems. 

5 Neurons with general activation function as a method or 
reducing the number or training iterations required. 

Nctworics COIISirUCred of neurons that use the general activation function are more 
flexible in the representanons they can adopt. If it is easier to represent the 
information wtthin the network, the time required to find an acceptable 
iqltSCiltation WIU be reduced. 

A four input, lhrcc midnodc one oulpUt network forms the basis for the illustrative 
experiment, which is shown using standard and general activation functions. The 
graphs show the error over the traming cycle for the two different typeS of neurons. 



614 

• 

___ .. __ 
----· 

•+-----~--~----~ . . .. 

• 

............ .. __ 

·~----------~------. ,.,. 
N..._ al._ 

Fi~ 4b: A venae turn tquamd. error when. 
UIUII a sWidard aca.vauon funa.aon. 

'lbcsc results show the potenllal for very large savings in training ume. The results 
ue an average of 20 different training cycles. Each one uses a randomly chosen, 
consistent, training set and start poinL The same training sets and starung points 
were used for both expenments. 

6 Conclusion 

By increasing the computational power of each neuron it is posstble to increase the 
represenlllllonal flextbthty of neural networlcs while rcducmg the number of tt:uning 
iiCilltlons required to fonn a hypothesis. 

By reducing the need for very large networks implementation becomes much easier. 
With the smaller networlcs 1t is uactable to produce a clear representation of their 
derived hypotheses (Fletcher et al. 1993). The developer wtll then be able to venfy 
that the design has correctly represented the required hypothesis. Greater confidence 
in neural networlcs wtll enable them to be used on a much wider basis. 

7 References 

Fletcher, G.P •• Hinde, CJ., West, A.A. & Williams, DJ., (1994) Neural networlcs 
as a pamdigm for knowledge elicilllllon, ibid. 

Horejs, J. & Kufudaki, 0., (1993) Neural networks with local dismbuted 
parameters, Neurocompuang, Vo1 5 Nl24. pp211- 219. 

Rosenblau. F .. (1962) Princtples of neurodynamics, Spartan books. 



Using Neural Networks as a tool for constructing rule 

based systems 

Knowledge-Based Systems 



--------------------------------------------------------

Knowledge-Based 
__,V5TEM 

KBS-275 

22nd September, 1994 

Graham Fletcher 
Department of Computer Studies 
Loughborough University of Technology 
Loughborough 
Leicesterslure LEll 3TU. 

Dear Graham, 

Pro! E. A. Edmonds Edttor·tn·Chtef 
LUTCHI Research Centre 
Umvers1ty of Technology 
Loughborough 
Letcs LE1 t 3TU UK 

Telephone +44 509 222690 
Telex +44 509 610815 
E·matl KBS @ lut ac uk 

Thank you very much for revising your paper entitled, 'Using neural networks 
as a tool for constructing rule based systems' for publication in 
Knowledge-Based Systems. 

The paper has now been re-examined and as all the referees' comments appear to have 
been dealt with adequately, I am pleased to inform you that it has been accepted for 
publication. 

Authors receive a copy of the issue of the journal in which their paper is published, 
plus 50 offprints (more can be ordered if required). Your paper will be published as 
soon as the schedule will allow and proofs will be sent to you for checlo.ng in due 
course. 

In the meantime, please would you sign and return the enclosed copyright transfer 
form. Assignation of copyright in this way does not jeopardise your traditional rights 
as an author to reuse or veto third party publication. However, it does enable the 
publishers to sanction the printing and reprinting of the journal. 

If you have not already done so, please also send your original artwork to me to pass 
on to the publishers (line drawings, prints or negatives). 

Professor E.A. Edmonds 

enc 

An International Journal • Butterworth·Hememann Ltd. Lmacre House, Jordan H1ll, Oxford OX2 SDP. UK 



Producing evidence for the hypothesis of large 

neural networks 

Neurocomputing 

Volume 9, 1995 



~---~ f?it 
ELSEVIER 

NEUROCOMPUTING 

Neurocompunng 9 (1995) NCG00362 T 

Producing evidence for the hypotheses 
of large neural networks 

G.P. Fletcher, CJ. Hinde • 

Dept Comput<r Studle.s. Unwenuy of Technology. Loughborough, LeJCest<nlurr! LEII JTU. UK 

Recewed 20 December 1993; accepted 23 September 1994 

Abstr:lct 

This paper presents results allowmg large networks to be analysed using a fast apprma· 
mate system. This provtdes an understanding of the1r hypotheses and acnons, permtttmg 
networks to be used with more confidence m complex applicattons. The technique used has 
been to calculate the best mput pattern that given the mternal hypothests gtves the deStred 
output. If the calculated pattern correctly displays the features of the mput space then thts 
is CV!dence that the network has learnt the correct hypothests. The converse IS also true: If 
the shape differs from the target then thts should pravtde some mdtcattons for the best 
tratntng examples to unprove the hypothests. 

Keywords: Feedfotward networks; Hypothests; Model; !nterpretatton: Feedbackward 

1. Introduction 

One of the maJor problems preventing the rapid spread of connectionist systems 
is the lack of a guarantee that the hypothesiS represents a correct interpretation of 
the problem. Hinton [6) in 1990 expresses the view "the problem IS to devise 
effectlve ways of representing complex structures in connectioniSt networks with· 
out sacnficing the ability to learn the representatlons. My own view IS that 
connectionists are a vety long way from solving this problem". 

There are several different methods of describing the ourput function of a 
neural nerworlc. The purpose for which the descnption is to be used dictates which 
method is used. Earlier work has focused on the interpretation of neural nerworks 
as rule based systems [4,5), the example being developed here is for the verification 
of visual pattern recogmtion nerworks such as Opt1cal Character Recognition 

• Correspondtng author. E·maU: c.j.hinde@lut.ac.uk. 

0925-2312/95/$09.50 C 1995 Esmer Science B.V. All nghts reserved 
SSDI 0925·2312(94)00064-6 

... 



~----------------------------------------------------------------------------------- --

2 G.P. Flttchu. CJ. Hin<U I Neurocompunnf 9 ( 1995) 000-000 

F1g. 1. The target ••. Tins ts what a feed backward analysiS of a network that has correctly learnt to 
reeogruse the letter E should look hke. The darker the reaton the closer the hnk to the hypothesJS. 

(O.C.R.) [8). In these types of application the best form of venfication is to 
calculate the input pattern that corresponds most closely to a g1ven output pattern. 
If this coincides With the developer's ideas then this is evidence for acceptmg the 
hypothesis. This would best be descnbed as a form of feed backward network, 
trymg to find the typ1cal input pattern from a given output pattern. 

The 1deal style of answer would be something along the lines of Fig. 1. The 
darker regtons represent areas that have strong links wtth the output, lighter areas 
have a progressively smaller impact. The Fig. 1 hypothesis would be a good result 
from a network that has been trained to recogmse the letter capt!al E. The Fig. 2 
hypothesiS could represent a network that correctly classifies all the training 
examples but could do wtth some further training. By loolong at the result in Fig. 2 
it is possible to construct a further training example to correct the mmor errors. 

2. Boolean rule induction from neural networks 

Fletcher and Hinde [4) have produced a system capable of extractmg Boolean 
based rules from a neural network. This system proved very successful when 
working With small to medium sized industnal control networks. 

Fig. 2. This is what a feed backward anai)'SIS of a network that has nearly correctly learnt to recogniSe . 
the letter E may look hke. Some areas could do wtth further rrammg examples. 






