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Abstract 
This project investigates a new class of high-order neural networks called shunting 

inhibitory artificial neural networks (SIANN's) and their training methods. SIANN's are 

biologically inspired neural networks whose dyoamics are governed by a set of coupled 

nonlinear differential equations. The interactions among neurons are mediated via a 

nonlinear mechanism called shunting inhibition, which allows the neurons to operate as 

adaptive nonlinear filters. 

The project's main objective is to devise training methods, based on error 

backpropagation type of algorithms, which would allow SIANNs to be trained to 

perform fuature extraction for classification and nonlinear regression tasks. The training 

algorithms developed will simplify the task of designing complex, powerful neural 

networks for applications in pattern recognition, image processing, signal processing, 

machine vision and control. 

The five training methods adapted in this project for SIANN's are error-backpropagation 

based on gradient descent (GD), gradient descent with variable learning rate (GDV), 

gradient descent with momenttrm (GDM), gradient descent with direct solution step 

(GDD) and APOLEX algmitlun. SIANN's and these training methods are implemented in 

MATLAB. Testing on several benchmarks including the parity problems, classification 

of 2-D patterns, and function approximation shows that SIANN's trained using these 

methods yield comparable or better performance with multilayer perceptrons (MLP's). 
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Chapter 1 General Introduction 

1.1 Overview 
With high speed and powerful processors readily available today, few are in doubt of the 

computational capability of modern computers. Yet one must be wondering why 

computers still have immense difficulty in carrying out tasks we humans seem to do 

effortlessly such as understanding speech and hand-written text, recognising objects, etc. 

Automating these tasks is challenging because decision rules are hidden in exceedingly 

complex, noisy and in some cases incomplete data. The search is on in the field of 

artificial neural networks for systems (modelled after biological processes) that possess 

the capabilities to reason, generalise and learn from experiences. 

This project investigates a new class of high-order neural networks called shunting 

inhibitory artificial neural networks (SIANN's) and their training methods. SIANN's are 

biologically inspired networks whose dynamics are governed by a set of coupled 

nonlinear differential equations. The interactions among neurons are mediated via a 

nonlinear mechanism called shunting inhibition, which allows the neurons to operate as 

adaptive nonlinear filters. The project's main objective is to devise training methods, 

based on error backpropagation type of algorithms, which would allow shunting 

inhibitory neural networks to be trained to perform feature extraction for classification 

and nonlinear regression tasks. The training algorithms developed will simplifY the task 

of designing complex, powerful neural networks for applications in pattern recognition, 

image processing, signal processing, machine vision and control. 

1.2 Background and Motivation 
Over the past decade, artificial neural networks have emerged as an effective information 

processing technique and a powerful computational tool. They have become the preferred 

method for lll!llly applications in which data relationships, decision processes and 

predictions have to be learned or modelled from examples. Nowadays, neural networks 
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Chapter 1 General Introduction 

fmd applications in telecommunications, defence, multimedia, banking, medicine, 

forensics, robotics, and remote sensing. They are used for credit card fraud detection, 

automatic check reading, signature verification, automatic target recognition, optical 

character recognition, fmancial forecasting, weather prediction, etc. 

The most widely used neural network architecture is the feed-forward multilayer 

perceptron (MLP). MLP networks have been applied successfully to solve some difficult 

and diverse problems ranging from thne series prediction to pattern classification and 

object recognition. However, before an MLP network can be successfully applied to a 

particular problem, many questions must be aoswered: 

• What is the most suitable architecture? How many layers aod how many neurons in 

each layer are required for a given task? How should the network be connected, fully 

or partially? Which activation function should be used? 

• How cao a network be programmed? Can it learn in real-thne while functioning, or 

must it be trained then tested? How many examples are needed for good 

performance? How many thnes should the examples be presented? 

• What are the capabilities of the networks? How many examples cao it learn? How 

fast can it learn? How well can it generalise from known to unknown patterns? What 

classes of input-to-output functions can it represent? 

Part of the weaknesses of the MLP is due to the shnplicity of its neuron. Even though the 

neuron of a MLP is equipped with a nonlinear activation function, the decision surface it 

represents is a line, which is inadequate in most practical situations. To overcome this 

problem, practitioners use many neurons, arranged into layers, to approximate complex 

nonlinear surfaces. This gives rise to two problems. One is that the number of required 

neurons and the number of layers are not known beforehaod. The other problem is that as 

more neurons are added, increase the number of parameters to be determined aod the 

amount of thne aod data required to train the network. Recurrent networks have been 

considered as ao alternative to reed-forward networks, but they are often avoided because 

of their inordinate learning thne and the complexity of the learning algorithms. 

2 



Chapter 1 General introduction 

Furthermore, their learning phase is subject to instabilities and/or bifurcation (Doya, 

1992). Attempts have been made to introduce high-order neurons in the form of sigma-pi 

neurons (or polynomial neurons) into the feedforward architecture, but these attempts 

have not been very successful. There are two main reasons for this: firstly only 

polynomial non-linearity can be adequately represented; secondly, the number of 

connections grows exponentially with the order of the network. In addition, the user has 

to decide on the type of non-linearity (quadratic, cubic, or higher) to be used, which 

amounts to guessing what the solution is. 

It is well known that shunting lateral inhibition plays a very important role in vision. It 

enhances edges and contrast, causes adaptation of the organisation of the spatial receptive 

field and of the contrast sensitivity function (CSF), enhances visual selectivity for small 

objects and edges, and mediates directional selectivity (Beare & Bouzerdoum, 1999: 

Bouzerdourn and Pinter, 1989). In 1993, a class of cellular neural networks based on 

shunting lateral inhibition was proposed (Bouzerdourn & Pinter, 1993). These networks 

have shown great promises as information processors in vision, and image processing 

tasks; they function as nonlinear adaptive filters, can serve as front-end pre-processors for 

pattern recognition and visual decision and control tasks. They have been used to model 

some early visual processing function such as edge detection, image enhancement, 

evolution of receptive field profiles, and motion detection (Bouzerdoum, 1993) but they 

have not yet been used for classification and function approximation tasks. This is due to 

two main reasons: 

• The first reason is lack of proper training algorithms. So far the design of these 

networks has been relying on the expert knowledge of the user, who would choose 

the connection weights of the networks based on the task at hand; this limits the scope 

of applications of these networks. Moreover, it is not possible to solve complex 

pattern recognition tasks by handwiring the network connections. 

• The second reason is that these networks are dynamic systems, and henctl to find the 

output for an input pattern, we must solve a system of noulinear differential 

3 
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equations. Training such networks is impractical since the input pattern have to be 

presented tens of thousands of times and each time the output must he found and the 

connection weights adjusted; therefore training becomes tedious, cumbersome, and 

very time consuming. 

Shunting Inhibitory Artificial Neural Networks have a shunting neuron as the basic 

building block and inherit the layered architecture of feed-forward multilayer perceptron. 

Due to their inherent non-linearity, shunting networks can represent complex nonlinear 

decision surfaces more efficiently than multilayer perceptron. Each neuron in a MLP can 

only represer..t a linear surface, whereas a neuron in a shunting inhibitory network can 

represent linear as well as nonlinear surfaces. Therefore, developing good training 

algorithms for these networks should result in much more powerful classifiers and 

function approximators. Furthermore, shunting inhibitory neural networks can serve as 

feature extractors. By combining a shunting inhibitory layer with a perceptron layer, it is 

possible to design systems that perform feature extraction and classification 

simultaneously. 

1.3 Project Objectives 

The principal aim of the project is to derive training methods for a new class of artificial 

neural network called Shunting Inhibitory Artificial Neural Network (SIANN). The 

project is divided into the following main tasks: 

Task 1 

Task2 

The first task is to stndy the representation power of shunting inhibitory 

artificial neural networks. In particular we'll study the inlluence of the 

activation function (linear, sigmoidal, etc.) on the types of surfaces that 

can he represented. 

Derive backpropagation-type algorithms to train feed-forward SIANN's 

and optimise them for shunting networks. There are many 

hackpropagation algorithms for MLP including gradient descent, gradient 

descent with momentum, gradient descent with variable learning rate, etc. 

4 



Chapter 1 General Introduction 

Task3 

Task4 

We'll investigate the suitability and efficiency of all these algoritluns to 

train SIANN's. 

Implement SIANN's and the training algoritluns using a software package 

such as MATLAB. 

Test the developed algoritluns on some benchmark classification and 

regression problems, and compare their performance to that of MLP 

networks. For this we'll use benchmark problems available in the public 

domain as well as synthetic data that will be created to test specifically 

certain hypotheses. 

1.4 Thesis Outline 
The thesis consists of seven chapters. In this introductory chapter, we have described the 

motivation and background for this project. The project's aim and major tasks were also 

outlined. Chapter 2 is a general introduction to artificial neural networks and their 

applications. It reviews one of the most common neural network architectures known as 

the Multilayer Perceptron. It was the publications of backpropagation training algorithm 

for MLP early in the eighties that renewed interest in the field of artificial neural networks 

a,,d have made possible an increasing number of ANN applications. Chapter 3 proposes a 

new class of artificial neural networks called Shunting Inhibitory Artificial Neural 

Networks. The chapter investigates the representation power of shunting inhibitory 

neurons and the potentials of SIANN's in solving classification problems. In chapter 4, 

which is the main focus of this project, several supervised training methods for SIANN's 

are derived. Chapter 5 documents MATLAB implementation of SIANN's and the training 

methods. Chapter 6 puts SIANN's and the training methods developed in this project to 

test against several benchmarks including the XOR and parity problems, pattern 

classification aod function approximation. The last chapter summarises what has been 

achieved in this project and gives concluding remarks. Further research directions are 

also proposed in this chapter. 

5 
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Chapter 2 Artificial Neural Networks 

Before we proceed to investigate Shunting Inhibitory Artificial Neural Networks, it is 

essential to grasp an understanding of what artificial neural networks are. This chapter 

serves as an introduction to artificial neural networks and their applications. It also 

describes one of the most popular neural network architectures known as Multilayer 

Perceptron (MLP) and its error-backpropagation training algorithm. Understanding this 

algorithm is the foundation for chapter 4, in which we'll derive training algorithms for the 

new class of neural networks. 

2.1 Biological Inspiration 
It is known that the processes in human neural network are electrochemical in nature. 

Nervous signals propagate at rates in the order of millisecond, which are much slower 

than conventional digital serial computers. Despite this wide gap in unit speed, state-of

the-art computer systems such as vision systems still fall far short of the performance 

exhibited by biological systems in their processing ability. As an example, we are able to 

recognise hand~written characters in a robust manner, despite distortions, omissions, and 

major variations. The same capabilities can be observed in the context of speech 

recognition_ Humans also have the ability to retrieve infOrmation, when only part of the 

pattern is presented. For example, one can recognise a friend in a crowd at a distance 

even when most of the image is occluded. 

The development of artificial neural networks (ANN's) began some 50 years ago. It was 

motivated by the need to understand the principles on which the human brain works, and 

the desire to produce artificial systems capable of carrying out sophisticated or perhaps 

"intelligent" tasks that the human brain routinely performs. Artificial Neural Networks 

are simplified models of the central nervous system. They are networks of a large number 

of highly interconnected processing elements that possess the ability to respond to input 

stimuli and to J.earn to adapt to the environment. It is believed by many reseruchers in the 
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Chapter 2 Artificial Neural Networks 

field that neural network models offer the most promising unified approach to building 

truly intelligent computer systems. ANN's share many characteristics with their 

biological counterpart including learning and generalisation, robust performance and 

pamllel processing (Patterson, 1996). 

Biological Neurons 

Following, we describe biological neurons and artificial neurons in an attempt to draw the 

similarities between them. Discoveries by 1906 Nobel Prize winners Camillo Golgi and 

Ramon y Cajal proved that the human neural network is composed of a vast number of 

interconnected nerve cells or neurons. It is revealed under electron microscope that 

independent oftheir size and shape all neurons are constructed from the same basic parts: 

soma, dendrites, and axon (Figure 2.1 ): 

Soma is the cell body that processes the incoming signals and when there is 

sufficient input, it fires. 

Dendrites are mther short extensions of the cell body and are involved m 

reception of stimuli 

Axon, by contrast is usually a single elongated extension. It is especially 

important in the tmnsmission of nerve impulses from the soma to other cells. 

Synapse is the junction between an axon and a dendrite 

Dendrites 

Figure 2.1: A biological neuron (Sou me: Microsoft Encarta, 1996) 
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Chapter 2 Artifidal Neural Networks 

It is estimated that the human central nervous system consists of near I 00 billion neurons, 

each of which on average communicates with some thousand other neurons (Fausett, 

1994). Nervous signals are transmitted either electrically or chemically. Electrical 

transmission prevails in the interior of a neuron, whereas chemical mechanisms operate 

between different neurons, i.e. at the synapses. 

Synapses are either excitatory or inhibitory. An excitatory synapse tends to activate the 

receiving neuron, whereas an inhibitory synapse prevents impulses from arising in the 

receiving neuron. The later synapse is of particular interest to us because as will be seen 

later in chapter 3, (artificial) shunting inhibitory neurons consist of many inhibitory 

synapses. 

Table 2.1: Gray matter statistics 

Number of neurons 

Number of synapses 10 

Number ofinput neurons (afferent) 10% 

Number of output neurons (efferent) 90% 

Storage capacity 10 -1015 bits 

Utilisation factor 10% 

Firing frequency 50-100 spikes/s 

Signal propagation speed 5-25 m/s 

Average brain weight 1.5 kg 

Adapted from [Pafferson, 1996] 
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Artificial Neurons 
The basic processing element in an ANN is called an artificial neuron, or a processing 

node. Each node collects weighted inputs from many other nodes. It generates a single 

output, which is sent to other nodes as shown in figure 2.2. This is analogous to the 

manner in which the biological neuron receives signals from other neurons through its 

dendrites and sends its output to other neurons via its axons. The connection weights 

between nodes are adjustable and by adjusting the connection weights, different outputs 

can be produced. The ways in which nodes in an ANN are connected (e.g. partially or 

fully) or organised (e.g. into layers or as an array of cells) defme the network topology. 

Many networks topologies exist including single-layer, multilayer, feedforward or 

recurrent. 

In pUis Neuron 

Figure 2.2: An artificial neuron 

Fausett (1994) summaries several key similarities between an artificial neuron and a 

biological neuron: 

• The processing node receives many signals 

• Signals may be modified by a weight at tbe receiving synapse 

• The processing node sums the weighted inputs 

• The neuron transmits a single output 

• The output may go to many other neurons through axon branches 

• Infurmation is stored both in synaptic weights and at neurons 

• Information processing is local 

• A synapse's strength maybe modified by experience 

• Synapses may be excitatory or inhibitory 

9 
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2.2 Applications of Artificial Neural Networks 
Patterson ( 1996) outlines possible areas where ANN's can and have been applied: 

General Mapping One of the most salient features of ANN's is their ability to learn 

arbitrary functions from a set of training examples. This is 

particularly useful in estimating functions that have no explicit 

mathematical model because neural networks often can fmd hidden 

relationship in the data. Some ANN's are used in data compression 

to map input vectors from high dimensional space to output vectors 

in lower one. 

Forecasting ANN's have been shown to be successful predictive tools. After 

being trained a set of examples of past pattern/future outcome 

pairs, an ANN may be able to generalise and extrapolate to predict 

associative outcomes for new patterns. 

Pattern rscognition ANN's are good at learning to recognise complex patterns such as 

visual images of objects, hand-written characters and speech. The 

ability to associate between input and output patterns is also 

applied in creating content addressable memories or diagnosis 

problems in medicine, engineering, and manufacturing. 

Optimisation Part of the ANN training process is to minimise the cost function 

by adaptively changing network parameters, which is essentially 

an optimisation problem. The range of optimisation problems that 

ANN's could be applied to solve is limited only by the ingenuity of 

the practitioner in defming the cost function and building an 

accurate ANN model of the system. 

Next, we briefly describe some ANN applications in a medicine, finance and 

manufacturing. A more comprehensive accounts of ANN applications in diverse range of 

industries can be found in, for example, [Hubick, 1992] and [Fausett, 1994]. 

10 



Chapter 2 Artificial Neural Networks 

Medicine 

Seismed Instruments marketed Seismic Quantitative Analysis - an ANN based software 

package that analyses the vibrational waves generated by a beating heart during exercise. 

The software is able to detect coronary heart disease by looking for specific patterns in a 

seismocardiograph (SCG). The software is embedded in an SCG-2000 seismocardiograph 

system to be sold in USA and twelve other countries. 

In the UK, Errington and Graham (1993) combine a multilayer perceptron and a 

competitive neural network into a two-phase classifier for classification of chromosomes 

- a task that requires specially trained staff and is labour intensive. ANN's are also being 

used fur cardiotocograms analysis in order to monitor the heart rate of foetal during 

labour, and to decide whether Caesarean sections are necessary. The ANN was trained 

with over 50,000 five-minute sections of cardiotocograrn traces and its output is 

combined with an expert system, which contains 600 rules. 

Researchers at Telectronics Pacing Systems (a company that controls 14 percent of the 

global heart-pacemaker market) and SEDAL at the University of Sydney are developing 

software and hardware for ANN implementation in heart-pacemakers. A pacemaker must 

identifY a class of heartbeat, decide on whether the beat is nonnal, if not give an 

appropriate electrical treatment. Other medical applications of ANN's include breast 

cancer cell analysis, detection of abnormal practices in medical servicing. 

Finance and Banking 

The Mellon Bank in USA uses an ANN developed by Nestor Inc to detect credit-card 

fraud. The network detects changes in behaviour such as frequency of credit-card use, 

types of purchases, and size of payments. The training set is derived from credit-card 

transactions in six months. The Chase Manhattan Bank has begun to review loan 

applications with ANN software developed by Inductive Inference Inc under a 

multimillion-dollar contract. For each potential borrower, The ANN analyses six year of 

financial infonnation. The result credit scoring is based on the financial strengths and 

weij!fnesses of a company. The software also performs three-year fOrecasts that indicate 
' 
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Chapter 2 Artificial Neural Networks 

the likelihood of a company being assigned a risk classification of 'good', 'criticised' or 

'charged oft' (in Chase terminology). Fujitsu Ltd claims that its Japan-Government bond

yield-rate furecasting ANN can achieve an accuracy of 75 percent (compared with 60 

percent accuracy expected of human forecasting). 

The research centre of Siemens has developed an ANN system using unsupervised 

learning, which detects in economic data the variables that are important in stockmarket 

analysis. Refenes and Zaidi (1993) use ANN for managing exchange rate trading 

strategies. The key idea is to predict, on the hasis of past performance, which of the 

strategies is likely to perfurm best in the current context, and thus to minimise losses. The 

network is trained on daily currency exchange data from 1984 to 1986 and is tested "out

of-sample" from 1986 to February 1992. The network's annual returns outperform the 

best classical techniques by an average of 6 percentage points on a $1m position 

(including transaction costs). 

Manufacturing 

Kaiser Aluminium (Germany), one of the world's largest manufacturers of aluminium 

products uses an ANN in its surface-inspection system. A camera system observes the 

aluminium sheets as they are wound up at the rate of 2.5 meters per second. The digital 

output from the camera is fed into an ANN that looks for defects such as broken surfuces 

like scratches and non-broken surfaces like stains. 

ANN's has been incorporated into an inspection system to detect internal flaws in 

electronics components at ATR Optical, Japan. The ANN is used to identify patterns of 

light reflected from a laser directed at samples of objects likes ICs. Companies such as 

Siemens GmBH, NBC Corp, BHP Australia are very active in applying ANN's to improve 

their manufacturing processes. 

12 
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2.3 History of Artificial Neural Networks 
Historical perspectives on the development of artificial neural networks are given in 

[Fausett, 1994], [Hagan, et al., 1996], and [Patterson, 1996]. The following summary 

shows how knowledge in the field has progressed. 

In 1943, Warren McCulloch and Walter Pitts designed networks consisting of binary 

neurons with fixed threshold that are capable of representing logic functions. In 1949, 

based on the observation that that if two neurons were active simultaneously, then the 

strength of connection between them should be increased, Donald Hebb designed the first 

learning law for artificial neural networks. Late in the SO's, Frank Rosenblatt developed a 

class of artificial neural networks called perceptrons and the perceptron learning rule. His 

proof that the perceptron learning rule gives correct weights after finite iterations, if such 

weights exist, was a sensational research accomplishment at the time. In 1960, Bernard 

Widrow and Marc ian Hoff developed the delta learning rule, which is a precursor of the 

backpropagation rule for multilayer nets. Their work - ADALINE (short for ADAaptive 

Liinear NEuron) - was applied in one of the first conunercial applications of neural 

networks to suppress noise over a telephone line. 

In 1969, Marvin Minsky and Seymour Paper! published Perceptrons: Introduction to 

Computational Geometry, in which they showed that perceptrons can classify only 

linearly separable sets. As a result, interest in ANN's diminished and for almost a decade 

neural network research had been largely suspended. However, some important works 

continued during the 1970s. In 1972, Teuvo Kohonen and Jaroes Anderson independently 

developed new neural networks that could act as memories. Stephen Grossberg was also 

very active during this period in the investigation of self-organising networks. Grossberg 

is perhaps best known for the highly successful adaptive resonance theory (ART) 

networks that he co-invented with Gail Carpenter. 

The limitation of perceptrons was not addressed until early 1980s when a learning 

algorithm to adjust the weights in multilayer perceptrons was independently discovered 

and refined by several researchers David Parker, Y ann LeCun, David Rurnelhart. The 
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algorithm is known as error backpropagation since the error signals used for updating 

weights are propagated from the output layer backwards layer-by-layer. The algorithm in 

another form was discovered by Paul Werbos in his 1974 doctoral thesis: Beyond 

Regression: New Tools For Prediction and Analysis in the Behavioural Sciences. 

The discovery of error backpropagation learning reinvigorated the field of neural 

networks. In the last ten years, thousands of papers on the topic have been written and an 

increasing number of ANN's applications have been reported. In 1982, John Hopfield -

Nobel Prize winner in physics- developed Hopfield nets based on fixed weights and 

adaptive activations, which can serve as associative memory nets. Late 80's, Kunihiko 

Fukushima and his colleagues developed a specialised neural net called neocognitron for 

character recognition. Several researchers are involved in the development of non

deterministic neural nets in which weights or activations are changed on the basis of 

probability density function. Hardware implementation of neural networks is also an 

active area in artificial neural network research. Research in ANN's has gained 

considemte momentum in the early 90's. 

2.4 Multilayer Perceptrons 
Of any of the early neural nets, perceptrons perhaps hed the most far-reaching impact. 

The perceptron learning rule is proved to converge to the correct weights, on the 

assumption that such weights exist (e.g. see Fausett, 1994). Correct weights are those that 

allow the net to produce the correct output value for each of the training input patterns. 

However, in 1969 Paper! and Minsky pointed out a serious limitation ofperceptrons. It 

was shown that perceptrons are capable of classifying only limited input patterns (i.e. 

linearly separable patterns). For example, there exist no correct weights for the XOR 

problem. 

This limitation can be overcome by adding one or more hidden layers to perceptrons 

(thus the name multilayer perceptron). MLP with non-linear activation functions are 

capable of classifYing more complex sets of input vectors. It is shown that a MLP with 
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three layers of neurons (input layer, hidden layer and output layer) can represent any 

continuous function to any degree of accuracy (i.e. any mapping between input vectors 

and target vectors). The most widely known training rule for a multilayer perceptron is 

error hack-propagation algorithm hased on gradient descent. 

2.4.1 Network architecture 

A multilayer perceptron (figure 2.3) consists of many layers, each of which has a number 

of neurons. There are two fix-sized layers called input layer and output layer, and 

between these two layers is one or more hidden layers. The input layer receives data from 

the environment and distributes them to the next inner layer. Each element of the input 

layer does no processing. The output layer passes the network's result back to the 

environment. Hidden layers are so called because they have no direct connection with the 

outside environment. All processing in the neural network is done in the hidden and 

output layers as neurons in each layer receive input from the previous layer, calculate the 

output and then send it to the next layer. Connections between nodes are weighted and it 

is through adjusting the weights that different network outputs can be produced. The 

number of net layers in literature is often considered as the number of adjustable weight 

layers (e.g. 3 for the net in figure 2.3). 

Input layer Hidden Layer(s) Output Layer 
--------------------------------------------· 

Input-+_, 

' ' 

Output 

• Nturon 

- Weighted Connection 
:. ---".- ... ----.-" ------------------------- .. :t,-................. _ ..... 

Figure 2.3: Multilayer Perceptron 
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1 

w, b 

w, \. n 

""" 
net= I;w,p, +b 

:E , ... 
f ~ 

Y= f(net) 

Pn Wn / 

Figure 2.4: A neuron in MLP 

Figure 2.4 above shows a closer look at a neuron. Let p~, Jl2, ... , p, be the inputs to a 

neuron and w~, w,, ... , w, be the weights of the input links. The neuron calculates the 

weighted sum of inputs and applies the activation functionfto obtain the output: 

' 
ftnet) =ftb+ I;w,p1) 

i=l 

The adjustable value b is called bias, its use is to shift the decision surfuce. The bias can 

be considered as weight to a constant input of I. 

2.4.2 Supervised and Unsupervised Learning 

There &re two types of le&rning fur ANN's, both based on psychological observations: 

supervised learning and unsupervised learning. Supervised learning is like learning under 

watchful eyes of a teacher who points out where errors are made and where response is 

correct. This le&rning scheme applies to multilayer perceptrons because the user need to 

supply with each input vector P, a target vector T, which the net is expected to produce. 

Training typically is an iterative process as depicted in figure 2.5. The actual output of 

the net Z is repeatedly compared to its target T and adjustments to weights and biases are 

made until the difference between the actual output and the target is within an acceptable 

tolerance defined by the user. Note that for supervised learning the terms training 

algorithm and learning algorithm are used interchangeably in literature; both refer to the 

rule, by which network parameters are adjusted. 
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Target 

Input Output 
Compare 

~ Neural Net ~----~"1 

)( 

Adjust welghta & biases 

Figure 2.5: Supervised learning model 

The other type of learning is unsupervised /earning. As its name suggests, in 

unsupervised learning, there is no such thing as a "correct" response. Instead, the network 

learns to separate training patterns into groups or classes by looking for features that 

discriminate them. This form of learning is also useful because the network may be able 

to identifY characteristics in the data that are unknown to the trainers. 

2.4.3 Error Backpropagation Algorithm 

Let us define the cost function as the function that describes the difference between the 

actual output and the expected output of the net. Many possible cost functions exist, of 

which the following sum squared error(sse) is one of the most commonly used: 

E = .5 !:; IIZ(i)-T(i)ll' (2.1) 

where Z{i) and T(i) are the actual output vector and the target vector for input vector 

numbered i. The summation is over the entire training set. Note the factor inside the 

summation sign is 

IIZ(i)-T(i)lf = !:i {z;(i) -lj(i))' 

where subscript j denotes the jth element of a vector. 

Basically, training starts with a random set of weights and biases. At each training 

iteration, we change the weights and biases by small steps in a direction chosen so as to 
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decrease the cost function with expectation that after a fmite number of updates, the cost 

function will fall below an acceptable limit. Because the targets are fixed, the cost 

function E can be expressed as a multivariate function whose variables are the net 

weights and biases (here V is a column vector derived by putting together all weights and 

biases): 

E = F(V) = F(v;, v,, ... , Vm) 

In error backpropagation algorithm, the update direction is chosen be the negative 

gradient of the cost function, which is the direction of steepest descent (for proo~ see e.g. 

O'Neil, 1995, pp. 576-579). The gradient ofF is 

8F 8F 8F V'F =(-,-, ... ,-) 
av, Ov2 avm 

A small learning rate ex is used to calculate the amount of update for each parameter: 

8F v,(new) =v,(old)-aav, (2.2) 

Our focus next is how to compute the gradient ofF. To fucilitate discussion, we need to 

introduce a few new notations: 

"w,; Weight going.from neuronj in layer k-1 to neuron i in layer k 

kb; Bias for neuron i in layer k 

kZi Output of neuron i in layer k 

kc; Weighted sum input to neuron i in layer k 

Sk Number of neurons in layer k 

As a rule, the superscript to the left denotes the layer number (ie. k), if there are two 

subscripts, the first subscript specifies "destination" neuron, the second "source" neuron. 

The output of layers can be described by the following recursive formula: 

k kk-1 k ~ z, =f( wij. z; + b1) (2.3) 
j=J 

That is neuron i in the k .layer sums the weighted inputs to it from all neurons in the 

previous layer (i.e. layer k-1), and applies the activation function fto the weighted sum to 

compute its output. This formula applies also for the first layer (layer I) if we consider 
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the input vector is just the output of layer 0: 0z; = p;. The net output is the output of the 

last layer (layer N). 

Error sensitivities 

Let 'c; be the weighted sum to neuron i in layer k. That is 

~ k k lr.-1 kb 
cJ = wij' zj + i (2.4) 

j=l 

Now define the error sensitivity for each neuron i in layer k as 

• c3E e -- (2.5) '- a• C; 

The error sensitivity measures the rate of change in the cost function as the weighted 

input to a neuron changes. Given all error sensitivities, it is pretty straightforward to 

compute the gradient ofE by applying the chain rule of differentiation. Because the cost 

function can be considered as a furu:tion of'c; of layer k, the partial derivative ofE with 

respect to (w. r. t.) a weight 'wij is just: 

Using the definition (2.4) of'c; gives 

BE k k-1 -,-= e1 • zJ 
a wij 

(2.6a) 

and similarly, 

c3E • -=e. 
a'b, ' (2.6b) 

Computing error sensitivities by backpropagatlon 

The problem now is to compute error sensitivities. It turns out that similar In the way we 

use the recursive forrnula (2.3) to compute the net output, all error sensitivities can be 

computed using another recursive forrnula. The only difference is that the forrner 

computes the net output in forward direction from layer I to last layer, whereas the later 
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computes error sensitivities backwards from the last layer to layer !. Interestingly, the 

connection weights play a similar role in both recursive formulae, as will be shown next. 

For the output layer, 

(2.7) 

For an inner layer k, k = N-1, N-2, ... I, consider E as a function or'•'c; in layer k+l, and 

apply the chain rule: 

=clt+l k+l k+l ) 
k _ 8E __ u_:_"_c_,_, ''-::,c'-'2 ·-··..:·•_c_,,, .. '-'-' e.---

1 akc. akc. 
' ' 

Applying definition (2.3) fur k+
1c;, we obtain: 

ke, = ~ k+lej. k+Iwji'f'("c,) 
j=l 

The common factor f('c;) can be taken out of the summation sign: 

ke, =f(kcJ.~ k+leJ. k+twji 
pi 

(2.8) 

This recursive relation for computing error sensitivities is illustrated in figure 2.6. It is the 

way in which error sensitivities propagate from the output layer backward layer-by-layer 

that gives this algorithm the name error backpropagation. Figure 2. 7 summarises the 

major steps in the training algorithm. 
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k 
e, 

r 

k+1w. 

Figure 2.6: Backpropagation of error sensitivities 

• Initialise weights and blases(e.g. to random values) 
' 

( Feedforward to compute net's output and error (2.3), (2.1~ 

• r Backpropagate to compute error •ensltivltles (2.7),(2.8) J 

r Compute gradient (2.6a), (2.6b) J 

( Update weights & biases (2.2) l 

Is error sufficiently small? 
No 

Yes 

r END l 
Figure 2.7: Error Backpropagation Algorithm for MLP 
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Using error backpropagation, the learning rate should be chosen sufficiently small for 

stable training. However, learning then may become unacceptably slow. Another serious 

problem is that unlike learning in single-layer perceptron, there is no guarantee that MLP 

training will converge after a finite number of iterations. One reason is that the network 

may get stuck in a local minimum. These limitations have prompted the study of many 

improved training algorithms. In Chapter 4, these algoritluns will be discussed and 

adapted to train Shunting Inhibitory Artificial Neural Networks. 
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Chapter 3 
Shunting Inhibitory Artificial Neural Networks 

The aim of this chapter is to study in general the architecture and capabilities of shunting 

inhibitory artificial neural networks (SIANN's). After introducing the most important 

building block of SJANN's - the shunting inhibitory neuron - we'll describe the 

architecture of the new class of neural networks and how the output of SIANN is 

computed. Through an example of a two-neuron network, we investigate the 

representation power of shunting inhibitory neurons. The chapter concludes with a brief 

review of previous works on shunting inhibitory neural networks. 

3.1 Shunting Inhibitory Neuron 

This section describes the basic building block ofSIANN: the shunting inhibitory neuron. 

Shunting inhibitory neurons, shown in figure 3.1 exert mutual inhibitory interactions of 

the shunting type. 

p, 
p, 

- PI+~ - = - n 

"' ~ + '1Ft wrPI 
Pn 

Figure 3.1: Shunting lnhib~ory Neuron (steady state activation) 

The activity of each feed-forward neuron is described by a nonlinear differential equation 

of the form: 

~i =Pi ~aizi -f\:~wi;Pj)zi +bi 
J 
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where: 

• z; is activity (output) of neuron i, 

' Pi is the external input, 

• Wij is connection weight from neuron j to neuron i, 

• hi is a bias constant, 

• ai is a constant representing the passive decay rate of neuron activity. 

• fis the activation function of neuron i. 

In the absence of inputs Pi and bias b;, the neuron activity simply decreases 

asymptolically to zero (due to dz/dt =-a; Z;). For a constant input pattern, the steady state 

solution of equation (3.1) is found by letting dz/dt = 0, 

or 

zi.[ai +:ttLwijpj)]zi =pi+ bi 
j 

z, 
a, +f(~w;;P;) 

j 

(3.2) 

Equation (3.2) is used throughout this project to compute the steady-state output of 

shunting inhibitory neurons. 

3 .2 SIANN Network Architecture 
A feed-forward SIANN shares a similar architecture with Multilayer Perceptron (Figure 

3.2). The network consists of many layers, each of which has a number of neurons. There 

are two layers called input layer and output layer, and between these two layers is one or 

more hidden layers. No processing is done in the input layer because it only acts as a 

receptor tbat receives inputs from the environment and broadcasts them to the next layer. 

The output layer passes the network's result to the environment. Hidden layers are so 

called because they bave no direct connection with the outside environment. 
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All processing in the network is done in the hidden and output layers as neurons in each 

layer receive inputs from the previous layer, calculate their outputs and then forward 

them to the next layer. Connections between nodes are weighted and the weights are 

adjustable giving the network the capability to generate different outputs. In this project, 

the term number of layers means the number of adjustable weight layers (e.g. 3 for the 

network in figure 3.2). Input l&yer is layer 0, layer I is the first hidden layer and so on to 

the output layer. 

0 

0 

1 

1 

-• • 
1 

0 

0 

0 

lnputl~~Ye~ 

II ... , .... 
Figure 3.2: SIANN Network ArcMecture 

.P .. cop1fon 

Shmtirt~ lmibitoty ...... .., 
1 

-->-0 

-->-0 

--o-1 

The output layer is a perceptron layer, i.e. it consists of only perceptrons. A detailed 

description of perceptrons was given in the previous chapter (section 2.4). Basically, a 

perceptron calculates the weighted sum of its input and then applies an activation 

function to compute a single output. Its activity can be summarised by the following 

equation: 

' 
zi = ttL wii·Pij) 

j .. l 

(3.3) 
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All hidden layers of the neural network are shunting inhibitory layers and consist of only 

shunting inhibitory neurons. This is the key difference between SIANN and MLP. The 

role of shunting layers is to perform linear as well as complex nonlinear transformation 

on input data so that the results can be combined easily by perceptrons in the output 

layers to solve classification and function approximation problems. This role will be 

illustrated in the next section (3.3), but before doing that, let's describe quantitatively how 

the output of SIANN is computed. 

3.2.1 Output ofSIANN 

Following is a short list of notations for the parameters in SIANN. 

N The number of weight layers 

s, Number of neurons in layer k 

'w;; Weight going.from neuronj in (k-1) layer to neuron i in layer k 

'bi Bias for neuron i in layer k 

•zi Output of neuron i in layer k 

•e; Weighted sum input to neuron i in layer k 

lk(.) Activation function oflayer k 

. Pi Element i of the input pattern to the network 

As a rule, the superscript to the left denotes the layer number (i.e. k), if there are two 

subscripts, the first subscript specifies "destination" neuron, the second "source" neuron. 

If we consider the input to the network as the "output" of layer 0 (i.e. Pi = 0zi, then 

computing the final output can be expressed in a concise way as follows: 
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Calculating tile output of SIANN 

Compute output ofohuntlng Inhibitory layers 

Fork= 1 to N-1 

Compute the output of layer k 
Fori= 1 tosk, 

Compute the output Q.f neuron i 

~c-1 2 _ + kb. 
k zi = __ ___:~•__:___::!• __ 

End For 

k f(~. k·l) ai+ k L wij· zj 
j=l 

Output of one layer becomes input to the next layer. 

End For 

Compute the output of the perceptron layer 

Fori= 1 to sN 

Compute the output of neuron i 

End For 

Yi = Nzi = fN(~ Nwij_N·lzi + Nbi) 
j=l 

The network's final output is Nz. 

3.2.2 Activation functions 

The above procedure can be used to compute the output of a SIANN for almost any 

activation function: continuous, non~continuous, differentiable or non-differentiable. 

However, for the network to be trainable using gradient descent method, there is a 

restriction that its activation functions must be differentiable. Table 3.1 lists several 

activation functions that are commonly used in SIANN's. Their plots are shown in figure 

3.3. 
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Table 3.1: Common activation functions 

Name Description 

exp 
~.J(!'.l..~ e' ... _________ .. _________ -- ·----~--

expmn 
f!x) = e' ·-···--·----'----------------------

hardlim f(x) = I if x;, 0, 0 otherwise 
---~--~------------------- ---

logsig f(x) = 1/(1 + e') 
---- ·----------------~--~--~--

pure lin f(x) = x 
-------

sm f(x) = sin(x) 
-

tansig f(x)- (1- e') 1 (! +e') 

3 
X 10

4 •' 
3 

X 10
4 e·' 

2 2 

0 
) 1\. 

0 
hardlim logsig 

2 

01------'1 , 0.5 

-1 '-----~-~--' 0 

0 

-1 
·10 

I 

\I 

sin 

\} 
0 
X 

./ 
5 

I 

0 

-1 
10 -10 

tansig 

( 

_) 
-5 0 5 

X 

Figure 3.3: Plots of common activation functions 
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3.3 Decision boundaries ofSIANN's 

Perceptrons in MLP can only represent piecewise linear decision surfuces whereas 

shunting inhibitory neurons can represent linear as well as nonlinear surfuces. To 

illustrate this, we consider a simple SIANN with two neurons in the hidden layer. Their 

activations are given by: 

x, = 
a, +fl:wu·Pt +W12·P2) 

The output of this network is: 

y = g(xrWt + x,w, +b) 

If we choose g to be the hard-limiting function: 

g(n) = hardlnn(n) = . . {lifn;,O 
0 tfn<O 

then the input space (R2 in this case) can be divided into two regions. One region 

corresponds to output value g = I and the other g = 0. The two regions are separated by a 

decision boundsry defined by the following equation: 

XtWt +x2w2+b=O 

or 

w1(p1 +b1) + w2 (p 2 +b2 ) +b=O 
81 +f{Wtl'Pt +w12•P2) 82 +f(w2t•Pt +W:u·P2) 

If f is a linear function f(n) = n, the decision boundsry is quadratic because the above 

equation then can be written as: 

w1{p1 +b1Xa 2 +w21'Pt +w 22 .p2 ) +w2 (p 2 +b2 )(a1 +wu·Pt +w12 .p2 ) 

+b(at +Wu•Pt +wt2·P2){az +w2t·Pt +W22·P2) =0 

Much more complex boundaries can be represented if we choose a nonlinear function. 
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Figure 3.4: Decision surfaces of StANN's 

Examples of decision surfaces for various activation functions are shown in figure 3.4. 

The network used has parameters as follows: 

wu= ~l,w,2= 1, w21=~l, w22=l 

w, = .5, w, = 1.5 

b, =I, bz = 0 

., = 1.5, ., = 1.5 

The red curves correspond to b = 2, the blue curves b = -3, and the green curves b = 0. 
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Classification example 

The ability to represent complex decision boundaries with a very small number of 

neurons makes SIANN's attractive to classification applications. As an example, we 

design a SIANN to classify two classes of points (120 red and 120 blue) shown in Figure 

3.5a. Clearly, these two classes are not linearly separable in a sense that there exists no 

single straight line that can separate them. In this example, the role of the two shunting 

inhibitory neurons is to perform a nonlinear transformation on the inputs: 

(x1, x,) ~ <!>(p, p,) 

•,-~--~--~--~--~-. 
' ' ' ' ' ' I I I I 

5 ······•·····+····· : ..... ·+·"·+······ 
' ' 

'~~--~--~--~~~~ 0 2 3 ~ 5 6 ,, 
(a) Linearly non-separable classes 

'r--r--r--r,,-r--.--~-.--, 
'I ' . ' 

I I I I I I 0 

6 ------:------~-----~---··:····--~-----~------~-----
' I I I I 

' .. ' ' ' ' 7 ------~-----~----··- : .. -... : ... -- -~ .. ---~------; ____ _ 
I I lo' I o I I 0 
I I 0 I I I I 0 

' ' ·~ ' ' ' ' ' 6 -··---~-----~·-t·· ; .. - ... ;. -·-- -~- --· --:---·· -~-----
' I I I I I I 
o I ~ I I I I I 

I I ' I I o I o 

5 ·····+··---~-.---· -t·· ----;- -·-- -~------:------~-----
.r :· : : 

4 ------~-----~---·- .! ...... : .... --~-----1- ...•. ! .... . 
I I I o I I I 
I I I I I I I 
I I I I I I I 

3 ------~-----~----- -!-.,---!- ---- -~ ·----~------; .. ---
' ·~' ''' ' ' ' ' ' ' ' ' ' ' ' L!l'.. 2 ------~---- '-----~---···i···---~----.1'-,'t;:-~---
: • : ' : : : '.l,t'~ . ' ' ' ' ' I ·---.,:------~---···t·· ···-!· -·· ····+·····{····· 
: : ,.: : : 

'~,--~·--~;--~;~~;--~.--~.~~~~~, 
~ 

(b) Linearly separable classes 

Figure 3.5: Classification example with SIANN 

The network (created using the MATLAB functions developed in this project) is able to 

transform the given points (p,pz) into a new set of points (x,x2) which is linearly 

separable (Figure 3.5b). The parameters for this network are: 

Wu =-w12= -1, W21 =-w22=-l 

w1 ~.s, w2 ~ 1.5 

b, ~I, bz ~ 0, b ~ -4 

a, =a,~ 1.5 

The decision surface of this network is also imposed on figure 3.5a (the magenta curves). 

The activation functions are f\x) ~ sin(x) and g(x) ~ hardlim(x). 
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3.4 Previous works on Shunting Inhibition Model 
The concept of lateral inhibition arose in the experimental research of Hartline and 

colleagues on the compound eye of the "horseshoe crab". Hartline showed that there is 

reciprocal antagonism between elements of the compound retina, which produces an 

enhancement of edges and pattern contrast (Nabet & Pinter, 1991). 

Bouzerdoum (1991) investigated a class of biologically inspired cellular neural networks 

called shunting inhibitory cellular neural networks (SlCNN's). A cellular neural network 

is as an array of mainly identical dyoarnical processing elements called cells, in which 

interactions are local within a finite radius and all state variables are continuous valued 

signals (Chua, 1993). The dyoarnics of a shunting inhibitory cell in SlCNN's is described 

by the following differential equation, which has a similar form to equation 3.1 for feed

forward shunting inhibitory neuron: 

dx .. 
---!.=L .. -a .. x .. -dt IJ IJ IJ L w~ftxkl ).xij 

C{k,l)eN,(i,j) 

(3.4) 

where xu is the state of cell (ij), Lu is the input to cell (ij), au is the decay factor of cell 

(ij), f is the activation function, and w/1 is interaction weight between cell (k,l) and cell 

(ij) and N, is the neighbourhood function. 

Bouzerdoum & Pinter (1993) showed that SICNN's are bounded input bounded output 

stable dyoarnical systems iff is continuous and non-negative. Furthermore, by deriving a 

global Liapunov for syonnetric SICNN's and using LaSalle invariance principle, they 

proved that a SICNN converges to a set of equilibrium points; and this set consists of a 

unique equilibrium point if all inputs have the same polarity. 

Pontecorvo and Bouzerdoum (1995) proposed a new approach to edge detection based on 

a simple model of primate visual system, in particular the cellular neural network model 

of shunting inhibition. By exploiting some of the inherent nonlinearities of the visual 

system, SICNN's provide better performance compared with conventional edge detectors. 
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The shunting inhibitory neural model has also been applied by Beare and Bouzerdoum 

(1999) in a directionally sensitive motion detection system, which is capable of detecting 

local motion without any significant pre-processing. 

Although SICNN's have been successfully used to model visual processing functions such 

as edge and motion detection, they have not yet been used for classification and function 

approximation tasks. One of the main reasons is lack of proper training algorithms. So fur 

connection weights of the networks are chosen empirically by users to suit the task at 

hand, which limits the scop' of applications of these networks. Another reason is that 

these networks are dynamic •Jystems, and hence to find the output for an input pattern, we 

must solve a system of nonlinear differential equations. Training such networks is 

impractical since input patterns have to he presented tens of thousands of times and each 

time output must he found and the connection weights adjusted; therefore training 

becomes cumbersome and very time consuming. 

As seen early in this chapter, the new neural networks (SIANN's) are also hased on the 

shunting inhibition model. However, they are different from SICNN's in that the output of 

a shunting inhibitory neuron corresponds to the steady-state solution to the differential 

equation. Another difference is that SIANN's have a feed-forward architecture. That is 

neurons in a SIANN receive inputs from the previous layer, compute their outputs and 

forward them to the next layer. 

Having understood the architecture of SIANN's, we are now turning our focus to the 

derivation of supervised training methods for these networks. 
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In this chapter, we derive training algorithms based on error-backpropagation for 

SIANN's. We also adapt a very fast training algorithm, which combines error

hackpropagation and the direct solution method, to train SIANN's. Finally, a stochastic 

training method called APOLEX (algorithm for pattern extraction) is discussed. 

Before we proceed, let us agree on the notations to be used in this chapter to derive 

training algorithms for SIANN's. The list of notations is shown in table 4.1. 

Table 4.1: Mathematical notations 

Symbol Description 

N Number of layers (excluding the input layer) 

Sk Number of neurons in layer k 

ti(.) Activation function for layer k 

'wij Weight goingjrom neuron j in layer k-1 to neuron i in layer k 

'a; Decay constant for neuron i in layer k 

'b; Bias for neuron i in layer k 

~~oZij Output of neuron i in layer k 

'p;; Input signal from neuron j in layer k-1 to neuron i in layer k: 'p;; ~·''1~ 

y; Output of neuron i in output layer. That is y; = Nz; 

t; Target (i.e. expected output) of neuron i in the output layer 

Jl;ei Error sensitivity for neuron i in layer k 

Error Function 

The error function is the function that describes the difference between the net's actual 

output and its target. The most common error functions are of the type squared-error and 

we'll nse the following version in this chapter: 

(4. I) 
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The constant fuctor 1/2 is used to simplifY mathematical manipulation. Ideally E should 

be zero, but in practical cases, E is positive and our aim is to minimise E by adjusting the 

!let parameters: weights "wij• biases kbi, and decay rates kai. 

4.1 Error Backpropagation Training 

4.1.1 Gradient Descent Method 

Because the targets t; are fiXed, E varies with y;, and is a multi-variable function of the 

network parameters 'wu, 'ai, and 'b,' 

E = g( kwij, kab kbi) 

The gradient descent method to minimise E can be outlined as follows: 

I. Start with a random set of net parameters { 'wu, 'a1, 'b1} 

2. Compute the net output and thereby the errorE 

3. Compute the gradient of the error function E 

4. Increment each parameter in the negative direction of the associated partial 

derivative ofE. For example, let v be a parameter ("w1;, 'a, or 'b1). The update rule 

for vis 

BE 
v.ow = v., - a,. av (4.2) 

where a, is the learning rate fur parameter v, which normally has a small value. 

5. Repeat the steps 2 to 4 until E becomes sufficiently small. 

4.1.2 Derivation of Error Backpropagation Training for SIANN's 

Error Backpropagation refers to a systematic way of calculating the gradient of error 

function E by propagating error sensitivities from the output layer to inner layers. 

Error Sensitivities 

The e"or sensitivity associated with neuron i in layer k is defmed as: 

, aE 
e, = -

8
, (4.3) 
z, 

It measures the rate of change in the network error with respect to that in the output of an 

individual neuron. 
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Then applying the chain rule, the partial derivative ofE with respect to weight 'wu is 

8E aE a'z, 
-,- ; -, -·--r-- = 
awij aziawu 

(4.4) 

As shown next, the beauty. of this method is that all error sensitivities 'e, can be 

calculated in a recursive manner. 

Calculating Error Sensitivities 

• Case k =N (for the output layer) 

aE aE 
; -aN = ;),, =Yi ~ti 

Zl '-'li 

• Case k <N(for inner layers) 

(4.5) 

The errorE can be considered as a function of outputs k+Jz; (j = 1,2, ... ,s,+1) of the 

above layer (i.e. layer k+l). By chain rule, the partial derivative ofE with respect to 

kZj is: 

ke. = ..E§_= ~ OE k+lz; 
I atz. ~ak+lz.'akz 

1 J=l J ! 

By definition (4.3), the first term inside the summation sign is the error sensitivity of 

neuron j in layer k+ I: 

• a'" k _ ~ k+l Zj 
ei - L. ej. k 

j=l a zj 

Now, we'll calculate the second term, a k+'z;i a 'z, 

Fork= N-1, the output of the perceptron layer is 

Nzj = fN(~ NWjl·N·Izl + Nbj) 

Thus 

and 

a"z J 

aN-I z, 

1=1 

~ f ' ( N N·l = N W;r· Z; ,_, 
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Fork< N-1, the output ofk+l layer is 

If i ;, j, the term 'Z; only appears in the denominator, and 

a k+lz. 

-a,-;:-' z-.'-' = 
' 

(4.8a) 

When i = j, then the term 'Z; appears in both denominator and numerator. The partial 

derivative has an additional term: 

Now we use 4.8a and 4.8b to compute error sensitivities for layer k, 

Ifsk+l <~there is no j in 1,2, ... , Sk+J such thatj = i. Therefore, 

( k k+Jb ) f' (~ k+l k ) N 
s • ~ zj + j • k+t L w jt. zl . w ji 

ke. = ~ t+te t=t 

' J-1 j. [·+1 ~ k+1 k ]' 
aJ +f,+1(L, wJ1• z1) 

1•1 

(4.9a) 

If""' <!: ~ there exists j in 1,2, ... , Sk+i such that j = i. Therefore, 
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Calculating the Gradient of E 

Once error sensitivities have been calculated, the gradient of E is obtained by simply 

applying the chain rule of differentiation. 

• Partial derivative with respect to weights 

8E 
akwij 

Fork= N, because the output layer is a perceptron layer 

8E 
BNWij 

1tl-1 8E 
N f' <"' N N·l Nb ) N·l = ei. N L...J wil. z1 + i . zi 

1=1 

Fork< N, layer k is a shunting inhibitory layer, 

• Partial derivative with respect to biases 

8E a'z. 
' = a'z. ·a' b. 

' ' 

For k = N, because the output layer is a perceptron layer 

Nzi = fN(~ NWij·N·lzj + Nbl) 
j .. [ 
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8E 
e"b = 

I 

Fork< N, layer k is a shunting inhibitory layer, 

8E 

e'b. 
' 

8E 
8'b. 

' 

• Partial derivative with respect to decay rates 

Decay rates 'a, only exist for shunting inhibition layers (k,;; N-1) 

aE aE Okz. 
' = akz .. aka. aka. 

' ' ' 
k akzi 

= ei.-,-a ai 

BE -(''
1z. +'b.) 

=> = ke. I 1 

a' a ' [ s,_, J I 
kai +fk(~ kwij·k-lzj) 

J"'l 

(4.12) 

(4.13) 

(4.14) 

The steps in error-backpropagation algorithm fur STANN's are summarised in the next 
section. 
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4.1.3 Summary ofError Backpropagation training for SIANN's 

Initialise network 

Step 1: Initialise network 

Set parameters such as weights, biases, decay rates to small random values. 

Compute network output 

Step 2: Fork from I to N-1, compute the output of layer k 

k·l z. + kb. 
k zi = ---';''--'-...:.!'-- , i =I, sk 

I
s 

k f( k k-1) ai + t wiJ· zJ 
j=l 

The output of one layer becomes the input to the next layer. 

Step 3: Compute the output of the last layer 
,._, --

N f (~ N N-1 "b ) . I Yi= zi = N L.t w11 • zi + 1 ,1= ,sN 
j=l 

Compute error 
Step 4: Compute the sum squared error 

E=.!_JIY -TJI2 = .!_~(y, -t;)' 
2 2 i•l 

Compute error sensitivities 
Step 5: Compute error sensitivities for the output layer 

Step 6: Compute error sensitivities at layer N-l 

, i=l,sN-I 

Step 7: Fork from N-2 down to l, compute error sensitivities for layer k 

f ' (~ k+l k ) N 
' - k+t L w jt. z, . w ji 

ke = ~ k+Ie. t=t i 1 s 
i j=l J'[k+l ~k+l k ]

2 
,=,k 

a1 +fk+l(L.,; w11 • z1) 
I• I 

If i:;; Sk+!, add an additional term to the error sensitivity 
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Compute gradient of E 

Step 8: Compute partial derivative ofE with respect to weights 'w;; 

For the output layer 

"b.)."·'z. . I d. I 
1 J,t=,sNanJ=,sN.1 

For layer k, k < N 

Step 9: Compute partial derivative ofE with respect to biases 'b; 

For the output layer 

aE N f' (~ N N·l 
-N- = ei. N L Wu. Zt+ 
a hi 1=1 

Forlayerk= 1,2, ... ,N-1 

a'b-' 
,i=l,sk 

Step 10: Compute the partial derivative ofE with respect to decay rates 'a; 

aE 
, i=l,sk andk=l,N ·l = 

aka. 
' 

Update network parameters 

Step 11: Update all network parameters weights, biases and decay rates as follows 

aE 
vnew=vold . a.Ov 

where vis a network parameter {'W;j, 'b, or 'a,), a is the learning rate and iJE/i'Jv 

is the partial derivative computed in steps 8, 9, 10. 

Repeat steps 2-11 until E is smaller than the error tolerance, which is a small value set 
befure training. 
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4.2 Variations of Error Backpropagation Training 

In this section, we investigate three heuristic variations of the standard backpropagation 

algorithm that are believed to increase convergence speed and training stability. 

4.2.1 Batch training 

The algorithm derived in section 4.1 updates networks parameters for each pair of 

input/target. If the training sets contains many such pairs, learning can be slow due to 

"unlearning" effect whereby minimising error for an individual pair may lead to an 

increase in errors for other pairs. There exists a better approach known as hatch training 

in which updates only occur after each epoch (an epoch is a run through the entire 

training set). With this approach, each training pair contributes an additive term 

(calculated in the same way as in section 4.1.5) to partial derivative 8E/1Jv. The 

cumulative gradient V'E is used for updating network parameters. Batch training is 

suitable for off-line training. For online training where training pairs are presented to the 

network one after another, hatch training should not be used. 

4.2.2 Gradient Descent With Momentum (GDM) 

Let v(n) be the value of network parameter v after n updates. The GDM update rule takes 

into account the amount of previous update: 

8E 
v(n+1);v(n) - a.IJv +ll[v(n)-v(n-1)] 

where ll is a small constant called momentum coefficient. The effects of momentum term 

jl[v(n) - v(n-1)] is to smooth out oscillation in parameter updates. To see this, let's write 

the update rule in alternative form: 

8E 
Av(n);- a.IJv +jl.Av(n-1) where Av(n);v(n+1)-v(n) 

This is equation of a low-pass filter whose input is -a.aE.IIJv and output is Av(n). 
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4.2.3 Gradient Descent With Variable Learning Rate (GDV) 

Generally, the error surfuce is flat in some region and steep in others. The speed of 

convergence can be increased significantly by adjusting the learning rate during training 

(e.g. by increasing the learning rate in the "flat" region). A version of variable learning 

rate suggested by Hagan , et al. ( 1996) is adapted in this project to train SIANN: 

• If the squared error E increases by more than some set percentage ~ after a weight 

update, then the weight update is discarded, the learning rate is multiplied by some 

factor O<p<l. 

• If the squared errorE increases by less than 1;. then the weight update is accepted and 

the learning rate is unchanged. 

• If the squared error E decreases after a weight update, then the weight update is 

accepted and the learning rate is increased by a factor of lip. 

~is usually smaller than five percent and pis between 0.9 and 0.95. 

4.3 Gradient Descent with Direct solution step (GDD} 
This section investigates a very fast training method for SIANN's that combines iterative 

and direct solution methods. In this approach, the SIANN is trained by initially selecting 

small random weights and then presenting all training data repeatedly. The weights are 

adjusted after each iteration. After some iteration, or when the training process is trapped 

at a local minimum; training of the SIANN is paused, and the weights of the output layer 

and inner layers are calculated using the direct solution method. Verma (1997) first 

proposed this training method for Multilayer Percepiron. However for it to be applicable 

to SIANN, significant modifications are required. 

Assume that the training set consists of n vectors P(l), 1 = !, 2, ... ,n and the output of 

neuron i in layer k for input vector P(l) is 'z;(l). 

The output for neuron i in the last layer is: 
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We want this output to be as close as possible to the target value: 'z;(l) "' T;(l). If the 

activation function fN(.) has an inv~rse, this can be written as 

• L N-'z/l)."w, + "b, =f~(T1 (1)) 
j=l 

If we let X= [Nwn Nwu ... Nw;, Nb;] and A(l) = ( 1z1(1) N·'z2(1) ... N·'Z;,(l) 1]', then in 

matrix form 

X *A(l) = f 1N(Ti(l)), I= I, 2, ... n 

or 

X * A= f 1N(T;) 

This is a system of linear equations with unknown X. In most cases, the system is over

determined (i.e. n >> s+ I) and there exists no solution for X. However, we can determine 

an X' that minimises the squared error between the left-hand side and the right-hand side 

(least-squared method). This X' provides us with weights and biases that make the output 

of neuron i nearest to its target. 

This method can also be applied to shunting inhibitory layers by observing that 

''
1z1(1)+ 'b; 

'z;(l) = ---'F'-'--"'--
sk~l 

'a; +f,(L 'wij·'·'z1(1)) 
j=l 

After a few manipulations, we obtain an equation for the weighted input sum: 

~' ,., (l)-f''('·'z,(l)+'b; , ) L wij' z; - k k (I) - ai 
Fl zi 

The right-hand side and ,_,Zj(l) are known. This also gives us a system of linear equations 

with weights 'w• as the unknown to which a least squared solution can be found. 

This direct solution approach must be combined with the iterative error backpropagation 

training because two successive applications of direct solution always give the same 

error. This is bec&nse there is almost no change in the coefficients ofthe systems oflinear 

equations. One question remains is when to apply direct solution step during training 

process. There are two options, and the first one is after every certain number of epochs. 
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The second is when there is 'lillie' change in the error but it is still high, which is a sign 

that training is stuck in a local minimum. If this is the case, we may also restart training 

with a new random set of weights, biases and decay rates. 

4.4 APOLEX algorithm 
The last training algorithm for SIANN's to be investigated in this project is called 

APOLEX (an acronym for algorithm for pattern extraction). An in depth discussion ofthis 

algorithm can be found in [Pandy & Macy, 1996]. The APOLEX procedure was first 

studied in connection with the problem of ascertaining the shapes of visual receptive 

fields. Harth and Pandya ( 1988) apply the APOLEX algorithm to optintise a scalar 

function ofN parameters where N is very larger number. 

Unlike hackpropagation, which computes new net parameters (weight, biases, decay 

rates) by recursively computing the gradient through back propagation of error 

sensitivities, APOLEX works by broadcasting the same global error to all layers. Net 

parameters are updated stochastically based on a correlation between the change in a 

parameter and the change in the global error. 

Pandy & Macy (1996) outline several advantages of APOLEX: 

• The APOLEX does not assume or require any special choice of activation function. 

• It is computationally simple (no calculation of derivatives) and can be realised in 

VLSI since interconnections between processing elements which update the weights 

are not required. 

• APOLEX is observed to generalise better than many of the alternative algorithms 

(including backpropagation) especially over noisy data sets. 

• It is applicable to many neural network architectures. 

Next, we'll describe quantitatively the APOLEX algorithm for SIANNs. Let v be a 

parameter of SIANN (weight, bias, or decay rate). To calculate new v, we need to store 

the previous change in v, and the total error: 

45 



I 

Chapter 4 Training Algorithms for SIANN's 

Parameter Chango Av ~ v(n-1)- v(n-2) 

Error Chango AE ~ E(n-1)- E(n-2) 

The same as for other training methods, error E is computed by formula (4.1). The 

correlation between the change in v and E is defmed as: 

c,(n) ~ Av. AE 

The direction of change is determined by a probability function (T, is a positive 

coefficient called temperature) : 

P,(n) ~---'':-= 
c.(n) 

l +e T. 

The amount of change is a small positive constant 6. Together the change in v is 

calculated as follows: 

-{-o with probabilityofl-P,(n) 
A, (n)- o with probability of P,(n) 

and v(n) ~ v(n-1) + A,(n). 

Table 4.2: Scenarios for APOLEX 

l!.v > 0 I!.Y <0 

c,(n) > 0 c,(n) < o 
I!.E > 0 P,(n) < 1- P,(n) P,(n) > 1- P,(n) 

Decrease v Increase v 

c,(n) < 0 c,(n) > 0 
I!.E < 0 P,(n) > 1- P,(n) P,(n) < 1- P,(n) 

lncreasev Decreasev 

Else W c,(n) = 0 then no clear trend 

Possible update scenarios are shown in table 4.2 which is adapted from [Pandy & Macy, 

1996]. As an example, if the previous increase in v (i.e. Av > 0) results in an increase in 

the errorE (i.e. AE >0), then their product -the correlation c,(n) - is positive. It can be 

seen easily, in this case, that P,(n) < 0.5 <I - P,(n). As a result, there is more chance that 

vis decreased in this update (A,(n) ~ -6 <0) so as to reduce E. 
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The algorithm takes a biased random walk in the direction of decreasing error E and the 

temperature T, determines the effective randomness of the walk. T, should be chosen 

large initially (to compensate for large covariance) and decreased as training progresses 

to the convergent value of the correlation: 

T, =lim lc,(n)l 
,~. 

4. 5 Chapter Summary 
In this chapter, we derived the backpropagation-type algorithm for shunting inhibitory 

neural networks. The algorithm developed is significantly more complex compared to 

that of MLP, which is understandable since shunting neurons have more complex 

activation than perceptrons. We discussed three heuristic variations of backpropagation 

training, which can be implemented for SIANN: batch training, gradient descent with 

momentum (GDM), and gradient descent with variable learning rate (GDV). Also derived 

in this chapter is a very fast training method based on direct solution. This method can 

potentially speed up training by finding the least-squared solution to systems of linear 

equation whose unknown are weights and biases. The last training method developed for 

this project is APOLEX algorithm, which updates net parameters stochastically based on 

a correlation between change in a parameter and change in the global error. APOLEX 

algorithm is computationally simple because it requires neither calculation of derivatives 

nor backpropagation of error sensitivities. Furthermore, there is little restriction on the 

type of activation functions. 
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This chapter focuses on the MALAB implementation of SlANN's and the training 

methods developed in the previous chapter. The chapter first presents an overview of 

fimctions developed in this project. Second, it describes how shunting inhibitory artificial 

neural networks are mapped into a structure data type in MA TLAB. The rest of the 

chapter is on how SIANN's are created, initialised, simulated and trained. The listings of 

MATLAB code on this chapter can be found in appendix A. 

5.1 System Overview 

At the highest level, the SIANN toolbox to be implemented consists of four main 

fimctions (Figure 5.1). 

new_siann creates a new shunting inhibitory artificial neural network. 

lnK_siann initialises parameters in a S!ANN network including weights, biases, decay 

rates, and training parameters. 

sim_slann simulates a SIANN, i.e. computes its fmal output for a given input 

traln_slann trains a SIANN, i.e. adjusts the network's parameters so that it produces 

final output within a defined tolerance of the desired output. 

,.... Creating a network 
new_slann • traln...Jid gradient descent 

---+ Initialising a network • traln...Jidm gradient descent 

SlANN -
lnK_slann with momentum 

toolbox • train...Jidv gradient descent 

r--. Simulating a network 
aim_slann with variable learning rate 

• traln...Jidd gradient descent 

4 Training a network 
with direct solution step 

train_alann • traln_apolex APOLEX training 

Figure 5.1: Overview of SIANN functions 
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Depending on which training algorithm is to he used, train_ siann calls one of the training 

functions: train_gd, train_gdm, train_gdv, train_gdd, and train_apolex. 

5.1.1 Why MATLAB? 

The purpose of this section to justify the choice of MATLAB as a tool to implement 

SIANN's and their training methods. In simplest term, MATLAB · developed by The 

MathWorks Inc. - is a computer environment for performing calculations. The name 

MATLAB, which stands for MATrix LABoratory, suggests that MATLAB was designed 

initially for the manipulation of matrices. It has since added more functionality and it still 

remains a better tool for scientific computation. 

MATLAB is a procedural progranuning language that combines an efficient programming 

structure with a bevy of predefined mathematical commands. One of the major 

advantages ofMATLAB over other languages such as C and C++ is its ability to perform 

complex mathematical operations such as matrix algebra in a fuw lines of code. As will 

be seen later in this chapter, using MATLAB's matrix operators makes the code that 

implements the backpropagation algorithm 4.1.5 shorter and easier to underst'Dld. The 

rich set of MATLAB functions, which ranges from mathematical functions, plotting 

functions to GUI tools, also greatly simplifies coding and testing ofSJANN's and training 

methods. As a result, more time is available for testing different approaches and 

improving the design. 

MA TLAB with its Neural Network Toolbox implements a vast number of neural network 

architectures. The most notable is Multilayer Perceptrons and several supervised training 

algorithms including gradient descent, conjugate gradient and Levenberg-Marquardt. The 

toolbox contains many common activation functions for neural networks such as tansig, 

purelin, and logsig. The Neural Network Toolbox is an excellent example on how to 

implement a neural network and its training methods. In fuel, several code-optimisation 

tecimiques were learned by looking at scripts included in the toolbox. We have attempted 

to give SIANN functions similar interfuce as those in the MATLAB's Neural Network 

Toolbox. 
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5.1.2 SIANN functions: Usage Example 

The short code example in listing 5.1 shows how the main functions are used. Any thing 

in a line after the percentage sign (%) is ignored by M A TLAB. How these functions are 

specified and implemented will be discussed in great detail in subsequent sections. 

Listing 5.1: Using main functions in the toolbox 

P=[OOll; 

1 0 1 0] % network input 

T = [1 0 0 1] %desired network output i.e. approximate XOR function 

% Create a new SIANN 

net= new_siann([O 1; 0 1],[2 l],{'exp' 'purelin'),'train_gdd', 'sse'); 

net= init_siann(net); 

y = aim_siann(net, P) 

%Initialise SIANN parameters 

%Compute network output 

[net, tr] = train_aiann(net,P,T);%Train SIANN to produce desired output 

Y = sim_siann{net,P) %Compute network output after training 

5.2 System Design 

MATLAB offurs a network class that can be customised to create different newal 

networks. However, this class is not used in this project because it does not provide (after 

trial) satisfuctory speed performance. The reason is that to accommodate as many as 

possible architectwes (dynamic, static, recurren~ feed-forward, etc.) the class contains 

many settings, which are not needed in SlANN's. 

5.2.1 SIANN Structure 

In this project, SIANN's are implemented using a new data type introduced in MATLAB 5 

called structures. Structwe data type offers several advantages: 

• It allows all information about a SJANN including architectwal information such as 

the number of layers, the nwnber of newons per layer, operational information such 

as the values of connection weights, biases, and training information such as training 
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method, error tolerance, maximum number of iterations to be stored in a single 

variable. 

• Structure data type is actually a built-in class in MATLAB, and therefore offers certain 

level of object-oriented progrannrning. It is flexible in that fields can be added or 

removed from the network dynamically. This is very innportant because to innplement 

a new training algoritlun that uses new training parameters, we do not need to 

recreate the network from scratch. Instead new fields can be added into the set of 

training parameters during initialisation phase (i.e. in init_siann) and will be 

available for controlling training process (i.e. in train _siann). 

• Compared with the approach of creating a separate SIANN class with its own 

constructors and member functions, using structures achieves faster execution speed. 

In filet, inside several computation-intensive functions (e.g. train) included in 

MATLAB's Neural Network Toolbox, network class is first converted into a structnre 

(using struct command), and after processing is returned hack to class (with class 

command). 

The fields of a SIANN structure are listed in table 5.1. To access a field of a structure 

variable, use the variable nrune followed by a dot(.) and the field name. For example, let 

net be a SIANN, then its number of layers is net.numLayers and can be set as follows: 

net.numberLayers = 4; % set the number of layers to 4 

Several fields in SIANN structure deserve an in-depth discussion. However, we need first 

to describe another new data type introduced in MATLAB 5: cell arrays. Unlike a normal 

array where all of its elements are scalars. A cell array, as the nanne suggests, is an array 

of cells, each of which can store a value ofahnost any MATLAB data type: scalar, string, 

array, structure, and even cell array. As will be seen shortly, cell arrays whose each cell is 
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an array or a structure provide very efficient and convenient storage for SJANN. To 

access the i'h element of a cell array, we use the format: Cell_ar ray_ name f i J • 

Table 5.1: Fields in SIANN structure 

Field Data type Description 

numlnputs scalar Number of elements in each input vector __ T _____ ------
· Number of elements in each output vector e numOutputs scalar 

----·---.a numLayers scalar Number of layers excluding the input layer 
u 
:!! ---

' Information about each layer 
"' layers cell array 

~ --
.size scalar Number of neurons in the layer 

.transferFcn string Transfer function for the layer 

w cell array Weights 

" c 
0 B cell array Biases "' I! .. 
" A cell array Decay rates 0 

trainParam structure Training parameters 

.trainFcn string Training function 

.goal scalar Error tolerance 

.epochs scalar Maximum number of iterations 

"' c .errorFcn string Error function ·;: 

~ .lr w scalar Learning rate for weights -
.!r_b scalar Learning rate for biases 

.lr a scalar Learning rate for decay rates -

.show scalar Frequency of showing training progress 

I! .. inputRange array Range of input values <5 
0 
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Information stored in a SIANN structure can be divided into four main categories: 

architectural information, operational information, training information and others. 

Architectural Information is information regarding the architecture of the neural 

network. That includes the size of an input vector (i.e. number of neurons in the input 

layer), the size of output vector (i.e. number of neurons in the output layer), and the 

number of layers. Information about layers (excluding the input layer) is stored in the 

field Layers, which is an array of structures. The number of structures is dictated by the 

number of layers - numLayers, and the i'h structure stores information about layer i: 

• layers{i}.size is the number of neurons in layer i 

• Iayers{i}.traniferFcn is the transfer function of neurons in layer i. It is in the furm of 

a string such as 'purelin', 'tansig', etc. We should mention that transfer function is 

MATLAB's terminology for what we have been using so fur: activation function. 

These two terms can be used interchangeably. 

Operational Information includes the values of weights, biases and decay rates that 

allow output of a SIANN to be computed. 

• W is a cell array. Its k~ cell is an array that stores weights going from layer k- I to 

layer k. We consider here that layer 0 is the input layer. Weight "wo going from 

neuronj in layer k-1 to neuron i in layer k is W{k}(ij). 

• B is a cell array. Its k~ cell is a vector that stores biases fur neurons in layer k Bias 'b1 

for neuron i in layer k is B{k}(i). 

• A is a cell array. Its k~ cell is a vector that stores decays rate for neurons in layer k 

Decay rate 'a, for neuron i in layer k is A{k}(i). 

Training Information controls the training process of a SIANN and is stored in the field 

trainParam. trainParam is a structure and by default it consists of fields that are used in 

most training algorithms: 
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• trainFcn is a string that specifies the training algorithm. For example if trainFcn is set 

to 'train_gd' then the error backpropagation with gradient descent will be used to train 

the network 

• goal is error tolerance. Training stops when the difference between the network's 

actual output and its target fulls below this value. How this difference is computed is 

dictated by the field errorFcn. 

• errorFcn is a string that specifies how error is computed, and is either 'sse' or 'mse'. 

'sse' returns sum squared error between actual output matrix Y and target matrix T. 

This error divided the number of elements in T is the result returned by 'mse' (short 

for mean squared error). 

• epochs maximum number of epochs. An epoch, in the context of batch training, 

corresponds to an network update after the whole training set is presented. Training 

also stops if this number is reached. 

• show specifies the rate at which the training progress is reported to user. For example, 

if show is 25, then after every 25 epochs, training status including error, epoch 

number, is displayed at MATLAB console. 

• lr _ w, lr _ b, /r _a are learning rates for weights, biases and decay rates respectively. 

As mentioned above, fields can be added to trainParam structure to accommodate 

parameters required by new training algorithms. For example, the gradient descent with 

momentum method (see 4.2.2 and 5.6.2) uses a parameter called B (beta) which is 

typically set to 0.1. This parameter is added to the set of training parameters by init_siarm 

function if it finds the network's training method is 'train_gdm': 

net.trainParam.beta = 0.1; 
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Other Information 

• inputRange is a numlnputs x 2 array that specifies the range of input values to the 

network. It may be used by some training algorithms to set the initial weights, biases, 

and decay rates so as to speed up convergence. 

Table 5.2 shows the mapping between mathematical notations (used in derivation of 

training algorithms in chapter 4) and MATLAB variables. 

Table 5.2: Mathematical notations to MA TLAB variables 

Description Symbol MATLAB 

Number oflayers (excluding the input layer) 
N net.numLayers 

Number of neurons in layer k ,, net.layers{k} .size 

Activation function for layer k f~.) net.layers{k} .transferFcn 

Weight.from neuronj in layer k-1 

to neuron i in layer k 
\vij net. W {k}(ij) 

Decay constant for neuron i in layer k ka; net.A{k}(i) 

Bias for neuron i in layer k kbj net.B{k}(i) 

Input to the net p PorZ{l} 

Output of neuron i in layer k k 
Zij Z{k+ I }(i,:) 

Input signal from neuronj in layer k-1 
'p;; Z{k)(j,:) 

to neuron i in layer k 

Output of neuron i in output layer y; Y(i,:) or Z{N+l }(i,:) 

Target of neuron i in the output layer I; T(i,:) 
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5.2.2 Other Design Considerations 

This section discusses two issues that are important in achieving good perfonnance for 

MATLAB implementation. 

Memory versus Speed 

Investigating the fonnulae in section 4.1.5, we can see many similar calculations are 

repeated in various steps of the training process. For example, outputs 'z of each layer 

computed in feedforward phase are used in backpropagation phase to compute 

sensitivities. Training can be sped up if memory is allocated to store the result of these 

calculations for later use. 

Improving Speed through Vectorlsatlon 

The execution speed of MATLAB's scripts can be greatly improved if operations are 

expressed in vector fonn. The following example of adding two vectors illustrates this 

point. 

Test I 

Test2 

a= rand(l000,50); 

b ~ rand(lOOO,SO); 

c = zeros(1000,50); 

for i = 1:50000 

c(i) = a{i) + b(i); %Individual element adding 

end 

c = a + b; %Vector form 

In one Pentium machine, test I took 1225 seconds whereas test 2 took 0.06 seconds. 

Having described the SIANN structure, we are now ready to develop SIANN functions. 

The focus of the next fuur sections is on how SIANN functions are implemented in 

MATLAB. The discussion will be facilitated by code examples where their inclusion is 

appropriate. Refer to appendix A at the end of this report fur a complete code listing. 
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5.3 Creating SIANN Network 
File 

new_siann.m listing A. I 

Syntax 

net= new_siann(pr,[sl s2 ... sNI],{tfl tf'2 ... tfNI}, btf, ef) 

Inputs 

pr Rx2 matrix of min and max values for R input elements 

si number of neurons in layer i 

tf transfer function for layer i 

btf backpropagation training function 

ef error function 

Outputs 

net a new SIANN network 

Discussion 

The following example creates a SIANN that receives 3 inputs, each ranges from 0 to 6. 

The network has three layers whose number of neurons is 5, 4 and I. In that order, the 

transfer functions are 'exp', 'tansig' and 'purelin'. The net is trained with training function 

'train_gd' and its error function is 'sse': 

net= new_siann([O 6; 0 6; 0 6], [5,4,1],{'exp' 'tansig' 'purelin'}, ~rain_gd','sse'); 

5.4 Initialising SIANN Network 
File 

inint_siann.m listing A.2 

Syntax 

net = init _siann(net) 

Inputs 

net a SIANN net 

Outputs 

net an initialised SIANN net 
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Discussion 

This function perfonns two main tasks. First it initialises net parameters (weights, biases, 

decay rates) to small random values. Second, depending on the training algorithm of the 

net, it creates the required training parameters in trainParam structure, and sets them to 

defuult values. The following code shows initialisation for the ODD (gradient descent 

with direct solution step): 

switch net.trainParam.trainFcn 

end 

case 'train_gdd' %gradient descent with direct solution 
net.trainParam.direct = 2; 
%i.e Direct solution takes place after every 2 epochs 
%Find and store inverse of transfer function 
fori= l:net.numLayers 

transferinv = 'pure!in'; %By default 
switch net.layers{i}.transferFcn 

case 'exp' 

end 

transferinv = 'log' ; 
case 'purelin' 

transferinv = 'purelin'; 
case 'tansig' 

transferinv = 'atanh'; 
case 'logsig' 

transferlnv = 'invlogsig'; 

net.layers{i}.transferinv = transferinv; 
end 

5.5 Simulating SIANN Network 

File 

sim_siann.m listing 5.2 or A.3 

Syntax 

[Y, Z, D, S] = sim_siann(net, P) 

Inputs 

net Network 

P Network input 

Outputa 

Y - Network output 

Z - Output of individual layer 

D -Denominator factor a+ I\ sum) 
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S • Input sum to each neuron 

The last three outputs Z, D, S are used in training (see section 5.6. I). 

Example 

P=[J368; 

24 7 5];% input 

net =new_siann([O 3; .J 4], [4 3], {'tansig' 'purelin'}); 

Y = sim_siann(net, P) %output 

Listing 5.2: sim_siann Computing the output ofSIANN 

function [Y, Z, D, S] = sim_siann(net,P) 
%SIM_SIANN Simulate a Shunting Inhibito~y Artificial Neural Network. 
%Check arguments 
if nargin .... = 2 

error ('Not enough input arguments.'); 
end 

% Simulate network 
N = net.numLayers; 
Ni = size(P,2); 

% 

% 
% 

The number of layers 
The number of input vectors 
Storage for N layers' output 

in 
Z = cell(N + 1,1); 
D = cell(N-1,1); % Storage for denominator factor 
S = cell(N, 1); % Storage for sum W*P 

the training 

a + f(sum) 

Z{l} = P; % Input set considered as output of layer 0 

% Z{k} stores the output of layer k-1 
% Compute the output for all layers except the last layer 
fork= l:N-1 

end 

T = net.layers{k}.size- size(Z{k},l); 
if T > 0 

ZT = [Z{k); zeros(T,Ni)]; 
else 

ZT = Z{k}(l:net.layers{k}.size,:); 
end 
S{k} = net.W{k) * Z{k}; %Weighted sum 
D{k} = repmat(net.A{k),l,Ni) + ... 

feval(net.layers{k}.transferFcn,S{k}}; %Denominator 
Z{k+l} = (ZT + repmat(net.B{k},l,Ni)) ./ D{k}; 
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% Computer the output of the last 
% layer - a perceptron layer 
S{N) = net.W{N) * Z(N} + repmat(net.B{N}, 1, Ni}; 

Z{N+l) = feval(net.layers{N}.transfer~cn, S{N)); 
Y = Z{N+l); %Final output 

Discussion 

This function computes the output of SIANN for a given input. Input is a matrix 

organised column-wise, i.e. each column is an individual input pattern. In the above 

example, there are four input patterns, each consists oftwo elements. Similarly the output 

is organised column-wise. This function also returns the output Z of all layers, the 

weighted sum W•P and the denominator factor a + f(W.P) for all neurons, which are 

needed during training to compute gradient. 

The MATLAB functionfeva/ is used at several times in this project to evaluate a function 

given its name as a string and its numeric argument. There are two methods of evaluating 

an expression, for example e1.5, in MATLAB by using either: 

exp(l.S) %exp is a built-in MATLAB function for ex 

or 

feval('exp', 1.5) 

The use of[eva/ in the second method gives us the flexibility of incorporating ahnost any 

activation function for SIANN's. All we need to do is writing a script for the new 

activation function and passing its name to feval. 

5.6 Training Network 
File 

train siann.m 

Syntax 

listing 5.3 or A.4 

[net, tr] = traln_siann(net, P, T) 

Inputs 

net Network 

P Network input 

T Network target 
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Outputs 

net - Trained network 

tr - Training record 

Listing 5.3: train_siann Supervised training ofSIANN 

function [net,tr]=train_siann(net,P,T) 
%TRAIN SIANN Train a Shunting Inhibitory Artificial Neural Network 
% Check arguments 
if nargin ... = 3 

error('Not enough input arguments.'}; 
end 

switch net.trainParam.trainFcn 
case 'train_gd' 

end 

%standard gradient descent 
[net,tr] = train_gd(net,P,T); 

case 'train_gdm' 
%gradient descent with momentum 
[net,tr] = train_gdm(net 1 P,T); 

case 'train_gdv' 
%gradient descent with variable learning rate 
(net,tr] = train_gdv(net,P,T); 

case 'train_gdd' 
%gradient descent with direct solution 
[net,tr] = train_gdd(net,P,T); 

case 'train_apolex' 
%APOLEX training 
[net,tr] = train_apolex(net,P,T); 

Discussion 

An example of using this function is shown in listing 5.1. lrain_siann, after checking its 

arguments, calls the appropriate function to train the network. Training stops when the 

maximum number of epochs is reached or the actual error fulls below the specified 

tolerance (i.e. net.trainParam.goai). 

The training record lr returned by train_siann is a row vector that stores the actual errors 

at every epoch during training. It is used to monitor the training progress and can be 

plotted using MATLAB command: plot(tr). 
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All training based on gradient descent approach such as train_gd, train_gdv, train_gdm, 

and train_gdd uses the function compgrad. This function, listed in listing A.5 (appendix), 

computes the gradient of the error function and is one of the key issues in implementing 

the training methods. It covers the steps from 4 to 10 described in section 4.1.3 (chapter 

4). 

The compgrad function calculates the derivative of a function by using the [eva/ function 

described in section 5.5. As a convention, the derivative of an activation function is found 

by adding a letter 'd' to the front of the activation function's name. That is if 'tansig' is an 

activation function, 'dtansig' is its derivative: 

f = net.layers{k} .transferFcn; % Activation function of layer k 
deriv = feval{('d' f], S{k},Z{k)};% Compute derivative t'(s{k}) 

5.6.1 Gradient Descent Functions 

With compgrad, train_gd can be written very neatly as shown in listing 5.4. Slight 

modifications are needed for other functions such as train _gdv (variable learning rate), 

train_gdm (with momentum). These functions are listed in the appendix: listing A.8, A.9 

respectively. 

Listing 5.4: train _gd Gradient Descent Training 

function [net,tr]=train_gd(net,P,T) 
%TRAIN_GD Train SIANN using error backpropagation with gradient descent 
%Syntax 
% [net,trJ = train_gd(NET,P,T) 
epoch_count = 0; 
tr = [); 

e = Inf; 
while (epoch_count <= net.trainParam.epochs)& (e > net.trainParam.goal) 

epoch_count = epoch_count + 1; 
[dedw, deda, dedb, e] = compgrad(net, P, T); %Compute gradient 
net= updatenet(net,dedw, deda, dedb); %Update net 
tr = (tr e] ; % Record error 
if ~rem{epoch_count, net.trainParam.show) % Display progress 

fprintf('Epoch %4g: Error= %2.4g\n',epoch_count,e); 
end 

end 
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5.6.2 Gradient Descent with Direct Solution Step 

The key issue in implementing GDD is to find the least-squared solution of a system of 

linear equations (see chapter 4, section 3). Again, the decision of implementing this 

project in MATLAB proves to be very effective. Using MATLAB, the least-squared 

solution can be found using a single command. First we write the system of linear 

equations in vector fonn as follows (X is an unknown vector): 

X.A~B 

The least-squared solution is a vector x• such that IIX'.A - Bll is minimum. x• can be 

found in MATLAB by simply using I opemtor: 

Xstar = B I i.; 

train _gdd is shown in listing AI 0 (appendix). 

5.6.3 APOLEX training 

See chapter 4 section 4 for derivation of this training method, and listing A. II for the 

code of train_ apo/ex function. Calculating change !J.v in net parameters, change !J.E in the 

global error, correlation fuctor c,(n), and probability function Pv(n) is fuirly 

straightforward. The two functions serialise and deseria/ise (listing A.l2) are written to 

put all net parameters (weights, biases, decay mtes) into a single row vector and vice 

versa. As shown below, putting all net parameters in a single row vector s has the 

advantage that calculation of l!.v, c,(n), or Pv(n) can be done in one vector manipulation 

for all parameters: 

% serialise all net parameters into a single row vector 
s = serialise(net.W, net.B, net.A); %current parameters 
sp = serialise(netp.W, netp.B, netp.A); %previous parameters 

%Compute change in net parameters 
delta_s = s - sp; 

%Compute covariance between change in net parameters 
%and change in the total error 
cov = delta_s * (e- ep); 

%Compute probability that determines update direction 
prob = 1 ./ (1 + exp(2*cov/net.trainParam.T))i 
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Another issue to consider is how to generate a constant with a certain probability, i.e. to 

implement the formula: 

-{·S with probability of I· P,(n) 
8• (n)- S with probability of P.(n) 

This is done using MA TLAB function rand which generates a pseudo-random numbers 

with a uniform distribution in the range 0.0 to 1.0. Thus, the probability of the rand 

function to return a random value not greater than a ftxed a (O<a<l) is equal to a itself. 

This fact is used in the following code (continued from the above code): 

R = rand(size{s)); %generate random values 
value = R < prob; 
%value = 1 with probability of prob 
%value = 0 with probability of 1 - prob 
direction = 2*value - 1; 
%direction = 1 with probability of prob 
%direction = -1 with probability of 1 - prob 

%Compute update 
s = s + direction * net.trainParam.delta; 

Due to its probabilistic nature, APOLEX training may be subject to sudden increases in 

the global error. This is prevented by a verification step within each epoch, which 

compares the new error with the previous error. If the new error exceeds the previous 

error by a frxed factor stored in net.trainParam.maxlncrease, the parameter updates are 

simply discarded. This fuctor is set by default to 1.2 and can be chosen by the users. 

%Verification step 

Y = sim_siann(nett, P}; 

et = feva!(net.trainParam.errorFcn, Y-T); 

%Discard the update if error increases 

%by more than a fixed factor 

if et < net.trainParam.maxrncrease * e 

net = nett; 

end 
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Finally, it should also be mentioned that MA TLAB supports object persistence by 

allowing variables to be saved to and loaded from disk files. The simplest way to do this 

is by using save and loads commands. For example, 

• To save variables net, P and T to file named my_session.mat, 

save my_session.mat net P T 

• To load all variables in the file my _session. mat into workspace, 

load my_session.mat 

A more sophisticated way is by using MATLAB File I/0 functions such as fopen, fclose, 

fread, !Write. These functions can handle also non·MAT files and together, they allow 

greater control over file access. 
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In this chapter, we test the training algorithms derived and implemented in the previous 

chapters on some benchmarks such as the exclusive-or problem, parity problems, pattern 

classification and function approximation. We also compare the performance of SJANN's 

and MLP's by running error-backpropagation training algorithms on these two 

architectures. 

6.1 The XOR Problem 

The XOR problem is a classical benchmark for neural network training methods. It was 

used by Minsky and Paper! (1988) to demonstrate the limitation of single-layer 

perceptrons. The question is to classify two classes of points arranged in an 11e.xclusive~ 

or" configuration as shown in figure 6. 1. 

''r-----.------r-----y-----, : ~ : 
' ' ' ' ' ' 
:(0,1) : :{1,1) 

1 -------·-------~-------··-------. , , 
' , 
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Figure 6.1: XOR Problem 
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0 
--
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The program in listing B. I (appendix) trains a SIANN so that it produces the output as 

shown in figure 6.1 b. Training is stopped when the sum squared error falls below 0.1. 

The program compares the performance of the five training algorithms whose uaining 

results are shown in figure 6.2. 
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Figure 6.2: Comparisons of training methods: XOR problem 
Goal = 0.1, nets with 2 hidden neurons 

Of all training methods, the gradient descent with direct solution step (GDD) converges 

the fastest taking only 5 epochs. The next best result goes to the gradient descent with 

variable learning rate (GDV) with 220 epochs, followed by the APOLEX algorithm. The 

gradient descent with momentum (GDM) converges slightly faster than the standard 

error-backpropagation (GD). 

As shown in figure 6.3, the SJANN's trained with the five training methods correctly 

separated the two classes of points, whereas the MLP did not after 1000 epochs. 
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Figure 6.3: Decision boundaries for XOR problem 

(Five SIANN's and a MLP) 

6.2 Parity Problems 

This section compares the perfonnance ofSIANN's and MLP's in solving pari1y problems, 

which are generalised versions of the exclusive-or problem. We attempt to train neural 

networks of both architectures to find the even pari1y bit for input patterns consisting of 

3, 4, 5 and 6 bits. Table 3.1 shows the inputs and the expected outputs for the 3-bit even 

pari1y problem. 

Functions shipped with the MATLAB's Neural Network Toolbox are used to create, 

initialise, and train MLP's, whereas SIANN's are handled by the functions written in this 

project. MLP's are trained using Levenberg-Marquardt backpropagation, which is 

believed currently one of the fastest training algorithms for multilayer perceptruns 

(Demuth & Beale, 1998). SIANN's are trained using the gradient descent with direct 

solution step (GDD), which is the fastest in five algorithms developed in this project. 
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Table 6.1: 3-bit even parity problem 

Input P Target T 

Pt p, p, I 
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Figure 6.4: MLP versus SIANN: parity problems 

2 

2 

Results in Figure 6.4 show that the gradient descent with direct solution step (GDD) for 

SIANN yields compamble performance with the fast Levenberg-Marquardt algorithm for 

MLP" A dmwback of GDD would be that it requires more neurons in some cases" The 

code for this testing is shown in listing B.2 (appendix B, file chapter6_2"m). 
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Chapter 6 Simulation Results 

6.3 Pattern classification 

In this section, we develop a SIANN to classify two classes of points (red and blue) as 

shown in Figure 6.5. The training set is derived by selecting a small number of random 

points from the two classes. The SIANN has configuration 1-6-1 and the activation 

functions for the hidden layer and output layer are 'exp' and 'purelin' respectively. The 

code for this example can be found in listing B.3 in appendix B. 

The SIANN is trained with the GDD. Figures 6.6 (a), (b), and (c) show how the decision 

boundary of the network changed during training. As can be seen, the SIANN classified 

correctly all 240 points after 24 trials. 
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Figure 6.5: Classifying two classes of points 

(120 red and 120 blue) 
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Chapter 6 Simulation Results 

6.4 Function Approximation 
The task of learning a function is a stringent one. In this section, we investigate the 

interpolative power of StANN's. Basically, a network is presented with some sampled 

points of a curve and it is asked to learn the training points and then generate an estimate 

of the original function. The following function to be approximated is slightly more 

complex than the benchmark used by Verma (1997) to test his training algorithms for 

MLP's. 

ftx) = 0.1 + x.[l.2 + 2.8*sin(47tx2
)], 0 < x <I 
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Figure 6.7: Plot of a function to be approximated 

The plot of this function is shown in figure 6. 7. In the frrst experiment, training data are 

taken at regular intervals of 0.1. That is we use II training points: 

{(0, ftO), (0.1, ftO.l)), (0.2, ft0.2)), ... , (1, ftl))}. 

In the second experiment, we double the number of training points (taken at regular 

intervals of 0.05). Finally, we compare the performance of SIANN aod MLP if training 

points were selected raodomly in the interval [0, 1]. 

To test the trained networks, we compute their actual outputs for data points at intervals 

of 0.01, aod then find the meao-squared error between the actual outputs y and the 

expected values f: 

1 100 

E =--L(y(O.Oli)- f\O.Oli)J 2 

IQ} i=O 
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Figure 6.8a: SiANN (1-10-1, GOD) and MLP (1-10-1, trainlm) 
11 regularly spaced training points 

: Actual function 
- ---i-- ---~- --- ~- ----:----- ~---. i ESLA.NN = 0.369618 

: I : : -- EMLP = 0.359215 
---- ~---- -~----!---- ~----- ~---- ~k=~,;;:;;:,.,,..._._._=-·-·-=~...1~ 

I I I I I I 
I I I I I 
I I I I I I I 

----.1-----~----~----~-----~----.1-----~-1 I I I I I I 
I I I I 
I I I I I I I 

•••• ..! ••••• L .••• J •••• J ••••. L •••• J ••••• L. 
I I I I I I I 
I I I I I 
I I I I I I 

I I I I 

,----~---- r----~-----
' ' ' I I I I 

-----~----~----~-----~ I I I I I 

' ' ' I I I I I I 

' ' 
---~-----

' ' --:----

•••• J ••••• L •••• ! .... J ••••• L. . ••••• L •..• ! ..... 
I I I I I I I I 

I I I I I I 

' ' ' I I I I I I I I I 

----,-----r----,----,-----r----,-----r----,-----~---
1 I I I I I 

' ' ' I I I I I I I I I 

----~-----~----t----~-----·----~-----~----t-----~---1 I I I I I I I I 
I I I I I I I 
I I I I 

0.1 0.2 0.3 0.4 0.5 
X 

0.6 0.7 0.6 0.9 
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Figure 6.8c: SIANN (1-40-1, GOD) and MLP (1-40-1, train 1m) 
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1 

The results are shown in Figure 6.8 (a), (b) and (c). As can be seen, the SIANN performed 

poorly in the first experiment where only I 0 training points are used. However, in the 

second experiment where there are twice as many training points as in the first one, or the 

third experiment where training points are chosen randomly, the SIANN's yielded 

comparable or even better performance than with MLP's (trained with the fast Levenberg

Marquardt algorithm). 

The code for this section is found in appendix B, listing B.4 (file chapter6_ 4.m). 
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Chapter 7 Conclusions 

This project is part of co-operative efforts of a group of students under the supervision of 

Associate Professor Salim Bouzerdoum to investigate classes of artificial neural networks 

that are hased on the shunting inhibition model. One student is working on an application 

of shunting inhibitory cellular neural networks (SICNN's) to edge detection and 

enhancement. Another student is designing a VLSI chip that realises SICNN's in 

hardware. The principal aim of this project is to develop efficient training algorithms for 

a new class of artificial neural networks called Shunting Inhibitory Artificial Neural 

Networks (SIANN's). The project is motivated by the fact that, despite SICNN's proven 

potentials in image processing applications such as edge detection and motion detection, 

the coefficients of a SICNN are still determined by practitioners thorough basically a 

manual process, which limits SICNN applications. 

SIANNs are also based on shunting inhibition model, but unlike the cellular SICNN they 

have a feed-forward architecture. A SlANN combines shunting inhibitory neurons in the 

hidden layers and perceptrons in the output layer into a system that is capable of 

representing very complex mapping between input and output with a smaller number of 

neurons compared with MLP's. Another key difference between SIANN and SICNN is that 

the former uses static (steady state) model of shunting inhibitory neurons. These 

modifications allow ns to compute the output of a shunting inhibitory neuron in one step 

(equation 3.2), and to derive training algorithms for SIANN's based on error

backpropagation. The rest of this chapter summarises what has been achieved in this 

project and proposes further directions. 
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7.1 Project Contributions 
One of the most significant contributions of this project is the derivation of a training 

method for SIANN's that is based on error-backpropagation. Although the error

backpropagation training for Multilayer Perceptron is well understood, adapting it to train 

SIANN's is a complex task. This is because unlike a perceptron, which has linear 

activation characteristics: y = j{w.p), a shunting inhibitory neuron in SIANN, as shown in 

equation (3.2), has a highly non-linear activation. Adding adaptive parameters such as 

bias and decay rate to a shunting neuron, while making it more powerful and flexible than 

a perceptron, certainly increases the complexity of the training algorithm. The en·or

backpropagation algorithm for SIANN's is summarised in section 4.1.3 (pp. 40-41). 

We also investigated three heuristic variations of the error-hackpropagation, which are 

shown to increase convergence speed and training stability in some situation: batch 

training (GD), gradient descent with variable learning rate (GDV) and gradient descent 

with momentum (GDM). Batch training updates network parameters only after a group or 

the entire set of training patterns has been presented by accumulating the amount of 

changes contributed by each training pair. The method reduces the "unlearning" effect 

whereby minimising the error fur a new pattern increases errors for previously learned 

patterns. GDV speeds up training by adaptively changing the learning rate (i.e. increasing 

it where the error surfuce is "flat", and reducing it otherwise). GDM makes training more 

stable by taking into account the amount of the previous update. 

Another significant contribution is a very fust training method fur SIANN's that combines 

error-backpropagation with a direct solution step (GDD). The basic idea is to look for 

weights that minimise the difference between the actual output and the target by finding 

the least-squared solution io (often over-detennined) systems of linear equations. This 

method was shown (see Chapter 6) to achieve a comparable performance with the 

Levenberg-Marquardt algorithm - currently one of the fustest training algorithms for 

multilayer perceptron. A drawback would be that GDD requires a large number of 

neurons. The direct solution step was first suggested by Verma (1997). 
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Chapter 7 Conclusions 

Also investigated in this project is an interesting training method called APOLEX 

(algorithm for pattern extraction), which updates network parameters according to a 

stochastic rule. The major advantages of APOLEX include: it is computationally simple; it 

is applicable to many network architectures including SIANN; it has few restrictions on 

the choice of activation functions or network error function. 

The second focus of this project is to implement SIANN's and their training algorithms in 

MATLAB. The MALAB functions developed in this project allow users to create a 

shunting network, compute its outputs for given inputs, and train the network to produce 

desired outputs for given input patterns. SIANN's are implemented in a very efficient way 

using the new data types introduced in MATLAB 5: structures and cell arrays. The 

implementation is very flexible in that new training algorithms can be implemented 

without extensive changes to the existing SIANN architecture. All we need to do is to add 

new training infurmation fields to the trainParam structure, which can be done easily in 

MATLAB, and to write a MABLAB script for the new training algorithm utilising the 

training information in trainParam. 

Together, these SIANN functions can be used to develop pattern classification 

applications based on shunting inhibitory artificial neural networks. The SIANN functions 

were applied in chapter 6 to solve XOR and other parity problems, classifY 2-D patterns 

and approximate a function. 

7.2 Further Directions 
One possible follow-up of this project is to develop neural network applications based on 

SIANN's and the training methods derived in this project. Two such applications are being 

considered: detection of fatal heart beats in medicine and automatic detection of 

modulation types in communication. In this project, SIANNs and their training algorithms 

are implemented in MATLAB, which is an excellent tool for fast prototyping and 

development of mathematical models. However, in order to incorporate SIANNs in real 

applications, the algorithms should be implemented in C/C++, preferably in the form of a 

class library. This is another step thst can be taken to promote further the work in this 

project. 

77 



Bibliography 

[I] Beare, R. & Bouzerdoum A. (1999). Biologically inspired local motion detector 

architecture. Journal of Optical Society of America. Vol. 16(9). pp. 2059-2068. 

[2] Bouzerdoum, A. (1999). A New Class of High-Order Neural Networks with 

Nonlinear Decision Boundaries. Edith Cowan University, Perth, Western Australia 

[3] Bouzerdoum, A. (1991). Nonlinear Lateral Inhibitory Neural Networks: Analysis 

and Application to Motion Detection. Doctoral dissertation. University of 

Washington. 

[4] Bouzerdoum, A., & Pinter, B. (1993). Shunting Inhibitory Cellular Neural 

Networks: Derivation and Stability Analysis. IEEE Transactions on Circuits and 

Systems. Vol. 40(3). pp. 215-221. 

[5] Bouzerdoum, A. & Pinter, R. B. (1989). Image motion processing in biological and 

computer vision systems. Visual Conununication and Image Processing. Vol. 1199. 

pp. 1229-1240. 

[6] Chua, L. 0. (1993). The CNN Paradigm. IEEE Transactions on Circuits and 

Systems. Vol. 40(3). pp. 215-221. 

[7] Demuth, H., & Beale, M. (1998). Neural Network Toolbox. The Math Works, Inc. 

[8] Doya, K. (1992). BifUrcation in the learning of recurrent neural network. 

Proceedings of the IEEE International Symposium on Circuits and Systems. Vol. 6, 

pp. 2777-2780. 

[9] Fausett, L. (1994) Fundamentals of Neural Network-Architecture, Algorithms, and 

Applications. New Jersey: Englewood Cliffs, Prentice-Hall, Inc. 

78 

I 



[10] Hagan, M.T, & Demuth, H.B, & Beale M. (1996). Neural Network Design. Boston: 

PWS Publishing Company. 

[II] Hanselman, D., & Littlefield, B. (1998). Mastering MATLAB'"5: A Comprehensive 

Tutorial and Reference. New Jersey: Prentice-Hall, Inc. 

[12] Harth, E., & Pandya, A. S. (1988). Dynamics of the APOLEX Process: Applications 

to the Optimisation Problem. In L. M. Ricciardi (Ed.) Biomathematics and Related 

Co!!ljlutational Problems pp. 495-471. Amsterdam: Reidel Publishing. 

[13] Hubick, K. T. (I 992). Artificial Neural Networkli in Australia. Commonwealth of 

Australia: Department oflndustry, Technology & Commerce. 

[14] Kung, S.Y. (1993). Digital Neural Networkli. New Jersey, Englewood Cliff: 

Prentice-Hal~ Inc. 

[15] Minsky, M. L, & Paper!, S. A. (1988). Perceptrons: An Introduction to 

Computational Geometry. Expanded Edition (3"'). Massachusetts: The MIT Press. 

[16] Nabet, B., & Pinter, R. B. (1991). Sensory Neural Networks: Lateral Inhibition. 

CRC Press, Inc. 

(17] Pandy, A. S., & Macy, R.B. (1996). Pattern Recognition with Neural Networkli in 

C++. CRC Press. 

[18] Patterson, D. W. (1996). Artificial Neural Networkli Theory and Applications. 

Singapore: Prentice Hall. 

[19] Pinter, R. B. (1985). Adaptation of spatial modulation transfer function via 

nonlinear lateral inhibition. Biological Cybernetics. Vol. 51, pp. 285-291. 

79 



(20] Pontecorvo, C. & Bouzerdoum, A. (1995). Edge Detection Using A Shunting 

Inhibitory Cellular Neural Network. Digital Image Computing: Techniques and 

Applications. pp. 637-642. Brisbane, Queensland. 

[21] Pontecorvo, C. & Bouzerdoum, A. (1997). Edge Detector in Multiplicative Noise 

using the Shunting Inhibitory Cellular Neural Network. Proceedings of the 

International Conference EANN '97. pp. 281-285. Stockhohn, Sweden. 

[22] Redfern, D., Campbell, C. (1998). The MATLAB@5 Handbook. New York: Springer

Verlag Inc. 

[23] Refenes, A. N., & Zaidi, A. (1993). Managing Exchange Rate Prediction Strategies 

with Neural Networks. In M. Taylor & P. Lisboa (Eds.), Techniques and 

Applications ofNeural Networks (pp. I 09-116). London: Ellis Horwood Lhnited. 

(24] Reinhardt J., & Muller, B. (1990). Physics of Neural Networks. Berlin: Springer

Verlag. 

[25] Taylor, M., & Lisboa, P. (1993). Techniques and Applications of Neural Networks. 

London: Ellis Horwood Limited. 

[26] Verma, B. (1997). Fast Training of Multilayer Perceptrons. IEEE Transactions on 

Neural Networks. Vol. 8 (6), pp. 1314-1319. 

80 

I 



Appendix A SIANN Functions (Chapter 5) 

Listing A.1: new siann.m Creating a new SIANN 

function net = new_siann{pr, s, tf, btf, ef) 
%NEW_SIANN Create a feed-forward shunting inhibitory ANN. 
%Syntax 
% net = new_siann{pr, [sl s2 ..• sNl), {tfl t£2 ... tfNl), btf, ef) 
% 

%Input 

% pr 
% si 

Rx2 matrix of min and max values for R input elements 
Number of neurons in layer i 

% tfi Transfer function for layer i 
% btf Backpropagation training function 
% ef Error function 
% 

%Output 
% net the new SIANN network 
% 

%Example 
% net= new_siann([O 1; 0 1], [5 2] 1 {'exp' ... 

% 

% 

'pure lin'), 'train_gd 1 , 
1 sse'}; 

% Creates a net that receives 2 inputs in range from 0 to 1 
% It has 2 layers, the first with 5 neuron, transfer function exp 
% The second has 2 neuron, transfer function purelin 
% The net uses train_gd as training function 
% It uses sse to compute error 
% 

%See also SIM_SIANN, INIT_SIANN, TRAIN SIANN 

if nargin < 2 
error('Not enough input arguments'} 

end 
if size(pr,2) ~= 2 

error('lst argument must be a two column matrix.') 
end 
if any(pr(:,l) > pr(:,2)) 

error('lst argument must have min values in 1st column.') 
end 
if isa(s, 'cell') & (prod(size{s)) == length(s)} 

s = [s{:)]; 

end 

Nl = length {s); % Number of layers excluding the input layer 
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if nargin < 3 
tf::: {'exp'}; 
tf = [tf(ones(l,Nl))J; 

end 

if nargin < 4 
btf = 'train_gd'; 

end 

if nargin < 5 
ef::: 'sse'; 

end 

% Architecture 
net.numinputs = size(pr,1); 
net.numOutputs = s(Nl); 
net.numLayers ::: Nl; 

for i=1:Nl 
net.layers{i}.size::: s(i); %Size of each layer 
net.layers{i}.transferFcn = tf{i};% Transfer function of each layer 

end 

%Weights, biases, decay rates 
net.W = cell(Nl,1); % Weights 
net.B::: cell(Nl,1); %Biases 
net.A = cell(Nl-1,1); %Decay rates 

net.W{1} = zeros(net.layers{1}.size, net.numinputs); 
net.B{l} = zeros(net.layers{1}.size, 1); 
for i = 2:net.numLayers 

net.W{i}::: zeros(net.layers{i}.size,net.layers{i-1}.size); 
net.B{i} = zeros(net.layers(i}.size, 1); 
net.A{i-1} = zeros{net.layers{i-1}.size, 1); 

end 

net.inputRange = pr; 

% Training 
net. trainPa:r:am. goal = 0. 01; 
net.trainParam.epochs ::: 50; 
net.trainParam.show = 25; 
net.trainParam.trainFcn = btf; 
net.trainParam.errorFcn = ef; 

%Learning rates 
net.trainParam.lr_w = 0.01; 

% Range of input values 
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net.trainParam.lr a 0.01; 
net.trainParam.lr b = 0.01; 

%Initialise net 
net= init_siann(net); 
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Listing A.2: init siann.m Initialising a SIANN 

function net=init_siann(net) 
%!NIT SIANN Initialize a Shunting Inhibitory Artificial Neural Network 
% 

%Syntax 
% net = init_siann(net) 
% 

%Description 
% returns NET with weights,biases, decay 
% rates initialised to random values. 
% 

%See also SIM_SIANN, TRAIN SIANN 

%Randomise net weights, biases, and decay rates 
net.W{l} = rand(size(net.W{l})); 
net.B{l} = rand(size(net.B{l})); 
for i = 2:net.numLayers 

net.W{i} = rand{size(net.W{i})); 
net.B{i} = rand(size(net.B{i})); 
net.A{i-1} = rand(size(net.A{i-1))); 

end 

%Initialise required parameters according 
%to the training function of the network 
switch net.trainParam.trainFcn 

case 'train_gdm' %gradient descent with momentum 
net.trainParam.beta = 0.1; 

case 'train_gdv' %variable learning rate 
net.trainParam.zeta = 0.003; 
net.trainParam.rho = 0.99; 

case 'train_gdd' %gradient descent with direct solution 
net.trainParam.direct = 2; 
%i.e Direct solution takes place after every 2 epochs 
%Find and store inverse of transfer function 
for i = l:net.n~~Layers 

transferinv = 'purelin'; %By default 
switch net.layers{i}.transferFcn 

case 'exp' 
transferinv = 'log'; 

case 1 pure lin' 
transferlnv = 'purelin'; 

case 'tansig' 
transferinv = 'atanh'; 

case 'logsig' 
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end 

end 

transfer!nv = 'invlogsig'; 
case 'sin' 

transferinv = 'asin'; 

net.layers{i}.transferinv = transferinv; 

case 'train_apolex' 
net.trainParam.delta = 0.01; 
net.trainParam.T = 10; 

end 
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Listing A.3: Slffi smnn.m Simulating a SIANN 

sim_siann(net,P) function [Y, z, D, S] 
%SIM_SIANN Simulate a 
% 

Shunting Inhibitory Artificial Neural Network. 

%Syntax: 
% [Y, z, D, S] = sim_siann(net, P) 

% 
%Input: 
% NET - Network 
% P - Network input 
%Output: 

% Y - Network output 
% z - Output of individual layer (optional, used in training) 
% D -Denominator factor a + f(sum) {optional, used in training) 
% S - Input sum to each neuron (optional, used in training) 
% 
%Example 
% p = [1 3 6 8; 2 4 7 5]; 
% net= new_siann([O 3; -1 4], [4 2], {'tansig' 'purelin'}); 
% Y = sim_siann(net, P) 
% 

%See also INIT_SIANN, TRAIN_SIANN, NEW SIANN 

% Check arguments 
if nargin -.::: 2 

error ('Not enough input arguments.'); 
end 

% Simulate network 
% The number of layers N = net.numLayers; 

Ni = size(P,2); % The number of input vectors in 
% Storage for N layers' output 

the training 
z = cell(N + 1,1); 
D = cell(N-1,1); % Storage for denominator factor a+ f(sum) 
S = cell(N,1); 
Z{l) = P; 

% 

% 

Storage for sum W*P 
Input set considered 

% Z{k) stores the output of layer k-1 

as output of layer 0 

% Compute the output for all layers except the last layer 
for k = 1:N-1 

T = net.layers{k).size- size(Z{k},l); 
if T > 0 

ZT"' [Z{k}; zeros(T,Ni)]; 
else 

ZT = Z{k}(1:net.layers{k}.size, :); 
end 
S{k) = ~et.W{k} * Z{k}; 
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%Weighted sum 

set 



D{k} = repmat{net.A{k},l,Ni) + .•. 
feval(net.layers{k}.transfer~cn,S{k}); %Denominator 

Z{k+l} = {ZT + repmat{net.B{k),l,Ni)) ./ D{k}; 
end 

% Computer the output of the last 
% layer - a perceptron layer 
S{N} = net.W{N} * Z{N} + repmat(net.B{N), 1, Ni); 
Z{N+l} = feval(net.layers{N).transferFcn, S{N}); 
Y = Z{N+l); %Final output 
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Listing A.4: train siann.m Training a SIANN 

function [net,tr]=train_siann(net,P,Tl 
%TRAIN_SIANN Train a Shunting Inhibitory Artificial Neural Network 
%Syntax 
% (net,tr] ""train_siann(net,P,T) 
%Input 
% NET - Network 
% p - Network inputs 
% T - Network targets 
%Output 
% NET - New network. 
% TR - Training record 
%Example 
% p [0 0 1 1; 

% 1 0 1 0] % input set 
% T = [1 0 0 1) 

% net = new_siann ( [0 1; 0 1], [2 1), { 'purelin' 
% 'purelin'}, 'train_gdd'); 
% net= init_siann(net); 
% [net, tr) = train_siann(net,P,T); 
% Y = sim_siann(net,P); 
%Notes 
% Training stops when error is smaller than net.trainParam.goal 
% or the number of epochs exceeds net.trainParam.epochs 
%See also NEW_SIANN 1 INIT_SIANN, SIM_SIANN, TRAIN GD 

% Check arguments 
if nargin --= 3 

error('Not enough input arguments.'); 
end 
switch net.trainParam.trainFcn 

case 'train _gd 1 

end 

%standard gradient descent 
[net,tr] = train_gd(net,P,T); 

case 'train_gdm' 
%gradient descent with momentum 
[net,tr] = train_gdm(net,P,T); 

case 'train_gdv' 
%gradient descent with variable learning rate 
[net,tr] = train_gdv(net,P,T); 

case 'train_gdd' 
%gradient descent with direct solution 
[net,tr] = train_gdd(net,P,T); 

case 'train_apolex' 
%APOLEX training 
[net,tr] = train_apolex(net,P,T); 
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I 
Listing A.S: compgrad.m Computing Gradient of Error Function 

function [dedw, deda, dedb, e] = compgrad(net,P,'l') 
%COMPGRAD Compute gradient of error function 
% 

Ni = size(P,2); % Number of t~aining sets 
% Number of layers N = net.numLayers; 

es = cell (N,l); 

dedw = cell(N,l); 
% Error sensitivity for all layers 
% Partial derivative of e with respect to weights 

deda 
de db 

= cell(N,l); % Partial derivative of e with respect to decay rates 
= cell(N,l); % Partial derivative of e with respect to biases 

for k=l :N 

% kth cell is for kth layer 
es{k} = zeros(net.layers{k}.size,Ni}; 
dedw{k} = zeros{size{net.W{k})); 
dedb{k) = zeros(size(net.B{k})); 

end 

for k=l:N-1 
deda{k) = zeros(size(net.A{k})); 

end 

[Y, z, D, S] = sim_siann(net, P); %Compute output 
es{N} "" Y - T; ?, Output layer 
e = feval(net.trainParam.errorFcn,es{N}); %Compute error 

tf = net.layers{N}.transferFcn; 
Te = es{N} .* feval(['d' tf], S{N},Z{N+1}); 
es{N-1} = net.W{N}' * Te; %N -1 layer 

for k = N-2:-1:1 

end 

tf = net.layers{k+1}.transferFcn; 
fori= 1:net.layers{k}.size 

end 

Te = es{k+1).* feval(['d' tf],S{k+l}, ..• 
D{k+1} - repmat(net.A{k+1),1,Ni)) 
.* (-Z(k+2}./ D(k+l}}; 

es{k}(i,:) = net.W{k+1}(:,i) 1 * Te; 
if i <= net.layers{k+l}.size 

es{k}(i,:) ""es{k}(i,:) + es{k+l)(i,:)/D{k+1}(i,:); 
end 

% Compute gradient of e 
% wesghts w 
% first the output layer 
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I 
tf : net.layers {N), transfer Fen; 
for i = l:net.layers{N) .size 

for j = l:net.layers{N-l}.size 
dedw{N) (i, j l = sum(es{N} (i,:) 

end 

end 

feva1 ( [ 'd' tf), 

* Z{N}(j,:)); 

% now for inner layers 
fork= N-1:-1:1 

tf = net.layers{k}.transferFcn; 
fori= l:size(net.W{k},l) 

for j = l:size{net.W{k},2) 
dedw{k}(i,j) =sum ( ••. 

* 
S{N)(i,:), Z{N+l}(i,:)) ..• 

es{k} (i,:) ... 

end 

end 

end 

% Biases b 
for k = l:N-1 

* (-Z(k+l}(i,:} ./D(k}li,:)} .•. 

. * Z{k}(j,:) ••• 

. * feval(['d' tf),S{k}(i,:), 
D(k}(i,:}- net.A(k}(i}}}; 

dedb(k} = sum(es(k} ./ D(k},2}; 

end 

tf = net.layers{N} .transfer Fen; 
dedb{N) = sum(es{N}.* feval(('d' tf], S{N}, Z{N+l}),2); 

% Decay rateS' a 
for k = l:N-1 

deda{k} = sum((es{k} * {-Z(k+l} ./ D{k}}},2}; 

end 

Listing A.&: updatenet.m Updating Net Parameters 

function net= updatenet(net,dedw, deda, dedb) 
%UPDATENET Given gradient of error, update net parameters 
for k = l:net.numLayers 

net.W{k} = net.W{k} - dedw{k} * net.trainParam.lr_w; % Wesghts W 
net.B{k} = net.B{k) - dedb{k} * net.trainParam.lr_b; % Biases B 

end 

for k = l:net.numLayers-1 % Decay rates A 
net.A{k} = net.A{k}- deda{k} * net.trainParam.lr_a; 

end 
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I 
Listing A.7: train_gd.m Gradient Descent Algorithm for SIANN 

function [net,tr]=train_gd(net,P,T) 
%TRAIN GD Train a SIANN using error backpropagation 
% with gradient descent 
%Syntax 
% [net,tr] = train_gd(NET,P,T) 

epoch_count = O; 
tr = []; 

e = Inf; 

while (epoch_count <= net.trainParam.epochs)&(e > net.trainParam.goal) 
epoch_count = epoch_count + 1; 
[dedw, deda, dedb, e ] = compgrad(net, P, T); % Compute gradient 
net= updatenet(net,dedw, deda, dedb); %Update net 
tr = [tr e]; % Record error 
if ~rem(epoch_count, net.trainParam.show) % Display progress 

fprintf { 'Epoch %4g: Error = %2, 4g\n', epoch_count, e) ; 
end 

end 
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Listing A.8: train_gdv.m Gradient Descent With V ariabie Learning Rate 

function [net,trJ;train_gdv(net,P,T) 
%TRAIN GDV Gradient Descent with Variable 
%Syntax 

Learning Rate 

% (net,tr)=train_gdv(net,P,Tl 
epoch_count = 0; 
tr = [) ; i e = Inf; 
e_pre = (]; 

I 

i 
net_pre = net; % previous net 
zeta = net.trainParam.zeta; 
rho = net.trainParam.rho; 

while (epoch_count <= net.trainParam.epochs)& (e > net.trainParam.goal) 

end 

epoch_ count = epoch_count + 1; 
[dedw, deda, dedb, e ] = compgrad(net, 
net= updatenet(net, dedw, deda,dedb); 

P, T); %Compute gradient 
% Update net 

if isempty(e_pre) 
e_pre = e; 

end 
delta e = e - e_pre; % The change in error 
if delta e > zeta * e_pre % If error increases too much 

%Discard weight change, revert to the previous net 
net = net_pre; 
%Reduce the learning rates 
net.trainParam.lr a = net.trainParam.lr a * rho; 

' -net.trainParam.lr_b = net.trainParam.lr b * rho; 
net.trainParam.lr w = net.trainParam.lr w * rho; 

else 

end 

%Accept weight 
net_pre =net; 
e_pre = e; 
tr = [tr e]; 

change 
% save the current net 
% save previous error 
% record error 

if ~rem(epoch_count, net.trainParam.show) 
fprintf( 1 Epoch %4g: Error= %2.4g\n 1 ,epoch_count,e); 

end 

if delta e < 0 
%Increase learning rates if e decreases 
net.trainParam.lr a = net.trainParam.lr a I rho; 
net.trainParam.lr b = net.trainParam.lr b I rho; 
net.trainParam.lr w = net.trainPararn.lr w I rho; 

end 
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I 
Listing A.9: train_gdm.m Gradient Descent With Momentum 

function [net,tr]=train_gdm(net,P,T) 
%TRAIN GDM Gradient Descent with Momentum 
%Syntax 
% [net, tr) =train_gdm(net, P, Tl 

epoch_count = 0; 
tr = [ l ; 
e = Inf; 

delta w = net.W; 
delta b = net.B; 

% Change in weights 
% Change in biases 

delta a= net.A; %Change in decay.rates 

%Initialise previous change to 0 
for k=l:net.numLayers 

% kth cell is for kth layer 
delta_w{k) = zeros(size(net.W{k})); 
delta_b{k} = zeros(size(net.B{k})); 

end 
for k=l:net.numLayers-1 

delta_a{k} = zeros(size(net.A{k))); 
end 

while (epoch_count <= net.trainParam.epochs)& (e > net.trainParam.goal) 
epoch_count = epoch_count + 1; 

end 

[dedw, deda, dedb, e] = compgrad{net, P, T); %Compute gradient 
tr = [tr e]; %Record error 
if ~rem(epoch_count, net.trainPararn.show) % Display progress 

fprintf('Epoch %4g: Error= %2.4g\n',epoch_count,e}; 
end 

% Update net parameters 
for k = l:net.numLayers 

delta_w{k) =- dedw{k} * net.trainPararn.lr w ... 
+ net.trainParam.beta * delta_w{k}; 

net.W{k} = net.W{k} + delta_w{k}; % weights W 

delta_b{k} = - dedb{k} * net.trainPararn.lr_b 
+ net.trainParam.beta * delta_b{k}; 

net.B{k} = net.B{k} + delta_b{k}; % biases 8 
end 
for k = l:net.numLayers-1 

end 

delta_a(k} =- deda{k} * net.trainParam.lr a .•. 
+ net.trainParam.beta * delta_a{k}; 

net.A{k} = net.A{k} + delta_a{k}; % decay rates A 
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I 
Listing A.10: train_gdd.m Gradient Descent With Direct Solution Step 

function [net,trJ=train_gdd{net,P,T) 
%TRAIN GDD Gradient Descent with Direct Solution Step 
warning off 
N = net.numLayers; 
Ni = size{P,2); 

epoch_count = 0; 
tr= (]; 

e = In£; 

% Suppress warnings 
% Number of layers 

while (epoch_count <= net.trainParam.epochs)& {e > net.trainParam.goal} 
epoch_count = epoch_count + 1; 
[dedw, deda, dedb, e J = compgrad(net, P, T); %Compute gradient 
tr = [tr e]; % Record error 
if ~rem(epoch count, net.trainParam.show) 

fprintf('Epoch %4g: sum squared error= %2.4g\n',epoch_count,e); 
end 

net= updatenet(net,dedw, deda, dedb); 

if -rem(epoch_count, net.trainParam.direct) 
%Perform direct solution step 
[Y, z, o, S] = sim_siann(net,P); 

% Update net 

%Solve directly for weights and biases in output layer 
%X * A = B -> X = B/A; 
A= [Z{N};ones(1,Ni)J; 
B = feval(net.layers{N}.transferinv,T); 
X = B/A; %Find least squared solution 
net.B{N} = X(:,size(X,2)); %Biases in the last column of X 

net.W{N} = X(:,l:size{X,2)-l); 

%Solve directly for weights in shunting layers 
for k = N-1:-1:1 

end 

end 

end 

transferrnv = net .layers{ k}. transferrnv; 
fori= l:net.layers{k}.size 

end 

if i <= size(Z{k},l) 
G = (Z(k)(i,:)+net.B(k)(i))./Z{k+l)(i,:)- net.A{k)(i); 

else 
G = net.B{k)(i) ./ Z{k+l)(i,:)- net.A{k)(i); 

end 

B = feval(transferinv,G); 
X= B/Z{k}; %Find least squared solution 
net.W{k}(i,:) =X; 
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Listing A.11: train apolex.m APOLEX algorithm 

function [net,tr]=train_apolex(net,P,T) 
%TRAIN GO Train a SIANN using error backpropagation 
% with gradient descent 
%Syntax 
% [net,tr] = train_gd(NET,P,T) 

epoch_count = O; 
a11neal_ count = 0; 
N = net.numLayers; 
tr = [] ; 
e = Inf; 

ep = 0; 
netp = net; 

%current error 
%previous error 

nett = net; %for verification purpose 

while (epo~h_count <= net.trainParam.epochs)& (e > net.trainParam.goal) 
epoch_coont = epoch_count + 1; 
[Y,Z] = sim_siann(net, P); % Compute output 
e = feval(net.trainParam.errorFcn,Y-T); 
tr = [tr e]; %Record error 
if -rem(epoch_count, net.trainParam.show) % Display progress 

fprintf('Epoch %4g: Error= %2.4g\n',epoch_count,e); 
end 

% serialise all net parameters into a single row vector 
s = serialise(net.W, net.B, net.A); %current parameters 
sp = serialise{netp.W, netp.B, netp.A); %previous parameters 

%Compute change in net parameters 
delta_s = s - sp; 

%Compute covariance between change in net param~ters 
%and change in the total error 
cov = delta_s * (e- ep); 

netp = net; %Store the current copy 
ep = e; 

%Compute update direction 
prob = 1 ./ {1 + exp(2*cov/net.trainParam.T)); 
R = rand(size(s)); 
direction = prob > R; %direction is 0 or 1 
direction = 2*direction - 1; %direction is -1 or 1; 
%Compute update 
s = s + direction * net.trainParam.delta; 
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%Update net parameters 
[w, b, a] = deserialise(net,s); 
nett.W = w; 

nett.B = b; 
nett.A = a; 

%Verification step 
Y = sim_siann(nett,P); 
et = feval(net.trainParam.errorFcn,Y-T); 
%Discard the update if error increases 
%by more than a fixed factor 
if et < net.trainParam.maxincrease*e 

net = nett; 
end 

%Determine temperature for next run 
net.trainParam.T = max(abs(cov)); 

end 
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I 
Listing A.12: Other supporting functions 

functions = serialise(w, b, a) 
%SERIALISE Serialise w, b, a into a single column vector s 
%Internal function subject to change 
N:::: si:ze(w,l); 
s = (]; 

%Concatenate w, b, a in that order 
for i = 1 :N 

s = [s; reshape(w{i},prod(size(w{i})),l)]; 
end 

for i = l:N 
s = [s; reshape(b{i},prod(size(b{i})),l)]; 

end 

for i = l:N-1 
s = [s; reshape(a{i},prod(size(a{i})),l)]; 

end 

function [w, b, a] = deserialise(net,s) 
%DESERIALISE Deserialise a single column vector into w, b, a 
%Internal function subject to change 
%See also SERIALISE 

N = net.numLayers; 
w = net.W; 
b = net.B; 
a = net.A; 

k = 1; 
for i = l:N 

w(i} = reshape(s(k: k + prod(size(w{i)))-1), size(w{i})); 
k = k + prod(size(w{i})); 

end 

for i = 1 :N 
b{i} = reshape(s{k: k + prod{size{b{it))-1), size{b{i})); 
k = k + prod{size{b{i}}}; 

end 

for i = 1:N-1 
a{i} = reshape(s(k: k + prod{size(a{i}))-1), size(a{i})); 
k = k + prod(size(a{i})); 

end 

function Y = dexp(X,D) 
%Derivative of y: exp(x) 
Y = exp(X); 
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Appendix B Programs to test SIANN Functions (Chapter 6) 

Listing 8.1: chapter6 _l.m XORproblem 

%Train SIANN to recognise XOR pattern 
%Compare performance of five training algorithms for SIANN 
%Compare SIANN and MLP 
clear 
P=[OOll; 

1 0 1 0] % input set 
T = (1 0 0 1] % target 

%Create a SIANN with two shunting neurons 
%Change train_gd to any of the following training functions 
%train_gdd, train_gdv, train_gdm, train_apolex, train_gd 
net_begin = new_siann([O 1; 0 1], [2 1], {'exp' 'purelin'},'train_gd'); 

%Initialise network weights, biases, decay rates 
%All SIANN's have the same weights, biases, decay rates initially 
net_begin = init_siann(net_begin); 
net_begin.trainParam.epochs = 1000; 
net_begin.trainParam.goal = 0.1; 

%SIANN to be trained with GDM 
net_gdm = net_begin; 
net_gdm.trainParam.trainFcn ='train gdm'; 
net_gdm = init_siann(net_gdm); 
net_gdm.W = net_begin.W; 
net_gdm.B = net_begin.B; 
net_gdm.A = net_begin.A; 

%SIANN to be trained with GDV 
net_gdv = net_begin; 
nGt_gdv.trainParam.trainFcn = 'train_gdv'; 
net_gdv = init_siann(net_gdv); 
net_gdv.W = net_begin.W; 
net_gdv.B = net_begin.B; 
net_gdv.A = net_begin.A; 

%SIANN to be trained with GOD 
net_gdd = net_begin; 
net_gdd.trainParam.trainFcn = 'train_gdd'; 
net_gdd = init_siann(net_gdd); 
net_gdd.W = net_begin.W; 
net_gdd.B = net_begin.B; 
net_gdd.A = net_begin.A; 

98 



%SIANN to be trained with APOLEX 
net_apolex = net_begin; 
net_apolex.trainParam.trainFcn = 'train_apolex'; 
net_apolex = init_siann(net_apolex); 
net_apolex.W = net_begin.W; 
net_apolex.B = net_begin.B; 
net_apolex.A = net_begin.A; 

%MLP to be trained using error-backpropagation 
%NOTE: For.MLP we use functions included 
%in the MATLAB's Neural Network Toolbox 
net_mlp = newf£([0 1; 0 1), [2 1], ('tansig' 'purelin'}, ... 

'traingd 1
, 'learngd', 'sse'); 

net_mlp.trainParam.epochs = 1000; 
net_mlp.trainParam.goal = 0.1; 
net_mlp_begin = net_mlp; %Save the initial network 

%TRAIN SIANN's 
%Training with gradient descent 
fprintf ( 1 \nTrain SIANN using gradient descent •.. \n 1 ); 

net_gd = net_begin; 
t1 = clock; 
[net_gd, tr_gd] = train_siann(net_gd,P,T); 
t2 = clock; 
t_gd = etime(t2,tl); 
Y_gd = sim_siann(net_gd,P); 

%Compute training time 
%Compute output 

%Train SIANN usinggradient descent with momentum 
fprintf('\nTrain SIANN using gradient descent & momentum ..• \n'); 
tl = clock; 
[net_gdm, tr_gdm] = train_siann(net_gdm,P,T); %train SIANN 
t2 = clock; 
t_gdm = etime(t2,t1); %Compute training time 
Y_gdm = sim_siann(net_gdm,P); %Compute output 

%Train SIANN using gradient descent & variable learning rate 
fprintf( 1 Train SIANN using gradient descent&variable learning rate\n'); 
tl = clock; 
[net_gdv, tr_gdv] = train_siann(net_gdv,P,T); %train SIANN 
t2 = clock; 
t_gdv = etime(t2,tl); %Compute training time 
Y_gdv = sim_siann(net_gdv,P); %Compute output 

%Train SIANN using gradient descent & direct solution step 
fprintf('\nTrain using gradient descent & direct solution step\n'); 
tl = clock; 
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[net_gdd, tr_gdd] = train_siann(net_gdd,P,T);%train SIANN 
t2 = clock; 
t_gdd = etime(t2,t1); %Compute 
Y_gdd = sim_siann(net_gdd,P); %Compute 

training time 
output 

%Train SIANN using the APOLEX algorithm 
fprintf('\nTrain using APOLEX a1gorithm •.. \n'); 
t1 = clock; 
%train SIANN 
[net_apolex, tr_apo1ex] = train_siann(net_apolex,P,T); 
t2 = clock; 
t_apolex = 

Y_apolex = 

etime(t2,t1); %Compute 
sim_siann(net_apolex,P); %Compute 

%Train MLP using error-backpropagation 

training 
output 

time 

fprintf('\nTrain MLP using error-backpropagaticn •.. \n'); 
tl = clock; 
figure (3) 
[net_mlp, tr_mlp] = train(net_mlp, P,T);%train MLP 
t2 = clock; 
t_mlp = etime(t2,tl); 
Y_mlp = sim(net_mlp1 P); 

%CHECK CLASSIFICATION RESULT 

%Compute training time 
%Compute output 

%Compute the decision boundaries for the five SIANN's and the MLP 
[pl, p2] = meshgrid{-.5:0.1:1.5, -.5:0.1:1.5); %Input space 
i1 ~ reshape(pl,l,prod(size(pl))); 
i2 = reshape(p2,1,prod(size(p2))); 

%Output of SIANN trained with GD 
y_gd = sim_siann(net_gd, [il;i2]); 
z_gd =reshape(y_gd,size(p1)); 

%Output of SIANN trained with GDV 
y_gdv = sim_siann(net_gdv, [i1;i2]); 
z_gdv =reshape{y_gdv,size(p1)); 

%Output of SIANN trained with GDM 
y_gdm = sim_siann(net_gdm, [i1;i2]); 
z_gdm =reshape(y_gdm,size{p1)); 

%Output of SIANN trained with GDD 
y_gdd = sim_siann(net_gdd, [i1;i2]); 
z_gdd =reshape{y_gdd,size(p1)); 

%Output of SIANN trained with APOLEX 
y_apolex = sim_siann(net_apolex, [il;i2]); 

100 



z_apolex =reshape(y_apolex,size(pl)); 

%Output of MLP trained with GD 
y_mlp = sim(net_mlp, [il;i2]); 
z_mlp =reshape(y_mlp,size{pl)); 

%Draw decision boundaries 
figure(l) 
subplot{3,2,1) %MLP 
plot(0,0, 1 .b',l,l,'.b',O,l,'xr',l,O,'xr'), hold on 
axis{ [-.5 1.5 -.5 1.5]) 
set ( gca, 1 XTickLabel', [] ) ; 
title ( 'MLP:gd') 
contour(pl,p2,z_mlp, [,5 .5],'k'),hold off 

subplot(3,2,2) %SIANN with GD 
plot(O,O, '.b',l,l,'.b',O,l, 'xr',l,O,'xr'),hold on 
contour(pl,p2,z_gd, [.5 .5),'b'); 
axis([-.5 1.5 -.5 1.5]) 

set ( gca, 'XTickLabel', [] ) ; 
title ( 1 SIANN:gd 1 ); 

subplot(3,2,3) %SIANN with GDV 
plot(0 1 01 '.b' 1 1,1, '.b',0 1 1, 'xr' 1 1,01 'xr'),hold on 
contour(pl,p2,z_gdv, (.5 .S],'k'); 
axis([-.5 1.5 -.5 1.5]) 
set (gca, 'XTickLabel', []); 
ylabel ( 'p_2') 1 title ( 1 SIANN: gdv'); 

subplot(3 1 2,4) %SIP.NN with GDM 
plot(O,O, '.b',l,l,'.b' 1 0,l,'xr',l,0 1 'xr'),hold on 
contour{p1,p2,z_gdm1 (.5 .SJ, 'm'); 
axis((-.5 1.5 -.5 1.5]) 

set (gca 1 'XTickLabel', [ J) ; 
title ( 1 SIANN:gdm'); 

subplot (3, 2, 5) %SIANN with GDD 
plot (0 1 0 1 ' .b 1 ,1,1,' .b' ,0,1 1 

1 xr' 1 1,0 1 'xr') ,hold on 
contour(p1 1 p2,z_gdd, (.5 .5] 1 'g'); 
axis([-.5 1.5·-.5 1.5]) 
xlabel ( 1p_1') 1 title( 'SIANN:gdd'); 

subplot(3,2,6) %SIANN with APOLEX 
plot(O,O,'.b' 1 1,1,'.b',O,l,'xr',l,01 'xr'), hold on 
contour(p1,p2,z_apo1ex, [.5 .5), 'r'}; 
axis([-.5 1.5 -.5 1.5]) 
xlabel ( 'p_l') 1 title (' SIANN:apolex') 
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%Compare training methods for SIANN's and MLP 
%Plot the error versus epoch 
figure(2) 
plot(O:length(tr_mlp.perf)-l,tr_mlp.perf, 'c', 

O:length{tr_gd)-l,tr_gd, 'b', •.. 
O:length(tr_gdv)-l,tr_gdv, 'k', 
O:length(tr_gdm)-l,tr_gdm,'m', ..• 
O:length(tr_gdd)-l,tr_gdd, 'g', ... 
O:length(tr_apolex)-l,tr_apolex, 'r'); 

legend{'MLP:gd', 'SIANN:gd', 'SIANN:gdv', 'SIANN:gdm', 'SIANN:gdd', 
'SIANN:apolex'); 
xlabel{'Epoch'}, ylabel('Error') 
title('Error for XOR problem- Goal=O.l') 

%Save results of the training session 
%save chapter6_1.mat 
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Listing 8.2: chaptcr6 _ 2.m Parily Problems 

%Compare SIANN and MLP in even-parity finding problems 
clear all 

%Training data 
P3 = binwords(3); % input set 3-bit 

T3 = rem(sum(P3,1),2); % even parity 3-bit 

P4 = binwords(4); % input set 4-bit 

T4 = rem(sum(P4,1),2); % even parity 4-bit 

PS = binwords(S); % input set 5-bit 

TS = rem(sum(PS,l),2); % even parity 5-bit 

P6 = bin words ( 6); % input set 6-bit 
T6 = rem(sum{P6,1),2); % even parity 6-bit 

%Train SIANN to find 3-bit parity 
fprintf('\nTrain SIANN to solve 3-bit parity ... \n'); 
net siann3"" new_siann([zeros(3,1) ones(3,1)], [7 1], ... 

{ 'exp' 'purelin' } , 'train_gdd' ) ; 
net siann3 = init_siann(net_siann3}; 
net_siann3.trainParam.show = 1; 
net_siann3.trainParam.epochs = 1000; 
net_siann3.trainParam.goal = .001; 
net_siann3_begin = net_siann3; 
[netnet_siann3, tr_siann3] = train_siann(net_siann3,P3,T3); 

%Train SIANN to find 4-bit parity 
fprintf('\nTrain SIANN to solve 4-bit parity ••. \n'); 
net siann4 = new_siann([zeros(4,1) ones(4,1)], (15 1], .•. 

{
1 exp 1 1 purelin 1

},
1 train_gdd'); 

net siann4 = init_siann(net_siann4); 
net siann4.trainParam.show = 1; 
net_siann4.trainParam.epochs = 1000; 
net_siann4.trainParam.goal = .1; 
net siann4.trainParam.direct = 1; 
net_siann4_begin = net_siann4; 
[net_siann4, tr_siann4] = train_siann{net_siann4,P4,T4); 

%Train SIANN to find 5-bit parity 
fprintf( 1 \nTrain SIANN to solve 5-bit parity ••. \n 1

); 

net_siann5 = new_siann([zeros(5,1) ones(5,1)], [311], 
{ 'exp' 1 purelin 1 ~, 1 train_gdd 1 ); 

net_siann5 = init_siann(net_siann5); 
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net_siannS.trainParam.show = 1; 
net_siannS.trainParam.epochs = 1000; 
net_siannS.trainParam.goal = .1; 
net_siannS.trainParam.direct = 1; 
net_siann5_begin = net_siannS; 
[net_siann5, tr_siann5) = train_siann(net_siann5,P5,T5); 

%Train SIANN to find 6-bit parity 
fprintf('\nTrain SIANN to solve 6-bit parity •.. \n'); 
net siann6 = new_siann([zeros(6,1) ones(6,1)], [63 1], ..• 

{' exp' 'purelin'}, 'train_gdd' J; 
net siann6 = init_siann(net_siann6); 
net_siann6.trainParam.show = 1; 
net_siann6.trainParam.epochs = 1000; 
net_siann6.trainParam.goal = .li 

net_siann6.trainParam.direct = 1; 
net_siann6_begin = net_siann6; 
[net_siann6, tr_siann6] = train_siann(net_siann6,P6,T6); 

%Train MLP to find 3-bit parity 
fprintf('\nTrain MLP to solve 3-bit parity ..• \n'); 
net_mlp3 = newff([zeros(311) ones(3,1)], [5 lJ1 •.• 

{'tansig' 'purelin'}, 'trainlm', '' 'sse'); 
net_mlp3 = init(net_mlp3); 
net_rnlp3.trainPararn.show = 1; 
net_rnlp3.trainPararn.epochs = 1000; 
net_rnlp3.trainPararn.goal = .1; 
net_rnlp3_begin = net_rnlp3; 
[net_mlp3, tr_rnlp3] = train(net_rnlp3,P3,T3); 

%Train MLP to find 4-bit parity 
fprintf('\nTrain MLP to solve 4-bit parity •.. \n'); 
net_mlp4 = newff([zeros(411) ones(4,1)], [20 1], •.. 

{ 'tansig' 'pure lin'} 1 'trainlrn', ' ' 1 'sse' ) ; 
net_mlp4 = init(net_rnlp4); 
net_mlp4.trainPararn.show = 1; 
net_mlp4.trainParam.epochs = 1000; 
net_rnlp4.trainParam.goal = .1; 
net_mlp4_begin = net_mlp4; 
[net_rnlp4, tr_mlp4] = train(net_rnlp4,P41T4); 

%Train MLP to find 5-bit parity 
fprintf('\nTrain MLP to solve 5-bit parity ••. \n'); 
net_mlp5 = newff([zeros(51l) ones(5,1)], [25 1], ••• 

{'tansig' 'purelin'}, 'trainlrn','', 'sse'); 
net_mlp5 c init(net_mlp5); 
net_mlp5.trainParam.show = 1; 
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net_mlp5.trainParam.epochs = 1000; 
net_mlpS.trainParam.goal = .1; 
oet_mlp5_begin = net_mlp5; 
[net_mlp5, tr_mlp5] = train(net_mlp5,P5,T5); 

%Train MLP to find 6-bit parity 
fprintf('\nTrain MLP to solve 6-bit parity ••• \n'); 
net_mlp6 = newff([zeros(6,1) ones(6,1)], (70 1] 1 ••• 

{ 'tansig' 1 purelin') 1 
1 trainlm 1 , 

1 
' 1 

1 sse 1 ); 

net_mlp6 = init(net_mlp6); 
net_mlpG.trainParam.show = 1; 
net_mlpG.trainParam.epochs = 1000; 
net_mlp6.trainParam.goal = .1; 
net_mlp6_begin = net_mlp6; 
[net_mlp6, tr_mlp6] = train(net_mlp6,P6,T6); 

%Plot the error versus epoch 
subplot(2,2,1) 
plot(O:length(tr_mlp3.perf)-1 1 tr_rnlp3.perf, 'r 1

, 

O:length{tr_siann3)-l,tr_siann3, 1 b') 
set(gca, 'XTick', [0:1:max(length(tr_rnlp3.perf),length(tr_siann3))]); 
title ( 1 3-bit even parity') 
ylabel( 1 Error'),legend('MLP: 1-5-1', 'SIANN: 1-7-1') 

subplot {2, 2,2} 
plot(O:length(tr_mlp4.perf)-1,tr_rnlp4.perf, 'r', ... 

O:length(tr_siann4)-1,tr_siann4, 'b 1
) 

set(gca, 1 XTick', (O:l:max(length(tr_mlp4.perf),length(tr_siann4))]); 
title('4-bit even parity') 
ylabel('Error'),legend('MLP: 1-20-1', 'SIANN: 1-15-1 1

); 

subplot(2,2,3) 
plot(O:length(tr_mlp5.perf)-1,tr_mlp5.perf, 'r 1

, ••• 

O:length(tr_siann5)-1 1 tr_siann5, 'b') 
set(gca, 'XTick', [0:1:max(length(tr_mlp5.perf),length(tr_siann5))]); 
title ( 1 5-bit even parity') 
xlabel ('Epoch') , ylabel ( 1 Error 1 ) 

legend('MLP: 1-25-1', 'SIANN: 1-31-1'); 

subplot(2,2,4) 
plot(O:length(tr_mlp6.perf)-l,tr_mlp6.perf, 'r', 

O:length(tr_siann6)-1,tr_siann6, 1 b') 
... 

set(gca, 'XTick', [0:1:rnax(length(tr_mlp6.perf),length(tr_siann6))]); 
title('6-bit even parity') 
xlabel ('Epoch') , ylabel ( 'Error' ) 
legend('MLP: 1-70-1', 'SIANN: 1-63-1'); 
%save chapter6_2 %Save the result of this training session 
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Llstln~ 8.3: chapter6_3.m Pattern Classification Example 

%Train a SIANN to classify two classes 
\of points on 2-dimensional space 

%Class 0 consists of (hl,vl), (h3,v3), (h5,v5) 
%h stands for horizontal 
%v stands for vertical 
clear 
hl 1 + 0.4* rand(l,40) - 0.2; 
vl = 5 + 0.4 * rand{l,40) - 0.2; 

h3 • 2.5 + 0.4* rand(l,40) - 0.2; 
v3 • 1 + 0.4 • rand(!, 40) - 0.2; 

h5 • 4.5 + 0.4* rand(l,40) - 0.2; 
v5 • 5 + 0.4 • rand(!, 40) - 0.2; 

%Class 1 consists of (h2,v2), {h4,v4), {h6,v6) 
h2 • 1 + 0.4' rand(1,40) - 0.2; 
v2 = 2 + 0.4 * rand(l,40) - 0.2; 

h6 • 5 + 0.4* rand(1,40) - 0.2; 
v6 • 1 + 0.4 * rand(l, 40) - 0.2; 

h4 • 2.5 + 0.4* rand(l,40) - 0 .2; 
v4 • 4 + 0.4 * rand(l,40) - 0.2; 

C1 h • [hl h3 h5]; %Class 0 
Cl v • (vl v3 vS]; 

C2 h • [h2 h4 h6]' %Class 1 
C2 v • [v2 v4 v6]; 

Ch • [Cl h C2_h] ; 
Cv = [Cl_v C2_v]; 
C = (zeros(size(Cl_h)) ones(size(C2 h))]; %Correct class id 
NurnPatterns = length(C); 

%Visualise points in class 0 and 1 
plot(Cl h,Cl v,'.b',C2 h,C2 v,'hr'); 
title('Training a SIANN to Classify these points'); 
axis([O 6 0 6]), xlabel{'h'), y!abel('v') 
waitforbuttonpress 

net cols = cell(lOO,l); 
res cole = []; 

%Collection of nets 
%Collection of results 

%First, create a SIANN 1-6-1 
net= new siann([-10 10; -10 10], [6 1], {'exp' 
'purelin'}, 'train gdd'); 
net= init_siann(net); 
net.trainParam.epochs = 10; 
net.trainParam.show = 100; 
net.trainParam.goal = 0.1; 
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net.trainParam.direct ~ 1; 

%Second, prepare training data 
%bv selecting 3 random points from each classes 
i = 1 + floor{39 * rand(6,1)); 
%Inputs 
P = [h1(i(1)) h2ii(211 h3(i(3)) h4(i(4)) hS(i(S)) h6(i(6)); .•. 

v1(i(1)) v2(i(2)) v3(.i(3)) v4(i(4)) vS(i(S)) v6(i(6))]; 
%Targets 
T = [0 1 0 1 0 

%Third, train the net to recognise training set 
%During training, display the decision boundary 
%so that we can see how SIANN 'learns' to classify 
%All points in the 2-D space 
(h, v] = meshgrid(0:0.1:6, 0:0.1:6); 
hl = reshape(h,l,prod(size(h))); 
vl = reshape(v,l,prod(size(v})); 

NurnCor = O; 
NumTrial = 0; 
while NumCor < NumPatterns 

NumTrial = NumTrial + 1; % Number of trials 
%Randomise net weights, biases, and decay rates 
net.W{l} = rand(size(net.W{l})); 
net.B{l} = rand(size(net.B(l})); 
for i = 2:net.numLayers 

net.W{i} = rand(size(net.W{i})); 
net.B{i} = rand(size(net.B{i})); 
net.A{i-1} = rand(size(net.A{i-1})); 

end 

%Train the net 
net= train_siann(net,P,T); 

1 I ; 

%Compute the output of SIANN for all points in 2-D space 
y = sirn_siann(net, [hl;vl]); 
y = reshape(y,size{h)); 

%Visualise points in class 0 and 1 
plot(Cl_h,Cl_v,' .b',C2_h,C2_v,'hr'); 
title('Training a SIANN to classify these points'); 
axis([O 6 0 6]), hold on; 

%Compute the output of SIANN for the two classes of points 
Output= sim_siann(net, [Ch;Cv]); 
Output= hardlirn(Output- 0.5); %Threshold output 
NurnCor = sum(Output ==C); %Number of correct classification 

s = sprintf('Trial %g: No. correct class. %g/%g', NumTrial, NumCor, 
NumPatterns) ; 

%Draw the decision boundary of the trained net 
%The output threshold is .5, that is if the output < .5 
%then the point is in class 0, otherwise it is in class 1 
contour(h,v,y, [0.5 O.SJ,'b'); 
grid, xlabel('h'), ylabel('v'), title(s), hold off 
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end 

net_cols{NumTrial} : 
res_cols = [res_cols 
pause(l) 
%waitforbuttonpress 

net; %Save the for later analysis 
NumCor]; 

%Pause for 1 second 
%Or wait for user to press a key 

%Save the results of this session 
%save chapter6_3 
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Llatlng 8.4: chapter6_ 4.m Function Approximation Example 
--------------~--------~-----

%Train SIANN for function approximation 
%Basically, a network is presented with some sampled points 
%of a curve. It is asked to learn the training points 
%and then generate an estimate of the original function 
clear all 

%Function to be approximated 
X= 0:0.01:1; 
f = 0.1 + 1.2*x + 2.8 * x .* sin(4*pi* x .* x); 

%First training set is taken at 11 regular points x = 0, 0.1, ... , 1 
Pl ~ x(l:l0:101); 
Tl ~ f(l:l0:101); 
%Second training set is taken at 21 regular points x = 0, 0.05, ... , 1 
P2 ~ x(l:l0:101); 
T2 ~ f(l:l0:101); 
%Third training set is taken randomly (40 points) 
Ind =floor(!+ (length(x) -1) * rand{l,40)}; %Random indices to x 
P3 = x(Ind); 

T3 ~ f(Ind); 

%Train SIANN using the first training set 
fprintf('\nTraining SIANN with 11 regularly spaced data points .•. \n'); 
net_siann1 = new_siann([O 1], [10 1], {'exp' 'purelin'}, 'train_gdd'); 
net_siann1 = init_siann(net_siann1); 
net_siann1.trainParam.show = 1; 
net_siann1.trainParam.epochs = 20; 
net_siannl.trainParam.goal = .1; 
net siann1.trainParam.direct = 1; 
net_siann1_begin c net_siann1; 
[net_siann1, tr_siann1] = train_siann(net_siann1,P1,T1); 

%Train MLP using the first training set 
fprintf('\nTrain MLP with 11 regularly spaced data points ••. \n'); 
net_mlp1 = newff([O 1], [10 1], {'tansig' 'purelin'},'trainlm', '', 
'sse'); 
net_mlp1 = init(net_mlp1); 
net_m1p1.trainParam.show = 1; 
net_mlpl.trainParam.epochs = 20; 
net_mlp1.trainParam.goal = .1; 
net_mlpl_begin = net_mlp1; 
figure (1) 
[net_m1p1, tr_mlpl] = train(net_mlp1,Pl,Tl); 
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%Check result for the first training set 
f siannl = sim_siann(net_siannl,x); 
f_mlpl = sim(net_mlpl, x); 

error_siannl = mse(f_siannl 
error mlpl = mse(f_mlpl 

- f); 

- f); 

s siann = ['E_S_I_A_N_N = 

s_mlp = ['E_M_L_P 

sprintf('%g',error_siannl)]; 
sprintf ( '%g', error_mlpl) ] ; 

plot{x,f, 'b',x,f_siannl, 'k',x,f_mlpl,'.-r'); 
title('ll regular training points'); 
legend('Actual function', s_siann, s_mlp); 
axis([O 1 -4 6]), xlabel('x'), ylabel('f'),grid 

%Train SIANN using the second training set 
fprintf('\nTraining SIANN with 21 regularly spaced data points ..• \n'); 
net_siann2 = new_siann([O 1], [20 1], {'exp' 'purelin'},'train_gdd'); 
net_siann2 = init_siann(net_siann2); 
net siann2.trainParam.show = 1; 
net_siann2.trainParam.epochs = 20; 
net_siann2.trainParam.goal = .1; 
net siann2.trainParam.direct = 1: 
net_siann2_begin = net_siann2; 
[net_siann2, tr_siann2] = train_siann(net_siann2,P2,T2); 

%Train MLP using the second training set 
fprintf('\nTrain MLP with 21 regularly spaced data points ..• \n'); 
net_mlp2 = newff([O 1], [20 1], {'tansig' 'purelin'),'trainlm', '', 
'sse'); 
net_mlp2 = init(net_mlp2); 
net_mlp2.trainParam.show = 1; 
net_mlp2.trainParam.epochs = 20; 
net_mlp2.trainParam.goal = .1; 
net_mlp2_begin = net_mlp2; 
figure(2) 
[net_mlp2, tr_mlp2) = train{net_mlp2,P2,T2); 

%Check result for the second training set 
f siann2 = sim_siann(net_siann2,x); 
f_mlp2 = sim(net_mlp2,x); 

error_siann2 = mse(f_siann2 
error_mlp2 = mse(f_mlp2 
s siann = ['E_S_I_A_N_N = 
s_mlp = [ 'E_M_L_P 

- f); 

- f) ; 

sprintf('%g',error_siann2)]; 
sprintf('%g',error_mlp2) ]; 
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plot (x, f, 'b 1 , x, f _ siann2, ' k 1 , x, f _ mlp2, 1 
• -r 1 

) ; 

title('21 regular training points'); 
legend('Actual function', s_siann, s_mlp); 
axis([O 1 -4 6]), xlabel{'x'), ylabel('f'),grid 

%Train SIANN using the third training set 
fprintf('\nTraining SIANN with randomly chosen data points ... \n'); 
net_siann3 = new_siann([O 1], (40 1), {'exp' 'purelin'},'train_gdd'); 
net_siann3 = init_siann{net siann3); 
net siann3.trainParam.show = 1; 
net_siann3.trainParam.epochs = 20; 
net_siann3.trainParam.goal = .1; 
net siann3.trainParam.direct = 1; 
net_siann3_begin = net_siann3; 
(net_siann3, tr_siann3] = train_siann(net_siann3,P3,T3); 

%Train MLP using the third training set 
fprintf('\nTrain MLP with randomly chosen data points ..• \n'); 
net_mlp3 = newff([O 1], [40 1], {'tansig' 'purelin'}, ... 

'trainlm', '', •sse'); 
net_mlp3 = init(net_mlp3); 
net_mlp3.trainParam.show = 

net_mlp3.trainParam.epochs 
net_mlp3.trainParam.goal = .1; 
net_mlp3_begin = net_mlp3; 

1· ' 
= 20; 

figure(3) 
[net_mlp3, tr_mlp3) = train(net_mlp3,P3,T3); 

%Check result for the third training set 
f siann3 
f_mlp3 

= sim_siann(net_siann3,x); 
= sim(net_mlp3,x); 

error_siann3 = mse(f_siann3 
error_mlp3 = mse(f_mlp3 

- f); 

- f) ; 

s siann = [ 'E_S_I_A_N_N = 

s_mlp = ['E_M_L_P = 
' sprintf('%g',error_siann3)]; 

sprintf (' %g', error_mlp3) ] ; 

plot (x, f, 'b', x, f_siann3, 'k' ,x, f_mlp3, '. -r'); 
title('40 randomly chosen training points'); 
legend('Actual function', s_siann, s_mlp); 
axis([O 1 -4 6]), xlabel('x'), ylabel('f'),grid 

%save chapter6_4 %Save data in this session 
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