LOUGHBOROUGH
UNIVERSITY OF TECHNOLOGY
LIBRARY

AUTHOR/FILING TITLE
FleTey el G.

———--——_-..-———..-———-q————_.—

————

~VOL. NO. CLASS MARK

- —— —

- —

- - -

LoAw coty
24 JAN 1996
2 8 JUN 1395

260
1 6 MAR 1999

98 JUN 1935

27 JUN 1997
1§ JAN 2000

L B ‘ilﬁ& é-’(!’\
4 - SITLD

0401169081

HINI IINNI(IMIWIII)I M

1198

- . ——

A Study of the Design and Analysis of
Feed Forward Neural Networks

Graham Paul Fletcher

B. Sc. (HONS).

A Doctoral Thesis
Submitted in Partial Fulfilment of the Requirements
For the Award of Doctor of Philosophy
of Loughborough University of Technology
1995

P

e Gt

bt Nw 4y

v S oa v ot szt)

3

0??)090 653

Declaration

I declare that this thesis is a record of research work carried out by me, and
that this thesis is my own composition. I also certify that neither this thesis nor the
original work contained therein has been submitted to thus or any other institution for

a higher degree.

Graham Paul Fletcher

Acknowledgements

I wish to express my gratitude to my parents, my bank manager and the
engineering and physical sciences research council who's joint

sponsorship has made this research possible.

I would also like to thank my supervisor Dr C.J.Hinde for his help, advice
and, most importantly, the training on how to survive in academia.
Thanks also to the many other staff at the university who have helped

with either suggestions or employment.

Finally the moral support and proof reading provided by my family and

friends has been instrumental in helping me finish this thesis.

Abstract

This thesis shows that a design and analysis system for feed forward neural networks
is desirable, and that the currently available techniques do not work, Methods have
been presented that solve the problem of analysis, showing that analysis is possible

and desirable for classification networks.

applicable to properly designed classification systems. A method of reducing the size
of classification networks is presented along with a design methodology for non

The biggest limitation is the size of the network and that the analysis tools are only
classification systems.
|

CONTENTS

Literature Review 1

Motivation of Study 39
The Analysis of Transfer Functions 43
The Activation Function 99
Modelling Continucus Functions
Conclusions

Appendix A

LITERATURE REVIEW

CHAPTER 1

Outline Of Chapter

The aim of this chapter is three fold. Firstly it is to provide an introduction to artificial
neural networks in sufficient detail to allow a non specialist access to the work
contained 1n the later chapters. Secondly this chapter maps out the development of
artificial neural networks by charting the major contributions to the field. Lastly, and
most importantly, the chapter contains several of my own interpretations of the history,

and predictions about the current and possible future directions of research.

The chapter is split into three major sections.

Section 1. An overview of the biological systems that formed the original

neural networks.

Section 2. This section charts the development of feed forward neural models.
This model is the best understood of all the current neural models

and is the model used for the majority of this thesis.

Section 3. In section three some of the other models are explored.

The Biological Foundations

The term neural network has grown to represent a large number of very different
connectionist strategies for solving machine learning and other artificial intelligence
problems. Originally they were developed as a method of modelling the neural

construction of the brain, in the hope that computers could be built that would emulate

Literature Review 1 G P Fletcher

the brain’s capacity for learning, content addressability and conceptual leap. The
starting point for any study of artificial neural networks should begin with a simple
understanding of the mechanisms and structures used in biological neurai networks. It

is these biological systems that provided the oniginal neural models.

The brain is composed of about 101! neurons , figure 1.1 shows a simple neuron.
Each neuron consists of the dendrites which are the inputs, the nucleus or processing
unit and the axon and synapses which make up the output to the neuron and connect it |

to the dendrites of the next neuron.

Synapse ‘

Nucleus

Dendrities |

Figure 1.1 A diagram of a simple neuron.

Griffith [1966] provides a simple explanation of the biochemical basis of neurons;
“The cell is bounded by a surface membrane which is semi-permeable.
This means that the membrane will allow certain ions and molecules to
pass through it, but not others. The semi-permeability has certamn
consequences which can be understood using the theory of
thermodynamics. One of these is that the interior of the cell normally has

a negative electrostatic potential of about -70mV with respect to its

Literature Review 2 G.P.Fletcher

exterior. However, 1f this potential difference is artificially altered above
a threshold value of about -60mV, the membrane suddenly becomes
permeable.... ... This change of permeability is self-propagating, it starts
at one point and spreads to adjacent points and so on. Shortly
afterwards the membrane recovers its semi-permeability. Thus a

transient burst of electrochemical activity is generated.”

The membrane of the cell covers the cell nucleus, but also extends down the axons to
the synapse. The axons and the synapse form the link between one nerve cell and its
neighbours. Griffith further explains
"Once a cell has fired, the activity passes out to the uttermost extremes
(the synapse), which then spew out small quantities of chemicals called
transmitters. These pass across narrow gaps to adjacent cells where they

alter the permeability of the membranes of those cells.”

The potential difference across the cell membrane increases as quantities of the
transmitter chemicals are absorbed. However the neuron does not fire until the potential

difference reaches -60mV.

The transmission of information around the brain is a complex electro-chemical
process, where chemicals are released from the synapses on the sending side of the
junctions. This causes the raising or lowering of the electrical potential inside the body
of the nucleus. If the potential reaches a threshold a pulse of fixed strength is sent down
the axon to the next set of synapses. After firing a cell cannot fire again immediately,
but has to wait a fixed length of time called the "refractory period” before it can fire

again,

Literature Review 3 G P.Fletcher

The Development of Feed Forward Models

McCulloch and Pitts [1943] published a now famous paper proposing a simple
mathematical model of the neuron, known as the idealised neuron model. Each cell
calculated a weighted sum of its inputs and set its output to 1 or 0 depending on
whether this sum was above or below a threshold. See figure 1.2 for a schematic
representation of the idealised neuron. Formally this is written
‘ Output = F(Z tnput, * Weight) - 1)
where W is the threshold

fX)=1ifX=20
0 otherwise,

Figure 1.2 A simple idealised neuron

The idealised neuron is a simplification of the real neuron described in the first section,
At first glance they appear to be very similar, how do they differ? Figures 1.3 and 1.4
demonstrate the very real gap between the idealised neuron and the neuron described

earlier.

Literature Review 4 G.P.Fletcher

Input Vector

Figure 1.3 The output of an idealised neuron in relation to input value and time. Note

that the output value does not change with time.

Qutput
Value

Input Vector

Figure 1.4 A more accurate representation of the activation in real neurons. Note that

the output is time dependant.

In a real neuron any value of input will eventually cause 1t to fire as the neuron stores
the chemicals that cause the breakdown of the semi-permeability. A higher input causes
a higher frequency of activity as the build-up time between pulses is reduced. By
comparison the idealised neuron has no time complexity. A set of inputs will produce

an output, this output will not change until the inputs change.

Literature Review 5 G.P.Fletcher

Given the large short fall in complexity the idealised neuron was still a very important

mathematical model. It allowed the development of the first training algonithms and

analysis techniques.

The simple perceptron mode]

The most popular use for idealised neurons was the simple perceptron model. The
model is a simplification of the full perceptron model proposed by Rosenblatt [1958].
The simpler version allowed the development of training algorithms, these algorithms
were not extensible to the full model. Consequently, Rosenblatt's full model was never
popular, mainly due to its over complexity. Figure 1.5 shows a simple perceptron

model,

Input Feature
Retina Detectors

Figure 1.5 The simple perceptron model.

In the simple model all cells output a binary value, there are no connections between
cells of the same layer and only the weights between the feature detectors and the output
neuron are modified during training. This means that the feature detectors are not
modifiable and so correspond to fixed feature sensors. In the simple model the input

retina is normally left out and the feature sensors referred to as the input cells.

The simple perceptron model cuts the possible inputs into two categories. Those that
make it return true and those that don't. Therefore the model is performing a set

membership function that identifies a subset of its inputs as members.

Literature Review 6 G P Fletcher

o

| The border between these categories, known as the decision plane, is built up using the
| decision planes of the output and feature detector idealised neurons. The decision plane

of an idealised neuron is always a straight line in D dimensions when the neuron has D

inputs.

The development of a simple training algorithm by Rosenblatt [1962] is, in my opinion,
the single most important step in the development of artificial neural networks.
Although his work has now been far superseded it was his ideas that caused the first
explosion 1n connectionist research. The aim of the training algorithm was to calculate a
set of weights for the connections between the feature detectors and the output node that
allowed correct classification of a set of training examples. For example the decision

plane shown in figure 1.6 could have been calculated as a response to the example

|
\
\
points.
|

v
B

M
He
T,

=
+
¢

§
‘:\}x
PR

IS BV

*

ko
8§ o

5
Fa

g
o &
ARV
FE
Wowl g
o
\4?”‘
.
S
Yt
I
4
oot
2 R
b 2
4
P
§mm)5§3‘5
b oF
o3
!1)’ o
P §
¢ £y
Qﬁ
A

g

P
;9'}:
+
L
3
.
L s
4l
i

R

e
.

A
A
N .
Y en e
et

iy P
5
e

H
D
¥
3
Iy
b
2
E

Figure 1.6 A possible decision plane and training examples for the simple perceptron

model.

The perceptron model learns by means of a supervised learning process. In other words

it is necessary to supply the correct classification for each example input. For each

training example the required output is D, and the actual output is R.
Literature Review 7 G P Fletcher

If R = D then the perceptron has made the correct decision and no changes need to be

made. However if R # D then some changes need to be made so as to correct the error.

An example 1s made up of the values supplied by the fixed feature detectors and the

required output value D. If the following changes are made to the input weights 1n tumn

then the decision plane will have moved.

Wmew = Wode AW,
AW,=-3(R . Input,)

The algorithm is repeated until all the training examples give the correct classification. d

is a small positive number that dictates the rate of convergence on the answer. If @ is

too small then a large number of iterations will be required, but if it is too big then the

algorithm will become unstable and fail to converge. The choice of correct value for d

can be difficult and requires some insight. The diagram below shows a simple training

sequence.

ER
ot
54,

2’3
oo
i

of

phes we
H

Bt
S

" %
@

Y

:

4

4R A

o
P

.

d
i,

V7
2
d

5 g
%
2
'@
3 &

3
0",

Mraede Funin o

£
g
A

3 g

*
3
LI g g

P

¢

Ly

{

1

o

o B

%

o
4

feif 33:%}:13
EFAMT
Lot

e

b

a@j .

3
£

z-é‘q § 4
<

el

iy
|

B
EeE g

gfs%

i

3
£

Figure 1.7 The result after each training iteration when the perceptron convergence

algorithm is used with a simple problem.

Literature Review

.

G P.Fletcher

K Ty s

Limitations Of the simple perceptron mode

"Perceptrons: An introduction to Computational Geometry” [Minsky & Papert, 1969]
provided the most complete mathematical treatment of perceptrons to that date. The
review by Block [1970] states
" The theory is carefully formulated and focuses on the theoretical
capabilities and limitations of these machines... They ask novel

questions and find some difficult answers".

The most important result exposed the limitations of perceptrons and caused a major

shuft in research away from neural networks to other forms of artificial ntelligence.

Minsky & Papert concentrated their work on analysing the limitations of the simple
perceptron model. As the feature detectors are fixed they can be thought of as the inputs
to the model. Therefore the simple perceptron model is really a single idealised neuron
and the training algorithm for discovering the correct weights for its inputs. The best,
and most used, example of the imitations of the idealised neuron was first presented by
them in the book. It shows that a simple perceptron network with limited diameter
feature detectors cannot recognise whether a figure 1s connected, that is if all points ina
figure are connected or are some separate. The left two examples in figure 1.9 are

connected but the right pair are not.

A perceptron network has a limited diameter if each of its feature detectors is only

connected to inputs within an area on the retina (figure 1.8).

Literature Review 9 G P.Fletcher

- CERENNENRNHN

E A NEE N EENNENNERENNDRENHN.
A EEEREEENRENNESH.EHNNJHNN.
LA R R RN R RN ENENRENNSENZN.
LA NN N R E R NENNNENNNNJN.
EE A ENERNENNLY" °

Limited Diameters
for the feature detectors

Figure 1.8 A perceptron model with limited diameter feature detectors.

Figure 1.9 The input patterns used to prove the limitations of perceptrons.

Consider the four patterns in figure 1.9 imposed on the retina shown 1n figure 1.8, If a
perceptron network of limited diameter M is to test for connectivity, where M < length
of the retina then the conjunctive cells fall into three categories.

1) cells that cover the left hand end of the retina

2) cells that cover the right hand end of the retina

3) cells that cover neither end of the retina

Literature Review 10 G P Fletcher

Cells falling into category 3 always see the same input in all four examples and so do
not need to be considered as they present no evidence. The cells that view the sides of

the retina can see two different patterns. Let these cells differentiate between the

Feature Detector Feature Detector
Output = 1.0 Output = 0.0

Figure 1.10 The two patterns seen at the left end of the input retina.

Feature Detector Feature Detector
Output = 1.0 Output =0.0

|
|
patterns returning 1.0 for one of them and 0.0 for the other (figures 1.10 & 1.11).
Figure 1.11 The two patterns seen at the right end of the input retina.
The output to the simple perceptron model is calculated by a single neuron. This neuron }
has two weights and a bias associated with it, let these be W), W, & B. Comparing the
required outputs and the values supplied by the feature detectors over the four examples

we can achieve four inequalities.

1LOWi+10W,-B>0 (1.1)
1.0W,+00W,-B<O (1.2)
0.0W,+00W,-B>0 (1.3)
0.0W,+1.0W,-B<O (1.4)

Literature Review 11 G P.Fletcher

Solving this set of inequalities gives the values of W, W, & B that can correctly
calculate the required output function (is the shape connected).

Adding (1.1)and (1.3) 1.0Wi1+10W, >2B (1.5)
Adding (1.2) and (1.4) 1.0W1+1.0W, <2B (1.6)

(1.5) and (1.6) are inconsistent. Therefore the set of inequalities has no solutions and
there are no possible values of W,, W, & B that can correctly calculate the required
output. This means that a perceptron with limited diameter can never test for

connectivity.

The full perceptron model removes some of the limitations of the simple perceptron
model. In the simple model all cells output a binary output, there are no connections
between cells of the same layer and only the input weights to nodes in the last layer are
modified during training. This limits the number of training examples that can always

be correctly classified.

The full perceptron model

The full perceptron model originally presented by Rosenblatt [1958] contained none of
the restrictions listed for the simple perceptron model. This allows much greater
freedom in constructing the perceptron. As the cells in layer 1 can now link any weights
to the input cells they can compute any conjunction of the input vanables in the retina,
A similar statement can be said for the cells in layer two; that can compute any

disyunction over their inputs,

Any Boolean function can be represented in conjunctive normal form (CNF).
Therefore, if the feature recognition neurons are connected to every cell in the retina,
then the full perceptron model is capable of representing any Boolean transformation

from its input retina to its output cells.

Literature Review 12 G.P Fletcher

Unfortunately at this time there were no traiming algorithms for the full perceptron
model, making the system nearly useless. This more than any other problem caused a
massive reduction in connectionist research between the late sixties and the mid
nineteen eighties. However, another major factor was that Minsky and Papert had

found all the easy to medium results, leaving little for other people to research.
Enhancemen he simple perceptron mode

During the lull in connectionist work there were still some people trying to enhance the
simple perceptron model. One of the major problems of the simple perceptron model is
that it can only compute linearly separable functions. i.e. There must be a straight line
solution between the acceptable and unacceptable inputs., Figure 1.12 shows some non

linearly separable functions.

o e - oe °
oe o
® © oe °
0°%0 © o8
° °
Og O o
PP 0o

Figure 1.12 Non linearly separable functions

Because a problem is not linearly separable over the inputs given does not mean that a
single layer neuron cannot solve it. The problem may be separable over a quadratic of

the inputs. To solve this type of problem it is necessary to increase the number of

Literature Review 13 G P.Fletcher

inputs to the neuron. For example the fourth problem in figure 1.12 could be solved
using a neuron with inputs of X? and Y2 in addition to X and Y. This produces an oval

shaped area as shown in figure 1.13

Figure 1.13 A solution using polynomial inputs.

This sort of neuron is known as a Polynomial ADAptive LInear NEuron or a
PADALINE. They give considerably more power to a single layer network and solve
some of the problems associated with perceptrons. However, it requires the network
designer to decide which polynomials should be included in the network structure or to
use a heuristic method that adds different polynomal inputs and removes others that

offer nothing to the discrimination.

Bac agatio

Work on developing a learning system for multi layer networks faded, but did not die
all together. The method of error back propagation for the solution of mult1 layer
problems was first published by Bryson and Ho in 1969. This work was presented in a
very formal manner and, perhaps due to its inaccessibility, went unnoticed by the
connectionist research community. Due to this lack of publicity, connectionist research
was not revived until it was rediscovered, named "back propagation” and properly

publicised by Rumelhart, Hinton and Williams [1986 a,b].

Literature Review 14 G P.Fletcher

\ Input J

Figure 1.14 The replacement for the threshold function used in back propagation

The idealised neuron used in the perceptron model used a threshold as its activation
function. Back propagation calculates an error for each training example. To do this
neurons must produce a differentiable continuous output. The threshold of the idealised

neuron is normally replaced with the sigmoid function shown figure 1.14.

Consider the function g where g has a parameter P. E.g..

gX)=X+PX?

If we wanted to modify the function g so that it matched some training examples then it
would be necessary to calculate a value for P. If an example told us that g(X) should

equal Y then it is necessary to find the correct value of P such that
gX)=Y

Let the actual result of g(X) = S. Therefore we have an error of E.

E=(Y-9S) (1.7)

Literature Review 15 G.P.Fletcher

The effect of changing P in the value of g(X) can be found by differentiation with
respect to P. Let this be called D.

D = d(g(X)) (1.8)
dP

The error can be reduced by adding the value AP to P where B is a small positive

number and
AP =3.E.D
=8.(Y-5). dgX) (1.9)
dP
Example
g(X) =X +pX? p=0.1 B=05

the correct value of g(1)1s 2.1.

Iteration 1
S =g(l) E =21-1.1
=1.1 = 1.0
D = d(g(X)) AP =05*%1.0*%1.0
dp
= d(1+P.1) =0.5
dP
=1

The new value of P after iteration 1 is
Puew = Pou + AP
=0.1+0.5
=0.6

The table below shows several iterations, notice how the error, E, reduces after every

iteration.

Literature Review 16 G.P.Fletcher

0.1 1.1 1.0 1 0.5 0.6
0.6 1.6 0.5 1 0.25 0.85
0.85 1.85 0.25 1 0.125 0.975

This was a very simple example, but it illustrates how a parameter can be modified in
order to match a training example. Now consider a neuron in a feed forward neural

network.

Figure 1.15 The inside of a neuron. The diagram identifies several intermediate values

used in the calculations.

Here we have inputs, outputs a transfer function and parameters Weightl & Weight2. It
1s the parameters that need to be modified to reduce the errors on the training set,
producing a correct neuron. Using equation (1.9) we get

Awnh =8.E.D

=B.(Y-S). dlg(In, In2)) (1.10)
dWt
where
g(Im, Int2) = sig(Im*Wt1 + In2*Wtz) (1.11)

Literature Review 17 G.P.Fletcher

therefore |

dlg(Iny, Inz)) = d(sig{Im*Wt1 + Inp*Wt))

dwt dwt
= d(In *Wts + In2*¥*Wio) . d(sig(ITni*Wt + Ino*Wta))
dWt: d(In1*Wt1 + In2*Wt2)
=1Im . d(sig(K) (1.12)
dK

where K is the product of the inputs and weights (see diagram). Substituting (1.12)
into (1.10) gives the equation for calculating AWt
AWtH =8.(Y-S).Im.d@ig(K) (1.13)
dK

This rule generalises to give the update rule for all the input weights.

AWte =B6.(Y-S).Im.d(sig(K) (1.14)
dK
or
AWta =B.Ins. (1.15)
where
dn=E . d(sig(K)) (1.16)
dK

Figure 1.16 Part of a feed forward network

Luiterature Review 18 G P.Fletcher

In the network shown the errors of the two right most neurons are known, and the

have no way of improving on the input Wa and Wb. Firstly consider just one of the

right hand side nodes.

Figure 1.17 A small part of the network shown in figure 1.16

The effect of changing S1 on the output of the neuron 1s given by

dg = WI.d(sig(K)
ds1 dK

Therefore to reduce the error we would make the change AS1 to S1
AS1 = B.E1.W1.d(ig(K))
dK

However S1 affects the output through more than one route, 1f we add all the changes
together we get
AS]. =ZB.En.Wn.dI§igIKn“
dK.

Substituting in (1.16) gives

weights W1 and W2 can be changed using the update rule (1.14). However, as yet, we |
AS]. = B 2 Wn .an

This gives the error associated with S1, the weights Wa and Wb can now be updated

using the rule in equation (1.15). Putting all the parts of the algonthm together gives:-
Woew = Woa + AW
AW =8 , Input-to-Node . d

for output nodes
0= (Y-S).d(sig(K)
dK
for midnodes
8 = (Z Wh .an) d£§lg!K“

dK

Literature Review 19 G.P.Fletcher

Back Propagation and the Error Surface

Let Ep be a value that represents the error for training example 'n’, where yp, is the
required output and Sy, is the actual output for example n.

En =1 (Yn- Sp)?

| The total error over the whole training set is E where
E= 2 En

n

If the network gets all the examples exactly correct then the error E is zero, as the
difference between the examples and the actual output increases then the size of E
increases. The onginal papers introducing back propagation introduced this error term
and derived the update rules from it. They also showed that every iteration reduced the
value of E. If E is reduced every iteration then the network must become more correct

after every iteration.

Back propagation changes the network by a small amount in each iteration. It can be
described as performing gradient descent on a function whose parameters are the

weights between neurons and whose result is E.

Problemns with Back Propagation

The largest problem associated with back propagation is local minima. Each iteration of
the back propagation algorithm reduces the value of E. However that does not mean
that there is always a path from the starting point to the global mimmum. Consider the
graph shown in figure 1.18. If the networks started at points A or C then the correct
answer B would be achieved by back propagation. However if E was the starting point

then the best achievable answer would be D. This is because there is no mechanism

Literature Review 20 G P.Fletcher

within standard back propagation that can increase the value of E making it impossible
to climb from point D to C.

Error

B

‘#

Figure 1.18 An example of an error surface in one dimension.

Similarly a very flat plateau on the error surface will canse the algorithm to converge
very slowly. The gradient of the surface is one of the terms in the update rule. If the

gradient is very close to zero then the update will be very small.

Enhancement of the learnin

Back propagation has been one of the major research topics since its publication in the
mid 1980s. Many extensions and modifications have been considered as the basic

algorithm can be exceedingly slow to converge.

Alternative cost functions

~

The update rules were originally derived from the error function

En=12(Yp- Sp)?

Literature Review 21 G P Fletcher

This is called the quadratic error function, but is not the only possible function. It can
be replaced by any function that is minimal when the network correctly classifies the

examples and grows as errors are introduced. Solla et al 1988 used the cost function

En = IYn- Snl

| Deriving the update rules for back propagation gives the equation
d=(Yn- Sp)

for the blame assignment function. The gradient term has disappeared. Since the
gradient term becomes small when IKl is large, leaving it out accelerates progress in
large IKI regions, where the cost surface is relatively flat. On the other hand it gives no

acceleration when the cost surface is more sharply curved- when K is near zero.

Fahlman [1989] showed that a compromise was more effective, he derived the update

rule
d= (Yp-Sp) . (d(sig{K)) +0.1)
dK

This form restores some of the effect of the differential term, but eliminates the flat

spots when IX| is very large.

Finally, we could add parameters to the cost function so as to adjust its steepness
during training. It should be possible to smooth out the surface at the expense of detail,
and then gradually add in the detail as the network attains the correct region of weight
space. One way of doing this is based on the simulated annealing approach [Kirkpatrick
et al, 1983]. Here the sigmoid contains the temperature function T. This term has the
affect of changing the severity of the sigmoid, as is shown in figure 1.19. The larger

the value of T the slower the transformation from zero to one. The new equation is

Literature Review 22 G.P.Fletcher

Output

Input

Temperature

Figure 1.19 The effect of the temperature term T on the sigmoid function.

A high value of T reduces the depth of the minimum in the energy function reducing the
likelihood of getting stuck in them. By slowly lowering the values of T during the

learning the chances of arriving at a correct solution are very greatly improved.

Standard back propagation modifies the weights and the threshold of the neurons.
Using the semantics developed by J. Horejs et al [1993] this is described by BP[W,V]
where

W is the sum of weights

V is the threshold.

in this paper J. Horejs states
"It is clear that by extending the number of parameters and thus the
degree of freedom of the network, we can expect a better convergence

of the algorithm".

Literature Review 23 G.P.Fletcher

By allowing the temperature to be modified by back propagation in the same way as the
weights, BP[W,V,T] a considerable saving in processing was demonstrated. For the
X-or problem

BP[W.,V] 5000 iterations 0.001 sum squares error

BP[W,V,T] 2000 iterations 0.0006 sum squared error

This type of approach shows a lot of promise, though at the moment there are only
empirical results alluding to its success. Work is necessary to produce a theoretical

basis for accepting the gains that the extra freedom delivers before it can be relied upon.

Gradient descent 1s one of the simplest optimisation techniques, but not a very good
one. There are many more powerful techniques available, but most are computationally
intense and are only suitable for initial off-line training. The simplest approach is the
steepest descent line search. Here 1f we are minimising E(x) we find the direction of

steepest descent from the current point, P.

E®)

Figure 1.20 A two dimensional error surface. Q is the lowest point on the line of

steepest descent from point P.

Literature Review 24 G.P.Fletcher

Searching along this line produces the point Q, which is the minimum value of E(x) on

the line. The algonthm is then repeated starting at point Q.
E(x)

Figure 1.21 The following steps after finding point Q in diagram 1.20.

Several different approaches have been published for finding the one dimensional
minimisation of E(x) along the line in a neural network [Luenberger, 1986, Hush and

Salas 1988].

The problems with training come from local minima and plateaux on the error surface.
All the methods described above have attempted to solve these problems. However, a
much simpler approach, adding momentum [Rumelhart and McClelland 1986,Watrous
1987] is commonly and effectively used. The algorithm is to give each weight some
inertia, so that it tends to change in the direction of the overall downhill force and not
oscillate. On a plateau this means that the weights will accelerate, crossing the flat
region much faster. Momentum can also allow back propagation to escape from a

shallow local minimum because it is now possible to travel a short distance uphill.

Literature Review 25 G P.Fletcher

A summary of the feed forward paradigm

Some of the limitations of neural networks, shown by Minsky and Papert in 1969, can
only be overcome using hidden layers. However, a multi-layer model of neural
networks needs an algorithm which 1s capable of resolving the blame assignment
problem for the hidden neurons. The model, back propagation, successfully uses the
differential of the activation function to assign blame, thus producing a gradient descent
optimisation. Back propagation has enabled the limitations of the original perceptron

model to be overcome and is now a useful general learning algorithm.

Many questions remain unanswered, notably those of speed and reliability. Active
research is underway in an attempt to solve these problems by modifying back
propagation or changing the optimisation algorithm. Alternative models that modify the
structure of the network during the learning stage are also showing some promise

[Mezard and Nadal 1990].

Other Neural Models

The models so far described are based on modelling the motor control and perceptive
areas of the brain. The biggest area not covered by these models is probably memory.

The model by Hopfield [1982] is an attempt to fill this gap.

Figure 1.22 A small Hopfield network

Literature Review 26 G.P.Fletcher

Each node in the network is a simple 1dealised neuron with bi-polar outputs. The
network is fully connected, i.e. every node is connected to every other node. Node X is
connected to node Y with weight Wxy, and Wxy = Wyx. A node fires if the sum of its
inputs is greater than its threshold. E.g. Node P4 will fire if

P3.W34 + P1.W4 + P2.W24 > Threshold of P4

If a node fires its output is set to +1 else it is set to -1. When the model is run a random
node is selected, and a test is made to see if, given the values of all the other nodes, the
selected node should fire. The output of the selected node is then set to the correct

value. Another node is then randomly selected and the process repeated.

There will be states in which every node has a correct value given the state of the other
nodes, These states are known as local minima. The aim of the Hopfield model is to

design networks in such a way as to represent memories as individual local minima.

Content addressability is possible in a Hopfield network by setting the values of known
nodes to their correct value. These nodes are never selected for updating as they are
guaranteed correct. By updating the other unknown nodes in the usual way they will
| find the local minima that corresponds to the known nodes. In this way it is possible to

recall a whole picture from a small proportion.

The pictures shown in figure 1.23 have been produced by a 23400 node network,
where each node represents a single pixel. The network has been constructed so that
there are seven local minima that correspond to seven different images. The images on
the right are the minima reached after starting the model with the starting points shown

|

|

in the left hand column. The model has restored the entire image after being presented
with a small proportion of it, this is slow but effective content addressability.

Literature Review 27 G.P.Fletcher

|

Figure 1.23 Images being recalled after storage in a Hopfield network. The network
was constructed to contain 7 different images. By presenting the portion of the image
shown 1n the left column the network restored the rest of the image(right column). The

rmuddle column is an interrnediate step.

nceptual Leap and the Hopfield ener nctio

Conceptual leap 1s the process of building hitherto non-existent links between data
items. The local minima or stored information are local minima on an energy curve, The
Hopfield update rule moves around on the energy curve in the same manner that back
propagation moved on an energy curve. Similar concepts will be close to one another,
for example the two local minima indicated in figure 1.24 are very similar. With

conceptual leap it should be possible for the model to link these two concepts.

Literature Review 28 G P Fletcher

L

Figure 1.24 Close local minima represent very similar concepts.

The mechanism is very simple. Take a network in a local minima, changing some of its
nodes at random, and then let 1t find a new local minimum. The new minimum will
either be the same as the old one or a different but close one. The more random changes
that are made the longer the links that are possible and the more tenuous the link

between the concepts.

Hopfield originally suggested the Hebb rule [1944] as a training mechanism for the
Hopfield model. This can introduce stable states which are not desired. Different
solutions have been put forward for solving this problem. Poppel [1987] suggested a
trial and error method. The weights are modified in order to widen the basin of

attraction of the desired states while reducing that of the undesirable states.

Hopfield [1983] updated his original learning method and introduced the idea of
unlearning. The network is randomised, if the network converges to an “unwanted”
stable state, then weights are modified so as to unlearn that state. This is the reverse of

the original Hebb learning rule.

Literature Review 29 G P Fletcher

Another model of significance is due to Teuvo Kohonen [1984]. The model uses a
standard sigmoid neuron, but does not use back propagation. Instead it uses a

mechanism based loosely on the Hebb rule.

Figure 1.25 Simple four input neuron

The learning mechanism operates as follows; if the neuron receives a signal from
connection i and the neuron fires then W, is reinforced. If the neuron receives no signal

from connection i or receives a signal and does not fire then W, is diminished.

Kohonen was attempting to reproduce the perception systems found in mammals. It
covers the reception of the inputs and the processing of the information within the
cortex. The main characteristic of these cortices is that neighbouring regions encode
similar input signals. Studies have shown that in biological cortices each logical cell
encodes a very specific input pattern [Messenger] and there is a lateral interaction

dependant on distance [Kohonen, 1984].

Neurons in this model are placed in a two dimensional grid. Each node is connected to
every input. When an input pattern is presented the node that gives the highest output
value is found. This node is then slightly modified to make its output even higher,
making the node represent this input slightly more. If each input is shown many times

the neurons will learn to represent all the different types of input. For example, given

Literature Review 30 G.P.Fletcher

an 1nput space of the English vowet letters, a map like that shown in figure 1.26 may be

produced.

Letter Neuron
Responds too
falelald g 1]d 1]a
1 lelolald 10|
elil.

Input Retina

Fully Connected

TLLL
1431

CIoEs

il:

11
11

I EEEEN]

T
111
Ll
) |
JILLLY

Figure 1.26 The type of map produced when no lateral connection is used in training.

Each neuron has leamnt to respond to one individual input, but the model called for
similar inputs to be classified by adjacent neurons. This is achieved by training every
neuron for every example by a factor, 1. The higher the value of p the more the neuron
is trained to correspond to the input. The best neuron still wants to be trained by the
same amount as before so for this neuron p =1. Neurons that are adjacent to the best
neuron need to be trained slightly less, and neurons that are further away less still. The
most common function for p against distance from the best neuron is given in figure

1.27, this is known as the Mexican hat function.

Literature Review G P Fletcher

Distance from strongest
neuron
:—-\ -

Figure 1.27 The Mexican hat function

This type of lateral influence between the nodes in the map encourages nodes close to
each other to respond to similar inputs and those further away to different ones. The

resultant map for the English vowels looks something like

Letter Neuron
Responds too
Input Retina
LLL1 L1l A C
: : Fully Connected |_
|
: c \
C |
u E

Figure 1.28 The type of map produced when lateral connections are taken into

consideration during training,

Literature Review 32 G.P.Fletcher

Now, instead of the neurons responding to each of the letters being distributed across
all of the output nodes, neurons corresponding to the same letter have grouped
together. This model is most interesting because it 1s an example of unsupervised
learning. The neurons have spread out to cover the whole of the input space. The
examples contained no indication of what the outputs should be, directly contrasting

with the back propagation and Hopfield models.

Applied research

The vast majority of research work since the advent of back propagation has been in
applying the technology to problems and faster implementations of the existing
algorithms on parallel machines and dedicated hardware. By comparison, further
theoretical development and improvement of the algorithms has been limited to a few
small centres. To give an idea of the current uses of neural networks some applications

and the papers that present them are listed:

Speech: NETTALK Sejnowski and Rodenberg [1986] developed a
network capable of taking written English and producing the phoneme codes required
for speech. The success rate was approximately 80% with general English text and was

understandable by a human listener.

Adaptive control: Grant and Zhang [1989] developed a network capable
of solving the pole balancing problem. This problem is only a toy example but
demonstrates all the requirements for developing full control systems for industral

systems.

Forecasting: A share price prediction system. Using data on the
fluctuations of a single company the network was able to predict the future changes

with a precision of 80%.

Literature Review 33 G.P.Fletcher

There are also many thousands of other uses but 1t is hoped that the three given show

the breath of applications currently under active research.

| Engineering Considerations

Even though neural networks are being used in wider and different applications every
day there are still some major limitations, Perhaps the largest of these is the amount of
trust that can be placed on the hypothesis constructed by a neural network. Messom
[1992] produced a systematic method of designing the architecture in an attempt to
increase the quality of the engineering involved. This goes some way towards
guaranteeing the suitability of the hypothesis as 1ts shape is bound by the network
architecture. If the network architecture does not match the needs of the problem then
the hypothesis cannot be of the correct shape. The learning algorithm cannot overcome

hardware implementation errors. Consider the following problem

A

O00O0

0000
0000
00—

Figure 1.29 The difference between a two and one dimensional implementation.

A node is required to calculate a linear threshold on a single variable input. If a one
dimensional implementation is used then this can easily be used, but the two

dimensional version requires the weight on the second input to be exactly zero for a

Literature Review 34 G.P.Fletcher

correct answer. This is very difficult to achieve. The answer will probably be correct

almost all the time but cannot be guaranteed.

There are two differing opinions about how to spread the information about the
networks. There are those that favour a localist representation where each node
corresponds to a meaningful concept and others that view a distributed paradigm as
correct. While I believe that the distributed paradigm is biologically correct, I think that

the advantages of the localist representations outweigh the disadvantages.

Distributed representations have a major advantage in robustness. Damage to the
system causes a slow degradation of performance as the quantity of damage increases.
Localised systems collapse catastrophically when they are damaged. The best example
of a distributed system is the brain, which can recover and continue to work after

severe injuries.

The major criticism of distributed systems is the unintelligibility of the hypothesis. With
a localised paradigm it is sometimes possible is assign meanings to the nodes. However

as the networks grow in size beyond several different layers it can be very difficult.

Hinton [1990] expresses the view
"... the problem is to devise effective ways of representing complex
structures in connectionist networks without sacrificing the ability to
learn the representations. My own view is that connectionists are still a

very long way from solving this problem...".

Effective representation of the network as Hinton asks for will be a major step towards
provability of the hypothesis, which in turn I think will allow the connectionist

approach to be used in environments hitherto hindered by a lack of trust.

Literature Review 35 G P.Fletcher

Figure 1.30 The training set used in the two spirals problem

A good example of a problem that does not produce a perfect hypothesis is the spiral
problem. The aim is to correctly classify points as being on the black or the white spiral
using a network which has only two inputs, the X and Y co-ordinate of the point. The

network used to implement this problem is shown below

Figure 1.31 The network used in the two spirals problem. Only the connections from

the darker shaded nodes are illustrated.

Each node is connected to every node in every subsequent layer. So the X input 15

connected to every node in layers 1, 2, 3 and the output node. In the diagram only the

Literature Review 36 G P Fletcher

connections from the darker shaded nodes are drawn. The diagram below shows the
output values for each X and Y pair in the input space after the network has been
trained. While the network returns the correct value for every training example the
network is not an exact representation of the spirals. The hypothesis may be good

enough for most applications but must be improved upon for safety critical work.

Figure 1.32 The output function of the network used in the two spirals problem.

Summary

The study of neural networks originates from the biological sciences. Artificial neural
networks were originally developed as a mathematical model of the activity within the
brain. This chapter started by exploring the link between early models and their

biological foundations.

The first major step forward came with the simple perceptron model; the simple
perceptron model could be trained effectively. This encouraged a huge amount of work
by many different research teams leading to several different models of different areas
of the brain (the Hopfield and Kohonen models). One of the groups working with the

perceptron model were attempting to explore the limitations of perceptrons. Minsky and

Literature Review 37 G P Fletcher

Papert showed that a simple model had many limitations and that a multi layer model
would be needed for most problems. As no effective training algorithm existed for
these models many people turned towards more promising research and the study of

artificial neural networks died.

In the mid nineteen eighties the training problem for multi layer models was solved, and
widely publicised. The back propagation algorithm once again revived research in this
area. More recently the considerations of correct engineering have started to affect the
design of the networks. Chapter Two of this thesis considers these problems in more
detail, showing the motivation for the research contained in chapters Three Four and

| Five.

Literature Review 38 G P Fletcher

MOTIVATION OF STUDY :
CHAPTER 2

Qutline Of Chapter

The study that is presented in this thesis is motivated by the lack of reliability that can
be placed on a trained neural network. The lack of formal design tools in neural
computing has led to the advent of many ad hoc approaches, such as the oversupply
and reduction of neurons [Tanii et al. 1989]. These techniques lead to networks that
correctly classify their training sets, but no knowledge about their general internal

representations has been gained during training.

Neural network training has been well studied, while network reliability and
interpretation has received little attention. This chapter examines the elements of a
neural network system that are important when verifying its actions over an input
domain not in the training set. The differences in verifying correctly engineered and
"ad hoc" networks are discussed. Having provided the motivation for the
investigations in this thesis an outline of the contents is given, highlighting the new

contributions to the field.

Design and Verification

Neural systems have been used in many sitnations, such as pattern recogmtion [
Rummelhart et al. 1986], fault detection [Govekar et al. 1989, Venkatasubramanian &
Chan 1989] and industrial control [Anderson et al. 1990 1991, Jalel at al 1991]. In all
these fields is is important that the neural system correctly models the physical
properties over the whole operating domain and not just over those elements that
appeared in the training set; consider the consequences of producing a network that

misclassifies faults on parts that go on to become part of a safety critical device (such

Motivation of Study 39 G P Fletcher

as an aeroplane) or a network that acts incorrectly when faced with unusual

circumstances as the controller of a chemical plant.

: There has been work studying the properties of neural networks [Rummelhart et al.

1986, Minsky et al. 1969, Rosenblatt 1962]. More recently most of the research has
I: switched to reporting the implementations of problems using neural networks [Bailey
et al. 1988], but there has been little work presenting nigorous design or verification
techniques. A general methodology for both problems is needed before neural
systems can be successful and become an accepted and trusted problem solving

technique in the industrial, technical and commercial domains.

Some design methods have started to be developed [Messom 1992]. The use of such

methods significantly simplifies the internal representation of a neural network. In

away from the idea of a distributed hypothesis. Damage to a designed net is
catastrophic as opposed to the slow degradation seen in other neural systems.
However, given that damage to the network is unlikely in an industrial setting

verification would appear to be a more important goal.

essence a designed network assigns a simple concept to each neuron, thus moving
Verification and design are strongly interdependent. It is very difficult to verify an ad
hoc "hacked" network, and there is little point designing a system if there are no
acceptable methods for checking the design. A greater need for verification will help |
to force the use of a rigorous design methodology in the same way that full software ‘
verification has forced the nse of formal methods in software engineering. When
designers and customers alike can compare the clean and elegant representation

derived from a properly designed network compared to that from an ad hoc system

there will be much greater pressure for their use.

Motivation of Study 40 G P Fletcher |

Network Structure

Neural systems have a topology. This topology heavily influences the hypothesis that
the network can derive. The design systems aim to calculate the correct topology for a
given problem. It has been repeatedly stated in this chapter (and shown later) that
large networks are harder to analyse. As part of a design analysis and verification

system some attention should be given to the size of the network.

Many researchers have looked at network topology [Messom 1992, Tanii et al. 1989].
One area that has not been so popular is the topology within a neuron. Horejs et al.
[1993] showed that by changing the stgmoid function dynamically they could alter the
learning algorithm. Others have shown that modifying the activation function can
produce faster learning. If the topology inside the neurons can alter these
characteristics then correct selection of an activation function could reduce the size

required in a network.

Thesis OQverview

This chapter has argued that there has been a lack of research in the design and
verification of neural networks. The previous work that has been undertaken has
concentrated on designing Boolean classification networks. It is these networks that

are currently most common as control or classification systems.

Chapter three of this thesis looks at how Boolean classification can be analysed. It
deals with some limited work presented by Mihalaros [1992] and then goes on to
describe a more robust system. A neural network can implement very complex
hypotheses. The chapter also looks at how to simplify the ideas extracted from a
network, so that they can be used to verify the network or generate more examples to

correct the errors.

Motivation of Study 41 G P Fletcher

Boolean classification does not always lend itself to the "Rule extraction" method
described in chapter three, Image recognition is one example where a rule has very
little meaning. Chapter three closes by considering how these types of problem could

be examined.

Whereas chapter three looked at analysing a designed network, chapter four deals
with one of the areas not fully explored in the design tools. It considers the internal
structure of the neurons that make up a neural network. The aim is to reduce the

number of neurons required to correctly model a physical system.

Chapter five also attempts to fill a hole in the current design tools. This chapter looks
at how to build a network for modelling Real valued functions, not the simpler
Boolean functions. Between the three chapters the analysis of a large class of

| networks is covered and several holes in the design tools filled.

Motivation of Study 42 G P Fletcher

THE ANALYSIS OF
TRANSFER FUNCTIONS

Chapter 3

QOutline of Chapter

The chapter starts by explaining the concept of representing the action of a neuron as a
form of Boolean function. The chapter proceeds by introducing some of the previous

work in this vein, analysing it to show several faults.

Boolean functions are adopted as a representational framework, and a fast algorithm is
presented for derving the transfer function. These functions are then used to convert a
neural network into a rule based system. The rule bases are then simplified using
techniques similar to noise reduction in image enhancement to extract information about

the internal hypothesis of the original network.
The limitations of rule induction from networks are identified and then demonstrated.

An approximate solution 1s shown for analysing networks that are too big for precise

analysis.

The analysis of transfer functions 43 G P.Fletcher

Boolean representation of a neuron

Neural networks are able to accept continuous valued inputs. In the idealised neuron
model, thresholding means that all transformations beyond the first are Boolean
transformations, whereas the first layer may be regarded as a quantisation layer. The
quantisation layer splits the input space into regions which are then combined logically
by the subsequent layers. In attempting to analyse neural networks only the
transformations of the second and subsequent layers are addressed; the first layer may
be interpreted as the results of relational operators comparing real valued inputs. The
first layer results can be stored as a set of inequalities which can be substituted into the

analysis of the later layers.

The use of a sigmoid function in later, more powerful models changes the view of
thresholding somewhat. However, with a fully trained network the sigmoid function
will behave as a very close approximation to the threshold function. There are two

reasons for the close approximation to the threshold function :-

D As the networks hardens the weights grow in size. This
makes the range of inputs for which the output is not

close to Boolean very small.

2) If simulated annealing is used to speed up training then
as the temperature approaches zero the activation curve

becomes very close to a threshold.

The analysis of transfer functions 44 G.P.Fletcher

Booleans through truth tables

1t is possible to produce a correct Boolean representation by applying every possible
pattern to the inputs of the network, calculate the matching output value for each one
producing a truth table. This truth table can then be turned into a Boolean function
using an algorithmic implementation of Karnaugh maps [Dowsing et al, 1986]. Both
stages of this method have a time complexity of 0(2%), giving a total time complexity of
2+, The time complexity is prohibitively large, preventing this approach being used

on any reasonably sized network.

O and A operators

Although a threshold neuron can always be represented as a Boolean function, the form
of this function cannot be restricted to a representation where each mnput variable is
mentioned only once. The interest in such representations stems from scalability, as the
search space for the correct Boolean function grows exponentially as the number of
inputs rises. If a set of operators can be found that represents any neuron while
mentioning each operand only once, then an effective algorithm could be produced for

finding a concise representation.

Previous investigations into this problem used a piece meal approach, splitting off the
Boolean problem space into a class of operators which are referred to as the O and A
operators as they are generalisations of OR and AND. This produced interesting results
on small test data sets in two dimensions, but work presented in this chapter shows

they fail to generalise properly to problems in higher dimensions.

The analysis of transfer functions 45 G P.Fletcher

The problem space covered by the operators was shown to be complete in up to three
dimensions by Mihalaros [1992] and therefore to provide a means of representing all
possible neurons with an input dimension of three or less. This work by Mihalaros
presented no complete analysis of how to find the O-Operator that matched a general
neuron, or even if all possible neurons in higher dimensions were covered. Perhaps
more significantly, and what encouraged further work, is that the traditionally hard
problem of n-input parity neural networks can be simply represented using O-Operators

[Messom 1992].

Structure of O and A operators

An O-Operator 1s a Boolean function (therefore it can only evaluate to True or False)

and is written

Onm(Ih L] Im)
where the evaluation is TRUE if at least n of the m inputs are true. For example a three
input "OR" function (I, v I, v I;) could be represented as

OY(L,, I, I)

In another example the O-Operator
OZB(ID IZs IJ)

is one representation of the Boolean function

GAL)VI AL VI AL)

The analysis of transfer functions 46 G.P.Fletcher

The A operators are effectively the complementary function based on AND,
Anm(IIs nery Im)

for example

Aly(ly, I, I)

The evaluation is true if at least 1 input is TRUE from every combination of n inputs,
is a representation of the Boolean function
I ALAL)
and
|
ANI;, L, I) |
is one representation of the Boolean function |

GvL)AadvE)Alv)

The analysis of transfer functions 47 G P Fletcher

Matching a general neuron to_an O operator

All the calculations shown in this chapter assume that the neuron has outputs in the
range O to 1 as opposed to -1 to 1. The choice of 0..1 neurons simplifies many of the
arguments and proofs. As 0..1 and -1..1 neurons are isomorphic the proofs are equally
valid for -1..1. The possible functions that can be represented by a single neuron of
this type fall into distinct groups. Each of these groups will contain exactly one natural

neuron and possibly some real ones. Where we define Natural and Real to be :-

Natural: All the weights and the bias of the neuron are positive, 1.e.
The activation function is Wi*Inputi + W2¥Input2 + ... +Wn*Inputn > B and

W120,W220..Wn20,B20.

Real: At least one of the weights or the bias of the neuron is negative, i e.
The activation function is Wi*Input1 + W2*Input2 + ... +Wn*Inputa > B and

Wi<QorWa2<0or..or Wn<0orB<0.

The O-Operator representations of all the neurons in a group are simular, the only
difference being that for a real neuron some of the input variables will be negated. All
the O-Operators below represent neurons in the same group, the first is the natural

neuron, subsequent O-Operators represent some of the real neurons.

0%(A, B, C,E,U) - The Natural Neuron
0%(A, =B, C,E,U) - A Real Neuron
0%(A, B, -C, —=E,U) - A Real Neuron
0%(~A, =B, =C, -E~U) - A Real Neuron

The analys1s of transfer functions 48 G.P.Fletcher

One way to match a real neuron to an O-Operator is to convert the real neuron into a
similar natural neuron. Matching this new problem to an O-Operator gives a solution
that can be modified to represent the original problem by negating some of the inputs,

This means that the target of matching a neuron to an O-Operator has been reduced to

two separate problems:-

1) How to find the solution for a real neuron by solving a similar natural one.

2) How to find an O-Operator that matches with a natural neuron.

Finding the solution for a real neuron by solving a similar natural one

(S

g
=
TR S

o
FR

P
0 0.5 1.0
Input 1

Figure 3.1. A two dimensional neuron with one negative and one positive weighted

mput, represented as a hyperplane on the graph.

The shaded region 1n figure 3.1 is represented by the inequation

Input2 - Input 1 2 0.5

The analysis of transfer functions 49 G.P Fletcher

To convert this representation of a real neuron into a natural form it is necessary to
remove the negative weight without affecting its Boolean characteristics. The negative
weight associated with Input 1 can be modified by moving the origin of the axis to
position (1,0) and then reflecting them. The equation for the graph using the new axes

is

Input 2+ Input3 2 1.5
where

Input 3 =—Input 1

This gives a new diagram shown in figure 3.2. If an O-Operator, F, is found for this
new neuron then all instances of Input 3 in F could be replaced by —Input 1 to give a

correct solution for the onginal problem

R 1.0
i W"g Input 2
0.5
-t 0
1.0 0.5 0
Input 3

Figure 3.2. The transformed hyperplane with all positive weights.

The analysis of transfer functions 50 G P Fletcher

Any inequality can be converted in this way. In general let the original inequality be

WIII + WzIz +.....

Let the new inequality be

Wi, + W, + ...
then

Wa = lw|

D=B - Li(w,)
Where

+wid;>B

+WJI,>D

- {0 ifX20
" Xifx<o

How to find an O-operator that correctly represents a natural neuron

The function represented by the natural neuron can be illustrated on a layered graph that

represents the possible Boolean input space. The nodes of the graph are connected if

they differ by only one input and are on the same layer if they have the same number of

inputs set to true (figure 3.4). The four dimensional function shown in figure 3.3

would be represented as the graph shown in figure 3.4.

Il 010101010101
Inputs 12 001100110011
13 0 00011110000
14 000000001111
Cutputs 000100010001

Figure 3.3. An arbitrary four dimensional linearly separable function.

The analysis of transfer functions

51

QG P Fletcher

Figure 3.4. The four dimensional function tabulated in figure 3.3 shown as a graph.

- 11115

Figure 3.5. The darker shaded nodes represent the infimums of the shaded nodes in

figure 3.4.

The analysis of transfer functions 52 G P.Fletcher

Only graph nodes that have no children need to be represented in the O-operator; we are
only interested in infimums. The threshold is an "at least function" and the infimums
are the "least” elements. Finding the O-Operator for these nodes automatically covers

the others. Figure 3.5 shows the set of infimums taken from the lattice shown in figure

34.

Each of the infimums on the graph can be represented by an O-Operator
O, ... 1)

where I, ... I, are the inputs that are set to one in the required node. e.g. if the required
infimum is (1,0,1,1) then the O-Operator is
033(11’ 13» Id)

Where there is more than one infimum any one of them is sufficient to cause a TRUE
evaluation. If there are Z infimums than the O-Operator
01(0°4(A ... Ayp), O25(By ... By, <oeeey OZ2(K ... Kiz))

correctly represents this property. This O-Operator needs to be simplified in such a way
as to remove multiple references to the same input. Some of the transformation rules

given by Mihalaros [1992] can be used to achieve this.

1]
»e

[V O 10:9

The analysis of transfer functions 53 G P Fletcher

2) Otd(onn(lal, Ibl) ares Onn(Iad aree Ibd)) = O"m(D
where I = {I, .. Im} and all possible sets of n elements from I were the

operands for one of the original O-operators.

This rule represents the main power of O-Operators, the ability to

represent some complex Boolean functions very simply.

3) OL(Ot(]y) .. O 4(19)) = OR(X1,X2y won $Xi1, OO (1)) .. Oy(Ta)))
where I,....]; are sets of operands,
LnLnLn.nl={x,X X1}
T =Tw - {X1,Xa, v 1 Xp1}

Iy =0, - |{x,,x2, ,xk_.}l

Rule 3 removes common operands from the infimums. If a set of
operands appears in every infimum then they can be simplified so that

they only appear once in the equation.

The analyss of transfer functions 54 G P Fletcher

4) Old(onlnl(Il) . Ondnd(Id)) =
0L (01 (Ortu(y) .. O, (L)), O1b(OvetDogasny(I,y)) .. O, (1))
where I,....I; are sets of operands,

d=a+b

This rule is splitting the problem into two smaller problems. As the aim
of the simplification is to remove multiple references to input variables
this rule should not be used if

LuvLhuhuw)Nnpyuilnu.ul)2z0

Doing so in this case causes references to the same variable in both sub

problems, where there is no way of recombining them.

The other transformation rules presented by Mihalaros[1992] esther introduce or rely on
a combination of an input and its negation. In the representation of a neuron it is not
possible for a variable and its negation to appear in different infimums, we also do not
want to introduce a variable's negation as we are then using two references. All the
other rules are not suitable for use when trying to remove multiple references. If none
of the first four rules can be used on the current O-Operator then no further

simplification is possible.

The analysis of transfer functions 55 G P.Fletcher

Exampl

Calculate the O-Operator for the four dimensional function with the infimum nodes
(1,1,0,0) and (1,0,1,1). The O-Operators calculated for the two infimums are
0% (1,) & 0% (1, 1, 1)

making the starting point for simplification
0,(0%(;, k), 05(,, I, 1)

Step 1 Applying rule 3 gives
0%(1,, 01 (0!, (I), 0% (I, L))

Step 2 Apply rule 1. There is now no more simplification necessary, the final

answer is

O%(Iy, O%(T, O%(1, L))

The analysis of transfer functions 56 G.P Fletcher

Ex 1

Calculate the O-Operator for the four dimensional function shown in figure 3.6.

Figure 3.6. A four dimensional function.

~

The three infimums are (1,1,1,0) , (1,1,0,1) , (1,0,1,1). Therefore the starting O-

Operator is

OL,(0%(1,, I, 1), O%(LuIo L), O%(115,10)
Step 1 Applying rule 3 gives an answer of

OzZ(Ih 013(022(:[2’ 13)1 022(121 Id)s 022(131 Id)))
Step 2 Applying rule 2 gives an answer of

022(111 023(12’ IJ! 14))

The analysis of transfer functions 57 G P Fletcher

Counter example of O-operator_completeness

For the function represented by the graph

Figure 3.7. A four dimensional function that cannot be represent by O-Operators.
The infimums are (1,1,0,0), (1,0,1,1) and (0,1,1,1). Therefore the initial O-Operator
is

01(0%(I1, L), O%(Iy, Is, L), O%(L, I, L)

None of the first four rules can be applied for the following reasons:

Rule 1: There is more than one O-Operator in the group.

Rule 2: Not all the values of n are the same.

Rule 3: No operand is common to every member of the group.

Rule 4: The group cannot be split as every member would be in the same
subgroup.

The analysis of transfer functions 58 G P.Fletcher

Therefore the function cannot be represented without using a negated version of one of
the inputs, breaking the restriction of multiple representation. An exhaustive search of
all possible 4 input O-Operators provides an alternative verification. As the function is
linearly separable it can be represented using a neuron. Therefore O-operators are
incomplete. Unfortunately the incomplete elements of the O-operator are not
representable using A-Operators, as O and A operators are only transformations of each

other [Mihalaros, 1992].

It has been shown that O-Operators are not complete for four or more dimensions and
cannot, in general, be used to analyse networks in higher dimensions. Where it is
possible to use O-Operators they provide a concise and clear representation and are
ideal for large networks with a low connectivity. Unfortunately, as the number of
dimensions increases the proportion covered by O and A operators falls until they are

virtually useless.

Boolean functions as the representation

O and A operators are incomplete, they do not have the flexibility to represent all
possible neurons. The aim of finding some form of representation that mentions each
input once is, in the authors opinion, basically flawed. A more general technique must
be adopted. The best understood technique for representing logical functions is
traditional Boolean Logic. Although the representation for a complex neuron can grow
unacceptably long, Boolean logic can still provide a powerful tool. The aim of the next
section of work is to produce a system for analysing neurons in terms of a Boolean

rule,

The analysis of transfer functions 59 G P.Fletcher

Converting natural neurons to Boolean functions

Natural neurons can be turned into Boolean functions with relatively little effort. It is
necessary to find which sets of inputs are the minimum required to fire the neuron
(these are the same infimums that it was necessary to model when using O-Operators).
This problem is similar to the classic knapsack problem which has an exponential time

complexity .

16

Input I1
Input I2
Input 13

Input I4

Bias

Figure 3.8. Representing a natural neuron as a knapsack problem where the input

"parcels” are fitted into the bias "package".

Instead of trying to find the set of inputs that exactly fits the bias, the required answer is
all the sets of inputs that just exceed the bias. For example in figure 3.8 (I, & L)) just
exceeds the bias, as 9+7 > 14, but if either of the inputs were to be removed then the
total falls below the required threshold, (I, & I; & I,) does not just exceed the bias as
removing I; would not make the total fall below 14. The complete set of infimums for
the problem shown in figure 3.8 is

L& 94+6>14.

L&l 9+7>14.

L&L&L, 4+6+7>14.

The analysts of transfer functions 60 G P.Fletcher

This represents the required Boolean function and can be transformed easily to the

conventional Boolean format:

GARVIG AL VI ALAL)

An algorithm to produce one part of the result is given as a pseudo code procedure
below. By backtracking the procedure it is possible to dernive each part in turn until all

the infimums have been produced.

knapsack (Array_of_Inputs, Bias, Answer)
If Bias 2 0 then
for each element, X, in Array_of_Inputs
New_Array = All elements after X in Array_of_ Inputs
knapsack{New_Array, ({(Bias - X), Sub_Answer)
Answer = append([X], Sub_Answer)
else
Answer = [}

end

Complexity analysis of proposed system

Let C(X) be a measure of complexity proportional to the time taken to calculate the
answers. To produce an answer when there is one weight requires one call to the
algorithm.

C(i)=1

To produce an answer when there are two weights requires two calls to the algorithm.

C(2)=2

The analysis of transfer functions 61 G.P.Fletcher

To produce an answer when there are N weights requires P calls to the algorithm.

CN)=P

where P is the initial procedural call plus the sum of the recursive calls made to solve
each sub problem. The algorithm produces N-1 subproblems for a problem with N
inputs. The subproblems are smaller knapsack problems over the last X origmnal inputs

for X = (N-1), (N-2), .., 2, 1.

A
CN)=1 +Z C(A)

I N1

CNy = 2%

The worst case time complexity for the solution of a natural neuron is O(2™'). This is
still exponential, but unlike the exhaustive search method described earlier this can be
reduced further, or left with a complexity saving of approximately four times compared

to the O(2M+) of exhaustive search.

Methods of reducing the complexity

The algorithm will only start to approach the maximum complexity when most of the
weights are required to make the neuron fire, i.e. the decision hyperplane is a long way
from the origin. This means an improvement can be made on solution time by moving
it closer. If the hyperplane is closer to the opposite corner of the unit hypercube than
the origin then viewing the problem from the opposite corner and solving the opposite
problem is more efficient. Reflecting the axis along the line y = 1-x will bring the
hyperplane less than half way from the new origin. The procedure will then need Iess

recursive loops to find its answers.

e.g.

The analysis of transfer functions 62 G.P.Fletcher

- 5 Whod g Y o Tomnr e g 9t rgied e T EE Y G e
R AT P T S R TR e & ey
- T g T el g pesle T RE T T e
[SREENTe P e e g v o T o S s .
K 2, in N &, x
o §oEAE T B wwl W PO TL A T aied nEE
\ - £

o P AR e P e -
- e R R, TEOR e B W Hi i
o g 7w s g & H Y AE ._::&
o - % . T A
3, L b L o oy
s, P I % N
g e e @ P W'
A
chy e v
_ w7
v
.

-

Figure 3.9. Example of a hyperplane implemented by a neuron requiring reflection.
The neuron in figure 3.9, let us call it P, represents a hyperplane that is more than
halfway from the origin (d1 > d2). Let G be second neuron such that

G= P

and then rotate the axis so that G is Natural, figure 3.10.

Figure 3.10. the hyperplane shown in figure 3.9 after reflection.

The analysis of transfer functions 63 G.P.Fletcher

We know d1> d2 therefore the hyperplane is less than halfway to the opposite corner.
Once the Boolean function for G, B(G), has been calculated the Boolean function for P
is —B(G). Using this method it is possible to find the solution for long problems in a

vastly reduced time.

When to solve the opposite problem

It has been stated that the problem should be reflected if the hyperplane is more than
halfway to the opposite corner of the unit hyper cube. The problem of decidjng what
constitutes being more than half way from the origin is not simple. The obvious, and
best method, would be to decide if more than half of the volume of the hypercube is cut
off from the origin by the hyperplane. This can seem a very complex task, but analysis
shows that if the boundary is flat, which it must be as it is a single hyperplane, then the
side of the hyperplane with most volume is the side that contains the point exactly in the
centre of the cube. Therefore to test if reflection is necessary it is only necessary test to
see if the point halfway from the origin 1s above or below the hyperplane. If it is above

then no reflection is necessary, otherwise reflect. To perform this test, reflect if

ZWeightg < Bias
2

The analysis of transfer functions 64 G.P.Fletcher

Forcing the derived expression into a2 minimal representation

The algorithm so far descibed will return a correct solution. For the purposes of a
useful system the returned answer must not only be correct but also minimal. This can
be achieved by sorting the weights into decreasing size before entering them. A further
advantage of this is that sorting is a good heuristic for reducing the average processing
time to find the solution (figure 3.11). Let the input to the algorithm be weights

Wi, W,, Ws, ... Wy

and the bias value B. The mistakes that cause the answer to be non minimal occur
when

Wi+ Wot+ Wik, +Wn >B [3.1]

W+ Wit ... +Wn >B [3.2]

Because the algorithm stops as soon as the bias is achieved

Wi+ W+ Wit +Wn -Wn <B [3.3]

If the weights were in sorted order then

Wi>Wn [3.4]

Substituting [3.4] into [3.3] gives
Wi+ Wot+r Wit . +Wn -W1 <B
W+ Wi+ .. +Wn <B [3.5]

which contradicts [3.2], therefore, if the weights are sorted, the two requirements for

added complication in the answer cannot occur.

The analysis of transfer functions 65 G.P.Fletcher

Number of iterations to find solution
2880

2640

2400

2160

1920 Unsonrted
Weights
1680 \

1440

1200

Figure 3.11. Comparing the speed of execution with sorted and unsorted weights.
Although the lines appear close together the steepness of the curve masks a decrease in

calculation time of 30 percent for the 12 input problem.

Examples of Boolean function derivation

Example 1

Consider the neuron in figure 3.12 representing a neural network implementation of a

two input OR gate.

\

\

|

\

|
“ s [7 [) 10 11 12
Number of Inpuis

|

|

Bias = 0.63

Weight =0. Weight=1.2

Figure 3.12 A two input OR gate implemented as a neural network.

The analysis of transfer functions 66 G P.Fletcher

This neuron implements an OR function. Applying the algorithm to find the minimum
inputs to fire this neuron shows that either A or B on their own will cause the neuron to
fire. Therefore the Boolean transfer function is

A vB

Exampl

A more complex example is the case of three dimensional parity. A neural network to

calculate this function is shown in figure 3.13. The Boolean function for each neuron

is calculated separately
O=H H=GVF
G=—|(—IAV—|BV—|C) F=—|(—|DV—|E)

D=—~(AAB)VA{AAC)V-(BAC) E=AvBv(C
combining these gives
O= —~-Av-Bv-0Qv
—~A~(—(AAB)Vo(AAC)v=(BAC) v=(AvBv())

]

Figure 3.13. Implementation of three input parity as a neural network.

The analysis of transfer functions 67 G P.Fletcher

Application_of Boolean rule extraction to rule induction on an adhesive
dispensing machine controller

This application is the dispensing of adhesive in the manufacture of "mixed technology”
P.C.B.s in which through hole and surface mount components are present on the same
board. The surface mount components are secured to the board, prior to a wave
soldering operation, by a small (0.0002 to 0.005 ccs depending on component) amount
of adhesive. The amount of adhesive dispensed is critically dependent upon several
process environment variables, (e.g. temperature, humidity, erratic thixotropic
behaviour of the adhesive, ar bubbles 1n the flow and variations in the P.C.B.

substrate).

The dispensing unit consists of a syringe of adhesive coupled to a pressure control unit.
The unit is made up of a solenoid valve, pressure regulator, temperature sensor and a
pressure transducer to monitor the variation of pressure within the syringe. The
dispensing unit is fixed to a SEIKO RT3000 robot which moves the syringe to
locations of the P.C.B. where the adhesive has to be dispensed. Feedback data
collection is carried out by an image processing system (Imaging Technology ITI151)

coupled to a Pulnix TM-460 CCD camera incorporating a magnifying optical system.

The system consists of four processors (one SUN, two Target processors and one
robot processor) with a pipeline vision processing system attached to the VME bus of
the SUN. Communication between the software modules is either via the VME bus,
serial line communications or the UNIX sockets mechanism. The "in-house” built
Target was designed to allow the cell controller software, developed on the SUN to be

ported to a "black box" solution suitable for an industrial system.

The analysis of transfer functions 68 G P.Fletcher

Messom et al. [1992] produced a neural network system for controlling the adhesive
dispensing machine (figure 3.14). This is the sort of problem that has typically been
tackled by the use of a rule induction package. The trained neural network should

therefore be equivalent to a set of rules that could have been leamnt by such a package.

J-
o

A

|
-]
|
o

- o
) 8 g
= . E =
= 2 = E
2w ml =
- 2 =
ol oo e frid
g F -] "
b= 2 %% E R
= "0 i e
gl I i
3 3 :
2 4
@ & 2
c2 i

2 s ¢ ¢ ¢
2 = ha)
5 m' a =
2 o a w
$ 5 : g
a o. o

a

Figure 3.14. The net implemented by Messom et. al. for controlling a gluing machine.

The first layer of neurons receive real valued inputs, but produce outputs that are very
nearly bi-polar. These neurons are effectively quantifying the input region, and are
therefore called quantisation nodes. The actions of the quantisation nodes are described
as a set of inequalities. This step does not simplify the information but does display it in
a manner that is much more natural to read than a set of weights on a diagram.

Examples of the rules resulting from these inequalities are show in figure 3 15.

The analysis of transfer functions 69 G P.Fletcher

IF rise_time <1.25
THEN nse-timeflag

ELSE —rnise_timeflag

IF pulse_width < 1.0429
THEN pulse_widthflag
ELSE —pulse_widthflag

IF area > 1.0258
THEN midnode 1
ELSE —mdnode 1

IF pulse_height < 1.025
THEN midnode3
ELSE —midnode3

IF area_change < 0.5500
THEN midnode5
ELSE —midnode5

IF fall_time > 1.1
THEN fall_timeflag
ELSE -fall_timeflag

IF boxarearatio >
THEN boxarearatioflag
ELSE —boxarearatioflag

IF area > 0.9722
THEN midnode2
ELSE —rmudnode2

IF pulse_height > 0.975
THEN midnode 4
ELSE —mdnode4

IF area_change > 0.4499
THEN midnode6
ELSE —midnode6

Figure 3.15 The rules representing the first layer of neurons from the network in 3.14

The remainder of the network receives inputs that are close to bi-polar and delivers bi-
polar outputs; as such they can be said to be implementing Boolean transfer functions.
The results from expressing these transfer functions as rules are very similar in format
to the first layer inequalities. Examples of the derived rules for the subsequent layers

are shown in figure 3.16.

The analysis of transfer functions 70 G.P.Fletcher

IF (midnodel v —(midnode2)) IF —((midnodel v midnode2)}
THEN action THEN change
ELSE —action ELSE —action

IF —((—(midnode4) v —(midnode3))) IF —((midnode3 v —(midnode4)))
THEN pulse_heightflag THEN pulse_heightdecision
f ELSE —pulse_heightflag ELSE —pulse_heightdecision

IF —((—(midnode6) v —(midnodeS5))) IF —((—(midnode6) v midnodeS))
THEN bubbleflag THEN bubbledecision

ELSE —bubbleflag ELSE —bubbledecision

Figure 3.16 The rules representing the second and subsequent layers of neurons from

the network in 3.14.

It is now possible to directly implement this set of rules in a rule base without altering
the action of the system. For clarity some general simphfication of the Boolean rules is

required, also substituting the inequalities produces much more natural looking results.

The analysis of transfer functions 71 G.P.Fletcher

Figure 3.17 The complete set of rules derived from the network in 3.14.

The relative ease with which the transformation, from control network to rule set, can
be made illustrates the usefulness of the interpretation system for medium sized control
networks. This type of result is most useful to check that the hypothesis is reasonable,
it also allows the network to explain its actions, something that classically they cannot

do.

IF rise_time < 1.25 IF fall_time < 1.1
THEN rise_timeflag THEN fall_timeflag ‘
ELSE —risc_timeflag ELSE —fall_timeflag i
|
|
|
IF pulse_width < 1.0429 IF boxarearatio > 0.8520 |
THEN pulse_widthflag THEN boxarearatioflag
ELSE —pulse_widthflag ELSE —boxarearatioflag
IF area_change > 0.5500 IF (area > 1.02581 v area < 0.9722)
THEN bubbledecision THEN action
| ELSE —bubbledecision ELSE —action
IF (arca_change > 0.4499 A area_change < 0.5500) IF pulse_height > 1.025
THEN bubbleflag THEN pulse_heightdecision
ELSE —bubbleflag ELSE —pulse_heightdecision
IF (pulse_height > 0.975 A pulse_height < 1.025) IF area < 0.9722
THEN pulse_heightflag THEN change
ELSE —pulse_heightflag ELSE —change
|
|
\
|
|
|
|

The analysss of transfer functions 72 G.P.Fletcher

Noise Immunity of Neural Network Derived Rules

A good connectionist based solution should exhibit fewer overall noise connected
problems than the currently available symbolic systems. A useful quantitative measure
of noise immunity is the average percentage of the learnt hypothesis that matches the
underlying training hypothesis. A correct function is represented by the truth table
shown in table 3.1a, and a noisy version with one output incorrect is represented by
table 3.1b. As these truth tables match in 87% of the outputs the noisy hypothesis is

defined to have an integnity of 87%.

I1 00000000 00000000

INPUTS 12 01010101 01010101
I3 00110011 00110011

I4 0000131113 00001111
OUTPUT 01010101 01010111
Table 3.1a Table 3.1b

Table 3.1a is a truth table representing a Boolean function, whereas table 3.1b
represents a noisy hypothesis. Note the change of the seventh bit in the output lme (in

bold).

Figure 3.18 shows the correctness of rules derived from networks that were trained to
represent conjunction and parity, using examples containing different amounts of noise.
Although live applications will normally be more complex than those illustrated, they

will typically be trained on noisy data and will react in a simular manner.

The analys:s of transfer functions 73 G.P Fletcher

Three Input
Conjunction
% Integrity of Learnt Function
9 T /
! r 4
I Three Input
70 Parity
50
30
% Error in Training
10 t Data
20 40 60 80

Figure 3.18 The response of a neural network derived from a 3 dimensional
conjunction training set with differing amounts of noise, superimposed on the response

of the neural network derived from 3 dimensional parity traiming set.

The Pole Balancing Problem

So far this chapter has argued for the extraction of Boolean rules from neural networks,
and demonstrated how this may be accomplished. One of the major uses envisioned is
the verification of the original neural network. The pole balancing problem is used to
demonstrate the usefulness of the network derived rules in verifying the action of

networks.

The analysis of transfer functzons 74 G P.Fletcher

The pole balancing problem is an example of applied adaptive control and has become a
standard tutorial problem. The control system must balance a pole on a motorised cart
by moving the cart forward and back in a confined space. The implementation of most
interest here is the neural network [Grant & Zhang 1989} shown in figure 3.19. This
was successful in balancing the pole under a variety of circumstances. The inputs to
this system are Boolean, so there is no quantisation layer and no need for inequalities in

the rule set.

Top of Pole is to right
Pole is falling over

Pole speed increasing
Cart on right side of track
Cart accelerating

Cart moving away from centre

Figure 3.19 A neural network developed by Zhang and Grant [1989] to solve the pole

balancing problem.

The analysis of transfer functions 75 G P.Fletcher

The analysis of the pole balancing net resulted in the following rule. Careful analysis of

the rule will make it possible to find, and therefore correct, the errors in the network.

IF (Top of pole is to right A —Pole is falling over A
—Pole speed increasing A Cart accelerating)
v
(Top of pole is to right A —Pole is falling over A
—Pole speed increasing A Cart on right side of track A
Cart moving away from centre)
v
(Top of pole is to right A Pole is falling over A
Pole speed increasing)
THEN Apply right force
ELSE Apply left force

Figure 3.20. The rule resulting from an analysis of the network shown in figure 3.19

Simple image enhancement techniques can be used to simplify the rules, resulting in the
underlying functions of the network and a list of exceptions. The underlying function
can be verified and the exceptions indicate possible problems with the network

hypothesis.

The analyss of transfer functions 76 G P.Fletcher

Applying simple image enhancement techniques to rules

The rule represented as a Karnaugh map in figure 13.21 has a fairly complex Boolean
expression (figure 3.22), the map gives a better understanding of the simple basic
concept. The aim of using image enhancement techniques is to allow high
dimensionality problems to be represented in their original form but with much of the
complexity removed. Enhancement will alter the rules, maintaining the main underlying
objectives while removing superfluous small cases. This makes the analysis of the

network hypotheses tractable for much larger networks.

-1, I, 1, -l

Iy L

—111 13

-1 I,

I, Iy
Iy 1, -l =]

Figure 3.21 A function with a very simple basic concept but a relatively complex

Boolean representation,

M1AIZALY V(-2 A=-I3 ALY

v

(I2A=Il A=) V(RIT A= AIZ ALY

Figure 3.22 The expression represented in figure 3.21

For example the Boolean expression represented in figure 3.21 could be simplified to

become the one represented in figure 3.23,

The analysis of transfer functions 77 G.P Fletcher

I L

L1, 1

1, I,

I Iy
1, I, -l -l

Figure 3.23 An enhanced version of the Boolean rule in figure 3.21.

There are two separate processes required to enhance a Boolean rule. The first reduces
it by removing burrs. A burr is an area on the Karnaugh map that is separate from or
smaller than the main body of the function. The example of 3.21 would become figure
3.24 after having its burr removed. The second process is the reverse, removing burrs
from the inverse function fills any holes in the rules. Hole filling on figure 3.24 would

give the result shown in figure 3.23.

[1,
—|11 13
—-]1 13
I Iy
I, 1, -1, -}

Figure 3.24 The example of figure 3.21 after having its burr removed.

The analysis of transfer functions 78 G P.Fletcher

The removal of burrs from a Boolean rule can be achieved easily if the Boolean
expression is in a minimal disjunction of conjunctions. The example in figure 3.21 was
represented as shown 1n figure 3.22. The Boolean representation for the version of the

function shown in figure 3.24 after the burrs have been removed is shown below

M1 AIzALY v(=I2AI3 ALY

v

Figure 3.25 The Boolean representation for the “after the burrs have been removed”

version of the function shown in figure 3.24.

Each of the conjunctions in the Boolean equation represents an area on the Karnaugh
map. The size of this area is inversely proportional to the length of the conjunction. By
removing the longer conjunctions from the Boolean rule it is possible to remove the
smaller areas on the map, thus removing the burrs from the rule. The Boolean equation
in figure 3.22 is converted to the one in figure 3.25 by removing the longest of the
conjunctions. Hole filling is an equally simple task. In effect hole filling is burr

removal of the inverse function, which is exactly how it is implemented.

Using enhancement to explain the action of the pole balancing network

By using the simple image enhancement techniques on the rules derived for the pole
balancing network it is possible to reveal information about the internal hypothesis. The
rules for the network in their raw form were,

I1 - Top of pole to right I4 - Cart on right side of track

12 - Pole is falling over IS - Cart moving away from centre

I3 - Pole speed increasing 16 - Cart accelerating

The analysis of transfer functions 79 G P.Fletcher

IF (MA-RADB)VIIA-RAIY)vIILAIBAI4) v
MIABA)VIIARIZAIG) v (11 AI3AILG)
THEN
Ml =True
ELSE
M1 =False
IF (It A=I2 AT3) IF M1 v M2)
THEN THEN
M2 =True Apply right force to cart
ELSE ELSE
M2 =False Apply left force to cart

Figure 3.26 The rules for each of the neurons in the pole balancing network.

Repeatedly enhancing these rules gives the following three versions. Each is enhanced

one step further than the preceding copy.

IF (MA-RZARVIIA-R AV
(I1 A=IZAI6) v (I1 AI3)

THEN
M1 =True

ELSE
M1 =False

IF (1 A=I2 AT3)
THEN

M2 =True
ELSE

M2 =False

Figure 3.27 The rules for each of the neurons in the pole balancing network, where the

longest conjunction has three elements.

The analysis of transfer functions 80 G.P.Fletcher

IF (I1A-IZ)v(I1 ALY
THEN

M1 =True
ELSE

M1 =False

IF (I1 A=I2 AT3)
THEN

M2 =Tre
ELSE

M2 = False

Figure 3.28 The rules for each of the neurons in the pole balancing network, where the

longest conjunction has two elements.

IF 11
THEN

M1 =True
ELSE

M1 = False

IF True
THEN

M2 =True
ELSE

M2 == False

Figure 3.29 The rules for each of the neurons in the pole balancing network, where the

longest conjunction has one element.

Substituting the simplest rules for M1 & M2 into the top level rule gives

The analysis of transfer funcnons 81

G P Fletcher

IF Top of the pole is to right
THEN

Apply right force
ELSE

Apply left force

Figure 3.30 The simplest most basic rule for pole balancing.

The basic main rule is saying follow the top of the pole. As an expert in pole balancing
you must agree that this is the correct basic rule. Secondly, and equally importantly, at
a higher complexity we can check that the shape of the more important input variables
are correct using a Karnaugh map. e.g. at an intermediate level of simplification the rule

for applying force 1s

IF (Top of pole is to right A Pole speed increasing) v
(Top of pole is to right A Pole is falling over)
THEN
Apply right force
ELSE
Apply left force

Figure 3.31 A rule for pole balancing of intermediate complexity.

The map for this rule is shown in figure 3.32. The map shows that the rule is not
symmetric, This means that the network will respond differently to the same situation
on different sides. Although the network balanced the pole under test conditions it
cannot be exactly correct. The reasons for moving the cart to the right should mirror the

reasons for moving the cart to the left, so one of the rules must be wrong.

The analysis of transfer functions 82 G.P.Fletcher

-6

-

b

Ii

L2

L

=

=z

=2

Figure 3.32 The map of the rule after some simplification. This shows an asymmetrical

response.

The analysis of transfer functions

Limits of Boolean rule conversion

The part of the rule missed by the network corresponds to accelerating right when the
top is to the left so as to slow down the movement of the pole if it is about to overshoot
the centre line. It is not surprising this has been missed as it is not a common case.

However, the training could be modified to force this example to occur.

The nature of neurons means that as the number of inputs grows so does the length of
the Boolean description. In the worst case the number of conjunctions 1n the disjunctive
normal form grows at a rate of 2*! where there are n inputs to the neuron. The time
taken to derive a rule is proportional to the number of conjunctions. The rules become
intractable to compute for neurons with more that 40 ipputs, and meaningless for a
human far earlier, see figure 3.33. A different method is needed to enable the network

designer to interactively train and study the hypothesis of larger networks.

G.P.Fletcher

(1p20 A 1p19 A —upl8 A —1pl7 A =ipl2 A —apll A1pl0 Aip9 A 1pd A —1p3 A —tp2 A —ipl)
or
{ —1p26 A 1p25 A 1p19 A —ipl8 A —ipl7 A—1pl12 A —ipll Apl0 A1p9 Aipd A —up2 A —upl)
or
(—1p26 A 1p25 A 1p7 Aip10 A1p5 A 1pd A —1p3 A —1p2 A —1p22)
or
(—ip26 Ap21 A 1pl9 A =api8 A =ipl7 A =ipl2 A=ipll A ipl0 A1P9)
or

(—1p21 A ipl13 Aipi2 A1pll A =ipl0 A ip? A 1p4 A =ip3 A 1p2 Alpl)

Figure 3.33 Showing the unintelligibility of the rules derived from a large character
recognition network. This illustrates the difficulty of interpreting larger networks as
Boolean functions. This Boolean rule has several thousand conjunctions, only the first

few are shown here.

Analysing large optical character recognition networks

~

The method of describing the output function of a neural network should match the
purpose for which the network was designed. The example being developed here is for
the venification and testing of visual pattern recognition networks such as O.C.R. In
these types of application the best form of verification is to get the network to draw
what it thinks a typical input pattern should look like. If this matches with the
developer's ideas then there is some justification for accepting the hypothesis as
correct. Verification in this manner could be described as a form of feed backward

network, trying to find the typical input firing pattern.

The analysis of transfer functions 84 G P Fletcher

The ideal answer would be something along the lines of figure 3.34. The darker areas
represent an area that has a stronger link with the output than the lighter areas. The
hypothesis in figure 3.34 would be a good result from a network that has been trained
to recognise the letter capital E. The figure 3.35 could represent a network that correctly

classifies all the training examples but could do with some further training.

Figure 3.34 The target...... This is what a feed backward analysis of a network that has
correctly learnt to recognise the letter E should look like. The darker the region the

closer the link to the hypothesis.

l§f =

Figure 3.35 A feed backward analysis of a network that has correctly learnt to

recognise the letter E. Some areas could do with further training examples.

The analysis of transfer functions 85 G P Fletcher

The simplest way of finding the typical input patterns that cause firing is to experiment.
While this is an excellent solution for small networks it soon becomes intractable for
larger systems. Even with a simple O.C.R. network with 64 inputs there are 1.8*1019
different input patterns to test. This section of the chapter presents a tractable method

for extracting a usable input pattern.

Finding the evidence for a neuron's output from its inputs

The output of a Boolean function is linked to each of its input parameters with different

strengths. Given the function

Output = M AkAB)VRA=DBA=L) YV
(mhAlLAL)v(IiA=l A=Al

represented by the map in figure 3.36 it is possible to say the output is strongly linked
to Iz with an index of 5, where the index is calculated as the number of positive outputs
with I: TRUE, minus the number with —I2 in the map. A complete list of the indices for

this example is given in table 3.2,

-1, I, I, =l

I, 1,

-1, 1,

1, I,

I, I,
1, I, =1, -l

Figure 3.36 map of an example function

The analysis of transfer functions 86 G.P.Fletcher

Input Index
I 1
1] 5

-1
Is 1

Table 3.2 Indices of the different inputs to the function illustrated in figure 3.36

These indices uniquely identify any linearly separable function, however in this form
they are not very useful for solving the defined problem. A better indicator is the
proportion of evidence each input provides for identifying the function. This value is
calculated as the proportion of the total indices attributed to each input. These figures

have been calculated and shown in table 3.3

Input Index Evidence
I 1 0.125
L 5 0.625
L -1 -0.125
I 1 0.125

Table 3.3, Proportion of evidence supplied by each input to the function in figure 3.29.

The evidence figure is the weight of importance attached to each input. This is a very
similar idea to the original weight, raising the question why the original weights are not
used. This is easily demonstrated with the two input conjunction implemented in the
neuron shown in figure 3.37. As this is a conjunction each of the inputs is equally
important in deciding the output but one of the weights is several thousand times the
size of the other. Converting the neuron into a Boolean function and then calculating the

evidences from that allows anomalies of this type to be removed.

The analys:s of transfer functions 87 ‘ G.P.Fletcher

nput 1

Weight 1 =
230547

Bias = 230548
Output

put 2

Figure 3.37 A simple conjunction implemented by a neuron with very uneven weights.

Feeding back the evidence for a networks output

Given the evidence that the inputs for each neuron provide for its output it is possible to

combine the evidences to form global evidences for the final net output.

Output

I Iz Ia

Figure 3.38 Part of a neural network illustrating the feeding backward of evidence.

The analysis of transfer functions 88 G P Fletcher

Given two connected nodes No and N, where the output of N. is an input to N,, some
proportion of the evidence for the output of N, can be attributed to the inputs of No.
Let the evidence for the output of N, attributed to the output of N, be called

e(No, N))

Then the evidence E, provided by the Kth input to N, for the output of No is given by
e(No , N,) * e(Input K, No)

e.g. The evidence E for the output of N1 given by I in figure 3.38 is
E = e(N1, N2) * e(Input I, N1).

I1 I2 I3

Figure 3.39 Part of a neural network illustrating the combination of evidences.

When the output of a node is connected via more than one route to the output then the
evidence this output provides for the final output is the sum of the evidences on the
inputs it is connected to. e.g. in figure 3.39 the evidence for the output given by N3 is

calculated as e13 + €23, This makes the evidence provided by I1 = (e13+e23) * €31.

The analysis of transfer functions 89 G P.Fletcher

In general given a fully connected network (figure 3.40)

Figure 3.40 A fully connected network
Let the evidence for the final output passed between nodes Ny and Nim be represented
by

C(Nlj,Nlm)

And the index of the input to node Ny that comes from node Nim be represented by
f NN

Then the evidence supplied by the input of a node for the final output is

C(Nu,N(lH)l) = f(Nlj,N(l-l)l) * ZC(N(l-I)V,Nu)
1m

Z f(Nlj,N(l-l)V)
1m

The analysis of transfer functions 90 G P Fletcher

Finding an approximation for the evidence quickly

The system so far illustrated for feeding back the evidences for a particular output value
gives an accurate picture of the hypothesis within the connectionist network. The
algorithm as it stands could be implemented, except that for nodes with a large number
of inputs the function f(X,Y) becomes intractable. This is the problem that the
technique was developed to overcome. Therefore some approximation must be derived

for the term :-
f(Nlj,N(l-!)l)

> fNuNaiw)
1m

Looking at the equation represented in the Karnaugh map illustrated in figure 3.36
Output = MIARADB)V(I2AI3 A=) v

(-IARAI)V(IIASIZASIE AT

Any four of the conjunctions could cause this function to become true, Taking the first
of these conjunctions.

(Il AI2 AT3)

each of the terms can be said to supply _1_ of the total evidence to the output.

23
A good approximation of the total evidences is given by the summing evidence for each
term over all the conjunctions in the minimal Boolean equation. If a term appears in a
conjunction that has N terms, which in turn appears in a Boolean equation with M
conjunctions then the evidence attributed to that occurrence of the term is

1
M#*2n

The analysis of transfer functions 91 G.P.Fletcher

This is calculated for each term in every conjunction in the Boolean equation and the
total evidences are accumulated. Figure 3.34 shows a graph comparing the actual
evidences between a node's inputs and outputs and those calculated by this approximate

procedure for a set of randomly generated 5 input neurons.

01 03 05 07 09

Figure 3.41 A graph showing approximate against actual evidences as calculated using

the presented procedure for a set of five dimensional neurons.

While any approximation is not ideal the presented system finds a figure reasonably

close to the actual value. This figure is good enough to produce acceptable results.

Example of tutorial O.C.R. neural network analysis

The first example, figure 3.42, has been carefully trained with a very expansive training
set. This prevents any errors in the representation being attributed to the derived
hypothesis. Figure 3.43 shows the training set used, this contains every combination of
bars possible in a 5x4 grid an so should completely define the character. Only the first

example is to be accepted as the letter E.

The analysts of transfer functions 92 G P Fletcher

The net used contains 20 input nodes, 12 midnodes in a single layer and 1 output node.
Each midnode is connected to 10 randomly selected input nodes and so the net, while

being highly connected is not fully connected (figure 3.42).

Output Node

Mid Nodes

Figure 3.42 The small character recognition network used to produce the E hypothesis.

Input Nodes

The analysis of transfer functions 93 G.P.Fletcher

171

P ils afileg

E
2
E
o
-

Arifcafnir

EEx TaN 1T
HHAHT AT
1 TR I TR HE T

Figure 3.43 Training set used for the letter E.

Figure 3.44 shows the representation of the hypothesis derived by the approximation
system. This shows that the latter has been faithfully represented by both the network
and by the presented algorithm. This is strong evidence for accepting the system as

correct,

The analysis of transfer functions 94 G.P.Fletcher

The second demonstration example used the same network but with all the training
examples reflected in the vertical axis, and then added to the originals. Thus giving two
positive training examples of the letter E. One wntten forward and the other backward.
The analysis of the derived network is shown in figure 3.45. The input nodes that are
true in 50% of the positive training examples have been assigned approximately zero

evidence for the output. This is correct as these nodes offer no evidence to determine if

the input is the letter E.

R

SEE%E v 285

%)
Fd

B

Figure 3.44 The analysis of a neural network that has been trained to recognise the
letter E. ’

Figure 3.45 The analysis of a neural network that has been trained to recognise the

letter E written either forwards or backwards,

The analysis of transfer functions 95 G.P Fletcher

Example of real O.C.R. network analysis

This example is also based on the Ietter E, but this time using a larger network trained
on hand written images. This has been done with two separate independent subjects,
| the results of the analysis are shown in figures 3.46 and 3.47. The network used had
| 64 inputs, 12 midnodes each connected to 16 randomly selected input nodes and to the

one output node.

<
&
.
Y

st B

,
.
K
H
B
i
® X8
1
7 oy
o
“Bifa
&
k3

”
:
e
; .E‘V
<
e
4
m%
S 12
ety
quﬁ
a gz

4R
~f
“y &
)
s
P
L
T
ar
P

Wy
Hoasy,
E

o
-
o

e
& Ty

gy

ey

s 4
i A\

=

.

s

.

5

A
b ; E’"g &
PO AN

¢
1

4
g

E v gy w7 Fpgg
B T ¥

e E?QQ:\

Heg .

- b ’
7 ot ik

s
G
.
EC
F

:

U g
B [W

. T,
TERER e

PAgs

Bty
£
P
o
&
el
e

8
¥
*
74
4

gy

e
F

7}\
ERE Y

]

m{‘q z

Y
so3 0 By

B o
i B oo 3

3

Figure 3.46 Hypothesis resulting from the first subject's hand-wntten E's.

The analysis of transfer functions 96 G.P.Fletcher

éa,sja o b g
- B

Figure 3.47 Hypothesis resulting from the second subject's hand-written E's.

Both subjects were asked for 12 versions of the letter E and 12 versions of objects not
acceptable as the letter E. In both cases the networks were fully converged and classify

their own training examples correctly.

It can be seen that in the first case the hypothesis formed has started to approach a
correct answer, while in the second case a lot of further training will be required. This
technique has demonstrated that the hypothesis formed by the first subject's hand
writing is better than that formed by the second's. This is something that hitherto has

not been possible.

The analyss of transfer functions 97 G.P.Fletcher

Summar Y

The chapter has introduced some of the previous work aimed at representing neural
networks as Boolean type functions. An analysis of one of these has shown a major
representational flaw, indicating that simple Boolean functions are perhaps the best

system to use.

A method for extracting the Boolean function from the weights and bias of a neuron has
been presented. This algorithm has been expanded to make it faster and more flexible.
The chapter also proved how to make sure that the answers delivered were minimal,

allowing easier analyses and further increasing the speed.

The Boolean rules can be used to implement a rule base to replace the neural network
controller, as illustrated by the adhesive dispensing machine, or to analyse and verify
the hypotheses of the network (the pole balancing network). To aid the analysis of the
Boolean function this chapter introduces the ideas of image enhancement to logical

systems.

Finally the limitations of Boolean analyses are explored. Larger networks require a

different system, the chapter closes by introducing a mechanism for interpreting large

O.C.R. networks.

The analysis of transfer functions 98 G.P Fletcher

THE ACTIVATION FUNCTION
CHAPTER 4

Outline Of Chapter

The previous chapter demonstrated several methods and the major limitations for
analysing neural networks, Perhaps the most important point to draw from the work is
that if a network is properly designed then the analysis is easy. Badly designed
networks produce complex and most often wrong hypotheses that become too big for

accurate analysis.

The activation function inside the neuron is an important part of the network
architecture. The sigmoid, in the guise of back propagation, was developed as a
replacement for the threshold activation function to solve many of the then prevalent
training problems [Bryson and Ho 1969, and Rumelhart et al 1986a,b]. Since this large
and very significant step, very little work has been followed through to investigate the
properties of other alternative activation functions. Most research aimed at improving
the quality of the hypothesis or the speed at which it is obtained has concentrated on the
topology of the network [Sietsma and Dow 1988, Marchand et al 1990, Frean 1990
and Mezard and Nadal 1990] or on enhancing the learning algorithm (normally back
propagation) {Cater 1987].

The type of hypothesis that a network forms is heavily influenced by the activation
function. Selecting the correct one has the same effect on analysis as selecting the
correct topology; networks that use the correct activation functions are smaller and
simpler than those that don't, and are therefore easier to analyse. This chapter looks at
some of the properties of activation functions and at methods for dynamically selecting

the correct one for individual neurons within feed forward networks during traimng.

The Activation Function 99 G P Fletcher

Biological basis and other views

The sigmoid function is intended to be an approximation to a biological neuron's
response. This is a large and wholly inaccurate assumption. [Griffith 1966] provides a
simple explanation of the biochemical basis of neurons; "The cell is bounded by a
surface membrane which is semi-permeable. This means that the membrane will allow
certain ions and molecules to pass through it, but not others. The semi-permeability has
certain consequences which can be understood using the theory of thermodynamics.
One of these is that the interior of the cell normally has a negative electrostatic potential
of about -70mV with respect to its exterior. However, if this potential difference is
artificially altered above a threshold value of about -60mV, the membrane suddenly
becomes permeable.... ... This change of permeability is self-propagating, it starts at
one point and spreads to adjacent points and so on. Shortly afterwards the membrane
recovers its semi-permeability. Thus a transient burst of electrochemical activity is

generated.”

The membrane of the cell covers the cell nucleus, but also extends down the axons to
the dendrites. The axons and the synapses form the link between one nerve cell and its
neighbours. Griffith further explains, "Once a cell has fired, the activity passes out to
the uttermost extremes (the synapses), which then spew out small quantities of
chemicals called transmitters. These pass across narrow gaps to adjacent cells where

they alter the permeability of the membranes of those cells."

The potential difference across the cell membrane increases as quantities of the
transmutter chemicals are absorbed. However the neuron does not fire until the potential
difference reaches -60mV. The true activation function of a natural neuron is therefore a
threshold function and not the sigmoid. For a close model of the activation of real
neurons, asynchronous time dependant networks are required. The sigmoid should not

be thought of as an approximation to biclogical systems, as the old threshold was a

The Activation Function 100 G P Fletcher

closer model. Given that the sigmoid is only an abstract activation function, developed
to aid training, there is no reason why it should not be changed. The changes could be

used to improve the accuracy and reliability of training and hypothesis.

Real neural networks model very complex information by using huge numbers of
neurons, our own brain contains approximately 10,000 million neurons [Griffith
1966]. By developing a set of more complex activation functions it should be possible
to produce better models of complex information, resulting in smaller and faster
networks and the development of more powerful application areas for artificial neurat

networks.

Other recent work has presented the idea of parametrisation of the sigmoid function
[Horejs & Kufudaki 1993]. By altering the parameters it is possible to affect the
sigmoid's characteristics; i.e. such things as the maximum and mid values of the
function. The idea was developed as a method of trying to remove the input weights as
a training parameter, thus reducing the complexity in large networks. Each neuron is
less powerful as it cannot affect its input weights, therefore this method results in
massive networks of low complexity. The previous chapter argued that neural
networks must be analysable, massive networks make analysing much harder as the
information becomes more distributed. The aim should be to produce smaller not larger

networks.

Sine as an Activation Function For Back Propagation

Back propagation relies on the use of a differentiable function as the activation function.
The sigmoid was orginally chosen because of its similarity to the then popular
threshold activation function of the simple perceptron model [McCulloch and Pitts,

1943]. There is no reason why back propagation needs to use the sigmoid, replacing it

The Activation Function 101 G P Fletcher

with another differentiable function such as the sine function does not affect the theory

of back propagation, but it does affect the types of hypotheses that can be represented.

Consider a single neuron with just two inputs (figure 4.1)

Input 1

Output

Input 2

Figure 4.1 Simple two input neuron.

If this neuron uses a sigmoid as its activation function then it is perfectly able to model
transfer functions such as "Boolean AND" and "Boolean OR", in fact it is difficult to

imagine a better activation function for these two problems.

The "Boolean XOR" or two input parity is the simplest problem that cannot be
modelled in a single neuron using a sigmoid activation function. The sine activation
function is ideal for this problem. However, the sine activation is not very effective
when trying to model "Boolean OR". Figures 4.2 a,b&c show how the sine function
and the weights interact to give the "Boolean XOR" function. The dashed arrows

represent the bias of the neuron and the solid arrows the input weights,

When both inputs are set to -1, the sum of the inputs outweighs the bias. The inputs

sum to a negative value and the resultant output is negative.

The Activation Function 102 G P.Fletcher

Output

Input
Sum

Figure 4.2a Demonstration of how the sine activation function and the correct input

weights give the output for Boolean XOR when both inputs are FALSE.

If the inputs have different values and the input weights are the same then the inputs

cancel out. The bias gives the correct input sum for a positive output.

Input
Sum

|
|
!
)
|
1

| The two mput wgights

cancel out
The Bias vem

cotrect Wer

Figure 4.2b Demonstration of how the sine activation function and the correct input

weights give the output for Boolean XOR when the inputs have different values.

When both inputs are true the mput sum becomes larger, reaching the next trough in the

sine function and therefore giving a negative answer again.

The Activation Function 103 G P Fletcher

utput

Input
Sum
== r-- -~ Result
The input weights and the
bias combine to reach the [

next minima, giving a negativg answer.

Figure 4.2c Demonstration of how the sine activation function and the correct input

weights give the output for Boolean XOR when both inputs are TRUE.

Each of the possible activation functions have different convergence characteristics. The
advantages of using an activation function that easily models the required problem must
be offset against the difficulties of achieving correct convergence with the back

propagation training algorithm.

A Comparison of the Convergence Properties of the
Sine and Sigmoid Activation Functions

The sine function produces a higher level of complexity 1n the back propagation
algorithm. Consider the case of a single training example that is required to give an

output value of zero.

4

Figure 4.3 Comparison of convergence properties with one training example.

.

The Activation Functron 104 G P Fletcher

In both cases back propagation will reduce the size of the input vector to produce a
closer answer. If the problem is now expanded to two training examples, they are both

required to return zero as the correct answer.

/ -

”~

Figure 4.4 Comparison of convergence properties with two training examples.

Here the two examples are pushing in the same direction for sigmoid but are opposing
each other when the sine activation function is used. This is because in the sigmoid's
case there is only one possible direction for reducing the output values but in the sine
function's case there are multiple points with the same output value. So when using a
sine activation function the neuron must not only learn to give the correct answer for a
particular training example but to use the correct cycle to allow correct learning of all the

others.

In general a network using sine as its activation function contains many more local
mimma than a network that uses sigmoid. Therefore sine should not be used in a
neuron when it is possible to model the data correctly using sigmoid, but there are

problems that can be modelled only by adopting sine.

Selecting the correct activation function

Given a large network it is not feasible for the designer to allocate the correct activation

function to every neuron. Therefore it becomes necessary to develop a "combined

The Activation Function 105 G P.Fletcher

parametrised activation function" with enough flexibility to be able to model many
different types of activation function. If the parameters of the general activation function
are trained together with the input weights the neuron will develop the activation

function that most easily models the data.

An example of a combined parametrised activation function can be constructed using
both the traditional sigmoid and the sine activation functions. Let the activation function

be f(B) where B is the product of the weights and input values. i.e..

 =bias + Elwe:ightn . input,
f(B) = oc.sigmoid(B) + (1-o<).sine(B)

Each element of the activation function has a -1 to +1 range. The output of the neuron
has been maintained in the traditional -1 to +1 range by making the sum of the
activation function weights equal 1. By back propagating the errors and using them to
modify the parameter a' in each neuron the individual neurons can be made to take on
different characteristics. If e is high, e.g. 0.9, then the activation function becomes
close to the traditional sigmoid. This is very good when attempting to model problems
like the "Boolean AND". Dropping the value of e to 0.1 produces an activation

function easily capable of representing the "Boolean XOR" problem.

Back propagation and the combined activation function

Back propagation assigns an error to each node in a feed forward neural network. In
the output nodes this error is the deviation between the actual and required output
values. In previous layers the error is a calculated share of the blame for the output
error. Simply, the error assigned to each node can be thought of as showing whether it
should have returned a higher or lower result. An explanation of exactly how back

propagation assigns an error to each node can be found in chapter 1.

The Activation Functon 106 G P.Fletcher

After the error on a neuron has been calculated, the weights assigned to its inputs are
modified so as to make the error smaller and so bring the output slightly closer to the
correct value, Let 'y' be the output of the neuron and '¥' be the error assigned to the

neuron by back propagation. The amount a weight, Wy, should change 1s given by

AWp= -pn. oy .¥
OWhn

Where {1 is a small positive constant. By enumerating values for the variables it is

possible to see how this update rule always creates a better answer.

OOX
If ¥ is positive then the output was too high. If dy/dWh is also positive
then making Wy, smaller will produce a lower and closer answer. The

R.H.S. of the update rule becomes

AW}, = Negative . Positive . Positive

AWn is a negative number, therefore Wy, is smaller after the update

and the output is closer to the required value.

QOO
If ¥ is positive then the output was too high. If dy/dWp, is negative
then making Wy, bigger will produce a lower and closer answer. The

R.H.S. of the update rule becomes

AW, = Negative . Positive . Negative

AWn is a Positive number, therefore Wp, is bigger after the update

and the output is closer to the required value,

-

The Activation Function 107 G P.Fletcher

i

If ¥ is negative then the output was too low. If dy/dWh is also

negative then making W, smaller will produce a higher and closer
answer, The R.H S. of the update rule becomes

AWp, = Negative . Negative . Negative

AWn is a negative number, therefore Wy, is smaller after the update

and the output is closer to the required value,

OO0
If ¥ is negative then the output was too low. If dy/dWy, is positive then

making W, bigger will produce a higher and closer answer. The R.H.S.
of the update rule becomes

AW, = Negative . Negative . Positive

AWn is a positive number, therefore Wp 1s smaller after the update

and the output is closer to the required value.

OO0

The same update rule can be used with any adaptive parameter. The transfer function of
the combined activation function was

y = o<, sigmoid(B) + (1-e<).sine(B)

where 8 was the input value. The update rule for the parameter a is therefore

Aa=-p. 9y .¥
Joc

Partially differentiating the transfer function with respect to a gives
_0Y = sigmoid(B) - sine(B)
Therefore with each training iteration the parameter 'e<' can be updated along with all

the other adaptive input weights using an identical method.

The Activatton Function 108 G P.Fletcher

Examples of training with the combined activation function

All two dimensional Boolean problems can be represented using just a single neuron

with a combined activation function. To demonstrate the neuron's abality to derive the

correct activation function, the solutions for "Two input AND" and "Two input XOR"

are presented.

Two Input AND

Example Number
1 2 3 4
-1.0 +1.0 -1.0 +1.0
-1.0 -1.0 +1.0 +1.0
-1.0 -1.0 -1.0 +1.0

Figure 4.5 The set of training examples used for two input AND

Input 1
2

Weight 1= +1.7142

Output

Weight 2= +1.7159
Tnput 2 o< =0.9769

Figure 4.6 The neuron derived using back propagation for two input AND

The Activation Function

109

G P Fletcher

Qutput

| 1 .

] Sum of Inputs

-100

+50

Figure 4.7 The activation function of the neuron derived using back propagation for

two input AND

Two Input XOR
Example Number
1 2 3 4
Input 1 -1.0 +1.0 -1.0 +1.0
Input 2 -1.0 -1.0 +1.0 +1.0
Output

Figure 4.8 The set of training examples for two input XOR

The Activation Function

110

G P.Fletcher

> Qutput
Bias=+1.5718 & ¢ -

Weight 2= +1.5776
Input 2 o< = 0 0943

Figure 4.9 The neuron derived using back propagation for two input XOR.

Qutput
10|=

l\ | 1 Sum &f Inputs

40 20 +20

Figure 4.10 The activation function of the neuron derived using back propagation for
two input XOR.

Both the neurons have developed activation functions capable of representing their own
training sets; one has produced a threshold type function and the other a cyclic function,

ideal for the two different problems. |

The two very simple examples show that neurons which use a combined activation
function are more flexible in the representations they can adopt. If individual neurons
are more flexible then networks built using these neurons must also be more flexible. If
it is easier to represent information within the network, the time required to find an

acceptable representation should be reduced. Below is a four input, three midnodes and

The Activation Function 111 G P Fletcher

one output network that 1s the basis for an experiment designed to demonstrate the

improvement in training times achievable using a combined activation function.

x|

Figure 4.11 The network used for 3 input training experiments.

In this example 20 randomly chosen 3 dimensional functions were learnt by the
network shown above. The graphs show the average of the sum of squares error over
these 20 training sets for both the traditional and combined activation function. The

same training sets and starting points were used for both experiments.

A sum of squares error of zero shows a perfect hypothesis; this is practically
unobtainable. If the sum of squares error is below one then every example is on the
correct side of zero, allowing thresholding to produce the correct answers. It is normal

to attempt a sum of squares error of approximately 0.1 as this moves all of the

examples away from zero allowing a middle region of 'Unknown'.

The Activation Function 112 G P.Fletcher

} 3 , Average Error

Number of
Iterations

0 100 200

Figure 4.12 Average sum squared error when using a combined activation function

3 , Average Error

Number of
Iterations

0 100 200

Figure 4.13 Average sum squared error when using a traditional sigmoid activation

function.

The resuits show the potential for very large savings in training time. The combined
activation function reaches an error of below 1.0 (all examples correct) approximately

six times faster than the traditional sigmoid activation function.

The Activation Function 113 G P Fletcher

The Colour Modelling Problem

To further demonstrate the added powers of the combined activation function, a larger
industrial application is presented. Here the problem is to model the way the human eye
perceives colour in different ambient lighting conditions, and when printed on different

materials.

It is well known that perception of colour is different under different conditions,
viewing angle, lighting and texture are just some of the aspects that contribute towards
different perceptions of the "same" colour, This presents problems for many people,
catalogues for example which show a different colour in their pages from that of the

garment or product itself.

The complexity of predictive colour modelling has exercised researchers for some time.
For the purposes of the research reported here we have been given a data set to
determine Colourfulness, Brightness and Hue from the basic tristimulus values under
constant viewing conditions. The data were derived from a well researched model of
colour perception and based on the work of Luo et al. {1991] and Wang and Malakooti
[1992]. The science of colour perception dates back to the 19th century with work by
Young [1802] and later by Helmholtz [1924). This work gave rise to the theory that
only three colour receptors existed in the human eye, red, green and blue. More recent
models by Hunt [1987] are based on a simplified theory of colour vision for chromatic

adaptation together with a unmiform colour space.

We are grateful to Luo and Wang for supplying the data without which the subsequent

development of the neural network based models would not have been possible.

The Activation Function 114 G P Fletcher

1.2-|

10+ Traditlonat
Activation

Function
0.8 4

Sum of Squares Error

08+

04+

0.2

Q0 T Y T 1
0 1000 2000
Training Herations

Figure 4.15 The errors while training a network with two hidden nodes

Sum of Squares Error

=
o
M

04dn

0.2 1

oo T 1
0 1000 2000
Training iterations

Figure 4.16 The errors while training a network with four hidden nodes

The Activation Function 116 G.P.Fletcher

o
M

-
<
1

Sum of Sguares Ervor
&
1

<
L]
1

00 T 1
[1000 2000
Tralning lterations

Figure 4.17 The errors while training a network with six hidden nodes

Sum of Squares Error

00 T 1
0 1000 2000
Training fterations

Figure 4.18 The errors while traiming a network with eight hidden nodes

The Activation Function 117 G P.Fletcher

S

Tradihonal
Activation
Function

-
o

Sum of Squares Error
o
o

<
L]
i

044

0.2 4

00 T 1
0 1000 2000
Training herations
|
|

Figure 4.19 The errors while training a network with ten hidden nodes

In each graph the quality of the answers obtained by the combined activation function
are very similar after 2000 training iterations. However, the combined activation
function is achieving these results much faster than the traditional one. Figures 4.20
and 4.21 demonstrate the observed acceleration in learning. The presented graphs show
that a significantly smaller number of iterations are required to reach the target error

tolerances, resulting in much faster training.

e 07 —O— Traditional
E Activation
% . Funchon
8 Combinad
5% 6o B ctvation
3 2 Function
E
=
z
\
40 |
|
|
20
0 v v ' r r '
0 2 4] 8 10 12
Number of midnodes

Figure 4.20 The number of training iterations required to achieve a sum of squares

error of 0.5 for different sizes of hidden mid layer.

The Activation Function 118 G P.Fletcher

Combined

-] 200 —O— Actvation
c Function

=

w2

= a Traditional
- = Activation
o2 Function

-

6 =

£

E

]

H

100 +

0\0‘_0

0 T T T T T T T T T T L 1
0 2 4 -] 8 10 12
Number of midnodes

Figure 4.21 The number of training iterations required to achieve a sum of squares

error of 0.2 for different sizes of hidden mid layer.

As well as increasing the speed of convergence, swapping to the combined activation
function vastly reduces the size requirement of the network. The peak performance of
the networks varies with the network size; getting the correct size of network results in
a better answer than one provided by a smaller or larger network. By looking at the
final error it is possible to find the best network size for the different activation
functions (figure 4.22). This shows that the best size for the combined activation

function is 2 midnodes and that for the traditional activation function it is more than ten.

Moving to the combined activation function has allowed a neural network with only
two neurons in its middle layer to model data that would have used more than ten

traditional neurons. The training is faster and the final result closer to zero error.

The Activation Function 119 G P Fletcher

020
—O— Tradtional

2 Activation
-E 5 019- Funton
= Combined
53 —O— ivaton
E 3 018 Function
=]
F

0174

0164

015+

014 T T T T T]

[2 4 [8 10 12
Number of midnodes

Figure 4.22 The final error for different network sizes after 2000 training iterations.

Summary

This chapter has looked at the activation function within the neurons that build up
neural networks. By selecting the correct activation function it is possible to vastly
reduce the size and complexity of the network required for a particular problem;
demonstrating the similarities in effect between selecting the correct activation function

and correctly designing other aspects of the architecture.

As with all changes there are problems as well as advantages. While it is easier to
model certain hypotheses using non-standard activation functions they can be very
difficult to train, making the correct choice of activation function a problem of great

importance,

The combined activation function was presented as a method of selecting an activation
function. Selection works by allowing each neuron to dynamically change its own
activation function during the training process. This 1s achieved by extending back
propagation to cover the activation function as well as the weights that interconnect

neurons.

The Activation Function 120 G P.Fletcher

A more general neuron gives a more powerful neuron. By increasing the power it is
possible not only to reduce the size of the networks, but also to increase the training
speed. Neurons using a combined activation function train faster and use smaller
networks. The previous chapter showed that network size was the limiting factor when
analysing the hypotheses. The production of an analysis technique for the combined
activation function could therefore allow analysis and verification of more complex
systems. The production of an analysis tool for the more complex neuron presents one

path of possible continued research.

The Activation Function 121 G P Fletcher

Training for continuous models consists of calculating the correct output values for a
set of example inputs and then using back propagation in the same manner as for
classification problems. A simple tutorial problem is that of calculating the distance a
ball will travel if thrown at a fixed velocity but at a variable anglel. The figure below

shows how the angle at which the ball is thrown affects the distance it will travel.

A

Figure 5.1 : The trajectory of a ball thrown at different angles but with a common

speed. Note the different distances that the ball travels.

Angle from | Distance to

Horizontal | first bounce
5 0.1739
15 0.5000
25 0.7671
35 0.9404
45 1.0000
55 0.9404
65 0.7671
75 0.5000

Figure 5.2 The different distances that the ball travels

1 The figures used as training examples assume the expenment takes
place in a vacuum, g = 10.0 ms-is-! and that the initial speed of the
ball is V10 .

Modelling Continuous Functions 123 G P.Fletcher

Problems with Continuous Modelling

Given that we require the correct answer to within a fairly small tolerance then a neuron
has a small range of acceptable output values. The tolerance on the input vector must
become very tight to meet this requirement. Figure 5.4 shows that requiring a real
answer within even a fairly loose tolerance results 1n a very tight input tolerance. A tight
tolerance on the input vector makes the values assigned to the input weights critical. If
exactly correct values are required for the weights, training becomes a much harder,

and therefore longer, problem.

Required Qutput Output
Tolerance *

! F

Tnput

Input g || et
Tolerance

Figure 5.4 The small input tolerance required to give a much looser output tolerance for

a continuous network,

The very tight tolerances required to give reasonable answers suggest that the
continuous model will be harder to train. There are many other problems with this type

of network, including an even greater lack of tools for analysing the hypotheses

described earlier in this chapter.

Modelling Continuogs Functions 125 G P Fletcher

Output .

M

Thput

5.6 The approximation used to model the function in figure 5.5

he approximation shown in figure 5. would produce the correct answer over
the domain there are regions around the ponts of discontinuity where the error
ome large. If a tight tolerance is required then the normal feed forward networks

he used. These represent another class of impossible functions.
in size

forward neural network is capable of calculating an output for every possible
Therefore there are problems for which a network will deliver a real answer
o real answer exists. Given that no real answer exists, the network must be

g outside of the required tolerance. An example of such a function is

y=‘/§-x 2

huation represents a circle of radius 3, centred at the origin. A neural network
return a value for y given that x = 100. No real answer should exist in this case,
enting yet another class of problems for which feed forward neural networks

be used in the classical manner.

ng Continuous Functions 127 G P.Fletcher

- STOR-A-FILE IMAGING LTD

| Date 12/(2/08 Authorised by, Simon Cockbll Issue 2 Page 1 of' |

If tn hard copy, this page is UNCONTROLLED and onily valid on date of issue 16-May-08

networks. The problem 1s to map a continuous function f that has inputs, I, and
returns outputs, O, in a Boolean space. There is a predicate, P, denoting that a
particular instantiation of I and O are consistent with each other. By constructing a
network to model the predicate P, with both I and O as inputs, it 1s possible to

reproduce the original function f in a R = B network.

The simple ball throwing example given earlier would require a two input network.,
These would be the original input, angle of throw, and a new input, distance to first
bounce. The networks output would classify the inputs as consistent with each other or
as an impossible combination. The hypothesis denived from such a network is shown

below. The dark region show possible combinations.

Distance to first bounce
1.2 1

1.0 4
081
06

0.4 1

02

00 T T Y T 1 T T T 1
a 20 40 60 80 100

Angle of
projection

Figure 5.10 The hypothesis formed by a Boolean network when trying to model the

data in figure 5.2,

Training Problems

The method as described above works with smali tutortal examples. However, it does
not extend well to bigger problems. Consider the example continuous function shown

in figure 5.11. The positive examples (shown as heavy crosses) are the onginal training

Modelling Continuous Functions 131 G P.Fletcher

%
5,

Bl . @
¥ s % et #
2 S
“{% 5 i
P,

e

Se
s
<7
e

Cu

i e e e T e n”‘:;g
\ e ot ae e, ay
e s »
- o e
¢ T Y w
& !’ -
el 3

Figure 5.12 The lightly shaded region is the area that is learnt from the training points

shown. Although this is a correct solution to the training problem it does not correctly

mode! the continuous function.

Producing an even covering of training points and limiting the width of the model

produces a much larger training set. An example of the number and position of a correct

set can be seen in figure 5.13.

i v

2 i

e
o

b kS

=

Figure 5.13 The training points required to produce a correct Boolean model of the

continuous function.

Although the method of creating a correct training set works, we have introduced a new

problem. As the size of the problem increases the Boolean training set can become

Modelling Continuous Functions

133

G P.Fletcher

extremely large, leading to very slow training. Further, the proportion of positive and
negative examples will become very biased. In large problems less than one percent of
the examples may be positive. Thus, the output neuron will return false irrespective of
its inputs. The small proportion of positive examples makes it almost impossible for the

network to converge past this easily found local minimum.

Training Solutions

The problems connected with the training and production of examples detailed in the
last section prevent raw computing power being used to compute a satisfactory Boolean
network. It 15 necessary to construct a specialist training mechanism capable of
producing networks of this type in an acceptable time. The problem of producing a thin
accepted region can be split into two parts (figure 5.14). The answers are then
combined later using a single neuron that computes a simple Boolean AND function.
This mechanism produces a much larger percentage of positive examples in both sub

problems, removing the difficult local minimum of Output = False.

Figure 5.14 Showing how a continuous model can be split into two sub problems.

Modelling Cortinuous Functions 134 G P Hletcher

them a better solution. Justification for their use can be gained by considering the
classes of problems that continuous output neural networks cannot or have difficulty in

modelling.

Single verses multi-valued functions -- The solution

The example of a multi-valued function given earlier was

y=Jx

This could not be modelled because a feed forward neural network can only perform a
one to one mapping. Therefore it is possible only to build a network to return either the
positive or negative answers, but not both. Once the real valued output becomes part of
the input space it is possible to map both of the possible answers to give a true

response. This effectively models a multi-valued function.

Continuous and dis-continuous functions

Discontinuous functions could not be modelled using the traditional techmique because
of the limitation imposed by the learning algonithm. Boolean functions, by comparison,
are very good at implementing discontinuous functions. A simple example is three input

parity; this function has two discontinuous regions that require the output to fire.

If a Boolean classification network can produce discrete regions then different regions
can be used to represent different portions of a discontinuous function, The example
used earlier to demonstrate the difficulties with these functions could be modeiled in

five different regions, figure 5.17.

Modelling Continuous Functions 136 G.P Fletcher

Range size

The Boolean network uses the old output as an input. Neural networks can operate over
any input domain, so the limitations of range size on the original function do not apply.
An example demonstrates the advantages gained when modelling over a larger range.
Here the network has been trained to model the function y = x2 over the domain -3 .. 3.

The result is shown in figure 5.18.

Figure 5.18 The hypothesis resulting from combining the sub problems for y = x2, The

maximum error between this and the correct answer is 0.15.

The greatest deviation from the correct answer for any point within the training region
given by this network was 0.10385. This compares extremely favourably with the
same function trained as a traditional continuous network (figure 5.19). The errors in
this example are large because it is necessary to multiply the network’s result by 10 to
get a large enough range, therefore any small errors in the hypothesis get magnified by

10. The Boolean version does not suffer from this problem.

Modelling Continuous Functions 138 G P.Fletcher

Heater Controls

oll

If average temp <
Average Temp Required Temp
TURN HEATER ON

Figure 5.20 A VERY simple control system

What is most important is that the model of the continuous function must deliver the
real value of the temperature. It is necessary to construct a method of extracting a
continuous value from the Boolean models that this chapter conjectures should replace

the continuous versions.

Extracting Continuous Qutput from a Boolean Model

The extraction of the correct real output value from a Boolean model consists of
calculating the input value that causes the network to return true. This calculation can be
performed by using a modification of the back propagation training rule to change the

input values instead of the interconnecting weights.

Modelling Continuous Functions 140 G P Fletcher

If this method is used to search for an set of inputs that give the output value of one,
then the inputs have been forced into consistent values. Further, if no updates are made
to the original inputs and only the old "output” is modified then it is possible to derive a

correct "output” for any inputs.

Worked Example

Returning to the colour perception problem from chapter four. The problem is to model
perceived values of hue, brightness and colourfulness from the many different
parameters that effect the way the human eye performs. This very hard problem has be
the subject of research for well over 100 years {Young, Luo, Hunt, Helmholtz]. Each

output is a complex continuous function varying between 0 and 1.

A set of 120 training points were used to train networks to model the hue output,
Different versions of the network were trained using the continuous and Boolean
paradigms. The graph below shows the errors between the network results and the

correct answers for a test set of 50 test points.

Error on output
006 1
Maximum Confinvoug .. T ~ = Bmmm—-—— = =
Square Error
004 = L] B Continuvous Network
» Boolean Network
Maximum Boolean °%®] ©®
SquareEmor — . | YT T T T T === -
Quare 002 +
o 4 s 0
oot 4, | .
] o . % a Fe
000 -1_‘: T “ A 3 T 1
02 00 02 04 06 08 10 12
Correct value of
output

Figure 5.22 A comparison of the accuracy achieved using a Boolean model and a

traditional real valued model.,

Modelling Continuous Functions 142 G P.Fletcher

These results were obtained after 30000 training iterations on both models, giving them
adequate time to achieve their optimum solutions. As such, both models had reached
local minima and further training would produce no change. The results show that the
Boolean model is capable of returning a lower average error and, more importantly, a
much smaller maximum error. In the example, the traditional network could return the
correct answer to a tolerance of £0.235 compared to the Boolean tolerance of +0.158.

The Boolean network represents a large improvement in performance.

Summary

This chapter has investigated methods of increasing the robustness of neural networks
that are modelling continuous functions. These were the largest class of problems that

could not be dealt with using the techniques developed in chapters 2 & 3.

There are several problems with traditional models of continuous functions. They are
limited to single valued continuous functions over an infinite domain, i.e. they cannot
model multi-valued, discontinuous functions or those with smaller domains. Further
they have a limited range; the output of the final neuron is limited to -1.0 ... +1.0. If

scaling is used to increase the range then accuracy becomes a major problem.

The method of representing a continuous function as a Boolean predicate overcomes all
of these problems. This is achieved by modelling a predicate that calculates whether a
supplied input/output pair is self consistent. The old output has now become an input to

the new network; the network tells us if our guess was correct.

In some circumstances a real valued output 1s necessary and the Boolean predicate is

insufficient. This chapter closes by showing how back propagation can be modified to

Modelling Continuous Functions 143 G P.Fletcher

| complete a search for the correct "output"” value, thus returning to a continuous model

| but now without the limitation detailed earlier in the chapter.

Modelling Continuous Functions 144 G P Fletcher

CONCLUSION
CHAPTER 6

While neural networks have demonstrated an ability to implement many complex
systems, they cannot as yet be relied upon. Until the design and verification systems
for neural networks become robust they cannot be widely used in the important
industrial, commercial or safety critical environments. This thesis demonstrates that
analysis is both possible and useful,. Further it shows that there is a strong link
between analysis and design, and demonstrates how the good practice of design can

be extended to cover several new classes of problem.

Chapter two attempts to show that there is a strong link between design and
verification. Both fields strongly encourage the other, and to a certain extent rely on
the other; design is improved if it is possible to check the design works and it is easier
to venfy networks that are properly designed. The currently available systems for
network design are limited in scope. The work has therefore addressed two separate

problems

To demonstrate that is possible, and useful, to analyse trained feed

forward networks,

To extend the good practice of design to classes other than Boolean

classification feed forward networks.

There have been some previous results aimed at representing classification networks
as Boolean type functions. Analysis of one of these shows major representational
flaws. While simple Boolean functions can be a very long winded description of a
network it is always possible to produce a correct analysis. I feel that the ability to

describe any classification network indicates that simple Boolean functions are

Conclusion 145 G P.Fletcher

perhaps the best system to use. A method for extracting a Boolean function from the
weights and bias of a neuron makes up one of the major arms of this thesis. The
Boolean representations of the neurons can be combined to represent the whole
network, demonstrating that is possible to calculate a model of a neural classification

system.

The extraction of a Boolean representation for a network is possible, but is it useful?
The answer to this question is fairly complex. In a classification network the Boolean
representation can be used to build a rule based system. In chapter three the thesis
shows how such a system can be simplified and tested using simple image
enhancement strategies. This is best illustrated by a simple controller used to control a
pole balancing machine (figure 3.17). While the neural controller acted correctly in all
of the test cases, an analysis of shows that it cannot be 100% correct because it has an
asymmetric response and the problem is symmetric. So, for classification systems, the

analysis system appears to be both possible and useful.

Image recognition is one class of classification system for which a rule based
approach appears to have little meaning; consider trying to write down the rules for
how you recognise somebody's face or how you can 'see’ a tree. These problems need
a dufferent mechanism for viewing the analysis. The Boolean rules still contain all the

information but in an inappropriate form.

The method of interpreting the rules must change depending on the domain of the
neural system, but the actual ‘rule extraction' idea is appropriate across many fields.
Optical character recognition is an example of a classification network for which the
derived rules are nearly meaningless to a human observer. A different method of
delivering the information to the user is presented, demonstrating that by changing the
representation of the rules for different domains, the ‘rule extraction’ methods of

analysis is still useful.

Conclusion 146 G P.Fletcher

One of the major limitations of rule extraction is the size of the network. As the size
grows the Boolean representation becomes increasingly complex. While this
limitation is discussed in some detail in chapter three 1t is also the motivation for the
work 1n chapter four. If the size of a network is the limiting factor then a method of
reducing this must be valid goal. Increasing the power of an individual neuron means
that fewer of them are required. Chapter four introduces a more powerful neuron and

shows how they can be trained using standard back propagation.

It has already been shown that Boolean analysis is useful. Using the more powerful
'general activation neurons' does not effect the representation of the rules. However,
the methods used to extract the raw Boolean rules from the neurons must be updated
to cope with the added complexity. This represents the next step necessary to further

expand the class of problems that can be fully analysed.

The last chapter investigated perhaps the most useful set of networks not covered by
the use of Boolean classification systems, namely those that are modelling Real to
Real mappings. There are several problems with traditional models of continuous
functions. They are limited to single valued continuous functions over an infinite
domain, i.e. they cannot model multi-valued, discontinuous functions or those with
smaller domains. The final piece of work demonstrated a method of representing a
continuous function as a Boolean predicate overcomes all of these problems., The
correct design of networks for these problems may make it possible to produce an
analysis system, but until this was achieved it is unlikely that analysis would be
possible. As a Boolean mapping is used within the new model it may be possible to

extend the work contained in the earlier chapters to cover continuous models.

In conclusion this thesis has tried to show that design and analysis for connectionist

systems are desirable, and that there were several holes in the available techniques.

Conclusion 147 G.P.Fletcher

Methods have been presented that show that analysis is possible and desirable for
classification networks. The biggest limitations are the size of the networks and that |
they are only applicable to classification systems. A method of reducing the size of }
classification networks 1s presented along with a design methodology for non-
classification systems. The extension of the analysis tools to cover these new

architectures could be a subject of further study.

Conclusit;n 148 G P.Fletcher

Anderson, K., Cook,

G.E., and Gabor, K.

Anderson, K,,
Cook, G.E,,
Springfield, J.F. and

Barnett, R.J.

Bailey, D.L.,
Tompson, D.M. and
Feinstein, J.L.
Bryson, A.E. and
Ho, Y.C.

Burke, L.I. and

Rangwala, S.

Cater,J.P.

References

1990

1991

1988

1969

1991

1987

REFERENCES

Artificial neurat networks applied to arc welding
process modelling and control. IEEE Transactions on

Industrial Applications, 26, pp 824-830.

Applications of artificial neural networks for arc
welding. In Intelligent engineering systems through
artificial neural networks, Dagli, Kumara and Shin

(eds.), New York, pp 717-728.

Options trading using Neural Networks, Transaction

from Neuro Nimes

Applied Optimal Control. New York

Tool condition monitoring in metal cutting: a neural
network approach. Journal of intelligent

Manufacturing, 2, pp 269-280

Successfully using peak learning rates for 10 (and
greater) in back propagation networks with the
heuristic learning algorithm. IEEE first international

conference on Neurai networks, 2, pp 645-651.

149 G P.Fletcher

Dowsing, R.J.,
Rayward-Smith,
V.J., and Walter,
C.D.

Block, H.D.

Fahlman, S.E.

Frean, M.

Govekar, E.,
Grabec, L., and
Peklenic, J.

Grant, E., and Zhang

Griffith, J.G.

References

1986

1970

1989

1990

1989

1989

1966

A first course in formal logic and its applications in

Computer Science, Blackwell Scientific Publications.

The Perceptron: A model for Brain Functioning,

Reviews of Modern Physics, 34, pp 123-135

Fast-Learning Variations on Back propagation: An
Empirical Study, Proceedings of the 1983
Connectionest Models, pp 38-51, eds. Touretzky,
Hinton & Sejnowski, Pub. Morgan Kaufmann

The Upstart Algorithm. A method for construction
and training feedforward neural networks. Neural

computation, 2, pp 198 - 209.

Monitoring of a drilling process by a neural network.
The 21st CIRP International Seminar on

Manufacturing Systems, Stockholm, Sweden.

A neural net approach to supervised learning of pole
balancing, Proc. 4th International Symposium on
Intelligent Control, 25-27 September, Albany, New
York.

Inaugural Lecture for the Chair of Applied
Mathematics, Bedford College, University of

London.

150 G.P Fletcher

Hall, JW., and
Lu, S.C.Y.,

Hebb, D.O.

Helmoltz, H.V.,

Hinton, G.E,

Hopfield, J.J.

Hopfield, 1.J.,
Feinstein , D.I., and
Palmer, R.G.

Horejs and Kufudaki

References

1992

1944

1924

1990

1982

1983

1993

Emulating human process control functions with
neural networks. Knowledge-Based Engineering
Systems Research Lab. University of Illinois. pp
145-152.

The Organisation of Behaviour, Wiley,

New York

Handbook of physiological objects, Vol. 2, ed.
Southall, J.P.C., Optical society of Amenca, New
York.

Preface to the Special Issue on Connectionist Symbol
Processing, Artificial Intelligence 46 pp 1-5

Neural Networks and Physical Systems with
Emergent Collective Computational Abilities,
Proceedings of the National Academy of Sciences,
USA, 79, pp 2554-2558.

Unlearning Has a Stabilising Effect 1n Collective

Memories, Nature, 304, pp 158-159.

Neural networks with local distributed parameters

Neurocomputing, 5, pp 211 - 219

151 G P Fletcher

Hunt, RW.G.

Hush, D.R., and
Salas, J.M.

Jalel, N.A., Mirzai,
A.R., Leigh, JR,,
and Nicholsen, H.

Kamarthi, S.V.,
Cohen, G.S., and
Kumarza, S.R.T.

Kirkpatrick, S.,
Gelatt, C.D., and
Vecchi, M.P.
Kohonen, T.

Luenberger, D.G.

References

1987

1988

1991

1991

1983

1984

1986

A model of colour vision for predicting colour
appearance in various viewing conditions, Colour

Research Applications, 12, pp. 297-314.

Improving the learning rate of Back Propagation with
the gradient reuse algorithm, IEEE International
conference of Neural Networks, 1, 441-447.

Application of neural networks in process control. In
Neural network applications, J.G.Taylor (ed.),
Springer, pp 101-113.

On-line tool wear monitoring using 2 Kohonen
feature map. In intelligent Engineering Systems
through Artificial Neural Networks, New York, pp
639-644.

Optimisation by Simulated Annealing, Science 220,
671-680.

Self-organisation and Associative Memory.

Springer-Verlag, Berlin.

Linear and Nonlinear Programming, Addison-

Wesley.

152 G.P Fletcher

Luo, M.R., Clarke, 1991
A.A., Rhodes, P.A.,
Schappo, A.,

Scrivener, S.AR.,

and Tait, C.J.

Marchand, M., 1990
Golea, M., and

Rujan, P.

McCulloch, W.S. 1943

and Pitts, W.

Messenger, 1.B.

Messom, C.H., 1592
Hinde, C.J.,

West, A.A., and

Williams, D.J.

Messom, C.H. 1992

Mezard, M., and 1990
Nadal, J.P.

References

Quantifying colour appearance, part 1, LUTCHI
colour appearance data, Colour Research

Applications, 16, pp. 166-179.

A convergence Theorem for Sequential Learning in
Two Layer Perceptrons. Euro Physics Letters,11,
pp 487-492.

A Logical Calculus of the Ideas Immanent in
Nervous Activity, Bulletin of Mathematical
Biophysics, 5, pp 115-133.

Nerves, Brains and Behaviour, Studies in Biology,

114,

Designing neural networks for manufacturing
process control systems,Proc. 1992 International
Symposium on Intelligent Control, August 1992,
LE.E.E. Publishers.

PhD Thesis, Dept Computer studies, Loughborough
University of Technology.

Leamning in Feedforward neural networks: The Tiling
Algorithm. Journal of Physics A : Maths & General.

153 G P.Fletcher

Mihalaros, M.N. 1992

Minsky, M.L., and 1969

Papert, S.A.

Poppel, G., and 1987
Krey, U.

Rosenblatt, F. 1958
Rosenblatt, F. 1962

Rumelhart, D.E., 1986a
Hinton, G.E., and
Williams, R.J.

Rumelhart, D.E., 1986b
Hinton, G.E., and
Williams, R.J.

Rumelhart, D.E. and 1986
McClelland, J.L.

References

MSc Thesis, Dept Computer studies, Loughborough
University of Technology.

Perceptrons: an Introduction to Computational

Geometry, MIT Press.

Dynamically Learning Processes for Recognition of
Correlated Patterns in Symmetric Spin Glass Models,

Europhysics Letters, 4(9), 979-985

The perceptron: a Probabilistic Model for Information
Storage and Organisation in the Brain. Psychological

Review, 65, pp 386-408.

Principles of Neurodynamics, Spartan, New York.

Learning Internal Representations by Error
Propagation, in Rumelhart and McClelland (Eds.),
Parallel Distributed Processing: Explorations in the
Microstructures of Cognition, Vol. 1: Foundations.

MIT press.

Learning Representations by Back-propagating

Errors, Nature 323, pp 533-536.

On learning past tenses of English Verbs. PDP vol. 2
MIT press.

154 G.P.Fletcher

Sejnowski, T.J., and
Rodenberg, C.R.,

Sietsma, J., and

Dow, R.I.F.

Solla, S.A., Levin,
E., and Fleisher, M.

Tanni, J.,, Hirobe,
K., Niida, K.,
Koshijima, I., and
Murakamt, H.
Venkatasubramanian,

V., and Chan, K.

Wang, J., and
Malakooti, B.

Watrous, R.L.

Young, T.

References

1986

1988

1988

1989

1989

1992

1987

1802

Parallel Networks that Learn to Pronounce English

Text, Complex Systems 1, pp 145-168.

Neural net pruning- Why and How. In IEEE
International conference on Neural Networks, 1, pp

665-672.

Accelerated learning in Layered neural networks.

Complex systems, 2, pp 625-639.

New learning algorithm for rule extraction by neural
network and its application. Proceedings of

American Association for Artificial Intelligence.

A neural network methodology for process fault

diagnosis, AIChE Journal, December 1989.

A feed forward neural network for multiple criteria
decision making. Computers and Operations

Research, 19, pp 151-166

Learning Algorithms for Connectionest Networks:
Applied Gradient Methods of Nonlinear
Optimisation. IEEE Conference on Neural Networks,
San Diego, CA, USA. 2, pp 619-627

On the theory of light and colours, Royal
Philosophical Society, 92 (12).

155 G P.Fletcher

References

156

G P.Fletcher

Appendix A

The following papers, containing results from this thesis, have either been

published or have been accepted for publication.

Interpretation of Neural networks as Boolean transfer functions

Knowledge-Based Systems

Volume 7, Number 3, September 1994
pp 207 - 213

Interpretation of neural networks
as Boolean transfer functions

G P Fletcher and C J Hinde

An algonthm for converting neural networks into Boolean
functions 15 presented. The absence of such an algonthm has
been 1dentified tn the literature as a significant problem, and the

' solution shown 1n the paper 15 both complete and efficient. The
analysis of the algorthm shows it to have a time complexity of
better than 2¥-1—=2tv2-1 + |,

- Keywords: neural networks, rule extraction, rule induction

‘ In order to achieve the full potential of artificial intelh-

gence 1t 1s necessary to use results from both symbolic
‘ and connectiomst work. Both offer different views and
neither can be expected to encompass the full power of
the other!. There have been many reports over the past
few years on methods of training neural networks to
emulate different rule based systems?3, The two method-
ologies are seen to be complementary and can be com-
bined into hybnd systems¢® The modelling of neural
networks using Boolean algebra s the natural obverse of
earher results allowing Boolean rules to be expressed as a
networks, and 1t is a central issue in connecttomist
research’®, Venkatsubramaman’ in 1989 suggested that
‘the combmnation of neural-based and knowledge based
systems may improve the performance speed and reduce
the complexity and time required for building intelligent
systems’. Zhang er al.? stated more recently 1in 1992 that
‘the combined use of knowledge based expert systems
techmques with the neural-network technique could
enhance the advantages in both areas and would be a
useful future research topic’. Hinton* 1n 1990 expresses
the view that ‘the problem 1s to devise effective ways of
representing complex structures 1n connectionist

Depariment of Computer Studies, Umversity of Technology, Lough-
borough, Leics, LE11 3TU, UK

Paper recerved 4 March 1993 Rewised paper recetved 28 May 1993
Accepted 19 July 1993

networks without sacnficing the ability to learn the rep-
resentations My own view 1s that connectionists are a
very long way from solving this problem’.

Mathematical proof of the properties of neural
networks would allow them to be introduced into safety
cntical environments where, at the moment, all work
must be of a symbohc nature: this addresses the trust that
can reasonably be placed in trained neural networks®.
The Boolean derivauon of the network could then be
used to check that the basic architecture 1s correct and
that the weights selected are of the correct order of
magmitude and sign. If mistakes are found then the result
can be used to help select new training examples, speed-
ing up the learning cycle by preventing useless examples
being presented.

BOOLEAN REPRESENTATION OF
NETWORK

Neural networks are able to accept continuous valued
mputs. Thresholding beyond the first layer means that all
transformations beyond the first are Boolean transfor-
mations, whereas the first layer may be regarded as a
quantisation layer splitting the mnput space into regions
which are then combined logically by the subsequent
layers. In this paper we only address the transformations
of the second and subsequent layers; the first layer may
be interpreted as the result of relational operators com-
paring real valued inputs. The use of a sigmoid function
changes this view of thresholding somewhat, but with a
fully tramned network the sigmord function will behave as
a very close approximation to a threshold function.

BOOLEANS THROUGH TRUTH TABLES

It is possible to produce a correct Boolean representation
by applying every input pattern and producing a truth
table. Thus truth table can then be turned into a Boolean

0950-7051/94/03/0207-08 © 1994 Butterworth-Heinemann Ltd
Knowledge-Based Systems Volume 7 Number 3 September 1994 207

e

Interpretation of neural networks as Boolean transfer functions G P Fletcher and C J Hinde

function using an algorthmic implementation of Kar-
naugh maps'®. Both stages of this method have a time
complexity of O(2"), giving a minimum total time com-
plexity of 2'*'. This time complexity 1s prohibitively
large and prevents this approach being used on any reas-
onably sized network.

O OPERATORS

Initial investigations mnto this problem used a piecemeal
approach, splitting off the Boolean operators one by one,
This produced interesting results for small test data sets
using two input nodes but failed to generalize properly to
larger systems. The intention 1s to transform each neuron
into a Boolean function, back substitute, and then apply
a simphfication procedure to the resulting collection of
rule sets to derive the overall transformation function
that the net represents Although a thresholded neuron
beyond the first layer can always be represented as a
Boolean function, the form of this function cannot be
restricted to a simple representation where each input 15
mentioned only once: n mput AND and OR are exam-
ples of such simple functions. The interest 1n such func-
tions stems from the problems of scalability which
become increasingly relevant as the number of inputs
rises and the search space for the correct Boolean func-
tion grows exponentially, If a set of operators can be
found that represents any neuron with this restriction
then an effective algonthm could be discovered and a
concise representation would be found. A class of opera-
tors which we refer to as the Q and A operators, as they
are generalizations of OR and AND, has consequently
been investigated and presented!!, where

Onlhs .. 1)

1s true 1 at least n of the m mputs are true.
For example, a three mnput ‘or’ function becomes

Ofli(lh I!v I})

and this can be represented as the simple Boolean func-
tion I'| v]z v I3

0%(’]! II! Il)

1s represented as the simple Boolean function {f; A L} v
(Iz A 13) v (Il A 13).

Og(Ih Iz- 13)

1s represented as the sunple Boolean function {7, A I; A
Byv{h nLal)yv(n I AL, or,moresimply, as
(I[Al A I;).

The A operators are effectively the complementary
function based on AND.

A:t(lh ree 1Im')

208

-

Knowledge-Based Systems Volume 7 Number 3 September 1994

is true if at least one element 1n each combmnanon of n
out of the m nputs is true. For example

Asth, I,)
15 represented as the Boolean function (I, A I, A Iy).
Al L, I)

is represented as the Boolean function (, v ID A (I, v
L) A (L, v L.

Both these operators can be represented by a single
neuron demonstrating that a neuron is more complex
than a simple n 1input AND or OR. They are complete up
to three inputs and therefore provide a means of repre-
senting all possible neurons with an input dunension of
three or less. Perhaps more significantly, and what
encouraged further work, 1s that all z-input panty neural
networks can be implemented by O operators'?, The
work presented by Mihalaros!' presented no complete
analysis of how to find the O operator that matched a
general neuron even 1if a]l the possible neurons in higher
dimensions were covered.

MATCHING NEURON TO O OPERATOR

The possible functions that can be represented by a single
neuron fall into distinct groups. Each of these groups wall
contain exactly one natural neuron and possibly some
real ones, where we define ‘natural’ and ‘real’ as follows.
Natural means that all the weights and the bias of the
neuron are positive, Real means that at least one of the
weights or the bias of the neuron 1s negative.

The O operator representations of all the neurons in a
group are sumilar, the only difference being that, for a
real neuron, some of the input vanables will be negated.
Two statements can be made about the connection
between the O operators and natural neurons.

® O operators that do not contain negated inputs repre-
sent natural neurons: Increasing the number of inputs
set to true can only cause the output to stay static or
change from false to true. This 1s exactly the same
behaviour as that for a natural neuron. Natural
neurons monotonically become ‘more true’ as more
mputs are set to true.

® (O operators that contain negated mputs represent rea
neurons There must be a set of the inputs set to tru
such that there 1s a negative input which when set t
true wilt cause the output to change from true t
false, This situation cannot be represented by
natural neuren and so represents a real neuron Rea,
neurons do not monotonically become ‘more true’ a
more Inputs are set to true.

One way to match a real neuron to an O operator is t
convert the neuron into 2 natural neuron, match this ne

Interpretation of neural networks as Boolean transfer functions G P Fletcher and C J Hinde

-

Figure ¥ Two dimensional hyperplane with one negative and one
positive weight

+
Figure 2 Transformed hyperplane with all weights positve

problem to an O operator, and then convert the O opera-
tor back to match the onginal by negating some of the
inputs

CONVERTING REAL NEURON INTO
NATURAL NEURON

The crosshatched region 1n Figure I is represented by the
equation

Iz- I| >0.5

To change the negative weight from I, 1t 1s necessary to
move the origin to position (1,0). The new equation for
the graph 1s therefore

Iz + [3 > 1.5
where
I; = ~ Il

This gives the new diagram shown 1n Figure 2. If an O
operator Fis found for this new neuron then all instances
of I; in F should be replaced by ~ /.

1]0101010101010
NPUTS 12| 0011001100110
3{0000111100001
14| 0000000011111

0001000100010

101
011
111
111
111

UTPUTS

Figure 3 Arbitrary four dimensional function
[The function 1s hnearly separable and so can be implemented by a
single neuron }

Any inequality can be treated in this manner using the
following algonithm Let the inequality be

wiil, + W;Iz +...w ;> B
Let the new mmequality be
wih + Wl + ... Wi, > D

Forallninl ..d,

W, = |wl
and
D=253- Z fiw,)
where
0 X>0
flx) =
X X<0

MATCHING NATURAL NEURONS TO
O OPERATORS

If the function represented by the natural neuron were to
be drawn onto a layered graph that represents the poss-
ible Boolean input space, where graph nodes are con-
nected 1if they differ by only one input and graph nodes
are i the same layer if they have the same number of
inputs set to true, then only graph nodes that have no
children need to be represented; we are only interested 1n
the infimums. The four dimnensional function shown in
Figure 3 would be represented as the lathce shown n
Figure 4.

Figure 5 shows the set of infimnums taken from the
lattice shown 1n Figure 4, these are the only nodes that
need to be represented. This 15 because 1n an ‘at least
funcuion’, all the others are automatically covered, as the
tinted nodes are the ‘least’ elements. Finding the O oper-
ator for these nodes on the graph can be done using the
following altgorithm.

o Step 1. If only a single node 1s marked, then the O
operator 1s

Knowledge-Based Systems Volume 7 Number 3 September 1994 209

Interpratation of naural networks as Bootean transter functions® @ P Fletcher and C J Hinde

0110 0101
-

iy,
010010 0001

0000

Figure 4 Four dimensional function tabulated . Figure 3 shown as
lattice
{The tinted nodes correspond to an output of 1)

Q011

Figure § Infimums
[The more heavily tinted nodes represent the infimums of the tinted
nodes in Figure 4}

Oxhi. 1)

where [, . .. I, are the dimensions that are set to 1 1n
the required node For example, if the required node
is (1,0,1,1), then the O operator 1s

O3\, I, 1)

® Step2 Where there are Z source nodes, Z> 1, calcu-
late the O operator for each source node ignoring the
others; group these together. To find a single O oper-
ator that represents all other O operatorsn a group,
do the following:

o Step 2 1. If there 15 only one O operator 1n the
group, then that O operator is the answer.

O Step 2.2.If the O operators 1n a group all form a
rotary set then they can be expressed as a single
O operator. That 1s when every O operator 15 of
the form

Ol .. 1)

where every O operator has the same value of n,
and there is a set of operands / = {[, . . . I}
such that the input operands I, ...], of every O
operator are members of I, and, for every combi-
nation C of n elements from I, there 1s an O

operator O}(C) 1n the ongmal group Then the
answer 1s O, (D).

O Step 2.3: If the intersection of all the operands of
the different O operators 1n the group 1s non-
empty then calculate this mtersection and call this
set X,. Remove this set from the ongnal O opera-
tors to form new groups of O operators S If K, 1s
not empty then the answer is G} (X, P(S)), where
P(S) is the single O operator that 1s the ssmphfica-
tion of the group S. n 15 the length (X)) + 1
Apply the algonthm to S to denve P(S).

o Step 2.4: If the group can be spht 1nto subgroups
such that members of subgroups share common
operands with each other and not with members
of any other subgtoup then do this. For example,
the O operators On(1), 12), On(5, L) and OL(1;, 1)
are all in the same group, and the O operator
041, I) is i a dafferent subgroup. For each
subgroup find the O operator that is the simphifi-
cation of all the members, by starting the algor-
ithm again on the subgroup. The answer 1s 0,(0,
. . 0,), where there are n subgroups and O, 15
the O operator that 1s the simphfication of the
Kth subgroup.

o Step 2.5: If the group does not match with any
one of the first four cases then there 1s no single
O operator to represent all the members

Example 1

Calculate the O operator for the four dimensional func-
tron with the infimum nodes (1,1,0,0) and {1,0,1,1). The
O operators are therefore O3(f;, I) and O3(1,, I, 1)

e Step ! Apply the third rule. The answer 1s Oi(/,, P),
where P 1s the ssmphfication of the group containing
the O operators O|(L) and O3/, 1)

e Step 2: Apply the fourth rule to P. Each element of
the group contains different operands and 1s there-
fore ;n a separate group. The answer 1s OXR, 5),
where R 1s the simphfication of the subgroup [O{(5)]
and $1s the simplification of the subgroup [OX(/,,).

e Step 3 Apply the first rule to R and S. Now no more
simplification 1s necessary, and the final answer 1s
03(1,, 0X0i(Dy), 03Iy, 1))

Example 2

Calculate the O operator for the four dimenstonal func-
tion shown n Figure 6

The three source nodes are (1,1,1,0), (1,1,0,1) and
(1,0,1,1) Therefore the starting group contamns the three
O operators O3/, I, 1), O3 (1, I, I,) and Oi(J;, I, L).

o Step! Apply the third rule. The answer 1s O3(],, P),
where P 1s the simplification of the group containing
the O operators O(I;, 1), Qi(l,, L) and O], 1,).

210 Knowledge-Based Systems Volume 7 Number 3 September 1994

Interpretation of neural networks as Boolean transter functions G P Fletcher and C J Hinde

Figure 7 Four dimensional function that cannot be represented by ©
operators

o Step 2 Apply the second rule to P. This gives an
answer of Qi(/,, I, 1) Now no more simplification 1s
necessary, and the final answer s O(/,, OX(h, Iy, 1))

WHERE O OPERATORS BREAK DOWN

For the function represented by the graph shown m
Figure 7, the source nodes are (1,1,0,0}, (1,0,1.1) and
(0,1,1,1) Therefore the initial group contains the O oper-
ators O3(1,,), O¥({,, I, L) and O¥(h, I, I,). None of the
first four rules can be applied for the following reasons:
(a) for the first rule, there 1s more than one O operator in
the group, (b) for the second rute. not all the values of n
are the same, (¢) for the third rule, no operand s
commeon to every member of the group, and (d) for the
fourth rule, the group cannot be split, as every member
would be 1n the same subgroup.

According to the fifth rule, the function cannot be
represented. An exhaustve search provides an alterna-
tive verification of this. As the function is linearly separ-
able, it can be represented using a neuron. Therefore O
operators are tncomplete, and this 1s stmlarly true for A
operators. Unfortunately the incomplete elements of the
O operator set are not representable using A operators,

CONCLUSION ON USEFULNESS OF O
OPERATORS

How to find the O operator, if 1t exists, for any neuron of
a neural network has been shown This has been

n | 3]
P Y |
INPUTS . —=
4 C——71
BIAS — 121

Figure 8 Natural neuron as knapsack problem
[Tt 1s necessary to fit the mmput ‘parcels into the bas ‘package’]

achieved by finding a similar problem that can be solved
and converting this back to provide a solution for the
required problem. However we have also shown that O
operators are not complete for four or more dimensions,
and thus they cannot n general be used to analyse such
networks

Where 1t 15 possible to use O operators, they provide a
concise and clear representation. and thus they are 1deal
for large networks wath low connecttvity

SOLVING NATURAL NODES CORRECTLY

Natural perceptrons can be turned into Boolean func-
nons with relatuvely httle effort. It 1s necessary to find
which sets of inputs are the minimum required to turn on
the output, (These are the same sets that 1t was necessary
to model using the O operators) This problem 1s sioilar
1o the classic knapsack problem, which has an exponen-
tial ime complexity®3,

Instead of an attempt being made to find a set of
inputs that exactly fit the bias. the required answer 15 all
the sets of inputs that just exceed the bias, For example,
I, and /, just exceed the bias as 9+ 7> 14, but 1f exther of
the tnputs 1s removed, then the total falls below the
required threshold. The complete set for the problem
shownin Figure Sys h & L, [& Land L& I, & L.

Thas represents the required Boolean function and can
be transformed easily to the conventional Boolean
format (L& RDor(h & I)or (L& L &L)

An algorithm to produce one of the parts of the result
is given as a pseudocode procedure below, By backtrack-
ing, the procedure will yield each part in turn until the
whole function has been produced

knapsack(Array_of_inputs.Bias,Answer)
if Bias = 0 then
for each element X 1n Array_of_inputs
New_Array = all elements after X n
Array_of_inputs.
knapsack(New_Array.
(Bias - X),Sub_Answer)

Knowledge-Based Systems Volume 7 Number 3 September 1934 21

Interpretation of neural networks as Boolean transfer functions G P Fletcher and C J Hinde

Answer = append(X,Sub_Answer)

else
Answer = []
end
COMPLEXITY ANALYSIS

Let C(X) be a measure of complexity that 1s proportional
to the time taken to calculate the answers using the

algonthm given above, To produce an answer when

there 15 one weight requires one call to the algorithm:
cn=1

To produce an answer when there are two weights
requires two calls to the algonthm:

C2)=2

To produce an answer when there are N weights requires
P calls to the algonthm'

C(N)= P

CM =1+ Y C4)
A=1 N-1

) = 2t

Therefore the worst-case uime complexity for the solu-
tion of a natural neuron is O(2¥). This 1s still exponential,
but unlike the exhaustive search method described earher
this can be reduced further, or left with a saving n
complexity of approximately four tmes.

REDUCTION OF COMPLEXITY

The algonithm will only start to approach the maximum
complexity when most of the weights are required to
make the perceptron fire This means an mmprovement
can be made in the solution time if the hyperplane 1s
more than halfway from the origin. The way to do thiss
to view the problem from the opposite corner of the unit
hypercube and solve the opposite problem, This wll
bring the hyperplane less than halfway from the new
ongin. The procedure will then need fewer recursive
loops to find its answers. For example, the neuron 1n
Figure 9 (let us call it P) represents a hyperplane that is
more than halfway from the ongin. Let G be the second
neuron such that

G=~P

and then rotate the axis so that G 1s natural (see Frgure
10)

This hyperplane is less than halfway to the opposite
corner. Once the Boolean function for G, B(G), has been
calcutated, the Boolean function for P15 ~ B(G).

wy

4’

Figure 9 Example of hyperplane implemented by neuron requining
rotation

§/+
x\/

Figure 10 Hyperplane shown in Figure 9 after rotation

Using this method 1t will never be necessary to use
more than half of the weights to find any part of the
solution This changes the values of C(N), as only half of
the weights are required, to

CM=1+ Y C4)

A=N—-1 N2
let
DNy =1+ Y D(4)
A=) _N=}
D) =1
D(N) = 2¥-1
Therefore,

C(N) = D(N) — D(N|[2) + |
C(N) = 2¥-1 — 2= ¢ |

WHEN TO SIMPLIFY BY ROTATION

It has been stated that the problem should be rotated if
the hyperplane 1s more than halfway to the opposite

212 Knowledge-Based Systems Volume 7 Number 3 September 1994

Interpretation of neural networks as Boolean transfer functions: G P Fletcher and C J Hinde

corner of the hypercube. The problem of deciding what
constitutes bemg more than halfway from the origin is
not simple. The obvious, and best, method would be to
decide 1f more than half of the volume of the hypercube is
cut off from the onigin by the hyperplane. This can seem
a very complex task, but analysis shows that, if the
boundary 1s flat, which it must be as 1t is a single hyper-
plane, then the side of the hyperplane with the most
volume 1s the side that contains the point exactly in the
centre of the cube, Therefore, to test 1f rotation is neces-
sary, 1t 15 only necessary 1o test to see if the point halfway
from the onigin 1s above or below the hyperplane, If it is
above then no rotation is necessary, otherwise, rotate. To
perform this test, add all the weights together and divide
by two. If the total is above the bias then do not rotate,
ie. if (Zweight)/2 < bias, then rotate.

FINDING THE MINIMAL ANSWER

The algorithm so far described will return a correct solu-
tion. For the purposes of a useful system, the returned
answer must not only be correct but also minimal, This
can be achieved by sorting the weights into decreasing
size before entenng them (see the proof). A further
advantage of this 1s that sorting is a good heuristic for
reducing the average processing time to find the solution
(see Figure 11).
Let the input to the algorithm be the weights

F"il l‘}&i I"ss L ,I{I;

and the bias value B. The mistakes that cause the answer
to be nonminimal occur when

Wi+ W, + W +...+ W,>B (1)

@

Because the algorithm stops as soon as the bias 1s
achieved,

Wy+~W,+ ..+ W,>B

W+ W, +W,+...+W,—- W,<B A3
However, 1f the weights are 1n sorted order, then
W, > W, L))

Substituting Equation 4 into Equation 3 gives

W, + W, + W+ ...+ Wo— W, < B
W+ Wy + ...+ W,< B

which contradicts Equation 2. Therefore, if the weights
are sorted, the two requirements for added comphication
in the answer cannot occur.

SOLVING REAL NEURONS

Finding the function of a real neuron 1s a much more
complex problem. To solve this, it must be converted

Knowledge-Based Systams Volume 7 Number 3 September 1994

Number Of Catls Made To Find A Solutien

2080

2640

2169

1920

1680

1200

960

249

4 -1 6 7] 9 10 I 12
Number Of Input Weights

Figure 11 Companson of speed of executton with sorted and unsorted
weights

[Although the lines appear to be close together, the steepness of the
curve masks a decrcase 1n calculauon tme of 30% for the 12 input
problem. The graph also shows the impracticability of trying to analyse
neurcns with many more than 12 inputs)

iito a natural neuron that gives the same results over the
Boolean input range.

This is the same 1dea as was described indenving the O
operator for a real neuron. The answer 1s similar to the
answer for the new question (the natural neuron derived
from the real problem), but some of its vanables are
negated. The vanables to be negated are the ones that
refer to inputs with negative weights, If the bias is nega-
tive, then the problem can be converted to an identical
problem, but with 2 positive bias, by multiplying all
values by —1.

EXAMPLES

Consider the neuron in Figure 12 representing a neural
network implementation of a two input OR gate.

This neuron implements an OR function. Applying the
algorithm to find the minimum nputs to fire this neuron
returns two answers 4 and B which are converted into
the correct Boolean function 4 v B.

213

Interpretation of neural networks as Boolean transfer functions G P Fletcher and C J Hinde

0
0.7 1.2
A B

Figure 12 Two input OR gate implemented as neural network

Figure 13 Implementation of three input panty as neural network

A more complex example 1s the case of three dimen-
sional panty A neural network to calculate this function
is shown n Figure 13. The Boolean function for each
neuron 1s calculated separately:

O=H

H=GvVvF

G=~(~Av ~Bv ~(0)

F= ~(~Dv ~E)

D=~{Adv B v ~(dv ()
v~(Bv ()

E=AvBvC

Combining these gives

O=n~(~Adv ~Bv ~C) v ~(~(~(4& B)

VAA&CO v ~(B&C) v ~(A v Bv O)

which is the correct function expressed in terms of NOR
gates,

214

Once the neural network has been transformed to an
equivalent Boolean function, or set of functions, there
are many ways of expressing this function. We have
chosen to leave this exercise to the reader, as, although it
15 nontrivial, 1t 15 well documented.

CONCLUSIONS

An algonthm for converting neural networks into Boo-
lean functions has been given The absence of such an
algonthm has been identified in the hiterature as a signifi-
cant problem and the solution shown mn this paper 1s
both complete and efficient. Previous attempts, descrnibed
in the paper, were either incomplete or inefficient. In
particular the exploration of generalised Boolean opera-
tors proved incomplete above three dimensions and a
truth table analysis 1s inefficient for any reasonably sized
neuron. The development of the final algorithm proceeds
from converting a ‘natural’ neuron into a Boolean func-
tion to generahsing this to ‘real’ neurons. The analysis of
the algonthm shows 1t to have a time complexity of
better than 2¥-! — 202-1 4 1 if the weight vector 1s
sorted.

REFERENCES

1 Smolensky, P 'On the proper treatment of connectiomsm’ Beha-
vioural & Bran Sci 11 (1988) pp 1-23

2 Grant, E and Zhang, B ‘A neural net approach to supervised
learning of pole balancing’ Proc 4th International Sympostum on
Intelligent Control Albany, NY, USA (25-27 Sep 1989)

3 Donne, J D and Ozgunner, U *A comparative study of neural vs
conventional methods for modelling and prediction’ Proc. 1992
Internanional Sympostum on Intelligent Control IEEE (Aug 1992)

4 Hinton, G E *Preface® Aruficial Inteliigence 46 (1990) pp 1-5 (spe-
ctal 1ssue on connectionist symbol processing)

5 Messom, C H, Hinde, CJ, West, A A and Williams, D J ‘Designing
neural networks for manufactunng process control systems’ Proc
1992 International Symposwum on Intelligent Control IEEE (Aug
1992)

& Hinde, C J ‘A comparative réview of neural nets and rule based
systems' Techmeal Report LUT TR 575 Department of Computer
Studies, Loughborough Umversity, UK (1990)

7 Venkatsubramanian. V and Chan, K “A neural network methodo-
logy for process fault diagnosis’ AICKE Journal 35 12 (1989) pp
1993-2002

8 Zhang, J and Roberts, P D ‘On-line process fault diagnosis using
neural network techmiques® Trans Inst Measurement and Control
14 4 (1992) pp 179-188

9 Baum, E B and Haussler *What size net gives vahd generalization™
Neural Comput 1 (1989) pp 151-160

10 Dowsing, R D, Rayward-Smuth, V J and Walter, C D A First
Course wn Formal Logic and s Applications in Computer Science
Blackwel! Scientific Publications (1986)

11 Mihalaros, M ‘Studying the interpretanion of feedforward neural
networks using logical functions’ MSc Thesis Department of
Computer Studies, Loughborough Umversity, UK (1992)

12 Messom, C H ‘Engineenng rehable neural network systems’ PhD
Thesis Department of Computer Studies, Loughborough Univer-
sity, UK (1992)

13 Garey, M R and Johnson, D § Computers and Intractability W H
Freeman, USA (1979)

Knowledge-Based Systems Volume 7 Number 3 September 1994

Neural Networks as a Paradigm for Knowledge Elicitation

Proceedings of the International Conference on

Artificial Neural Networks, 1994

Maria Marinaro and Pietro Morasso (Eds.)
Springer-Verlag (Pub.)
pp 207 - 213

Neural Networks as a Paradigm for Knowledge Elicitation.

G.P.Fletcher & CI1.Hinde
Dept. Computer Studies
A.A West & DJ. Williams
Dept. Manufacturing Engineering
University of Technology
Loughborough.

1 Introduction

1t has been consistently stated that the hardest part of constructing any knowledge
based system is extracting the information from the “expert” (Hart 1986). Rule
based systems are one genre of expent systems, in this paper we demonstrate a
method for converting a neural network into a set of rules, This maintains the basic
advaniages of neurai networks but redresses some of the disadvantages.

2 The Gluing Machine

The first real application (Chandraker et al. 1990) is the dispensing of adhesive n
the manufacture of “mixed technology” P.C.B.s in which through hole and surface
mount components are present on the same board. The surface mount components
are secured to the board, prior t0 a wave soldenng operation, by a small amount of
agdhesive, The amount of adhesive dispensed s cnitically dependent upon several
process environment vanabies.

Messom et al. 1992 produced a sparsely connected 7 input, 5 output neural network
system for congolling the adhesive dispensing machine, The tramned neural network
should therefore be equivalent to a set of rules that couid have been leamnt by a rule
induction package.

Step one in the analysis is to examine the first layer of the network and to express
this part as a set of inequalities. This step does not simplify the informaton but does
display 1t much more naturally than a set of weights on a diagram.

IF rise_tme < 1.25 IF ares > 10258
THEN nse_umeflag THEN mudnode
ELSE —nse_timeflag ELSE —entdnodel

The mmz;inder of the network can ﬂ;en be convented to a set of Boolean functions
(Fletcher et al, 1993a). Substituting the above 1nequalities gives rules of the form:

IF rise_pme <125 P 0918 1.025
mem- E :ﬂ_ree_xg}: s;ﬁlls A pulse_haght <)
ELSE —nse_umcilag ELSE ~puise_heightflag

These rules serve to illustrate the usefulness of the interpretauon system for a
medium sized control network. This type of result is most useful when 1t is
necessary 10 check that what the network has learnt is reasonable and when it 15
necessary for a system to explain its actions, something classic neural networks

243

cannot normally do.
3 Noise Immunity of Neural Network Derived Rules

A good connectionist based solution should exhibit fewer overail problems than the
currently available symbolic systems. A useful quantitative measure of noise
immunity is the average percentage of the learnt hypothesis that matches the
required hypothesis, A correct function is represented by the truth table shown in
table 1a, and a noisy version with one output incorrect is represented in table 1b. As
these truth tables match in 87% of the outputs the noisy hypothesis is defined to
have an integrity of 87%.

00000000 00000000
INPUTS 01010101 01010101

00110011 00110011
OUTPUTS 01010101 01010111

Table 1a Table 1b

Table 1215 & truth table representing & Boolean function, whereas lable 1b represents 8 nowsy hypotheais,
note the change of the seventh bit 1n the OUTPUTS line.

Figure I shows the responses of a neural network after traiming for conjunction and
panty with differing amounts of noise. This demonstrates the immumty to noise
using a neural network induction system, aithough live applications wiil be more
complex than the illustrations above they wili typically be trained on noisy data.

Lt 2 Tivws s argrams

? S

. L] . L} » n o » - - L " - - ”n e -

Figure 1 The response of a neunal network denved from a trammg set for conpncuon with diffening
amourts of nosc supermmposed on the response of the neural network denved from a 3 dimensional
panty traning sct.

4 The Pole Balancing Problem

The pole balancing problem (Michie et al. 1968) is an example of applied adaptive
control and has become a standard tutonal problem. The control system must
balance a pole on 2 motorised cart by moving the cart back and forward in a
confined space. The impiementation of most interest here is the neural network
(Zhang et al. 1989) shown 1n figure 2 which was successful in a balancing the pole
under a variety of circumstances.

244

Cant In Right Hand
Half Of Track

Pole speed increasing

B

e 5
e 3
2 5.
'2

& 3
s 3
g 2

Figure 2. A neural network developed by Zhang and Grant 10 solve the polc balancing problem.

Fletcher et al. {(1993b) descnbe a method for applying simple mmage enhancement
techniques to Boolean functions in order to expose the underlying emphasis. The
analysis of the pole balancmg net resulted in the following versions of the output
funcuon under different levels of simphfication,

IF (Top of pole 18 to nght A —Pole 13 falling over A —Pole Speed Increaning A Cant
Accelerating) v
(Top of pole 15 to nght A —Pole is falling over A —Pole Speed Increasing ACan In
Right Hand Half Of Track A Can Moving Awsy From Centre) v
{Top of pole 11 10 nght A Pole 15 fallng over A Pole Speed Increasing)

THEN Apply nght foree

ELSE Apply left force

Set of rules generated with no simplification

IF ('I'c_rlp of pole 15 to nght A —Pole 1 falling over APole §; Increasing) v
(=Top of pole 15 1o nghtAPele is faliing over A —Pole Speed Increasmg)v
{—Pole Speed Increasinga—Cart In Roght Hand Half Of Track A —Cant
Accelerating)
THEN Apply npht force
ELSE Appiy left force
This shows us that the function attaches importance to mput vanables that should

have no beanng on the outcome for the cases analysed. This means that the output is
not correctly computed.

IF (Top of pole 11 to nght A Pole Speed Increasing) v
(Top of pole 1110 nght A Pole 15 falling over)

THEN Apply nght force

ELSE Apply left force

This shows the net has implemented an asymmetric function in response to a
symmetric problem. This means that there are some areas that will need further
training for completeness.

IF Top of pole 1s tonght
THEN Apply nght force
ELSE Apoly left force

This shows that the network is basically correct.

245

5 Limits of Boolean Rule Conversion

The nature of neurons means that as the number of inputs grows so does the length
of the Boolean descniption. In the worst case the numbers of comjuncuons 1n a
mimmal disjunction of conjunctions representation grows at a rate of 201 where
there are 0 inputs, The ume taken to calculate an answer 1s exactiy proportional 10
its size, The answer becomes intractable to compute for neurcns with more than 20
inputs, and meaningiess for a human far earhier. Current work is aimed at
implemenung systems which will enable the user to interactively tramn and study the
hypotheses of large networks (Fletcher et al. 1993c).

6 Conclusion

Results have been demonstrated that illustrate the extracuon of Boolean based rules
from a neural network. These rules were also used to check that the hypopthesis of
the neural network was consistent with the problem. The rule induction system has
also been shown to have a high integrity in the presence of noise, making neural
networks an ideal method for ruie induction in noisy problem domains.

7 References

Chandrzker, R., West, A.A., & Williams, DJ., 1990, Intelligent control of Adhesive
Dispensing, UCIM, special issue in Intelligent Control, 3, No 1, pp. 24-34,

Fletwcher, G.P. & Hinde, CJ., 1993a, Interpretation of neural networks as Boolean
transfer functions, Dept. Computer Studies research report 779, to be published in
Knowledge-Based Systems,

Fletcher, G.P. & Hinde C.J., 1993b, Using neural networks as a tool for
constructing rule based systems, Dept. Computer Studies research report 781.

Fletcher, G.P. & Hinde C.J., 1993c, Providing evidence for the hypothesis of large
neural networks, Dept. Computer Studies research report 793, submutted in revised
form to Neurocompuung.

Han, A, 1986, Knowledge Acqusition for Expert Systems, Kogan Page.

Messom, C.H., Hinde, CJ., West, A A, & Williams, DJ., 1992, Designing neural
Networks for Manufacturing Process Control Systems, Proc. 1992 Intemational
Symposium on Intelligent Control, August 1992, LE E.E. Publishers.

Michie, D. & Chambers, R. A., 1968, BOXES: An Expenment in Adaptive Control.
Machine Intelligence 2, ed. Dale, E. and Michie, D., Oliver and Boyd, Edinburgh
University Press.

Zhang, B. & Grant, E., 1989, A Neural Net Approach to Autonomous Machine
Learming of Pole Balancing. Proc. IEEE conference on Intelligent Control. pp 123.

Learning the Activation Function for the neurons in

Neural Networks

Proceedings of the International Conference on

Artificial Neural Networks, 1994

Maria Marinaro and Pietro Morasso (Eds.)
Springer-Verlag (Pub.)
} pp 611 - 614

Learning the Activation Function for the Neurons in
Neural Networks

G.P. Fletcher & C.JI.Hinde
Department of Computer Studies
Loughborough University
Loughborough

1 Introduction

Ever since the sigmoid replaced the threshold as the main actvation function used
in aruficial neural networks, the properties of the activation function have been
largely ignored. Most research aimed at improving the quality of the hypothesis or
the speed at which it is obtamned has concentrated on the topology or enhancing the
leaming algonthm (normally back propaganon).

Even though the sigmoid function is intended 10 be an approximation to a real
neurons response, artificial systems do not necessanly need to copy. Real neural
networks model very complex information by using huge numbers of neurons. By
developing a set of more complex actvaton funcuons it should be possible to
produce better models of complex information resulting in smaller and faster
networks and the development of more powerful application areas for aruficial
neurai networks,

Other recent work has presented the 1dea of paramemsation of the sigmoid function
(Hores et al. 1993). By wraining these parameters using back propagation it is
possible to alter the sigmod’s characienstics; 1.¢. such things as the maximum and
mid values of the function. The idea was developed as a method of trying to remaove
the input we:ghts as a traming parameter. Instead of anempung to produce smaller
networks with more powerful nodes the other work was aimed at allowing massive
nets of very low complexity to be tramed. The results show that although these
nets will converge they require many more tterations. This paper shows that, by
taking the converse view and improving the power of each neuron, the number of
tramng ilerations is significantly reduced.

2 Sine as an activation function for back propagation

Back propagation relies on the use of a differentiable activation funcuon. The
sigmoid function was originaily chosen because of its similarity to the then popuiar
threshold activation function of the simple perceptron model (Rosenblatt 1962),
There 1s no reason why back propagauon needs to use the sigmoid, replacing it
with another differenttable funcuon such as sine does not affect the convergent
properties but does affect the types of hypotheses that can be represented.

If a two input neuron uscs a sigmoid then it is perfectly able to model transfer
functions such as "Boolean AND" and "Boolean OR", in fact 1t is difficult to
imagine a better activation function for these two problems.

The "Boolean X-OR" or two input panty 1s the simplest problem that cannot be
modelled in a single neuron using a sigmoid activation function. Figure 1 shows
how the sine and weights interact to model the X-OR funcuon in a single neuron.

612

Case 'A’ shows that the threshold with two inputs set to false give ‘Sum’ a
value of -%/2, and therefore an output value of -1.0 or false.

Case 'B' shows that if one of the inputs is true and the other false then
‘Sum"” 1$ 2/2, and the output vatue is 1.0 or tue.

Case 'C’ shows that with both inputs set to true then sum is 3n/2 and
output is -1.0 or false,

I Si(X)
+10

00

<

A

/

l‘d /./

--.---
- el
c— oy
wiiseas —— —m omfiiee
Valasof sput Valne of mput Troshald

i w falm, ot A brmb.
Figure | Demonsiranon of the sine acuvanon funcuon, and the combination of weighis and buas 10
produce the X-OR funcoon.

However, the sine activation funcuion does not effectively model "Booiean OR".
Even using such a simple network, it is apparent that by choosing the correct
activation funcuon for the problem, modelling becomes much easier.

3 The general activation function

Given a large network it is not feasible for the designer to allocate the correct
acuvanon functon 1o every neuron. [t therefore becomes necessary to develop a
general parametrised activation function with enough flexibility to be able 10 model
many different types of transfer function. If the parameters of the general activauon
funcuon are trained together with the mput weights the neuron will develop the
actvation function that most eastly models the data,

An example activauon function is constructed using both the tracitional sigmoid
and the sin activation functions. Let the acuvation function be f(B8) where 8 is the
product of the weight and input vectors. i.e.

B = bias + weighty*inputy + weighty*input3
J(B) = a. sigmoid(B) + (1 - a) . sin(B)

Each element of the activation function has a -1 to +1 range. The output of the
ncuron has been maintained in the raditional -1 to +1 range by making the sum of
the acavation function weights equal 1. By back propagaung the errors and using
them to modify the parameter 'a’ in each neuron the individual neurons will develop
different charactenistics. If a is high, i.e. 0.9, then the acuvation function becomes

613

very close to the traditional sigmoid. This is very good when attempung 1o model
problems like the "Boolean AND". Dropping the value of a to 0.1 produces an
activation function easily capable of representing the "Boolean X-OR" problem.

4 Training with the general activation function with two
dimensional problems

All two dimenston problems can be represented using just a single neuron with a
general activation function. To demonstrate the neurons ability to derive the correct
activation function the solutons for "Two input AND” and "Two input X-OR" are
presented.

IWO INPUT AND IWO INPUT X-OR
Input | Weight : +1.7142 Input | Weight : +1.5881
Input 2 Weight : +1.7159 Input 2 Weight : +1.5776
Bias 1 -1.7126 Bias + +1.5718
Activation Function Activauon Funcuon
Oupt
10 By
Slnof 1
lﬂ.ﬂ 30 10 o -4 ﬂv L L'}
_-I. L)
Figure 2a: The acuvation funcuon wn Figure 2b: The ascuvation funcuion m
response 1o the "AND" tramung ses. response to the "X-OR" tramng set.

Both of the neurons have developed activation functions capable of representing the
problems being demonstrated. One having produced a threshold type function and
the other a cyclic function, ideal for the two different problems,

S Neurons with general activation function as a method of
reducing the number of training iterations required.

Networks constructed of neurons that use the general activation function are more
flexible in the representations they can adopt. If it is easier 10 represent the
information within the network, the time required to find an acceptable
representation will be reduced.

A four input, three midnode one output network forms the basis for the illustrative
experiment, which is shown using standard and general activation functions. The
graphs show the error over the traming cycie for the two different types of neurons.

614

Avangs Eerer over Avarsgs Ewor over

20 diffesvmt vounge ‘20 dilloes vum—g
2 2
“Owcaval Actrvstion
Punctiva®)
1 14 *Standerd Actrvarsm Peootion®
[] T ' — [v —
[} 100] 100
Numbar of esstoms Nunber of lvrenos
Fi;llm 4a: Averuge sum emor when Fi;um 4b: Average sum squared error when
usmg a general acuvation functon., using & standard acuvation function.

These results show the potential for very large savings in training ume. The results
are an average of 20 different training cycles. Each one uses a randomiy chosen,
consistent, training set and stant point. The same training sets and staring points
were used for both expeniments,

6 Conclusion

By increasing the computational power of each neuron it is possible to increase the
representatronal flexibility of neural networks while reducing the number of tratning
iteranons required to form a hypothesis.

By reducing the need for very large networks implementation becomes much easier.
With the smaller networks 1t is tractable to produce a clear representation of their
derived hypotheses (Fletcher et al. 1993). The developer will then be able to venfy
that the design has correctly represented the required hypothesis. Greater confidence
in neural networks will enable them 1o be used on a much wider basis,

7 References

Fletcher, G.P., Hinde, C.J., West, A.A. & Williams, D.J., (1994) Neural networks
as a paradigm for knowledge elicitanon, ibid.

Horejs, J. & Kufudaki, O., (1993) Neural networks with local distnbuted
parameters, Neurocomputing, Vol § NQ@ 4, pp 211 - 219,

Rosenblatt, F., (1962) Principles of neurodynamics, Spartan books.

Using Neural Networks as a tool for constructing rule

based systems

Knowledge-Based Systems

Prof E. A. Edmonds Editor-in-Chief
-— LUTCHI Research Centre
University of Technology

Loughborough
Lewcs LE11 3TU UK

4 ! ; I i : I I Telephone +44 509 222690

Telex +44 509 610815
E-mail KBS @ lut ac uk

KBS-275
22nd September, 1994

Graham Fletcher

Department of Computer Studies
Loughborough University of Technology
Loughborough

Leicestershire LE11 3TU.

Dear Graham,

Thank you very much for revising your paper entitled, 'Using neural networks
as a tool for constructing rule based systems' for publication in
Knowledge-Based Systems.

The paper has now been re-examined and as all the referees’ comments appear to have
been dealt with adequately, I am pleased to inform you that it has been accepted for
publication.

Authors receive a copy of the issue of the journal in which their paper is published,
plus 50 offprints (more can be ordered if required). Your paper will be published as
soon as the schedule will allow and proofs will be sent to you for checking in due
course.

In the meantime, please would you sign and retumn the enclosed copyright ransfer
form. Assignation of copyright in this way does not jeopardise your traditional rights
as an author to reuse or veto third party publication. However, it does enable the
publishers to sanction the printing and reprinting of the journal.

If you have not already done so, please also send your original artwork to me to pass
on to the publishers (line drawings, prints or negatives).

Yours gincerely

Professor E.A. Edmonds

€nc

An International Journal * Bulterworth-Hememann Ltd, Linacre House, Jordan Hill, Oxford QX2 BDP, UK

neural networks

Neurocomputing

Volume 9, 1995

\
\
Producing evidence for the hypothesis of large

4 4
Eudr
}
o

NEUROCCMPUTING

Ve
. A
¥

ELSEVIER Neurocomputing 9 (1995) NCG00362 T

Producing evidence for the hypotheses
of large neural networks

G.P. Fletcher, C.J. Hinde *
Dept Computer Studies, Uniwersuy of Technology, Loughborough, Leicestersiure LE11 3TU, UK
Recewved 20 December 1993; accepted 23 September 1994

Abstract

This paper presents results allowing large networks to be anaiysed using a fast approxi-
mate system. This provides an understanding of their hypotheses and actions, permitting
networks to be used with more confidence tn compiex applicanions. The technique used has
been to caiculate the best input pattern that given the mnternal hypothesis gives the desired
output. If the calculated pattern correctly displays the features of the mput space then this
is enidence that the nerwork has learnt the correct hypothess, The converse 1s zlso true: of
the shape differs from the target then thts should provide some indications for the best
traiming examples to improve the hypothesis.

Keywords: Feediorward networks: Hypothesis; Model; Interpretation: Feedbackward

1. Introduction

One of the major problems preventing the rapid spread of connectionist systems
is the lack of a guarantee that the hypothesis represents a correct interpretation of
the problem. Hinton (6] in 1990 expresses the view “the problem i1s to devise
effective ways of representing complex structures in connectionist networks with-
out sacnficing the ability to learn the representations, My own view 1s that
connectionists are a very long way from solving this problem”.

There are several different methods of describing the output function of a
neural network. The purpose for which the descniption is to be used dictates which
method is used. Earlier work has focused on the interpretation of neural networks
as rule based systems [4,5], the example being developed here is for the verification
of visual pattern recogmtion networks such as Opticali Character Recognition

* Corresponding author. E-mazil: c.{.hinde@lut.ac.uk.

0925-2312/95/509.50 © 1995 Elsevier Science B.V. All nghts reserved
SSDI 0925-2312(94)00064-6

2 G.P. Fletcher. CJ. Hinde / Neurocompuang 9 (1995) 000-000

Fig. 1. The rarget... This 18 what a feed backward analysis of a network that has correctly leamnt to
recognuse the letter E should look like, The darker the temon the closer the link to the hypothes:s.

(O.C.R.) {8]. In these types of application the best form of venfication is to
calculate the input pattern that corresponds most closely to a given output pattern.
If this coincides with the developer’s ideas then this is evidence for accepting the
hypothesis, This would best be described as a2 form of feed backward network,
tring to find the typical input pattern from a given output pattern.

The ideal style of answer would be something along the lines of Fig. 1. The
darker regions represent areas that have strong links with the output, lighter areas
have a progressively smaller impact. The Fig. 1 hypothesis would be a good result
from a network that has been trained to recogmse the letter capital E. The Fig. 2
hypothesis could represent a network that correctly classifies all the training
examples but could do with some further training. By looking at the resuit in Fig. 2
it is possible to construct a further training example to correct the minor errors.

2. Boolean rule induction from neural networks

Fletcher and Hinde (4] have produced a system capable of extracting Boolean
based rules from a neural network. This system proved very successful when
working with small to medium sized industnal control networks. .

ey

Fig. 2. This is what a feed backward analysis of a network that has neariy correctly learnt to recogmise -
the letter E may look [ike. Some areas could do with further tramming examples.

