
Edith Cowan University Edith Cowan University

Research Online Research Online

Theses : Honours Theses

1999

Training Methods for Shunting Inhibitory Artificial Neural Training Methods for Shunting Inhibitory Artificial Neural

Networks Networks

Son Lam Phung
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses_hons

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Phung, S. L. (1999). Training Methods for Shunting Inhibitory Artificial Neural Networks.
https://ro.ecu.edu.au/theses_hons/828

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses_hons/828

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses_hons
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses_hons?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F828&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F828&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses_hons/828

 Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose

of your own research or study.

The University does not authorize you to copy, communicate or

otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following:

 Copyright owners are entitled to take legal action against persons

who infringe their copyright.

 A reproduction of material that is protected by copyright may be a

copyright infringement.

 A court may impose penalties and award damages in relation to

offences and infringements relating to copyright material. Higher

penalties may apply, and higher damages may be awarded, for

offences and infringements involving the conversion of material

into digital or electronic form.

Training Methods For

Shunting Inhibitory Artificial Neural Networks

A Thesis Submitted in Partial Fulfilment ofthe Requirements for the Award of

Bachelor ofEngineering (Computer Systems) with First Class Honours

Son Lam Phung

Facuhy of Communications, Heath Pnd Science

Edith Cowan University

Western Australia

Date of submission: 9 November 1999

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

Abstract
This project investigates a new class of high-order neural networks called shunting

inhibitory artificial neural networks (SIANN's) and their training methods. SIANN's are

biologically inspired neural networks whose dyoamics are governed by a set of coupled

nonlinear differential equations. The interactions among neurons are mediated via a

nonlinear mechanism called shunting inhibition, which allows the neurons to operate as

adaptive nonlinear filters.

The project's main objective is to devise training methods, based on error

backpropagation type of algorithms, which would allow SIANNs to be trained to

perform fuature extraction for classification and nonlinear regression tasks. The training

algorithms developed will simplify the task of designing complex, powerful neural

networks for applications in pattern recognition, image processing, signal processing,

machine vision and control.

The five training methods adapted in this project for SIANN's are error-backpropagation

based on gradient descent (GD), gradient descent with variable learning rate (GDV),

gradient descent with momenttrm (GDM), gradient descent with direct solution step

(GDD) and APOLEX algmitlun. SIANN's and these training methods are implemented in

MATLAB. Testing on several benchmarks including the parity problems, classification

of 2-D patterns, and function approximation shows that SIANN's trained using these

methods yield comparable or better performance with multilayer perceptrons (MLP's).

DECLARATION

I certify that/his thesis does not, to the best of my knowledge and belief

(i) incorporate without acknowledgement any material previously submitted for a

degree or diploma in any institution of higher education;

(ii) contain any material previously published or written by another

person except where due reference is made in the text; or

(iii) contain any defamatory material.

Signature._"-1 ..:...=---
Date e Hac 2.000

II

Acknowledgements

I would like to express my deepest gratitude to my supervisor Associate Professor

Abdesselam Bouzerdoum for his tireless support and guidance through out the course of

this project. I thank him for providing me with abundant materials on artificial neural

networks in general, and several articles on shunting inhibitory neural networks in

particular. He answered several of my questions on various aspects of the project and

spent a considerable amount oftime and effort reviewing my reports.

I am also thankful to Dr. Ganesh Kothapalli for his interest in the project and several

helpful comments on the early drafts ofthis thesis.

Finally, I would like to take this opportunity to express my gratitude to AusAID for

providing me with a scholarship, which allowed me to pursuit an undergraduate degree at

Edith Cowan University.

iii

Table of Contents

Abstract ···························· ···························· i

Acknowledgement iii

Table of Contents iv

List of Figures

List of Tables

..
.. vu

.. , •••••••••• .,, Vll

Abb . t• ...
reVIB IODS., .. ,, , ,.,., , . , .. , .. , .. , ... ,•.•..... , . , ...•...... , , ... , .. , , , Vlll

Notations , , , ... VIlt

Chapter 1 General Introduction ... 1

1.1 Overview 1

1.2 Background and Motivation ... I

1.3 Project Objectives4

1.4 11lesis Outline .. 5

Chapter 2 Artificial Neural Networks ... 6

2.1 Biological Inspiration ... 6

2.2 Applications of Artificial Neural Networks•............ .10

2.3 History of Artificial Neural Networks .. 13

2.4 Multilayer Perceptrons ... 14

Chapter3

3.1

2.4.1 Network architecture

2.4.2 Supervised training

2.4.3 Error backpropagation algorithm

Shunting Inhibitory Artificial Neural Networks 23

Slnmting Inhibitory Neuron ,. 23

3.2 SIANN Network Architecture .. 24

3.2.1 Networkoutput

3.2.2 Activation functions

3.3 Decision Surfilces o 0 0 0. 0 29

3.4 Previous works on Shunting Inhibition Model 32

IV

Chapter4 Training Algorithms for SIANN's .. 34

4.1 Error-Backpropagation Training .. 35

4.1.1 Gradient Descent Method

4.4.2 Derivation ofError-Backpropagation Training for SIANN's

4.4.3 Summary ofError-Backpropagation Training for SIANN's

4.2 Variations ofError-Backpropagation Training 42

4.1.1 Batch Training

4.2.2 Gradient Descent With Momentum

4.2.3 Gradient Descent With Variable Learning Rate

4.3 Gradient Descent With Direct Solution Step 43

4.4 APOLEX Algorithm .. .45

4.5 Chapter Swnmary ... 4 7

Chapter 5 MATLAB Implementation .. 48

5.1 System Overview 48

5.1.1 WbyMATLAB?

5.1.2 SIANN functions: Usage Example

5.2 System Design ... 50

5.2.1 SIANN Structure

5.2.2 Other Design Considerations

5.3 Creating SIANN Network 57

5.4 Initialising SIANN Network .. 57

5.5 Simulating SIANN Network ... 58

5.6 Training SIANN Network .. 60

5.6.1 Gradient Desc.ent Functions

5.6.2 Gradient Descent With Direct Solution Step

5.6.3 APOLEX training

v

Chapter 6 Simulation Results ... 66

6.1 XOR Problem .. 66

6.2 Parity Problems............... 68

6.3 Pattern classification... 70

6.4

Chapter7

7.1

7.2

Function approximation ... 72

Conclusions .. 75

Project Contributions 76

Further Directions .. 77

Bibliography 78

Appendix A SIANN Functions (Chapter 5) .. 81

AppendixB Programs to test SIANN Functions (Chapter 6) "'"'"'"""""""' 98

vi

List ofFigures

2.1 A biological neuron ... 7

2.2 An artificial neuron ... 9

2.3 Multilayer perceptron architecture 15

2.4 A neuron inMLP ... 16

2.5 Supervised training model 17

2.6 Backpropagation of sensitivities 21

2. 7 Error backpropagation algorithm ... 21

3.1 Shunting inhibitory neuron .. 23

3.2 STANN network architecture .. 25

3.3 Plots of common activation functions 28

3.4 Decisions surfaces ofSIANN's....................................... 30

3.5 Classification example with SIANN 31

5.1 OverviewofSIANNfunctions ... 48

6.1 XOR problem .. 66

6.2 Comparisons of training methods: XORproblem 67

6.3 Decision boundary for XOR problem 68

6.4 STANN versus MLP: parity problems 69

6.5 Classifying two classes of points•... 70

6.6 Decision boundary during training (a) (b) (c) 71

6. 7 Plot of a function to be approximated 72

6.8 Function approximation using 3 training sets (a) (b) (c) 73

List of Tables

2.1 Grey Illatter statistics .. 8

3.1 Common activation functions .. 28

4.1 Mathematical notations ... 34

4.2 Scenarios for APOLEX .. 46

5.1 Fields in SIANN structure ... 52

5.2 Mathematical notations to MATLAB variables 55

6.1 3-bit even parity problem ...•.. 69

vii

Abbreviations

ANN

APOLEX

GD

GDV

GDM

GDD

CFS

MLP

SIANN

SICNN

Artificial Neural Networks

Algorithm fur Pattern Extraction

Standard error-backpropagation based on Gradient Descent

Gradient Descent with Variable learning rate training method

Gradient Descent with Momentum training method

Gradient Descent with Direct solution step training method

Contrast Sensitivity Function

Multilayer Perceptron

Shuoting Inhibitory Artificial Neural Network

Shuoting Inhibitory Cellular Neural Network

Notations

E Network error function

N Number of network layers

P Network input

Y Network output

T Network target

Sk Number of neurons in layer k

f.(.) Activation function oflayer k

'z. Output of neuron i in layer k

'ru Input to neuron i L'llayer k from neuron j in the previous layer

'w, Connection weight to neuron i in layer k from neuronj in layer k-1

'a; Bias for neuron i in layer k

•a, Decay rate fur neuron i in layer k

•e, Error sensitivity for neuron i in layer k

viii

Chapter 1 General Introduction

1.1 Overview
With high speed and powerful processors readily available today, few are in doubt of the

computational capability of modern computers. Yet one must be wondering why

computers still have immense difficulty in carrying out tasks we humans seem to do

effortlessly such as understanding speech and hand-written text, recognising objects, etc.

Automating these tasks is challenging because decision rules are hidden in exceedingly

complex, noisy and in some cases incomplete data. The search is on in the field of

artificial neural networks for systems (modelled after biological processes) that possess

the capabilities to reason, generalise and learn from experiences.

This project investigates a new class of high-order neural networks called shunting

inhibitory artificial neural networks (SIANN's) and their training methods. SIANN's are

biologically inspired networks whose dynamics are governed by a set of coupled

nonlinear differential equations. The interactions among neurons are mediated via a

nonlinear mechanism called shunting inhibition, which allows the neurons to operate as

adaptive nonlinear filters. The project's main objective is to devise training methods,

based on error backpropagation type of algorithms, which would allow shunting

inhibitory neural networks to be trained to perform feature extraction for classification

and nonlinear regression tasks. The training algorithms developed will simplifY the task

of designing complex, powerful neural networks for applications in pattern recognition,

image processing, signal processing, machine vision and control.

1.2 Background and Motivation
Over the past decade, artificial neural networks have emerged as an effective information

processing technique and a powerful computational tool. They have become the preferred

method for lll!llly applications in which data relationships, decision processes and

predictions have to be learned or modelled from examples. Nowadays, neural networks

1

Chapter 1 General Introduction

fmd applications in telecommunications, defence, multimedia, banking, medicine,

forensics, robotics, and remote sensing. They are used for credit card fraud detection,

automatic check reading, signature verification, automatic target recognition, optical

character recognition, fmancial forecasting, weather prediction, etc.

The most widely used neural network architecture is the feed-forward multilayer

perceptron (MLP). MLP networks have been applied successfully to solve some difficult

and diverse problems ranging from thne series prediction to pattern classification and

object recognition. However, before an MLP network can be successfully applied to a

particular problem, many questions must be aoswered:

• What is the most suitable architecture? How many layers aod how many neurons in

each layer are required for a given task? How should the network be connected, fully

or partially? Which activation function should be used?

• How cao a network be programmed? Can it learn in real-thne while functioning, or

must it be trained then tested? How many examples are needed for good

performance? How many thnes should the examples be presented?

• What are the capabilities of the networks? How many examples cao it learn? How

fast can it learn? How well can it generalise from known to unknown patterns? What

classes of input-to-output functions can it represent?

Part of the weaknesses of the MLP is due to the shnplicity of its neuron. Even though the

neuron of a MLP is equipped with a nonlinear activation function, the decision surface it

represents is a line, which is inadequate in most practical situations. To overcome this

problem, practitioners use many neurons, arranged into layers, to approximate complex

nonlinear surfaces. This gives rise to two problems. One is that the number of required

neurons and the number of layers are not known beforehaod. The other problem is that as

more neurons are added, increase the number of parameters to be determined aod the

amount of thne aod data required to train the network. Recurrent networks have been

considered as ao alternative to reed-forward networks, but they are often avoided because

of their inordinate learning thne and the complexity of the learning algorithms.

2

Chapter 1 General introduction

Furthermore, their learning phase is subject to instabilities and/or bifurcation (Doya,

1992). Attempts have been made to introduce high-order neurons in the form of sigma-pi

neurons (or polynomial neurons) into the feedforward architecture, but these attempts

have not been very successful. There are two main reasons for this: firstly only

polynomial non-linearity can be adequately represented; secondly, the number of

connections grows exponentially with the order of the network. In addition, the user has

to decide on the type of non-linearity (quadratic, cubic, or higher) to be used, which

amounts to guessing what the solution is.

It is well known that shunting lateral inhibition plays a very important role in vision. It

enhances edges and contrast, causes adaptation of the organisation of the spatial receptive

field and of the contrast sensitivity function (CSF), enhances visual selectivity for small

objects and edges, and mediates directional selectivity (Beare & Bouzerdoum, 1999:

Bouzerdourn and Pinter, 1989). In 1993, a class of cellular neural networks based on

shunting lateral inhibition was proposed (Bouzerdourn & Pinter, 1993). These networks

have shown great promises as information processors in vision, and image processing

tasks; they function as nonlinear adaptive filters, can serve as front-end pre-processors for

pattern recognition and visual decision and control tasks. They have been used to model

some early visual processing function such as edge detection, image enhancement,

evolution of receptive field profiles, and motion detection (Bouzerdoum, 1993) but they

have not yet been used for classification and function approximation tasks. This is due to

two main reasons:

• The first reason is lack of proper training algorithms. So far the design of these

networks has been relying on the expert knowledge of the user, who would choose

the connection weights of the networks based on the task at hand; this limits the scope

of applications of these networks. Moreover, it is not possible to solve complex

pattern recognition tasks by handwiring the network connections.

• The second reason is that these networks are dynamic systems, and henctl to find the

output for an input pattern, we must solve a system of noulinear differential

3

I
Chapter 1 General Introduction

equations. Training such networks is impractical since the input pattern have to be

presented tens of thousands of times and each time the output must he found and the

connection weights adjusted; therefore training becomes tedious, cumbersome, and

very time consuming.

Shunting Inhibitory Artificial Neural Networks have a shunting neuron as the basic

building block and inherit the layered architecture of feed-forward multilayer perceptron.

Due to their inherent non-linearity, shunting networks can represent complex nonlinear

decision surfaces more efficiently than multilayer perceptron. Each neuron in a MLP can

only represer..t a linear surface, whereas a neuron in a shunting inhibitory network can

represent linear as well as nonlinear surfaces. Therefore, developing good training

algorithms for these networks should result in much more powerful classifiers and

function approximators. Furthermore, shunting inhibitory neural networks can serve as

feature extractors. By combining a shunting inhibitory layer with a perceptron layer, it is

possible to design systems that perform feature extraction and classification

simultaneously.

1.3 Project Objectives

The principal aim of the project is to derive training methods for a new class of artificial

neural network called Shunting Inhibitory Artificial Neural Network (SIANN). The

project is divided into the following main tasks:

Task 1

Task2

The first task is to stndy the representation power of shunting inhibitory

artificial neural networks. In particular we'll study the inlluence of the

activation function (linear, sigmoidal, etc.) on the types of surfaces that

can he represented.

Derive backpropagation-type algorithms to train feed-forward SIANN's

and optimise them for shunting networks. There are many

hackpropagation algorithms for MLP including gradient descent, gradient

descent with momentum, gradient descent with variable learning rate, etc.

4

Chapter 1 General Introduction

Task3

Task4

We'll investigate the suitability and efficiency of all these algoritluns to

train SIANN's.

Implement SIANN's and the training algoritluns using a software package

such as MATLAB.

Test the developed algoritluns on some benchmark classification and

regression problems, and compare their performance to that of MLP

networks. For this we'll use benchmark problems available in the public

domain as well as synthetic data that will be created to test specifically

certain hypotheses.

1.4 Thesis Outline
The thesis consists of seven chapters. In this introductory chapter, we have described the

motivation and background for this project. The project's aim and major tasks were also

outlined. Chapter 2 is a general introduction to artificial neural networks and their

applications. It reviews one of the most common neural network architectures known as

the Multilayer Perceptron. It was the publications of backpropagation training algorithm

for MLP early in the eighties that renewed interest in the field of artificial neural networks

a,,d have made possible an increasing number of ANN applications. Chapter 3 proposes a

new class of artificial neural networks called Shunting Inhibitory Artificial Neural

Networks. The chapter investigates the representation power of shunting inhibitory

neurons and the potentials of SIANN's in solving classification problems. In chapter 4,

which is the main focus of this project, several supervised training methods for SIANN's

are derived. Chapter 5 documents MATLAB implementation of SIANN's and the training

methods. Chapter 6 puts SIANN's and the training methods developed in this project to

test against several benchmarks including the XOR and parity problems, pattern

classification aod function approximation. The last chapter summarises what has been

achieved in this project and gives concluding remarks. Further research directions are

also proposed in this chapter.

5

I

Chapter 2 Artificial Neural Networks

Before we proceed to investigate Shunting Inhibitory Artificial Neural Networks, it is

essential to grasp an understanding of what artificial neural networks are. This chapter

serves as an introduction to artificial neural networks and their applications. It also

describes one of the most popular neural network architectures known as Multilayer

Perceptron (MLP) and its error-backpropagation training algorithm. Understanding this

algorithm is the foundation for chapter 4, in which we'll derive training algorithms for the

new class of neural networks.

2.1 Biological Inspiration
It is known that the processes in human neural network are electrochemical in nature.

Nervous signals propagate at rates in the order of millisecond, which are much slower

than conventional digital serial computers. Despite this wide gap in unit speed, state-of

the-art computer systems such as vision systems still fall far short of the performance

exhibited by biological systems in their processing ability. As an example, we are able to

recognise hand~written characters in a robust manner, despite distortions, omissions, and

major variations. The same capabilities can be observed in the context of speech

recognition_ Humans also have the ability to retrieve infOrmation, when only part of the

pattern is presented. For example, one can recognise a friend in a crowd at a distance

even when most of the image is occluded.

The development of artificial neural networks (ANN's) began some 50 years ago. It was

motivated by the need to understand the principles on which the human brain works, and

the desire to produce artificial systems capable of carrying out sophisticated or perhaps

"intelligent" tasks that the human brain routinely performs. Artificial Neural Networks

are simplified models of the central nervous system. They are networks of a large number

of highly interconnected processing elements that possess the ability to respond to input

stimuli and to J.earn to adapt to the environment. It is believed by many reseruchers in the

6

Chapter 2 Artificial Neural Networks

field that neural network models offer the most promising unified approach to building

truly intelligent computer systems. ANN's share many characteristics with their

biological counterpart including learning and generalisation, robust performance and

pamllel processing (Patterson, 1996).

Biological Neurons

Following, we describe biological neurons and artificial neurons in an attempt to draw the

similarities between them. Discoveries by 1906 Nobel Prize winners Camillo Golgi and

Ramon y Cajal proved that the human neural network is composed of a vast number of

interconnected nerve cells or neurons. It is revealed under electron microscope that

independent oftheir size and shape all neurons are constructed from the same basic parts:

soma, dendrites, and axon (Figure 2.1):

Soma is the cell body that processes the incoming signals and when there is

sufficient input, it fires.

Dendrites are mther short extensions of the cell body and are involved m

reception of stimuli

Axon, by contrast is usually a single elongated extension. It is especially

important in the tmnsmission of nerve impulses from the soma to other cells.

Synapse is the junction between an axon and a dendrite

Dendrites

Figure 2.1: A biological neuron (Sou me: Microsoft Encarta, 1996)

7

Chapter 2 Artifidal Neural Networks

It is estimated that the human central nervous system consists of near I 00 billion neurons,

each of which on average communicates with some thousand other neurons (Fausett,

1994). Nervous signals are transmitted either electrically or chemically. Electrical

transmission prevails in the interior of a neuron, whereas chemical mechanisms operate

between different neurons, i.e. at the synapses.

Synapses are either excitatory or inhibitory. An excitatory synapse tends to activate the

receiving neuron, whereas an inhibitory synapse prevents impulses from arising in the

receiving neuron. The later synapse is of particular interest to us because as will be seen

later in chapter 3, (artificial) shunting inhibitory neurons consist of many inhibitory

synapses.

Table 2.1: Gray matter statistics

Number of neurons

Number of synapses 10

Number ofinput neurons (afferent) 10%

Number of output neurons (efferent) 90%

Storage capacity 10 -1015 bits

Utilisation factor 10%

Firing frequency 50-100 spikes/s

Signal propagation speed 5-25 m/s

Average brain weight 1.5 kg

Adapted from [Pafferson, 1996]

8

I

Chapter 2 Artificial Neural Networks

Artificial Neurons
The basic processing element in an ANN is called an artificial neuron, or a processing

node. Each node collects weighted inputs from many other nodes. It generates a single

output, which is sent to other nodes as shown in figure 2.2. This is analogous to the

manner in which the biological neuron receives signals from other neurons through its

dendrites and sends its output to other neurons via its axons. The connection weights

between nodes are adjustable and by adjusting the connection weights, different outputs

can be produced. The ways in which nodes in an ANN are connected (e.g. partially or

fully) or organised (e.g. into layers or as an array of cells) defme the network topology.

Many networks topologies exist including single-layer, multilayer, feedforward or

recurrent.

In pUis Neuron

Figure 2.2: An artificial neuron

Fausett (1994) summaries several key similarities between an artificial neuron and a

biological neuron:

• The processing node receives many signals

• Signals may be modified by a weight at tbe receiving synapse

• The processing node sums the weighted inputs

• The neuron transmits a single output

• The output may go to many other neurons through axon branches

• Infurmation is stored both in synaptic weights and at neurons

• Information processing is local

• A synapse's strength maybe modified by experience

• Synapses may be excitatory or inhibitory

9

I

Chapter 2 Artificial Neural Networl<s

2.2 Applications of Artificial Neural Networks
Patterson (1996) outlines possible areas where ANN's can and have been applied:

General Mapping One of the most salient features of ANN's is their ability to learn

arbitrary functions from a set of training examples. This is

particularly useful in estimating functions that have no explicit

mathematical model because neural networks often can fmd hidden

relationship in the data. Some ANN's are used in data compression

to map input vectors from high dimensional space to output vectors

in lower one.

Forecasting ANN's have been shown to be successful predictive tools. After

being trained a set of examples of past pattern/future outcome

pairs, an ANN may be able to generalise and extrapolate to predict

associative outcomes for new patterns.

Pattern rscognition ANN's are good at learning to recognise complex patterns such as

visual images of objects, hand-written characters and speech. The

ability to associate between input and output patterns is also

applied in creating content addressable memories or diagnosis

problems in medicine, engineering, and manufacturing.

Optimisation Part of the ANN training process is to minimise the cost function

by adaptively changing network parameters, which is essentially

an optimisation problem. The range of optimisation problems that

ANN's could be applied to solve is limited only by the ingenuity of

the practitioner in defming the cost function and building an

accurate ANN model of the system.

Next, we briefly describe some ANN applications in a medicine, finance and

manufacturing. A more comprehensive accounts of ANN applications in diverse range of

industries can be found in, for example, [Hubick, 1992] and [Fausett, 1994].

10

Chapter 2 Artificial Neural Networks

Medicine

Seismed Instruments marketed Seismic Quantitative Analysis - an ANN based software

package that analyses the vibrational waves generated by a beating heart during exercise.

The software is able to detect coronary heart disease by looking for specific patterns in a

seismocardiograph (SCG). The software is embedded in an SCG-2000 seismocardiograph

system to be sold in USA and twelve other countries.

In the UK, Errington and Graham (1993) combine a multilayer perceptron and a

competitive neural network into a two-phase classifier for classification of chromosomes

- a task that requires specially trained staff and is labour intensive. ANN's are also being

used fur cardiotocograms analysis in order to monitor the heart rate of foetal during

labour, and to decide whether Caesarean sections are necessary. The ANN was trained

with over 50,000 five-minute sections of cardiotocograrn traces and its output is

combined with an expert system, which contains 600 rules.

Researchers at Telectronics Pacing Systems (a company that controls 14 percent of the

global heart-pacemaker market) and SEDAL at the University of Sydney are developing

software and hardware for ANN implementation in heart-pacemakers. A pacemaker must

identifY a class of heartbeat, decide on whether the beat is nonnal, if not give an

appropriate electrical treatment. Other medical applications of ANN's include breast

cancer cell analysis, detection of abnormal practices in medical servicing.

Finance and Banking

The Mellon Bank in USA uses an ANN developed by Nestor Inc to detect credit-card

fraud. The network detects changes in behaviour such as frequency of credit-card use,

types of purchases, and size of payments. The training set is derived from credit-card

transactions in six months. The Chase Manhattan Bank has begun to review loan

applications with ANN software developed by Inductive Inference Inc under a

multimillion-dollar contract. For each potential borrower, The ANN analyses six year of

financial infonnation. The result credit scoring is based on the financial strengths and

weij!fnesses of a company. The software also performs three-year fOrecasts that indicate
'

11

Chapter 2 Artificial Neural Networks

the likelihood of a company being assigned a risk classification of 'good', 'criticised' or

'charged oft' (in Chase terminology). Fujitsu Ltd claims that its Japan-Government bond

yield-rate furecasting ANN can achieve an accuracy of 75 percent (compared with 60

percent accuracy expected of human forecasting).

The research centre of Siemens has developed an ANN system using unsupervised

learning, which detects in economic data the variables that are important in stockmarket

analysis. Refenes and Zaidi (1993) use ANN for managing exchange rate trading

strategies. The key idea is to predict, on the hasis of past performance, which of the

strategies is likely to perfurm best in the current context, and thus to minimise losses. The

network is trained on daily currency exchange data from 1984 to 1986 and is tested "out

of-sample" from 1986 to February 1992. The network's annual returns outperform the

best classical techniques by an average of 6 percentage points on a $1m position

(including transaction costs).

Manufacturing

Kaiser Aluminium (Germany), one of the world's largest manufacturers of aluminium

products uses an ANN in its surface-inspection system. A camera system observes the

aluminium sheets as they are wound up at the rate of 2.5 meters per second. The digital

output from the camera is fed into an ANN that looks for defects such as broken surfuces

like scratches and non-broken surfaces like stains.

ANN's has been incorporated into an inspection system to detect internal flaws in

electronics components at ATR Optical, Japan. The ANN is used to identify patterns of

light reflected from a laser directed at samples of objects likes ICs. Companies such as

Siemens GmBH, NBC Corp, BHP Australia are very active in applying ANN's to improve

their manufacturing processes.

12

Chapter 2 Artificial Neural Networks

2.3 History of Artificial Neural Networks
Historical perspectives on the development of artificial neural networks are given in

[Fausett, 1994], [Hagan, et al., 1996], and [Patterson, 1996]. The following summary

shows how knowledge in the field has progressed.

In 1943, Warren McCulloch and Walter Pitts designed networks consisting of binary

neurons with fixed threshold that are capable of representing logic functions. In 1949,

based on the observation that that if two neurons were active simultaneously, then the

strength of connection between them should be increased, Donald Hebb designed the first

learning law for artificial neural networks. Late in the SO's, Frank Rosenblatt developed a

class of artificial neural networks called perceptrons and the perceptron learning rule. His

proof that the perceptron learning rule gives correct weights after finite iterations, if such

weights exist, was a sensational research accomplishment at the time. In 1960, Bernard

Widrow and Marc ian Hoff developed the delta learning rule, which is a precursor of the

backpropagation rule for multilayer nets. Their work - ADALINE (short for ADAaptive

Liinear NEuron) - was applied in one of the first conunercial applications of neural

networks to suppress noise over a telephone line.

In 1969, Marvin Minsky and Seymour Paper! published Perceptrons: Introduction to

Computational Geometry, in which they showed that perceptrons can classify only

linearly separable sets. As a result, interest in ANN's diminished and for almost a decade

neural network research had been largely suspended. However, some important works

continued during the 1970s. In 1972, Teuvo Kohonen and Jaroes Anderson independently

developed new neural networks that could act as memories. Stephen Grossberg was also

very active during this period in the investigation of self-organising networks. Grossberg

is perhaps best known for the highly successful adaptive resonance theory (ART)

networks that he co-invented with Gail Carpenter.

The limitation of perceptrons was not addressed until early 1980s when a learning

algorithm to adjust the weights in multilayer perceptrons was independently discovered

and refined by several researchers David Parker, Y ann LeCun, David Rurnelhart. The

13

Chapter 2 Artificial Neural Ne11Nor1<s

algorithm is known as error backpropagation since the error signals used for updating

weights are propagated from the output layer backwards layer-by-layer. The algorithm in

another form was discovered by Paul Werbos in his 1974 doctoral thesis: Beyond

Regression: New Tools For Prediction and Analysis in the Behavioural Sciences.

The discovery of error backpropagation learning reinvigorated the field of neural

networks. In the last ten years, thousands of papers on the topic have been written and an

increasing number of ANN's applications have been reported. In 1982, John Hopfield -

Nobel Prize winner in physics- developed Hopfield nets based on fixed weights and

adaptive activations, which can serve as associative memory nets. Late 80's, Kunihiko

Fukushima and his colleagues developed a specialised neural net called neocognitron for

character recognition. Several researchers are involved in the development of non

deterministic neural nets in which weights or activations are changed on the basis of

probability density function. Hardware implementation of neural networks is also an

active area in artificial neural network research. Research in ANN's has gained

considemte momentum in the early 90's.

2.4 Multilayer Perceptrons
Of any of the early neural nets, perceptrons perhaps hed the most far-reaching impact.

The perceptron learning rule is proved to converge to the correct weights, on the

assumption that such weights exist (e.g. see Fausett, 1994). Correct weights are those that

allow the net to produce the correct output value for each of the training input patterns.

However, in 1969 Paper! and Minsky pointed out a serious limitation ofperceptrons. It

was shown that perceptrons are capable of classifying only limited input patterns (i.e.

linearly separable patterns). For example, there exist no correct weights for the XOR

problem.

This limitation can be overcome by adding one or more hidden layers to perceptrons

(thus the name multilayer perceptron). MLP with non-linear activation functions are

capable of classifYing more complex sets of input vectors. It is shown that a MLP with

14

Chapter 2 Artificial Neural Networks

three layers of neurons (input layer, hidden layer and output layer) can represent any

continuous function to any degree of accuracy (i.e. any mapping between input vectors

and target vectors). The most widely known training rule for a multilayer perceptron is

error hack-propagation algorithm hased on gradient descent.

2.4.1 Network architecture

A multilayer perceptron (figure 2.3) consists of many layers, each of which has a number

of neurons. There are two fix-sized layers called input layer and output layer, and

between these two layers is one or more hidden layers. The input layer receives data from

the environment and distributes them to the next inner layer. Each element of the input

layer does no processing. The output layer passes the network's result back to the

environment. Hidden layers are so called because they have no direct connection with the

outside environment. All processing in the neural network is done in the hidden and

output layers as neurons in each layer receive input from the previous layer, calculate the

output and then send it to the next layer. Connections between nodes are weighted and it

is through adjusting the weights that different network outputs can be produced. The

number of net layers in literature is often considered as the number of adjustable weight

layers (e.g. 3 for the net in figure 2.3).

Input layer Hidden Layer(s) Output Layer
--·

Input-+_,

' '

Output

• Nturon

- Weighted Connection
:. ---".- ... ----.-" ------------------------- .. :t,-................. _

Figure 2.3: Multilayer Perceptron

15

Chapter 2 Artificial Neural Networks

1

w, b

w, \. n

"""
net= I;w,p, +b

:E , ...
f ~

Y= f(net)

Pn Wn /

Figure 2.4: A neuron in MLP

Figure 2.4 above shows a closer look at a neuron. Let p~, Jl2, ... , p, be the inputs to a

neuron and w~, w,, ... , w, be the weights of the input links. The neuron calculates the

weighted sum of inputs and applies the activation functionfto obtain the output:

'
ftnet) =ftb+ I;w,p1)

i=l

The adjustable value b is called bias, its use is to shift the decision surfuce. The bias can

be considered as weight to a constant input of I.

2.4.2 Supervised and Unsupervised Learning

There &re two types of le&rning fur ANN's, both based on psychological observations:

supervised learning and unsupervised learning. Supervised learning is like learning under

watchful eyes of a teacher who points out where errors are made and where response is

correct. This le&rning scheme applies to multilayer perceptrons because the user need to

supply with each input vector P, a target vector T, which the net is expected to produce.

Training typically is an iterative process as depicted in figure 2.5. The actual output of

the net Z is repeatedly compared to its target T and adjustments to weights and biases are

made until the difference between the actual output and the target is within an acceptable

tolerance defined by the user. Note that for supervised learning the terms training

algorithm and learning algorithm are used interchangeably in literature; both refer to the

rule, by which network parameters are adjusted.

16

Chapter 2 Artificial Neural Networks

Target

Input Output
Compare

~ Neural Net ~----~"1

)(

Adjust welghta & biases

Figure 2.5: Supervised learning model

The other type of learning is unsupervised /earning. As its name suggests, in

unsupervised learning, there is no such thing as a "correct" response. Instead, the network

learns to separate training patterns into groups or classes by looking for features that

discriminate them. This form of learning is also useful because the network may be able

to identifY characteristics in the data that are unknown to the trainers.

2.4.3 Error Backpropagation Algorithm

Let us define the cost function as the function that describes the difference between the

actual output and the expected output of the net. Many possible cost functions exist, of

which the following sum squared error(sse) is one of the most commonly used:

E = .5 !:; IIZ(i)-T(i)ll' (2.1)

where Z{i) and T(i) are the actual output vector and the target vector for input vector

numbered i. The summation is over the entire training set. Note the factor inside the

summation sign is

IIZ(i)-T(i)lf = !:i {z;(i) -lj(i))'

where subscript j denotes the jth element of a vector.

Basically, training starts with a random set of weights and biases. At each training

iteration, we change the weights and biases by small steps in a direction chosen so as to

17

Chapter 2 Artificial Newal Networks

decrease the cost function with expectation that after a fmite number of updates, the cost

function will fall below an acceptable limit. Because the targets are fixed, the cost

function E can be expressed as a multivariate function whose variables are the net

weights and biases (here V is a column vector derived by putting together all weights and

biases):

E = F(V) = F(v;, v,, ... , Vm)

In error backpropagation algorithm, the update direction is chosen be the negative

gradient of the cost function, which is the direction of steepest descent (for proo~ see e.g.

O'Neil, 1995, pp. 576-579). The gradient ofF is

8F 8F 8F V'F =(-,-, ... ,-)
av, Ov2 avm

A small learning rate ex is used to calculate the amount of update for each parameter:

8F v,(new) =v,(old)-aav, (2.2)

Our focus next is how to compute the gradient ofF. To fucilitate discussion, we need to

introduce a few new notations:

"w,; Weight going.from neuronj in layer k-1 to neuron i in layer k

kb; Bias for neuron i in layer k

kZi Output of neuron i in layer k

kc; Weighted sum input to neuron i in layer k

Sk Number of neurons in layer k

As a rule, the superscript to the left denotes the layer number (ie. k), if there are two

subscripts, the first subscript specifies "destination" neuron, the second "source" neuron.

The output of layers can be described by the following recursive formula:

k kk-1 k ~ z, =f(wij. z; + b1) (2.3)
j=J

That is neuron i in the k .layer sums the weighted inputs to it from all neurons in the

previous layer (i.e. layer k-1), and applies the activation function fto the weighted sum to

compute its output. This formula applies also for the first layer (layer I) if we consider

18

I

Chapter 2 Artificial Neural Networks

the input vector is just the output of layer 0: 0z; = p;. The net output is the output of the

last layer (layer N).

Error sensitivities

Let 'c; be the weighted sum to neuron i in layer k. That is

~ k k lr.-1 kb
cJ = wij' zj + i (2.4)

j=l

Now define the error sensitivity for each neuron i in layer k as

• c3E e -- (2.5) '- a• C;

The error sensitivity measures the rate of change in the cost function as the weighted

input to a neuron changes. Given all error sensitivities, it is pretty straightforward to

compute the gradient ofE by applying the chain rule of differentiation. Because the cost

function can be considered as a furu:tion of'c; of layer k, the partial derivative ofE with

respect to (w. r. t.) a weight 'wij is just:

Using the definition (2.4) of'c; gives

BE k k-1 -,-= e1 • zJ
a wij

(2.6a)

and similarly,

c3E • -=e.
a'b, ' (2.6b)

Computing error sensitivities by backpropagatlon

The problem now is to compute error sensitivities. It turns out that similar In the way we

use the recursive forrnula (2.3) to compute the net output, all error sensitivities can be

computed using another recursive forrnula. The only difference is that the forrner

computes the net output in forward direction from layer I to last layer, whereas the later

19

I

Chapter 2 ArtiflclaJ Neural Networks

computes error sensitivities backwards from the last layer to layer !. Interestingly, the

connection weights play a similar role in both recursive formulae, as will be shown next.

For the output layer,

(2.7)

For an inner layer k, k = N-1, N-2, ... I, consider E as a function or'•'c; in layer k+l, and

apply the chain rule:

=clt+l k+l k+l)
k _ 8E __ u_:_"_c_,_, ''-::,c'-'2 ·-··..:·•_c_,,, .. '-'-' e.---

1 akc. akc.
' '

Applying definition (2.3) fur k+
1c;, we obtain:

ke, = ~ k+lej. k+Iwji'f'("c,)
j=l

The common factor f('c;) can be taken out of the summation sign:

ke, =f(kcJ.~ k+leJ. k+twji
pi

(2.8)

This recursive relation for computing error sensitivities is illustrated in figure 2.6. It is the

way in which error sensitivities propagate from the output layer backward layer-by-layer

that gives this algorithm the name error backpropagation. Figure 2. 7 summarises the

major steps in the training algorithm.

20

Chapter 2 Artificial Neural Networks

k
e,

r

k+1w.

Figure 2.6: Backpropagation of error sensitivities

• Initialise weights and blases(e.g. to random values)
'

(Feedforward to compute net's output and error (2.3), (2.1~

• r Backpropagate to compute error •ensltivltles (2.7),(2.8) J

r Compute gradient (2.6a), (2.6b) J

(Update weights & biases (2.2) l

Is error sufficiently small?
No

Yes

r END l
Figure 2.7: Error Backpropagation Algorithm for MLP

21

Chapter 2 Artlflclal Neural Nei\Yorks

Using error backpropagation, the learning rate should be chosen sufficiently small for

stable training. However, learning then may become unacceptably slow. Another serious

problem is that unlike learning in single-layer perceptron, there is no guarantee that MLP

training will converge after a finite number of iterations. One reason is that the network

may get stuck in a local minimum. These limitations have prompted the study of many

improved training algorithms. In Chapter 4, these algoritluns will be discussed and

adapted to train Shunting Inhibitory Artificial Neural Networks.

22

Chapter 3
Shunting Inhibitory Artificial Neural Networks

The aim of this chapter is to study in general the architecture and capabilities of shunting

inhibitory artificial neural networks (SIANN's). After introducing the most important

building block of SJANN's - the shunting inhibitory neuron - we'll describe the

architecture of the new class of neural networks and how the output of SIANN is

computed. Through an example of a two-neuron network, we investigate the

representation power of shunting inhibitory neurons. The chapter concludes with a brief

review of previous works on shunting inhibitory neural networks.

3.1 Shunting Inhibitory Neuron

This section describes the basic building block ofSIANN: the shunting inhibitory neuron.

Shunting inhibitory neurons, shown in figure 3.1 exert mutual inhibitory interactions of

the shunting type.

p,
p,

- PI+~ - = - n

"' ~ + '1Ft wrPI
Pn

Figure 3.1: Shunting lnhib~ory Neuron (steady state activation)

The activity of each feed-forward neuron is described by a nonlinear differential equation

of the form:

~i =Pi ~aizi -f\:~wi;Pj)zi +bi
J

23

(3.1)

Chapter 3 Shunting lnhlblto!Y Artificial Neural Netoorl<s

where:

• z; is activity (output) of neuron i,

' Pi is the external input,

• Wij is connection weight from neuron j to neuron i,

• hi is a bias constant,

• ai is a constant representing the passive decay rate of neuron activity.

• fis the activation function of neuron i.

In the absence of inputs Pi and bias b;, the neuron activity simply decreases

asymptolically to zero (due to dz/dt =-a; Z;). For a constant input pattern, the steady state

solution of equation (3.1) is found by letting dz/dt = 0,

or

zi.[ai +:ttLwijpj)]zi =pi+ bi
j

z,
a, +f(~w;;P;)

j

(3.2)

Equation (3.2) is used throughout this project to compute the steady-state output of

shunting inhibitory neurons.

3 .2 SIANN Network Architecture
A feed-forward SIANN shares a similar architecture with Multilayer Perceptron (Figure

3.2). The network consists of many layers, each of which has a number of neurons. There

are two layers called input layer and output layer, and between these two layers is one or

more hidden layers. No processing is done in the input layer because it only acts as a

receptor tbat receives inputs from the environment and broadcasts them to the next layer.

The output layer passes the network's result to the environment. Hidden layers are so

called because they bave no direct connection with the outside environment.

24

Chapter 3 Shunting Inhibitory Artificial Neural Networks

All processing in the network is done in the hidden and output layers as neurons in each

layer receive inputs from the previous layer, calculate their outputs and then forward

them to the next layer. Connections between nodes are weighted and the weights are

adjustable giving the network the capability to generate different outputs. In this project,

the term number of layers means the number of adjustable weight layers (e.g. 3 for the

network in figure 3.2). Input l&yer is layer 0, layer I is the first hidden layer and so on to

the output layer.

0

0

1

1

-• •
1

0

0

0

lnputl~~Ye~

II ... ,
Figure 3.2: SIANN Network ArcMecture

.P .. cop1fon

Shmtirt~ lmibitoty,
1

-->-0

-->-0

--o-1

The output layer is a perceptron layer, i.e. it consists of only perceptrons. A detailed

description of perceptrons was given in the previous chapter (section 2.4). Basically, a

perceptron calculates the weighted sum of its input and then applies an activation

function to compute a single output. Its activity can be summarised by the following

equation:

'
zi = ttL wii·Pij)

j .. l

(3.3)

25

Chapter 3 Shunting Inhibitory Artiflclai-"N"eu:orai=N:::e"'tYJO=rk:::s _____________ _

All hidden layers of the neural network are shunting inhibitory layers and consist of only

shunting inhibitory neurons. This is the key difference between SIANN and MLP. The

role of shunting layers is to perform linear as well as complex nonlinear transformation

on input data so that the results can be combined easily by perceptrons in the output

layers to solve classification and function approximation problems. This role will be

illustrated in the next section (3.3), but before doing that, let's describe quantitatively how

the output of SIANN is computed.

3.2.1 Output ofSIANN

Following is a short list of notations for the parameters in SIANN.

N The number of weight layers

s, Number of neurons in layer k

'w;; Weight going.from neuronj in (k-1) layer to neuron i in layer k

'bi Bias for neuron i in layer k

•zi Output of neuron i in layer k

•e; Weighted sum input to neuron i in layer k

lk(.) Activation function oflayer k

. Pi Element i of the input pattern to the network

As a rule, the superscript to the left denotes the layer number (i.e. k), if there are two

subscripts, the first subscript specifies "destination" neuron, the second "source" neuron.

If we consider the input to the network as the "output" of layer 0 (i.e. Pi = 0zi, then

computing the final output can be expressed in a concise way as follows:

26

Chapter 3 Shunting Inhibitory Artlflclal Neural Networl<s

Calculating tile output of SIANN

Compute output ofohuntlng Inhibitory layers

Fork= 1 to N-1

Compute the output of layer k
Fori= 1 tosk,

Compute the output Q.f neuron i

~c-1 2 _ + kb.
k zi = __ ___:~•__:___::!• __

End For

k f(~. k·l) ai+ k L wij· zj
j=l

Output of one layer becomes input to the next layer.

End For

Compute the output of the perceptron layer

Fori= 1 to sN

Compute the output of neuron i

End For

Yi = Nzi = fN(~ Nwij_N·lzi + Nbi)
j=l

The network's final output is Nz.

3.2.2 Activation functions

The above procedure can be used to compute the output of a SIANN for almost any

activation function: continuous, non~continuous, differentiable or non-differentiable.

However, for the network to be trainable using gradient descent method, there is a

restriction that its activation functions must be differentiable. Table 3.1 lists several

activation functions that are commonly used in SIANN's. Their plots are shown in figure

3.3.

27

Chapter 3 Shunting Inhibitory Artificial Neural Networks

Table 3.1: Common activation functions

Name Description

exp
~.J(!'.l..~ e' ... _________ .. _________ -- ·----~--

expmn
f!x) = e' ·-···--·----'----------------------

hardlim f(x) = I if x;, 0, 0 otherwise
---~--~------------------- ---

logsig f(x) = 1/(1 + e')
---- ·----------------~--~--~--

pure lin f(x) = x

sm f(x) = sin(x)
-

tansig f(x)- (1- e') 1 (! +e')

3
X 10

4 •'
3

X 10
4 e·'

2 2

0
) 1\.

0
hardlim logsig

2

01------'1 , 0.5

-1 '-----~-~--' 0

0

-1
·10

I

\I

sin

\}
0
X

./
5

I

0

-1
10 -10

tansig

(

_)
-5 0 5

X

Figure 3.3: Plots of common activation functions

28

10

Chapter 3 Shunting lnhlbltort Mlficlal Neural Networks

3.3 Decision boundaries ofSIANN's

Perceptrons in MLP can only represent piecewise linear decision surfuces whereas

shunting inhibitory neurons can represent linear as well as nonlinear surfuces. To

illustrate this, we consider a simple SIANN with two neurons in the hidden layer. Their

activations are given by:

x, =
a, +fl:wu·Pt +W12·P2)

The output of this network is:

y = g(xrWt + x,w, +b)

If we choose g to be the hard-limiting function:

g(n) = hardlnn(n) = . . {lifn;,O
0 tfn<O

then the input space (R2 in this case) can be divided into two regions. One region

corresponds to output value g = I and the other g = 0. The two regions are separated by a

decision boundsry defined by the following equation:

XtWt +x2w2+b=O

or

w1(p1 +b1) + w2 (p 2 +b2) +b=O
81 +f{Wtl'Pt +w12•P2) 82 +f(w2t•Pt +W:u·P2)

If f is a linear function f(n) = n, the decision boundsry is quadratic because the above

equation then can be written as:

w1{p1 +b1Xa 2 +w21'Pt +w 22 .p2) +w2 (p 2 +b2)(a1 +wu·Pt +w12 .p2)

+b(at +Wu•Pt +wt2·P2){az +w2t·Pt +W22·P2) =0

Much more complex boundaries can be represented if we choose a nonlinear function.

29

Chapter 3 Shunting Inhibitory Artificial Neural Networks

-5'---...L-~ ___ __J

.,_N0~~_J

-5;L....):::___~-----~
5

7
0

5
-5

I= Slr(X)

7
0

P,

-[~

5

5r-----------------~

~- (_
0 -----------------
~------------_]
-5'-----~-----l

5 -----
"""''-------

0

5

I= tansiltx)
5,---""""'='~::---1

0[::::::~(~
-5'-----~-----l
-5 0

P,
5

Figure 3.4: Decision surfaces of StANN's

Examples of decision surfaces for various activation functions are shown in figure 3.4.

The network used has parameters as follows:

wu= ~l,w,2= 1, w21=~l, w22=l

w, = .5, w, = 1.5

b, =I, bz = 0

., = 1.5, ., = 1.5

The red curves correspond to b = 2, the blue curves b = -3, and the green curves b = 0.

30

I
Chapter 3 Shunting Inhibitory Artificial Neural Networks

Classification example

The ability to represent complex decision boundaries with a very small number of

neurons makes SIANN's attractive to classification applications. As an example, we

design a SIANN to classify two classes of points (120 red and 120 blue) shown in Figure

3.5a. Clearly, these two classes are not linearly separable in a sense that there exists no

single straight line that can separate them. In this example, the role of the two shunting

inhibitory neurons is to perform a nonlinear transformation on the inputs:

(x1, x,) ~ <!>(p, p,)

•,-~--~--~--~--~-.
' ' ' ' ' ' I I I I

5 ······•·····+····· : ·+·"·+······
' '

'~~--~--~--~~~~ 0 2 3 ~ 5 6 ,,
(a) Linearly non-separable classes

'r--r--r--r,,-r--.--~-.--,
'I ' . '

I I I I I I 0

6 ------:------~-----~---··:····--~-----~------~-----
' I I I I

' .. ' ' ' ' 7 ------~-----~----··- : .. -... : ... -- -~ .. ---~------; ____ _
I I lo' I o I I 0
I I 0 I I I I 0

' ' ·~ ' ' ' ' ' 6 -··---~-----~·-t·· ; .. - ... ;. -·-- -~- --· --:---·· -~-----
' I I I I I I
o I ~ I I I I I

I I ' I I o I o

5 ·····+··---~-.---· -t·· ----;- -·-- -~------:------~-----
.r :· : :

4 ------~-----~---·- .! : --~-----1- ...•. !
I I I o I I I
I I I I I I I
I I I I I I I

3 ------~-----~----- -!-.,---!- ---- -~ ·----~------; .. ---
' ·~' ''' ' ' ' ' ' ' ' ' ' ' ' L!l'.. 2 ------~---- '-----~---···i···---~----.1'-,'t;:-~---
: • : ' : : : '.l,t'~ . ' ' ' ' ' I ·---.,:------~---···t·· ···-!· -·· ····+·····{·····
: : ,.: : :

'~,--~·--~;--~;~~;--~.--~.~~~~~,
~

(b) Linearly separable classes

Figure 3.5: Classification example with SIANN

The network (created using the MATLAB functions developed in this project) is able to

transform the given points (p,pz) into a new set of points (x,x2) which is linearly

separable (Figure 3.5b). The parameters for this network are:

Wu =-w12= -1, W21 =-w22=-l

w1 ~.s, w2 ~ 1.5

b, ~I, bz ~ 0, b ~ -4

a, =a,~ 1.5

The decision surface of this network is also imposed on figure 3.5a (the magenta curves).

The activation functions are f\x) ~ sin(x) and g(x) ~ hardlim(x).

31

Chapter 3 Shunting Inhibitory Artificial Neural Networl<s

3.4 Previous works on Shunting Inhibition Model
The concept of lateral inhibition arose in the experimental research of Hartline and

colleagues on the compound eye of the "horseshoe crab". Hartline showed that there is

reciprocal antagonism between elements of the compound retina, which produces an

enhancement of edges and pattern contrast (Nabet & Pinter, 1991).

Bouzerdoum (1991) investigated a class of biologically inspired cellular neural networks

called shunting inhibitory cellular neural networks (SlCNN's). A cellular neural network

is as an array of mainly identical dyoarnical processing elements called cells, in which

interactions are local within a finite radius and all state variables are continuous valued

signals (Chua, 1993). The dyoarnics of a shunting inhibitory cell in SlCNN's is described

by the following differential equation, which has a similar form to equation 3.1 for feed

forward shunting inhibitory neuron:

dx ..
---!.=L .. -a .. x .. -dt IJ IJ IJ L w~ftxkl).xij

C{k,l)eN,(i,j)

(3.4)

where xu is the state of cell (ij), Lu is the input to cell (ij), au is the decay factor of cell

(ij), f is the activation function, and w/1 is interaction weight between cell (k,l) and cell

(ij) and N, is the neighbourhood function.

Bouzerdoum & Pinter (1993) showed that SICNN's are bounded input bounded output

stable dyoarnical systems iff is continuous and non-negative. Furthermore, by deriving a

global Liapunov for syonnetric SICNN's and using LaSalle invariance principle, they

proved that a SICNN converges to a set of equilibrium points; and this set consists of a

unique equilibrium point if all inputs have the same polarity.

Pontecorvo and Bouzerdoum (1995) proposed a new approach to edge detection based on

a simple model of primate visual system, in particular the cellular neural network model

of shunting inhibition. By exploiting some of the inherent nonlinearities of the visual

system, SICNN's provide better performance compared with conventional edge detectors.

32

Chapter 3 Shunting inhiblt01y Artificial Neural Networks

The shunting inhibitory neural model has also been applied by Beare and Bouzerdoum

(1999) in a directionally sensitive motion detection system, which is capable of detecting

local motion without any significant pre-processing.

Although SICNN's have been successfully used to model visual processing functions such

as edge and motion detection, they have not yet been used for classification and function

approximation tasks. One of the main reasons is lack of proper training algorithms. So fur

connection weights of the networks are chosen empirically by users to suit the task at

hand, which limits the scop' of applications of these networks. Another reason is that

these networks are dynamic •Jystems, and hence to find the output for an input pattern, we

must solve a system of nonlinear differential equations. Training such networks is

impractical since input patterns have to he presented tens of thousands of times and each

time output must he found and the connection weights adjusted; therefore training

becomes cumbersome and very time consuming.

As seen early in this chapter, the new neural networks (SIANN's) are also hased on the

shunting inhibition model. However, they are different from SICNN's in that the output of

a shunting inhibitory neuron corresponds to the steady-state solution to the differential

equation. Another difference is that SIANN's have a feed-forward architecture. That is

neurons in a SIANN receive inputs from the previous layer, compute their outputs and

forward them to the next layer.

Having understood the architecture of SIANN's, we are now turning our focus to the

derivation of supervised training methods for these networks.

33

•

Chapter 4 Training algorithms for SIANN's

In this chapter, we derive training algorithms based on error-backpropagation for

SIANN's. We also adapt a very fast training algorithm, which combines error

hackpropagation and the direct solution method, to train SIANN's. Finally, a stochastic

training method called APOLEX (algorithm for pattern extraction) is discussed.

Before we proceed, let us agree on the notations to be used in this chapter to derive

training algorithms for SIANN's. The list of notations is shown in table 4.1.

Table 4.1: Mathematical notations

Symbol Description

N Number of layers (excluding the input layer)

Sk Number of neurons in layer k

ti(.) Activation function for layer k

'wij Weight goingjrom neuron j in layer k-1 to neuron i in layer k

'a; Decay constant for neuron i in layer k

'b; Bias for neuron i in layer k

~~oZij Output of neuron i in layer k

'p;; Input signal from neuron j in layer k-1 to neuron i in layer k: 'p;; ~·''1~

y; Output of neuron i in output layer. That is y; = Nz;

t; Target (i.e. expected output) of neuron i in the output layer

Jl;ei Error sensitivity for neuron i in layer k

Error Function

The error function is the function that describes the difference between the net's actual

output and its target. The most common error functions are of the type squared-error and

we'll nse the following version in this chapter:

(4. I)

34

I

Chapter 4 Training Algorithms for SIANN's

The constant fuctor 1/2 is used to simplifY mathematical manipulation. Ideally E should

be zero, but in practical cases, E is positive and our aim is to minimise E by adjusting the

!let parameters: weights "wij• biases kbi, and decay rates kai.

4.1 Error Backpropagation Training

4.1.1 Gradient Descent Method

Because the targets t; are fiXed, E varies with y;, and is a multi-variable function of the

network parameters 'wu, 'ai, and 'b,'

E = g(kwij, kab kbi)

The gradient descent method to minimise E can be outlined as follows:

I. Start with a random set of net parameters { 'wu, 'a1, 'b1}

2. Compute the net output and thereby the errorE

3. Compute the gradient of the error function E

4. Increment each parameter in the negative direction of the associated partial

derivative ofE. For example, let v be a parameter ("w1;, 'a, or 'b1). The update rule

for vis

BE
v.ow = v., - a,. av (4.2)

where a, is the learning rate fur parameter v, which normally has a small value.

5. Repeat the steps 2 to 4 until E becomes sufficiently small.

4.1.2 Derivation of Error Backpropagation Training for SIANN's

Error Backpropagation refers to a systematic way of calculating the gradient of error

function E by propagating error sensitivities from the output layer to inner layers.

Error Sensitivities

The e"or sensitivity associated with neuron i in layer k is defmed as:

, aE
e, = -

8
, (4.3)
z,

It measures the rate of change in the network error with respect to that in the output of an

individual neuron.

35

Chapter 4 T""nlng Algorithms for SIANN's

Then applying the chain rule, the partial derivative ofE with respect to weight 'wu is

8E aE a'z,
-,- ; -, -·--r-- =
awij aziawu

(4.4)

As shown next, the beauty. of this method is that all error sensitivities 'e, can be

calculated in a recursive manner.

Calculating Error Sensitivities

• Case k =N (for the output layer)

aE aE
; -aN = ;),, =Yi ~ti

Zl '-'li

• Case k <N(for inner layers)

(4.5)

The errorE can be considered as a function of outputs k+Jz; (j = 1,2, ... ,s,+1) of the

above layer (i.e. layer k+l). By chain rule, the partial derivative ofE with respect to

kZj is:

ke. = ..E§_= ~ OE k+lz;
I atz. ~ak+lz.'akz

1 J=l J !

By definition (4.3), the first term inside the summation sign is the error sensitivity of

neuron j in layer k+ I:

• a'" k _ ~ k+l Zj
ei - L. ej. k

j=l a zj

Now, we'll calculate the second term, a k+'z;i a 'z,

Fork= N-1, the output of the perceptron layer is

Nzj = fN(~ NWjl·N·Izl + Nbj)

Thus

and

a"z J

aN-I z,

1=1

~ f ' (N N·l = N W;r· Z; ,_,

36

(4.6)

(4.7)

Chapter 4 Training Algorithms for SIANN's

Fork< N-1, the output ofk+l layer is

If i ;, j, the term 'Z; only appears in the denominator, and

a k+lz.

-a,-;:-' z-.'-' =
'

(4.8a)

When i = j, then the term 'Z; appears in both denominator and numerator. The partial

derivative has an additional term:

Now we use 4.8a and 4.8b to compute error sensitivities for layer k,

Ifsk+l <~there is no j in 1,2, ... , Sk+J such thatj = i. Therefore,

(k k+Jb) f' (~ k+l k) N
s • ~ zj + j • k+t L w jt. zl . w ji

ke. = ~ t+te t=t

' J-1 j. [·+1 ~ k+1 k]'
aJ +f,+1(L, wJ1• z1)

1•1

(4.9a)

If""' <!: ~ there exists j in 1,2, ... , Sk+i such that j = i. Therefore,

37

Chapter 4 Training Algorithms for SIANN's

Calculating the Gradient of E

Once error sensitivities have been calculated, the gradient of E is obtained by simply

applying the chain rule of differentiation.

• Partial derivative with respect to weights

8E
akwij

Fork= N, because the output layer is a perceptron layer

8E
BNWij

1tl-1 8E
N f' <"' N N·l Nb) N·l = ei. N L...J wil. z1 + i . zi

1=1

Fork< N, layer k is a shunting inhibitory layer,

• Partial derivative with respect to biases

8E a'z.
' = a'z. ·a' b.

' '

For k = N, because the output layer is a perceptron layer

Nzi = fN(~ NWij·N·lzj + Nbl)
j .. [

38

(4.10)

(4.11)

I

Chapter 4 Training Algortthms for SIANN's

8E
e"b =

I

Fork< N, layer k is a shunting inhibitory layer,

8E

e'b.
'

8E
8'b.

'

• Partial derivative with respect to decay rates

Decay rates 'a, only exist for shunting inhibition layers (k,;; N-1)

aE aE Okz.
' = akz .. aka. aka.

' ' '
k akzi

= ei.-,-a ai

BE -(''
1z. +'b.)

=> = ke. I 1

a' a ' [s,_, J I
kai +fk(~ kwij·k-lzj)

J"'l

(4.12)

(4.13)

(4.14)

The steps in error-backpropagation algorithm fur STANN's are summarised in the next
section.

39

Chapter 4 Training Algorithms for SIANN's

4.1.3 Summary ofError Backpropagation training for SIANN's

Initialise network

Step 1: Initialise network

Set parameters such as weights, biases, decay rates to small random values.

Compute network output

Step 2: Fork from I to N-1, compute the output of layer k

k·l z. + kb.
k zi = ---';''--'-...:.!'-- , i =I, sk

I
s

k f(k k-1) ai + t wiJ· zJ
j=l

The output of one layer becomes the input to the next layer.

Step 3: Compute the output of the last layer
,._, --

N f (~ N N-1 "b) . I Yi= zi = N L.t w11 • zi + 1 ,1= ,sN
j=l

Compute error
Step 4: Compute the sum squared error

E=.!_JIY -TJI2 = .!_~(y, -t;)'
2 2 i•l

Compute error sensitivities
Step 5: Compute error sensitivities for the output layer

Step 6: Compute error sensitivities at layer N-l

, i=l,sN-I

Step 7: Fork from N-2 down to l, compute error sensitivities for layer k

f ' (~ k+l k) N
' - k+t L w jt. z, . w ji

ke = ~ k+Ie. t=t i 1 s
i j=l J'[k+l ~k+l k]

2
,=,k

a1 +fk+l(L.,; w11 • z1)
I• I

If i:;; Sk+!, add an additional term to the error sensitivity

40

I

Chapter 4 Tmlning Algorithms for StANN's

Compute gradient of E

Step 8: Compute partial derivative ofE with respect to weights 'w;;

For the output layer

"b.)."·'z. . I d. I
1 J,t=,sNanJ=,sN.1

For layer k, k < N

Step 9: Compute partial derivative ofE with respect to biases 'b;

For the output layer

aE N f' (~ N N·l
-N- = ei. N L Wu. Zt+
a hi 1=1

Forlayerk= 1,2, ... ,N-1

a'b-'
,i=l,sk

Step 10: Compute the partial derivative ofE with respect to decay rates 'a;

aE
, i=l,sk andk=l,N ·l =

aka.
'

Update network parameters

Step 11: Update all network parameters weights, biases and decay rates as follows

aE
vnew=vold . a.Ov

where vis a network parameter {'W;j, 'b, or 'a,), a is the learning rate and iJE/i'Jv

is the partial derivative computed in steps 8, 9, 10.

Repeat steps 2-11 until E is smaller than the error tolerance, which is a small value set
befure training.

41

Chapter 4 Training Algorithms for SiANN's

4.2 Variations of Error Backpropagation Training

In this section, we investigate three heuristic variations of the standard backpropagation

algorithm that are believed to increase convergence speed and training stability.

4.2.1 Batch training

The algorithm derived in section 4.1 updates networks parameters for each pair of

input/target. If the training sets contains many such pairs, learning can be slow due to

"unlearning" effect whereby minimising error for an individual pair may lead to an

increase in errors for other pairs. There exists a better approach known as hatch training

in which updates only occur after each epoch (an epoch is a run through the entire

training set). With this approach, each training pair contributes an additive term

(calculated in the same way as in section 4.1.5) to partial derivative 8E/1Jv. The

cumulative gradient V'E is used for updating network parameters. Batch training is

suitable for off-line training. For online training where training pairs are presented to the

network one after another, hatch training should not be used.

4.2.2 Gradient Descent With Momentum (GDM)

Let v(n) be the value of network parameter v after n updates. The GDM update rule takes

into account the amount of previous update:

8E
v(n+1);v(n) - a.IJv +ll[v(n)-v(n-1)]

where ll is a small constant called momentum coefficient. The effects of momentum term

jl[v(n) - v(n-1)] is to smooth out oscillation in parameter updates. To see this, let's write

the update rule in alternative form:

8E
Av(n);- a.IJv +jl.Av(n-1) where Av(n);v(n+1)-v(n)

This is equation of a low-pass filter whose input is -a.aE.IIJv and output is Av(n).

42

Chapter 4 Training Algonthms for StANN's

4.2.3 Gradient Descent With Variable Learning Rate (GDV)

Generally, the error surfuce is flat in some region and steep in others. The speed of

convergence can be increased significantly by adjusting the learning rate during training

(e.g. by increasing the learning rate in the "flat" region). A version of variable learning

rate suggested by Hagan , et al. (1996) is adapted in this project to train SIANN:

• If the squared error E increases by more than some set percentage ~ after a weight

update, then the weight update is discarded, the learning rate is multiplied by some

factor O<p<l.

• If the squared errorE increases by less than 1;. then the weight update is accepted and

the learning rate is unchanged.

• If the squared error E decreases after a weight update, then the weight update is

accepted and the learning rate is increased by a factor of lip.

~is usually smaller than five percent and pis between 0.9 and 0.95.

4.3 Gradient Descent with Direct solution step (GDD}
This section investigates a very fast training method for SIANN's that combines iterative

and direct solution methods. In this approach, the SIANN is trained by initially selecting

small random weights and then presenting all training data repeatedly. The weights are

adjusted after each iteration. After some iteration, or when the training process is trapped

at a local minimum; training of the SIANN is paused, and the weights of the output layer

and inner layers are calculated using the direct solution method. Verma (1997) first

proposed this training method for Multilayer Percepiron. However for it to be applicable

to SIANN, significant modifications are required.

Assume that the training set consists of n vectors P(l), 1 = !, 2, ... ,n and the output of

neuron i in layer k for input vector P(l) is 'z;(l).

The output for neuron i in the last layer is:

Chapter 4 Training Algonthms for StANN's

We want this output to be as close as possible to the target value: 'z;(l) "' T;(l). If the

activation function fN(.) has an inv~rse, this can be written as

• L N-'z/l)."w, + "b, =f~(T1 (1))
j=l

If we let X= [Nwn Nwu ... Nw;, Nb;] and A(l) = (1z1(1) N·'z2(1) ... N·'Z;,(l) 1]', then in

matrix form

X *A(l) = f 1N(Ti(l)), I= I, 2, ... n

or

X * A= f 1N(T;)

This is a system of linear equations with unknown X. In most cases, the system is over

determined (i.e. n >> s+ I) and there exists no solution for X. However, we can determine

an X' that minimises the squared error between the left-hand side and the right-hand side

(least-squared method). This X' provides us with weights and biases that make the output

of neuron i nearest to its target.

This method can also be applied to shunting inhibitory layers by observing that

''
1z1(1)+ 'b;

'z;(l) = ---'F'-'--"'--
sk~l

'a; +f,(L 'wij·'·'z1(1))
j=l

After a few manipulations, we obtain an equation for the weighted input sum:

~' ,., (l)-f''('·'z,(l)+'b; ,) L wij' z; - k k (I) - ai
Fl zi

The right-hand side and ,_,Zj(l) are known. This also gives us a system of linear equations

with weights 'w• as the unknown to which a least squared solution can be found.

This direct solution approach must be combined with the iterative error backpropagation

training because two successive applications of direct solution always give the same

error. This is bec&nse there is almost no change in the coefficients ofthe systems oflinear

equations. One question remains is when to apply direct solution step during training

process. There are two options, and the first one is after every certain number of epochs.

44

Chapter 4 Training Algorithms for StANN's

The second is when there is 'lillie' change in the error but it is still high, which is a sign

that training is stuck in a local minimum. If this is the case, we may also restart training

with a new random set of weights, biases and decay rates.

4.4 APOLEX algorithm
The last training algorithm for SIANN's to be investigated in this project is called

APOLEX (an acronym for algorithm for pattern extraction). An in depth discussion ofthis

algorithm can be found in [Pandy & Macy, 1996]. The APOLEX procedure was first

studied in connection with the problem of ascertaining the shapes of visual receptive

fields. Harth and Pandya (1988) apply the APOLEX algorithm to optintise a scalar

function ofN parameters where N is very larger number.

Unlike hackpropagation, which computes new net parameters (weight, biases, decay

rates) by recursively computing the gradient through back propagation of error

sensitivities, APOLEX works by broadcasting the same global error to all layers. Net

parameters are updated stochastically based on a correlation between the change in a

parameter and the change in the global error.

Pandy & Macy (1996) outline several advantages of APOLEX:

• The APOLEX does not assume or require any special choice of activation function.

• It is computationally simple (no calculation of derivatives) and can be realised in

VLSI since interconnections between processing elements which update the weights

are not required.

• APOLEX is observed to generalise better than many of the alternative algorithms

(including backpropagation) especially over noisy data sets.

• It is applicable to many neural network architectures.

Next, we'll describe quantitatively the APOLEX algorithm for SIANNs. Let v be a

parameter of SIANN (weight, bias, or decay rate). To calculate new v, we need to store

the previous change in v, and the total error:

45

I

Chapter 4 Training Algorithms for SIANN's

Parameter Chango Av ~ v(n-1)- v(n-2)

Error Chango AE ~ E(n-1)- E(n-2)

The same as for other training methods, error E is computed by formula (4.1). The

correlation between the change in v and E is defmed as:

c,(n) ~ Av. AE

The direction of change is determined by a probability function (T, is a positive

coefficient called temperature) :

P,(n) ~---'':-=
c.(n)

l +e T.

The amount of change is a small positive constant 6. Together the change in v is

calculated as follows:

-{-o with probabilityofl-P,(n)
A, (n)- o with probability of P,(n)

and v(n) ~ v(n-1) + A,(n).

Table 4.2: Scenarios for APOLEX

l!.v > 0 I!.Y <0

c,(n) > 0 c,(n) < o
I!.E > 0 P,(n) < 1- P,(n) P,(n) > 1- P,(n)

Decrease v Increase v

c,(n) < 0 c,(n) > 0
I!.E < 0 P,(n) > 1- P,(n) P,(n) < 1- P,(n)

lncreasev Decreasev

Else W c,(n) = 0 then no clear trend

Possible update scenarios are shown in table 4.2 which is adapted from [Pandy & Macy,

1996]. As an example, if the previous increase in v (i.e. Av > 0) results in an increase in

the errorE (i.e. AE >0), then their product -the correlation c,(n) - is positive. It can be

seen easily, in this case, that P,(n) < 0.5 <I - P,(n). As a result, there is more chance that

vis decreased in this update (A,(n) ~ -6 <0) so as to reduce E.

46

Chapter 4 Training Algortthms for SIANN's

The algorithm takes a biased random walk in the direction of decreasing error E and the

temperature T, determines the effective randomness of the walk. T, should be chosen

large initially (to compensate for large covariance) and decreased as training progresses

to the convergent value of the correlation:

T, =lim lc,(n)l
,~.

4. 5 Chapter Summary
In this chapter, we derived the backpropagation-type algorithm for shunting inhibitory

neural networks. The algorithm developed is significantly more complex compared to

that of MLP, which is understandable since shunting neurons have more complex

activation than perceptrons. We discussed three heuristic variations of backpropagation

training, which can be implemented for SIANN: batch training, gradient descent with

momentum (GDM), and gradient descent with variable learning rate (GDV). Also derived

in this chapter is a very fast training method based on direct solution. This method can

potentially speed up training by finding the least-squared solution to systems of linear

equation whose unknown are weights and biases. The last training method developed for

this project is APOLEX algorithm, which updates net parameters stochastically based on

a correlation between change in a parameter and change in the global error. APOLEX

algorithm is computationally simple because it requires neither calculation of derivatives

nor backpropagation of error sensitivities. Furthermore, there is little restriction on the

type of activation functions.

47

Chapter 5 MATLAB Implementation

This chapter focuses on the MALAB implementation of SlANN's and the training

methods developed in the previous chapter. The chapter first presents an overview of

fimctions developed in this project. Second, it describes how shunting inhibitory artificial

neural networks are mapped into a structure data type in MA TLAB. The rest of the

chapter is on how SIANN's are created, initialised, simulated and trained. The listings of

MATLAB code on this chapter can be found in appendix A.

5.1 System Overview

At the highest level, the SIANN toolbox to be implemented consists of four main

fimctions (Figure 5.1).

new_siann creates a new shunting inhibitory artificial neural network.

lnK_siann initialises parameters in a S!ANN network including weights, biases, decay

rates, and training parameters.

sim_slann simulates a SIANN, i.e. computes its fmal output for a given input

traln_slann trains a SIANN, i.e. adjusts the network's parameters so that it produces

final output within a defined tolerance of the desired output.

,.... Creating a network
new_slann • traln...Jid gradient descent

---+ Initialising a network • traln...Jidm gradient descent

SlANN -
lnK_slann with momentum

toolbox • train...Jidv gradient descent

r--. Simulating a network
aim_slann with variable learning rate

• traln...Jidd gradient descent

4 Training a network
with direct solution step

train_alann • traln_apolex APOLEX training

Figure 5.1: Overview of SIANN functions

48

Chapter 5 MA TLAB lmplementatlon

Depending on which training algorithm is to he used, train_ siann calls one of the training

functions: train_gd, train_gdm, train_gdv, train_gdd, and train_apolex.

5.1.1 Why MATLAB?

The purpose of this section to justify the choice of MATLAB as a tool to implement

SIANN's and their training methods. In simplest term, MATLAB · developed by The

MathWorks Inc. - is a computer environment for performing calculations. The name

MATLAB, which stands for MATrix LABoratory, suggests that MATLAB was designed

initially for the manipulation of matrices. It has since added more functionality and it still

remains a better tool for scientific computation.

MATLAB is a procedural progranuning language that combines an efficient programming

structure with a bevy of predefined mathematical commands. One of the major

advantages ofMATLAB over other languages such as C and C++ is its ability to perform

complex mathematical operations such as matrix algebra in a fuw lines of code. As will

be seen later in this chapter, using MATLAB's matrix operators makes the code that

implements the backpropagation algorithm 4.1.5 shorter and easier to underst'Dld. The

rich set of MATLAB functions, which ranges from mathematical functions, plotting

functions to GUI tools, also greatly simplifies coding and testing ofSJANN's and training

methods. As a result, more time is available for testing different approaches and

improving the design.

MA TLAB with its Neural Network Toolbox implements a vast number of neural network

architectures. The most notable is Multilayer Perceptrons and several supervised training

algorithms including gradient descent, conjugate gradient and Levenberg-Marquardt. The

toolbox contains many common activation functions for neural networks such as tansig,

purelin, and logsig. The Neural Network Toolbox is an excellent example on how to

implement a neural network and its training methods. In fuel, several code-optimisation

tecimiques were learned by looking at scripts included in the toolbox. We have attempted

to give SIANN functions similar interfuce as those in the MATLAB's Neural Network

Toolbox.

49

Chapter 5 MATLAB Implementation

5.1.2 SIANN functions: Usage Example

The short code example in listing 5.1 shows how the main functions are used. Any thing

in a line after the percentage sign (%) is ignored by M A TLAB. How these functions are

specified and implemented will be discussed in great detail in subsequent sections.

Listing 5.1: Using main functions in the toolbox

P=[OOll;

1 0 1 0] % network input

T = [1 0 0 1] %desired network output i.e. approximate XOR function

% Create a new SIANN

net= new_siann([O 1; 0 1],[2 l],{'exp' 'purelin'),'train_gdd', 'sse');

net= init_siann(net);

y = aim_siann(net, P)

%Initialise SIANN parameters

%Compute network output

[net, tr] = train_aiann(net,P,T);%Train SIANN to produce desired output

Y = sim_siann{net,P) %Compute network output after training

5.2 System Design

MATLAB offurs a network class that can be customised to create different newal

networks. However, this class is not used in this project because it does not provide (after

trial) satisfuctory speed performance. The reason is that to accommodate as many as

possible architectwes (dynamic, static, recurren~ feed-forward, etc.) the class contains

many settings, which are not needed in SlANN's.

5.2.1 SIANN Structure

In this project, SIANN's are implemented using a new data type introduced in MATLAB 5

called structures. Structwe data type offers several advantages:

• It allows all information about a SJANN including architectwal information such as

the number of layers, the nwnber of newons per layer, operational information such

as the values of connection weights, biases, and training information such as training

50

Chapter 5 MATLAB Implementation

method, error tolerance, maximum number of iterations to be stored in a single

variable.

• Structure data type is actually a built-in class in MATLAB, and therefore offers certain

level of object-oriented progrannrning. It is flexible in that fields can be added or

removed from the network dynamically. This is very innportant because to innplement

a new training algoritlun that uses new training parameters, we do not need to

recreate the network from scratch. Instead new fields can be added into the set of

training parameters during initialisation phase (i.e. in init_siann) and will be

available for controlling training process (i.e. in train _siann).

• Compared with the approach of creating a separate SIANN class with its own

constructors and member functions, using structures achieves faster execution speed.

In filet, inside several computation-intensive functions (e.g. train) included in

MATLAB's Neural Network Toolbox, network class is first converted into a structnre

(using struct command), and after processing is returned hack to class (with class

command).

The fields of a SIANN structure are listed in table 5.1. To access a field of a structure

variable, use the variable nrune followed by a dot(.) and the field name. For example, let

net be a SIANN, then its number of layers is net.numLayers and can be set as follows:

net.numberLayers = 4; % set the number of layers to 4

Several fields in SIANN structure deserve an in-depth discussion. However, we need first

to describe another new data type introduced in MATLAB 5: cell arrays. Unlike a normal

array where all of its elements are scalars. A cell array, as the nanne suggests, is an array

of cells, each of which can store a value ofahnost any MATLAB data type: scalar, string,

array, structure, and even cell array. As will be seen shortly, cell arrays whose each cell is

51

Chapter 5 MATLAB Implementation

an array or a structure provide very efficient and convenient storage for SJANN. To

access the i'h element of a cell array, we use the format: Cell_ar ray_ name f i J •

Table 5.1: Fields in SIANN structure

Field Data type Description

numlnputs scalar Number of elements in each input vector __ T _____ ------
· Number of elements in each output vector e numOutputs scalar

----·---.a numLayers scalar Number of layers excluding the input layer
u
:!! ---

' Information about each layer
"' layers cell array

~ --
.size scalar Number of neurons in the layer

.transferFcn string Transfer function for the layer

w cell array Weights

" c
0 B cell array Biases "' I! ..
" A cell array Decay rates 0

trainParam structure Training parameters

.trainFcn string Training function

.goal scalar Error tolerance

.epochs scalar Maximum number of iterations

"' c .errorFcn string Error function ·;:

~ .lr w scalar Learning rate for weights -
.!r_b scalar Learning rate for biases

.lr a scalar Learning rate for decay rates -

.show scalar Frequency of showing training progress

I! .. inputRange array Range of input values <5
0

52

•
Chapter 5 MATLAB Implementation

Information stored in a SIANN structure can be divided into four main categories:

architectural information, operational information, training information and others.

Architectural Information is information regarding the architecture of the neural

network. That includes the size of an input vector (i.e. number of neurons in the input

layer), the size of output vector (i.e. number of neurons in the output layer), and the

number of layers. Information about layers (excluding the input layer) is stored in the

field Layers, which is an array of structures. The number of structures is dictated by the

number of layers - numLayers, and the i'h structure stores information about layer i:

• layers{i}.size is the number of neurons in layer i

• Iayers{i}.traniferFcn is the transfer function of neurons in layer i. It is in the furm of

a string such as 'purelin', 'tansig', etc. We should mention that transfer function is

MATLAB's terminology for what we have been using so fur: activation function.

These two terms can be used interchangeably.

Operational Information includes the values of weights, biases and decay rates that

allow output of a SIANN to be computed.

• W is a cell array. Its k~ cell is an array that stores weights going from layer k- I to

layer k. We consider here that layer 0 is the input layer. Weight "wo going from

neuronj in layer k-1 to neuron i in layer k is W{k}(ij).

• B is a cell array. Its k~ cell is a vector that stores biases fur neurons in layer k Bias 'b1

for neuron i in layer k is B{k}(i).

• A is a cell array. Its k~ cell is a vector that stores decays rate for neurons in layer k

Decay rate 'a, for neuron i in layer k is A{k}(i).

Training Information controls the training process of a SIANN and is stored in the field

trainParam. trainParam is a structure and by default it consists of fields that are used in

most training algorithms:

53

Chapter 5 MATLAB Implementation

• trainFcn is a string that specifies the training algorithm. For example if trainFcn is set

to 'train_gd' then the error backpropagation with gradient descent will be used to train

the network

• goal is error tolerance. Training stops when the difference between the network's

actual output and its target fulls below this value. How this difference is computed is

dictated by the field errorFcn.

• errorFcn is a string that specifies how error is computed, and is either 'sse' or 'mse'.

'sse' returns sum squared error between actual output matrix Y and target matrix T.

This error divided the number of elements in T is the result returned by 'mse' (short

for mean squared error).

• epochs maximum number of epochs. An epoch, in the context of batch training,

corresponds to an network update after the whole training set is presented. Training

also stops if this number is reached.

• show specifies the rate at which the training progress is reported to user. For example,

if show is 25, then after every 25 epochs, training status including error, epoch

number, is displayed at MATLAB console.

• lr _ w, lr _ b, /r _a are learning rates for weights, biases and decay rates respectively.

As mentioned above, fields can be added to trainParam structure to accommodate

parameters required by new training algorithms. For example, the gradient descent with

momentum method (see 4.2.2 and 5.6.2) uses a parameter called B (beta) which is

typically set to 0.1. This parameter is added to the set of training parameters by init_siarm

function if it finds the network's training method is 'train_gdm':

net.trainParam.beta = 0.1;

54

Chapter 5 MATLAB Implementation

Other Information

• inputRange is a numlnputs x 2 array that specifies the range of input values to the

network. It may be used by some training algorithms to set the initial weights, biases,

and decay rates so as to speed up convergence.

Table 5.2 shows the mapping between mathematical notations (used in derivation of

training algorithms in chapter 4) and MATLAB variables.

Table 5.2: Mathematical notations to MA TLAB variables

Description Symbol MATLAB

Number oflayers (excluding the input layer)
N net.numLayers

Number of neurons in layer k ,, net.layers{k} .size

Activation function for layer k f~.) net.layers{k} .transferFcn

Weight.from neuronj in layer k-1

to neuron i in layer k
\vij net. W {k}(ij)

Decay constant for neuron i in layer k ka; net.A{k}(i)

Bias for neuron i in layer k kbj net.B{k}(i)

Input to the net p PorZ{l}

Output of neuron i in layer k k
Zij Z{k+ I }(i,:)

Input signal from neuronj in layer k-1
'p;; Z{k)(j,:)

to neuron i in layer k

Output of neuron i in output layer y; Y(i,:) or Z{N+l }(i,:)

Target of neuron i in the output layer I; T(i,:)

55

Chapter 5 MATLAB Implementation

5.2.2 Other Design Considerations

This section discusses two issues that are important in achieving good perfonnance for

MATLAB implementation.

Memory versus Speed

Investigating the fonnulae in section 4.1.5, we can see many similar calculations are

repeated in various steps of the training process. For example, outputs 'z of each layer

computed in feedforward phase are used in backpropagation phase to compute

sensitivities. Training can be sped up if memory is allocated to store the result of these

calculations for later use.

Improving Speed through Vectorlsatlon

The execution speed of MATLAB's scripts can be greatly improved if operations are

expressed in vector fonn. The following example of adding two vectors illustrates this

point.

Test I

Test2

a= rand(l000,50);

b ~ rand(lOOO,SO);

c = zeros(1000,50);

for i = 1:50000

c(i) = a{i) + b(i); %Individual element adding

end

c = a + b; %Vector form

In one Pentium machine, test I took 1225 seconds whereas test 2 took 0.06 seconds.

Having described the SIANN structure, we are now ready to develop SIANN functions.

The focus of the next fuur sections is on how SIANN functions are implemented in

MATLAB. The discussion will be facilitated by code examples where their inclusion is

appropriate. Refer to appendix A at the end of this report fur a complete code listing.

56

Chapter 5 MATLAB Implementation

5.3 Creating SIANN Network
File

new_siann.m listing A. I

Syntax

net= new_siann(pr,[sl s2 ... sNI],{tfl tf'2 ... tfNI}, btf, ef)

Inputs

pr Rx2 matrix of min and max values for R input elements

si number of neurons in layer i

tf transfer function for layer i

btf backpropagation training function

ef error function

Outputs

net a new SIANN network

Discussion

The following example creates a SIANN that receives 3 inputs, each ranges from 0 to 6.

The network has three layers whose number of neurons is 5, 4 and I. In that order, the

transfer functions are 'exp', 'tansig' and 'purelin'. The net is trained with training function

'train_gd' and its error function is 'sse':

net= new_siann([O 6; 0 6; 0 6], [5,4,1],{'exp' 'tansig' 'purelin'}, ~rain_gd','sse');

5.4 Initialising SIANN Network
File

inint_siann.m listing A.2

Syntax

net = init _siann(net)

Inputs

net a SIANN net

Outputs

net an initialised SIANN net

57

Chapter 5 MATLAB Implementation

Discussion

This function perfonns two main tasks. First it initialises net parameters (weights, biases,

decay rates) to small random values. Second, depending on the training algorithm of the

net, it creates the required training parameters in trainParam structure, and sets them to

defuult values. The following code shows initialisation for the ODD (gradient descent

with direct solution step):

switch net.trainParam.trainFcn

end

case 'train_gdd' %gradient descent with direct solution
net.trainParam.direct = 2;
%i.e Direct solution takes place after every 2 epochs
%Find and store inverse of transfer function
fori= l:net.numLayers

transferinv = 'pure!in'; %By default
switch net.layers{i}.transferFcn

case 'exp'

end

transferinv = 'log' ;
case 'purelin'

transferinv = 'purelin';
case 'tansig'

transferinv = 'atanh';
case 'logsig'

transferlnv = 'invlogsig';

net.layers{i}.transferinv = transferinv;
end

5.5 Simulating SIANN Network

File

sim_siann.m listing 5.2 or A.3

Syntax

[Y, Z, D, S] = sim_siann(net, P)

Inputs

net Network

P Network input

Outputa

Y - Network output

Z - Output of individual layer

D -Denominator factor a+ I\ sum)

58

Chapter 5 MATLAB Implementation

S • Input sum to each neuron

The last three outputs Z, D, S are used in training (see section 5.6. I).

Example

P=[J368;

24 7 5];% input

net =new_siann([O 3; .J 4], [4 3], {'tansig' 'purelin'});

Y = sim_siann(net, P) %output

Listing 5.2: sim_siann Computing the output ofSIANN

function [Y, Z, D, S] = sim_siann(net,P)
%SIM_SIANN Simulate a Shunting Inhibito~y Artificial Neural Network.
%Check arguments
if nargin = 2

error ('Not enough input arguments.');
end

% Simulate network
N = net.numLayers;
Ni = size(P,2);

%

%
%

The number of layers
The number of input vectors
Storage for N layers' output

in
Z = cell(N + 1,1);
D = cell(N-1,1); % Storage for denominator factor
S = cell(N, 1); % Storage for sum W*P

the training

a + f(sum)

Z{l} = P; % Input set considered as output of layer 0

% Z{k} stores the output of layer k-1
% Compute the output for all layers except the last layer
fork= l:N-1

end

T = net.layers{k}.size- size(Z{k},l);
if T > 0

ZT = [Z{k); zeros(T,Ni)];
else

ZT = Z{k}(l:net.layers{k}.size,:);
end
S{k} = net.W{k) * Z{k}; %Weighted sum
D{k} = repmat(net.A{k),l,Ni) + ...

feval(net.layers{k}.transferFcn,S{k}}; %Denominator
Z{k+l} = (ZT + repmat(net.B{k},l,Ni)) ./ D{k};

59

set

•
Chapter 5 MATLAB Implementation

% Computer the output of the last
% layer - a perceptron layer
S{N) = net.W{N) * Z(N} + repmat(net.B{N}, 1, Ni};

Z{N+l) = feval(net.layers{N}.transfer~cn, S{N));
Y = Z{N+l); %Final output

Discussion

This function computes the output of SIANN for a given input. Input is a matrix

organised column-wise, i.e. each column is an individual input pattern. In the above

example, there are four input patterns, each consists oftwo elements. Similarly the output

is organised column-wise. This function also returns the output Z of all layers, the

weighted sum W•P and the denominator factor a + f(W.P) for all neurons, which are

needed during training to compute gradient.

The MATLAB functionfeva/ is used at several times in this project to evaluate a function

given its name as a string and its numeric argument. There are two methods of evaluating

an expression, for example e1.5, in MATLAB by using either:

exp(l.S) %exp is a built-in MATLAB function for ex

or

feval('exp', 1.5)

The use of[eva/ in the second method gives us the flexibility of incorporating ahnost any

activation function for SIANN's. All we need to do is writing a script for the new

activation function and passing its name to feval.

5.6 Training Network
File

train siann.m

Syntax

listing 5.3 or A.4

[net, tr] = traln_siann(net, P, T)

Inputs

net Network

P Network input

T Network target

60

Chapter 5 MATLAB Implementation

Outputs

net - Trained network

tr - Training record

Listing 5.3: train_siann Supervised training ofSIANN

function [net,tr]=train_siann(net,P,T)
%TRAIN SIANN Train a Shunting Inhibitory Artificial Neural Network
% Check arguments
if nargin ... = 3

error('Not enough input arguments.'};
end

switch net.trainParam.trainFcn
case 'train_gd'

end

%standard gradient descent
[net,tr] = train_gd(net,P,T);

case 'train_gdm'
%gradient descent with momentum
[net,tr] = train_gdm(net 1 P,T);

case 'train_gdv'
%gradient descent with variable learning rate
(net,tr] = train_gdv(net,P,T);

case 'train_gdd'
%gradient descent with direct solution
[net,tr] = train_gdd(net,P,T);

case 'train_apolex'
%APOLEX training
[net,tr] = train_apolex(net,P,T);

Discussion

An example of using this function is shown in listing 5.1. lrain_siann, after checking its

arguments, calls the appropriate function to train the network. Training stops when the

maximum number of epochs is reached or the actual error fulls below the specified

tolerance (i.e. net.trainParam.goai).

The training record lr returned by train_siann is a row vector that stores the actual errors

at every epoch during training. It is used to monitor the training progress and can be

plotted using MATLAB command: plot(tr).

61

Chapter 5 MATLAB Implementation

All training based on gradient descent approach such as train_gd, train_gdv, train_gdm,

and train_gdd uses the function compgrad. This function, listed in listing A.5 (appendix),

computes the gradient of the error function and is one of the key issues in implementing

the training methods. It covers the steps from 4 to 10 described in section 4.1.3 (chapter

4).

The compgrad function calculates the derivative of a function by using the [eva/ function

described in section 5.5. As a convention, the derivative of an activation function is found

by adding a letter 'd' to the front of the activation function's name. That is if 'tansig' is an

activation function, 'dtansig' is its derivative:

f = net.layers{k} .transferFcn; % Activation function of layer k
deriv = feval{('d' f], S{k},Z{k)};% Compute derivative t'(s{k})

5.6.1 Gradient Descent Functions

With compgrad, train_gd can be written very neatly as shown in listing 5.4. Slight

modifications are needed for other functions such as train _gdv (variable learning rate),

train_gdm (with momentum). These functions are listed in the appendix: listing A.8, A.9

respectively.

Listing 5.4: train _gd Gradient Descent Training

function [net,tr]=train_gd(net,P,T)
%TRAIN_GD Train SIANN using error backpropagation with gradient descent
%Syntax
% [net,trJ = train_gd(NET,P,T)
epoch_count = 0;
tr = [);

e = Inf;
while (epoch_count <= net.trainParam.epochs)& (e > net.trainParam.goal)

epoch_count = epoch_count + 1;
[dedw, deda, dedb, e] = compgrad(net, P, T); %Compute gradient
net= updatenet(net,dedw, deda, dedb); %Update net
tr = (tr e] ; % Record error
if ~rem{epoch_count, net.trainParam.show) % Display progress

fprintf('Epoch %4g: Error= %2.4g\n',epoch_count,e);
end

end

62

I

Chapter 5 MATLAB Implementation

5.6.2 Gradient Descent with Direct Solution Step

The key issue in implementing GDD is to find the least-squared solution of a system of

linear equations (see chapter 4, section 3). Again, the decision of implementing this

project in MATLAB proves to be very effective. Using MATLAB, the least-squared

solution can be found using a single command. First we write the system of linear

equations in vector fonn as follows (X is an unknown vector):

X.A~B

The least-squared solution is a vector x• such that IIX'.A - Bll is minimum. x• can be

found in MATLAB by simply using I opemtor:

Xstar = B I i.;

train _gdd is shown in listing AI 0 (appendix).

5.6.3 APOLEX training

See chapter 4 section 4 for derivation of this training method, and listing A. II for the

code of train_ apo/ex function. Calculating change !J.v in net parameters, change !J.E in the

global error, correlation fuctor c,(n), and probability function Pv(n) is fuirly

straightforward. The two functions serialise and deseria/ise (listing A.l2) are written to

put all net parameters (weights, biases, decay mtes) into a single row vector and vice

versa. As shown below, putting all net parameters in a single row vector s has the

advantage that calculation of l!.v, c,(n), or Pv(n) can be done in one vector manipulation

for all parameters:

% serialise all net parameters into a single row vector
s = serialise(net.W, net.B, net.A); %current parameters
sp = serialise(netp.W, netp.B, netp.A); %previous parameters

%Compute change in net parameters
delta_s = s - sp;

%Compute covariance between change in net parameters
%and change in the total error
cov = delta_s * (e- ep);

%Compute probability that determines update direction
prob = 1 ./ (1 + exp(2*cov/net.trainParam.T))i

63

Chapter 5 MATLAB Implementation

Another issue to consider is how to generate a constant with a certain probability, i.e. to

implement the formula:

-{·S with probability of I· P,(n)
8• (n)- S with probability of P.(n)

This is done using MA TLAB function rand which generates a pseudo-random numbers

with a uniform distribution in the range 0.0 to 1.0. Thus, the probability of the rand

function to return a random value not greater than a ftxed a (O<a<l) is equal to a itself.

This fact is used in the following code (continued from the above code):

R = rand(size{s)); %generate random values
value = R < prob;
%value = 1 with probability of prob
%value = 0 with probability of 1 - prob
direction = 2*value - 1;
%direction = 1 with probability of prob
%direction = -1 with probability of 1 - prob

%Compute update
s = s + direction * net.trainParam.delta;

Due to its probabilistic nature, APOLEX training may be subject to sudden increases in

the global error. This is prevented by a verification step within each epoch, which

compares the new error with the previous error. If the new error exceeds the previous

error by a frxed factor stored in net.trainParam.maxlncrease, the parameter updates are

simply discarded. This fuctor is set by default to 1.2 and can be chosen by the users.

%Verification step

Y = sim_siann(nett, P};

et = feva!(net.trainParam.errorFcn, Y-T);

%Discard the update if error increases

%by more than a fixed factor

if et < net.trainParam.maxrncrease * e

net = nett;

end

64

I

Chapter 5 MATLAB Implementation

Finally, it should also be mentioned that MA TLAB supports object persistence by

allowing variables to be saved to and loaded from disk files. The simplest way to do this

is by using save and loads commands. For example,

• To save variables net, P and T to file named my_session.mat,

save my_session.mat net P T

• To load all variables in the file my _session. mat into workspace,

load my_session.mat

A more sophisticated way is by using MATLAB File I/0 functions such as fopen, fclose,

fread, !Write. These functions can handle also non·MAT files and together, they allow

greater control over file access.

65

Chapter 6 Simulation Results

In this chapter, we test the training algorithms derived and implemented in the previous

chapters on some benchmarks such as the exclusive-or problem, parity problems, pattern

classification and function approximation. We also compare the performance of SJANN's

and MLP's by running error-backpropagation training algorithms on these two

architectures.

6.1 The XOR Problem

The XOR problem is a classical benchmark for neural network training methods. It was

used by Minsky and Paper! (1988) to demonstrate the limitation of single-layer

perceptrons. The question is to classify two classes of points arranged in an 11e.xclusive~

or" configuration as shown in figure 6. 1.

''r-----.------r-----y-----, : ~ :
' ' ' ' ' '
:(0,1) : :{1,1)

1 -------·-------~-------··-------. , ,
' ,
' ' ' ' ' ' ' .t'05 ------- ~------- -~----- ---:--------

' , '
' ' ' ' ' ' :co.o1 : : f1.0l

0 -------· .. ·------~-------· .. ·------
' ' ' ' ' ' ' ' ' ' ' ' '
0 t 1~ ,,

Input P

p, p,

0 0
. - --

0 1

1 0
-------- ---~

1 1

(a) Two classes of points (b) Training data

Figure 6.1: XOR Problem

Target T

t

0
--

1

1

0

The program in listing B. I (appendix) trains a SIANN so that it produces the output as

shown in figure 6.1 b. Training is stopped when the sum squared error falls below 0.1.

The program compares the performance of the five training algorithms whose uaining

results are shown in figure 6.2.

66

Chapter 6 Simulation Results

7

6

5

4

2

0

- MLP:gd
- SIANN:gd
- SIANN:gdv
- SIANN:gdm
- SIANN:gdd
-- SIANN: apoleK

~ ' -~
\ \ '--==-=~

0 100 200 300 400 500 600 700 BOO 900 1000
Epoch

Figure 6.2: Comparisons of training methods: XOR problem
Goal = 0.1, nets with 2 hidden neurons

Of all training methods, the gradient descent with direct solution step (GDD) converges

the fastest taking only 5 epochs. The next best result goes to the gradient descent with

variable learning rate (GDV) with 220 epochs, followed by the APOLEX algorithm. The

gradient descent with momentum (GDM) converges slightly faster than the standard

error-backpropagation (GD).

As shown in figure 6.3, the SJANN's trained with the five training methods correctly

separated the two classes of points, whereas the MLP did not after 1000 epochs.

67

Chapter 6 Simulation Results

MLP:gd
1.5 .--~-_,...: __ ____,

1

0.5

0

X •

• X

-0.5 L_--~l---...J
SIANN:gdv

1.5 .--~---r:.........-----.

1 X •
~0.5

0 •
-0.5 L_ __ ...L __ ~__J

SIANN:gdd
1.5~---~ ,-----,

' "' . 0.51:----'\ -----_j
0 • \ '

-0.5 L_ ___ .L__~__J

-0.5 0 0.5
P,

1 1.5

SIANN:gd
1.5 .--~---r~--,

1 ' •
0.5 r ~---

0 •
-0.5 L-~-~-~-.J

SIANN:gdm
1.5 .--~---.-;.~----,

1 •
0.5r ___

0 • X

-0.5 L_ __ -L--~--'

SIANN:apolex
1.5 ,-----r:.._ __ ,

' •
0.5

0 •
-0.5 L_ __ _j_ ___ __j

-0.5 0 0.5
P,

1 1.5

Figure 6.3: Decision boundaries for XOR problem

(Five SIANN's and a MLP)

6.2 Parity Problems

This section compares the perfonnance ofSIANN's and MLP's in solving pari1y problems,

which are generalised versions of the exclusive-or problem. We attempt to train neural

networks of both architectures to find the even pari1y bit for input patterns consisting of

3, 4, 5 and 6 bits. Table 3.1 shows the inputs and the expected outputs for the 3-bit even

pari1y problem.

Functions shipped with the MATLAB's Neural Network Toolbox are used to create,

initialise, and train MLP's, whereas SIANN's are handled by the functions written in this

project. MLP's are trained using Levenberg-Marquardt backpropagation, which is

believed currently one of the fastest training algorithms for multilayer perceptruns

(Demuth & Beale, 1998). SIANN's are trained using the gradient descent with direct

solution step (GDD), which is the fastest in five algorithms developed in this project.

68

Chapter 6 Simulation Results

Table 6.1: 3-bit even parity problem

Input P Target T

Pt p, p, I

0 0 0 0

1-~-.o~-- -"-"--~1-""""- -----·o"·"--- _" ______ ""_1 _____ ·

~---co.c---- ~---1 "----- ___ "_T __ -- "' -- --"" --"-·a··---- "'- ·

l---c1.--- -- --"--,o,_---\------.1·-- -- -"""·-~o --------

~

1 1 0 0

1 1 1 1

3-bit even parity

30 ~---;:=~~=il
- MLP: 1-5-1
- SI.AJ\IN: 1-7-1

10

0 L.__...b=--:------"
0 1 2 3

5-bit even parity

4oo r---.====:====::=:=il
- MLP: 1-25-1
- SIANN: 1-31-1

80

60

~

~ 40 w

20

0

2500

2000

0

4-bit even parity

- MLP: 1-20-1
~ Si.AJ\IN: 1-15-1

1

6-bit even parity

- MLP: 1-70-1
- Si.AJ\IN: 1-63-1

~200
~ 1500
e
~

w 1000

100

OOL---1===~-.J
1 2 3

Epoch

500

1
Epoch

Figure 6.4: MLP versus SIANN: parity problems

2

2

Results in Figure 6.4 show that the gradient descent with direct solution step (GDD) for

SIANN yields compamble performance with the fast Levenberg-Marquardt algorithm for

MLP" A dmwback of GDD would be that it requires more neurons in some cases" The

code for this testing is shown in listing B.2 (appendix B, file chapter6_2"m).

69

Chapter 6 Simulation Results

6.3 Pattern classification

In this section, we develop a SIANN to classify two classes of points (red and blue) as

shown in Figure 6.5. The training set is derived by selecting a small number of random

points from the two classes. The SIANN has configuration 1-6-1 and the activation

functions for the hidden layer and output layer are 'exp' and 'purelin' respectively. The

code for this example can be found in listing B.3 in appendix B.

The SIANN is trained with the GDD. Figures 6.6 (a), (b), and (c) show how the decision

boundary of the network changed during training. As can be seen, the SIANN classified

correctly all 240 points after 24 trials.

6,-----.------.-----.-----.------.-----,
' ' ' I I I I I

5 ------~- ---- -~ ------ --t -------- t- -W -- t----- ---
I I I I I
I I I I I
I I I I I

4 ------ --~-- ------~-. --f -------- t--- ----- f-- ------
I I I I 1

' ' ' ' '
> 3 --------~--------~--------~--------~--------~--------1 I I I I

' ' ' ' I I I I I

2 ------~-------~--------~--------i--------i--------
1 I I I I
I I I I I
I I I I I

1 -------- f-------- f- -JI=-- f-------- f------.------
I I I I I

OL-----~----~----~----~------L---~
0 1 2 3 4

h

Figure 6.5: Classifying two classes of points

(120 red and 120 blue)

70

5 6

I

Chapter 6 Simulation Results

>

>

Triall: No. corroc1 claus. 227tl40
6,----r--~~~~~~~~--r----,

-----~--------~- ~--~-----.. ~.
0 ' 0

0 0
0 0
0 0
0 0

-------~--------·--------:--------:·-----

2 3
h

4

0

5

Trial9: No. correct class. 236.12<10

3
h

0
0
0 --------r-----•••
0
0
0
0
0
0 --------·-------- -------

6

Trial 24: No. correct class. 2401240
•r---~----~----~-----r-----,----,

0 0

' ' ' ' . ' ' ' • :rtf 0
0 0 0 5I! 0 •••••• ··-·--r----••••r••••••••r-- ••r••••••--
o 0 0

5
I I o o

' ' ' ' ' ' ' ' '
4 fC:C:.::;o~-~ •· ·•··" _:r· ~"" ~" "" """ "" ~ · --" · • ~ """ •""" · '

I o I o
< I I I

: :
' ' ' ' -·------r••""""""~---·----:··-·····:---·----:···••• > 3

0 0
0 0 0

------·· _______ t ________ i ________ i ________ i ______ _
I o I I

o I I o o
2

0 0 0

------- : -----f------·-----
o,~----~------~2------~,------~4c-----~5~~----!.

h

Figure 6o6: Decision boundary during training

71

(a)

(b)

(c)

Chapter 6 Simulation Results

6.4 Function Approximation
The task of learning a function is a stringent one. In this section, we investigate the

interpolative power of StANN's. Basically, a network is presented with some sampled

points of a curve and it is asked to learn the training points and then generate an estimate

of the original function. The following function to be approximated is slightly more

complex than the benchmark used by Verma (1997) to test his training algorithms for

MLP's.

ftx) = 0.1 + x.[l.2 + 2.8*sin(47tx2
)], 0 < x <I

4,-----.---~-----.-----.----,

3 -------~------1-------~-----
• • • • • I I I I

2 -------~------1-------~---- --~------
' I I I
I I I I

• • •
- 1 -------,-- ----~-- ----~--- ---:-- ----

• • •
•

• •
I I I I

0 -------~------1----- -~-- ----~-- ---
' I I I
I I I I
I I I I

-1 -------~------~-------r-------~---
' .

•
• • ~~--~--~~--~~--~--~

0 0.2 0.4 0.6 0.8 1
X

Figure 6.7: Plot of a function to be approximated

The plot of this function is shown in figure 6. 7. In the frrst experiment, training data are

taken at regular intervals of 0.1. That is we use II training points:

{(0, ftO), (0.1, ftO.l)), (0.2, ft0.2)), ... , (1, ftl))}.

In the second experiment, we double the number of training points (taken at regular

intervals of 0.05). Finally, we compare the performance of SIANN aod MLP if training

points were selected raodomly in the interval [0, 1].

To test the trained networks, we compute their actual outputs for data points at intervals

of 0.01, aod then find the meao-squared error between the actual outputs y and the

expected values f:

1 100

E =--L(y(O.Oli)- f\O.Oli)J 2

IQ} i=O

72

I

Chapter 6 Simulation Results

~

~

6

5
: Actual function

___ . i _____ ~ __ . _ { __ . _ -:-. ___ ~. __ - ~ ESIANN = 0.32647

4
; ' ~ EMLP =0.114775

---- ~---- -~----!---- .:. ---- ~---- "ik~-...:;:;;:,.,~~~~~~~q
I I I I I
I I I I I
I I I I I I I

3 ----~-----~----~----~-----~----~-----~-1 I I I I I
I I I I I I
I I I I I I

2

1

0

•••• ..! ••••• 1 ••••• ,! ••••• 1 ••••• !. ••••• 1 ••••• 1. I I

____ ; ____ _l _; _____ : ___ L_)- ____ : __ ::;:.r::::-
---.1-----~----! _____ :_ ____ ~- I ~ •••• L .. 1..\IL ...

I I I I I ~
I I I I I
I I I I I I I I

-1 ---- ~---- -:---- -.;--- --:----- t --- -~-- ---:-- ---~--- --:
I I I I I I I I
I I I I I

-2 I I I I I I I I I

----,-----r----,----,-----r----,-----r----,-----~
' ' '

-3 ----~-----~----·----~-----·----~-----~----t-----~--1 I I I I I I I
I I I I I I

' ' -4
0 0.1 0.2 0.3 0.4 0.5

K

0.6 0.7 0.8 0.9 1

6

5

4

3

2

1

0

-1

-2

-3

-4
0

Figure 6.8a: SiANN (1-10-1, GOD) and MLP (1-10-1, trainlm)
11 regularly spaced training points

: Actual function
- ---i-- ---~- --- ~- ----:----- ~---. i ESLA.NN = 0.369618

: I : : -- EMLP = 0.359215
---- ~---- -~----!---- ~----- ~---- ~k=~,;;:;;:,.,,..._._._=-·-·-=~...1~

I I I I I I
I I I I I
I I I I I I I

----.1-----~----~----~-----~----.1-----~-1 I I I I I I
I I I I
I I I I I I I

•••• ..! ••••• L .••• J •••• J ••••. L •••• J ••••• L.
I I I I I I I
I I I I I
I I I I I I

I I I I

,----~---- r----~-----
' ' ' I I I I

-----~----~----~-----~ I I I I I

' ' ' I I I I I I

' '
---~-----

' ' --:----

•••• J ••••• L •••• ! J ••••• L. . ••••• L •..• !
I I I I I I I I

I I I I I I

' ' ' I I I I I I I I I

----,-----r----,----,-----r----,-----r----,-----~---
1 I I I I I

' ' ' I I I I I I I I I

----~-----~----t----~-----·----~-----~----t-----~---1 I I I I I I I I
I I I I I I I
I I I I

0.1 0.2 0.3 0.4 0.5
X

0.6 0.7 0.6 0.9

Figure 6.8b: SiANN (1-20-1, GOD) and MLP (1-20-1, trainlm)
21 regularly spaced training points

73

Chapter 6 Simulation Results

6

5

4

3

2

~ 1

0

-1

-2

-3

-4
0

: - Actual function
•• __ ~-- _ --~ ____ ~---- -,-- ___ r _--- ESIANN = 0.00306142

1 I I I 86
I I I I -- EMLP = 0.1246
I I I I ____ _, _____ ..., ____ .. _____ , _____ .. ____ .;r"/;"

I I I I I

' ' ' I I I I I I I

•••• J ••••• L .••• J •• --~-----1----J •.••• L--
1 I I I I I I

' ' ' I I I I
I 1 I I I I I ----,-----r-- -,----~-----r----,-----r-

' ' '

' ' ' ---J---- ----J----~-----~-' ' ' ' ' ' I I I I I I I I

' ' ----·-----' ' ' ' --,-----
'

----J ••••• L •..• J •••• J ••••• l.--- ••••• L •..• J ••••• 1 -
I I I I I I I t I
I I I I I
I I I I
I I I I I I I 1 I

----,-----r----,----~-----r----~-----r·---,-----~----
' I I I I I
I I I I

I I I I I I I

----1-----~----~-----·-----~----~-----~----·-----~----l I I I I I I I I
I I I I I I

0.1

I I I I

0.2 0.3 0.4 0.5
X

0.6 0.7 0.8 0.9

Figure 6.8c: SIANN (1-40-1, GOD) and MLP (1-40-1, train 1m)
40 randomly chosen training points

1

The results are shown in Figure 6.8 (a), (b) and (c). As can be seen, the SIANN performed

poorly in the first experiment where only I 0 training points are used. However, in the

second experiment where there are twice as many training points as in the first one, or the

third experiment where training points are chosen randomly, the SIANN's yielded

comparable or even better performance than with MLP's (trained with the fast Levenberg

Marquardt algorithm).

The code for this section is found in appendix B, listing B.4 (file chapter6_ 4.m).

74

I

I

Chapter 7 Conclusions

This project is part of co-operative efforts of a group of students under the supervision of

Associate Professor Salim Bouzerdoum to investigate classes of artificial neural networks

that are hased on the shunting inhibition model. One student is working on an application

of shunting inhibitory cellular neural networks (SICNN's) to edge detection and

enhancement. Another student is designing a VLSI chip that realises SICNN's in

hardware. The principal aim of this project is to develop efficient training algorithms for

a new class of artificial neural networks called Shunting Inhibitory Artificial Neural

Networks (SIANN's). The project is motivated by the fact that, despite SICNN's proven

potentials in image processing applications such as edge detection and motion detection,

the coefficients of a SICNN are still determined by practitioners thorough basically a

manual process, which limits SICNN applications.

SIANNs are also based on shunting inhibition model, but unlike the cellular SICNN they

have a feed-forward architecture. A SlANN combines shunting inhibitory neurons in the

hidden layers and perceptrons in the output layer into a system that is capable of

representing very complex mapping between input and output with a smaller number of

neurons compared with MLP's. Another key difference between SIANN and SICNN is that

the former uses static (steady state) model of shunting inhibitory neurons. These

modifications allow ns to compute the output of a shunting inhibitory neuron in one step

(equation 3.2), and to derive training algorithms for SIANN's based on error

backpropagation. The rest of this chapter summarises what has been achieved in this

project and proposes further directions.

75

Chapter 7 Conclusions

7.1 Project Contributions
One of the most significant contributions of this project is the derivation of a training

method for SIANN's that is based on error-backpropagation. Although the error

backpropagation training for Multilayer Perceptron is well understood, adapting it to train

SIANN's is a complex task. This is because unlike a perceptron, which has linear

activation characteristics: y = j{w.p), a shunting inhibitory neuron in SIANN, as shown in

equation (3.2), has a highly non-linear activation. Adding adaptive parameters such as

bias and decay rate to a shunting neuron, while making it more powerful and flexible than

a perceptron, certainly increases the complexity of the training algorithm. The en·or

backpropagation algorithm for SIANN's is summarised in section 4.1.3 (pp. 40-41).

We also investigated three heuristic variations of the error-hackpropagation, which are

shown to increase convergence speed and training stability in some situation: batch

training (GD), gradient descent with variable learning rate (GDV) and gradient descent

with momentum (GDM). Batch training updates network parameters only after a group or

the entire set of training patterns has been presented by accumulating the amount of

changes contributed by each training pair. The method reduces the "unlearning" effect

whereby minimising the error fur a new pattern increases errors for previously learned

patterns. GDV speeds up training by adaptively changing the learning rate (i.e. increasing

it where the error surfuce is "flat", and reducing it otherwise). GDM makes training more

stable by taking into account the amount of the previous update.

Another significant contribution is a very fust training method fur SIANN's that combines

error-backpropagation with a direct solution step (GDD). The basic idea is to look for

weights that minimise the difference between the actual output and the target by finding

the least-squared solution io (often over-detennined) systems of linear equations. This

method was shown (see Chapter 6) to achieve a comparable performance with the

Levenberg-Marquardt algorithm - currently one of the fustest training algorithms for

multilayer perceptron. A drawback would be that GDD requires a large number of

neurons. The direct solution step was first suggested by Verma (1997).

76

I

Chapter 7 Conclusions

Also investigated in this project is an interesting training method called APOLEX

(algorithm for pattern extraction), which updates network parameters according to a

stochastic rule. The major advantages of APOLEX include: it is computationally simple; it

is applicable to many network architectures including SIANN; it has few restrictions on

the choice of activation functions or network error function.

The second focus of this project is to implement SIANN's and their training algorithms in

MATLAB. The MALAB functions developed in this project allow users to create a

shunting network, compute its outputs for given inputs, and train the network to produce

desired outputs for given input patterns. SIANN's are implemented in a very efficient way

using the new data types introduced in MATLAB 5: structures and cell arrays. The

implementation is very flexible in that new training algorithms can be implemented

without extensive changes to the existing SIANN architecture. All we need to do is to add

new training infurmation fields to the trainParam structure, which can be done easily in

MATLAB, and to write a MABLAB script for the new training algorithm utilising the

training information in trainParam.

Together, these SIANN functions can be used to develop pattern classification

applications based on shunting inhibitory artificial neural networks. The SIANN functions

were applied in chapter 6 to solve XOR and other parity problems, classifY 2-D patterns

and approximate a function.

7.2 Further Directions
One possible follow-up of this project is to develop neural network applications based on

SIANN's and the training methods derived in this project. Two such applications are being

considered: detection of fatal heart beats in medicine and automatic detection of

modulation types in communication. In this project, SIANNs and their training algorithms

are implemented in MATLAB, which is an excellent tool for fast prototyping and

development of mathematical models. However, in order to incorporate SIANNs in real

applications, the algorithms should be implemented in C/C++, preferably in the form of a

class library. This is another step thst can be taken to promote further the work in this

project.

77

Bibliography

[I] Beare, R. & Bouzerdoum A. (1999). Biologically inspired local motion detector

architecture. Journal of Optical Society of America. Vol. 16(9). pp. 2059-2068.

[2] Bouzerdoum, A. (1999). A New Class of High-Order Neural Networks with

Nonlinear Decision Boundaries. Edith Cowan University, Perth, Western Australia

[3] Bouzerdoum, A. (1991). Nonlinear Lateral Inhibitory Neural Networks: Analysis

and Application to Motion Detection. Doctoral dissertation. University of

Washington.

[4] Bouzerdoum, A., & Pinter, B. (1993). Shunting Inhibitory Cellular Neural

Networks: Derivation and Stability Analysis. IEEE Transactions on Circuits and

Systems. Vol. 40(3). pp. 215-221.

[5] Bouzerdoum, A. & Pinter, R. B. (1989). Image motion processing in biological and

computer vision systems. Visual Conununication and Image Processing. Vol. 1199.

pp. 1229-1240.

[6] Chua, L. 0. (1993). The CNN Paradigm. IEEE Transactions on Circuits and

Systems. Vol. 40(3). pp. 215-221.

[7] Demuth, H., & Beale, M. (1998). Neural Network Toolbox. The Math Works, Inc.

[8] Doya, K. (1992). BifUrcation in the learning of recurrent neural network.

Proceedings of the IEEE International Symposium on Circuits and Systems. Vol. 6,

pp. 2777-2780.

[9] Fausett, L. (1994) Fundamentals of Neural Network-Architecture, Algorithms, and

Applications. New Jersey: Englewood Cliffs, Prentice-Hall, Inc.

78

I

[10] Hagan, M.T, & Demuth, H.B, & Beale M. (1996). Neural Network Design. Boston:

PWS Publishing Company.

[II] Hanselman, D., & Littlefield, B. (1998). Mastering MATLAB'"5: A Comprehensive

Tutorial and Reference. New Jersey: Prentice-Hall, Inc.

[12] Harth, E., & Pandya, A. S. (1988). Dynamics of the APOLEX Process: Applications

to the Optimisation Problem. In L. M. Ricciardi (Ed.) Biomathematics and Related

Co!!ljlutational Problems pp. 495-471. Amsterdam: Reidel Publishing.

[13] Hubick, K. T. (I 992). Artificial Neural Networkli in Australia. Commonwealth of

Australia: Department oflndustry, Technology & Commerce.

[14] Kung, S.Y. (1993). Digital Neural Networkli. New Jersey, Englewood Cliff:

Prentice-Hal~ Inc.

[15] Minsky, M. L, & Paper!, S. A. (1988). Perceptrons: An Introduction to

Computational Geometry. Expanded Edition (3"'). Massachusetts: The MIT Press.

[16] Nabet, B., & Pinter, R. B. (1991). Sensory Neural Networks: Lateral Inhibition.

CRC Press, Inc.

(17] Pandy, A. S., & Macy, R.B. (1996). Pattern Recognition with Neural Networkli in

C++. CRC Press.

[18] Patterson, D. W. (1996). Artificial Neural Networkli Theory and Applications.

Singapore: Prentice Hall.

[19] Pinter, R. B. (1985). Adaptation of spatial modulation transfer function via

nonlinear lateral inhibition. Biological Cybernetics. Vol. 51, pp. 285-291.

79

(20] Pontecorvo, C. & Bouzerdoum, A. (1995). Edge Detection Using A Shunting

Inhibitory Cellular Neural Network. Digital Image Computing: Techniques and

Applications. pp. 637-642. Brisbane, Queensland.

[21] Pontecorvo, C. & Bouzerdoum, A. (1997). Edge Detector in Multiplicative Noise

using the Shunting Inhibitory Cellular Neural Network. Proceedings of the

International Conference EANN '97. pp. 281-285. Stockhohn, Sweden.

[22] Redfern, D., Campbell, C. (1998). The MATLAB@5 Handbook. New York: Springer

Verlag Inc.

[23] Refenes, A. N., & Zaidi, A. (1993). Managing Exchange Rate Prediction Strategies

with Neural Networks. In M. Taylor & P. Lisboa (Eds.), Techniques and

Applications ofNeural Networks (pp. I 09-116). London: Ellis Horwood Lhnited.

(24] Reinhardt J., & Muller, B. (1990). Physics of Neural Networks. Berlin: Springer

Verlag.

[25] Taylor, M., & Lisboa, P. (1993). Techniques and Applications of Neural Networks.

London: Ellis Horwood Limited.

[26] Verma, B. (1997). Fast Training of Multilayer Perceptrons. IEEE Transactions on

Neural Networks. Vol. 8 (6), pp. 1314-1319.

80

I

Appendix A SIANN Functions (Chapter 5)

Listing A.1: new siann.m Creating a new SIANN

function net = new_siann{pr, s, tf, btf, ef)
%NEW_SIANN Create a feed-forward shunting inhibitory ANN.
%Syntax
% net = new_siann{pr, [sl s2 ..• sNl), {tfl t£2 ... tfNl), btf, ef)
%

%Input

% pr
% si

Rx2 matrix of min and max values for R input elements
Number of neurons in layer i

% tfi Transfer function for layer i
% btf Backpropagation training function
% ef Error function
%

%Output
% net the new SIANN network
%

%Example
% net= new_siann([O 1; 0 1], [5 2] 1 {'exp' ...

%

%

'pure lin'), 'train_gd 1 ,
1 sse'};

% Creates a net that receives 2 inputs in range from 0 to 1
% It has 2 layers, the first with 5 neuron, transfer function exp
% The second has 2 neuron, transfer function purelin
% The net uses train_gd as training function
% It uses sse to compute error
%

%See also SIM_SIANN, INIT_SIANN, TRAIN SIANN

if nargin < 2
error('Not enough input arguments'}

end
if size(pr,2) ~= 2

error('lst argument must be a two column matrix.')
end
if any(pr(:,l) > pr(:,2))

error('lst argument must have min values in 1st column.')
end
if isa(s, 'cell') & (prod(size{s)) == length(s)}

s = [s{:)];

end

Nl = length {s); % Number of layers excluding the input layer

81

.. --. ·- _,-.... ' -
I

if nargin < 3
tf::: {'exp'};
tf = [tf(ones(l,Nl))J;

end

if nargin < 4
btf = 'train_gd';

end

if nargin < 5
ef::: 'sse';

end

% Architecture
net.numinputs = size(pr,1);
net.numOutputs = s(Nl);
net.numLayers ::: Nl;

for i=1:Nl
net.layers{i}.size::: s(i); %Size of each layer
net.layers{i}.transferFcn = tf{i};% Transfer function of each layer

end

%Weights, biases, decay rates
net.W = cell(Nl,1); % Weights
net.B::: cell(Nl,1); %Biases
net.A = cell(Nl-1,1); %Decay rates

net.W{1} = zeros(net.layers{1}.size, net.numinputs);
net.B{l} = zeros(net.layers{1}.size, 1);
for i = 2:net.numLayers

net.W{i}::: zeros(net.layers{i}.size,net.layers{i-1}.size);
net.B{i} = zeros(net.layers(i}.size, 1);
net.A{i-1} = zeros{net.layers{i-1}.size, 1);

end

net.inputRange = pr;

% Training
net. trainPa:r:am. goal = 0. 01;
net.trainParam.epochs ::: 50;
net.trainParam.show = 25;
net.trainParam.trainFcn = btf;
net.trainParam.errorFcn = ef;

%Learning rates
net.trainParam.lr_w = 0.01;

% Range of input values

82

net.trainParam.lr a 0.01;
net.trainParam.lr b = 0.01;

%Initialise net
net= init_siann(net);

83

Listing A.2: init siann.m Initialising a SIANN

function net=init_siann(net)
%!NIT SIANN Initialize a Shunting Inhibitory Artificial Neural Network
%

%Syntax
% net = init_siann(net)
%

%Description
% returns NET with weights,biases, decay
% rates initialised to random values.
%

%See also SIM_SIANN, TRAIN SIANN

%Randomise net weights, biases, and decay rates
net.W{l} = rand(size(net.W{l}));
net.B{l} = rand(size(net.B{l}));
for i = 2:net.numLayers

net.W{i} = rand{size(net.W{i}));
net.B{i} = rand(size(net.B{i}));
net.A{i-1} = rand(size(net.A{i-1)));

end

%Initialise required parameters according
%to the training function of the network
switch net.trainParam.trainFcn

case 'train_gdm' %gradient descent with momentum
net.trainParam.beta = 0.1;

case 'train_gdv' %variable learning rate
net.trainParam.zeta = 0.003;
net.trainParam.rho = 0.99;

case 'train_gdd' %gradient descent with direct solution
net.trainParam.direct = 2;
%i.e Direct solution takes place after every 2 epochs
%Find and store inverse of transfer function
for i = l:net.n~~Layers

transferinv = 'purelin'; %By default
switch net.layers{i}.transferFcn

case 'exp'
transferinv = 'log';

case 1 pure lin'
transferlnv = 'purelin';

case 'tansig'
transferinv = 'atanh';

case 'logsig'

84

end

end

transfer!nv = 'invlogsig';
case 'sin'

transferinv = 'asin';

net.layers{i}.transferinv = transferinv;

case 'train_apolex'
net.trainParam.delta = 0.01;
net.trainParam.T = 10;

end

85

Listing A.3: Slffi smnn.m Simulating a SIANN

sim_siann(net,P) function [Y, z, D, S]
%SIM_SIANN Simulate a
%

Shunting Inhibitory Artificial Neural Network.

%Syntax:
% [Y, z, D, S] = sim_siann(net, P)

%
%Input:
% NET - Network
% P - Network input
%Output:

% Y - Network output
% z - Output of individual layer (optional, used in training)
% D -Denominator factor a + f(sum) {optional, used in training)
% S - Input sum to each neuron (optional, used in training)
%
%Example
% p = [1 3 6 8; 2 4 7 5];
% net= new_siann([O 3; -1 4], [4 2], {'tansig' 'purelin'});
% Y = sim_siann(net, P)
%

%See also INIT_SIANN, TRAIN_SIANN, NEW SIANN

% Check arguments
if nargin -.::: 2

error ('Not enough input arguments.');
end

% Simulate network
% The number of layers N = net.numLayers;

Ni = size(P,2); % The number of input vectors in
% Storage for N layers' output

the training
z = cell(N + 1,1);
D = cell(N-1,1); % Storage for denominator factor a+ f(sum)
S = cell(N,1);
Z{l) = P;

%

%

Storage for sum W*P
Input set considered

% Z{k) stores the output of layer k-1

as output of layer 0

% Compute the output for all layers except the last layer
for k = 1:N-1

T = net.layers{k).size- size(Z{k},l);
if T > 0

ZT"' [Z{k}; zeros(T,Ni)];
else

ZT = Z{k}(1:net.layers{k}.size, :);
end
S{k) = ~et.W{k} * Z{k};

86

%Weighted sum

set

D{k} = repmat{net.A{k},l,Ni) + .•.
feval(net.layers{k}.transfer~cn,S{k}); %Denominator

Z{k+l} = {ZT + repmat{net.B{k),l,Ni)) ./ D{k};
end

% Computer the output of the last
% layer - a perceptron layer
S{N} = net.W{N} * Z{N} + repmat(net.B{N), 1, Ni);
Z{N+l} = feval(net.layers{N).transferFcn, S{N});
Y = Z{N+l); %Final output

87

Listing A.4: train siann.m Training a SIANN

function [net,tr]=train_siann(net,P,Tl
%TRAIN_SIANN Train a Shunting Inhibitory Artificial Neural Network
%Syntax
% (net,tr] ""train_siann(net,P,T)
%Input
% NET - Network
% p - Network inputs
% T - Network targets
%Output
% NET - New network.
% TR - Training record
%Example
% p [0 0 1 1;

% 1 0 1 0] % input set
% T = [1 0 0 1)

% net = new_siann ([0 1; 0 1], [2 1), { 'purelin'
% 'purelin'}, 'train_gdd');
% net= init_siann(net);
% [net, tr) = train_siann(net,P,T);
% Y = sim_siann(net,P);
%Notes
% Training stops when error is smaller than net.trainParam.goal
% or the number of epochs exceeds net.trainParam.epochs
%See also NEW_SIANN 1 INIT_SIANN, SIM_SIANN, TRAIN GD

% Check arguments
if nargin --= 3

error('Not enough input arguments.');
end
switch net.trainParam.trainFcn

case 'train _gd 1

end

%standard gradient descent
[net,tr] = train_gd(net,P,T);

case 'train_gdm'
%gradient descent with momentum
[net,tr] = train_gdm(net,P,T);

case 'train_gdv'
%gradient descent with variable learning rate
[net,tr] = train_gdv(net,P,T);

case 'train_gdd'
%gradient descent with direct solution
[net,tr] = train_gdd(net,P,T);

case 'train_apolex'
%APOLEX training
[net,tr] = train_apolex(net,P,T);

88

I
Listing A.S: compgrad.m Computing Gradient of Error Function

function [dedw, deda, dedb, e] = compgrad(net,P,'l')
%COMPGRAD Compute gradient of error function
%

Ni = size(P,2); % Number of t~aining sets
% Number of layers N = net.numLayers;

es = cell (N,l);

dedw = cell(N,l);
% Error sensitivity for all layers
% Partial derivative of e with respect to weights

deda
de db

= cell(N,l); % Partial derivative of e with respect to decay rates
= cell(N,l); % Partial derivative of e with respect to biases

for k=l :N

% kth cell is for kth layer
es{k} = zeros(net.layers{k}.size,Ni};
dedw{k} = zeros{size{net.W{k}));
dedb{k) = zeros(size(net.B{k}));

end

for k=l:N-1
deda{k) = zeros(size(net.A{k}));

end

[Y, z, D, S] = sim_siann(net, P); %Compute output
es{N} "" Y - T; ?, Output layer
e = feval(net.trainParam.errorFcn,es{N}); %Compute error

tf = net.layers{N}.transferFcn;
Te = es{N} .* feval(['d' tf], S{N},Z{N+1});
es{N-1} = net.W{N}' * Te; %N -1 layer

for k = N-2:-1:1

end

tf = net.layers{k+1}.transferFcn;
fori= 1:net.layers{k}.size

end

Te = es{k+1).* feval(['d' tf],S{k+l}, ..•
D{k+1} - repmat(net.A{k+1),1,Ni))
.* (-Z(k+2}./ D(k+l}};

es{k}(i,:) = net.W{k+1}(:,i) 1 * Te;
if i <= net.layers{k+l}.size

es{k}(i,:) ""es{k}(i,:) + es{k+l)(i,:)/D{k+1}(i,:);
end

% Compute gradient of e
% wesghts w
% first the output layer

89

I
tf : net.layers {N), transfer Fen;
for i = l:net.layers{N) .size

for j = l:net.layers{N-l}.size
dedw{N) (i, j l = sum(es{N} (i,:)

end

end

feva1 (['d' tf),

* Z{N}(j,:));

% now for inner layers
fork= N-1:-1:1

tf = net.layers{k}.transferFcn;
fori= l:size(net.W{k},l)

for j = l:size{net.W{k},2)
dedw{k}(i,j) =sum (••.

*
S{N)(i,:), Z{N+l}(i,:)) ..•

es{k} (i,:) ...

end

end

end

% Biases b
for k = l:N-1

* (-Z(k+l}(i,:} ./D(k}li,:)} .•.

. * Z{k}(j,:) •••

. * feval(['d' tf),S{k}(i,:),
D(k}(i,:}- net.A(k}(i}}};

dedb(k} = sum(es(k} ./ D(k},2};

end

tf = net.layers{N} .transfer Fen;
dedb{N) = sum(es{N}.* feval(('d' tf], S{N}, Z{N+l}),2);

% Decay rateS' a
for k = l:N-1

deda{k} = sum((es{k} * {-Z(k+l} ./ D{k}}},2};

end

Listing A.&: updatenet.m Updating Net Parameters

function net= updatenet(net,dedw, deda, dedb)
%UPDATENET Given gradient of error, update net parameters
for k = l:net.numLayers

net.W{k} = net.W{k} - dedw{k} * net.trainParam.lr_w; % Wesghts W
net.B{k} = net.B{k) - dedb{k} * net.trainParam.lr_b; % Biases B

end

for k = l:net.numLayers-1 % Decay rates A
net.A{k} = net.A{k}- deda{k} * net.trainParam.lr_a;

end

90

I
Listing A.7: train_gd.m Gradient Descent Algorithm for SIANN

function [net,tr]=train_gd(net,P,T)
%TRAIN GD Train a SIANN using error backpropagation
% with gradient descent
%Syntax
% [net,tr] = train_gd(NET,P,T)

epoch_count = O;
tr = [];

e = Inf;

while (epoch_count <= net.trainParam.epochs)&(e > net.trainParam.goal)
epoch_count = epoch_count + 1;
[dedw, deda, dedb, e] = compgrad(net, P, T); % Compute gradient
net= updatenet(net,dedw, deda, dedb); %Update net
tr = [tr e]; % Record error
if ~rem(epoch_count, net.trainParam.show) % Display progress

fprintf { 'Epoch %4g: Error = %2, 4g\n', epoch_count, e) ;
end

end

91

Listing A.8: train_gdv.m Gradient Descent With V ariabie Learning Rate

function [net,trJ;train_gdv(net,P,T)
%TRAIN GDV Gradient Descent with Variable
%Syntax

Learning Rate

% (net,tr)=train_gdv(net,P,Tl
epoch_count = 0;
tr = [) ; i e = Inf;
e_pre = (];

I

i
net_pre = net; % previous net
zeta = net.trainParam.zeta;
rho = net.trainParam.rho;

while (epoch_count <= net.trainParam.epochs)& (e > net.trainParam.goal)

end

epoch_ count = epoch_count + 1;
[dedw, deda, dedb, e] = compgrad(net,
net= updatenet(net, dedw, deda,dedb);

P, T); %Compute gradient
% Update net

if isempty(e_pre)
e_pre = e;

end
delta e = e - e_pre; % The change in error
if delta e > zeta * e_pre % If error increases too much

%Discard weight change, revert to the previous net
net = net_pre;
%Reduce the learning rates
net.trainParam.lr a = net.trainParam.lr a * rho;

' -net.trainParam.lr_b = net.trainParam.lr b * rho;
net.trainParam.lr w = net.trainParam.lr w * rho;

else

end

%Accept weight
net_pre =net;
e_pre = e;
tr = [tr e];

change
% save the current net
% save previous error
% record error

if ~rem(epoch_count, net.trainParam.show)
fprintf(1 Epoch %4g: Error= %2.4g\n 1 ,epoch_count,e);

end

if delta e < 0
%Increase learning rates if e decreases
net.trainParam.lr a = net.trainParam.lr a I rho;
net.trainParam.lr b = net.trainParam.lr b I rho;
net.trainParam.lr w = net.trainPararn.lr w I rho;

end

92

I
Listing A.9: train_gdm.m Gradient Descent With Momentum

function [net,tr]=train_gdm(net,P,T)
%TRAIN GDM Gradient Descent with Momentum
%Syntax
% [net, tr) =train_gdm(net, P, Tl

epoch_count = 0;
tr = [l ;
e = Inf;

delta w = net.W;
delta b = net.B;

% Change in weights
% Change in biases

delta a= net.A; %Change in decay.rates

%Initialise previous change to 0
for k=l:net.numLayers

% kth cell is for kth layer
delta_w{k) = zeros(size(net.W{k}));
delta_b{k} = zeros(size(net.B{k}));

end
for k=l:net.numLayers-1

delta_a{k} = zeros(size(net.A{k)));
end

while (epoch_count <= net.trainParam.epochs)& (e > net.trainParam.goal)
epoch_count = epoch_count + 1;

end

[dedw, deda, dedb, e] = compgrad{net, P, T); %Compute gradient
tr = [tr e]; %Record error
if ~rem(epoch_count, net.trainPararn.show) % Display progress

fprintf('Epoch %4g: Error= %2.4g\n',epoch_count,e};
end

% Update net parameters
for k = l:net.numLayers

delta_w{k) =- dedw{k} * net.trainPararn.lr w ...
+ net.trainParam.beta * delta_w{k};

net.W{k} = net.W{k} + delta_w{k}; % weights W

delta_b{k} = - dedb{k} * net.trainPararn.lr_b
+ net.trainParam.beta * delta_b{k};

net.B{k} = net.B{k} + delta_b{k}; % biases 8
end
for k = l:net.numLayers-1

end

delta_a(k} =- deda{k} * net.trainParam.lr a .•.
+ net.trainParam.beta * delta_a{k};

net.A{k} = net.A{k} + delta_a{k}; % decay rates A

93

I
Listing A.10: train_gdd.m Gradient Descent With Direct Solution Step

function [net,trJ=train_gdd{net,P,T)
%TRAIN GDD Gradient Descent with Direct Solution Step
warning off
N = net.numLayers;
Ni = size{P,2);

epoch_count = 0;
tr= (];

e = In£;

% Suppress warnings
% Number of layers

while (epoch_count <= net.trainParam.epochs)& {e > net.trainParam.goal}
epoch_count = epoch_count + 1;
[dedw, deda, dedb, e J = compgrad(net, P, T); %Compute gradient
tr = [tr e]; % Record error
if ~rem(epoch count, net.trainParam.show)

fprintf('Epoch %4g: sum squared error= %2.4g\n',epoch_count,e);
end

net= updatenet(net,dedw, deda, dedb);

if -rem(epoch_count, net.trainParam.direct)
%Perform direct solution step
[Y, z, o, S] = sim_siann(net,P);

% Update net

%Solve directly for weights and biases in output layer
%X * A = B -> X = B/A;
A= [Z{N};ones(1,Ni)J;
B = feval(net.layers{N}.transferinv,T);
X = B/A; %Find least squared solution
net.B{N} = X(:,size(X,2)); %Biases in the last column of X

net.W{N} = X(:,l:size{X,2)-l);

%Solve directly for weights in shunting layers
for k = N-1:-1:1

end

end

end

transferrnv = net .layers{ k}. transferrnv;
fori= l:net.layers{k}.size

end

if i <= size(Z{k},l)
G = (Z(k)(i,:)+net.B(k)(i))./Z{k+l)(i,:)- net.A{k)(i);

else
G = net.B{k)(i) ./ Z{k+l)(i,:)- net.A{k)(i);

end

B = feval(transferinv,G);
X= B/Z{k}; %Find least squared solution
net.W{k}(i,:) =X;

94

Listing A.11: train apolex.m APOLEX algorithm

function [net,tr]=train_apolex(net,P,T)
%TRAIN GO Train a SIANN using error backpropagation
% with gradient descent
%Syntax
% [net,tr] = train_gd(NET,P,T)

epoch_count = O;
a11neal_ count = 0;
N = net.numLayers;
tr = [] ;
e = Inf;

ep = 0;
netp = net;

%current error
%previous error

nett = net; %for verification purpose

while (epo~h_count <= net.trainParam.epochs)& (e > net.trainParam.goal)
epoch_coont = epoch_count + 1;
[Y,Z] = sim_siann(net, P); % Compute output
e = feval(net.trainParam.errorFcn,Y-T);
tr = [tr e]; %Record error
if -rem(epoch_count, net.trainParam.show) % Display progress

fprintf('Epoch %4g: Error= %2.4g\n',epoch_count,e);
end

% serialise all net parameters into a single row vector
s = serialise(net.W, net.B, net.A); %current parameters
sp = serialise{netp.W, netp.B, netp.A); %previous parameters

%Compute change in net parameters
delta_s = s - sp;

%Compute covariance between change in net param~ters
%and change in the total error
cov = delta_s * (e- ep);

netp = net; %Store the current copy
ep = e;

%Compute update direction
prob = 1 ./ {1 + exp(2*cov/net.trainParam.T));
R = rand(size(s));
direction = prob > R; %direction is 0 or 1
direction = 2*direction - 1; %direction is -1 or 1;
%Compute update
s = s + direction * net.trainParam.delta;

95

I

%Update net parameters
[w, b, a] = deserialise(net,s);
nett.W = w;

nett.B = b;
nett.A = a;

%Verification step
Y = sim_siann(nett,P);
et = feval(net.trainParam.errorFcn,Y-T);
%Discard the update if error increases
%by more than a fixed factor
if et < net.trainParam.maxincrease*e

net = nett;
end

%Determine temperature for next run
net.trainParam.T = max(abs(cov));

end

96

I
Listing A.12: Other supporting functions

functions = serialise(w, b, a)
%SERIALISE Serialise w, b, a into a single column vector s
%Internal function subject to change
N:::: si:ze(w,l);
s = (];

%Concatenate w, b, a in that order
for i = 1 :N

s = [s; reshape(w{i},prod(size(w{i})),l)];
end

for i = l:N
s = [s; reshape(b{i},prod(size(b{i})),l)];

end

for i = l:N-1
s = [s; reshape(a{i},prod(size(a{i})),l)];

end

function [w, b, a] = deserialise(net,s)
%DESERIALISE Deserialise a single column vector into w, b, a
%Internal function subject to change
%See also SERIALISE

N = net.numLayers;
w = net.W;
b = net.B;
a = net.A;

k = 1;
for i = l:N

w(i} = reshape(s(k: k + prod(size(w{i)))-1), size(w{i}));
k = k + prod(size(w{i}));

end

for i = 1 :N
b{i} = reshape(s{k: k + prod{size{b{it))-1), size{b{i}));
k = k + prod{size{b{i}}};

end

for i = 1:N-1
a{i} = reshape(s(k: k + prod{size(a{i}))-1), size(a{i}));
k = k + prod(size(a{i}));

end

function Y = dexp(X,D)
%Derivative of y: exp(x)
Y = exp(X);

97

Appendix B Programs to test SIANN Functions (Chapter 6)

Listing 8.1: chapter6 _l.m XORproblem

%Train SIANN to recognise XOR pattern
%Compare performance of five training algorithms for SIANN
%Compare SIANN and MLP
clear
P=[OOll;

1 0 1 0] % input set
T = (1 0 0 1] % target

%Create a SIANN with two shunting neurons
%Change train_gd to any of the following training functions
%train_gdd, train_gdv, train_gdm, train_apolex, train_gd
net_begin = new_siann([O 1; 0 1], [2 1], {'exp' 'purelin'},'train_gd');

%Initialise network weights, biases, decay rates
%All SIANN's have the same weights, biases, decay rates initially
net_begin = init_siann(net_begin);
net_begin.trainParam.epochs = 1000;
net_begin.trainParam.goal = 0.1;

%SIANN to be trained with GDM
net_gdm = net_begin;
net_gdm.trainParam.trainFcn ='train gdm';
net_gdm = init_siann(net_gdm);
net_gdm.W = net_begin.W;
net_gdm.B = net_begin.B;
net_gdm.A = net_begin.A;

%SIANN to be trained with GDV
net_gdv = net_begin;
nGt_gdv.trainParam.trainFcn = 'train_gdv';
net_gdv = init_siann(net_gdv);
net_gdv.W = net_begin.W;
net_gdv.B = net_begin.B;
net_gdv.A = net_begin.A;

%SIANN to be trained with GOD
net_gdd = net_begin;
net_gdd.trainParam.trainFcn = 'train_gdd';
net_gdd = init_siann(net_gdd);
net_gdd.W = net_begin.W;
net_gdd.B = net_begin.B;
net_gdd.A = net_begin.A;

98

%SIANN to be trained with APOLEX
net_apolex = net_begin;
net_apolex.trainParam.trainFcn = 'train_apolex';
net_apolex = init_siann(net_apolex);
net_apolex.W = net_begin.W;
net_apolex.B = net_begin.B;
net_apolex.A = net_begin.A;

%MLP to be trained using error-backpropagation
%NOTE: For.MLP we use functions included
%in the MATLAB's Neural Network Toolbox
net_mlp = newf£([0 1; 0 1), [2 1], ('tansig' 'purelin'}, ...

'traingd 1
, 'learngd', 'sse');

net_mlp.trainParam.epochs = 1000;
net_mlp.trainParam.goal = 0.1;
net_mlp_begin = net_mlp; %Save the initial network

%TRAIN SIANN's
%Training with gradient descent
fprintf (1 \nTrain SIANN using gradient descent •.. \n 1);

net_gd = net_begin;
t1 = clock;
[net_gd, tr_gd] = train_siann(net_gd,P,T);
t2 = clock;
t_gd = etime(t2,tl);
Y_gd = sim_siann(net_gd,P);

%Compute training time
%Compute output

%Train SIANN usinggradient descent with momentum
fprintf('\nTrain SIANN using gradient descent & momentum ..• \n');
tl = clock;
[net_gdm, tr_gdm] = train_siann(net_gdm,P,T); %train SIANN
t2 = clock;
t_gdm = etime(t2,t1); %Compute training time
Y_gdm = sim_siann(net_gdm,P); %Compute output

%Train SIANN using gradient descent & variable learning rate
fprintf(1 Train SIANN using gradient descent&variable learning rate\n');
tl = clock;
[net_gdv, tr_gdv] = train_siann(net_gdv,P,T); %train SIANN
t2 = clock;
t_gdv = etime(t2,tl); %Compute training time
Y_gdv = sim_siann(net_gdv,P); %Compute output

%Train SIANN using gradient descent & direct solution step
fprintf('\nTrain using gradient descent & direct solution step\n');
tl = clock;

99

[net_gdd, tr_gdd] = train_siann(net_gdd,P,T);%train SIANN
t2 = clock;
t_gdd = etime(t2,t1); %Compute
Y_gdd = sim_siann(net_gdd,P); %Compute

training time
output

%Train SIANN using the APOLEX algorithm
fprintf('\nTrain using APOLEX a1gorithm •.. \n');
t1 = clock;
%train SIANN
[net_apolex, tr_apo1ex] = train_siann(net_apolex,P,T);
t2 = clock;
t_apolex =

Y_apolex =

etime(t2,t1); %Compute
sim_siann(net_apolex,P); %Compute

%Train MLP using error-backpropagation

training
output

time

fprintf('\nTrain MLP using error-backpropagaticn •.. \n');
tl = clock;
figure (3)
[net_mlp, tr_mlp] = train(net_mlp, P,T);%train MLP
t2 = clock;
t_mlp = etime(t2,tl);
Y_mlp = sim(net_mlp1 P);

%CHECK CLASSIFICATION RESULT

%Compute training time
%Compute output

%Compute the decision boundaries for the five SIANN's and the MLP
[pl, p2] = meshgrid{-.5:0.1:1.5, -.5:0.1:1.5); %Input space
i1 ~ reshape(pl,l,prod(size(pl)));
i2 = reshape(p2,1,prod(size(p2)));

%Output of SIANN trained with GD
y_gd = sim_siann(net_gd, [il;i2]);
z_gd =reshape(y_gd,size(p1));

%Output of SIANN trained with GDV
y_gdv = sim_siann(net_gdv, [i1;i2]);
z_gdv =reshape{y_gdv,size(p1));

%Output of SIANN trained with GDM
y_gdm = sim_siann(net_gdm, [i1;i2]);
z_gdm =reshape(y_gdm,size{p1));

%Output of SIANN trained with GDD
y_gdd = sim_siann(net_gdd, [i1;i2]);
z_gdd =reshape{y_gdd,size(p1));

%Output of SIANN trained with APOLEX
y_apolex = sim_siann(net_apolex, [il;i2]);

100

z_apolex =reshape(y_apolex,size(pl));

%Output of MLP trained with GD
y_mlp = sim(net_mlp, [il;i2]);
z_mlp =reshape(y_mlp,size{pl));

%Draw decision boundaries
figure(l)
subplot{3,2,1) %MLP
plot(0,0, 1 .b',l,l,'.b',O,l,'xr',l,O,'xr'), hold on
axis{ [-.5 1.5 -.5 1.5])
set (gca, 1 XTickLabel', []) ;
title ('MLP:gd')
contour(pl,p2,z_mlp, [,5 .5],'k'),hold off

subplot(3,2,2) %SIANN with GD
plot(O,O, '.b',l,l,'.b',O,l, 'xr',l,O,'xr'),hold on
contour(pl,p2,z_gd, [.5 .5),'b');
axis([-.5 1.5 -.5 1.5])

set (gca, 'XTickLabel', []) ;
title (1 SIANN:gd 1);

subplot(3,2,3) %SIANN with GDV
plot(0 1 01 '.b' 1 1,1, '.b',0 1 1, 'xr' 1 1,01 'xr'),hold on
contour(pl,p2,z_gdv, (.5 .S],'k');
axis([-.5 1.5 -.5 1.5])
set (gca, 'XTickLabel', []);
ylabel ('p_2') 1 title (1 SIANN: gdv');

subplot(3 1 2,4) %SIP.NN with GDM
plot(O,O, '.b',l,l,'.b' 1 0,l,'xr',l,0 1 'xr'),hold on
contour{p1,p2,z_gdm1 (.5 .SJ, 'm');
axis((-.5 1.5 -.5 1.5])

set (gca 1 'XTickLabel', [J) ;
title (1 SIANN:gdm');

subplot (3, 2, 5) %SIANN with GDD
plot (0 1 0 1 ' .b 1 ,1,1,' .b' ,0,1 1

1 xr' 1 1,0 1 'xr') ,hold on
contour(p1 1 p2,z_gdd, (.5 .5] 1 'g');
axis([-.5 1.5·-.5 1.5])
xlabel (1p_1') 1 title('SIANN:gdd');

subplot(3,2,6) %SIANN with APOLEX
plot(O,O,'.b' 1 1,1,'.b',O,l,'xr',l,01 'xr'), hold on
contour(p1,p2,z_apo1ex, [.5 .5), 'r'};
axis([-.5 1.5 -.5 1.5])
xlabel ('p_l') 1 title (' SIANN:apolex')

!01

%Compare training methods for SIANN's and MLP
%Plot the error versus epoch
figure(2)
plot(O:length(tr_mlp.perf)-l,tr_mlp.perf, 'c',

O:length{tr_gd)-l,tr_gd, 'b', •..
O:length(tr_gdv)-l,tr_gdv, 'k',
O:length(tr_gdm)-l,tr_gdm,'m', ..•
O:length(tr_gdd)-l,tr_gdd, 'g', ...
O:length(tr_apolex)-l,tr_apolex, 'r');

legend{'MLP:gd', 'SIANN:gd', 'SIANN:gdv', 'SIANN:gdm', 'SIANN:gdd',
'SIANN:apolex');
xlabel{'Epoch'}, ylabel('Error')
title('Error for XOR problem- Goal=O.l')

%Save results of the training session
%save chapter6_1.mat

102

Listing 8.2: chaptcr6 _ 2.m Parily Problems

%Compare SIANN and MLP in even-parity finding problems
clear all

%Training data
P3 = binwords(3); % input set 3-bit

T3 = rem(sum(P3,1),2); % even parity 3-bit

P4 = binwords(4); % input set 4-bit

T4 = rem(sum(P4,1),2); % even parity 4-bit

PS = binwords(S); % input set 5-bit

TS = rem(sum(PS,l),2); % even parity 5-bit

P6 = bin words (6); % input set 6-bit
T6 = rem(sum{P6,1),2); % even parity 6-bit

%Train SIANN to find 3-bit parity
fprintf('\nTrain SIANN to solve 3-bit parity ... \n');
net siann3"" new_siann([zeros(3,1) ones(3,1)], [7 1], ...

{ 'exp' 'purelin' } , 'train_gdd') ;
net siann3 = init_siann(net_siann3};
net_siann3.trainParam.show = 1;
net_siann3.trainParam.epochs = 1000;
net_siann3.trainParam.goal = .001;
net_siann3_begin = net_siann3;
[netnet_siann3, tr_siann3] = train_siann(net_siann3,P3,T3);

%Train SIANN to find 4-bit parity
fprintf('\nTrain SIANN to solve 4-bit parity ••. \n');
net siann4 = new_siann([zeros(4,1) ones(4,1)], (15 1], .•.

{
1 exp 1 1 purelin 1

},
1 train_gdd');

net siann4 = init_siann(net_siann4);
net siann4.trainParam.show = 1;
net_siann4.trainParam.epochs = 1000;
net_siann4.trainParam.goal = .1;
net siann4.trainParam.direct = 1;
net_siann4_begin = net_siann4;
[net_siann4, tr_siann4] = train_siann{net_siann4,P4,T4);

%Train SIANN to find 5-bit parity
fprintf(1 \nTrain SIANN to solve 5-bit parity ••. \n 1

);

net_siann5 = new_siann([zeros(5,1) ones(5,1)], [311],
{ 'exp' 1 purelin 1 ~, 1 train_gdd 1);

net_siann5 = init_siann(net_siann5);

103

I

net_siannS.trainParam.show = 1;
net_siannS.trainParam.epochs = 1000;
net_siannS.trainParam.goal = .1;
net_siannS.trainParam.direct = 1;
net_siann5_begin = net_siannS;
[net_siann5, tr_siann5) = train_siann(net_siann5,P5,T5);

%Train SIANN to find 6-bit parity
fprintf('\nTrain SIANN to solve 6-bit parity •.. \n');
net siann6 = new_siann([zeros(6,1) ones(6,1)], [63 1], ..•

{' exp' 'purelin'}, 'train_gdd' J;
net siann6 = init_siann(net_siann6);
net_siann6.trainParam.show = 1;
net_siann6.trainParam.epochs = 1000;
net_siann6.trainParam.goal = .li

net_siann6.trainParam.direct = 1;
net_siann6_begin = net_siann6;
[net_siann6, tr_siann6] = train_siann(net_siann6,P6,T6);

%Train MLP to find 3-bit parity
fprintf('\nTrain MLP to solve 3-bit parity ..• \n');
net_mlp3 = newff([zeros(311) ones(3,1)], [5 lJ1 •.•

{'tansig' 'purelin'}, 'trainlm', '' 'sse');
net_mlp3 = init(net_mlp3);
net_rnlp3.trainPararn.show = 1;
net_rnlp3.trainPararn.epochs = 1000;
net_rnlp3.trainPararn.goal = .1;
net_rnlp3_begin = net_rnlp3;
[net_mlp3, tr_rnlp3] = train(net_rnlp3,P3,T3);

%Train MLP to find 4-bit parity
fprintf('\nTrain MLP to solve 4-bit parity •.. \n');
net_mlp4 = newff([zeros(411) ones(4,1)], [20 1], •..

{ 'tansig' 'pure lin'} 1 'trainlrn', ' ' 1 'sse') ;
net_mlp4 = init(net_rnlp4);
net_mlp4.trainPararn.show = 1;
net_mlp4.trainParam.epochs = 1000;
net_rnlp4.trainParam.goal = .1;
net_mlp4_begin = net_mlp4;
[net_rnlp4, tr_mlp4] = train(net_rnlp4,P41T4);

%Train MLP to find 5-bit parity
fprintf('\nTrain MLP to solve 5-bit parity ••. \n');
net_mlp5 = newff([zeros(51l) ones(5,1)], [25 1], •••

{'tansig' 'purelin'}, 'trainlrn','', 'sse');
net_mlp5 c init(net_mlp5);
net_mlp5.trainParam.show = 1;

104

net_mlp5.trainParam.epochs = 1000;
net_mlpS.trainParam.goal = .1;
oet_mlp5_begin = net_mlp5;
[net_mlp5, tr_mlp5] = train(net_mlp5,P5,T5);

%Train MLP to find 6-bit parity
fprintf('\nTrain MLP to solve 6-bit parity ••• \n');
net_mlp6 = newff([zeros(6,1) ones(6,1)], (70 1] 1 •••

{ 'tansig' 1 purelin') 1
1 trainlm 1 ,

1
' 1

1 sse 1);

net_mlp6 = init(net_mlp6);
net_mlpG.trainParam.show = 1;
net_mlpG.trainParam.epochs = 1000;
net_mlp6.trainParam.goal = .1;
net_mlp6_begin = net_mlp6;
[net_mlp6, tr_mlp6] = train(net_mlp6,P6,T6);

%Plot the error versus epoch
subplot(2,2,1)
plot(O:length(tr_mlp3.perf)-1 1 tr_rnlp3.perf, 'r 1

,

O:length{tr_siann3)-l,tr_siann3, 1 b')
set(gca, 'XTick', [0:1:max(length(tr_rnlp3.perf),length(tr_siann3))]);
title (1 3-bit even parity')
ylabel(1 Error'),legend('MLP: 1-5-1', 'SIANN: 1-7-1')

subplot {2, 2,2}
plot(O:length(tr_mlp4.perf)-1,tr_rnlp4.perf, 'r', ...

O:length(tr_siann4)-1,tr_siann4, 'b 1
)

set(gca, 1 XTick', (O:l:max(length(tr_mlp4.perf),length(tr_siann4))]);
title('4-bit even parity')
ylabel('Error'),legend('MLP: 1-20-1', 'SIANN: 1-15-1 1

);

subplot(2,2,3)
plot(O:length(tr_mlp5.perf)-1,tr_mlp5.perf, 'r 1

, •••

O:length(tr_siann5)-1 1 tr_siann5, 'b')
set(gca, 'XTick', [0:1:max(length(tr_mlp5.perf),length(tr_siann5))]);
title (1 5-bit even parity')
xlabel ('Epoch') , ylabel (1 Error 1)

legend('MLP: 1-25-1', 'SIANN: 1-31-1');

subplot(2,2,4)
plot(O:length(tr_mlp6.perf)-l,tr_mlp6.perf, 'r',

O:length(tr_siann6)-1,tr_siann6, 1 b')
...

set(gca, 'XTick', [0:1:rnax(length(tr_mlp6.perf),length(tr_siann6))]);
title('6-bit even parity')
xlabel ('Epoch') , ylabel ('Error')
legend('MLP: 1-70-1', 'SIANN: 1-63-1');
%save chapter6_2 %Save the result of this training session

105

Llstln~ 8.3: chapter6_3.m Pattern Classification Example

%Train a SIANN to classify two classes
\of points on 2-dimensional space

%Class 0 consists of (hl,vl), (h3,v3), (h5,v5)
%h stands for horizontal
%v stands for vertical
clear
hl 1 + 0.4* rand(l,40) - 0.2;
vl = 5 + 0.4 * rand{l,40) - 0.2;

h3 • 2.5 + 0.4* rand(l,40) - 0.2;
v3 • 1 + 0.4 • rand(!, 40) - 0.2;

h5 • 4.5 + 0.4* rand(l,40) - 0.2;
v5 • 5 + 0.4 • rand(!, 40) - 0.2;

%Class 1 consists of (h2,v2), {h4,v4), {h6,v6)
h2 • 1 + 0.4' rand(1,40) - 0.2;
v2 = 2 + 0.4 * rand(l,40) - 0.2;

h6 • 5 + 0.4* rand(1,40) - 0.2;
v6 • 1 + 0.4 * rand(l, 40) - 0.2;

h4 • 2.5 + 0.4* rand(l,40) - 0 .2;
v4 • 4 + 0.4 * rand(l,40) - 0.2;

C1 h • [hl h3 h5]; %Class 0
Cl v • (vl v3 vS];

C2 h • [h2 h4 h6]' %Class 1
C2 v • [v2 v4 v6];

Ch • [Cl h C2_h] ;
Cv = [Cl_v C2_v];
C = (zeros(size(Cl_h)) ones(size(C2 h))]; %Correct class id
NurnPatterns = length(C);

%Visualise points in class 0 and 1
plot(Cl h,Cl v,'.b',C2 h,C2 v,'hr');
title('Training a SIANN to Classify these points');
axis([O 6 0 6]), xlabel{'h'), y!abel('v')
waitforbuttonpress

net cols = cell(lOO,l);
res cole = [];

%Collection of nets
%Collection of results

%First, create a SIANN 1-6-1
net= new siann([-10 10; -10 10], [6 1], {'exp'
'purelin'}, 'train gdd');
net= init_siann(net);
net.trainParam.epochs = 10;
net.trainParam.show = 100;
net.trainParam.goal = 0.1;

106

I

I

I

net.trainParam.direct ~ 1;

%Second, prepare training data
%bv selecting 3 random points from each classes
i = 1 + floor{39 * rand(6,1));
%Inputs
P = [h1(i(1)) h2ii(211 h3(i(3)) h4(i(4)) hS(i(S)) h6(i(6)); .•.

v1(i(1)) v2(i(2)) v3(.i(3)) v4(i(4)) vS(i(S)) v6(i(6))];
%Targets
T = [0 1 0 1 0

%Third, train the net to recognise training set
%During training, display the decision boundary
%so that we can see how SIANN 'learns' to classify
%All points in the 2-D space
(h, v] = meshgrid(0:0.1:6, 0:0.1:6);
hl = reshape(h,l,prod(size(h)));
vl = reshape(v,l,prod(size(v}));

NurnCor = O;
NumTrial = 0;
while NumCor < NumPatterns

NumTrial = NumTrial + 1; % Number of trials
%Randomise net weights, biases, and decay rates
net.W{l} = rand(size(net.W{l}));
net.B{l} = rand(size(net.B(l}));
for i = 2:net.numLayers

net.W{i} = rand(size(net.W{i}));
net.B{i} = rand(size(net.B{i}));
net.A{i-1} = rand(size(net.A{i-1}));

end

%Train the net
net= train_siann(net,P,T);

1 I ;

%Compute the output of SIANN for all points in 2-D space
y = sirn_siann(net, [hl;vl]);
y = reshape(y,size{h));

%Visualise points in class 0 and 1
plot(Cl_h,Cl_v,' .b',C2_h,C2_v,'hr');
title('Training a SIANN to classify these points');
axis([O 6 0 6]), hold on;

%Compute the output of SIANN for the two classes of points
Output= sim_siann(net, [Ch;Cv]);
Output= hardlirn(Output- 0.5); %Threshold output
NurnCor = sum(Output ==C); %Number of correct classification

s = sprintf('Trial %g: No. correct class. %g/%g', NumTrial, NumCor,
NumPatterns) ;

%Draw the decision boundary of the trained net
%The output threshold is .5, that is if the output < .5
%then the point is in class 0, otherwise it is in class 1
contour(h,v,y, [0.5 O.SJ,'b');
grid, xlabel('h'), ylabel('v'), title(s), hold off

107

I

end

net_cols{NumTrial} :
res_cols = [res_cols
pause(l)
%waitforbuttonpress

net; %Save the for later analysis
NumCor];

%Pause for 1 second
%Or wait for user to press a key

%Save the results of this session
%save chapter6_3

108

I

Llatlng 8.4: chapter6_ 4.m Function Approximation Example
--------------~--------~-----

%Train SIANN for function approximation
%Basically, a network is presented with some sampled points
%of a curve. It is asked to learn the training points
%and then generate an estimate of the original function
clear all

%Function to be approximated
X= 0:0.01:1;
f = 0.1 + 1.2*x + 2.8 * x .* sin(4*pi* x .* x);

%First training set is taken at 11 regular points x = 0, 0.1, ... , 1
Pl ~ x(l:l0:101);
Tl ~ f(l:l0:101);
%Second training set is taken at 21 regular points x = 0, 0.05, ... , 1
P2 ~ x(l:l0:101);
T2 ~ f(l:l0:101);
%Third training set is taken randomly (40 points)
Ind =floor(!+ (length(x) -1) * rand{l,40)}; %Random indices to x
P3 = x(Ind);

T3 ~ f(Ind);

%Train SIANN using the first training set
fprintf('\nTraining SIANN with 11 regularly spaced data points .•. \n');
net_siann1 = new_siann([O 1], [10 1], {'exp' 'purelin'}, 'train_gdd');
net_siann1 = init_siann(net_siann1);
net_siann1.trainParam.show = 1;
net_siann1.trainParam.epochs = 20;
net_siannl.trainParam.goal = .1;
net siann1.trainParam.direct = 1;
net_siann1_begin c net_siann1;
[net_siann1, tr_siann1] = train_siann(net_siann1,P1,T1);

%Train MLP using the first training set
fprintf('\nTrain MLP with 11 regularly spaced data points ••. \n');
net_mlp1 = newff([O 1], [10 1], {'tansig' 'purelin'},'trainlm', '',
'sse');
net_mlp1 = init(net_mlp1);
net_m1p1.trainParam.show = 1;
net_mlpl.trainParam.epochs = 20;
net_mlp1.trainParam.goal = .1;
net_mlpl_begin = net_mlp1;
figure (1)
[net_m1p1, tr_mlpl] = train(net_mlp1,Pl,Tl);

109

%Check result for the first training set
f siannl = sim_siann(net_siannl,x);
f_mlpl = sim(net_mlpl, x);

error_siannl = mse(f_siannl
error mlpl = mse(f_mlpl

- f);

- f);

s siann = ['E_S_I_A_N_N =

s_mlp = ['E_M_L_P

sprintf('%g',error_siannl)];
sprintf ('%g', error_mlpl)] ;

plot{x,f, 'b',x,f_siannl, 'k',x,f_mlpl,'.-r');
title('ll regular training points');
legend('Actual function', s_siann, s_mlp);
axis([O 1 -4 6]), xlabel('x'), ylabel('f'),grid

%Train SIANN using the second training set
fprintf('\nTraining SIANN with 21 regularly spaced data points ..• \n');
net_siann2 = new_siann([O 1], [20 1], {'exp' 'purelin'},'train_gdd');
net_siann2 = init_siann(net_siann2);
net siann2.trainParam.show = 1;
net_siann2.trainParam.epochs = 20;
net_siann2.trainParam.goal = .1;
net siann2.trainParam.direct = 1:
net_siann2_begin = net_siann2;
[net_siann2, tr_siann2] = train_siann(net_siann2,P2,T2);

%Train MLP using the second training set
fprintf('\nTrain MLP with 21 regularly spaced data points ..• \n');
net_mlp2 = newff([O 1], [20 1], {'tansig' 'purelin'),'trainlm', '',
'sse');
net_mlp2 = init(net_mlp2);
net_mlp2.trainParam.show = 1;
net_mlp2.trainParam.epochs = 20;
net_mlp2.trainParam.goal = .1;
net_mlp2_begin = net_mlp2;
figure(2)
[net_mlp2, tr_mlp2) = train{net_mlp2,P2,T2);

%Check result for the second training set
f siann2 = sim_siann(net_siann2,x);
f_mlp2 = sim(net_mlp2,x);

error_siann2 = mse(f_siann2
error_mlp2 = mse(f_mlp2
s siann = ['E_S_I_A_N_N =
s_mlp = ['E_M_L_P

- f);

- f) ;

sprintf('%g',error_siann2)];
sprintf('%g',error_mlp2)];

110

plot (x, f, 'b 1 , x, f _ siann2, ' k 1 , x, f _ mlp2, 1
• -r 1

) ;

title('21 regular training points');
legend('Actual function', s_siann, s_mlp);
axis([O 1 -4 6]), xlabel{'x'), ylabel('f'),grid

%Train SIANN using the third training set
fprintf('\nTraining SIANN with randomly chosen data points ... \n');
net_siann3 = new_siann([O 1], (40 1), {'exp' 'purelin'},'train_gdd');
net_siann3 = init_siann{net siann3);
net siann3.trainParam.show = 1;
net_siann3.trainParam.epochs = 20;
net_siann3.trainParam.goal = .1;
net siann3.trainParam.direct = 1;
net_siann3_begin = net_siann3;
(net_siann3, tr_siann3] = train_siann(net_siann3,P3,T3);

%Train MLP using the third training set
fprintf('\nTrain MLP with randomly chosen data points ..• \n');
net_mlp3 = newff([O 1], [40 1], {'tansig' 'purelin'}, ...

'trainlm', '', •sse');
net_mlp3 = init(net_mlp3);
net_mlp3.trainParam.show =

net_mlp3.trainParam.epochs
net_mlp3.trainParam.goal = .1;
net_mlp3_begin = net_mlp3;

1· '
= 20;

figure(3)
[net_mlp3, tr_mlp3) = train(net_mlp3,P3,T3);

%Check result for the third training set
f siann3
f_mlp3

= sim_siann(net_siann3,x);
= sim(net_mlp3,x);

error_siann3 = mse(f_siann3
error_mlp3 = mse(f_mlp3

- f);

- f) ;

s siann = ['E_S_I_A_N_N =

s_mlp = ['E_M_L_P =
' sprintf('%g',error_siann3)];

sprintf (' %g', error_mlp3)] ;

plot (x, f, 'b', x, f_siann3, 'k' ,x, f_mlp3, '. -r');
title('40 randomly chosen training points');
legend('Actual function', s_siann, s_mlp);
axis([O 1 -4 6]), xlabel('x'), ylabel('f'),grid

%save chapter6_4 %Save data in this session

Ill

	Training Methods for Shunting Inhibitory Artificial Neural Networks
	Recommended Citation

	Training Methods for Shunting Inhibitory Artificial Neural Networks

