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Abstract 

Associative neural networks can be classified by their encoding concepts. Accordingly, 

the main classes of models are distributed encoding (as Hopfield model and bidirec-

tional associative memory (BAM)) and direct encoding (as Kohonen map). All these 

networks realize the associative recall processing — even with a noisy/partial input 

of a stored item, the network can recall the whole stored item. Among various mod-

els, the BAM and Kohonen map individually has some special features (simultaneous 

hetero- and autoassociative recollections for the BAM，and ordering preserve for the 

Kohonen map) which arouse a lot of scholars to investigate in different aspects. The 

objectives of this thesis are: 1) to examine the statistical properties of BAM and 

develop the learning algorithms for the BAM, and 2) to develop new applications of 

Kohonen map based on its ordering property. 

The BAM is a two-layer heteroassociative memory. It uses bidirectionality (for-

ward and backward information flow between the two layers) to achieve the hetero-

and autoassociative recollections simultaneously. For any real connection matrix, it 

reaches a steady state during recall. Up to now, only a few theoretical analysis about 

its statistical properties have been reported. We will examine three statistical prop-

erties of BAM: l)the memory capacity, 2)the number of errors in the retrieval pairs, 

and 3)the attraction basin for the worst case errors. Also, we will investigate how the 

ratio r 二 £ between the dimensions of the two layers affects its statistical properties, 
n 

where p and n are the numbers of neurons, in the two layers. By studying the statis-

tical properties, one can deal with the recall performance of BAM in a more rigorous 

manner. When a small number of errors are allowed in the retrieval pairs, the lower 

bound of the memory capacity can grow as far as arn7 where is a constant which 
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depends on the value of r. The number of errors in the retrieval pairs is bounded by 

0(exp ( - 2 ( 1；咖 )n ) when the number of library pairs is an. Also, each library pair 

has a small attraction basin for the worst case errors. For example, when r — 1 and 

the number of library pairs is small，the lower bound of the attraction basin is about 

0.0068n. 

Moreover, we extend the analysis to the second order BAM, as well as the general 

higher order BAM. The lower bound of the memory capacity of the second order BAM 

can grow as far as arn2. The number of errors in the retrieval pairs is bounded by 

0(exp (―啡；:’)n) when the number of library pairs is an2. Also, each library pair 

has a small attraction basin for worst case error. For example, when r 二 1, the lower 

bound of the attraction basin is about 0.00587n for small number of library pairs. 

Small memory capacity and no guarantee of correct recall (under noisy initial 

input) are two main problems of the original BAM encoding strategy. Hence, four 

new encoding methods are proposed to improve the recall performance, including the 

memory capacity and the error correction capability . In general, these four methods 

push the memory capacity to the maximum (or near maximum). The properties of 

these four encoding methods and the other existing methods will also be discussed 

and illustrated via computer simulations. 

After investigating several aspects of BAM under the non-incremental encoding 

method, we will also examine its statistical storage behavior under the forgetting 

learning rule which is an incremental encoding method. The guideline (in favour of 

the most recent library pairs) for choosing the forgetting constant in the rule is also 

presented. 

The Kohonen map is a self-organized network in which a neighborhood structure 

is introduced among the codevectors before learning. After learning, the network will 

have a nice property: ordering preserve. That is, when two codevectors are neighbors 

of each other, their Euclidean distance is usually small. In the field of communications, 

there is also a similar neighborhood structure among the channel waveforms. Based 

on this similarity, we will present three new cross-relative applications of Kohonen 

m a p for data compression and communications. The united goal is to design robust 
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transmission systems for vector-quantized data under noisy channel. 

Firstly, we use the neighborhood structure of Kohonen map to simplify the de-

sign process of a trellis type vector quantizer. The performance of our approach is 

comparable to that of the conventional trellis type vector quantizer. Secondly, we use 

the neighborhood structure of Kohonen map to carry out the association between the 

codevectors and the channel waveforms. By considering the association, the impulsive 

noise in the received data can be greatly reduced even if the communication channel 

is noisy. From the computer simulation，with the same root-mean-squared-error in 

the received data, our approaches achieve about 4-5 dB gain (signal-to-noise-ratio in 

the channel). Finally, based on the concepts of the above two applications, we present 

an error control scheme for the transmission of vector-quantized data such that the 

impulsive noise can be further reduced. To develop this error control scheme, identi-

cal trellis is used in both the trellis type vector quantizer and the error control block. 

To reduce the impulsive noise, the association between the codevectors and channel 

waveforms in this error control scheme is based on the concept of the second appli-

cation mentioned above. The advantage of our approaches is that we do not need to 

design the systems again even though we use a new codebook in the systems. 

. v 

__••••___i»«丨丨 iiiii" _iriT——— 



Contents 

1 Introduction 1 

1.1 Background of Associative Neural Networks . . . 1 

1.2 A Distributed Encoding Model: Bidirectional Associative Memory . . » 3 

1.3 A Direct Encoding Model: Kohonen Map • 6 

1.4 Scope and Organization 9 

1.5 Summary of Publications . . . . . 13 

1 Bidirectional Associative Memory: Statistical Proper-
ties and Learning 17 

2 Introduction to Bidirectional Associative Memory 18 

2.1 Bidirectional Associative Memory and its Encoding Method . . . . . . 18 

2.2 Recall Process of BAM - • . 20 

2.3 Stability of BAM 22 

2.4 Memory Capacity of BAM . . • 2 4 

2.5 Error Correction Capability of BAM * . 28 

2.6 Chapter Summary 29 

3 Memory Capacity and Statistical Dynamics of First Order B A M 31 
Ol 

3.1 Introduction ° 
. OA 

3.2 Existence of Energy Barrier . . . 

3.3 Memory Capacity from Energy Barrier 4 4 

3.4 Confidence Dynamics 49 

• vi 

ilMmaiMFTiniifi fflFfifW'I --



3.5 Numerical Results from the Dynamics 63 

3.6 Chapter Summary 68 

4 Stability and Statistical Dynamics of Second order B A M 70 

4.1 Introduction 70 

4.2 Second order BAM and its Stability 71 

4.3 Confidence Dynamics of Second Order BAM 75 

4.4 Numerical Results 82 

4.5 Extension to higher order BAM . . 90 

4.6 Verification of the conditions of Newman's Lemma . 94 

4.7 Chapter Summary 95 

5 Enhancement of B A M 97 

5.1 Background ^ . . . . . . 97 

5.2 Review on Modifications of BAM . . 101 

5.2.1 Change of the encoding method 101 

5.2.2 Change of the topology 105 

5.3 Householder Encoding Algorithm . . . * . » . . , . . . . ， . 》 , • . . . 107 

5.3.1 Construction from Householder Transforms 107 

5.3.2 Construction from iterative method 搬 

5.3.3 Remarks on HCA I l l 

5.4 Enhanced Householder Encoding Algorithm 112 

5.4.1 Construction of EHCA … . . . . . . … 1 1 2 

5.4.2 Remarks on EHCA 1 1 4 

5.5 Bidirectional Learning 115 

5.5.1 Construction of BL . . 115 

5.5.2 The Convergence of BL and the memory capacity of BL . ... 116 

5.5.3 Remarks on BL 1 2 0 

5.6 Adaptive Ho-Kashyap Bidirectional Learning 1 2 1 

5.6.1 Construction of AHKBL 1 2 1 

5.6.2 Convergent Conditions for AHKBL 1 2 4 

- vii 

•• rnmrnmiumanimiinil'liw 11 I il丨丨 IliFTTITTT" 



5.6.3 Remarks on AHKBL 125 

5.7 Computer Simulations 126 

5.7.1 Memory Capacity 126 

5.7.2 Error Correction Capability . 130 

5.7.3 Learning Speed .157 

5.8 Chapter Summary 158 

6 B A M under Forgetting Learning 160 

6.1 Introduction 160 

6.2 Properties of Forgetting Learning 162 

6.3 Computer Simulations 168 

6.4 Chapter Summary 168 

II Kohonen Map: Applications in Data compression and 
Communications 170 

7 Introduction to Vector Quantization and Kohonen Map 171 

7.1 Background on Vector quantization 171 

7.2 Introduction to LBG algorithm 173 

7.3 Introduction to Kohonen Map 174 

7.4 Chapter Summary • • , . . , . . . . ‘ . . � , 179 

8 Applications of Kohonen Map in Data Compression and Communi-

cations 181 

8.1 Use Kohonen Map to design Trellis Coded Vector Quantizer . . . . . . 182 

8.1.1 Trellis Coded Vector Quantizer 1 8 2 

8.1.2 Trellis Coded Kohonen Map 1 8 8 

8.1.3 Computer Simulations 191 

8.2 Kohonen Map:Combined Vector Quantization and Modulation 195 

8.2.1 Impulsive Noise in the received data 195 

8.2.2 Combined Kohonen Map and Modulation . 1 9 8 

• viii 

•—酬ill夢'illiiiiiA ii 



8.2.3 Computer Simulations 200 

8.3 Error Control Scheme for the Transmission of Vector Quantized Data . 213 

8.3.1 Motivation and Background 214 

8.3.2 Trellis Coded Modulation . 216 

8.3.3 Combined Vector Quantization, Error Control，and Modulation 220 

8.3.4 Computer Simulations 223 

8.4 Chapter Summary 226 

9 Conclusion 232 

Bibliography 236 

• ix 

• Ill11丨1丨[ — 



Chapter 1 

Introduction 

This chapter begins with an introduction of the basic concepts of the associative 

neural networks and then discusses the typical goals in the study of the associative 

neural networks. Finally, a brief overview of the structure of the rest of the thesis is 

presented, 

1.1 Background of Associative Neural Networks 

Data storage methods are generally divided into two classes. The first one is random 

access memory in which a separate unique address points to each data item. To recall 

a particular data item, we should provide its address without ambiguity. The other 

class is associative memory in which the data item can be recalled by its noisy version 

or partial version [l]-[5]. It is well suited for applications that require the capability to 

handle noisy input such as pattern matching and pattern classification. For a review 

of the applications of the associative memory, readers are referred to [6]. 

It is useful to distinguish between two types of associative memory, the autoasso-

ciative memory, whereby an incomplete key pattern (or a noisy version of the stored 

pattern) is replenished into a complete version, and the heteroassociative memory 

which selectively produces an output Yh in response to the input Xh (or a noisy 

version of Xh)] in the latter case the pair {Xh, Yh) is called library pair. 

One way to implement associative memories is by using neural networks. Neural 
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Chapter 1 Introduction 

networks generally have a parallel and highly-interconnected computing architecture. 

They consist of many simple processing units or "neurons" which communicate with 

each other via connection weights. Each neuron calculates its own activation level 

by forming a weighted and thresholded sum of the activation levels of the connected 

neurons. The coefficients in the weighted sum are the connection weights between 

neurons. The term 'associative neural network，denotes the associative memory im-

plemented by the neural network approach. 

As described above, associative neural networks are fundamentally different from 

the conventional random access memories in which 110 separate address exists for 

each stored entity. Instead, the data item itself acts as a pointer either to itself 

(autoassociative recall) or to another stored data item (heteroassociative recall). With 

presentation of an initial input, the associative recall will be excited until a decision is 

reached in a global manner. Associative neural networks also have the error correction 

capability. An undistorted pattern can be retrieved with a distorted or partial version 

of input pattern. 

Many associative neural networks have been designed and demonstrated for the 

task of associative recall, for example: Hopfield network [12], bidirectional associative 

memory (BAM) [13], Kohonen map [1, 2, 3] and many others [5，6]. Some people may 

consider Kohonen map as a vector quantizer only. However, vector quantization can 

be regarded as a special case of associative recall [1]，in which the input patterns are 

directly mapped to a set of finite codevectors. In other words, the codevectors are 

treated as the stored patterns. 

In general, there are two implementation methods of associative neural networks. 

One is distributed encoding model, in which the stored patterns are encoded into a 

distributed connection matrix and we cannot directly know the stored patterns from 

the values of the connection weights. Typical examples of the distributed encoding 

model are Hopfield network and BAM, Another is direct encoding model, in which 

the connection weights are the values of the stored patterns and there is an one-to-one 

association between the connection weights and the values of the stored patterns. A 

typical example is Kohonen map. 

• 2 

••__•—•丨 in in mill' ii丨I — + ' 



Chapter 1 Introduction 

Among various associative neural network models, the BAM (which is a distributed 

encoding associative neural network) and Kohonen map (which is a direct encoding 

associative neural network) individually has some special features. These features at-

tracted a greater number of scholars to investigate the two models in different aspects. 

The thesis consists of two parts. In the first part, we examine the statistical properties 

of BAM and develop the learning algorithms for the BAM. In the second part, we 

propose three new cross-relative applications of Kohonen map for data compression 

and communications. 

1.2 A Distributed Encoding Model: Bidirectional 

Associative Memory 

In the distributed encoding models，an associative neural network is designed to map 

some user-selected pattern vectors Xi1 • •. 7 X m into some user-selected pattern vectors 

Yi^ - - ,Ym, respectively. These associative pairs (Xh%Yh) are called library pairs. The 

dimension of the vectors Xh, h�二 1, , . . ,m， is n and the dimension of the vectors 

Yh, h — 1, - . . ,m, is p. If the input-output action of the network is described by a 

function then our goal is to have 诊 = Yh for h = 1, . . . , m . Naturally, this 

vector association must be logically consistent. It means that there cannot be two 

different V^'s assigned to the same Xh. 

To understand the distributed encoding models, we briefly introduce two types of 

distributed encoding models: feedforward and feedback. Ill a feedforward associative 

neural network (see Figure 1.1), presentation of an input vector X in the layer Fx 

leads to the output Y In the layer FY in a feedforward pass. For example，the linear 

associative memory [14] is a feedforward associative neural network. In the feedback 

case (see Figure 1.2)，an initial pattern X(0 ) presented to Fx will be passed through the 

connection matrix and then thresholded, and a new state F ( 1 ) in Fy is obtained; the 

state F � in Fy is then passed back through the connection matrix and is thresholded, 

giving rise to a new state 义⑴ in Fx\ and the process repeats. In other words, the 
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Chapter 1 Introduction 

insertion of X ^ will excite the feedback loop of the network. The basic idea is that 

the state of the network should converge (at least asymptotically) to a "fixed point" 

which is then read out as the final output of the network. For example, the BAM is 

a feedback associative neural network. 

Vi V2 yv 

MOutput layer Fy 

iput layerF^ 

X2 Xn 

Figure 1.1 A typical feedforward associative network. The input vector X 

leads to the output vector F in a single feed-forward pass. 
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Chapter 1 Introduction 

y^ V2 yP 

f 1 J � 2 ) • # • f p J Output layer FY 

( 1 ) ( 2 j m m m ( n j Input layers 

Figure 1.2 A typical layer feedback associative network. The input vector 

X initiates a feedback evolution between layers Fx and Fy. 

Apart investigating the applications of the distribution encoding models, the typ-

ical goals in the study of these models are: 

1. To understand how large m (the number of library patterns/pairs) can be，given 

correct and robust operation, for a model with a given number of neurons and 

a given learning rule (see Chapter 3, 4，and 6). 

2. To understand what the error correction capability is, given m, for a model with 

a given number of neurons and a given learning rule (see Chapter 3 and 4). 

3. For a given model with a given number of neurons, how to construct the con-

nection matrix such that the library patterns/pairs can be correctly stored with 

a good error correction capability (see Chapter 5). This task can be regarded 

as supervised learning. 

The BAM being a distributed encoding model is a two-layer heteroassociative 

memory. It uses the bidirectionality (forward and backward information flow between 

the two layers) to search for the library pairs. Firstly, its architecture is able to achieve 
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Chapter 1 Introduction 

the simultaneous hetero- and autoassociative recollections. Secondly, the searching is 

also bidirectional. It means that the initial searching key can be presented in one 

of the two layers. Also, it is unconditionally stable during recall. In other words, 

for any real connection matrix, its state will converge to a stable state during recall. 

Nowadays, several applications of BAM have been reported [20]-[22]. For example, it 

can be used in intelligent systems [20] and spectral signature recognition [22]. For a 

brief review of its applications, readers are referred to [6]. The electronic and optical 

implementation of BAM are also available [55]-[57]. 

However, only a few theoretical analysis about its statistical properties (for ex-

ample, the memory capacity, the attraction basin, and the number of errors in the 

retrieval pairs) have been reported [23, 24, 25，66]. The lack of the theoretical analysis 

makes the recall performance of BAM to be an unknown issue. This phenomenon is 

prominent especially in the higher order BAM. By studying its statistical properties , 

we can deal with its recall performance in a more rigorous manner. Some preliminary 

theoretical results and empirical results have shown that its recall performance under 

the Kokos's encoding method is poor [23]-[24] [32]—[53]. Hence, many researchers and 

me have reported several modifications [32]—[53]. These modifications usually give im-

provement on the recall performance with extra costs, such as increased computation 

and hardware complexity. Note that some modifications are not stable during recall. 

1.3 A Direct Encoding Model: Kohonen Map 

In the direct encoding, the associative neural network usually divides the space of 

input vectors Into a finite number of disjoint regions (the number of disjoint regions 

is denoted as m) and a codevector is assigned for each region. Thus, there are m 

regions and m codevectors. The output of the associative neural network is the 

codevector whose corresponding region contains the input vector. Then, we can use 

this codevector to represent the input. This concept is usually regarded as vector 

quantization [15，16]. Mathematically, the associative neural network is a mapping Q 
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Chapter 1 Introduction 

from n dimensional Euclidean space Un to a finite subset of : 

where Y i , - " ,Ym are the codevectors. The associative neural network which imple-

ments the above function is regarded as vector quantizer. To measure the quality of 

the codevectors (vector quantizer), we should first define a distortion measure. It is 

an assignment of a cost d(XinrQ(Xin)) of reproducing the input Xin as the output 

Q(Xin). Usually, the squared error distortion is used: 

d(Xin, Q{Xin)) 二 { X i n 一 Q { X i n ) f { X i n — Q{Xin)). (1.2) 

Given a distortion measure，the quality of the codevectors is the average distortion 

between the input vector and the corresponding code vector. 

： ！ “ 

I . . . . . 广 . . . . . . . . . .
; 

( 1 ) ( 2 Input layer Fx 

X\ X2 Xn 

Figure 1.3 A typical direct encoding associative neural network. 

Figure 1.3 shows the implementation of this type of associative neural networks. 

The number of neurons in the layer F0 is m and the number of neurons in the layer 

Fx is n. Each neuron in the layer F〇 corresponds to a codevector. The connection 
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Chapter 1 Introduction 

weights from the layer Fx to the h-th neuron in the layer F0 are the components 

of the codevector Yh. There are lateral inhibitions in the layer F0. These lateral 

inhibitions are used to sort out the largest and to suppress the others. The operation 

is as follows: 

1. An input vector X is presented in Fx. 

2. According to the connection weights between the two layers Fx and F0, the h-th. 

neuron in the layer F〇 get a value Oh which is the similarity measure between 

the input X and the codevector Yh. 

3. The lateral inhibitions, working as a MAXNET [17]’ find out the neuron in the 

layer F〇 with the largest o^ value. 

4. The connection weights (the codevector) whose corresponding Oh value is the 

largest is then directly feedback to the input layer Fx. Finally, the codevector 

Yh appears in the layer Fx-

Since the connection weights are the components of the codevector in the direct 

encoding, we can easily encode the codevectors into the connection weights. The 

typical goals in the study of the direct encoding models are: 

1. How to construct the codevectors from a set of training samples in the input 

space such that the average distortion of reproducing the input vector as the 

corresponding codevector is minimized. The construction process of the code-

vectors is commonly regarded as clustering or unsupervised learning. 

There have already been a number of techniques for designing the codevectors, 

such as Kohonen map {!.] and LBG [19]. However, up to now, it is difficult to 

determine which technique is the best in terms of the distortion minimization.1 

2. How to utilize this type of associative neural networks for data compression and 

transmission (see Chapter 8). 
iWe will use a computer simulation to illustrate this in Section 8.2. 
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Chapter 1 Introduction 

Kohonen map is a direct encoding model and can be used as a vector quantizer. In 

Kohonen map, a neighborhood structure is introduced among the codevectors before 

learning. After learning, the network will have a nice property: ordering preserve. 

That is, when two codevectors are neighbors of each other, their Euclidean distance 

is usually small. This property has been theoretically investigated [8]-[10]. Based 

on this property, Kohonen map can produce phoneme strings for word recognition in 

speech recognition [7] and is a good way to reduce the dimensionality of the input in 

pattern recognition [11]. 

In the field of communications, there also exists a similar neighborhood structure 

among the channel waveforms in the signal space. This structure is created on the 

basis of the concept of the Delaunay neighborhood [82, 83]. Because of this simi-

larity, we believe that Kohonen map tas some potential applications in the field of 

communications [29]-[31], 

1.4 Scope and Organization 

As shown in Figure 1.4, this thesis consists of two parts. The first part examines the 

different theoretical aspects of BAM. These aspects include the statistical properties 

(such as the memory capacity, the attraction basin of each library pair, and the 

number of errors in the retrieval pair) and the new learning rules which are used 

to improve the memory capacity and the error correction capability. In the second 

part, we propose three new cross-relative applications of Kohonen map based on its 

ordering property. 

In Chapter 2, we first give an overview of BAM's encoding algorithm, recall opera-

tion, and stability. We also review its memory capacity and error correction capability 

in the statistical sense when error is not allowed in the retrieval pairs. 

Chapter 3 presents the statistical properties of the first order BAM when a small 

number of errors in the retrieval pairs are allowed. This study is motivated by the 

well known property of Hopfield network: if a small number of errors in the retrieval 

pattern are allowed, the memory capacity of Hopfield network can grow as fast as 
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Chapter 1 Introduction 

an ? , where a is a positive constant, q is the order of the connections and n is the 

dimension [12, 59]. We want to examine whether the similar results can be obtained 

for the BAM. Also, we want to understand how the ratio r 二足 of the dimensions 
n 

affects the the statistical properties of BAM. In Chapter 3, the memory capacity 

of the first order BAM is first investigated based on the concept of energy barrier, 

which was originally used to analyze the memory capacity of Hopfield network [59]. 

Note that the result of such analysis only implies that there exist some stable noisy 

versions around each library pair. However, the attraction basin of each library pair 

still cannot be determined. To overcome this limitation, the statistical dynamics of 

the BAM is presented. We then discuss a way to estimate the attraction basin, the 

memory capacity, and the number of errors in the retrieval pairs from this statistical 

dynamics. 

Chapter 4 presents the statistical properties of the second order BAM [25]. We 

first use an example to illustrate tliat the state of the second order BAM may converge 

to limit cycles. Also, we explain why the energy function in [59, 45] cannot be used to 

explain the stability of the second order BAM. Hence, the approach of energy barrier 

in [59] is not suitable to derive the memory capacity of the second order BAM. The 

approach of the statistical dynamics used in Chapter 3 is employed again to estimate 

the attraction basin, the memory capacity, and tile number of errors in the retrieval 

pairs of the second order BAM. The extension of the results to the general higher 

order BAM is also presented. 

In Chapter 5, we propose four new encoding methods [32]-[38] to enhance the re-

call performance (the memory capacity and the error correction capability) of BAM. 

Such properties as the memory capacity, the error correction capability, the ease of 

hardware implementation, the learning speed，the information ratio and the conver-

gent conditions are discussed. Also, we give a comparison on the properties among 

the four encoding methods and some other existing encoding methods. 

After investigating several aspects of BAM under the non-incremental encoding 

method, we also examine its storage behavior under the forgetting learning [27] in 

Chapter 6. We first estimate the probability that the last fc-th previous library pair 
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Chapter 1 Introduction 

is stored as a fixed point and then we derive a guideline for choosing the forgetting 

constant such that the number of most recent library pairs being correctly stored is 

near maximal. 

As the development of new applications of Kohonen map needs some knowledge 

on the Kohonen map and vector quantization, we describe the basic concepts of them 

in Chapter 7. 

In Chapter 8, we then introduce our three new cross-relative applications of Ko-

honen map for data compression and communications based on its ordering property 

[29, 31]. The united goal is to design robust transmission systems for vector-quantized 

data under noisy channel. 

Firstly, a new trellis type quantizer called the trellis coded Kohonen map (TCKM) 

is presented [29]. Its design process, which is based on the neighborhood structure of 

Kohonen map, is simpler than the conventional trellis coded vector quantizer (TCVQ) 

[81]. Secondly, a novel transmission system for vector-quantized data is presented. 

Hence, the impulsive noise in the received data can be greatly reduced under a noisy 

channel [31]. Lastly, we present an error control transmission system for vector-

quantized data based on the concepts of the above two applications. In this system, 

the source coding (the vector quantizer), the error control，and the modulation are 

designed as a whole such that the impulsive noise in the received vector-quantized 

data can be further reduced. 

Remark: A chapter summary is given to summarize the results of each chapter 

(except Chapter 1 and Chapter 9). Since the thesis contains two parts, the notations 

of the second part are different from that of the first part. It means that we use a 

new set of notations in Chapter 7 and Chapter 8. 
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Figure 1.4 The structure of the thesis 
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Chapter 1 Introduction 

1.5 Summary of Publications 

_ [25] C. S. Leung, L. W. Chan, and M. K. Lai,“Stability, Capacity, and Statistical 

Dynamics of Second Order BAM Bidirectional Associative Memory," to appear 

in IEEE Trans. Syst, Man, and Cybern., Vol,25 No. 10, 1995. 

[26] C. S. Leung, L. W. Chan, and M. K. Lai,"Stability and Statistical Properties 

of Second Order BAM Bidirectional Associative Memory," submitted to IEEE 

Trans. Neural Networks. 

In [25] and [26], the statistical properties of the second order BAM, as well as the 

general higher order BAM, are presented. We first use an example to illustrate 

that the state of the second order BAM may converge to limit cycles. We present 

the statistical dynamics of the second order BAM. From the statistical dynamics, 

we then discuss a way to estimate the memory capacity, the number of errors in 

the retrieval pairs, and the attraction basin. Numerical examples are given to 

illustrate how the ratio of the dimensions affects the statistical properties. The 

extension of the results to the general higher order BAM is also presented. 

• [32] C. S. Leung and K. F. Cheung," Householder Encoding for Discrete Bidirec-

tional Associative Memory Associative Memory, ” in Proc. IJCNN 91 Singapore, 

Vol. 1, pp. 237-241,1991. 

[33] C. S. Leung, "Encoding Method for Bidirectional Associative Memory using 

projection on convex sets," in Proc. IJCNN 92 Beijing, Vol, 2 pp. 81-85, 1992. 

[34] C. S. Leung, “Encoding Method for Bidirectional Associative Memory using 

Projection on Convex Sets,” IEEE Trans. Neural Networks, Vol. 4, September, 

pp.879-881, 1993. 

In [32]-[34], we are concerned with two encoding methods, householder encoding 

algorithm (HCA) and enhanced householder encoding algorithm (EHCA), for 

the BAM, From the simulations, both tlie memory capacity and error correction 

capability can be greatly improved by the HCA. Theoretically, the memory 

capacity of HCA tends to the dimensions of BAM. However, in BAM with HCA 
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there are two different connection matrices. Hence, the state of BAM with 

HCA may not converge to fixed points during recall and the number of the 

connections is double. The EHCA is further developed on the basis of HCA and 

the projection on convex sets (POCS) [72, 73]. In the EHCA, the two connection 

matrices found by the HCA are reduced into one matrix by the POCS. Hence, 

the stable property of BAM can be maintained and the number of connections 

is the same as that of the original BAM, Simulation results show that the recall 

performance of EHCA is comparable to that of HCA. 

• [35] C. S. Leung, "Optimum Learning for Bidirectional Associative Memory in 

the Sense of Capacity," IEEE Trans. Syst. Man, and Cybern. , Vol 24, No. 5, 

pp.791-796, 1994. 

[36] C. S. Leung, "Optimum Learning Rule in Bidirectional Associative Mem-

ory," in Proc. of the 2th Pacific Rim International Conference on AI1992, Vol 

2, pp.940-946, 1992. 

[37] Andrew C. S. Leung and M. Klassen, "A Delta-Rule Encoding for Bidirec-

tional Associative Memory," in Proc. IJCNN 91 Seattle, Vol. 2, pp. 954,1991. 

[38] C. S. Leung, "Robust Learning Rule for Bidirectional Associative Memory," 

in Proc. IJCNN 93 Nagoya, VoL 3 pp. 2686-2689, 1993. 

In [35]-[38], bidirectional learning (BL) is proposed to enhance the recall per-

formance for the BAM based on the perceptron learning [4]. By modifying the 

proof of convergence of perceptron, we have proved that the BL yields one of 

the solution connection matrices (such that all library pairs are stored as fixed 

points) within a finite number of iterations (if the solutions exist). Hence, the 

memory capacity of BL is larger than or equal to that of other learning rules. 

Unfortunately, the error correction capability of BL is still poor. A robust 

learning rule, named adaptive Ho-Kashyap bidirectional learning (AHKBL), is 

then proposed to enhance the error correction capability. The sufficient conver-

gent conditions of AHKBL are derived. Simulation results show that both the 

AHKBL and BL greatly improve the memory capacity. In particular, with the 
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AHKBL the error correction capability is improved. 

• [27] C. S. Leung, "Forgetting Learning: Can the last k-th previous pattern be 

stored as a fixed point in Associative Memory ？”, in Proc. ICONIP，94_Seoul, 

pp. 1086-1089, 1994. 

In [27], we have studied the storage behavior of BAM under the forgetting 

learning. We first estimate the probability that the last k-th previous library 

pair is stored as a fixed points. Then, we derive a guideline to choose the 

forgetting constant such that most recent library pairs are correctly stored, 

with high probability. 

• [29] C. S. Leung, "Trellis Coded Kohonen Map", in Proc, ICONIP^-Seoul, 

pp. 955-959, 1994. 

[30] C. S. Leung, “Design Trellis Coded Vector Quantizer using Kohonen Map”, 

to be submitted . 

In [29, 30], a novel trellis type called the trellis coded Kohonen map (TCKM) is 

presented. The design process of TCKM is simpler than that of the conventional 

trellis coded vector quantizer (TCVQ). Although the performance of TCVQ is 

much better than that of non-trellis type vector quantizer, its design process 

which is based on the Euclidean distances between codevectors involves a certain 

amount of both computational and space overhead. In the TCKM, the design 

process of trellis is based on the neighborhood structure of Kohonen map. As the 

neighborhood structure of Kohonen map is predefined, different TCKMs with 

the same neighborhood structure but different codebooks can share the same 

trellis. Hence, the design process of trellis in the TCKM is simpler than that of 

TCVQ, and the TCKM is more suitable to operate under adaptive environment. 

Simulation results show that the performance of TCKM is comparable to that 

of TCVQ. 

# [31] C. S. Leung, "Kohonen Map: Combined Vector Quantization and Modula-

t ion" , in Proc. ICONIP，94-Seoul, pp. 242-247, 1994. 
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In [31], we present a novel vector quantization transmission system in which the 

impulsive noise in the received data is greatly reduced under a noisy channel. 

The key point is that the neighborhood structure of Kohonen map should match 

the neighborhood structure of the channel waveforms in the communication 

system. Simulation results show that the impulsive noise in the vector-quantized 

data received is greatly reduced under a noisy channel even if we do not use an 

error control scheme. Moreover, we have designed an error control scheme which 

best fits for the above system. Then, the source coding, the error control, and 

the modulation are designed as a whole stich that the impulsive noise in the 

received vector-quantized data can be further reduced under a noisy channel. 

• [39] C. S. Leung, "The Performance of Dummy Augmentation Encoding，” in 

Proc. IJCNN 93 Nagoya, Vol . 3 pp. 2674-2677, 1993. 

In [39], we have investigated the statistical memory capacity of dummy aug-

mentation encoding (DAE) for a given number of additional neurons and then 

evaluate the efficiency of DAE in terms of information ratio. 

• [28] C. S. Leung, "Memory capacity and Statistical Dynamics of the First Order 

Bidirectional Associative Memory," in preparation. 

In [28], we have analyzed the statistical properties of the first order BAM under 

the condition that a small number of errors in the retrieval pairs are allowed. 

The memory capacity and the number of errors in the retrieval pairs are first 

investigated. The approach used here is the concept of energy barrier which 

was originally used to analyze the memory capacity of Hopfield network [59]. 

However, the attraction basin for the first order BAM cannot be determined 

from this approach. To overcome this limitation, the statistical dynamics of the 

number of errors has been presented. We then discuss a way to estimate the 

memory capacity, the number of errors in the retrieval pairs, and the attraction 

basin from the dynamics. Numerical examples are given to illustrate how the 

ratio of the dimensions affects the statistical properties. 
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Chapter 2 

Introduction to Bidirectional 

Associative Memory 

In this chapter, a review of BAM's encoding algorithm，recall operation, stability, 

and memory capacity (without error in the retrieval pairs) is first presented. We then 

discuss its error correction capability. 

2.1 Bidirectional Associative Memory and its En-

coding Method 

Associative memory is one of the major research issues in neural networks with a wide 

range of applications such as content addressable memory and pattern recognition. 

Associative memories encode and recall library patterns or pattern pairs. If the asso-

ciative memory encodes single patterns, it is called an autoassociative memory. If it 

encodes pattern pairs, it is called a heteroassociative memory. One form of heteroas-

sociative memories is the bivalent additive BAM [13]. This model is a discrete version 

of BAM : feedback and two-valued (or bipolar-valued). As we are mainly concerned 

with the bivalent additive BAM, the term BAM denotes the bivalent additive BAM 

throughout this thesis. 
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Chapter 2 Introduction to Bidirectional Associative Memory 

The BAM, as proposed by Kosko [13], is a two-layer nonlinear feedback heteroas-

sociative memory in which m library pairs {X^Y^, (X2 , F 2 ) , . . . , (Xm , Ym) are stored, 

where Xh G { - l , l } n and Yh G {_1，1}P. In this thesis, the term "library pair" de-

notes the particular pattern pair which we want to store in the BAM. The topology, 

as shown in Figure 2.1, encodes the interlayer connections between the Fx and FY 

layers in the connection matrix W. The layers Fx and Fy have n and p neurons, 

respectively. 

Q ••• © ••• @ 

"IM l̂"" 
( x ^ j ••• (W) ••• (Z) 

Figure 2.1 The topology of B A M is a two-layer neural network. Flow of 

signal is inter-layer feedback between the layers Fx and Fy through the 

matrix W. 
The encoding equation, as proposed by Kosko, is m 

浙 二 E K X / (2.1) 
h=l 

which can be rewritten as 
m 

Wji = 5二  XihVjh r 
h=l 

where Xh 二 {xlh, x2h,...，xnh)T and Yh = [ylh, y2h,yPh)T- This encoding method 

is also called the outer product rule. 

Although the above construction of W is similar to that employed in the linear 

associative memory (LAM) [14] and the correlation matrix memory (CMM) [3], the 

LAM and CMM encode real-valued library pairs and their recall procedure is purely 
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'one-shot' only. On the other hand, BAM encodes bipolar library pairs and its recall 

procedure is an interlayer nonlinear feedback process between the layers Fx and Fy. 

2.2 Recall Process of B A M 

Conventionally, heteroassocaitve memories are 'one-shot' memories. Input pattern X 

is presented to the memory, Y is output, and then the process is finished. Hopefully, 

the output Y will be closer to library pattern Yh than to all other library patterns Yh> 

if the input X is the closest to library pattern Xh. 

However, the recall process of BAM employs interlayer feedback. An initial pattern 

X(0) presented to Fx is passed through W and is thresholded, and a new state l^1) 

in Fy is obtained which is then passed back through WT and is thresholded again, 

leading to a new state X � in Fx ‘ The process repeats until the state of BAM 

converges. Mathematically, the recall process is: 

= sgn ( W X { t ) ) , (2.3) 

杆 ” 二 sgn ( W T Y ^ ) , (2.4) 

where sgn(-) is the sign operator: 
/ 

+1 冗〉0 

sgn �� 二《— 1 a; < 0 . 

state unchanged a; = 0 
、 

Using an element-by-element notation，the recall process can be written as: 

y f + 1 ) = sgn (2-5) 

诈 + 1 )� 二 sgn ( ^ � , (2 .6) 

where xf is the state of the ith Fx neuron and yf is the state of the jth FY neuron. 

The above bidirectional process produces a sequence of pattern pairs ( X � , K � ) ：�

(X ⑴，F ⑴)， (X ( 2 ) ,F ( 2 ) ) , . . . . This sequence converges 1 to one of the fixed points 

iThe proof of this property will be shown in the next section* 
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� X f , y f ) a n d this fixed point ideally should be one of the library pairs or nearly so. 

A fixed point ( X f , Y f ) has the following properties: 

Yf = sgn(WXf) (2.7) 

Xs = sgn{WTYf). (2.8) 

The output Y f in Fy represents heteroassociative recollection and the second output 

in Fx represents autoassociative recal. Hence, the simultaneous hetero- and 

autoassociative recollections can be achieved. 

In the above recall process, we assume that the change of state is layer-synchronous: 

an entire layer of neurons is updated at the same time. The other extreme is random-

asynchronous recall: only one of the neurons is randomly selected and is updated at 

a time. Another state-processing decision is deterministic-asynchronous: neurons are 

updated one-by-one in a deterministic order. In general, the state-processing decision 

is the layer-subset-asynchronous recall: one subset of the neurons per layer is updated 

at a time. When the subset represents a whole layer (Fx or Fy) of neurons, the 

layer-synchronous process results. In practice we usually use layer-synchronous recall 

in the BAM because the state of one of the two layers is initially unknown.2 

To sum up, we have mentioned four recall processes: layer-synchronous, randomly-

asynchronous, deterministic-asynchronous, and layer-subset-asynchronous. Here, we 

do not consider the case: both Fx and Fy neurons are updated at the same time. It is 

because this recall process leads to the same problem in the asynchronous recalls: the 

retrieval pair (Xf,Yf) becomes nearly totally random. Also, with this recall process, 

the concept of layer in the BAM is lost and the BAM becomes one kind of synchronous 

sparse autoassociative memory.3 Hence, without further notice, the layer-synchronous 

recall is assumed to be use in the BAM throughout this thesis. However, there are 

two common facts under the four recall processes. 

2 I f w e use any asynchronous recalls in the BAM, we should randomly initiate the unknown layer. 
Then the recalled pattern pair { X ^ Y ^ ) becomes nearly totally random when the known neurons 
are updated first. • 

3 A SparSe memory is a memory in which large number of connections are valued zero. 
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Fact 2 . 1 Given any real connection matrix W, the state of BAM will converge to one 

0f the fixed points ( X f , Y f ) under each of the four recall processes. 

Fact 2 . 2 Given any real connection matrix W } if a pattern pair ( X f , X f ) is a fixed 

point under one of the four recall processes，then it is also a fixed point under the 

other three recall processes. 

The proof of Fact 2.1 will be reviewed in the next section. Fact 2.2 can be easily 

observed from the definition of fixed point (see (2.7) and (2.8)). 

2.3 Stability of B A M 

The stability can be proved by considering the energy function [13] 

E� 二 -YTWX (2.9) 

where Y and X are the current states of Fy and Fx, respectively. The change of 

energy with respect to the change of state in Fy is 

AEY = -(YT + (AY)T)WX + VTWX 

= = - ( A Y f W X , (2.10) 

where AY� 二 (Ayi, Ay2, • • •, Using element-by-element notation, the change 

of energy is 
p n 

W j i X i . ( 2 . 1 1 ) 

j二 i «"二1 

Let us consider the following three cases of Ayj. 

• If Ayj is zero, then�厶…ELi w j i x i = 

• If Ayj > 0, this means that the state of the jth neuron in Fy changes from -1 

to 1 and w3ixi must be greater than zero. Hence, Ayj E L i w j ix i m u s t b e 

greater then zero. 
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• 汀 ^Vj < 0, the state of the jth. neuron in Fy changes from 1 to -1 and E ^ i WjiXi 

must be less than zero. Hence, Ayj E L I ^jiXi must be greater then zero. 

The change of state in Fy leads to a reduction in energy no matter how many neurons 

in FY are updated at a time. We can also verify that the change of state in Fx leads 

to a decrease in energy no matter how many neurons in Fx are updated at a time.4 

Since the energy is lower bounded, the state must converge to one of the fixed points, 

which is a local minimum of the energy function. The formal definitions of a local 

minimum are given below. 

Def in i t ion 2 . 1 Given two bipolar pairs (X7 Y) and Y1), Y') is called the 

neighbor of ( X , y ) if the Hamming distance between them is one. 

Def ini t ion 2 . 2 A state ( X , K ) is a local minimum of the energy function, if its energy 

is less than or equal to the energy of all neighborhood pairs { X ' ,  ys, i.e., for all 

neighborhood pairs [ X ' , Y') of (X 5 Y) 

- Y T W X < - Y , T W X ' . (2.12) 

Defini t ion 2 . 3 A state { X , Y ) is an isolated local minimum of the energy function, 

if its energy is less than the energy of all its neighborhood pairs ( X ' , Y f ) i.e., for 

all neighborhood pairs ( X f , Y') of ( X , F) 

- ^ Y t W X < - V / T W X \ (2.13) 

Note that the state of BAM cannot converge to a limit cycle. It is because the 

change of state leads to a change of energy being 'less than zero', not 'less than or 

equal to zero'. 
4Here we neglect the case: both Fy and Fx are updated at a time. Therefore, we can only 

say that 'the BAM is stable for the four recall processes:layer synchronous, randomly asynchronous, 
deterministic asynchronous, and layer-subset asynchronous, 
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2.4 Memory Capacity of B A M 

In the field of associative memories, one interesting topic is the maximum number of 

library pairs/patterns that can be stored as fixed points in the models. This gives 

us a non-rigorous definition of memory capacity. Without any assumption on the 

library pairs, we may easily get some discouraging results about the Kosko's encoding 

method: the memory capacity of BAM under Kosko's encoding method is about 2 or 

3 only even for very large p and n.5 

The conventional definition of the memory capacity is the maximum number of 

library patterns (or pairs) that can be stored as fixed points with high probability 

[61]—[63]. The assumption is that each component of the library pairs/patterns is a 

±1 equiprobable independent random variable. In [24]，Haines and Hecht-Nielsen et 

al. stated that the memory capacity of BAM is 2i^min^i p)，but the formal proof was 

not given. Similar result was also presented in [23]. 

In this section, we review the issue of the memory capacity from different perspec-

tives. Two cases of the memory capacity are reviewed in this section. The first one 

is a stronger concept. That is, with high probability, each library pair is stored as 

a fixed point if m is less than or equal to 41二二攻 p). The second one is a relatively 

weaker concept. That is, with high probability, a library pair is stored as a fixed point 

if m is less than or equal to 2 1 二 :仏 ) .A separate proof will be given in each case. 

Assumptions and notations 

• Kosko's encoding method (outer product rule) is used. 

• p 二 rn, where r is a positive constant. Also, the dimensions (n and p) are very 

large. 

_ Each component of the original library pairs (Xh,Yh) is a ±1 equiprobable in-

dependent random variable. 

• EUj,h is the event that sgn(E? WjiXih) 二 yjh and is the complement event 

of EUj,h. 

5 Examples can be found in [41，42]. 
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• EVi，h is the event that sgn(E^ wjiyjh) = xih and KViih is the complement event 

of m,h. 

• We neglect the cases: E ? ^ji^ih 二 0 and Yfj w j i y j h = 0. Because the probabili-

ties of these cases are very low as n oo. 

With the above assumptions and notations, we easily get the following two lemmas. 

L e m m a 2.1 The probability Prob(EUj,h) is 

for j = 1,...，p and h = 1 ” . ” m. Q{z) is defined as 

1 r°° —z2 

Q\z) - Jz exp{^-)dzf 

Proof of Lemma 2.1 

Without loss of generality, we consider that the library pair (X^, Yh) has only 

positive components. That is, Xh 二 (1,, ..，1)T and Yh 二（1，...，l)r. From (2.1), 

n rrt n 
W3iXih = + X] Vjh' Xih'- (2.14) 

i=l h'^h i=l 

The terms (yjh> E?=i c a n b e considered as the noise terms. For large n, the 
E n 

aistriDuuoix ui - J ^ 1 Xih' approaches standard normal. Since the sum of independent 

normal random variables is still normal, the distribution of the overall normalized 

n o i s e approaches normal with mean 0 and variance (m 一 1). Hence, 
P m b (丽从 ) i s _ 

for /i�二 l , . . . ,m，and j =� 口�
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L e m m a 2 . 2 The probability Prob(EViih) is 

for i = 1,...，n and h = 1” ..，m. 

Proof of Lemma 2.2 : similar to the proof of Lemma 2.1. • 

For the stronger concept of the memory capacity, we denote the probability that 

all (Xh^ Yh) are stored as fixed points as 

P, 二卩⑴！̂ ^̂ 门̂…-！̂丑仏’肌门五！/̂ ！̂…-门丑仏,） 

= 1 - P r o b (EUn U … u w p ’ m u W n U . . . U 風 ， T O ) 

> 1 — mpProb (eUI^ — mnProb (EVi^ 

二 1 - PA - PB , (2.15) 

where PA = mpQ and PB = mnQ ( ^ / ^ j y ) . Note that 

八—（1 — Pmb(丽以)广（1 — P r o b ( W 1 ? 1 ) ) m n (2.16) 

because the events E V ^ s and EUj,h's are not mutually independent. This can be 

easily observed when m 二 2. 

For large value of z [77], 

Q(z) ^ e x p | - Y — log ^ — I log 27r| (2.17) 

which is quite accurate for z > 3. Using the above approximation of Q(z), 

PA - exp {log m + log p - ^ ^ y - \ log ^ y - \ log 2 . } 

< exp|logm + l o g p - ^ - - 2 l o g 2 ? r } . ( 2 ' 1 8 ) 

Substituting p 二 rn and rearranging PA, 

< exp |2 log N - - ^ log ^ + log R - - log 2TT| . (2.19) 

26 



Chapter 2 Introduction to Bidirectional Associative Memory 

Considering the first two terms, let m = Then 
4 l o g n • , 

r 3 2 
PA < exp | - - l o g ( 4 l o g n) + log r - - log 2丌} • (2.20) 

Moreover, as n oo, then PA 0. Since PA is an increasing function of m, we can 

conclude that as n oo and m < PA 0. Using similar method, we can also 

show that as p oo and m < Pb — 0. 

To sum up, for large n and p (i.e. n ^ oo, p oo), if m < _ ( . ? ) then 
v 1 1 ' 7 ——4 l o g m i n ( n , p ) * 

P* 1- In the case of stronger concept, 41二二:『二 can be considered a lower bound 

of the memory capacity of BAM 

For the weaker concept, we should consider the probability Pw that a library pair 

is stored as a fixed point, 

Pw = Prob {EUn 门 “ .n EUg 门 EVn n ... Pi EVn^) 

= 1 - Prob (EUn U … . U EUp^ U EVn U . . . U EVnA) 

> 1 - pProb (~EUhi) - nProb (EVi,i) 

Similarly, we can easily show that for large n and p, if m < 2 , then Pw 1. 

Hence, min(n，,） is a lower bound of the memory capacity in the weaker sense. 
* 2 l o g m i n ( n , p )� 丄 " 

With more careful analysis (considering the term |log(41ogn) in (2.20)), one can 

get a better lower bound for the stronger concept: 
mm(n,p) ( 2 恐 ） 

( 4 -々二 ( ’ ;， . 

where 0 < c < 3. In the case of the weaker concept, the better lower bound is 
min(n,p) ^ 23) 

where 0 < c < 1. 

These two lower bounds are tight. They can be verified by considering the expec-

tation of the sum of the number of the events W ^ ' s and KU^'s . For all library 

pairs being stored as fixed points, if the expectation 
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does not tend to zero as n oo, then the probability that all library pairs are stored 

as fixed points does not tend to one. Clearly, the expectation does not tend to zero if 

� minfn, p) 
f f i 〉 v ; 1 ' 

For a library pair being stored as a fixed point, the expectation is 

which does not tend to zero if 

min(n，p) 
YYi〉 

2.5 Error Correction Capability of B A M 

So far, we have not yet mentioned the error correction capability of BAM (or the 

attraction basin of a library pair). In this section，we estimate the probability Pt that 

a library pair (Xh, Yh) can be correctly recalled in two shots,6 given a noisy input 

Xnoise of Xh with pn errors. To have 1, as n oo, the parameters n,m,p, and 

p should be related by 

((1 - 2p)2n p \ ( 、 

m ^ m m ( 2 1 o g n ， ^ J . ( 2 . 2 6 ) 

This condition describes the error correction capability in terms of n, p, m, and p. By 

the definition of Pt, 

Pt 二 1— Prob(丑从 U EN2) 

> 1 — ProbiENr) - Prob(丑iV2), (2.27) 

where ENi is the event that 

SgIi(W Xnoise) + Yh 

and EN2 is the event that 
sgn{WTYh) + Xh . 

6 "Two shots" means tliat the noisy input is first presented in Fx，the state of Fy is then obtained. 
This state of Fy is feedback to Fx, and finally a new state of Fx is obtained. 
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Using a similar method presented in Section 2.4, we can easily show that 

^toHEN,) < PQ ( 7
( 1

二 " 广 ) .(2.28) 

and Prob(^7V2) < nQ ( J ^ ^ j . (2.29) 

Hence, if 
. ( ( l - 2 p f n p \ 

m < mm , 
\ 2 log n 2 log p J 

then P̂  1, as n —> oo. 

The inequality (2.26) only gives us a weak sense of the error correction capability. 

The reason is that the considerations here are: 'for a library pair，，'for a noisy input 

with pn errors', and 'for two shots recall'. Note that the term 'for a aoisy input with 

pn errors' reflects the random case errors. In most applications, correcting random 

errors may be satisfactory. However，it is interesting to find out whether the library 

pairs can attract all the initial noisy input within a distance of pn for some positive 

constant p. This leads to the consideration: worst case errors ('for all noisy initial 

input with pn errors'). If we consider the worst case errors, then (2.26) becomes 

m < ~p\ogp — (I — /o)log(l — p) (2.30) 

which is not an increasing function of n and p. 

The requirement that all library pairs are stored as fixed points may be too tight. 

In the following two chapters, we will examine the memory capacity and the error 

correction capability when a small number of errors are allowed in the retrieval pairs. 

The considerations in the next chapter are: 'for every library pair' and 'for all noisy 

input with pn errors'. 

2.6 Chapter Summary 
In this chapter, we have presented an overview of BAM's encoding algorithm, recall 

process, and stability. Its main features are, 1) its state always converges to one 

of the fixed points for any real connection matrix, and 2) it is able to achieve the 

simultaneous hetero- and autoassociative recollections. 
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Also, the memory capacity of BAM is reviewed. Under the stronger concept (each 

library pair is stored as fixed points), the memory capacity is 

min(n,p) 
4 log min(n, p) • 

or 
min(n,p) 

where 0 < c < 3. With the weaker concept (a library pair is stored as a fixed point), 

the memory capacity becomes 

min(n,p) 
2 log min(n,p) 

or 
min(n,p) 

where 0 < c < 1. 

For the error correction capability of BAM, an initial input of Xh with pn errors 

can recall the whole pair (X^, Yh) within two recall steps if the inequality 

m < m i n ((1 - 珍 p \ 
_ 乂 2 log n ' 2 log p J 

is satisfied. 
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Chapter 3 

Memory Capacity and Statistical 

Dynamics of First Order B A M 

In this chapter, we investigate the statistical properties of the first order BAM under 

the outer product rule when a small number of errors in the retrieval pairs are allowed. 

Firstly, we use the concept of energy barrier which was originally used to analyze the 

memory capacity of Hopfield Network [59] to estimate the memory capacity of BAM 

and the number of errors in the retrieval pairs. 

However, the above approach can only tell us that there exist some stable noisy 

versions of library pair around each library pair but cannot tell xis about the attraction 

basin of each library pair. Hence, we then present the statistical dynamics of the 

number of errors of the first order BAM. From the dynamics, we can estimate the 

attraction basin, the memory capacity, and the number of errors in the retrieval pairs. 

3.1 Introduction 
One of the research topics in the field of associative memories is to understand the 

recall process in statistical sense [64] when a small number of errors are allowed in 

the retrieval patterns/pairs. However, most of the existing results are concerned with 

the cases of the Hopfield network and higher order Hopfield network only [59]-[68]. 

When error is not allowed in tlie retrieval pairs, the theoretically statistical memory 
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capacity of BAM [23, 24], as well as the empirical memory capacity of BAM [21, 45, 

46], have been reported. The theoretical memory capacity of BAM is about 

min(n，p) 
4 log min(n,p)‘ 

If the BAM is used to store sparse-format library pairs [24], the theoretical statistical 

memory capacity is 
0.68min(n，p)2 

(log2 min(n,p) + 4)2 . 

The deterministic memory capacity of BAM which depends on the correlation of the 

library pairs was investigated in [50]. The result is 

4 ( n-\- a p-\-b \ 
m < mm — ,————-

\2k-\-a 2k f  

where a and b are, respectively, the maximum correlations among X^s and Y^'s. Also, 

k and k, are the number of errors allowed in the initial input. 

In [64, 65], based on the law of large number, Amari has studied the dynamic 

behavior of the first-order Hopfield network. The dynamic behavior of the first-order 

Hopfield network with hysteretic response (The nonzero diagonal terms in the con-

nection matrix are introduced.) was investigated in [67]. The extension of the results 

to the BAM was presented in [66]. The considerations of the dynamics in [64]-[67] 

are 'for a library pattern' and 'for a error pattern'. In other words, the dynamics 

proposed by Amari is the average dynamics of the number of errors. 

Under the considerations that “for every library pair" and "for every error pat-

tern" , the memory capacity of Hopfield network, as well as the general higher order 

Hopfield network, has been studied based on the concept of energy barrier (see Section 

2 in [59]) when error in the retrieval pairs is allowed. In the formulation of [59], the 

memory capacity and the number of errors in the retrieval pairs can be numerically 

estimated. The results rely on the existence of a suitable energy function (which 

always decreases during recall) for the general higher order Hopfield network. 

The statistical convergence results of the first order Hopfield network have been 

studied in [60]. That is, given the number of errors in the present state, what the 

confidence interval of the number of errors is in the next state. In [60] the main 
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concern is the order of the convergence rather than the actual dynamics (see the 

Main Lemma in [60]). However, if we directly follow the formulation used in [60] to 

handle BAM, we will get a relative poorer estimation on the memory capacity and 

the attraction basin (That will be discussed more details in Section 3.4.). Moreover, 

tlie formulation in [60] is mainly concerned with the first order Hopfield network only. 

Hence, generalization to the higher order BAM from this formulation may not be 

suitable. 

This chapter addresses the statistical properties of BAM under the consideration: 

'for every library pair' and 'for every error pattern (the worst case errors)'. We first 

estimate the memory capacity and the number of errors in the library pairs based 

on the concept of energy barrier [59]. Since the attraction basin cannot be estimated 

from the approach of energy barrier, we then develop the statistical dynamics of BAM: 

Starting with an initial state close to the library pairs (there are some errors in the 

initial state), how the confidence interval of the number of errors changes during recall. 

Instead of using the formulation originated for the Hopfield network [60], we will 

develop another formulation to estimate the confidence interval of the number of errors 

in the next state for the BAM. In our formulation, we directly estimate the proba-

bility that the number of errors in the next state is less than pnewn. The minimum 

value of pnewn such that the probability tends to one defines the confidence interval 

of the number of errors in the next state. Therefore, we can obtain a sequence of the 

confidence intervals. If the sequence converges to a very small value (It means that 

for each initial noisy version input with a given noisy level, the final noisy level in the 

retrieval pair is less than this small value with probability one.), then each library 

pair can be recalled with small number of errors. The limit value of the sequence rep-

resents the upper bound of the number of errors in the retrieval pairs. The maximum 

number of errors in the initial state, such that the sequence converges to a small value, 

represents the lower bound of the attraction basin. Also, the maximum number of 

the library pairs, such that the confidence interval of the number of errors converges 

to a small value, represents the lower bound of the memory capacity. 
Section 3.2 presents the theoretical development of the statistical properties from 
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the approach of energy barrier and Section 3.3 shows the corresponding numerical 

results. The statistical dynamics is presented in Section 3.4. The corresponding 

numerical examples are shown in Section 3.5. Lastly, a concluding remark is made in 

Section 3.6. 

3.2 Existence of Energy Barrier 

The concept of barrier energy is usually used to explain the stability of a neural 

network model [2, 3]. An energy function is associated with the state of the network. 

Starting from some initial states, the state is changed (this lowers the energy) until a 

fixed point (i.e. local minimuiii) is reached. As shown in Figure 3.1, if there exists an 

energy barrier around a library pattern, then the noise versions of this library pattern 

can be stored as a fixed point or a limit cycle. In this approach, we first need to form 

a close boundary for each library item and then we determine whether the energy of 

each point in the boundary is larger than that of the library item. If it is true, then 

there exists an energy barrier for the library item. 

By using the theory of large deviation, Newman explained the nature of the energy 

barriers in the Hopfield model [59]. That is, under what condition (i.e. how many 

library patterns) each library pattern contains energy barriers with high probability. 

The smallest distance from the energy barriers to the library pattern reflects the upper 

bound of the number of errors in the retrieval pattern. 
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The energy barrier ^ 

The smallest energy 
： ；barrier around the ； i 

/ \ ； library pattern ： 

I w \ 
/ \ The energy surface 

The retrieval pattern T h e l i b r a r ^ P a t t e r n 

2 1 0 1 2 

The Hamming distance 

Figure 3.1 The illustration of the energy barrier. If the model is stable 

and the energy barriers exist, there is at least a stable noise version of 

the library pattern. The distance between the noise version and the 

library pattern is upper bounded by the energy barrier whose radius is 

the smallest. 

The key point of this approach is that the change of the energy should be less than 

or equal to zero during recall (if the state of the model changes). For the 'less than 

zero' case, the state always converges to a fixed point. For the 'less than or equal to 

zero' case, the state may converge to fixed points or limit cycles. Therefore, finding 

out a suitable energy function in this approach is very important. 
In this section, the memory capacity and the number of errors in the retrieval pairs 

of BAM are estimated based on Newman's approach. 
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Assumptions and Notations: 

1. The dimensions (n and p) of BAM are large and p = rn, where r is a positive 

constant. 

2. The number of library pairs is m = cm, where a is a positive constant. 

3. Each component of the library pairs (Xh,Yh) is a 士 1 equiprobable independent 

random variable. 

4. d(X, X') is the Hamming distance between the two bipolar vectors X and X'. 

5. Given the state of BAM (X, F ) , H(X, F ) is defined as the energy of this state 

m 
H(X,Y) = -YTWX = -FT L U X h T X . (3.1) 

h=l 

Note that the energy of BAM always decreases during recall. 

6. For the BAM, we consider the following close boundary: 

. j(Yr v , 、 ( d { X h , X ' ) d{YhjY')\ A\ 
& h ’ A ’ 5 = : m a x ( , ^ - ~ I = . 

7. Given the sphere Sxh,Yh,s is union of the sets 

SXh,YhM 二 { ( X f X ) : d ( X h l X f ) = Sxn and d { Y h X ) = 知 } 

for all 8X < and the sets 

SXh’YhA8y = : d(Xh,X f) = 5n and d(YhX)=〜P } 

for all Sy < 5. 

For small 8, the size of the sphere SXh1Yh,s is less than 

r 25 \ 卜 ） （ ” 、 

1 \ 5n j \ ^ y 

because ^ k 

On—A：) ̂  V f Z ^ J O • 
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8. Given a library pair {Xh,Yh), a fixed J and a ^ < Eh,5xAa,r’all is the event 

that 

哪 , 獨 < E{M%Y*} for all ( f , F 1 G 〜 腳 

where H(X,Y) is the energy of the state (X, Y). Also, EhM,a,r,a is the event 

that 

m X k M ) < H ( X f X ) for a ( ( ” G . 

9. Given a library pair (Xh,Yh), a fixed 5 and a fixed 8y < S, Eh，s’Sy,a,r’all is the 

event that 

H(Xh,Yh) < H { X ' X ) for all [ X ' X ) € % - 繊 . 

Also, Ehis,5y,a,r,a is the event that 

H(Xh,Yh) < H ( X \ r ) for a ( X ' X ) € SXh,Yh,Sx,5 . 

10. Given S and a, Es,a，r is the event that 

ES,a,r 二 n ( f l Eh,8x,8,a,rrall ) I F] EhiS,Sy,a,r,all J • 
h=l / \5y么5 ) 

It is the event that for each library pair，the energy of each boundary's point in 

Sxhyh,8 is larger than that of the library pair. 

If Prob(£^’a，r) tends to one as n oo，then for each library pair there exist some 

stable states (noisy versions of the library pair) around it. That means each library 

pair can be recalled with a certain noisy level. 

We first estimate a lower bound of Prob(£^’a，r). Then we can find out a maximum 

value of a (denoted as ar，m普)such that the lower bound of the probability tends to 

one as n 4 oo. Therefore, ar’maxn can be considered as a lower bound of the memory 

capacity of BAM when a small number of errors in the retrieval pairs are allowed. 

With a given a, if we can find out the minimum value of S (denoted as Sa^min) such 

that the lower bound of Prob(£^，a，r) tends to one as n ] oo, then 8a^minn and 

6a^minp can be considered as the upper bound of the 皿mber of errors in the retrieval 

pairs. 
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L e m m a 3 . 1 Chebyshev's inequality : For any random variable x and u > 0 ; 

Prob(X >u) < inf e~ ruE(eTX). 

L e m m a 3 . 2 Let Vi,v2,... ,vn be independent 士 1 equiprobable random variables. Also, 

Si = where I and I' are disjoint subsets of indices { 1 , 2, s n } . Then, 

K - h / ^ l H — } ) = • , 
for —1 < r <1, where N! and Nj/ are standard normal variables. In general, 

f°r^<T<7S-

Proof of Lemma 3.2 

The lemma follows from expanding each exponential as a power series in r together 

with the fact that 

偏 ) 冲 ） 

for all A: = 0, • 
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L e m m a 3 . 3 Stirling's asymptotic formula for factorial: let 8 G (0,0.5) and n is a 

large integer，then 

( L ) � e x p {nh(S)}, 

where 

h{S) = -^ l og 5 — (1 一 J) log(l — S). 

Theorem 3.1 For large n and p, 

Prob(松，a’r) > l - e x p | ( l + r)nh(8) + log an + log ^ ^ - (m - 1) 
, ( I r8(l - 6)n2 \ , rSCl - S)r^\) 

—1+1�gW1+iM^ —O+^^MF)}. 
Proof of Theorem 3.1 

By the definition of E � a , r , 

FTob(Es,a,r) > 1 — rn^^^ ( L ) (?P) Pn， （3.2) 

where Pu is an upper bound of the probability that the energy of a point in the sphere 

is less than that of the library pair. This is, 

Pu > ^rob(Ehi8x,8,a,r,a) 

and 

Pu > P r o b ( ^ , 5 , a , r , a ) 

where EKSxAa,r,a and EhA8y,a,r,a are the complement events of Eh’5xAa,r,a and EhA‘a,r,a, 

respectively. 
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Clearly, 

for Sy = Sx. Also, due to the homogeneous structure of BAM, we only need to find 

the upper of Prob(Elf5x,8,a,r,a)-

We let I be the set of indices in which X and X i differ. Also, we let J be 

the set of indices in which Y and Yx differ. Without loss of generality, we consider 

that the library pair Yi) has all components positive: X i 二（1’，..，1)T and 

Vi = (1,….，1)T. Then, 

？T0b(EhSxAa,r,a)= 

{ m m 1 

D J2 xihy3h + 2^； E I ] xihVjh > 2Sx(l-S)rn2 + 2S(l-Sx)rn2\ < 
h^i ieisx j^Js h^i jeJs J 

{
m m I 

- m Xihyjh + XI m  xihVjh > - sx)rn2 > < 
h^i iehx j^Js h^i 诛hx jeJs ) 

[T^i u i + m Vjh5 / ) 
Prob { 弁 t 5x Js _ _ ^ 5 > JS(1 - 5x)rn2 i < 

I ^ ( 1 — Sx)rn2 - ” J 

1 挪-Sx)rn^ - V J 
PU • 

where 
� = - E ^ 
U^r = E Xih 

i&X ^ ― ' 

Vjs = 
jeJs 

、 y i 二 
j^Js 

With Lemma 3.1 and Lemma 3.2, 

/ x \ (^-i) / ! � — - 1 ) 
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where 

and 
— 8)rn 

11 — -L. 
' 2 ( m - 1) • 

Hence, 
/ i \ 2(m-1) 

& ^ 摁 。 ( 一 t c t ) . (3.3) 

When T is equal to 
Vl + 4w/2 — 1 

T = , 
2u' ' 

(3.3) becomes 

PTob(ElAa,r) < (L ) (?p) exp {—(m — 1) ( v ^ T T i ^ - 1 
, A / 1 +4U /2 -l\) … � 

With Lemma 3.3, Theorem 3.1 can be obtained. • 

From Theorem 3.1, if 

(1 + r)h(S) — a + — 1+ 

i � g ( f ^ H - 丨。 ^ ) <。， 、
5
) 

then Prob(£^，a，r) tends to one as n oo. For small1 S, 

( I ~ — S) 1 1 ( 人 , - 的 \ l - [ \ j i + - 1 - l ) 

— ~ S ) . (3.6) 
4a 

Also, 
' rS(l-S) 

^ oo as a 0. (3.7) 
4(1 + r)a � 

Hence, the following corollary is obtained. It means that for a sufficient small a, the 

probability that there exist energy barriers for each library pair tends to one. 

“ iSee the proof of Corollary 3.2. We can choose 5 二 0(a3) 
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Corol lary 3 .1 For a small 8, there exist some small a such that (3.5) holds、. 

Given a fixed r，define 

• j ) = (l + r)h(S) - a l \ l ^ r S { l a ~ S ) ~ 1 

Hence, the lower bound of the memory capacity is ar,maxn, where arjmax is the max-

imum value of a such that H < 0 (for some 5 < 0.5) Based on (3.8), ar^max can 

be numerically solved. A typical plot of 8) is shown in Figure 3.2. Intuitively, 

J) should be an increasing function of a. With careful analysis (by using bino-

mial expansion on the square root), the following additional feature of H(a, can be 

obtained. 
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Q, vs S 

20 x 10-5 -i 

/ 
/ 

/ 

15 x 10-5 - / 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

10 x 10"5 - / 

O ( a ^ ) / / 

5 x l ( T 5 - 厂 、 , / 

—5 x 10"5 i ^ 1 1 1 1 
0 1 X 10"4 2 x 10~4 3 x 10"4 4 x 10"4 

5 

Figure 3.2 A typical Plot of 0 vs S, where r = 1，a = 0.0113 for solid-line 

and a 二 0.0115 for dashes-line. 
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Corollary 3 .2 With a small S « a2, S) is an increasing function of a. 

Proof of Corollary 3.2 

Using binomial theorem, if S is small, then 

如 ( 1 + r ) h ( S ) - 书 + l og ( l - j ^ j 

where 

” = 2 ^ . 

Since log(l 
—XJ ~ —X 

for small positive x, 
0(a, J) ^ (1 + r)h(S)—吻1 Q . 

4 a 

Hence, J) is an increasing function of a for a small 5. • 

Remark:In fact, it is not difficult to show that J) is an increasing function of a 

because 

— 1 + i � g ^ ^ i ) 
is an increasing function. 

3.3 Memory Capacity from Energy Barrier 

According to Corollary 3.2 (also see Corollary 3.3 shown below), if there exist some 

small J，s such that 0 < 0 with a'、then 0 < 0 for all a" < a'. Hence, we can say that 

armaxn is a lower bound of the memory capacity. Table 3.1 summarizes the values of 

a r m a x that are numerically solved. From the table，when we first increase r, ar,max 

also increases. But a r ,m a , will decrease after a certain value of r is reached (r > 20). 

Also, there is a symmetry property between ar^max and a i max . That is, 

a^,maxr ^ ar,max • r ' 
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This symmetry property can be verified by interchanging r to i and a to， in (3.8). 

This property means that interchanging p and n does not affect the overall estimated 

lower bound of the memory capacity. 

Given fixed a and r，the minimum value of S, such that (3.8) (i.e. n(a, S) < 0) 

holds, is denoted as Hence, Sa^m i nn and 5a,r,minp can be regarded as the 

upper bound of the number of errors in the the retrieval pair. Figure 3.3 

summarizes Sa,r,min which is numerically solved based on (3.8). From Figure 3.3, 

^a,r,min decreases exponentially as a decreases. This can be mathematically verified 

by the following corollary. 

Corollary 3.3 For a small Sa^imin « a2, 

r 
â,r,min ~ 6Xpf~“~T7Z ‘ T I" l ) • 

4(1 + r)a 

Proof of Corollary 3.3 

When S is small, H can be approximated by 

(i + r)h(S) - rS<"l4~ ^. 

Hence, Sa,r,min is the solution of the following equation 

(1 + r ) H ( S ) - r 5 ^ ~ 5 ) (3.9) 

As S is small, 
h(S) « -SlogS-\-(l-S)S^ -S\ogS + S 

and 
rS(l - S ) � 4 

4a 4a 

Then ( 3.9 ) becomes 
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Immediately, Sa^m i n ^ exp(~ 4 ( 1 + 1) .口 

similar to (^a^ m i n (with a suitable change on alpha), we only 

show the cases of r = 1,2,5,10 in Figure 3.3. This can also be mathematically verified 

by Corollary 3.3. If we change r to ^ and a to ^ in Corollary 3.3, a new corollary is 

immediately obtained. 

Corollary 3.4 For a small Sa i min << a2, 

“，丄，搬、~ e x p ( - : + 1 ) . 

r r 4(1 + r)a 

The above corollary means that interchanging p and n does not affect the estimated 
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Table 3.1 The lower bound of memory capacity 

of B A M . 

r ry 

50 0.0169 

20 0.0178 

10 0.0181 

5 0.0175 

2 0.0149 

1 0.0113 

0.5 0.00746 

0.2 0.00352 

0.1 0.00181 

0.05 0.000875 

0.02 0.000336 

Note that the maximum value of S (denoted as 5â r,max) such that 0 is less zero 

does not reflect the attraction basin (see the energy barrier whose radius is larger in 

Figure 3.1). It is because the following inequality lias not been proved yet: 

H { X ' X ) < H{X\ Y"), (3.10) 

for all {X'X) G SXh,Yh,S' and for all [X\Y") G SXh,Yh,8" where 5a,r,min < 5丨 < 5丨丨 < 

8 a ^ m a x . One might think that if (3,10) holds, then a bipolar library, with errors less 

than 6a^m a xn, can correctly recall the desired pair with high probability. In fact, even 

if we can prove that (3.10) is true, we still cannot claim that the lower bound of the 

attraction basin is 5a,r,maxn. It is because the BAM is a heteroassociative memory 

and the initial state of one of layers is unknown. 

Based on the method originally applied to Hopfield network [59]，we cannot deter-

mine the attraction basin for the BAM. It is because Theorem 3.1 only tells us that 

for a certain�皿mber of library pairs (an), there exists energy barriers for each library 

pair. However, the attraction basin for the worst case errors lias not been mentioned 

yet. 
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In the next section, we will present the statistical dynamics of the number of errors 

for the BAM. From the statistical dynamics, we can estimate the memory capacity 

when a small number of errors in the retrieval pairs are allowed. Moreover, the 

attraction basin and the number of errors in the retrieval pairs can also be estimated. 

Sa,r,min aganist a 
1 0 - 2 I ； ； ； ； 

1 0 -
3
 • ： ； ： ； : . . . ； 

1 0" 41......’；. . . . \ r : \ . . . . j \ . . . . . .； . . . . . .丨 . . . . . . 

1 0
"

5
1 . . ： . . . . . . . . . . / • • • • • : • / • / : . . … ： … ‘ . . . 

r = / . / / / . 

10-
6
 三 ：../..：..../..：.../. ：/：....；……： 

!
 : / ： — 1 / / / 

1 0 " 7 I� ： • • ’ . .：� ： : / . . . . :� ：� ：�
=� ： './ . •- = r�二 1 
—� ； ； ； ； ：� ： r = 2 

10_8 
三� ：� ：� ：� ：� ：� 彳 r = 5 
- ： ： ： ： > [r = 10 

io~9 H [ 1 1 1 1 1 
0.005 0.0075 0.01 0.0125 0.015 0.0175 0.02 0.0225 

a 

Figure 3.3 The upper bound of the number of errors in the retrieval 

pairs, Sa^min, on the basis of the concept of energy barrier. 
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3.4 Confidence Dynamics 

In this section, we first present the statistical dynamics of the number of errors of 

BAM. Then, we discuss the way to estimate the memory capacity, the attraction 

basin, and the number of errors in the retrieval pairs from the statistical dynamics. 

Before we introduce our formulation, we will briefly review the formulation used in 

the Hopfield network [60]. 

In [60], let A be the event that (given the number of errors pn in the present state 

and given the number of library pattern m = an) the number of errors in the next 

state is more than pnewn, where n is the dimension. Let A be the complement event 

of A. Furthermore, Komlos [60] proved that if 

a + 7 \ > 0 (3.11) 

then A holds, where a — fa(p, pnew, a) is positive function, and is a random number. 

Also, 

Ti < - M P „ a ) , 

with probability 1 — e~A , where f i is a positive function, Hence, if 

a - / i > 0 , (3.12) 

then the Prob(A) is upper bounded by me-A. Under this formulation, the minimum 

value of pnew, such that (3.12) holds, defines the confidence interval of the number 

of errors in the next state. Note that we will get a relative poorer estimation on 

the statistical properties of BAM (see the end of this section) if we follow the above 

formulation which is originated for Hopfield network of [60]. At the end of this section, 

we will discuss the results of BAM from this formulation. 

Hence, we develop another formulation to estimate the number of errors in the 

next state for the BAM. In our formulation, we first define two probabilities Jf* and 

P艾 for the BAM. 
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D e f i n i t i o n 3 . 1 Given thatp� 二 rn andm = an,寧 is the probability that the number 

°f e r r o r s i n t h e  layer FY in the next state is less than pyp (i.e. the Hamming distance 

^tween Y h and K⑴ is less than pyp), for every library pair (Xhl Yh) and for any p^n 

errors in the layer F x in the present state (i.e. the Hamming distance between Xh 

and� 义⑴ is equal to p^n). 

D e f i n i t i o n 3 . 2 Given that p — rn and m — an，P艾 is the probability that the 

number of errors in the layer Fx in the next state is less than pxn，for every library 

pair (Xh^ Yh) and for any errors in the layer Fy in the present state. 

We will first estimate a lower bound of Py*. Then，we can find the minimum value 

of py, denoted as such that Py* tends to one. The above means that given the 

probability that the number of errors in Fy in the next state is less than p'yp tends to 

one. Also, we can find the minimum value of denoted as such that PJ* tends 

to one. From p' and p' , we can construct the dynamics about the confidence interval 

of the number of errors. The notations and assumptions used here are: 

• The dimensions (n and p) are large and p = rn, where r is a positive constant. 

• Each component of the library pairs (XH,YH) is a ±1 equiprobable independent 

random variable. 

• EAh,g is the event 
d{Y^ t+1\Yh) < PyP 

for a given library pair (XH,YH) and a given present state X � which Is an 

element of the set 

Sh’t�二 { X G { + 1 , - l } n such that d(X, Xh) 二 p^n}. 
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Note that the number of elements in the set Sh,t is ( n � ) . T h u s the index g has 
Px�几�

the range from 1 to ( � ) ) . A l s o , EAh,g is the complement event of EAh a : 
Px�几 fa 

• EA is the event that 

d ( Y ^ \ Y h ) < PyP^ 

for every library pair (Xh, Yh) and for every X � G Shjt. Also, YA is the com-

plement event of EA. Hence, 

h,g 

and 

P^ 三 Prob(^A) 

� 1 — m ( ^ ) J P r o b ( ^ 4 ^ ) . 

Lemma 3.4 For large n and p, 

f m — i / \/l + 4w2 — ] 
Prob(EA^h) < exp | rnh{py)———(Vl + 4u2 — 1 + log ——^——J | , 

where 

u�二� ；�
m —丄�

for g 二 I , “ •, (n(t) ) and h 二 1,... ,m, 
Px�打�
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Proof of Lemma 3.4 

Without loss of generality, we consider that the library pair (Xh,Yh) is: 

= (1，...，1)T and U = ( 1 , . . . , 1)T. Let I be the set of indices in which X^ and 
Xh differ. For a given�义⑴ G Sh,t, there is only one I where \I\ = p^n. Also, let J 

be the set of indices of Yh and Y^"1"1) such that \J\ = p y p . Note that there are 

such sets of J. 

The event EAg,h implies that there is at least one J, where | J| = pyp1 such that 

E f > � < o . 
jeJi=i 

(3.13) 

Hence, 

Fiob^EAg^h) < Prob ( there is at least one J where \J\ — pyp such that 

E E < o ) 
jeJi=i 

< {pPyP) Prob ( E E W W) < 0 f o r a given J ) ‘ （3.14) 
\jeJ i=i ) 

^ / n X 
P" = Prob E  wji  xi < 0 for a given J . (3.15) 

\jeJi=i / 

Replacing Wji with Y^h'=i l/jh^ih, 

p"� 二 Prob (pyp(i - 2P^)n + y^ ( E ~ E xih' < 0 . (3.16) 
\ h'芊hjeJ iei ) ) 

Due to the symmetrical properties of random variables in (3.16), 

p" = Prob ( f ： (E - E > PvPi1 ~ . (3.17) 
乒h j^J i^I 对 / 

Applying Lemma 3.1 and 3.2, (3,17) becomes 

P"< inf ( e - u ^ = L = ) m (3.18) 
一 l > r > 0 乂 V 1 —

 r
 / 

Taking r = ^ ( V l + 4w2 - 1), (3.18) becomes 

< exp { V l T ^ - 1 + log } • ( 3 . 1 9 ) 

52 



Cha.Pter S Memory Capacity and Statistical Dynamics of First Order BAM 

Replacing the binomial coefficient in (3.14) and substituting (3.19) back into (3.14), 

Lemma 3.4 can be immediately obtained. • 

With Lemma 3.4, we can immediately obtain the following theorem. 

T h e o r e m 3 . 2 For large n and p， 

Py" > l - e x p j nh必)+ log an + — ㈧ - ^ f J 1 + 
I 2 n (m—l)2 

- l + l o g V 1 + ( 二 2 - 1� ，�

( ^ T ? / J 

$ VS Py 

x i o - 2 
3 n / ty11 

- 1 . 2 H 1 1 1 1 1 1 1 
0 1 2 3 4 5 6 7 

xlO—2 
Py 

Figure 3.4 A Typical Plot of 

From Theorem 3.2, if 
,、 a ( 4rpy{l-2p iJ )y n 

HPv)� 二 嚷 ) + rh(py) - 2 N  1 + ^  1  
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Jl j 
+ l o g < 0

， （
3
.

2 0
) a2 j 

then P；* 1 as n oo and p ^ oo (note ^ a ). Hence, the minimum value 

of py (denoted as p'y), such that (3.20) holds, defines the confidence interval of the 

number of errors in Fy in the next state. A typical plot of is shown in 

Figure 3.4. For a given p(J) G [0,0.5), p'y can be solved numerically from (3.20). If py 

or p fy is small ( < < a2 ) , can be approximated by 

� < ^ \ p y ) = h(p^) + r h ( P y ) -署 ^ - u " + log(l - f ) ) (3.21) 

where 

u =� ； • 
a1 

Note that 

log(l — x) —X， 

when x is a small positive number. Hence, (3.21) becomes 

^ 着)+ rh(py) —  p A l . (3.22) 

Numerically solving p'y based on (3.22) is much easier than directly solving p'y based 

on (3.20). Apparently, for fixed p'y can be easily solved (see Figure 3.5). Let p* 

be the intersection of the line 

L . = / > , ( ! - — Hp^) ( 3 2 3 ) 
11 2a r 

and the curve 

Cu : y = h(Py) • (3.24) 

Then, 

Py = P l + £ 

where f is an arbitrarily small positive number. Note that Is an increasing 

function of P(J) G [0,5) and (1 - 2 p ^ f is a decreasing function of • G [0,5). From 

(3.23) and Figure 3.5, for a smaller P(J) G (0,0.5) (the line is shifted up and the slope 
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of the line increases.), a smaller p'y can be obtained. Thus, the following corollary can 

be obtained. 

Corol lary 3 . 5 If both p fyl and p'y2 are small ( « a2)} < < 0.5 implies that 

p'yl < Py2' 

y 

个 

Ln 

Figure 3.5 Graphical Implication of Solving p'y. Note p'y can be solved by 

finding out the intersection of Cn and Ln. 

From Corollary 3.5, as n oo and p oo, for every library pair (XhlYh) and 

for every�义⑴ such that d{Xh,X^) < p^n (i.e. the number of errors In the present 

state of Fx is less than or equal to p^n), where p(J) G [0，5)，the probability that the 
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number of errors in the next states of FY is less than p'yp tends to one. We can restate 

the above statement as: 

C o r o l l a r y 3 . 6 As n — oo and p 4 oo, for every library pair (Xh,Yh) and every 

X ⑴ such that d(Xh，X⑷)�p^n (p^ < 0.5人 the probability that d ( Y h , Y ^ ) < p'yp 

tends  to one provided that p'y is small, where p'y�二 《 + p* is the intersection of Ln 

and Cn as shown in Figure 3.6, and e is an arbitrarily small positive number. 

Corollary 3.5 and Corollary 3.6 mean that if the number of errors in Fx in the 

present state is less than or equal to pyn^ then the number of errors in Fy in the next 

state will be less than p'yp (denoted as provided that p'y is small. 

When Py is small, we surely can use Corollary 3.5 and 3.6 to find p'y. When p'y 

is not small, we should directly solve p'y based on (3.20) and then put it as • 

Besides, when p' is not small, for a smaller a smaller p' can be also 

obtained. It is because the partial derivative of�少 with respect to p y 

d屯 1 1 - P(J)丄 4 r � ( 1 — 2 必 ) )4 r p y ( l — 2p(J)) 2a 

W 二 1 o g I + ^ ^ + a O ( n - i ) - Y Z ^ f ( 3 - 2 5 ) 

is positive, 2 where 
I 4rPy(l - 2p¥) 

— ^ — • 

In fact, $ is an increasing function of p ^ because 

f2(u) = ( V l T i ^ — 1 + log V l +2二2 — i ) 

is an increasing function. Hence, we get the following corollary. 

C o r o l l a r y 3 . 7 As n oo and p oo, for every library pair (XhrYh) and every 

X^ such that 4 X ‘ ， < p {S (pf < 0.5人 the probability that d ( Y h , Y ^ ) < p'yp 

tends to one, where p'y is minimum value of py such that (3.20) holds. 

2The first three terms of (3.25) are always positive for 0 < p ^ < 0.5 and the last term is a small 
negative number. Also, in our interest range (such a s : 设 < 0.1 and a < 0.2) the first term is�画 c h 
larger than the last term. 
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The lower bound of P ^ can also be obtained based on a method similar to the 
one above. 

Theorem 3.3 For large n and p， 

P F > 1 - exp J nh(Px) + log an + rnh成+1、) — 1+ 4 仏 ( 1 - 2必 

j 2 ^ ( m - 1 ) 2 

_ i + l o g V i l _ _ _ _ _ ^ _ _ _ _ 
2pxr(l-2piyt+1)fn^ f ' 

( m - l ) 2 ) J 

From Theorem 3.3, if 

e � 二 + M M — \ ( + 产 ( 1 : 2 2 / 4 � — 1 

A 丨 4 r� ( l — 2 必 ^ 

+ log V 2 . f ( t + 1 ) � 2 < 0, (3-26) 
2pxr(l--2pKy 'Y 

a2 

then P^* — 1 as n oo and p oo (note —> a). Hence, the minimum value of 

px (denoted as p'x), such that (3.26) holds, defines the confidence interval of number 

of errors in Fx in the next state. 

The typical plot of ©(/？^) is similar to that of ft(py). Also, for a given 

"(尤+i) G [0’ 0.5), p'x can be solved numerically. Also, if p'x or px is small, 0(/?r) can be 

approximated by 
0 ( � ） �̂ � ） = r h ( ^ ) + h(Px) — P x 1 2 J y . (3.27) 

With the above approximation, one can find out p'x by considering the intersection 

of the line 2 

L21 : y = — (3.28) 

and the curve 

C21 : y 二 h(px). (3.29) 

Then the following two corollaries are obtained. 
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C o r o l l a r y 3 . 8 If both p'xl and p'x2 are small ( « a2), p ^ < p ^ < 0 .5 implies 

tha t p'xl <Px2' 

C o r o l l a r y 3 . 9 As n ^ oo and p ^ oo} for every library pair (Xh,Yh) and every 

such that d{Yh,Y^1)) < (p^1) < 0.5人 the probability that d ( X h , X ^ ) < 

p'xn tends to one provided that p'x is small, where p'x = p* + p* is the intersection 

of L21 and C21, and £ is arbitrarily small positive number. 

It means that if the number of errors in Fy in the present state is less than or equal 

to then the number of errors in Fx in the next state is less than p'xn (denoted 

as When p'x is not small, we should use the following corollary and 

then put p'x as • 

C o r o l l a r y 3 . 1 0 As n 00 and p —> 00, for every library pair (Xh, Yh) and every 

such that d{Yh,Y( t+v>) < p ^ p ( p ^ < 0.5人 the probability that d ( X h , X ^ ) < 

p'xn tends to one, where p'x is the minimum value of px such that (3.26) holds. 

It should be emphasized that d(Xh.,X( t+1)) < p'xn Implies d{Xh,X^ l>>) < p'xn and 

d(Yh,Y^) < PyP implies d(Xh,y( t+1、) < p fyp. Hence, by iteratively solving p'x and 

p'y, we can construct two sequences, p ^ and These sequences are the statistical 

dynamics about the confidence interval of the number of errors. A typical dynamics 

is shown in Figure 3.6. From the figure, the sequences rapidly converge to the stable 

states3 (p fx, p f). We can use the dynamics to estimate the memory capacity, the 

attraction basin, and the number of errors in the retrieval pairs. 
3Here, the stable states are referred with respect to the sequences (p(J), p ^ ) only and are not 

referred respect to the states of neurons. 
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Given m = an and p(x0)，if the sequences (必)，&)) converge to pf) which are 

less than�必0) (i.e. the library pairs can be retrieved with a small number of errors.), 

then the memory capacity of BAM is at least equal to an. Note that with a smaller 

a, the sequences will also converge to the values which are less than (p fx,p fy). It is 

because and 0 , are the increasing functions of a. The above claim of and G, 

comes from the following fact : 

/ 1 � = 4 ( ^ / ^ w 一 1 + 1 � g ^ ^ l ) 

is an increasing function. Because 

dfi 1 , v / T T T ^ - i � _ 2 A 
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With the initial number of errors (p^n) being nonzero, if the sequences converge 

to the values and pfy) which are less than 0.5 and p ^ (It means the library pairs 

can be retrieved with a small number of errors when the initial errors is less than or 

equal to the attraction basin of each library pair is at least equal to p^n . 

The maximum value of p(x0), such that the sequences converge to (p fx,p fx) which values 

are less than reflects the lower bound of the attraction basin. We denote this 

maximum value as pmaxinit,r- Also, pfx and pfy reflect the upper bound of the number 

of errors in the retrieval pairs. Based on the (3.22) and (3.27), it is not difficult to see 

the following relation between pi and p^. 

Corol lary 3 . 1 1 If the sequences 巧))converge to (pi, which values are much 

less then a2, then 

pi ~ Pfy 

no matter what value r takes. 

Proof of Corollary 3.11 

At the limit point (0 < ^ < 0.5, Q < < 0.5) of the sequences (the intersection of 

Ln and Cn is equal to the intersection of L21 and C21), 
e i ^ Q ^ z M l 
g〜(1 - 2ply • 

If p} > pf, then the left hand side is greater than one (since 0 < pfx and 0 < p() but 

the right hand side is less than one (since 0 < pfx < 0.5 and 0 < pfy < 0.5). Hence, the 

only solution of the above equation is pi ^ p^.�口�

With Corollary 3.11 and (3.22), we can easily obtain Corollary 3.12 and Corollary 

3.13 which can be used to directly estimate pfx and pfy instead of solving the dynamics. 

Also, Corollary 3.13 shows the symmetric property of pfx between a and r. The 

symmetric property means that interchanging p and n does not affect the estimated 

Pfx and pfy. 
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Corol lary 3 . 1 2 Given a and r , for small p fx and p f, 

e x p ( -� 二 + 1 ) . 
丄 + r)a 

Corollary 3.13 Given a�二多 and r = j j , for small p fx and p fy， 

P i - P i - e x P ( - +� 工）• 

Result from other approach 

If we directly follow the approach used in the Hopfield network [60] to estimate the 

confidence interval of the number of errors for the BAM, we will obtain the following 

two corollaries. Note that in [60]’ the approach is only employed to estimate the 

confidence interval of the number of errors for the Hopfield network. The following 

two corollaries for the BAM are derived by us based on the approach in [60]. However, 

we find that the estimation from the following two corollaries is not good. Hence, we 

derive our formulation to estimate the statistical properties. 

Corollary 3 . 1 4 As n oo and p oo, for every library pair (Xh,Yh) and every 

X ⑴ such that d ( X h l X ^ ) < P^n (p^ < 0 . 5 � ,d ( Y h , Y ^ ) > pyp with probability 

me—厶 if 

rpy(l - 2 必 ) ) - ( z + > 0，� （3.30) 

where 
HP {J ]) + rh(Py) 

z�二 • 
a 
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Corol lary 3 . 1 5 As n oo and p oo, for every library pair (Xh,Yh) and every 

Y i t + l )  such — <� 时 + 1 ) < 0.5人 > Pxn wUh 

probability me~A if 

r � ( l - 2必+ 1)) — (z' + > 0，� （3.31) 

where 
f _ r h ( p ^ ) ) + h(Px) 

z — _ • 
a 

We can numerically find the minimum values of py and px such that (3.30) and 

(3.31) hold. These values define the confidence interval of the number of errors in the 

next state. However, the lower bound of the memory capacity and the lower bound 

of the attraction basin estimated from (3.30) and (3.31) are usually poorer than those 

estimated from our approach. For example, from (3.30) and (3.31), the lower bound 

of the memory capacity is 0.017n (for r = 1) and the lower bound of the attraction 

basin is 0.0007n (for r = 1 and a 二 0.01). In our approach, the lower bound of the 

memory capacity is 0.022??- (for r = 1) and. the lower bound of the attraction basin is 

0.003n (for r 二 1 and a = 0.01). Hence, in the next section we use our approach to 

estimate the memory capacity, the attraction basin and the number of errors in the 

retrieval pairs for the BAM. 

3.5 Numerical Results from the Dynamics 

Numerical Example a: 

In this example, we numerically estimate the lower bound of the memory capacity 

of BAM for different values of r. For a given r, let a r be the largest value of a such 

that the sequences converge. Then arn can be considered as a lower bound of the 

memory capacity of BAM. Here, we estimate the dynamics based on the Corollary 

3.7 a n d Corollary 3.10. The result is summarized in Table 3.2. From the table, the 
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lower bound increases with r when r < 10. However, the lower bound decreases as 

r i n c r e a s e s f o r l a r § e r ( r > Also, there are some symmetrical results about a r . 
That is 

a r 
ai ^ — • 

r fp 

It means that interchanging p and n does not affect the overall estimated lower bound. 

The advantages of the dynamics approach are, 1) it can be used to estimate the 

attraction basin, and 2) we do not need to find a suitable energy function.4 

Table 3.2 The lower bound of memory capacity of B A M from the 

dynamic approach. 

r a! 

50 0.0334 

20 0.0353 

10 0.036 

5 0.035 

2 0.029 

1 0.022 

0.5 0.0147 

0.2 0.00705 

0.1 0.00362 

4This approach will be used to estimate the properties of the higher order BAM in the next 
chapter. 
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Figure 3.7 The lower bound of the attraction basin of B A M . 
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Figure 3.8 The upper bound of the number of errors in the retrieval pairs 

of B A M based on Corollary 3.7 and 3.10. 
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Figure 3.9 The upper bound of the number of errors in the retrieval pairs 

of B A M based on Corollary 3.6 and 3.9. 

Numerical Example b: 

In this example, we numerically study the lower bound of the attraction basin and 

the upper bound of the number of errors in the retrieval pairs. For a given a, let 

pmaxini^r be the largest value of pg) such that the sequences converge. Figure 3.7 and 

Figure 3.8 summarize the lower bounds of the attraction basin and the upper bounds 

of the number of errors in the retrieval pairs at different values of a, respectively. In 

Figure 3.8 we do not show the cases of r = and 吞.It is because such cases 

(with suitable change in a) are very similar to those of r 二 2, 5, and 10, respectively 

(see Corollary 3.11). 5 

5To change a in Figure 3.8 to f and to change r to i will get the results of r = and�忐. 
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• Construction of Figure 3.8 is from Corollary 3.7 and Corollary 3.10 since the 

value of the lower bound of the attraction basin is large. As a decreases, the 

lower bound of the attraction basin starts increase. When a is very small (about 

10—5), the lower bound reach a upper limit and will no longer increase. From 

Figure 3.7, the lower bound of the attraction basin is the best when r = 1. 

• F r o m Figure 3.8, the upper bound of the number of errors in the retrieval pairs 

Pfx ( o r P fy) exponentially decreases as a decreases. This property of pi (or 

estimated from the dynamics shown in Figure 3.8, agrees with Corollary 3.12. 

• As a comparison, we also use Corollary 3.6 and Corollary 3.9 to estimate p^. The 

results are summarized in Figure 3.9. Comparing Figure 3.8 with Figure 3.9, 

we can conclude that Corollary 3.6 and Corollary 3.9 are good approximation 

of Corollary 3.7 and Corollary 3,10 when the values of pi and p^ are small. 

3.6 Chapter Summary 

Under the considerations 'for every library pair' and 'for every error pattern', we have 

examined the memory capacity and the number of errors in the retrieval pairs of BAM 

based on the concept of the energy barrier when a small number of errors are allowed 

in the retrieval pairs. The results are, 

• The memory capacity can grow as far as arn which depends on the ratio of the 

dimensions: t 二 \ (see Table 3.1). 

• The number of errors in the retrieval pairs is bounded by 0(exp{—4(1；r)cJn), 

where the number of the library pairs is an (see Figure 3.3). 

Also, we have pointed out the limitation of this approach. That is, the attraction 

basin cannot be known. 
Then, the statistical dynamics of BAM is introduced. Based on this dynamics, we 

can estimate the memory capacity, the attraction basin, and the�皿mber of errors in 

the retrieval pairs. 
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• The memory capacity can grow as far as which depends on the ratio of the 

dimensions: r = ^ (see Table 3.2). 

• The lower bound of the attraction basin is a function of a and r (see Figure 

3.8). 

• The number of errors in the retrieval pairs is bounded by 0 ( e x p { — 2 ( 1 ; ) »，�

where the number of the library pairs is an (see Figure 3.8 and Figure 3.9). 

Although the energy approach, can directly estimate the memory capacity, the 

advantage of the dynamics approach is that it can be used to estimate the attraction 

basin and it is suitable to analyze the associative memories without finding out a 

suitable energy function.6 In the next chapter, the statistical dynamics of the higher 

order BAM will be developed based on the dynamics approach. 

6In the dynamics approach, we first'construct the sequences and then we use the the properties 
of the sequences to estimate the statistical properties. So, the dynamics approach is an indirect 
approach. 
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Chapter 4 

Stability and Statistical Dynamics 

of Second order B A M 

The second order BAM, as well as the general higher order BAM, are the enhanced 

versions of BAM. The interesting point is whether the second order BAM, as well as 

the higher order BAM, have the similar statistical properties attributed to the first 

order BAM. In this chapter, the statistical dynamics of the second order BAM is first 

presented. From the dynamics, we can estimate the attraction basin, the memory 

capacity, and the number of errors in the retrieval pairs for the second order BAM. 

Finally, we extend the results to the general higher order BAM. 

4.1 Introduction 

As mentioned in Chapter 1, several encoding methods have been developed to improve 

the memory capacity of the BAM. One of these is to introduce higher order connections 

[45] (resulted in the so-called higher order BAM). In [45, 46], the empirical memory 

capacity of the second order BAM, as well as the higher order BAM, was studied. 

However, the theoretical memory capacity of the second/higher order BAM has not 

been given yet. In [45], the second order BAM was proved to be stable, I.e., its state 

always converges to a fixed point and the energy function which is similar to the 

energy function used in [59] always decreases during the recall. But as we will show, 
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its state may converge to limit cycles and the energy function may increase during 
recall. 

This chapter presents the stability and statistical behavior of the second order 

BAM. We will first use an example to demonstrate that its state may converge to 

limit cycles. Hence, the stabilization of the second order BAM is not guaranteed 

during recall. Also, we will point out a mistake in [45], which leads to its wrong 

conclusion that the state of the second order BAM always converges to a fixed point 

and that the energy function in [45] (the format of which is similar to that in [59]) 

always decreases during recall. Hence, we cannot use the approach of energy barrier 

in [59] (or similar energy function) to estimate the memory capacity of the second 

order BAM. Instead of finding out another suitable energy function, we will examine 

the statistical properties of the second order BAM based on the statistical dynamics 

used in Chapter 3. Note that it is difficult to find a suitable energy function which 

always decreases during recall and can be used to estimate a good memory capacity. 

Section 4.2 presents the stability. The statistical dynamics of the second order 

BAM is introduced in Section 4.3. The numerical examples are shown in Section 

4.4. In Section 4.5, we will discuss how to generalize the above results to the general 

higher order cases. In Section 4.4 and 4.5，we use a theory of large deviation, which 

is derived by Newman [59], to develop the dynamics. In the theory, some conditions 

must be fulfilled. The checking procedure of these conditions is put in Section 4.6 as 

a supplementary reading material. A concluding remark will be made in Section 4.7. 

4.2 Second order B A M and its Stability 

The second order BAM is a heteroassociative memory that stores bipolar library pairs, 

(Xh, n ) , & 二 1，•.., rn, where Xh G {+1，-1}", Yh G {+1，—1}P，and m is the number 

of the library pairs. It encodes them into two separate matrices. The first matrix, U, 

is a n x n X p lattice that holds the second order connections from Fx to FY. The 

second matrix, V, is a p x p x n lattice that holds the connections from Fy to FX. 
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The matrix U = [ukji] is constructed according to the correlation rule: 
m 

= Y, Vkh xjh xih for j = 1 , . . . ， i = l,...,n, and k = l,..,,p. (4.1) 

Also, the matrix V = [vjki] is 
m 

v3ki = Y, xjh Vkh yih for / = 1 , … ’ p , k 二 1,... ,p, and j = l,...,n. (4.2) 
h=l 

Note that vjU =： Vjik and ukji 二 ukij. The recall process of the second order BAM 

works in the same fashion as the first order BAM. That is 

y t ” = sgn (4.3) 
\J-l i=l ) 

= sgn ( t t v 3 k i y r i ) y r i ) ) ^ (4.4) 

The second order BAM belongs to the class of finite state autonomous systems. The 

number of states is finite and the next state only depends on its present state. One 

can easily verify that a finite-state autonomous system either converges to fixed points 

or limit cycles. 

Unlike the first order BAM, the state of the second order BAM may converge to 

limit cycles. Consider the following library pairs: 

Xx = (-1，1, - l , l , l ， - l ) r 

l^i 二（-1,1，1,-1，1，-1)T 

X 2 二（1,1，-1’-1，1,-1)T 

y2 = ( - 1 , — i ， — i ， - i ) T 

x 3 二 （一 1 , — i , — i ) T 

y3 - ( - 1 ， - i , i , -

x 4 = (一 1,1，— l ,—i， i� i ) T 

y4 = ( l ， - 1 , 1 , - i ) T 

二（i,i，-i，i,i,if 

— F 5 二 （ 1 , 1 , - i , i , - i , - i ) T 
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and the initial state is: 

力
0)
 = (-1,-1,1,-1,1，1)

T 

K(。）二 ( 1 , 1 , - 1 , 1 , 1 , I f . 

According to the updating rule, the following sequence can be obtained: 

= s g n ( - 8 , 0 , 8 , - 8 , - 8 , - 8 ) T = (一1，l, 1，—l, _ i，— i f 

X � = s g n ( — 8 , 3 2 , - 4 0 , — 8， 4 0，— 4 0 ) t 二 ( - 1 , 1 , - 1 , - 1 , 1 , - 1 ) T 

y( 2 ) 二 sgn(—12,-52,12,—84,20, - 5 2 ) T = (—1, - 1 , 1 , —1，1, — i f 

义⑶ 二 s g n ( 8 , 48，一56，8，56, —24)
t
 = (1,1，—1，1，1, —1)

T 

Y(3) 二 sgn(—12,12,12,—20,-12，-52) r = ( - 1 , 1 , 1 , - 1 , - 1 , - 1 ) T 

X � 二 sgn(—8,32，_40,-8,40，—40)t 二（―1,1，—1，—1，1, — i f 

y � = s g n ( — 1 2 , — 52,12，_84，20,—52)r = (—1, —1，1，—1,1, 一 1产 

X ⑷ 二 sgn(8，48,—56,8,56,—24)t = (1,1，—1，1,1，—1)T 

Y(5) = sgn(-12,12,12, - 2 0 , - 1 2 , - 5 2 ) T = (—1,1,1，—1，—1, —1产�

_X(5) 二 sgn( -8 ,32 , —40，—8,40,—40)t = (—1,1, —1, — 1 , 1 , - i f 

K(6) 二 sgn(—12,—52，12,-84, 20,—52) t 二（—1，—1，1’ 一1，1, — l ) r 

X(6) = sgn (8 ,48 , -56 ,8 ,56 , -24 ) T = (1,1，—1,1,1，—if 
1� ！� ！ i • 

Clearly, the sequence (X⑴，K� ) converges to a limit cycle. Hence, the stabilization 

of the second order BAM is not guaranteed. 

In [45], an energy function, which is similar to the energy function used in [59], 

is proposed to explain the stability of the second order BAM. Let us first review the 

work in [45] and then point out the mistake. The energy function of the second order 

BAM is expressed in [45] as 

E2� 二 _ ( 知 +� 五 2X) 
m m 

二 —� 对 x ) 2 ( i f 10 — ( 4 . 5 ) 
h=i. h = i 

where {X,Y) is the current state of the neurons, the term E2Y is the second order 

energy contribution of Fy neurons, and the term E2X is the second order energy 
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contribution of Fx neurons. If some neurons in Fx change state, the change of energy 

in Fx is 
m 

A E 2 X = - ^ ( Y h T Y r ( X ^ A X ) , (4.6) 
h=l 

where A�义 = ( A x 1 : . . . , Axn)T and A^- is the change in the ith element of X . If some 

neurons in Fy change state, the change of energy in FY is 

m 

AE 2 Y = - ^ ( X ^ X r ( Y h T A Y ) . (4.7) 
h=l 

By showing that AE2X and AE2Y are always negative，[45] claimed that the second 

order BAM is always stable. 

From our counter example, the stabilization of the second order BAM is not guar-

anteed but [45] claimed that it is always stable. The flaw in [45] is that the change of 

the energy in Fy due to the change of state in Fx (and the change of the energy in 

Fy due to the change of state in Fx) had been neglected. In fact, if the state of Fx 

is changed, the total change of energy is 

m m 

AE2X = - A X ) - AXY(YhTY) 
h=l h=l 
m 

—^ 2 ( X T A X ) ( 对 AX)(Y^Y). (4.8) 

The last two terms in the above equation may be negative or positive. Hence, the 

energy function, proposed in [45]，may increase during recall and cannot be used to 

explain the stabilization. As shown by our example, its state may converge to limit 

cycles. Hence, the second order BAM is an unstable model. 

The above consideration is based on the layer-synchronous recall process in which 

one of the two layers is updated at a time. In fact, the layer-synchronous recall process 

is also the asynchronous recall process with the updating order: each neuron in a layer 

is updated one by one and thea each neuron in the other layer is updated one by one. 

Therefore, the stabilization of the second order BAM is not guaranteed under both 

layer-synchronous and asynchronous recall processes. 

In [59], Newman used a similar energy function (similar to the energy function used 

in [45]) to estimate the memory capacity of the higher order Hopfield network based 

• 74 



ChaPter ^ Stability and Statistical Dynamics of Second order BAM 

on the stabilization of the higher order Hopfield network (or the stabilization of the 

mergy function). Since the stabilization of the second order BAM is not guaranteed 

(under the energy function in [45]), we cannot use the Newman's approach (under the 

similar energy function) to estimate the memory capacity of the second order BAM. 

Instead of finding out another suitable energy function, we will use the statistical 

dynamics to examine the statistical properties of the second order BAM in the next 

section. 

4.3 Confidence Dynamics of Second Order B A M 

The notations and assumptions used here are similar to those used in Section 3.4. 

The only exception is that 

m = an2 . (4.9) 

We first introduce two probabilities Py* and PJ* for the second order BAM. 

Definit ion 4 . 1 For the second order BAM, given that p = rn and m = an2，let 

Py* be the probability that for every library pair ( X h j Yh) and for any p^n errors in 

FX in the present state (i.e. the Hamming distance between XH and X^ is equal to 

), the number of errors in Fy in the next state is less than pyp (i.e. the Hamming 

distance between Yh and Y⑴ is less than pyp). 

Definit ion 4 . 2 For the second order BAM, given that p 二 rn and m 二 cm2, let P|* 

be the probability that for every library pair ( X h j Y h ) and for any p ^ p errors in 

Fy in the present state (i.e. the Hamming distance between YH and is equal 

to p ^ p ) , the number of errors in Fx in the next state is less than pxn (i.e. the 

Hamming distance between Xh and is less than pxn). 
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The estimation of P；* and P艾 is based on an existing theory from large deviation 

(Proposition 3.4 in [59]). Here, we restate it as the following lemma. 

L e m m a 4 . 1 Newman's Lemma: Suppose XlN,X2N,.. • are, for each N，independent, 

identically distributed and symmetric random variables satisfying: 

1. 

H 7ar(Xiv) = J2 e (0, oo). (4.10) 

2. For some real L > 2 and t0 > 0, 

limsup{^(exp(t0 | X n |2 / L ) ) } < oo . (4.11) 

For any 7 G (0, 00) and 

况 ( 4 - 1 2 ) 

a sufficient condition for 

/ M L_2 \ x 

Prob M~1Y,Xn > j M ' ^ 2 J < exp ( - ^ M ^ ) (4.13) 

as M, N — 00 ̂  is 
7 2 i _ 2 < 2 L - 2 ( ( j 2 q L . (4.14) 

The proof of the above lemma can be found in [59] and we will not show it here 

again. Note that in [59] the above lemma is used to estimate the probability of the 

existence of an energy barrier around a library pattern in the higher order Hopfield 

network. Here we use the lemma to estimate�尸广 and P艾.Then we can create the 

dynamics of the fraction of errors of the second order BAM.1 Based on Lemma 4.1, 

we can get the estimation about Prob(丑Aa’")* 

i A s mentioned in Section. 4.1, we cannot use the similar energy function [45$ 59] to estimate the 
memory capacity of the second order BAM. 
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L e m m a 4 . 2 For the second order BAM, asn oo, and p ^ oo 

Prob(EA^h) < e x p {rnh(Py) — P v ^ - ^ Y ] 
[ 6a J 

provided that 

V ) < 2 ' 
for g = I,..、(n⑷)and h = 1,... 

Px 

Proof of Lemma 4.2 

Without loss of generality, we consider that the library pair (Xh}Yh) are: Xh — 

(1, •. •, 1)T and Yh�二 (1, * . . , 1)T. Note that EAg,h is the event that for a given X ^ G 

Sh,t2, the number of errors in Fy in the next state is larger than or equal to pyp. Let 

J be the set of indices in which. X^ and XH differ. Note that there are (n(t) ) such 
\px nj 

sets. Also, let K be the set of indices of YH and Y^ such that \K\ = pyp. Note that 

there are ) such sets. 
\PyP/ 

The event EA9RH implies that there is at least one K such that 
n n 

Y , J2Y1 以岵4 工P <
 0

， 

keKj=l i=l 

where |/(丨=p y p- Clearly, we have 

P r o b ( Z A ^ ) < Prob ( there is at least one K where 二 關 such that 

e e e � K ) < 0 ) 
keK 3-1 i=l 

< (p p ) Prob w 泞 ) < 0 f o r a g i v e n A ] • ( 4 . 1 5 ) 
\keK j=l i=l / 

Let \ 
/ 71, Tl \ 

P"�二 Prob E E E • ^  xf < 0 f o r a g i v e n  KJ' (4.16) 
乂 A^/Olt•二 1 / 

2Sh’t is the set of X G {1，—l}n such that d{X, Xh)� 二 ̂  n 
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Substituting (4.1) and (4.2) into above, 

P " - P r o b ( ^ ( 1 - 2 必 ) ) V + f ： ^ 彻 l ± X j h l < ) � 2 < J . (4.17) 
V h'^hkeK \j=i J I 

One can easily find that 

E I  xjh' ~ Y ,  x3h' ] = 0 
” K jGJ ) 

and 
“ / / n \ 2\ 

E D Vkh' Y ,  x3h' 一 = pyp(3n2 — 2n). 
\keK jeJ / 

Since the random variables in (4.17) are symmetric, 

/ i m \ 
P" 二 Prob ——-乙 X h l > 7 ( m — I)—"4 (4.18) 

—  1 h'泸 h / 

where 
— 测 - 春 _ 

� V 3 n 2 — 2n(m — 1)(3/4) ' V ‘� 

and 2 

T,keK Vkh' ( E ^ j 一 EjeJ  x3h) 
X"' — / = . (4.ZUJ 

y/(3n2 - 2n)(pyp) 

Also, as n, p oo (then ^ ^ a), 

身(1-糊
2 

Applying Lemma 4.1 to (4.18)，putting I =： 3 and t0 being slight less than 2—2/331/3 

(Checking whether Xh'^ satisfy the two conditions, (4,10) and (4.11)，will be shown 

in Section 4.6.), , � � 

Then � � 4 、 

P r o b ( ^ ) < U e x p { - ^ ^ } . (4-21) 

Replacing the binomial coefficient in (4.21) with Stirling's asymptotic formula, 
f pyrn(l 

Pxob(EAg,h) < exp^rnh(py) ^ j . 
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The proof is completed. • 

By the definition of the event EA, 

Prob(£:A) = P；* = 1 - P r o b (湿）�

(n(0 )� 乂�
m Px n 

> ! E P r o b ( ^ ) 
/l=l £f = l 

二 1 ~ m ( K ) (4.22) 

With Lemma 4.2, we can immediately get the lower bound of P y . 

T h e o r e m 4 . 1 For the second order BAM, for large n and p, 

PT > 1 — + log cm2 + rnh(py) — ~ \ (4.23) 
I 6a J 

provided that 

V v ^ 3 / 4 J 2 V ; 

If 

HP^) + rh(Py) -  p A l ~a2p(J) )4 < 0 , (4.25) 

then Py* 1 a,s n oo and p ^ oo. Hence, the minimum value of py (denoted as 

p'y), such that (4.25) holds, defines the confidence interval of the number of errors in 

FY in the next state. Apparently, for a given p^ G [0, 0,5), p fy can be numerically 

solved. Let p* be the intersection of the line 

L l 2 : y 二 ̂ ^ — 薩 (4-26) 
LZ y 6a r 

and the curve 
C u y 二 K P y ) • (4.27) 

Then 

A 二 

where e is an arbitrarily small positive number. According to the feature of L12 and 

C12, the following corollary can be obtained. 
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C o r o l l a r y 4 . 1 For the second order BAM, < pf2 < 0.5 implies that p fyl < p'y2. 

According to Corollary 4.1’ as n oo and p oo, for every library pair (XhlYh) 

and every X ^ such that d ( X h , X ^ ) < the probability that the number of 

errors in Fy in the next state is less than p'yp tends to one. We can restate the above 

statement as: 

Corollary 4.2 For the second order BAM，as n ^ oo and p oo, for every li-

brary pair (Xh,Yh) and every X⑴ such that < p^n, the probability that 

< p ryp tends to one, where p'y = p* e, p* is the intersection of Ln and 

C\2, and e is an arbitrary small positive number. 

The above corollary means that given the number of errors in Fx in the present 

state being less than or equal to p(J)n, the number of errors in Fy in the next state is 

less than or equal to p'yp (denoted as p^^p). Note that d(Yh,Y^+1)) < p'yp implies 

d ( Y h , Y ^ ) < p'yp. 

Similarly, we can easily get the following theorem. 

T h e o r e m 4 . 2 For the second order BAM, for large p and n, 

p r > i - e x p + l o g - ( f ) 2 + ？ ⑷ — � r „ + 1 ) ) 4 } ( 4 . 2 8 ) 

provided that 
( V R i L l ^ t ^ ) (4.29) 

V V ^ 3 / 4 J 2" 
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Let p'x be the minimum value of px such that the right hand side of (4.28) tends 

to one. Also, one can find p'x by considering the intersection of the line 

- r h ( p ^ ) (4.30) 

and the curve 

C22 •• y = h(px). (4.31) 

Hence, Corollary 4.3 and Corollary 4.4 are obtained. 

Corol lary 4 . 3 For the second order BAM, p ^ < p ^ < 0.5 implies that p'xl < 

Px2-

Corol lary 4 . 4 For the second order BAM, as n 00 and p 00，for every library 

pair (Xh,Yh) and every 

such that d i Y h . Y ^ ) < the probability that 

< p'xn tends to one, where p'x = pi is the intersection of L22 and 

C22, and e is an arbitrarily small positive number. 

It means that given the number of errors in Fy in the present state being less than 

or equal to the fraction of errors in Fx in the next state is less than or equal to 

p'xn, denoted as P(J+1)n. Note that d ( X h , X ^ ) < p'xn implies d ( X h , X ^ ) < p'xn. 

By iteratively solving p'x and p'y, we can construct two sequences of p^ and p^. 

These sequences define the statistical dynamics about the confidence interval of the 

number of errors. Similar to Section 3.4 and 3.5, we can use the above dynamics to 

estimate the lower bound of the memory capacity, the lower bound of the attraction 

basin {pma.init), and the upper bound of the number of errors in the retrieval pairs 

(pi and p fy). 

By considering (4.23) and (4.28), it is not difficult to see the following relationship 

between p{ and p fy in the second order BAM. 
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C o r o l l a r y 4 . 5 For the second order BAM, if the sequences converge to 

small values, then 

P fy ~ rpl . (4.32) 

Similarly, from (4.23) and Corollary 4.5，we can easily obtain Corollary 4.6 which 

can be used to directly estimate p fx instead of solving the dynamics exactly. 

C o r o l l a r y 4 . 6 For the second order BAM, if the sequences ) converge to 

small values, then 

^ “ e x p { - ( T T ^ + 1 - r r ^ l o g r }， （ 4
.

3 3 ) 

^ “ e x 4 " ( T T ^ + 1 + IT^ l o g r} . (4.34) 

Remark: During solving p'x and p^, we should check whether both (4.24) and (4.29) 

are satisfied. However, if p'x « a and p'y « a, the conditions (4.24) and (4.29) will 

automatically hold. Especially, when p'x and p'y, respectively, are near to p fx and p fy, 

the conditions (4.24) and (4.29) will always hold (see Corollary 4.6). 

4.4 Numerical Results 

Numerical Example a: 
Based on Corollary 4.2 and Corollary 4.4, we will first study the lower bound of the 

memory capacity of the second order BAM for different values of r. For a given r, let 

a r be the largest value of a such that the sequences (P(J), p^) converge to small values 

(pf,pf). Then arn2 can be considered as a lower bound of the memory capacity. The 
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result is summarized in Table 4.1. From the table, the lower bound initially increases 
with r. Up to r 二 5, the lower bound starts to decrease with r. Also, there is a 

symmetrical property about a r . That is 

a r 
ai ^ ~ . 

The above means that interchanging p and n does not affect the overall estimated 

lower bound of the memory capacity. 

Table 4.1 The lower bound of the memory capacity of the second order 

B A M at different values of r. 

r ar 

10 0.0211 

5 0.0226 

2 0.0204 

1 0.0128 

0.5 0.00510 

0.2 0.00090 

0.1 0.00021 

Numerical Example b: 

Based on Corollary 4.2 and Corollary 4.4, we use the statistical dynamics to esti-

mate the lower bound of the attraction basin and the upper bound of the number of 

errors in the retrieval pairs. For a given a, let pmaxinit,r be the largest values of p^ 

such that the sequences ( 必 ) c o n v e r g e to small {pfx, pfy). Figure 4.1 summarizes 

the lower bound of the attraction basin at r 二 1,2,5,10. The cases of r ^ 2' 5' To 

are shown in Figure 4.2 to Figure 4.4. Note that we do not show the cases of r�二全，�

i , and�丄 in the same figure. It is because in such cases the ranges of a's are very 
5 10 
different. 

From Figure 4.1, for r = 1,2,5,10, the lower bound of the attraction basin initially 

increases as a decreases. But, as a further decreases, the lower bound becomes 
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decreasing. From Figure 4.2 to Figure 4.4 (r = *,*，忐)，as a decreases, the lower 

bound decreases. This unnatural trend is due to the constraints of the conditions 

(4.24) and (4.29)，which limit our searching range of (必)，岭)）during 皿merically 

solving the dynamics. However, it is rational to accept the claim that for a smaller 

a a larger attraction basin should be obtained. Hence, we can take the maximum 

point in the figures as the lower bound of the attraction basin for small a. Table 4.2 

summaries the above claim for small a. From the figures and table, the lower bound 

of the attraction basin is the best when r — 1. 

Table 4.2 The lower bound of the attraction basin of the second order 

B A M at different values of r for small a for small a. 

‘ Pmaxinit,r 

10 0.00478 (a < 0.00641) 

5 0.00504 (a < 0.00701) 

2 0.00546 (a < 0.00814) 

1 0.00587 (a < 0.00933) 

I 0.00542 {a < 0.00487) 

I 0.00245 (a < 0.000866) 

i 0.00107 (a < 0.000193) 

Also, {p fx,pl), which reflect the upper bounds of the number of errors in the re-

trieval pairs, is recorded in Figure 4.5 and Figure 4.6. In the figures, we do not show 

the cases of r = ^ 1 and It is because such cases (with suitable change in a, 
2， 5 , 10 

A , and pfy) are very similar to those of r 二 2，5，and 10, respectively (see Corollary 

4.6). 3 From the two figures, the upper bound exponentially decrease as a decreases. 

Also, pi is approximately equal to to rp{ at all cases. We easily verify that p{ and 

pi, estimated from the dynamics (Corollary 4.2 and Corollary 4.4) in Figure 4.5 and 

Figure 4.6, agree with Corollary 4.5 and Corollary 4.6. 

Changing a in Corollary 4.6 to ^ and changing r to • will get the results of r 二 i and i . 
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Figure 4.1 The lower bound of the attraction basin for the second order 

B A M where r = 1,2,5,10. 
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Figure 4.2 The lower bound of the attraction basin for the second order 
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Figure 4.3 The lower bound of the attraction basin for the second order 

B A M where r•二 g. 
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Figure 4.4 The lower bound of the attraction basin for the second order 

B A M where r�二�忐. 
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Figure 4.5 The upper bound of the number of errors in the layer Fx in 

the retrieval pairs for the second order B A M where r : 1,2,5，10. 
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Figure 4.6 The upper bound of the number of errors in the layer FY in 

the retrieval pairs for the second order B A M where r = 1,2,5,10. 

4.5 Extension to higher order B A M 

Although we are mainly concerned with the properties of the second order BAM, we 

can apply a similar method to analyze the higher order BAM. Here, the only change 

of assumption is 

m 二 ocrtq (4.35) 
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where q is a positive integer. In the case of the general q-ovdev BAM, the connections 

from Fx to Fy are 
m 

= E Vkh xilh xi2h . . . xiqh (4.36) 
h-l 

where & = 1’... ’P，h = 1 ’ . . . ， 二 1 , … , a n d 勾 = 工 ， … , T h e c o n n e c _ 

tions from Fy to Fx are 
m 

vj,h,h,-,iq = E  xjh Vhh yi2h. • • yiqh (4.37) 
h=l 

where j = 1,. •.，n, /i = 1 , . . . /2 = 1,. •. • . a n d lq = 1,...，p. The correspond-

ing recalling rules are: 

必 + 1 ) = s g n ( E� � • • • 《 巧 … 喊 ) ) (4.38) 

二 — f t 巧M2’…’k y f r ] i t 1 ) • • • “ H .  (4.39)  

We can obtain the similar results for the general g-order BAM based on Lemma 4.3. 

L e m m a 4 . 3 Let ^ ,s be ± 1 equiprobable independent random variables, Sn — ^  1, 

and n is a positive integer, as n oo 

E — 勞 • (4.40) 

Proof of Lemma 4.3 

As n oo, S'n tends to standard normal. Since the 2q-th moment of a standard 

normal random variable [69] is 

1 • 3 • • • (2g - 1 ) , 

the 2g-th moment of S'n 

E [(5；)29] — 1 . 3 . . . 彻 - 1 ) 

二 M — • 
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Hence, the proof is (x)mpl(�t(�(i. • 

From Lemma 4.3 and the rosulis in t,lu�noxi, soction, w(�will ohUin I,Ik> lollowing 

four corollaries about t,h(�general q-ow\cv l)AM. 

C o r o l l a r y 4.7 For the q-ordcr HAM as n -> oo and /> -> 00’ Jnr nwry li.lmm, pair 

(Xh, yh) ond every A卞）such Uiat d(Xh, A " ' ) ) < &%,，l.kr probabiiiiy //,",/ (l,(Yln V.(…））.. 

p' p tends to one, provided thai 

where 

A - i M 

p'y — P*j Py is tfie inters eel ion of L\(j and (J\n 

r ^(LzMl!! 
/ 〜 : y = — 

ZA(I(\ r 
C\c,� ： y�二 h(()y), 

and £ is an arbitrarily small positive number. 
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C o r o l l a r y 4 . 8 For the q-order BAM, as n oo and p oo, for every library 

Pa i r ( X h , Y “  and everV  Y { t + l ) — that d ( Y h , Y ^ ) ) < p，p，the probability that 

< pxn tends to one, provided that 

\ ~ ) K y ' 

where p fx = + £, p*x is the intersection of L2q and C2q 

、 � 2 V ) 
: y = h(px)， 

and e is an arbitrarily small positive number. 

C o r o l l a r y 4 . 9 For the q-order BAM, if the sequences (o^', p^') converge to small 

values, then 

P!y ̂  r"pi . (4.41) 

Corol lary 4 . 1 0 For the q-order BAM, if the sequences converge to small 

values，then 

^ - ( T T ^ w + r ^ 1 � - 1 } (4.43) 

We can use Corollary 4.7 and Corollary 4.8 to construct the statistical dynamics 

of the confidence interval of the number of errors for the g-order BAM. Also, the 

corresponding memory capacity, attraction basin, and number of errors in the retrieval 

pairs can be estimated. Moreover, Corollary 4.10 can be used directly to estimate the 

number of errors in the retrieval pairs without solving the dynamics numerically. 
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4.6 Verification of the conditions of Newman's 

Lemma 

In this section, we show under what conditions the random variable x 

yJpypXqU^ 

satisfies the two conditions (4.10) and (4.11) in Newman's Lemma, where yk,s and 

〜，s are 士 1 equiprobable independent random variables. Clearly, x is symmetric and 

E [X] = 0. (4.44) 

Also, from Lemma 4.3 

Var ( X ) = E [X 2 ] = 1. (4.45) 

Hence, (4.10) is satisfied. 

To check whether x satisfies (4.11), we use an existing result about the sum of ±1 

equiprobable independent random variables [68]. 

L e m m a 4 . 4 Let ，s be ± 1 equiprobable independent random variables. Then, for 

z > 0 and large n, 

E [I�仏 户 11 < 2 - / 2 + i 7 r - i / 2 r ( f ± i ) (4.46) 
nz/2 — v 2 ! � J 

where r ( a ) is the gamma function 
fOO 

r ⑷� 二 y xa-xe-xdx (4.47) 

The above lemma is part of Lemma A.6 in [68].4 

4In[68l a lot of properties about the sum of 士 1 equiprobable independent random variables have 
been explored. But the author use these properties to study the memory capacity of the higher order 
Hopfield network under the condition that errors are not allowed in the retrieval patterns. In fact, 
these properties can be used in many cases. It is because most problems in the field of associative 
memories can be re-formulated as problems related to the sum of ± 1 equiprobable independent 
random variables. For example, here we use the above lemma to study the dynamics of the second 
order BAM. 
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Based on Lemma 4.4，for 之〉0, and large n and p, 

E [I X 11 < 2 ^ + i 7 r - i / 2 r ( ? i ± l ) A - , / 2 ( 4 . 4 8 ) 
乙 2 

Let z — iuk, where Aj is a positive integer and a； > 0 Then 

^ ⑷ 仏 ^ ^ ^ 字 则 ^ ^ 却 ， ( 4 , 9 ) 

where CQ is an positive constant. For fixed a; and large k, 

kl ^ V^e-kkk部, 

+ 记 M+1)/2(^±1)M:+1)/2-1 /2， 
2 2 

and 

+ 1) _ + 1 yqcok+l)/2-l/2 . 

Hence, for fixed to and large k, 

-丑 [ I X I叫 < C 0 e _ ( ( ( g + 1 ) " ) / 2 — … ( 口 一 2 � 广 一 ( 料 左 + 1 y^k) /2 k -k- i /2 
k ！ L J 2 

(4.50) 

For large k, the k-th term of the sum 

oo ±k 

k=0 

hence decreases exponentially provided that o ; = 击 and t0 < 2 — � ( 计 A s 

S converges to 

it follows that 

limsup ^ [exp {t0 I X |2/("+1)}] < 00 . 

4.7 Chapter Summary 
In this chapter, we have studied several properties of the second order BAM. The 

properties are the stability and the statistical properties. 
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• W e h a v e g i v e n a n a n example to show that the second order BAM is not a stable 

model. That is, its state may converge to a limit cycle. 

• W h e n a s m a 1 1 number of errors in the retrieval pairs are allowed, we have followed 

the methodology, presented in Chapter 3, to estimate the statistical dynamics 

of the number of errors for the second order BAM. Hence, we can estimate the 

memory capacity, the attraction basin, and the number of errors in the retrieval 

pairs for the second order BAM. 

• The memory capacity can grow as far as arn2, which depends on the ratio of 

the dimensions: r = ^ (see Table 4.1). 

• The lower bound of the attraction basin is also a function of a and r (see Figure 

4.1 to Figure 4.4, and Table 4.2). 

• The number of errors in the retrieval pairs is bounded by 0(exp{ —6(二2)q + 

log r }n) , where the number of library pairs is an2 (see Figure 4.5 and Figure 

4.6). 

• Also, we have briefly explained how to extend the results to the general higher 

order BAM. 
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Enhancement of B A M 

In this chapter, we focus on the modified versions of BAM. The task of these modi-

fied versions is to enhance the recall performance of BAM. In general, there are two 

approaches of the modified, versions: 'change of encoding method' and 'change of the 

topology'. We adapt the approach of 'the change of encoding method' to develop 

four new encoding algorithms, identified as householder encoding algorithm (HCA), 

enhanced householder encoding algorithm (EHCA), bidirectional learning (BL)，and 

adaptive Ho-Kashyap bidirectional learning (AHKBL) for the BAM. Simulation re-

sults show that these four encoding methods can greatly improve the memory capacity 

of BAM. In particular, the HCA, EHCA, and AHKBL greatly improve the error cor-

rection capability. The properties of these four learning rules, such as the memory 

capacity, the error correction capability, the convergent conditions, the ease of hard-

ware implementation, and the learning speed are also addressed. Additionally, we will 

also made ail empirical comparison on the properties among the four learning rules 

and some other existing learning rules. 

5.1 Background 
As mentioned in many articles [32]-[49], the memory capacity and the error correction 

capability of BAM under the Kosko's encoding is poor even the�皿mber of library pairs 

is very small. Many modifications of BAM, which change either the encoding method 
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° r t h e t oP o l ogy ’ • ^ i l a b l e [32]-[49]. The task of the modifications is to improve the 
recall performance such that the noisy input can correctly recall the desired library 
pair. 

To achieve the task, the first condition is that all the library pairs should be stored 
as fixed points: 

sgn(PFX,) = y h , (5.1) 

s g n ( ^ T n ) = Xh (5.2) 

for all h = 1,. •.，m. Otherwise, the library pairs will never be recalled. Note that 

(5.1) and (5.2) cannot guarantee that the library pair (Xh,Yh) is recalled when a 

perfect library pattern Xh is given. For example, all bipolar pairs are stored as fixed 

points when the connection matrix is a zero matrix. It is because the sign operator is 

+1 a; > 0 

sgn(^)�二 { —1 a: < 0 • 

state unchanged x = 0 
、 

The state of a neuron will not change when the weighted sum of its input is 

zero. Hence，given any initial state, the state is never changed when a zero connection 

matrix is used. We call this kind of BAM as a “trivial system" in which every possible 

state is a stable state. Hence, we change the definition of sign operator as: 

+1 z � 0 

一 1 x <0 
sgn(a?)= . 

state unchanged (during recalling process) x = Q 

0 (during training) x = 0 

With such definition, if the encoding methods can find out a connection matrix W 

such that 
n 

v 
Xih(^2wj>iyj'h) > 0 ( 5 . 4 ) 

3' 
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for z = 1，..., n a n d j 二 1 ， . . . t h e n each perfect library pattern Xh can recall the 

corresponding pair (為，F,). From the energy point of view, the new definition leads 

to the following lemma. 

L e m m a 5.1 With a connection matrix a library pair (Xh, Yh) satisfying the fol-

lowing equations: 

n 

yAYj w 3i t X i 'h) > o (5.5) 
i' 
V 

wi'iyj'h) > o (5.6) 
3' 

f o r i = l , . . . , n a n d j : = l , . 、 p ， i f a n d only if the library pair (Xhl Yh) is an isolated 

local minimum of the energy function. 

Proof Lemma 5.1 

Let (X,Y) be one of the neighborhood pairs of The difference between 

their energies is 

- Y ^ W X h + Y t W X . 

If the different element is in the ^th position of Xh and X, then the difference of their 

energies 
p 

w j ' i y j ' h ) . 
j'=i 

If the different element is in the jth position of Y^ and Y, then the difference of their 

energies 
n 

WjifXi'h). 

From (5.5) and (5.6), the energy of [Xh, Yh) is less than that of any one of its neigh-

borhood pair. 

Conversely, if the energy of (Xh, Yh) is less than zero, we can easily get 

v 
-2xih(^2wjfiyjfh) < 0 

j' 
n 

忉ji丨工i'h) < o , 

“ 99 



Chapter 5 Enhancement of BAM 

for all z�二 and j = Hence, (5.5) and (5.6) can be immediately 
obtained. The proof is completed. • 

If (5.3) and (5.4) is changed to 

n 

yjh(^2Wji ,Xi'h) > 0 
i> 
V 

wj'iyj'h) > o 
j' 

then the following lemma is obtained. 

L e m m a 5 .2 With a connection matrix W, a library pair (Xhy Yh) satisfying the fol-

lowing equations: 

n 

yjh(J2Wji^i'h) > 0 (5.7) 
i' 
V 

Xih(J2  W3'iyj'h) > 0 (5.8) 
3' 

for i = …，n and j 二 ,p，if and only if the library pair (Xhl Yh) is a local 

minimum of the energy function. 

It should be emphasized that if we use (5.7) and (5.8) to construct the connection 

matrix, the 'trivial solution' (i.e. the zero matrix ) is one of the solutions. To avoid this 

ambiguity, we define the task of the encoding methods is to construct the connection 

matrix such that each library pair is an isolated local minimum of the energy 

function. 

We will first give a general review on the modifications of the BAM in Section 

5.2. The details of our proposed four encoding methods are presented in Section 

5.3 to 5.6. The properties of the four encoding methods will also be discussed in the 

corresponding section. We also give an empirical comparison on the recall performance 

between our methods and some other existing methods in Section 5.7. Finally, a 

conclusion is given In Section 5.8. 
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5.2 Review on Modifications of B A M 

Up to now, many modifications are available regarding the BAM [34]-[53]. In general, 

these modifications apply one or both approaches: 'change of the encoding method' 

and 'change of the topology'. They often make improvements on the recall perfor-

mance with extra cost, e.g., increased computation or implementation complexity. 

The efficiency of a modification can be in terms of the information ratio[45]: 

information ratio�二�皿 ― 汉 of library pairs correctly stored 
number of connections •� 卜 ）�

Upon simplification, if we set n 二 p in the BAM, then the information ratio of Kosko's 
encoding; is ^ ― r . 

° 4n iogn 

5.2.1 Change of the encoding method 

In the case of 'change of the encoding method', other algorithms (instead of the 

Kosko's encoding scheme) are employed to construct the connection matrix such that 

the recall performance is improved. Note that the recall equations are unchanged. 

Hence, the stabilization can almost be maintained during recall. 

One technique [41] uses a multiple training concept which improves the memory 

capacity, but does not guarantee the recall of all library pairs. In the multiple training, 

the initial connection matrix is formed by Kosko's encoding scheme. The library pairs 

are then repeatedly and sequentially presented to the BAM. If the presented library 

pair is a fixed point, then the connection matrix is not changed. Otherwise, the 

connection matrix is updated as: 

Wnew = Wo ld + Yht X l . (5.10) 

where (Xh'-,Yh') is the currently presented library pair. Recently, Wang [42] et al. 

have formulated the multiple training to solve a set of inequalities and suggested 

the use of a linear programming technique. The multiple training guarantees that a 

particular library pair is stored as a fixed point. However, the memory capacity with 

it is still very small (see Section 5.7 or [42]). The hardware implementation can be 
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accomplished in an easy way since only the integer-valued weights are involved and 

the connection matrix can only be changed by 1 or - 1 . 

Spurious states, which are the undesired local minima in the energy function (or 

said as the undesired fixed point), are traps to use of BAM. Therefore, ensuring the 

library pairs to be local minima is not enough. Eliminating spurious states is also 

important. Srinivasan and China [40] suggested adding the unlearning concept to the 

multiple training. The connection matrix W has the form 
m 

W� 二 T^hYhXTh - E ^ s Y j s X l (5.11) 
h i 

where [Xh,Yh) are the library pairs and {Xjs,Yjs) are the spurious states. However, 

the values of qh and qjs should be determined experimentally. There is still no sys-

tematic way to find qh and qjs. Through computer simulations, Srinivasan and China 

[40] have shown that their unlearning technique can increase the memory capacity 

and the error correction capability. 

Haines and H. Nielson [24] extended the BAM to include thresholds and then they 

improve the memory capacity of BAM through the use of the sparse coding. 

Suppose that it is permitted to use two different matrices Wf and Wb in different 

directions. Then (5.1) and (5.2) can be rewritten as 

.sgn(WfXh) = Yh (5.12) 

sgn(^n)� 二 Xh. (5.13) 

Moreover, we can further change (5,12) and (5.13) to 

WJFA = FB (5.14) 

WhFB - Fa (5.15) 

where Fa — [Xi：.. • \Xm] and Fb = [Fi： ••‘ Note that (5.14) and (5.15) imply 

(5.12) and (5.13). Hassoun [54], Leung [32], and Hu [51] individually proposed three 

algorithms to solve (5,12) and (5.13). These three algorithms lead to the concept of 

the generalized inverse. That is, 

Wf = FBF+ (5.16) 

Wb = FAF+ (5.17) 
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where F+ and F+ are the generalized inverses of FA and FB respectively. In [54]，�

H a S S 0 U n P r °P° s e d t o u s e t h e Ho-Kashyap encoding method with the generalized in-
v e r s e s ' c a l l e d HKDAM, for the constructions of W f and�烬.N o t e that the HKDAM 

usually terminates within one learning cycle and leads to (5.16) and (5.17), which was 

not realized in [54]. It is because the probability that the rank of FA (and FB) is M is 

very high [62] and then the generalized inverses of FA (and FB) are uniquely defined. 

In [32] Leung proposed the householder encoding algorithm (HCA) to construct WF 

and There are two models in the HCA: batch model and iterative model. In 

the batch model, the construction of the connection matrices is based on the house-

holder transformation [70]. The iterative model HCA is an incremental learning rule 

in which the new library pairs can be encoded Into the connection matrices based on 

the current connection matrices only. Also, Leung proved that the memory capacity of 

HCA tends to mm(n,p). Recently，Hu [51] proposed the unilateral orthogonalization 

based BAM (UOBAM), which is similar to the iterative model HCA, to construct the 

connection matrices. The major difference between them is that there are two addi-

tional projection matrices which must be stored during encoding in the UOBAM (see 

Section 5.3.2). It means that if the UOBAM is used under an adaptive environment, 

we should also keep the two projection matrices. When compared with the multiple 

training, the approach of the generalized inverse greatly improve the error correction 

capability. Since there are two different connection matrices in this approach, the 

stabilization of BAM with this approach is unknown during recall. Since the HCA, 

UOBAM, and HKDAM are all related to the concept of the generalized inverse, their 

memory capacity and error correction capability are the same. The hardware imple-

mentation of them is relatively difficult since real-valued weights are involved. The 

details of HCA is presented in Section 5.3. 

The disadvantages of the approach of generalized inverse is that the stabilization 

of BAM is unknown during recall and the number of connections is double. To 

overcome this problem, enhanced householder encoding algorithm (EHCA) was later 

introduced [34, 33]. The EHCA reduces the two connection matrices found from the 

generalized inverse into one. Hence, the stabilization can surely be maintained. The 
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recall performance of EHCA is comparable to that of HCA. However, the drawbacks of 

EHCA are that it is a batch mode learning rule and a computation intensive learning 

mle. Also, the hardware implementation of EHCA is relatively difficult since real-
v a l u e d w e i g h t s a r e involved. The details of EHCA will be presented in Section 5.4. 

Borrowing the idea from the perception rule, Leung [35，36，37] proposed bidi-

r e c t i o n a l l e a r n i n g ( B L ) w h i c h is an iterative mode learning rule. At the same time， 

two similar algorithms, called optimal learning algorithm (OLA) and optimal leani-

n g s c heme (OLS), are individually discovered [43, 44]. The development of OLA and 

OLS is based on the global minimization of a cost function. On the other hand, the 

BL views the encoding problem as the training of a single-layer perceptron in a bidi-

rectional sense. The memory capacity of BL is proved to be the greatest among all 

encoding methods (with one connection matrix only). As only integer-valued weights 

are involved in the BL, the hardware implementation of BL is as simple as the case of 

the multiple training, Since the perceptron rule cannot locate a good decision surface 

[74], the BL also has weak error correction nature. Leung later [38] introduced a 

robust learning rule, named adaptive Ho-Kashyap bidirectional learning (AHKBL), 

to enhance the error correction capability. However, the AHKBL loses the feature 

of integer-valued weights. Note that there is only connection matrix in the BL and 

AHKBL. Hence, the stable property of BAM can be maintained. The details of BL 

and AHKBL will be presented in Section 5.5 and 5.6. 

The pseudo-relaxation learning algorithm for the BAM (PRLAB) [52], which is 

similar to the BL and AHKBL, uses a different mathematical approach adapted from 

the relaxation method originally proposed in [75]. The aim of PRLAB is to accelerate 

the learning process. From Section 5.7, the memory capacity of PRLAB is the same 

as that of BL and AHKBL. The error correction capability of PRLAB is only similar 

to that of BL. Similar to the case of AHKBL, the PRLAB loses the feature of integer-

valued weights but the learning speed of PRLAB is very fast. 

Apart from the multiple training, the encoding methods mentioned here greatly 

improve the information ratio. Although there are two matrices in the approach of 

generalized inverse, the information ratio of this approach is still greater than that of 
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KosWs encoding scheme. It is because the memory capacity of the approach is 画 c h 

greater than that of Kosko's encoding scheme. 

5.2.2 Change of the topology 

In the approach of 'change of the topology', the structure and recall process of BAM 
a r e c h a n g e d . However, the concept of the bidirectional feedback between the two 

layers Fx and FY is maintained. Since the topology is changed in this approach, we 

may interpret the modifications as the new heterassociative memory models. 

One technique [45, 56], the higher order BAM, is based on the higher order con-

nection. Its statistical properties have been presented in Chapter 4. Empirically, it 

greatly improves the memory capacity and the error correction capability. However, 

the number of connections of the higher order BAM is much greater than that of 

the first order BAM. From the simulation results in [45], the information ratio of the 

higher order BAM is much poorer than that of the original BAM. As mentioned in 

Chapter 4, the stabilization of the higher order BAM is not guaranteed. 

The concept of the layered extension is another valuable strategy since this ap-

proach is able to improve the BAM's storage capacity with a relatively small increase 

in complexity [48, 49]. The backpropagatioii. learning [5] is employed to find the con-

nections [48, 49]. However, the stable property of BAM cannot be maintained. Note 

that if the hidden layer in [48，49] is removed, then the model becomes a feedback 

heterassociative memory with two different connection matrices. The two connection 

matrices are the solutions of (5.12) and (5.13). There are many methods to find them. 

One of the methods is the approach of the generalized inverse mentioned above. An-

other method is to individually use the perceptron rule to construct the two matrices 

[58]. However, in the above two methods, the two matrices are not the same (i.e. 

WF + W6t) and then the stable property of BAM cannot be maintained. 

The dummy augmentation encoding (DAE), as proposed by Wang [41], improves 

the recall performance by introducing additional neurons in the two layers‘ Each 

library pair is attached with an orthogonal pair and then a new set of library pairs 

is obtained. The new connection matrix can be obtained from the outer product 
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mle based on this new set library pairs. As there is one connection matrix in the 

DAE, the stabilization of DAE is guaranteed during recall. In the DAE, given a set 

of library pairs, each library pair can be stored as a fixed point if the number of 

additional neurons is sufficiently large (i.e. The number of additional neurons is data， 

dependent.). However, it is difficult for us to comment on the recall performance of 

DAE if the resources (number of additional neurons) are not limited. In [39], Leung 

investigated the statistical memory capacity of DAE for a given number of additional 

neurons and then evaluate the efficiency of DAE in terms of information ratio. The 

statistical memory capacity of DAE is 

n ( l + r , ) 2� 尸 ( l + q ) 2 � 

4 log n 4 log p 
where there are rdn and rdp additional neurons in the two layers of BAM, For sim-

plification, we set n = p in the BAM. In the DAE, the number of connections is 

n 2 ( l + rd)2. In the original BAM, the information ratio is�铋二 n ’ The information 

ratio of DAE is also 4nl1ogn. The simulation results in [45] show that the information 

ratio of the higher order BAM is much less than that of the original BAM. Hence，from 

our theoretical results in [39] and the empirical results in [45]，we can expect that the 

information ratio of DAE is better than that of the higher order BAM. The advan-

tage of DAE is that its recall performance depends on the number of the additional 

neurons. 

The modified bidirectional decoding strategy (MBDS) [47] uses two additional 

cascade networks to improve the memory capacity. The two cascade networks force 

the library pairs, which are not stored as fixed points in the original BAM, to become 

fixed points. Since the sizes and the weights of the two cascade networks depend on 

the library pairs in the MBDS, it is very difficult for us to comment its efficiency. 

Also, the stabilization of MBDS is unknown. 

Another technique [53]，namely the exponential bidirectional associative memory 

(EBAM), uses an exponential scheme of information flow to enhance the recall per-

formance. Its recall process is 

评 + 1 )� 二 s g n / f : n e x p ( X ^ ) ) ) 

二 l� 乂�
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/ m \ 
X i W ) = (5.18) 

The EBAM was later individually discovered as the modified bidirectional associative 

memory (MBAM) In [50]. In the EBAM, there is no distributed connection matrix 

and the library pairs are directly encoded into the model In my opinion, once we 
u s e t h e aPP r oach of direct encoding in the associative memories, we should use the 

Hamming net with MAXNET [17] (which can optimally recall the library pairs�皿der 

noisy input) instead of using an exponential scheme of information flow. Same as the 

higher order BAM, its stability is unknown. 1 

Remark: Except the approach of the layer-extension, all the modification above-

mentioned only involve integer-valued weights. Hence, their hardware implementation 

can be accomplished in an easy way. 

5.3 Householder Encoding Algorithm 

5.3.1 Construction from Householder Transforms 

Here, we present the details of HCA [32]. To ensure each library pair (XH,YH) be 

stored as a fixed point, it is equivalent to find a matrix W*, such that 

FB 二 sgn { W " F a ) (5.19) 

FA = sgn { W " t F b ) (5.20) 

where 

FA = XI .X2 ：.. ‘ XM 

Fb = Vi：!^‘ • * ym • 

If we use two different connection matrices, Wf (from layer Fx to layer Fy) and W^ 

(from layer Fy to layer Fx), the requirement that all library pairs are fixed points 

1 Although the stabilization of the EBAM was proved in [50] and [53], the proof has a mistake 
which is similar to the case of the second order BAM mentioned in Section 4.2. 
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then becomes 

Fb = sgn 

F a = sgn(VF6*Fs) . (5.21) 

A sufficient condition for establishing the above relationship is 

F b = W^Fa (5.22) 

F a = W^Fb . (5.23) 

In the following, we will demonstrate that the Householder transforms [70, 71] (also 

named as the Householder reflection) is a handy tool to find W] and W^ such that 

(5.22) and (5.23) can be established. As the technique involves the Householder 

transforms, we refer it as the householder encoding algorithm. 

If all XhS, as well as all Y^s, are linearly independent, we can define two rotation 

matrices Ra and Rb such that 

h = RAFA 二 (5.24) 
奶 n - m,m 

and 

Yb 二 RB FB =  B’$ . (5.25) 

where and Yb^ are upper triangular matrices with dimension m x m, and 0n_m ’m 

and are zero matrices. Since both Ra and Rb are orthonormal, 

FA = RATYA (5.26) 

FB = RBTYB • (5.27) 

Due to sparsity of Ya and Yb7 the rotation matrix Ra in (5.26) can be reduced in 

dimension by eliminating the n — m rows after the (m + l)th row. Likewise, we also 

eliminate the p — m rows after the (rn + l)th row of the rotation matrix Rb. After 

the eliminations, (5.26) and (5.27) becomes 

FA = RATYA^ (5-28) 

— FB = HBTVB,0 (5-29) 
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WHERE ^ AND ^ ARE THE FIRST M� ⑴ 鄉 of RA and RBL respectively. By substituting 
(5.28) and (5.29) into (5.22) and (5.23), we obtain 

F b = W}RA TYA j $ (5.30) 

F a = W:R b T Y b , $ . (5.31) 
AT -i " T a ^ J1 

Note that RA RA and RB RB are identity matrices with dimension m x m, we 

therefore obtain two connection matrices, WJ and W^, as follows: 

Wf = F B Y A ^ R A (5.32) 

W� 二 F a Y b ^ R b , (5.33) 

where W*f and W^ are referred as the forward connection matrix and backward con-

nection matrix, respectively. Let 二 Ya^Ra and F吉=Yb^~1Rb- Since FAF+ 

and FbF^ are the identity matrices, F^ and F玄 can be considered as the generalized 

inverses of Fa and Fb, respectively. 

5.3.2 Construction from iterative method 

In the above, we use the Householder transforms to find the generalized inverses and 

then create the two connection matrices such that all the library pairs are stored as 

fixed points. In fact, one can use Widrow HofF algorithm [1] to separately find the 

connection matrices Wj and W^ by introducing two projection matrices, If all X h \ 

as well as all Y^'s, are linearly independentT we first define two initial connection 

matrices Wj1^ and�对 1 ) , 

= 釋
 （ 5

.
3 4 ) 

树 d = ( 5 . 3 5 ) 

where 

|| x ||= V x T x . 

The two connection matrices can be obtained in the following way: 

评严
1
) 二 (5.36) 

f f II I I2 
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wt+1) = wt] + , … � 
^ II ||2 , ( 5 ' 3 7 ) 

= X h + 1 - P ^ X h + 1 . (5.38) 

n + i = n + i�一 I F H ,. (5.39) 

where Pxh) and are the linear projection matrices whose spaces are formed by 

X u X 2 , - " , X h and respectively. We can apply the mathematical in-

duction to prove that (5.36) and (5.37) can find the two connection matrices W] 

and W；. In the above equations we separately update the two connection 

matrices and should keep the two projection matrices during learning. 

In fact, it is not necessary to memorize the two projection matrices if we thoroughly 

consider the relationship between W ^ and W ^ : 

= P f (5.40) 

二 / f ) . (5.41) 

The above equations can be proved by mathematical induction. In our proposed 

iterative mode HCA, the update equations are 

=： + ( Y k ^ - W ^ X ^ X ^ p . ) 

II  xh+i ||2 

w t + 1 )� 二 ^ ^ ^ - W ^ Y ^ Y ^ 
i n " 2 v ; 

= —恢6
(/1)
评广）及+1 (5.44) 

n+1 二 n+1 — w\h) Wb{h)Yh+i • (5.45) 

Clearly, it is not necessary to memorize the two projection matrices in the 

iterative mode HCA during learning. Hence, if a new library is encoded, 

we need to update the connection matrices based on the current connection 

matrices only. Moreover, Xh+i and Yh+i can be regarded as the feedback 

error vectors which are obtained from the bidirectional information flow 

between the two layers. 

Remark: Recently, similar iterative equations are independently discovered in [51]. 

But, in [51] the two projection matrices P ^ and Py should be memorized during 
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encoding. As shown in the above, it is not necessary to memorize the two projection 

matrices by well considering the relationship between W f ] and Wb(k). 

5.3.3 Remarks on HCA 

So far, we have presented two different methods to construct the two connection 

matrices W] and Wb\ One is a batch mode method which finds the generalized 

inverses of FA and FB first. Another one is an iterative mode method which directly 

finds WJ and W^. Their properties are summarized below. 

• From (5.22) and (5,23)，we can regard HCA as a variation of the outer product 

rule. The connection matrices are the outer products of the library pairs and 

their generalized inverses. 

• If each component of the library pairs is a ±1 equiprobable independent random 

variable, then the memory capacity of HCA tends to min(n，p). It is because 

the probability that m random bipolar vectors with dimension d (d is greater 

than m) are linearly independent tends to one when d is sufficiently large [63]. 

From Chapter 2, the memory capacity of Kosko's encoding scheme is 4 二攻 p). 

Hence, from the statistical point of view, the memory capacity of HCA is greater 

than that of Kosko's encoding scheme. Also, the difference of the memory 

capacities between them is dramatic when the dimensions of the library pairs 

are large. 

• From the simulation shown in Section 5.7, the error correction capability of 

HCA is better than that of the three other proposed encoding methods. 

• Since the HCA has two different connection matrices, the hardware resource of 

HCA is twice to that of Kosko's encoding scheme. Since the real-valued weights 

are involved in the HCA, the hardware implementation of HCA is more difficult 

than that of Kosko's encoding scheme. 

• Since there are two connection matrices in the HCA, we cannot make any con-

clusion about the stability of BAM under the HCA. Note that the proof of 
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stability in Section 2.3 is only suitable for the case of one connection matrix. 

* I n t h e i t e r a t i v e m o d e H C A , when a new library pair is encoded, we update 

the two connection matrices based on (5.42) and (5.43). Also, we need to keep 

the two connection matrices only and do not need to memorize the previous 

library pairs. On the other hand, the batch mode HCA produces the generalized 

inverses first. They are necessary for the EHCA presented in the next section. 

The iterative mode directly solves the two connection matrices and we cannot 

use the result of the iterative mode in the EHCA. 

5.4 Enhanced Householder Encoding Algorithm 

5.4.1 Construction of EHCA 

Under the HCA, there are two different connection matrices and hence the stabiliza-

tion of BAM is unknown. The EHCA [34] presented here is developed on the basis of 

HCA and projection on convex sets (POCS) [72，73]. In the EHCA, the two matrices 

found by the HCA are reduced into one matrix by POCS. Hence, the stable property 

of BAM can surely be maintained. 

If all XhS and all Y^S are linearly independent, the two connections WJ and W^ 

can be found by using HCA 

W}� 二 FB FX and WC = FA F古 (5.46) 

In fact, WJ and W6* defined by (5.46) are the particular solutions of (5.19) and (5.20). 

The general solution, W / a and Wbp-, is 

WFA = FBA FX and WBP = FA(3 F+ . (5.47) 

The matrices Fs a and Fa(3 are defined as 
/ \ 

yn  ai2 yi2 ... oilm ylm 

a2l 1/21 «22 2/22 . • . V2m 
FBa = 

• • • • 

\ ocvi ypi ap2 yP2 . •. OLpm ypm 
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Ai  xn Pn xu ... f3lmXlm ) 

F a = A l h l ^22 X22 ••• h • ‘ . • 
• • . . 
• • . . 

\ h Pn2 Xn2 . . . P n m X n m y 

where ajh > OV and plh > OV (i,h). If there exist 

ajh > 0 and pih > 0 U K ) (5.48) 

such that 

w f a = W b / , (5.49) 

then the solution of (5.21) becomes 

ff* = W f a = WhpT (5.50) 

Inequality (5.48) defines a convex set C0 of a j h and (3ih. Also, Equation (5.49) defines 
nP convex sets, Cx to Cnp, of ajh and (3ih. It is because there are np linear homogeneous 

equations of ajh and /3ih in (5.49). Assume that these convex sets have common 

intersection 

c o n c ^ ' - n c ^ ^ c (5.51) 

As mentioned in [72, 73], the fundamental result of POCS is that repeated sequential 

projection onto these sets asymptotically approaches a point in C. Hence, the tech-

nique of POCS can be applied to find ajh and Pih such that (5.48) and (5.49) can be 

established. Finally, the solution connection matrix W* can be constructed. 

The EHCA can be summarized as follows: 

• Using the HCA, the particular connection matrices, WJ and W^ can be found. 

• Applying the POCS, the solution of (5.20), W*, can be obtained. It means that 

the two connection matrices Wf and Wb can be reduced into a matrix W* by 

POCS. 
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5.4.2 Remarks on EHCA 

• F r ° m ( 5 . 4 7 ) , t h e E H C A 随 also be considered as a variation of the outer pro-

duction. Tlie connection matrix is the outer product of the weighted library 

pairs and their generalized inverses. 

• I n t h e EHCA, if C is an empty set, then the two matrices W* and Wb* cannot 

be reduced into one. Therefore, the memory capacity of HCA is greater than 

that of EHCA. Fortunately, the simulation results in Section 5.7 show that the 

probability of C being not empty is very high. 

• Frc>m the simulation in Section 5.7, the error correction capability of EHCA 

is only a little poorer than that of HCA. Also，the error correction capability 

of EHCA is better than that of BL or AHKBL. Hence, the EHCA is also an 

efficient algorithm for BAM in terms of the error correction capability and the 

memory capacity. 

• As there is only one connection matrix in the EHCA, the stable property of 

BAM can surely be maintained. 

• The EHCA is a fully batch mode learning rule. Also, there are np convex sets, 

we need to do np projections within an iteration. From the simulations, we 

will get the asymptotical point after hundreds of iterations (for n p = 32, 

m = 16). Hence, the computation complexity of EHCA is higher than that of 

HCA, BL, and AHKBL. 

• Since the real-valued weights are involved in the EHCA, the hardware imple-

mentation of EHCA is more difficult than that of Kosko's encoding method. 
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5.5 Bidirectional Learning 

5.5.1 Construction of BL 

The BL [35]-[37] is developed on the basis of the perception learning algorithm [4]. 

Recall that the task of an encoding method is to find one of the solution connection 

matrices (Suppose they exist)恢* such that (5.19) and (5.20) are established, i.e. 

each library pair is an isolated local minimum of the energy function. The equations 

(5.19) and (5.20) can be viewed as a decision function of a single-layer perception in 

a bidirectional sense. In a forward manner, Xh and Yh are input and output patterns, 

respectively. In a backward manner , Yh and Xh are input and output patterns, 

respectively. In the BL, the library pairs are repeatedly and sequentially presented to 

the BAM to update the connection matrix according to the perceptron rule until all 

are correctly classified by the connection matrix. The changes of connection matrix 

are computed by the delta-rule, in both the forward and backward directions. They 

are updated by a sum of changes from both directions at each iteration. Thus, it is 

named bidirectional learning. 

Suppose that the library pair at the w-th iteration is (Xu, Yu). In the forward 

manner, the correction in the j-th row and the i-th column of the connection matrix 

is 

= sgn ( 右 而、))x i u . (5.52) 

Similarly, in the backward manner the correction in the j-th row and the z'-th column 

of the connection matrix is 

A — , = yxiu — sgn ( p w^} yjrA j yju. (5.53) 

A total correction at the u-th. iteration is 

A w f = A l W ] t + (5.54) 

and the updating rule is 

岭
+ 1 )

 二 + A咕). （5.55) 
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The updating rule is expressed in a matrix form as follows 

败 ( 奸 = + A 浙⑷， ( 5 > 5 6 ) 

where 

Z \ 浙 ⑷ = 厶 丄 釈 � + A2W⑷， 

= ( K - s g n X j , 

= K — sgn K ) ) T . 

Note that we can use any random matrix as the initial guess V F � but we suggest 

using FB Fa (Kosko's method). From the simulation, we observe that the learning 

speed of using this initial guess is higher than that of using random matrix when m 

is small. In the case of large m? the learning speeds of the two Initial conditions are 

similar. When M is small, FB F j is close to a solution. Hence, the BL with FBFAT 

as the initial guess can find the solution with a few learning cycles. 

5.5.2 The Convergence of BL and the memory capacity of 
BL 

We first prove two lemmas. Based on the two lemmas, we prove that the BL yields 

a solution connection matrix within a finite number of iterations if there exists a set 

of solution connection matrices. Then, we can conclude that the memory capacity of 

BL is greater than or equal to that of any other learning rule. Note that a stacking 

vector form rather than a matrix form is used throughout the proof. 

ws = < 1 ^21 …wpi ...  w j i … 忉 ； ) ， 

w i u ) - ( 川 ⑷ 川 ⑷ 川⑷ 川⑷ ) 
vvS ——I  W11  W21 ..•  wpl . . .  W j i ..•  Wpn J ， 

rj-i 

A 对 ） 二 ( A i i ^ ) A i ^ … 八 S ) … … A H U n ) , 

A2WF) 二 ( A2W恕.•. ... A2WJ, ... A 2 W � ) ’ 

A W f ) . 二 厶 对 ‘ ) + 厶 2 时 ） 
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Then the learning rule becomes 

_
+ 1

) = 时 ) + 么 _ ) . , (5.57) 

L e m m a 5 .3 If there exists a solution vector (the stacking vector form of a solu-

t i o n matrix and AW^u) is not a zero vector 0 (meaning that correc-

t ions  in  the connection matrix take place at the u-th iteration)，then AW^W^ > 0, 

Proof of Lemma 5.3 

j=l i=l 

where 

A j = [vju ~ sgn ( 力 X i , u w { ^ j ( g x i f u w ^ , 

B'i = 卜 - s g n y y ^ p / j ) (Z； Vj'n 略 ) ， 

Since Wg is a solution, the sign of Ya>=i XiuWjit equals that of yju. As a result, 

A'j > 0 Vj. Also, the sign of Y7j'=i yj'uWjfi equals that of xiu, then B[ > 0 Vz. But 

AW^ + 0 and it is not possible that all A!- and B[ are zero for all i , j . Hence, 

AVF^ ; Ws > 0 is true. The proof as completed. Note that the only assumption of 

Lemma 5.3 is that there exists a set of solution connection matrices, • 

L e m m a 5 .4 A non-solution vector Wg yields AW^ < 0, 

Proof of Lemma 5.4 

j 二1 

where 

Aj = {yju — sgn ( 亡 x i t u w { ^ j ( 亡 x ^ w ^ j 

Bi = 卜 — s g n ( p w ^ ) ) ) ( [ ― ⑷ ） 
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It can easily be shown that A, < 0 for all j and 戗 < 0 for all z. H e n c e , 厶 < 

0 is true. Note that Lemma 5.4 is valid for all cases (either a solution exists or not). 
• 

With Lemma 5.3 and 5.4，we can obtain the following theorem which can be proved 

by following the proof of the perceptron convergence in [4]. 

T h e o r e m 5.1 Given any set of library pairs, if there exists a set of solution connec-

t i o n matrices, the BL yields one of these within a finite number of iterations. 

Proof of Theorem 5.1 

The theorem means that if the solution connection matrices exist, then after some 

finite index value u', 

w ^ = w^u'+1)� 二 w f + 2 )� 二 .... 

Note that if u' is finite, (stacking vector form of W^) is also a solution. It 

is because the correction in the connection matrix W ^ is zero for each library pair 

、Xh, Yh). That is, each library pair is stored as a fixed point. Therefore, if u' is finite, 

) is also a solution. 

Now，the proof of the theorem is equivalent to proving that u' is finite if there exists 

a set of solutions. Without loss of generality, the proof is facilitated by considering 

only the indices u's for which corrections in the connection matrix take place during 

training. 

From (5.57), 

W^u+1) = W {s ] + + AM/ f ) + . . . + A ^ . (5.58) 

Taking the inner product of one of the solutions Wg on both sides of equation ( 5.58) 

yields, 

W^U+1)T W^s 二 WJ + AW^1)T W*s + AW^2)T + … + AW^u)T (5.59) 

From Lemma 5.3, each term AW^) W|, i = 1,…，w, is greater than zero, then 

W^1)T > W {s )T + ug, (5.60) 
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where 

g =中(A,》 ) t W^j . 

Using the Cauchy-Schwartz inequality, 

丨丨时丨丨 2 > 

1 1 5
 丨丨一 || ||2 . (

5
.

6 1
) 

Substituting (5.60) into (5.61) yields 

丨丨时 + 1 ) ( 5 6 2 ) 

II ^ s II2 . ( ) 

From equation (5.57), 

II � H I W t ) II2 +2 || AJV(SU) ||2 • (5.63) 

On the basis of Lemma 5.4 and letting g' ~ max,- || APF^ ||2 results in 

II II2 — II ^ ||2< (5.64) 

Adding these Inequalities for i = 1 , . . . , t/ yields 

II H2<l| It2 +ug f. (5.65) 

Expressions (5.62) and (5.65) establish conflicting bounds on || ||2 for suffi-

ciently large u. In fact, u cannot be larger than u,, where u' is the solution of the 

equation 

^ f f ^ H I 对 ) ( 5 , 6 ) 

According to equation (5.66)，u' is finite, implying that the BL yields a solution 

connection matrix if there exists a set of solution connection matrices. The proof is 

completed. • 

Theorem 5.1 means that given any set of the library pairs, if the solution connection 

matrices exist, the BL will find one. From the theorem, if the BL is not able to find 

a solution (which indeed does not exist), then other learning rules also cannot find a 

solution. Hence, the following corollary can be obtained. 

119. 



Chapter 5 Enhancement of BAM 

Corol lary 5 .1 The memory capacity of BL is larger than or equal to that of other 

learning rules. 

Note that other learning rules, such as the Kosko's method or EHCA, may not 

be able to find a solution connection matrix even though the solutions exist. Since 

Corollary 5.1 implies that the BL pushes the memory capacity to the maximal, the 

BL can be considered as an optimum learning rule for the BAM in terms of memory 

capacity. Also, Theorem 5.1 is independent of the statistical distribution of the library 

pairs. That means, Theorem 5.1 and Corollary 5.1 hold for any statistical distribution. 

Hence, the BL is an optimum learning rule for any statistical distribution in terms of 

memory capacity. However, it should be emphasized that the BL cannot be used to 

determine whether the solution exists or not. It is because we cannot use the infinite 

number of learning cycles to train the BAM. 

5.5.3 Remarks on BL 

• The BL is an iterative encoding algorithm. The library pairs are repeatedly and 

sequentially presented to the BAM to update the connection matrix. It yields 

one of the solution connection matrices within a finite number of iterations (if 

solutions exist). 

• Here, we only present the synchronous BL: 

Wnew = Wo ld + AWf + A紙， 

where AWf and AWb (see (5.56)), respectively, are the forward error and back-

ward error on the basis of the old connection matrix W . We can also use the 

sequential BL : 

W temp = Wo ld + AWf> (5.67) 

Wnew = w temp + AWb> (5.68) 
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W h e r e i s t h e forward error based on the old connection matrix Wo ld, 

and A叭， is the backward error based on the temporary connection matrix 

W t e m p - W e can e a s i ly verify that the sequential BL also yields one of the solution 

connection matrices within a finite number of iterations (if solutions exist). 

• Under the condition that there is only one connection matrix in the BAM, the 
memory capacity of BL is greater than or equal to that of the other learning 
rules. 

• As there is only one connection matrix in the BL, the stable property of BAM 

is guaranteed. 

• Since the BL only involves integer-valued weights, the hardware implementation 

of BL is easier than that of HCA and EHCA. Also, the connection matrix is 

only changed by —4, —3, - 2 , - 1 , 1,2, 3 or 4 during each presentation. It makes 

its hardware implementation easier. 

• Since the perceptron rule cannot locate a good decision surface [74], the BL has 

also weak error correction nature. From the simulations in Section 5.7, the error 

correction capability of BL is poorer than that of HCA, EHCA, and AHKBL. 

5.6 Adaptive Ho-Kashyap Bidirectional Learning 

5.6.1 Construction of AHKBL 

As mentioned previously, the BL is weak in error correction. Since the concept of 

adaptive Ho-Kashyap rule (AHK) [74] can generate a robust decision surface in single 

layer perceptron, we extend the BL to the AHKBL [38] to improve the error correction 

capability. 

Prior to going through the detail of AHKBL, the AHK rule is first reviewed. In a 

single-layer perceptron, the output is defined as: 

f 二 sgn(iE叉)， 
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where 巫 is the connection matrix of the perceptron and X is the input. Consider 

there is a set of training input vectors Xk with dimension Lx, where k = l,...,N. 

Each training vector associates with a bipolar output vector Yk G {—1, l } L r . Training 

the perceptron is equivalent to finding out a W such that�：�

込 ® ( f f 元 ） = 4 � 3 for A;�二 1，...，TV (5.69) 

where % is an elementwise multiplication operator (C = A0B means that Ci = aibz Vz, 

and A > 5 means that a,- > b{ Vz). In the AHK, a positive valued margin vector 
a n d an error vector ek are introduced with each input-output pair {Xk, Yk). The 

training procedure is that the input-output pair (Xk, Yk) is repeatedly and sequentially 

presented to the perceptron. The connection matrix is updated according to 

^
n e w

 = K o l d + ^ fe^ I I +(1 一 ！ ) n 0 Xl (5.70) 
z L Pi J 

where 

eT l d = n0 {W° l dxk) - Df . (5.71) 

—> 

Also, the margin vector Dk is updated as: 

DTW�二 Df +�警(I \ . (5.72) 

The superscripts “old” and “new” in the above represent current and updated values, 

respectively. The notation | • | denotes the absolute value of the components of the 

argument vector (i.e. | A \— (| a^ [, ] a2 . » . , | ula |)t). Note that within a learning 

cycle, the connection matrix is updated N times but each margin vector Dk is updated 

once only. 

After a presentation, a new estimate of weights is obtained and each element of 

the margin vector may be increased. If an element of the error vector is negative, the 

corresponding element of the margin vector is unchanged. and only the weights are 

updated to overcome the current margin. Otherwise, the value of the corresponding 

element in the margin vector is increased and the weights are updated. This iterative 

process creates a perceptron with a large margin. However, large margin does not 

always imply a robust boundary. For example, if the magnitude of the weights is very 
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large, then we also get large margins and this cannot imply a robust boundary. On the 

other hand, if the magnitude of errors decreases 2 and the value of margins increases 

during training, then the boundary becomes robust. The sufficient conditions for 

convergence of the AHK rule [74] have been found as 

2 
0 < 外 < 2 and 0 < p2 < — - . (5.73) 

max 

where Lmax is the length of the longest input vector. 

Combining the concepts of BL and AHK, we propose the AHKBL here. For each 

library pair ( X h , Y h ) , we introduce two positive margin vectors Df，h (in forward sense) 

with dimension p and Db,h (In backward sense) with dimension n. Also, we introduce 

two error vectors efyh (in forward sense) with dimension p and ebik (in backward sense) 

with dimension n for each library pair (Xh,Yh). During training, each library pair 

is repeatedly and sequentially presented to the BAM. Suppose that in the current 

presentation (XH>YH) is presented, the correction of the connection matrix takes place 

as follows: 

1. In forward manner, Xh and Yh are input and output respectively. The forward 

correction of connection matrix is 

A � 二� 学 [ r ^ j efh I +(1 - % e f ] Xl , (5.74) 
z L Pi . 

where 二 K �{ W o l d X h ) ~ D°f[dh . Then the forward margin vector is updated 

as 

巧 r 二 赠 + 警 ( I ^ 丨 + � : � ) • (5-75) 

2. According to this forward correction, a new connection matrix W^new is obtained 

W fnew = Wo ld + AWf . (5.76) 

3. Now, in backward manner, Yh and Xh are input and output respectively. Ac-

cording to the new connection matrix W fnew obtained in step 2, the backward 
2From (5.70), decreasing of the magnitude of error vectors means that the magnitude of the 

weights is limited. 
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correction of the connection matrix is 

=： 卜 過 I eoM 丨 + ( 1 — l、Xh % e o £ ( 5 . 7 7 ) 

- p^-

w h e r e � h 二 { W ^ T Y h ) — . Then the new backward margin vector 
is 

r)new __ r\old , rl /1 old i , old\ , 

Vb,h 一 Db,h + y ( | e°h[l I ^e°h[dh) . (5.78) 

4. According to the backward correction, the connection matrix is updated again 
Wneu j = W fnew + A M ^ . (5.79) 

Note that there is only one connection matrix in the AHKBL and the connection 

matrix is updated twice in each presentation. Hence，the BAM with AHKBL is 

stable during recall. 

In general, there is no terminating condition on the AHKBL and more training 

implies a more robust BAM obtained. However，we can impose some terminating 

conditions on the AHKBL. For example, the AHKBL terminates until all the library 

pairs are stored as fixed points. Or, we can pre-define the number of learning cycles 

for the AHKBL. 

5.6.2 Convergent Conditions for AHKBL 

In the AHKBL, there are twice updates in each presentation. Each updating follows 

the AHK rule either in the forward sense or in the backward sense. We can extend the 

analysis in [74] to obtain the sufficient conditions for convergence of AHKBL. In the 

t + 1-th learning cycle the h-th library pair is presented. After the forward updating 

(Step 2 of AHKBL has taken place), the new error vector + 1) is 

enfJ{t + 1)�二 0 (W fnewXh) - DnfJ{t + 1 ) . (5.80) 

Note that enfJ{t + 1) is expressed in terms of W fnew instead of Wnew. It is because 

the current updated matrix is W fnew after step 2. Substituting (5.74), (5.75), and 

(5.76) into (5.80), 

徵 料 1) = [d - f H 宁 ( 1 - 丢 ) ] ^ + 魂！十 1) I , _ 
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Taking the absolute value yields 

+ 1 ) I = I [ d 刭 4 t ( t I e f U t + 1 ) , . 

(5.82) 
Assuming that the minimal disturbance [74] is in effect over one learning cycle 

+ ^ - (5.82) may be approximated as 

I — + ” H [d - ？) + 学“-刭 OT) + I • I • 
(5.83) 

Hence，in the forward sense the sufficient condition for convergence 

(i.e. |) is 

2 0 < < - and 0 < px < 2 . (5.84) 

Similarly, in the backward sense the sufficient condition for convergence 

(i.e. \ e ^ ( t + l ) \ < \ e ^ ( t ) |) is 

n 2 1 

0 < < - and 0 < pi < 2 . (5.85) 

Then the overall sufficient convergent conditions are 
0 < < 2 (5.86) 

2 

0 < p2< - ~ ? ~ - • (5.87) 

5.6.3 Remarks on AHKBL 
• The AHKBL is an iterative encoding algorithm. The library pairs are repeatedly 

and sequentially presented to the BAM. The connection matrix is sequentially 

updated twice at each presentation. 3 The sufficiently convergent conditions 

are 
0< P!< 2 

^ 2 
0 < P2 < ——7r . 

max(n,pj 
3We also try to develop a parallel AHKBL in which only one time of updating takes place at 

each presentation. However, we cannot derive the convergent condition for it. As the computation 
complexity of the parallel model AHKBL is the same as that of our proposed AHKBL, we prefer to 
use the proposed AHKBL instead of the parallel model AHKBL. 
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n = p = 32 and n = p = 64’ each value of m has 100 sets of library pairs and each 

set contains m library pairs. For each element in the library pairs, the probabilities 

of being 1 and - 1 are equal. A set of library pairs is called an event. 

In the BL, AHKBL, PRLAB, and multiple training, we terminate the training 

when all library pairs are stored as fixed points, or the learning cycles reach 1000. 

The initial connection matrix for the BL, AHKBL, PRLAB, and multiple training is 

the matrix obtained from Kosko's method. We have tested the AHKBL with four sets 

of learning parameters, Pl = I or 0.5 and p2 = ^ ot The elements of the margin 

vectors in the AHKBL are initially set to one. In the DAE, the numbers of additional 

neurons In each field are 16 and 32 for n = p = 10. For the cases of n = p = 20, 

n = p = 32, and n = p = 64, the numbers of additional neurons in each field are 32 

and 64, After training, if every library pair in an event is stored as a fixed point, the 

event is called a successful event. Table 5.1, 5.2, 5.3 and 5.4 summarize the results 

of this simulation. Empirically，the tables reflect the memory capacity of different 

modifications. Since, in the AHKBL the number of successful events is the same for 

different sets of learning parameters, we use one column to summarize the results. 

From the tables, all the modifications investigated here (except the multiple train-

ing) greatly improve the memory capacity. In the cases of BL, AHKBL, HCA, EHCA, 

and PRLAB, the memory capacities are very similar. For the DAE, the memory ca-

pacity increases with the number of additional neurons. In terms of information ratio, 

the HCA, EHCA, BL, AHKBL, and PRLAB are superior to the DAE and second or-

der BAM (if we set 90 % as the threshold of the memory capacity). But there is no 

significant difference in the information ratio among the EHCA, BL, AHKBL, and 

PRLAB. 
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Table 5.1 Comparison of the memory capacity 

among different modifications of B A M where n = p = 10. 

No. of successful events (n = p = 10) 

K ° S k ° ' S m U l t i p l e H C A E H C A B L A H K B L I P R L A B D A E w i t h D A E w i t h s e c o n d , 
of m e t h o d training , . 

“ 丄6 additional 32 additional order 
neurons neurons 

library 
in each in each B A M 

pairs 
layer layer 

i ^ 1000 1000 1000 1000 1000 ~~T000 1000 ^ ― 
9 9 7 9 9 7 9 9 7 9 9 7 1 0 0 0 - 1 0 0 0 

_ _ - 9 0 5 9 1 1 9 8 1 9 8 1 9 8 1 9 8 1 9 8 1 1 0 0 0 ^ ^ ~ 

_ _ t 5 0 2 5 3 9 9 7 8 9 7 6 9 7 7 9 7 7 9 7 7 1 Q 0 0 i q q q ~ 

_ _ -
 1 1 9 1 2 2 9 6 1 9

仏 950 950 ~ 950 1000 ^ ~ 

1 ! 1 7 9 2 1 8 8 3 8 9 0 8 9 0 ~ ~ 8 9 0 “ 9 9 1 TQOO ^ ~ 

I I I 8 7 8 7 8 7 8 1 0 — 8 1 0 一 8 1 0 9 6 3 ^ 0 0 0 ^ 

8 ° 0 7 9 9 6 3 2 6 9 3 “ 6 9 3 — 6 9 3 8 4 8 ^ ^ ~ 

9- ° 0 6 5 5 4 5 5 5 5 0 5 5 0 — — 5 5 0 “ 6 7 6 ^ ~ 

1 0 � � I 3 6 4 j 2 0 9 j 3 8 2 3 8 2 — 3 8 2 ^ ^ ^ 

Table 5.2 Comparison of the memory capacity 

among different modifications of B A M where n - p - 20. 

No. of successful events (n = p = 20) 
m No. Kosko 's multiple Inverse EHCA BL A H K B L P R L A B 

of method training 

library 
pairs 

2 1000 1000 1000 1000 1000 1000 1000 

4 8 6 6 9 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 

6 1 5 3 1 8 6 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 

5 2 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 

10 0 0 1000 1000 1000 1000 1000 

1 2 0 0 9 9 9 9 9 1 9 9 9 9 9 9 9 9 9 

1 4 0 0 9 9 8 9 7 6 9 9 8 9 9 8 9 9 8 

1 6 0 0 9 9 8 9 6 1 9 9 7 9 9 7 9 9 7 

1 8 0 0 9 9 8 9 3 3 9 9 5 9 9 5 9 9 5 

2 0 0 0 9 8 3 9 1 1 9 9 3 9 9 3 9 9 3 
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Table 5.3 Comparison of the memory capacity 

among different modifications of B A M where n = p 二 32. 

- No. of successful events (n = p = 32) 

K 0 S K 0 ' 3 ^ 1 ^ 1 6 H C A E H C A B L AHKBL P ; L A B D A E WITH D A E WITH 8ECOND, 
of m e t h o d training . 

c 3 2 additional 64 additional order 
neurons neurons 

library 
. in each in each BAM 

pairs 
layer layer 

^ 100 100 100 100 100 ^ ^ ― 
_ ^ 100 100 100 100 100 100 100 ^ ~ 
_ _ - 41 45 100 100 100� 一 100 100 ^ ^ Z I I 10̂  

i 5 100 100 100 100 100 ^ ~ 
__ ° ° 100 100 100 ~ ^ 
_ ^ ° 0 100 100 100 100_]__100 66 ^ ^ ~ 

14 0 0 100 100 100 100 ~100 ^ ^ ^ 
16 0 0 100 100 100 — 100 5 ^ ^ 
18 0 0 100 100 100 100 100 "l ^ ^ 
20 I 0 0 I 100 I 100 I 100 100 一100 0 M Va 

Table 5.4 Comparison of the memory capacity 

among different modifications of B A M where n = p 二 64. 

No. of successful events (n = p = 64) 
m No. Kosko 's multiple HCA EHCA BL A H K B L P R L A B ~ D A E w i t h ~ ~ D A E w i t h ~ second-

of m e t h o d training 32 additional 64 additional order 

neurons neurons 
library in each in each BAM 

P a i r s layer layer 

2 100 100 100 100 100 100 100 100 100 loo 
4 100 100 100 100 100 100 100 100 100 100 
6 98 100 100 100 100 100 100 100 100 100 

8 59 70 100 100 100 100 100 98 100 100 

10 9 18 100 100 100 100 100 97 100 100 

12 0 0 100 100 100 100 100 91 100 100 

14 0 0 100 100 100 100 100 42 99 100 

16 0 0 100 100 100 100 100 17 94 100 

18 0 0 100 100 100 100 100 1 83 100 

20 0 0 100 100 100 100 100 0 56 100 

22 0 0 100 100 100 100 100 0 33 100 

24 0 0 100 100 100 100 100 0 17 100 

26 0 0 100 100 100 100 100 0 1 100 

28 0 0 100 100 100 100 100 0 1 100 

30 0 0 100 100 100 100 100 0 0 100 

32 0 0 100 100 100 100 100 0 0 100 
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5.7\2 Error Correction Capability 

Memory capacity is not meaningful without considering the error correction capability. 

The error correction capabilities of the modifications of BAM are investigated here. 

The simulation conditions are similar to the above. The dimensions being considered 

are n = p = 32 and n = p = 64. After learning, the modifications are tested with the 

noisy versions of vectors Xh. The fraction of correct recall is recorded in Figure 5.1 

to Figure 5.26. Correct recall means that noisy version of Xh recalls In the 

AHKBL, we use "until all library pairs as fixed points" as the terminating condition.4 

Note that we can also observe the memory capacity when the noisy level is zero. 

From the figures, all the modifications (except the multiple training) greatly im-

prove the error correction capability and the second order BAM has the better error 

correction capability. The error correction capability of DAE is improved when more 

additional neurons are used. 

Among the approaches of 'change of encoding method' investigated here, if we 

take 90 % as the threshold, the HCA is the best5 and the EHCA is the second best6 

in terms of error correction capability. With a suitable choice of learning parameters 

(pi = 0.5 and p2 = in the AHKBL, the result of AHKBL Is comparable to 

that of EHCA (see Figure 5.5 and Figure 5.10). The result of PRLAB is similar to 

that of BL. Compared with the PRLAB and BL, the AHKBL (for the four sets of 

learning parameter) has a better error correction capability. In the AHKBL, using 

a smaller pi can obtain a better result but the value of p2 does not much affect the 

error correction capability. 

4In the AHKBL, we have also used "pre-defined number of learning cycle as 400，，as the terminal 

conditions but there is only a little improvement. 
5For example, in the case of n�二沪=32，BAM under HCA can store 16 pairs when the number 

of errors is two (see Figure 5.4). 
6In the case of n = p = 32, BAM under EHCA can store 12 pairs when the number of errors is 

two (see Figure 5.5). 
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Kokso's method with n = p = 32 

1 -i H — — 9 Buqt^；^^ 

i ：： ： 

0 0.6 - . .. —Q—• • 0 error： • • • • ； • • • • ； • • • -fe • . : . • • : . . . . : ‘ . . • . : … - . : , . . , : “ . . : . … 

S 0.5 • 1 error •�-••；••••；••••：•� ...：....:....:� ：.….....: •.,. 

c 0.4 - . . . . ~ • -2 errors : : - X • • • • • i ……: ：‘…； ： . . . . 

； : ; ! : ： ； ! ! m . \ ； ； ； ； ： 

e 0.3 -….；~0；. 3 errors- • • • ； • • • • | ： ： … ’ … . . … … ： ’ … ： . … 

1 0.2 - .…；~•~；- • 4 errors- • • • ； • • • • ； : . . . . : . . . :•... ： •…：.... 

� . . “ . . . h . 
0 1 I I r f 1 1 f 1 1 ] 1 1 I ^ ^ ^ T 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
Number of Library Pairs m 

Figure 5.1 The error correction capability of Kosko's encoding method. 

The dimension is n = p 二 32, 
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Multiple training with n 二 p 二 32 

i n ~ » ~ » ~ -

丨 f ^ I 
o 0.6 - - Q — • 0 error ••••；••••；•••• ..:,…:….：.…‘： :.,,.：....；.... 

0 0.5 . 氺 . . . 1 errar：. ” ,: ； • ——:——: : : 
c 0.4 - . . . • — k • .2 errors : - \ •�……：..”:,..,...：….： 

t : ； ； ； ： ； ； ； ； ; ： ： ！ 
e 0.3 ； • ； • 3 errors- • • • ； • • • • ； ： ,. • f^xv- ： • >»： , ^ ： ： . . , , 

1 0.2 - • -�；~•~；. 4 errors-� • • • ； • • • • ；� ； • • • • - • • • -

1 " - . . t . : . . 丨卜 t ：..丨.....丨.... 
0 H~~I I I I I I 1 f 1 1 1 1 1 1~ i i ^ 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
Number of Library Pairs m 

Figure 5.2 The error correction capability of multiple training. The 

dimension \s n = p = 32. 
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DAE with n = p 二 32，32 additional neurons in each layer 

o 0.6 - •—Q— 0 error • • ••；••••；' ： 

0 0.5 - … . . 氺 • 1. error： ——:... ^ S ^ . ； 

c 0.4 • -2 errors� ：… :� ：……：.…：,•：....： . . 

J ； ； 
e 0-3 - — ^ • 3 errors ……：……：‘... .X . .. 
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Figure 5.3 The error correction capability of PRLAB. The dimension is 

n — p — 32. 
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Chapter 5 Enhancement of BAM 

DAE with n = p 二 32，32 additional neurons in each layer 
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Figure 5.4 The error correction capability of HCA. The dimension is 

n — p = 32. 
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Chapter 5 Enhancement of BAM 

DAE with n = p 二 32，32 additional neurons in each layer 
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Figure 5.5 The error correction capability of EHCA. The dimension is 

n = p = 32. 
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Chapter 5 Enhancement of BAM 

DAE with n = p 二 32，32 additional neurons in each layer 
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Figure 5.6 The error correction capability of BL. The dimension is 

n = p — 32. 
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Chapter 5 Enhancement of BAM 

A H K B L with px 二 1, p2 = 0.0625, n = p = 32 
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Figure 5.7 The error correction capability of AHKBL, where 二 1, 

P2 — 0.0625. The dimension is n =尸= 3 2 . 
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Chapter 5 Enhancement of BAM 

AHKBL with P l 二 1, p2 = 0.03125, n =尸二 32 
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Figure 5.8 The error correction capability of AHKBL, where pi = 1, 

f>2 — 0.03125. The dimension is n 二 p = 32. 
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Chapter 5 Enhancement of BAM 

A H K B L with P l = 0.5, p2 = 0.0625, n 二 p = 32 
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Figure 5.9 The error correction capability of A H K B L , where = 0.5, 

p2 = 0.0625. The dimension is n = p = 32. 
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Chapter 5 Enhancement of BAM 

A H K B L with P l - 0.5, p2 = 0.03125, n = p = 32 
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Figure 5.10 The error correction capability of AHKBL, where pi�二 0.5, 

p2 = 0.03125. The dimension is n = p = 32. 
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Chapter 5 Enhancement of BAM 

D A E with n 二 p = 32, 16 additional neurons in each layer 
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Figure 5.11 The error correction capability of DAE, where the number of 

additional neurons is 16. The dimension is n ~ p — 32. 
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Chapter 5 Enhancement of BAM 

D A E with n = p 二 32，32 additional neurons in each layer 
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Figure 5.12 The error correction capability of DAE, where the number of 

additional neurons is 32. The dimension is n 二 p = 32. 
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Chapter 5 Enhancement of BAM 

Second-order BAM with n = p = 32 
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Figure 5.13 The error correction capability of second order B A M . 

The dimension is n = p = 32. 
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Chapter 5 Enhancement of BAM 

Kokso's method with n = p = 64 
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Figure 5.14 The error correction capability of Kosko's encoding method. 

The dimension is n = p = 64. 
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Chapter 5 Enhancement of BAM 

Multiple training with n = p = 64 
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Figure 5.15 The error correction capability of multiple training. The 

dimension is n = p = 64. 
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Chapter 5 Enhancement of BAM 

PRLAB with n 二 p =： 64 
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Figure 5.16 The error correction capability of PRLAB. The dimension is 

n — p — 64. 
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Chapter 5 Enhancement of BAM 

HCA with n 二 p = 64 
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Figure 5.17 The error correction capability of H C A . The dimension is 

n ~ p — 64. 
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Chapter 5 Enhancement of BAM 

DAE with n = p 二 32，32 additional neurons in each layer 
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Figure 5.18 The error correction capability of EHCA. The dimension is 

n — p = 64. 
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Chapter 5 Enhancement of BAM 

BL with n = p = 64 
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Figure 5.19 The error correction capability of BL. The dimension is 

n — p = 64. 
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Chapter 5 Enhancement of BAM 

AHKBL with Pl = 1, p2 = 0.03125, n = p = 64 
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Figure 5.20 The error correction capability of AHKBL, where px = 1, 

p2 = 0.03125. The dimension is n p = 64. 
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A H K B L with P l = 1, 二 0.015625, n 二 p 二 64 
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Figure 5.21 The error correction capability of AHKBL, where px = 1, 

P2 = 0.015625. The dimension is n = p = 64, 

151 



Chapter 5 Enhancement of BAM 

A H K B L with P l 二 0.5, p2 = 0.03125, n = p = 64 

o 0.6 - —B— 0 error .：……； ：� ：....：.V- \ ^ � . . . : . . . . 
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Figure 5.22 The error correction capability of A H K B L , where pi�二 0.5, 

p2 = 0.03125. The dimension is n = p = 64. 
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AHKBL with P l = 0.5, p2 = 0.015625, n 二 P = 64 
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Figure 5.23 The error correction capability of A H K B L , where pi : 0.5, 

p2 二 0.015625. The dimension is n 二 p = 64. 
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D A E with n 二 p = 64, 32 additional neurons in each layer 

1 n ® ~ S ~ 8 ~ B 

丨
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Figure 5.24 The error correction capability of DAE, where the number of 

additional neurons is 32. The dimension is n = p = 64. 
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DAE with n = p = 64, 64 additional neurons in each layer 
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Figure 5.25 The error correction capability of DAE, where the number of 

additional neurons is 64. The dimension is n = p = 64. 

155 



Chapter 5 Enhancement of BAM 

Second-order BAM with n = p = 64 
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Figure 5.26 The error correction capability of second order B A M . 

The dimension is n = p 二 64. 
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5.7.3 Learning Speed 

In the above si画lations, we also record the number of learning cycles required by 

PRLAB, BL, and AHKBL. These results are shown in Table 5.5 and Table 5.6. The 

a V 6 r a g e n U m b e r o f l e a r n i n g c y c l e s ^creases when the immber of library pairs increases. 

The PRLAB has the faster learning speed. In the AHKBL, the average number of 

learning cycles increases as the learning parameter P l decreases. For example, in the 

case oin=p = 32,灼=0.5,内=f = 0.0625，the mean value is 36.58. When large 

learning parameter Pl=l, p2 = I = 0.0625 is used in the AHKBL, the mean value 
decreases to 9.87. 

From the two tables, there does not exist a general conclusion about the effect of 

on the average number of learning cycles. In the case of P l = 1, the mean value 

decreases as a larger p2 is used. However, when P l 二 0.5, we cannot make a general 

conclusion about the effect of p2 on the learning speed from the two tables. From the 

tables, the average number of learning cycles of AHKBL is smaller than that of BL 

when large learning parameters ^ = 1 and p2 = | in the AHKBL are used. 

Table 5.5 Learning speed of PRLAB BL, and AHKBL 

where dimensions n — p = 32 

Average No. of learning cycle 
m No. P R L A B BL A H K B L A H K B L A H K B L AHKBL 

of library Pi = 1 PL = 1 PL = 0.5 P l = 0.5 

P a i r s P2 = 0.0625 p 2 = 0.03125 p2 = 0.0625 p 2 = 0.03125 

1 1 1 1 1 1 1 
2 1 1 1 1 2.04 1 
3 1 1 1 1 3.33 1 
4 1 1 1 1 4.51 1 
5 1.01 1.22 1.06 1.09 5.66 1.09 
6 1.06 2.11 1.12 1.3 7.39 1.82 
7 1.15 3.37 1.29 2.19 9.07 3.36 
8 1.45 4.76 2.12 4.29 11.1 6.11 

9 1.73 5.93 3.10 6.39 12.63 9.40 

10 1.92 7.04 4.08 8.24 14.86 14.10 

11 2.30 7.65 4.80 10.33 17.69 19.98 

12 2.45 7.85 5.80 12.44 20.75 25.82 

13 2.74 8.49 6.72 14.52 22.28 30.09 

14 2.86 9.79 7.65 17.03 27.87 36.97 
15 3.12 11.35 8.60 20.25 32.90 43.03 

16 3.27 12.66 9.87 22.73 36.58 | 47.57 
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Table 5.6 Learning speed of PRLAB BL ,and .A.III{BIJ 

where diu1ensions '11. == I) == (H 

Av('r ;t)~c No. of 1(·:I.ruiu/{ c yell' 

111 No . PH.LAB I3L A Ill\ H L A 111\ Ill, AIII\IlL L AII'(I'] 
of Iibra.ry PI = I r'l = I r'l = 0 . ."; r'l = O.r, 

p;tir il p') = 0.0:112 .'> r''2 = 0 .01 :' (; '2:' r"2 = 0 .0 :\ 1'2:, r"2 = O.OI .", (i '2r, 

2 '2.0(i 

,1 :UF; 

6 r;.:\:\ 

8 1.0 I I . I!) .02 .04 (i .!)O 1'2 1 

10 I . I::> 2.'2G .24 7 !) H.!):, ·2. (iH 

12 1.5 5.8 ·1 2.0:' 4.:\1 10 .74 {; , : t: ~ 

1,1 1.8 5 9.43 :1. 1:' () .2:1 1'2.(i!) IO !) 1 

16 2.08 10 . I I 4 . 11 7.H I 1:'. 40 14 .7H 

18 2. 3 0 9. 78 5. 12 !),(iH 17 .'2 4 I!) "r, '2 

20 2.58 10 .32 5 .!) I 11 .()(i 2'2. 0 !) '2 (; .7 (i 

22 2.8 8 I 1.7t) (i .7 1 1:3. 0 7 '2:,. I H :\1 .0 '2 

24 :3 02 12 .2 7 7.!J1 1', . :' 1 :1 0 .'2 4 :',7.07 

26 :3.23 13. 45 D.2:' 17 . 1 !) :H;.7:\ 41.0!) 

28 3.39 I.G .OO IO.H7 I!) . !)!) 4C.1 D 4.";.H(i 

3 0 3.69 18.4G 12.o!> :n. :1 7 !)::'CO .~: L:~ ~) 

32 :3.QO 20.!):3 14.2(i 2:',,')7 !}!),!)7 .I~~), IJ : ~ 

Remark: There is a trade-ofT between the learn i IIg speed alld tile error correctioll ca­

pability in the AI-IKBL. 'Using srnalllearning pararnctcrs, we get (j, I)( ~ ttcr p( ~ rrOrrllallcc 

but a longer training ti .me is required. Conversely, with large learllillg paralllctcrs, 

we get a relatively poor p erforrnance but the tra.inillg tilllC is sllolter. Wc Il<tve dOll e 

other several simula,tions for difrerent val ues of learn i IIg pararllcters. Hased OIl tllC 

simulations, our recornrnendation of learn ing p<lr<tlnctcrs for tile A III( HL is PI == 0.:), 

and P2 == ~ \ which cornprornises the tra,de-o ff". 
max n,p 

5.8 Chapter Summary 

There are two approaches of rnodifiCCl,tions on thc HAM: 'chaJlge of eJlcoding Irlcthod ' 

and 'change of topology'. From the approach of 'change of cncodillg rnct/)(H\ ', W( ~ 

have proposed four learning rules for the BA M. '(,hc concepts of thc fOIJ r leaI'll i ng 

rules for the BAM have been described and shown to have (J significant irnprovcrllcllt 

over the Kosko's encoding rnethod and the rnultiplc training on the rncrnory cap(j,ciLy 

and the error correction capability. rrhc propertics of cach learning rules have itl so 

been presented. 
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Chapter 5 Enhancement of BAM 

Besides, we have also compared our four encoding methods with other existing 

approaches in different aspects: stability during recalling, ease of hardware implemen-

tation, information ratio, memory capacity, error correction capability and learning 

speed. Table 5.7 is the summary of their properties. From Table 5.7, we can choose 

the model which better meets our preference. 

Table 5.7 Summary of the properties of modifications of BAM. 

K o s k o ' s mult ip le P R L A B H ^ E H C A ~ ~ i i l i ^ I ^ ~ ~ 

m e t h o d training K 

Pl = 0.5 order B A M 

P2 = 7 r 
max( n ,p ) 

stabil ity Yes Yes Yes unknown Yes ~ Y e s ^ 

dur ing 

recall ing 

hardware integer integer integer ^ ^ 

i m p l e m e n t - weight weight weight weight weight weight weight weight weight 

ation 

i n f o r m a t i o n low low high hi^h hi^h hi^h hi^； ^ ~ 

ratio 
— low 

m e m o r y low low high high high hi^h l ^ h d e p e n d s on ^ 

C a p a C i t y No. of high 

addit ional 

neurons 

e r r o r l o w l o w f a i r high high ~ f l i ^ hi^h d e p e n d s on ^ 

c 0 r r e c t i 0 n No. of high 

capability j , . • , 
^ J additional 

neurons 

learning N A N A fast NA NA fair NA NA 

speed 
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Chapter 6 

B A M under Forgetting Learning 

Forgetting learning is one kind of incremental learning in associative memory. With 

it, the recent learning patterns can be recalled and the old learning patterns will be 

forgotten. The storage behavior of BAM under the forgetting learning is studied here. 

That is, "Can the last 而 - t h previous library pair be stored as a fixed point ？ A l s o , 

we discuss the way to choose the forgetting constant in the forgetting learning, such 

that the number of most recent library pairs being stored as fixed points is nearly 

maximal. 

6.1 Introduction 

So far, we have discussed several design techniques for the BAM in Chapter 5. These 

techniques, except Kosko's method and HCA, cannot handle the case of encoding a 

new library pair based on the current connection matrix. In the Kosko's method and 

HCA, the new library pair can be encoded based on the current connection matrix 

only. Hence, the Kosko's method and HCA has the ability of incremental learning (i.e. 

the ability of adding new library pairs into the model), However, the Kosko's method 

and HCA can store effectively only up to 21：二:’(: p) and min(n,p), respectively. When 

the number of library pairs exceeds these numbers, the library pairs, including the 

old library pairs and the recent library pairs, may not be stored as fixed points. In 

addition to incremental learning (as defined above), another desirable feature of an 
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associative memory is 'forgetting' (i.e. the ability of deleting old library pairs which 

have been encoded long time ago). 

Forgetting learning can encode the recent library pairs and delete the old library 

pairs. In the simple form of forgetting learning, when a new library pair (不，F,) (the 

力-th library pair) is encoded, the connection matrix is updated as 

where 浙(。）is a zero matrix and a £ € (0，1) is called the forgetting constant. One may 

view the above equation (6.1) as a discrete version of adaptive BAM (ABAM) [13]. 

There is another approach about forgetting learning [76]. This is to forget a particular 

library pair. However, in such approach we need an additional device to store all the 

previous library pairs otherwise we do not know what the particular library pair is. 

In (6.1), the correction of the connection matrix is based on the current connection 

and the current library pair only. Hence, an additional device is not necessary. With 

6.1), the BAM 

can be regard as an open-end-pipe. The new library pair is put into 

the pipe at the entrance and the old library pair is taken away from the end of the 

pipe. The forgetting constant determines the length of the pipe. Up to now, it is not 

clearly known theoretically how many most recent library pairs can be stored as fixed 

points and how the value of forgetting constant is chosen. Under some assumptions 

made in the next section, we will prove the following theorem. 

T h e o r e m 6 .1 Under the forgetting learning, if the BAM is trained with t library 

pairs and k is less than 

min S g 2 1哪 ( 6 2 ) 
2 l o g 丄 ， 2 log丄 � … � 

y Q a f 0 a f j 

then the probability that the (t-k)-th library pair {Xt—k, Yt-k) is stored as a fixed point 

tends to 1，as n oo and p — o o . 

From Theorem 6.1, one can determine the number of most recent library pairs being 

stored as fixed points. Also, the better value of a / can be determined such that the 

number of most recent library pairs being stored as fixed points is nearly maximal. 
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6.2 Properties of Forgetting Learning 

The following assumptions and notations are used. 

# T h e dimensions (n and p) are large and p = rn, where r is a positive constant. 

# E a c h ⑶ — 卯 她 of the library pairs (Xh,Yh) is a ±1 equiprobable independent 
random variable. 

• EU3,t_k is the event that the j-th component of s g n ( V F ⑴足 i s equal to the 

j-th component of Yt—k. Also, EU^ is the complement event of EU3,t—k. 

• EViit_k is the event that the i-th component of is equal to the 

z•-th component of Yt_k. ~EVi^k is the complement event of EVht一k. 

We begin with the introduction of two lemmas. Only the proof of the first one is 

given since the last one can be obtained in a similar way. 

L e m m a 6 . 1 The probability Prob(EUj^k) is less than 

( ( I - a2
f)afn\ 

e X P \ t ^ j 

for j 二 1 ,...，p . 

Proof of Lemma 6.1 

Without loss of generality, we consider that the library pair ( J ^ — 左) h a s all 

components positive: Xt—k = (；!,••., l ) T and Yt^k = (1,. • •, 1)T. Then, Pvob(EUj^-k) 

is 

Prob ( > ^kfVn\ (6.3) 

where 
n 

Sj’h — Vjh〉：工ih • 

• s • 

Note that the distribution of tends to standard normal as n —)• oo. Also, the sum 

of normal random variables is a normal random variable. Hence, Proh[EUj,t—k) is 

Q ( / T : y n a2h) ^ Q ( y ^ w 
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where 

For large x [77], 

Q(x) < e x p | - y | . 

Hence, we can conclude that 

for j = l,...，p. • 

L e m m a 6 .2 The probability Prob(EViit_k) is less than 

e x p j - i 1 - ^ } 

for f = 1,... , n. 

With the above two lemmas, Theorem 6.1 can be proven in the following way. We 

denote the probability that [X t - k , Yt_k) is a fixed point as P :̂ 

P* = Prob (EUh^k n • • • n EUp,t.k n EVht.k n • • • n EVn^k) 

= 1 — Prob (EUht.k U - - - U EUp^k U EVlit-k U - - - U EVn^k) 

> 1 - pProb (EU^k) - nProb . (6.4) 

Note that 

凡—（1 — P r o b ( 丽 ( l — Prob(W 1 ; , _ , ) ) n (6.5) 

because the above events are not mutually independent. That can be easily observed 

by comparing EUxjt-k and EU2,t-k-

With Lemma 6.1 and 6.2, it is easy to prove that if k is less than 

/ W log { 1 ~ a > \ log (1~a/ )min(n 'P) 

• 2logn 1U& 2logp — & 21ogmin(n,p) 
m m 21og 丄， 2 1 o g 丄 = ' \ � a , � o r , y ° af 

then the right-hand side of (6.4) tends to one as n oo (also p oo due to p = rn 

and r is constant). Thus, Theorem 6.1 is obtained. From Theorem 6.1, we can obtain 

some properties of the forgetting learning. 
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Given p and n, define 

f ( a f ) = -  2 logmin(n，p) 、 

If a / — 0+，then f ( a f ) — 0+. That is, as 0+，k should be chosen as 0 such that 

Theorem 6.1 holds. In this case, we can only make the conclusion: the probability 

that the current library pair is a fixed point tends to one. On the other hand, if 

a f — 1 — , t h e n f ( a f ) — 一 T h a t is ： as a y no positive value of k can be 

chosen such that Theorem 6.1 holds. In this case, we cannot make any conclusion 

about the properties of forgetting learning. 

In fact, the most interesting point is that what the value of a f G (0,1) (denoted 

as aLmax) is such that f ( a f ) Is maximum. Clearly, f ( a f ) is a continuous function 

between zero and one. Also， 

and 

d f ( a j ) 丨 
^ 尸广 <

0
 • 

Hence, f ( a ) lias at least one local maximum point while 0 < a < 1. A typical plot of 

/ ( « / ) is shown in Figure 6.1. 
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A typical plot of f(af) 

- 2 -

- 3 - ： 

一4- ： 

" 5 0 “ ^ af,ma, = U . 7 4 2 ^ 

af 

Figure 6.1 A typical f(af) where af G (0,1) and min(n,jt?)�二 32. 
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Using simple numerical method, we obtain Table 6.1 which summaries the aLmax 

at different values of min(n,p). 

Table 6.1 Summary of aLmax and f(a."nax) found from numerical method. 

/(O/•一） 

16 0.613 0.6012 

32 0.742 1.223 

64 0.837 2.3453 

128 0.902 4,3611 

256 0.943 7.9967 

512 0.9675 14.599 

1024 0.982 26.673 

2048 0.9900 48.906 

4096 0.9945 90.079 

8192 0.9970 166.721 
L 

From the table, as m'm(n,p) increases, afimax increases. For large min(n’p), af,max 

is near to one. Based on this phenomenon, we can further derive the close form solution 

of a f i m a x for large min(n,p): 

2e log min(n, p) • 
af,max ~ a 1� ：~： ( 6 . 7 ) 

\ mm(n,pj 

Note that (6.7) gives us a guideline how to choose the value of a.j. Table 6.2 shows 

af^max at different values of mm(n^p) based on (6.7). Compared labJc^ 6.2 with Tal)l() 

6.1, (6.7) is a good approximation of af^max when min(n,p) is large. 
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Table 6.2 Summary of � , m a x and f(aLmax) found from the equation (6.7) 

16 0.2407 0.35 

32 0.6412 1.13 

64 0.8042 2.29 

128 0.9810 4.33 

256 0.9393 7.98 

512 0.9663 14.59 

1024 0.9814 26.67 

2048 0.9989 48.91 

4096 0.9945 90.08 

8192 0.9970 166.72 

Substituting (6.7) into Theorem 6.1, we can obtain the following corollary. 

Corollary 6 .1 Under the forgetting learning with 

� n 2elogmin(n?^) 
, � � x 

and large if the BAM has been trained with t library pairs and k is less than 

2e log min(rz,p) ' (6.8) 

then the probability that the (t — k)-th library pair Yt-k) is stored as a fixed point 

tends to one, as n ^ oo and p —> oo. 

Proof of Corollary 6.1 

Substituting (6.7) into Theorem 6.1, 

“ 、— 

J{Oif^max) - r 2elogmin(n,p)), 
衿 \ min(n，p) ) 

As log(l — x) ^ —x for small positive x^ 

〜mm(nlP) 
J {^f^axj � 0 N • / \ • 

2eiogmin(n,p) 
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Hence, the proof is complete. • 

From Corollary 6.1，the storage ability of the forgetting learning is similar to that 

of Kosko's encoding method. However, Kosko's encoding method can only encode up 

min(n’p) T-I . 

2iogmin(n,p)咖町 1 >舰 Further encoding the new library pairs will damage the 

whole system. 

On the other hand, the forgetting learning can encode any number of library pairs 

and always keeps the 2 ： 二 ’ � ) most recent library pairs. Hence, the BAM with 

the forgetting learning is similar to an adaptive memory, which always keeps recent 

information from the environment. 

6.3 Computer Simulations 

We have carried out a computer simulations to verify (6.7) and Corollary 6.1. The 

dimension is 512. We generate random library pairs and then encode them by the 

forgetting learning. Figure 6.2 shows the percentage of the last A:-th previous library 

pair being stored as fixed point. In general, the case of a f = 0.9663 is better than 

other cases. Also, when af = 0.9663, there is a sharply decreasing change for k > 14. 

Although the case of af = 0.975 is better than that of af = 0.9663 when k > 18, the 

corresponding percentage at A;�二 18 is only about 60 %. This simulation result agrees 

with our theoretical results presented above (see Table 6.1 and Table 6.2). 

6.4 Chapter Summary 

We have examined the statistical storage behavior of BAM under the forgetting learn-

ing. Also, we have derived a formula for choosing the forgetting constant such that 

the number of most recent library pairs being stored as fixed points is nearly maximal. 

This is, 

2e log min(n,p) 
~ A 1 ； . 

\ mm(n, p) 
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With this value, the forgetting learning can encode any number of library pairs and 

always keeps the 2 :二忒’ � ) most recent library pairs in the model. Computer simu-

lations have been carried out to verify our the theoretical results. 

% 8 0 � \ V s 

f 5 0 - \ 

I 40- \ \\ 
o 3 0 - * a / = 0.990 X, \ \ Y V 

A * a , = 0.980 \ \ \ 

t 2 0 - • a f = 0.975 \ \ 

• = 0.9663 \ 

10— o a / 二 0.955 \ 

• = 0 . 9 4 0 

0 I I I I I I I I I I I I T ^ T T ^ ? ? T T 
0 1 2 3 4 5 6 7 8 91011121314151617181920212223242526272829 

k: The last kth previous library pair 

Figure 6.2 The percentage of the last k-th previous library pairs being 

fixed points where n 二 p 二 512, af = afymax = 0.9663, and 

a f = 0.940,0.9550,0.975,0.980,0.990. 
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Chapter 7 

Introduction to Vector 

Quantization and Kohonen Map 

This chapter reviews the basic concept of vector quantization and Kohonen map. To 

illustrate the ordering property of Kohonen map, a computer simulation is carried 

out. 

7.1 Background on Vector quantization 

As mentioned by Kohonen [1], vector quantization may be regarded as a special case 

of associative mapping in which the input patterns are directly mapped on a finite 

set of representing vectors (codevectors). The use of vector quantization for reducing 

the transmission bit rate or the storage has been recently investigated extensively 

[15, 16]. There are several classes of vector quantization: memoryl.ess vector quantizer, 

feedback type vector quantizer，and trellis type vector quantizer All these classes 

are developed from the memoryless vector quantizer. 

A memoryless vector quantizer Q can be defined as a mapping from ^-dimensional 

•̂In this thesis, we are mainly concerned with the memoryless and trellis type vector quantizers. 

The concept of the feedback vector quantizer will not be involved in this theses so we will not mention 

it here. The trellis type vector quantizers will be discussed in the next chapter. 
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Euclidean space Rk to a finite subset Y of Rk： 

Q ：妒 h f ， ( 7 J ) 

where y� =：{‘&，...，c^} is the set of codevectors (codebook) and M is the number 

of vectors in Y, The quantizer Q is actually the composite of two separate functions, 

coder and decoder. The coder C is a mapping from 舻 to the set J of symbols 

J = {•Sl’�S2，《53, . • * , 3 M } , (7.2) 

and the decoder D is a mapping from J to the codebook Y 

C J and D •• J 4 妒. (7.3) 

The quantity R = log2 M is the code rate per input vector and Rd = ^ is the code 

rate per dimension. 

The goal of such a quantizer is to produce the 'best' possible codevector sequence 

for a given rate R. Hence, we require the idea of a distortion measure which is used 

to define the performance of the quantizer. 

A distortion measure d is an assignment of a cost d(x, y) of reproducing an input 

vector ^ as a codevector y e Y. Given such a distortion measure, we can quantify 

the performance of a quantizer by the average distortion E[d(x, y)]. A quantizer will 

be good if the average distortion is small. In practice, the average is the long terms 

sample average 
1 A lim ~22d (x i , y i ) . (7.4) 

n—^oo ft 左―“‘ \ …/ 、 ‘ 

Here we do not consider the difficult issues of selecting a distortion measure. For 

simplicity and ease of exposition, we focus on the squared error distortion measure: 
k 

d(xi,yi) 二 丨|芄—yi\\2 二 J2(x“ — V i j f - (7.5) 

j二 i 

This is the simplest distortion measure and is commonly used in the vector quanti-

zation. For the squared-error distortion it is common practice to measure the perfor-

mance by signal-to-quantization-noise ratio (SQNR) 
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This corresponds to normalizing the average distortion by the average energy and 

plotting it on a logarithmic scale: Large (small) SQNR corresponds to small (large) 

average distortion. 

With a distortion measure and a set of codevectors, the quantizer usually operates 

in the following manner 

y = (7.7) 

where c；-, is the codevector whose distortion to the input f is the smallest and y is 

the output vector. 

Given a distortion measure, the performance of the quantizer (average distortion) 

is depended on the codevectors. There are a number of techniques for designing 

codebooks [16], such as Kohonen map [1, 7] and LBG algorithm�叫 The united goal 

of these techniques is to obtain a codebook, such that the vector quantizer minimizes 

the average distortion. 2 In the following two sections, we will give a review on these 

two techniques. 

T.2 Introduction to LBG algorithm 

Given a set of training input vectors，the LBG algorithm iteratively modifies the 

codebook to reduce the average distortion. 

1. Given: the training input vectors {xi^x2l -. •, xn} and an initial codebook. 

2. Quantize each training input vector X{ into a codevector yi G Y. 

3. Replace the old codevector by the centroid of all training input vectors which 

mapped into the same codevector in Step 2. If the new codevectors is the same 

as the old one or the average distortion is small enough, then quit. 

Means of generating initial codevectors will be discussed later. Each step of the algo-

rithm must either reduce the average distortion or leave it unchanged. The algorithm 
2Note that in the sense of distortion minimization it is difficult to determine which algorithm is 

the best. We will use a simulation to illustrate this in Section 8.2 
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usually stops when the average distortion falls below some small threshold or the code-

book does not change 皿 - I t should be emphasized that such iterative algorithm 

may not yield the optimum codebook with which the average distortion is the mini-

m U m ' I n g e n e r a l , t h e algorithm will yield a sub-optimum codebook. It is often useful, 

therefore, to enhance the algorithm by providing it with good initial codebooks and 

p e r h a p S & 肚力明 ^ o n s e v e r a l different initial codebooks. Note that the performance 

of other algorithms [16] also depends on the initial codebook. 

In general, there are two approaches for the construction of the initial codebook. 

• “Random” Codes: The first approach is that choosing randomly M vec-

tors from the training input vectors as the initial codevectors [16]. Note that 

we cannot generate M random vectors as the initial codebook otherwise some 

codevectors will never be used in Step 2. 

• Splitting: One can start with a small codebook and recursively construct larger 

ones. A sequence of bigger codebooks is constructed. We first find the centroid 

of the entire training input vectors as the first stage codebook with size one. This 

codevector is then split to form two codevectors (the initial codebook for the 

second stage) by adding small random numbers into the old codevector. Then, 

we apply the LBG algorithm to modify the codebook. The design continues in 

this way: the final codebook of one stage is split to form an initial codebook for 

the next stage. 

7.3 Introduction to Kohonen Map 

Apart from producing a codebook, Kohonen map has a nice property: ordering pre-

serve [1]. That is，when two codevectors are neighbors to each other, their Euclidean 

distance is usually small. Based on this ordering property, Kohonen map can produce 

phoneme strings for word recognition in speech recognitions [7]. Also, it is a good 

way to reduce the dimensionality of the input in pattern recognition [11]. To achieve 

the ordering preserve, a neighborhood structure is introduced among the codevectors 
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before learning. 

‘ ‘ 

Definit ion 7 .1 Given a set of codevectors ci} t = l,.、M，We introduce an M x M 

B°° l ean  Symmetnc matnxNto define the neighborhood structure among the codevec-

t0 rS  (1丄. the  ne i9hbor).  n i j  d^otes the i-th row and j-th column element of 

~  i s  a  l e v e " 一 b o r  0代，仇饥 ntJ = 1. Otherwise, ni3 = 0. N is called the 

m ^ghborhood matrix. By default, nu = 1. The collection of level-1 neighbors 

i s  denoted as 胁 use the word ‘neighbor，to refer the level-1 neighbor in 

this thesis. 

Definition 7 .2 Given apxq Boolean matrix A and a q x r Boolean matrix B, the 

Boolean outer-product of two Boolean matrices C_= is defined as: 

= ( a n 八 bU) V (an A b2j) V ……，{aiq A bqj) Vi = 1,…，p and Vj' 二 1，…,r, 

where 八 and V are the Boolean ‘and，operator and the Boolean  cor' operator respec-

tively. The notation 7VV is defined as: 

S ‘ 
V 

where v is a non-negative integer and N° is an identity matrix. Note that【is 

symmetry. 
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Definit ion 7 . 3 Based on the definition of level-1 neighbor in Definition 7.1, we can 

def ine  l e v d ' v —hbors。f  a codevector. A codevector c, is a level-v neighbor of c3 

i f  t ke  l t h  row and 询  co lumn — of the matrix【is 1，where v is a non-

negatwe mte9er.  The collection of level-v neighbors of c, is denoted as N办)• Note: 

况 ⑷ [ N i ( v + 1). Similarly, we can define the neighborhood distance between two 

codevectors. The neighborhood distance between two codevectors, c；- and c,, is the 

smallest integer d^ such that cj G A^(c^). 

Definit ion 7 . 4 The order of 1，v', is the smallest integer such that N_v'+1 = Kv'-

The neighborhood structure of Kohonen map can be arbitrarily defined. However, 

we usually use a regular neighborhood structure. Some regular structures are shown 

in Figure 7.1. Each vertex represents a codevector. If two codevectors are neighbors 

to each other, we use an edge to join their corresponding vertices together. Note 

that the figure is only a graph representation and it does not reflect any 

actual geometr i c in formation of the codevectors . Figure 7.1(a) is a 2-D grid 

structure, which can be applied to the reduction of the dimensionality. Figure 7.1(b) 

is a 1-D circle structure, which can be applied to the traveling salesman problem [78]. 

Figure 7.1(c) is a hyper cube structure (hypercube graph), which can directly map the 

input vectors into binary words. 
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With the above definitions of the neighborhood structure, the learning rule of 

Kohonen map can be defined in the following way. Let _ be the t-th presentation 

tmining vector. We calculate the distortion between x(t) and each codevector. 

dt = \\x(t) - (7.8) 

forz = l , . . . , M . Then we can find out a codevector E^ which is closest to x(t) such 

that d“ < di \/i + The updating rule is: 

Ci(t + 1) m 聯 + 特 雜 棚�

VQ 6 Ni*(vt) 

Ci(t + 1) = Ci(t) 

\/ci ^ Ni*(vt) (7.9) 

where vt monotonically decreases from 专 to zero during the learning progress, where 

v , i s order of N (see Definition 7.4). Also, atl where 0 < ^ < 1, is a scalar 

parameter which decreases to zero monotonically. One of features of Kohonen map is 

its ordering preserve [7]. That is, the neighborhood distance between two codevectors 

(see Definition 7.2) is small，their Euclidean distance is usually small. 

Figure 7.2 represents a computer simulation with two dimensional input and the 

codevectors. The probability density function of training input vectors is a uniform 

distribution over the [—0.5, 0.5]2. The neighborhood structure Kohonen map is a 

2-D 4-by-4 structure. To indicate which codevectors are neighbors, the points are 

further connected by lines. The initial codevectors of this example is a set of small 

random vectors shown in Figure 7.2(a).3 The trained Kohonen map is shown in 

Figure 7.2(b). From the figure, the trained Kohonen map preserves the ordering in 

some geometric senses. Also, if the neighborhood distance between two codevectors 

is small, their Euclidean distance is usually small. For one dimensional case, the 

ordering property has been theoretically verified by several researchers [8]-[10]. Since 

3For a better approach, the initial codevectors can be the sampling points of a small 2-D rect-
angular grid. For the 1-D circle structure, the initial codevectors can be the sampling points of a 
small circle. In general, the structure of the initial codebook should be the same as the neighborhood 
structure. It will usually get a better result. 
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f——f——f——m 

(a) (b) 

H P 
(c) 

Figure 7.1 Three neighborhood structures of Kohonen map. 

(a) 2-D 4-by-4 structure (b) 1-D circle structure 

(c) 4-D hypercube structure 
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the higher dimensional Euclidean space�桫 is not an ordering space, it is difficult to 

贊11 define the concept of the ordering in�於.Hence , the ordering property in� 炉�

cannot be easily investigated mathematically. 

Remark : In the field of communications, there is also a similar neighborhood stn.c-

t U r 6 a m ° n g t h e c h a n n e l waveforms based on the concept of Delaunay neighborhood 

[82, 83]. For example, the structure of Figure 7.1(a) is the same as the structure 

of a 16-QAM (see Figure 8.10(b)) and the structure of Figure 7.1(b) is the same as 

the structure a 8-QPSK (see Figure 8.11(b)) [77]. Hence, we believe that Kohonen 

map has some potential applications in the field of communications [29]-[31]. Wc will 

present the details of [29]-[31] in the next chapter. 

7.4 Chapter Summary 

In this chapter, we have described the basic concept of the vector quantization, LBG 

algorithm, and Kohonen map. We have also carried out a simple computer simulation 

to illustrate the ordering property of Kohonen map. Finally, we have pointed out 

that there is a similarity between the neighborhood structure of Kohonen map and 

the neighborhood of the channel waveforms. 
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Chapter 8 

Applications of Kohonen Map in 

Data Compression and 

Communications 

In this chapter, we will propose three new cross-relative applications of Kohonen map 

based on its ordering property. The united goal is to design robust transmission 

systems for vector-quantized data under noisy channel. 

Firstly, we will use the neighborhood structure of Kohonen map to design the 

trellis type vector quantizer. The design process of our approach is simpler than that 

of the conventional trellis type vector quantizer. 

Secondly, we discuss the way to efficiently transmit the vector-quantized data 

under noisy channel by considering the association between the codevectors and the 

channel waveforms. The association is on the basis of the neighborhood structure 

of Kohonen map and the neighborhood structure of the channel waveforms. Under 

our proposed approach, the impulsive noise in the received vector-quantized data is 

greatly reduced. 

Lastly, we introduce an error control scheme for the transmission of vector-quantized 

data based on the concepts of the above first and second applications. Computer sim-

ulations show that the impulsive noise in the received data can be further reduced 

when noisy level in the channel belongs to a suitable range. 
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8.1 Use Kohonen Map to design Trellis Coded 
Vector Quantizer 

In this section, we will simplify the design of a high performance trellis vector quan-

t i z 6 r ( T C V Q ) [8 1] based on the neighborhood structure of Kohonen map. This new 

implementation is called trellis coded Kohonen map (TCKM) [29]. In terms of dis-

tortion, the performance of TCVQ is much better than that of the non-trellis vector 

quantizers. However, its design process, which is based on the Euclidean distance of 

codevectors, has a certain amount of computational overhead and space overhead. 

In the TCKM, we use the neighborhood structure of Kohonen map to design 

the trellis. As the neighborhood structure of Kohonen map is predefined, different 

TCKMs with the same neighborhood structure but different codebooks can share the 

same trellis. The design process of the trellis in the TCKM is simpler than that of the 

TCVQ. Hence, the TCKM is suitable for adaptive environment. From the computer 

simulations, the performance of TCKM is comparable to that of TCVQ. 

8.1,1 Trellis Coded Vector Quantizer 

The trellis coded quantizer (TCQ) [79], which is a scalar quantizer, is motivated by 

the trellis coded modulation (TCM)[80]. The performance of TCQ is much better 

than that of conventional source coding techniques and is very close to the theoretical 

rate-distortion bound [79]. The TCVQ [81], as proposed by Wang and Moayeri, is 

a vector version of TCQ and can handle the fractional code rate (The code rate per 

dimension is less than one.). 

The TCVQ is different from the classical vector quantization in the following way. 

Let the dimension of the vector be k and the code rate per dimension be R bits. In 

the vector quantization, the size of codebook is 2kR, and any source vector can be 

represented by any codevector from the codebook at a time instant. In the TCVQ, 

the size of the codebook is extended to M = 2kR+1, and at a time instant only 2kR 

codevectors can be used to represent the source vector. 
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The TCVQ is described by trellis shown in Figure 8.1 and Figure 8.2. Each 

state transition (branch) corresponds to a subset of codevectors A for the 8-state 

trellis ( Q for the 4-state trellis), where the subsets A ' s { C ^ ) are disjoint. Means 

of the construction of the trellis will be discussed later. The quantization is done on 

the sequences of source vectors. Let the source vector sequence be 5 = {而，..., 

According to the structure of the trellis, the number of allowable codevector sequences 

is only C02nkR instead of� 欣+1)，where C0 is the number of states in the trellis. Thus, 

the code rate is asymptotically equal to R per dimension as n is large. Let the distance 

between two vector sequences with length n, say S and S, be 

= . (8.1) 
\ i=l 

Given a source vector sequence S, the allowable codevector sequence that is closest 

to S can be found out by Viterbi algorithm. We can view the input vector sequence 

as an element of a sequence space (which is a extended space formed by a sequence of 

vectors), and then we view the allowable codevector sequences as a sequence codebook 

(or say reproduction sequences) in the sequence space. 

D0,D4,D2,D6 • t o ^ O ^ ^ 

D4,M,D6,D2 

D 5 , D 1 , D 7 ， D 3 ^ ^ ^ ^ 

D 2 ， D 6 , D G , D 4 € ^ ^ ^ 

二二 
Figure 8.1 An 8-state trellis with four branches entering and leaving each 

node. Each branch associates with a subset of codevectors, D“ All the 

subset Di,s are disjoint. 
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广、 CO 

鲁�
""••-.Q2 / 

書... C2 
'••；••.. C.O" 

•• • . . . . • 

,••；；..••"-•：； '•••-..CI 

• 
C3.’......V.: 

急..••...••• CI # • 

Figure 8.2 A 4-state trellis with two branches entering and leaving 

leaving each node. Each branch associates with a subset of codevectors, 

C“ All the subset Q's are disjoint. 

Let us consider the following example. 

• A TCVQ with a 4-state trellis (see Figure 8.3) 

• The codevectors are ci — —3, c2 二 —1, c3 二 1, and c4 = 3. 

• The subsets are C0 = {5}，C\ — {c 2 } , C2 二 {在}，and C3 = {c 4 } . 

• The input sequence is S = {0.5,1.2,1.4}. 

• From Viterbi algorithm (see Figure 8.3), the output sequence is 

= {c 2 , c 2 , c 3 } = {1 ,1 ,3 } . 

• As n 二 3，the number of allowable codevector sequences is 

CQ2nkR 二 4 x 2 3 . 

The code rate is bits per vector. 

In the above example, the length of the input sequence is only 3 and a relative large 

code rate is obtained. In fact, if the length is very large, the code rate tends to 1 bit 
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per vector even the size of the codebook is 4. In general, if the size of the codebook is 

M, then the code rate tends to (log2 M - l ) bit per vector. Here, we only present the 

standard TCVQ in which only half of codebook is used at a time instant. In fact, the 

generalized version is that a fraction of the codebook Is used at a time instant. The 

code rate of the generalized version tends to (log2 M + log2 a), where a is the fraction. 

• .... CO CO CO 
# 

X'-：； '-•-..CI ,:::.:::<::.. " - - . .CI / S ^ ••........CI 

•..,..:::::::........CI� ；；;̂.；;;；；；；'"； CI CI 

Figure 8.3 Realization of the encoding in the TCVQ. The closest output 

sequence is denoted by the solid line. 

The design process of TCVQ consists of two phases. The first phase is the con-

struction of the codebook. In the TCVQ, the LBG algorithm is used to find the 

codebook [19]. The second phase is the construction of the trellis in which a subset 

of codevectors is assigned to each transition edge. 

To achieve a small distortion, the allowable codevector sequences should be well 

distributed over the sequence space. Otherwise, the allowable codevector sequences 

lie closely together and then only a portion of the sequence space is covered by the 

allowable codevector sequences. One of the methods to well distribute the allowable 

codevector sequence is to maximize the minimum distance of two allowable codevector 

sequences among the all pairs. Note that in the TCM we also want to achieve a similar 

task by the set partition of the channel waveforms. The set partition in the TCM is 

very simple since there exists a regular structure among the channel waveforms. As 
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there does not exist a regular structure among the codevectors, Wang [81] proposes 

the following heuristics to do the set partition of the codevectors. 

During partitioning, the distances between all possible pairs of codevectors are 

calculated and are sorted in ascending order. This generates a table with M(M~1> 

entries. The z'-th entry of the table corresponds to two codevectors，q a n d I n i t i a l l y , 

& and�孓 are placed in subsets B0 and respectively. The first entry is then removed 

from the table. The following steps are repeated until the size of one of the subsets, 

B0 or Bi^ becomes 等. 

1. Search the table to find an index j such that Vz < j , c{ or�司 do not belong to 

Bo U Bi, but at least one of Cj and ^ belongs to B0 U 

2. If both Cj and�巧 belong to B0U Bl7 the j-th entry is removed from the table. 

Goto step (1). 

3- If cj belongs to B0 (or Bx), then add�芍 to Bi (or B0) and remove the j-th entry 

from the table. If�弓 belongs to B0 (or B。, then add Cj to B1 (or B0) and remove 

the j-th entry from the table. 

4. If the size of Bo (or B\) becomes —, then add the remaining unassigned code-

vectors to Bi (or B0). Otherwise, go to step (1). 

B0 (and ^ i ) is further partitioned into C0 and C2 (arid C\ and C3), and so on. The 

whole set of codevectors is partitioned in several stages such that a binary tree of 

subsets of codevectors, shown in Figure 8.4，is obtained. The number of levels of the 

tree depends on the structure of the trellis. For example，when the trellis shown in 

Figure 8.1 is used, the codevectors should be partitioned into eight subsets. In the 

case of Figure 8.2, the codevectors should be partitioned into four subsets. 
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Figure 8.4 The basic idea of set Partition in the TCVQ. 

After the partitioning, the assignment can be done based on the following rules. 

1. A branch is assigned to the members of the same partition. 

2. Adjacent branches are assigned to the members of the next larger partition. 

3. All the codevectors are used equally often. 

The detailed assignment rules can be found in [79? 80]. 

The goal of the set partition is to maximize the minimum distance within each 

subset. Readers are referred to [80] for better understanding why the set partition 

and the above assignment rules can increase the minimum distance between any pairs 

of allowable codevector sequences. Let us briefly explain it by using Figure 8.2. 

• Firstly, we consider the allowable codevector sequences whose paths in the trellis 

are the same. For example, the path {Co, C2, C\} (see Figure 8.2) represents 8 

allowable codevector sequences if the size of Ci is two. So, maximization of the 

minimum distance within each subset Ci will increase the minimum distance 

within these 8 sequences. 
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# Secondly，we consider the two paths in which only one subset is different. For 

example, the path {C0,C0,C0} contains 8 allowable codevector sequences and 

the path {C0, C0, C2} contains 8 allowable codevector sequences. The minimum 

distance within the subset B0 二 C0U(7 2 determines the minimum distance within 

the above 16 sequences. So maximization of the minimum distance within each 

subset Bi (together with the Assignment Rule 2) will increase the minimum 

distances within the 16 sequences. 

• Other cases can be explained in a similar manner. 

The second phase above-mentioned needs a certain amount of computational and 

space overhead. For example, if M = 256, we must calculate 32640 Euclidean dis-

tances within the codevectors and then sort them in ascending order. Also, the size 

of the table is very large (32640). When we frequently change the codebook，we need 

to do set partition frequently. Hence, the TCVQ may not be suitable for adaptive 

environment. Many common signal sets in the TCM have already had their corre-

sponding set partition and trellis. The signal sets of TCM in a communication system 

are usually very regular. Since the codevectors of TCVQ (or vector quantizer) are 

usually non-regular, we cannot apply the existing results of TCM to TCVQ. In the 

following’ we will impose a virtual regular structure among the codevectors (based on 

the neighborhood structure of Kohonen map) to simplify its design process. 

8.1.2 Trellis Coded Kohonen Map 

According to the ordering property of Kolionen map，the neighborhood structure of 

Kohonen map reflects certain geometric information of the codevectors. Hence, we can 

partition the codebook based on the neighborhood structure when we use Kohonen 

map to construct the codebook. This new implementation is called the TCKM. In 

fact, the set partition of Kohonen map in the TCKM is not necessary. 1 It is because 

the set partition of Kohonen map in the TCKM is the same as the set partition of 

! lt means that in the TCKM we do not need to partition (the algorithm presented in Section 

8.1.1) the codevectors based on the neighborhood distance. 
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t h e S l - a l s e t i n T C M [SO], Provided that the neighborhood structure of Kohonen 

map is the same as the neighborhood structure of the signal set in the TCM. For 

example, the neighborhood structure of a 2-D 4-by-4 Kohonen map is the same as 

the neighborhood structure of the channel waveforms of 16-QAM (see Figure 8.9 and 

Figure 8.10 (b)). Note that the neighborhood structure of the channel waveforms is 

created from the concept of the Delaunay neighborhood [82, 83]. 

Figure 8.5 illustrates the set partition of a 2-D 4-by-4 regular Kohonen map based 

on the set partition of a 16-QAM. We use a planar graph to represent Kohonen map. 

Each vertex represents a codevector. If two codevectors are level-1 neighbors to each 

other, we connect their corresponding vertices by an edge. Since the planar graph 

representation is used, Figure 8.5 does not reflect the actual geometric information of 

the codevectors. By the same principle, we have partitioned a 32-codevector Kohonen 

map shown in Figure 8.6. 
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Figure 8.5 Set partition of a 4 by 4 Kohonen map 

based on the set partition of a 16-QAM signal constellation. 
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Figure 8.6 Set partition of a 32-codevector Kohonen map 

The TCM has been well studied in the field of communications and many common 

signal sets in the TCM have already had their corresponding set partition and trellis. 

Hence, the design process of TCKM is very simple when we use the neighborhood 

structure of the channel waveforms in the TCM to define the neighborhood structure 

of Kohonen map. The basic operation of TCKM is the same as 
that of TCVQ. The 

difference between them is the design process. 
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# I n t h e TCKM, Kohonen map's learning is used to construct the codebook. In 

the TCVQ, the LBG algorithm is used instead. 

• I n t h e TCKM, the set partition of codebooks is based on the neigh-

borhood structure of the codevectors. In the TCVQ, it is based on the 

Euclidean distances among codevectors. 

The feature of TCKM is that the trellis can be constructed before the training. 

Also, different codebooks can share the same trellis provided that their neighborhood 

structures (i.e. N) are the same. Hence, the design process of TCKM is simpler than 

that of TCVQ. The simulation results, shown below, demonstrate that the perfor-

mance of TCKM is comparable to that of TCVQ, 

8.1.3 Computer Simulations 

We designed several 2-dimensional LBG, TCVQ's, and TCKM's with different rates 

for a zero-mean, unit-variance, i.i.d. Gaussian 2-dimensional vector source. The 

number of training samples is 1024. For all quantizers, the number of learning cycles 

is 10.2 In the TCVQ and TCKM, we test two trellis structures with different numbers 

of states, 4-state trellis and 8-state trellis. We have repeated the above experiment 

5 times. Table 8.1 shows the SQNR for the code rate 1.5 bits per dimension. Table 

8.2 shows the SQNR for the code rate 2 bits per dimension. Note that a quantizer 

with a greater value of SQNR has a better performance. These two tables show that 

the performance of TCKM is comparable to that of TCVQ and that both TCVQ and 

TCKM can realize an improvement in SQNR from 0.5 to 1 dB over the standard LBG 

method. Also, with a larger number of states in the trellis, both TCVQ and TCKM 

can achieve a better performance. 

2 When the number of karning cycles is set to 8 only, the LBG algorithm does not form a good 
codebook. 
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Table 8.1 SQNR (in dB) with code rate 

1.5 bits per dimension for different quantizers. 

Experiment LBG 4-state 8-state 4-state 8-state theoretical 

N o . TCVQ TCVQ TCKM TCKM bound 

1 6.80 7.45 7.55 7.77 7.83 9̂ 03 

2 6.89 7.64 7.79 7.38 7.66 9^03~~~ 

3 6.98 7.63 7.89 7.56 7.90 9̂ 03 

4 7.05 7.51 7.66 7.41 7.80 9.03 

5 6.85 7.43 7.55 7.43 7.69 9.03 

Table 8.2 SQNR (in dB) with code rate 

2 bits per dimension for different quantizers. 

Experiment LBG 4-state 8-state 4-state 8-state theoretical 

‘ N o . TCVQ TCVQ TCKM TCKM bound 

1 9.23 10.50 10.78 10.73 10.80 12.04 

2 9.68 10.43 10.67 10.35 10.67 12.04 

3 9.95 10.77 10.97 10.89 10.97 12.04 

4 9.55 10.69 10.87 10.67 10.89 12.04 

5 9.58 10.47 10.60 10.65 10.75 12.04 

In another experiment, we test the TCKM with six common natural images: Lena, 

Baboon, Pepper, Clown, Fruit, and F16. The images are shown in Figure 8.7. We 

use the first three images to train four different quantizers: a TCKM with a 16-by-16 

Kohonen map, a TCKM with Kohonen map which structure is the cartesian product 

of two 1-D 16-circles, a TCVQ using LBG with. 256 codevectors, and a standard LBG 

with 128 codevectors. Each image is divided into a number of 2 x 4 blocks. Hence, 

the dimension of the vectors is 8 and the code rate is | bit per dimension (per pixel). 

Although there are 256 codevectors in TCVQ and TCKM, the code rate of TCVQ and 
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TCKM is the same as that of the standard LBG with 128 codevectors. It is because 

both TCVQ and TCKM are sequence base coder and only 128 codevectors are used 

at a time instant. 

The images are then quantized by these three quantizers and the reproduction 

images are obtained. Table 8.3 summarizes the root mean square error (RMSE) of 

the reproduction images to original images. Note that a quantizer with a smaller value 

of RMSE implies that it has a better performance. Again, the performance of the 

TCVQ and TCKM are similar. Except the image 'Baboon', the TCKM yields a great 

improvement in RMSE over tlie standard LBG and its performance is comparable to 

the TCVQ's case. For the image 'Baboon', the reason may be that the LBG is good 

for quantization of the training images.3 

Table 8.3 The RMSE of the quantization images for different quantizers. 

The code rate is 7/8 bit per pixel. 

Image LBG 8-state 8-state 8-state 

TCVQ TCKM TCKM 

16-by-16 product of 

grid two circles 

Lena 7.4605 7.1754 6.9746 7.0323 

Baboon 14.3412 13.7542 14.2805 14.6817 

Pepper 7.3950 7.3030 6.9674 7.1141 

Clown 13.4465 13.0670 12.3170 12.5561 

Fruit 10.4821 10.3771 9.1556 9.1782 

F16 9.6672 9.4909 8.8027 8.9248 

3Table 8.5 (in the next section) summarizes the RMSE of the quantization images under conven-

tional quantizers (i.e., all codevectors are used at a time instant). From Table 8.5，the standard LBG 

gets a better result for the training images (Lena, Baboon, and Pepper) but a poorer result for the 

remaining images. 
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Figure 8.7 The six images. 
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8.2 Kohonen Map:Combined Vector Quantization 

and Modulation 

When we transmit the vector-quantized images (or speech) under a noisy channel, 

the noise in the received data Is impulsive. Moreover, the impulsive noise is difficultly 

removed by linear or non-linear filter since vector quantization is used (i.e.，the size of 

the impulse is large). In this section, we present a methodology to reduce the impulsive 

noise in the received data based on the ordering property of Kohonen map. This can 

be achieved by considering the association between the neighborhood structure of 

Kohonen map and the neighborhood structure of the channel waveforms. Computer 

simulation shows that our approach can reduce the impulsive noise in the received 

data even if we do not use any error correction scheme in the transmission system or 

filter. Let us first explain why the impulsive noise is produced. 

8.2.1 Impulsive Noise in the received data 

When we transmit the quantization data, we transmit the symbols instead of the code-

vectors. Hence, a digital transmission system is needed. A simple digital transmission 

system is shown in Figure 8.8. It consists of four blocks: source coder, modulator, 

channel5 and symbol's detector (demodulator). 

x Si Si(t) r(t) c 

> b o ^ r c e > Modulator > Channel ^ Detector ^ 
coder 

Figure 8.8 A simple digital transmission system 

• Based on the input 笼,the source coder outputs the corresponding symbol at 

constant rate rt (symbols/per sec). The duration of each symbol is T = 

Here, we may treat the coder of the vector quantizer C as a source coder. 

• The modulator interfaces the source coder to the channel. It takes in the source 

outputs and produces channel waveforms that suit the physical nature of the 

channel. 
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To consider carrier modulation, each symbol Si is associated with a channel 

waveform Si(t): 

� � =S H c o s Ujct H- sin toct (8.2) 

where is the carrier frequency. In the field of communication, we usually use 

a vector notation. That is, each channel waveform is represented by a vector s{ 

in the signal space: 

— ( s n 、 
si�二 . (8.3) 

V 殆 /�

Three common modulation methods are shown in Figure 8.9. Note that we can 

use the concept of Delaunay neighborhood [82, 83] to introduce a neighborhood 

structure among the channel waveforms si(t),s 

sin vLt s i n sin wU 
O 參 參 參 _ ^ ( 

參 參 • P • 

參 參 • 參 參 參 參 參 

—• , # ~ o ~ • ~ 
cos wct cos wct COS wct 

參 • • 參 

T� •� •� •� •� 十眷�

(a) (b) (c) 

Figure 8.9 Three common modulation methods 

(a)QPSK (b)QAM (c)Hex-QAM 

• The simplest channel is the additive noise channel: here the signal is received 

without distortion except additive noise. That is, if r (r(t)) is the received signal 

(assuming that Si is transmitted), then 

r = Si n 

where n is the additive noise. Usually, Gaussian noise is assumed. 

• Given the received signal r, the detector estimates the transmitted signal 3 based 

on the properties of the channel. If the above simplest channel is assumed, the 

best detector is 

5 = Si if d(si, r) < d ( s j , r ) V j ^ i . (8.4) 
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where d(�.) is the Euclidean distance between two vectors. Note that if the 

estimated signal 5 is not equal to the transmitted signal, a symbol error occurs. 

When an error occurs, the estimated signal usually is a Delaunay neighbor of 

the transmitted signal (or a signal near the transmitted signal). 

If the channel is noisy, the estimation may be incorrect. Given the transmitted 

codevector ct in original data space (the transmitted waveform is st), the estimated 

signal f is usually close to the transmitted signal but the estimated codevector I 

may not be close to ct. The distance between the transmitted codevector and the 

estimated codevector depends on the association between and�̂ ，s. Under a noise-

free channel, we do not need to care the association between the codevectors and the 

channel waveforms. But for a noisy channel, it is a serious problem. 

For image or speech data, we can accept certain amount of smooth noise. Un-

fortunately, when we transmit the vector-quantized images (or speech) under a noisy 

channel, the noise in the received data is impulsive if we do not care the association. 

Besides, the size of the impulse is large. This large impulse cannot be easily removed 

by a linear or nonlinear filter. One may suggest that we can calculate distances within 

the codevectors and then do the association based on heuristics or simulated anneal-

ing [84，85]. Note that the problem of the association is NP. However such approaches 

involve a great amount of computation and space overhead if the size of the codebook 

is large. Also, we need to know the symbol error probability of the channel in these 

approach. Hence, if a new codebook is used or the noise level changes, we need to do 

the association again. 

In the following, we will present a methodology to achieve the association based 

on the neighborhood structure of Kohonen map [31], 4 

4 Recently, a similar work [86] has been reported during the review process of my article [31]. 
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8.2.2 Combined Kohonen Map and Modulation 

As mentioned in above, one of features of Kohonen map is the ordering preserve. That 

is, when two codevectors are neighbors to each other, their Euclidean distance is usu-

ally small. Based on this feature, we can do the association in the following way. The 

neighborhood structure of the channel waveforms, which is created from 

the concept of Delaunay neighborhood, matches the neighborhood struc-

ture of Kohonen map. That is, if the codevectors c；- and Cj are neighbors to each 

other, then the corresponding channel waveforms�实 and Sj should also be Delaunay 

neighbors to each other. With such approach, if the symbol detector wrongly esti-

mates a transmitted waveform�实 to its neighborhood waveform Sj, then the distortion 

from cj to Ci is usually small. Hence, the error events in the receiver only cause a 

small increase in overall RMSE in the received vector-quantized data. 

Given the modulation system, we create the neighborhood structure of 

the channel waveforms based on the Delaunay neighborhood. Then we use 

this neighborhood structure to train Kohonen map. It should be emphasized 

that the neighborhood structure of Kohonen map is not created from the concept of 

the Delaunay relationship in 

Since the neighborhood, structure of Kohonen map is predefined, different code-

books with the same neighborhood structure can share the same association. Under 

our approach, the design of modulation system and the design of the vector quantizer 

are considered as a whole together. 

Figure 8.10 shows this idea. In Figure 8.10(a), there is a trained 2-D 4-by-4 

Kohonen map ill the original data space. The corresponding channel waveforms (16 

QAM) in the signal space are shown in Figure 8.10(b). We use a line to indicate 

the Delaunay relationship between two channel waveforms. Note the neighborhood 

structure of Figure 8.10(a) matches that of Figure 8.11(b). Figure 8.11 shows another 

case. In Figure 8.11(a), there is a trained 1-D circle Kohonen map in the original data 

space. The corresponding channel waveforms (8 QPSK) are shown in Figure 8.11(b). 
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and channel waveforms. (a)2-D regular 4-by-4 Kohonen map 
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Figure 8.11 The idea of matching between codevectors 

and channel waveforms. (a)l-D circle Kohonen map 

(b)The corresponding channel waveforms 

If the modulation sclieme is ikf-QAM, we should use a 2-D regular Kohonen map 

for the codebook. In the case of M-QPSK, we should use a 1-D circle Kohonen map. 

If the transmission system is binary, we can use a hypercube Kohonen map whose 

neighborhood structure is the same as a hypercube graph. 

If the number of channel waveforms is large, it may create some difficulties in the 

implementation of the transmission system. In such case, we can use two channel 
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waveforms to represent a codevector5. For example, if we use 16-QAM in the commu-

nication system, we can take the cartesian product of two 2-D 4 x 4 regular Kohonen 

maps as the neighborhood structure of a 256-codevectors Kohonen map, the neigh-

borhood structure of which is a 4-D regular Kohonen map. In the case of 16-QPSK, 

we can take the cartesian product of two 1-D circles 16-codevectors Kohonen maps 

as the neighborhood structure of a 256-codevectors Kohonen map, the neighborhood 

structure of which resembles an elastic doughnut. Table 8.4 shows some suggestions 

on the the communication system and the corresponding Kohonen map. 

Table 8.4 Suggestions on the communication system and 

the corresponding Kohonen maps. 

Communication system No. of codevectors Kohonen map 

16-QAM 16 4 by 4 grid 

8-QPSK 8 1-D circle 

256-QAM 256 16 by 16 grid 

16-QAM 256 cartesian product 

of two 4 by 4 grids 

16-QPSK 256 I cartesian product 

of two 1-D circles 

binary 256 8-D hypercube 

8.2.3 Computer Simulations 

We will use six common natmral images (which, are Lena, Baboon, Pepper, Clown, 

Fruit, and F16) to study the noise in the received data for different communication 

systems: 256-QAM, 16-QAM, 16-QPSK, and binary channel. We use the first three 

images to train five vector quantizers: 2-D 16 x 16 regular Kohonen map (for 256-

QAM), 4-D 4 x 4 x 4 x 4 regular Kohonen map (for 16-QAM), the cartesian product 

of two 1-D circles Kohonen map (for 16-QPSK), hypercube Kohonen map, and LBG 
5When we use two channel waveforms to represent a codevector, the transmission rate of com-

munication system will be twice the rate of input vectors. 
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(for comparison). Each image is divided into a number of 2 x 4 blocks. There are 

256 codevectors with dimension 8. The image is transmitted through a noise channel. 

The structure of Kohonen maps matches that of the channel waveforms. In the LBG's 

cases，there is no neighborhood structure among the codevectors. Thus, we use the 

following assignment schemes for the LBG's case. In the first scheme, we randomly 

assign a channel waveform to each codevectors in the case of LBG. In the second 

scheme, we use simulated annealing (SA) [84，85] to carry out the association. 

Table 8.5 summarizes the RMSE of the reproduction images under the noise-free 

channel. From the table, it is difficult for us to determine which quantizer is the best. 

Table 8.5 The RMSE of the quantization images for different quantizers. 

The code rate is 1 bit per pixel. 

Image LBG 2-D regular 4-D regular Hypercube the cartesian 

Kohonen map Kohonen map Kohonen map product of two 

1-D circles 
Lena 6.5030 6.5436 6.7190 6.9246 6.6795 

Baboon 13.0717 13.8219 13.9386 14.0197 14.2567 

Pepper 6.5065 6.4925 6.7632 T.028T 6.6749 

Clown 12.4689 11.9173 12.2198 12.7004 12.2496 

Fruit 9.6516 8.6087 9.1645 9.6956 8.8468 

F16 8.7842 8.4689 8.5366 8.7701 8.6463 

However, when the communication channel is noisy, the results are totally different. 

Figure 8.12 and Figure 8,13 show the typical reproduction images under the noisy 

channel of a 256-QAM communication system. Figure 8.12 is the case of using 2-D 

regular Kohonen map with considering the matching. Figure 8.13 is the case of using 

LBG without considering the matching (random assignment). In Figure 8.12, there 

is no significant impulsive noise. On the other hand, there is a lot of impulsive noise 

in Figure 8.13. The RMSE of the received images under different communication 

systems and noise levels are shown in Figure 8.14 to Figure 8.17. 
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The matching neighborhood structure between the channel waveforms and the 

codevectors can greatly reduce the RMSE in the received images under a noisy chan-

nel. The improvement is dramatic when the noise level of the communication system 

is large. The performance of using Kohonen map is still a little bit better that of using 

SA. Note that SA is an computational intensive method. Also, we need to 

do the SA again once we change the codebook. 

It seems that the better improvement can be achieved by using a Kohonen map 

with a lower dimension. For example, compared with other Kohonen maps, the RMSE 

of using hypercube Kohonen map is relatively higher (but, in general, it is still better 

than LBG'cases with SA and random assignment). It may be because the hypercube 

Kohonen map does not form a good ordering preserve. From Figure 8.14 to Figure 

8.16 (in the cases of carrier modulation), under the same RMSE value in the received 

images, our approach is nearly 4-5 dB lower in terms of signal-to-noise-ratio in the 

channel.6 In Figure 8.14, the RMSE of the received image 'Lena' under our approach 

is about 8.5 when the signal-to-noise-ratio in the channel is 22 dB. For LBG's case 

with random assignment, to maintain the same RMSE value in the received image, 

the signal-to-noise-ratio in the channel should increase to 26 dB or more. 

6Note that dB is in the logarithmic scale, 
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Figure 8.12 The received images of using 2-D regular Kohonen map 

with considering the matching under a noisy 

256-QAM communication system, where the 

signal-to-noise-ratio in the channel is 23.3 dB. 
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Figure 8.14(a) The RMSE of the received images under a noisy 256-QAM 

system. The solid-line is for the LBG with random assignment. The 

dashes-line is for the 2-D 16 x 16 regular Kohonen map with considering 

the matching. 
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Figure 8.14(b) The RMSE of the received images under a noisy 256-QAM 

system. The solid-line is for the LBG with SA. The dashes-line is for the 

2-D 16 x 16 regular Kohonen map with considering the matching. 
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Figure 8.15(a) The RMSE of the received images under a noisy 16-QAM 

communication system. The solid-line is for the LBG with random 

assignment. The dashes-line is for the 4-D 4 x 4 x 4 x 4 regular Kohonen 

map with considering the matching. 
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Figure 8.15(b) The RMSE of the received images under a noisy 16-QAM 

communication system. The solid-line is for the LBG with SA. The 

dashes-line is for the 4-D 4 x 4 x 4 x 4 regular Kohonen map with 

considering the matching. 
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Figure 8.16(a) The RMSE of the received images under a noisy 16-QPSK 

communication system. The solid-line is for the LBG with random 

assignment. The dashes-line is for the cartesian product of two 1-D 

circles Kohonen map with considering the matching. 
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Figure 8.16(b) The RMSE of the received images under a noisy 16-QPSK 

communication system. The solid-line is for LBG with SA. The 

dashes-line is for the cartesian product of two 1-D circles Kohonen map 

with considering the matching. 
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Figure 8.17(a) The RMSE of the received images under a noisy binary 

channel. The solid-line is for the LBG with random assignment. The 

dashes-line is for the hyper cube Kohonen map with considering the 

matching. 
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Figure 8.17(b) The RMSE of the received images under a noisy binary 

channel. The solid-line is for the LBG with SA. The dashes-line is for the 

hypercube Kohonen map with considering the matching. 
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8.3 Error Control Scheme for the Transmission of 

Vector Quantized Data 

Nowadays, there is a trend to combine all the elements in the communication system 

as a whole such that more improvement can be achieved. A typical example is the 

concept of TCM [80] which combines the modulation and error control together so 

that the bit error rate is lower. Another example is the work presented in Section 

8.2 or [84, 85] which combines the source coding (vector quantizer) and modulation 

together so that the noise in the data received is lower. 

The last example is a joint source/channel coding system for the transmission of 

the scalar quantized data [87]. In this example, the source coding, the error control, 

and the modulation are designed as a whole. In [87]，a joint source/channel coding 

system constructed using TCQ and TCM is described. The same trellises are used in 

the TCQ and TCM systems. There is a straightforward mapping of TCQ codewords to 

TCM symbols. Hence, the RMSE in the data received is very small. This approach is 

well suitable for the scalar quantizer because there is an ordering property in the scalar 

quantizer. Hence, the association between the TCQ's outputs and the 1-D TCM's 

channel waveforms can be done in a simple way. However, for the vector quantizer or 

TCVQ, there does not exist such regular structure among the codevectors. We cannot 

easily combine all the three elements (the source coding, the error control, and the 

modulation) together. In this section，we suggest to use the neighborhood structure 

of Kohonen map to achieve this task. 

In Section 8.2, we have presented a transmission scheme for vector-quantized data 

by exploiting the matching between the neighborhood structure of the codebook and 

that of the channel waveforms. In this transmission scheme, the impulsive noise in 

the received data can be greatly reduced under a noisy channel even if we do not 

use any error control scheme. In this section, we will present an error control scheme 

which is best fit this transmission scheme. The proposed error control scheme is based 

on the concepts of TCM, TCKM, and matching neighborhood structure between the 

codebook and the channel waveforms. Under this error control scheme, the source 
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coding, the error control, and the modulation are designed as a whole such that the 

impulsive noise in the received data can be further reduced. 

8.3.1 Motivation and Background 

The task of a digital communication system is to provide a cost-effective system for 

transmitting information from a sender at a rate and a level of reliability that is 

acceptable to an user. In the transmission of binary data, the error control code[77] is 

usually used when the communication channel is noisy. The goal of the error control 

code is to minimize the effect of channel noise, that is, to minimize the number of 

errors in the received binary data. 

Discrete — Channel — Modulator — Waveform 
source encoder channel 

“ ―̂—— T 

Noise 

_ ^ Dectector > Channel ^ User 
decoder 

Figure 8.18 Simplified model digital transmission system. Coding and 

modulation performed separately. 

Figure 8.18 shows the model of a digital communication system with an error 

control scheme. The channel encoder accepts message bits and adds redundancy ac-

cording to a prescribed rule, thereby producing encoding data at a higher bit rate. 

The channel decoder exploits the redundancy to decide which message bit was actually 

transmitted. Practically, there are many different error-correcting codes [77]. Histor-

ically, these codes have been classified into block codes and convolutional codes. In 
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the model depicted in Figure 8.19, the channel coding and modulation are performed 

separately. Recently, many researchers discover that the most effective method of er-
r o r c o n t r o 1 c o d i n g i s t o combine it with modulation as a single function [80]； as shown 

in Figure 8.19. In such approach, an error control code is redefined as a process ofim-

posing certain patterns on the transmitted signal. The issue of combined modulation 

and error control code is called the TCM. All the error control techniques mentioned 

above is fitted for the transmission of binary data (minimizing the bit error rate). 

However, in the transmission of vector-quantized data, lower bit error rate does not 

imply a lower impulsive noise In the received vector-quantized data. When we look 

back the concepts of T C M and T C K M , we find that the output sequence 

of T C K M can be regard as the output of T C M . Hence, it may be possible to 

create an error control scheme for the transmission of vector-quantized data on the 

basis of TCM and TCKM. Before we develop this error control scheme, we will first 

briefly introduce the concept of TCM. 

Discrete > Encoder/Modulato]： ^ Waveform channel 

source 

_ } 
Noise_ 

_ ^ Dectector/decoder 多 User 

Figure 8.19 Simplified model digital transmission system. Coding and 

modulation combined. 
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8.3.2 Trellis Coded Modulation 

We will introduce the concept of TCM [80] by an example. Consider a digital com-

munication scheme used to transmit data from a source which emits two information 

bits every T seconds. Several solutions are possible (Figure 8.20). 

• ( a ) Use a 4-QPSK modulation, witt one signal every T seconds. Hence, every 

signal carries two information bits. 

• ( b ) Use a convolutional code with rate 2/3 and 4-QPSK modulation. Now, every 

signal carries 4/3 information bits and then it must have a duration of 2T/3 to 

match the information rate of the source. Hence, the bandwidth increases by a 

factor of 3/2. 

• (c) Use a convolutional code with rate 2/3 and 8-QPSK modulation to avoid 

reducing the signal duration. Each signal carries two information bits, and hence 

no bandwidth expansion is incurred because 8-QPSK and 4-QPSK are with the 

same bandwidth. 
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Figure 2.20 Three digital communication schemes transmitting 2 bits 

every T seconds: (a) uncoded transmission with 4-QPSK; (b) 4-QPSK 

with a rate 2 / 3 convolutional encoder and bandwidth expansion; (c) 

8-QPSK with a rate 2 /3 convolutional encoder and no bandwidth 

expansion. 

With solution (c), we can use a coding scheme without bandwidth expansion. We 

might expect that the use of a larger set of signals (channel waveforms) would involve 
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a p o w e r P e n a 1 ^ w i t h r e sPect to 4-QPSK and then the coding gain achieved by the 

convolutional code should be offset by this penalty. However, the overall results is 

that we can get some coding gain at no price in bandwidth. 7 

The key aspect of TCM is the concept that convolutional encoding and modula-

tion should not be treated as separate entities, but as an unique operation. Thus, the 

received waveforms, instead of being first demodulated and then decoded, is processed 

by a receiver that carries out the demodulation and decoding in a single step. Conse-

quently, the parameter governing the performance is not the free Hamming distance 

of the convolutional code, but rather the free Euclidean distance between transmitted 

waveform sequences. Thus, the design of TCM will be based on Euclidean distances 

rather than on Hamming distances, so that the choice of the code and of the signal set 

(the set of channel waveforms) will not be performed separately. Finally, the detection 

process will involve soft decisions rather than hard.8 

Consider a source emitting one of M' symbols (the set of source symbols is 

at a time instant. In the TCM, the number of the channel waveforms used, denoted 

as M, is twice the size of The set of channel waveforms is denoted as 0 = 

{si(t), • • •, SM(t)}- The waveform yn{t) G O transmitted at the n-th time interval 

(the discrete time n) depends not only on the source symbol an transmitted at the 

same time interval, but also on a finite number of previous source symbols: 

Vn(t) = / ( a n , a n _ i , •. •, an-L). (8.5) 

where yn(t) E {到⑷，• • .， sM { t ) } - By defining 

Pn = (O-n-1,�,，•，O-a-L)� (8.6)�

7The coding gain of an error control code is, under a fixed bit error rate in the received data, 

the reduction of the signal-to-noise-ratio in the channel with respect to the uncoding transmission 

scheme. 
8In hard decision, given a received signal sequence, we will first individually demodulate each 

received waveform of the received signal sequence into a symbol (or binary bits), and then decode 

the symbol sequence, based on the structure of the convolutional code and Hamming distance, 

into the original information sequence. In soft decision, given a received signal sequence, we will 

directly estimate the original information sequence, based on the whole received signal sequence and 

Euclidean distance. 
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as the state of the encoder at the discrete time n, a more compact form is 

Vn{t) = f{an,pn) (8.7) 

Ai+1 =g{an,f3n). (8.8) 

The function / ( . , . ) describes the fact that each transmitted waveforms depends 

not only on the corresponding source symbol, but also on the parameter /3n. In other 

words, at a time instant the transmitted waveform is chosen from a subset of H that 

is determined by the value of (3n. The function g(-) describes the memory part of the 

encoder and shows the evolution of the modulator (Figure 8.21). 

> Memory Select 
part pn a subset un 

—.• > I _.…一,•:“ —、:,_.,,__ 

f J Vn{t) 
： > Seclect a waveform from > 

the subset 

Figure 8.21 General model for the TCM, 

For the graphical representation of the functions f and g it is convenient to use 

a trellis. Tlie values that can be taken by /3n, the encoder state at time n: are 

the nodes of the trellis. With each source symbol we associate a branch that stems 

from each modulator state at time n and reaches the encoder state at time n 1. 

The branch is labeled by the corresponding values of f (that is, the corresponding 

channel waveforms Si(t)). The trellis structure is determined by the function�仏 while 

f describes how channel waveforms are associated with each branch along the trellis. 

The association between the branches and channel waveforms is based on the concept 

of the set partition (see Section 8.1 or [80]). 

If the source symbols are M'-ary, each node must have M' branches stemming 

from it (one per source symbol). This implies that in some cases two or more branches 

connect the same pair of nodes; when this occurs, we say that parallel transitions take 

place. In other notations，we can use a branch to represent two or more waveforms 
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instead of using the concepts of 'parallel branches'. 

Figure 8.22 shows an example of this representation. It is assumed that the en-

coder has four states, the source emits binary symbols, and four channel waveforms: 

•si(力)，.••，s4(t) are used. The number (inside the bracket) above each branch shows 

the corresponding source symbol For example, if the current state is the top state in 

Figure 8.22 and the current input symbol is “0” , then the corresponding output wave-

form is s^t) . The optimum decoding is the search for the most likely path through the 

trellis once the received waveform sequence has been observed at the channel output. 

This search is best done using Viterbi algorithm. 

( o ) / Mt) 

(i)/ (o)/ s3(t) 

I I 
...........⑴/�约⑴�

.... (0)/ s2(t) 

( 0 ) / ^ ) ^ X … . . . . . 

^ ― . • ⑴ 辩 ） 

Pn Pn+1 

Figure 8.22 Example of a trellis describing a T C M scheme with four 

states and four channel symbols used to transmit from a binary source. 

8.3.3 Combined Vector Quantization, Error Control, and 

Modulation 

Consider the TCKM proposed in Section 8.1, the source vector sequence S�二 {^i , . • •, xn} 

is quantized to a codevector sequence S�二 {込， . . . , ‘ } based on Viterbi algorithm, 

where y,- G {ci , • • •, cm}- For a digital communication system, we can encode the 

codevector sequence to a symbol sequence S' and then transmit it. If the channel is 
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noise-free，we can use a symbol set with size f to encode each output codevector of 

TCKM, where M is the size of the codebook. (In fact, we should transmit the initial 

state of the output vector sequence in the trellis of TCKM.). It is because, at a time 

instant, only f codevectors are used to represent the source vector. Together with 

the initial state of the output vector sequence, we can decode the received symbol 

sequence back to the codevector sequence based on the structure of TCKM. 

However, if the channel is noisy, there may be some errors in the received symbol 

sequence. Because of using trellis structure in the TCKM, an error in the received 

symbol sequence may cause many errors in the received codevector sequence. Also, 

the errors in the received codevector sequence are impulsive. To lower the error rate in 

the received symbol sequence, we can design an error control code for the transmission 

of the symbol sequence S f. However, we still cannot reduce the impulsive noise in the 

received codevector sequence if the error control code is separately designed. 

Now, if we use a symbol set J with size M 

j = {«si,«S2，<S3,...,Sm} (8.9) 

to describe the codevector sequence S�二 ‘，‘} of TCKM,9 then we can obtain 
A A 

a new symbol sequence S" 二 {yi,. •. ,yn~\ where yi G J. The symbol sequence S" 

can be regarded as the output of a convolutional coder with input S'. Furthermore, 

if we associate each symbol Si with a channel waveform Si = S{(t) based on the 

concept described in Section 8.2, then the overall effect is that the TCM is used 

to code the symbol sequence Sf. In this view, the trellis of TCM is the same as the 

trellis of TCKM provided that we replace the output label in the trellis of TCKM (<s‘）�

with the waveforms (�(力)）,Hence, likely TCM error events (which are similar to the 

transmitted channel waveforms) cause only a small increase in overall RMSE in the 

received vector-quantized data, 

Figure 8.23 shows the idea of this TCKM error control transmission system. For 

the sender, we use the TCKM to encode the input source sequence S = {^i, • •. ,xn} 

into a waveform sequence S = { y i(《)，...，where m{t) G {^(t)，...，�

9That is, we associate each codevector Ci with the symbol Si G J. 
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Note that the codevector sequence�乡 = { ‘ . . . ， a n d the symbol sequence S"= 

{y^ ' - '^Vn} are hidden in the sender since the TCKM directly encodes the input 

vector sequence S = {xu-- • ,xn] to the waveform sequence 夕.In other words, the 

TCKM in Figure 8.23 performs two functions: quantizer and channel encoder (for 

error control). In the receiver, we estimate the transmitted waveforms based on the 

trellis of TCM once the received waveform sequence has been observed at the channel 

output. Then, the output of the receiver is the estimated codevector sequence. 

For the sender, the Viterbi algorithm is used to search the best codevector sequence 

in the original data space. On the receiver side, the Viterbi algorithm is used to search 

the best waveform sequence in the channel waveform space. In Figure 8.23, the source 

coder (TCKM), the error control code (TCM), and the modulation are designed as a 

whole system. 
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. • sequence 

^ Viterbi Detector 

Figure 8.23 General model of the T C K M error control transmission 

system. 

In this TCKM error control transmission system, the size of the codebook is M 

but at a time instant only 警 codevectors can be used to represent the source vector. 

One might expect that the use of TCKM (at a time instant only 譬 codevectors can be 

used to represent the source vector) would involve an error penalty with respect to the 

use of Kohonen map presented in Section 8.2 (at a time instant all the M codevectors 

can be used to represent the source vector) with M channel waveforms. In the next 

section, the simulation shows that the gain of TCM (due to the error control scheme) 

in the TCKM error control transmission system can offset this penalty (due to the 

use of half codebook at a time instant). The net result is that the RMSE in the 

received codevector sequence can further be reduced when the signal-to-noise ratio in 

the channel belongs to a suitable range. 

8.3.4 Computer Simulations 

In this section, we will use the six common natural images (which are Lena, Baboon, 

Pepper, Clown, Fruit, and F16) to study the noise in the received data for the 8-

state TCKM error control transmission system. There are two TCKM error control 
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transmission systems: the 16-QPSK modulation (Kohonen map in TCKM is the 

cartesian product of two 1-D circles Kohonen maps), and the 256-QAM modulation 

(the Kohonen map in the TCKM is a 16 X 16 2-D regular Kohonen map). As a 

comparison, we also show the results of Kohonen map presented in Section 8.2. 

Figure 8.24 and Figure 8.25 show the RMSE of the received images under the two 

approaches: the TCKM error control transmission systems, and the Kohonen map 

with considering the matching. Compared with our approach presented in Section 

8.2, the TCKM error control transmission systems further reduce RMSE provided 

that the signal-to-noise-ratio in the channel belongs to a suitable range. For the 

case of 256-QAM, the improvement only occurs when the signal-to-noise-ratio in the 

channel is between 22.3-25.3 dB, For the case of 16-QPSK, the improvement occurs 

when the signal-to-noise-ratio is between 26-29 dB. Note that dB is in logarithmic 

scale. To illustrate the reason why the improvement only occurs in specific dB interval, 

we could chase the symbol error rate as shown m Table 8.6 and Table 8.7. 

Table 8.6 The symbol error rates of the T C K M 

error control scheme and Kohonen map, 

where 256-QAM is used. 

Symbol error rate 

signal-to-noise TCKM 256-QAM Kohonen map 256-QAM 

ratio in dB 

21.3 0.35 0.37 

22.3 0.21 0.28 

23.3 0.061 0.20 

2 4 . 3 0 . 0 0 6 5 0 . 1 4 

25.3 0.0011 0.083 

26.3 0.0000 0.046 
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Table 8.7 The symbol error rates of the T C K M 

error control scheme and the Kohonen map, 

where 16-QPSK is used. 

Symbol error rate 
signal-to-noise TCKM 16-QPSK Kohonen map 16-QPSK 

ratio in dB 

031 ~039 

_26 0.16 ~030 

_27 0.041 0.23 

28 0.0089 0.16 

_29 0.00011 0.093 

_30 0.0000 0.053 

When the channel is noiseless (greater than 26 dB for 256-QAM), both symbol 

error rates of TCKM's case and Kohonen map's case are very small and then the 

RMSE in the received images mainly come from the quantization noise. Hence, the 

performance of TCKM error control transmission system will be poorer than that of 

Kohonen map with considering the matching. It is because in the TCKM only half 

of codebook is used at a time instant. 

From Table 8.6 and Table 8.7, the error control scheme in the TCKM cannot 

correct the symbol errors when the channel is very noisy (less than 22 dB for 256^ 

QAM, or less than 25 dB for 16-QPSK). Also, the symbol error rate of TCKM's case 

is similar to that of Kohonen map's case under very noisy channel. Therefore, the 

quantization noise from the quantizers also determines the overall RMSE. Since only 

half of codebook is used at a time instant in the TCKM, the performance of TCKM's 

case will be poorer than that of Kohonen map's case when the channel is very noisy. 

Figure 8.26 and Figure 8.27 show the received images under the TCKM error 

control transmission systems when the signal-to-noise ratio in the channel is within 

the range above-mentioned. There is no significant impulsive noise in the received 

images because we also consider the matching neighborhood structure between the 

codevectors and channel waveforms in the TCKM error control transmission systems. 
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8.4 Chapter Summary 

In this chapter, we have presented three new cross-relative applications of Kohonen 

map for data compress and communications. 

• B a s e d o n t h e ordering property of Kohonen map, we have introduced a new 

trellis type coder: TCKM. The performance of TCKM is similar to that of the 

conventional TCVQ. The set partition of the codevectors in the TCKM is very 

simple. Particularly, the set partition in the TCKM is not necessary since we can 

use the existing trellis of TCM as the trellis of TCKM. Also, different TCKMs 

with the same neighborhood structure can share the same trellis. 

• We have introduced a method to design transmission system for vector-quantized 

data by making use of the ordering property of Kohonen map. The basic philos-

ophy is that the association between the codevectors and the channel waveforms 

is based on their neighborhood structures. Simulation shows that there is a sig-

nificant reduction of noise in the received data by using this new approach. The 

advantage of this approach is that we no longer need an error correction algo-

rithm in the communication system and yet can still obtain a great reduction 

of noise in the received data under the noisy channels. Also, different Kohonen 

maps with the same neighborhood can use the same association. It means that 

we do not need to carry out the association again even if we use a new codebook. 

• Based on similarity between TCKM and TCM, we have developed an error 

control scheme for the transmission of vector-quantized data, called TCKM error 

control transmission system. The main feature of this transmission system is, 

the source coder, the error control, and the modulation together are designed 

as a whole. Compared with the approach presented in Section 8.2, the error in 

the received data can be further reduced when the signal-to-noise ratio in the 

channel belongs to a suitable range. 

The disadvantage of TCKM error control transmission system is its computa-

tional cost. It is because Viterbi algorithm has been used in both the sender side 

226 



Chapter 8 AVpUcations of Kohonen Map in Data Compression and Communications 

and the receiver side. If we can afford this cost, we can use this system. Other-

wise, we can only use the approach proposed in Section 8.2 for the transmission 

of vector-quantized data. It is because the approach presented in Section 8.2 

can still greatly reduce the RMSE in the received vector-quantized data with-

out any error control scheme. Another disadvantage is that the improvement 

of RMSE only occurs in a specific noise interval in the channel. It will limit 

the operation range of TCKM error control transmission system. If the noise 

level in the channel is out of this specific interval, we should use the approach 

presented in Section 8.2. 
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Figure 8.24 The RMSE of the received images under under a noisy 

256-QAM system. The solid line is for the 2-D 16 x 16 regular 

Kohonen map with considering the matching. The dashes line is for 

the T C K M with 2-D 16 x 16 regular Kohonen map. 
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i 
Figure 8.26 The received image: Lena. 

T C K M with a 2-D regular Kohonen map is used. 
The communication system is a noisy 256-QAM 

and the signal-to-noise-ratio In the channel is 23.3 db. 
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Figure 8.27 The received image: Lena. 

T C K M with a Cartesian product of 

two 1-D circles Kohonen maps is used. 

The communication system is a noisy 16-QPSK 

and the signal-to-noise-ratio in the channel is 26.04 db* 
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Chapter 9 

Conclusion 

In this thesis, we have examined two associative neural networks: BAM and Kohonen 

map. For the BAM, the statistical properties of the first order case, as well as the 

general higher order case, have been examined. Also, four new encoding methods 

have been proposed to enhance the recall performance of the first order BAM. Be-

sides, we have addressed the statistical storage behavior of the first order BAM under 

the forgetting learning. For the Kohonen map, we are mainly concerned with the 

utilization of its ordering properties for the data compression and transmission under 

noisy channel. Here are the highlights: 

• For the first order BAM, we have examined its statistical properties from two 

different approaches: energy barrier and statistical dynamics. 

The approach of energy barrier is able to estimate the memory capacity and 

the number of errors in the retrieval pairs when a small number of errors are 

allowed in the retrieval pairs. However, the attraction basin for the worst case 

errors cannot be determined from this approach. 

Hence, we have presented the statistical dynamics about the confidence interval 

of the number of errors. Then we discuss a way to estimate the memory capacity, 

the attraction basin, and the number of errors in the retrieval pairs from the 

statistical dynamics. Although the statistical dynamics approach is not direct 

method, we can determine the attraction basin for the worst case errors from the 
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statistical dynamics. Also, it can be used to analyze the associative memories 

without finding a suitable energy function. 

For the second order BAM, we first use an example to illustrate that its state may 

converge to limit cycles. We have also derived the statistical dynamics for the 

second order BAM. Hence, we can estimate the memory capacity, the attraction 

basin, and the number of errors In the retrieval pairs. From the numerical 

and theoretical results, the ratio of the dimensions affects the properties of the 

second order BAM in a similar manner as it affects those of the first order BAM. 

Moreover, we have extended our results to the general higher order BAM. 

There remains some interesting mathematical problems concerning the BAM 

which have not been resolved yet. They are, for example, the average number of 

spurious stable pairs, the distribution of the spurious stable pairs, how the ratio 

of the dimensions in the BAM affects the statistical dynamics of the average 

number of errors [66], and the better bound of the memory capacity and the 

attraction basin. 

• The concepts of the four proposed encoding methods (HCA, EHCA, BL, and 

AHKBL) for the first order BAM have been described and shown to have signifi-

cant improvements in the recall of the library pairs. The theoretical development 

underlying the encoding methods indicates that the memory capacity of HCA 

tends to min(n,]9) as n and p —> 00，and the BL is the optimal encoding method 

in terms of memory capacity. The EHCA is used to reduce the two connection 

matrices (found by the HCA) into one connection matrix and then the stable 

property of BAM can be surely maintained during recall. In view of the rela-

tively weak error correction nature of BL, the AHKBL is developed to improve 

the error correction capability. Also, we have derived the convergent conditions 

of AHKBL. 

Besides, we have made a comparison among our four encoding methods and 

other existing approaches in different aspects: stability during recall, hardware 

implementation, information ratio, memory capacity, error correction capability 
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and learning speed. This comparison gives us a guideline to choose a method 

which better meets out requirement. 

Although the four proposed encoding algorithms can greatly improve the mem-

ory capacity and error correction capability, it is still an open problem in how 

to keep the number of the spurious stable pairs (which are the fixed points not 

in the set of the library pairs) as small as possible. Further work is to first 

understand the nature of the spurious stable pairs, and then to introduce a 

mechanism in the learning rules to remove the spurious stable pairs. 

• W e have theoretically estimated the number of most recent library pairs that 

can be stored as fixed points in the BAM under the forgetting learning. Also, 

we have discussed the way to choose the forgetting constant, such that the 

number of most recent library pairs being correctly stored is nearly maximal. 

Simulations have been carried out to verify our theoretical results. 

One interesting result is that the capacity of the forgetting learning is similar 

to that of the outer product rule. Moreover, the forgetting learning is an incre-

mental learning rule with the ability of forgetting the old library pairs. Hence, 

the BAM under the forgetting learning can keep most recent information from 

the environment. Further goal is the study of its storage behavior when errors 

are allowed in the retrieval pairs. 

• By utilizing the order property of Kohonen map, we have presented three new 

cross-relative applications of Kohonen map. 

1) We have proposed a new trellis type quantizer: TCKM. The design process 

of trellis in the TCKM is based on the neighborhood structure of Kohonen map 

instead of the Euclidean distances among the codevectors. From the observation 

that there is a similarity between the neighborhood structure of Kohonen map 

and the neighborhood structure of the channel waveforms in the TCM, we can 

use the existing trellis in tiie TCM as the trellis of the TCKM. Hence, the 

design process of TCKM is simpler than that of the conventional approach. 
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Simulation results show that the performance of our model is comparable to 

that of the conventional approach. 

2) Also, we have introduced a new approach for the transmission of vector-

quantized data under a noisy channel. The key point of this approach is that 

the neighborhood structure of Kohonen map should match the neighborhood 

structure of the channel waveforms. In other words, the new approach combines 

the source coder (vector quantizer) and modulation together. Under this new 

approach, the impulsive noise in the received data is greatly reduced. Moreover, 

the design process of this approach is also very simple since the association be-

tween the codevectors and the channel waveforms is based on their neighborhood 

structure. 

3) Based on the similarity between the TCKM and TCM, we have introduced 

an error control scheme for transmission of vector-quantized data under noisy 

channel. To achieve the error control mechanism, identical trellis is used in 

the TCKM and TCM. To reduce the impulsive noise, the association between 

codevectors of TCKM and the channel waveforms of TCM is based on their 

neighborhood structures. In our approach, the source coder (vector quantizer), 

the error control, and the modulation are designed as a whole. Compared with 

the concept "combined source coder and modulation", the proposed error control 

scheme can further reduce the impulsive noise in the received vector-quantized 

data when the signal-to-noise ratio in the channel belongs to a suitable range. 

The development of the above three applications is based on the observation 

that there exists a similarity between the neighborhood structure of Kohonen 

map and the neighborhood structure of the channel waveforms in the field of 

communications. We believe that more applications of Kohonen map in com-

munications will be discovered in the near future based on this similarity. 

“ 235 



Bibliography 

[1] T . Kohonen, Self-Organization and Associative Memory, Berlin: Springer-Verlag, 

1984. 

[2] G. Palm, “On Associative Memory," Biolog. Cybern., Vol. 36, pp. 19-31, 1980. 

[3] T. Kohonen, "Correlation Matrix Memories，” IEEE Trans. Com/put.，Vol. 21, 

pp.353-359,1972. 

[4] R. Rosenblatt，Principles of Neurodynamics. Spartan Books, New York, 1959. 

[5] R. R. Hecht-Nielson, Neurocomputing, Addison-Wesley, 1990. 

[6] P. K. Simp son, Artificial Neural Systems: Foundations} Paradigms, Applications， 

and Implementations, Pergamon Press, 1990. 

[7] T. Kohonen, "The Neural Phonetic Typewriter,"IEEE Computer, March, pp. 

11-22, 1988. 

[8] C. Bouton and G. Pages，"Self-Organizing and a.s convergence of one-dimensional 

Kohonen algorithm with non-uniform distributed stimuli," Stochastic Processes 

and their Application, Vol. 47, 00. 249-274, 1993. 

[9] M. Cottrell, J. C. Fort, and G. Pages, ‘'Two or three things that we know about 

the Kohonen algorithm," Technical report, Samos University Paris, 1993. 

[10] E. A. Ferran, “ On Kohonen's ordering theorem for one-dimensional self-

organized mappings," Network, Vol. 4, pp. 337-354, 1993. 

“ 236 



[11] R. Togneri, E. Lai, and Y. Attikiouzel, "Kohonen's algorithm for the numerical 

parametrisation of manifolds," Pattern Recognition Letters, vol.11, no.5 pp313-

319, 1990. 

[12] J. J. Hopfield, “Neural Networks and Physical System with Emergent Collective 

Computation Abilities,m Proc. Nat. Acad. Sci. U.S., Vol. 19, pp. 2253-2558, 

1982. 

[13] B. Kosko, "Bidirectional Associative Memories,” IEEE Trans, Syst. Man, and 

Cybern., Vol. 18，pp.49-60，1988. 

[14] J. Anderson, "A Simple Neural Network generating Interactive Memory," Math. 

BioscL, Vol. 1, pp. 63—74，1988. 

[15] N. M. Nasrabadi, and R. A. King, “Image Coding Using Vector Quantization: A 

Review," IEEE Trans. Commun., vol. 36, pp.957-971, 1988. 

[16] R. M. Gray," Vector Quantization,?? IEEE ASSP Mag” pp.4-29, April, 1984. 

[17] Y o h - H a n Pao. Adaptive Pattern Recognition and Neural Network. Addison Wes-

ley, 1989. 

[18] Rumelhart, McClelland. Parallel Distributed Processing vol. I, MIT press, 1986. 

[19] Y. Linde, A. Buzo, and R. M. Gray, “ An algorithm for vector quantizer design," 

IEEE Trans. Commun” vol. 28, pp. 84-95, 1980. 

[20] B. Bavarian, "Introduction to neural networks for intelligent control, “ IEEE 

Control Systems Magazine, pp. 3-7, April, 1988. 

[21] C. H. Wu, C. J. Wang, H. M. Tai, and D. A. Roland, “ An investigation of high-

order bidirectional associative memories: performance, applications, and parallel 

Implementations," In Proc. 1990 IEEE International Symposium on Circuits and 

Systems, pp.495-498. 

237 



[22] G. Mathai and B.R. Upadhyaya, “ Performance analysis and application of 

the bidirectional associative memory to industrial spectral signatures," In Proc. 

IJCNN，89, pp. 33-37. 

[23] B. H. Wang, and G. Vachtsevanos, “Storage Capacity of Bidirectional Associative 

Memories," in Proc. IJCNN 91, Singapore, pp. 1831—1836,1991. 

[24] K. Haines, and R. Hecht—Nielsen, “A BAM with Increased Information Storage 

Capacity," in Proc. of the 1988 IEEE Int. Conf. on Neural Networks, pp .181-

190,1988. 

[25] C. S. Leung, L. W, Chan, and M. K. Lai,“Stability, Capacity, and Statistical 

Dynamics of Second Order BAM Bidirectional Associative Memory,” to appear 

in IEEE Trans. Syst. Man, and Cybtrn., Vol.25 No. 10，1995. 

[26] C. S. Leung, L. W. Chan, and M. K. Lai,"Stability and Statistical Properties 

of Second Order BAM Bidirectional Associative Memory,” submitted to IEEE 

Trans. Neural Networks. 

[27] C. S. Leung, "Forgetting Learning: Can the last k-th previous pattern be stored 

as a fixed point in Associative Memory ？”，in Proc. I CO NIP794~ Seoul, pp. 1086-

1089, 1994. 

[28] C. S. Leung, "Memory capacity and Statistical Dynamics of the First Order BAM 

Bidirectional Associative Memory," in preparation. 

[29] C. S. Leung, “Trellis Coded Kohonen Map", in Proc. ICONIP，94-Seoul, pp. 955-

959, 1994. 

[30] C. S. Leung, "Design Trellis Coded Vector Quantizer using Kohonen Map", to 

be submitted. 

[31] C. S. Leung, "Kohonen Map: Combined. Vector Quantization and Modulation", 

in Proc. ICONIP，94-Seoul, pp. 242-247, 1994. 

238 



[32] C. S. Leung and K. F. Cheung/' Householder Encoding for Discrete Bidirectional 

Associative Memory Associative Memory," in Proc. IJCNN 91 Singapore, Vol. 

1, pp. 237-241,1991. 

[33] C. S. Leung, "Encoding Method for Bidirectional Associative Memory using pro-

jection on convex sets," in Proc. IJCNN 92 Beijing, Vol. 2 pp. 81-85, 1992. 

[34] C. S. Leung, "Encoding Method for Bidirectional Associative Memory using 

Projection on Convex Sets,” IEEE Trans. Neural Networks, Vol. 4, September, 

P P . 8 7 9 - 8 8 1 , 1 9 9 3 . 

[35] C. S. Leung, "Optimum Learning for Bidirectional Associative Memory in the 

Sense of Capacity," IEEE Trans. Syst. Man, and Cybern.，Vol 24, No. 5, pp.791-

796, 1994. 

[36] C. S. Leung, "Optimum Learning Rule in Bidirectional Associative Memory," 

in Proc. of the 2th Pacific Rim International Conference on AI 1992, Vol 2， 

pp.940-946, 1992. 

[37] Andrew C. S. Leung and M. Klassen, "A Delta-Rule Encoding for Bidirectional 

Associative Memory/' in Proc. IJCNN 91 Seattle, Vol. 2, pp. 954,1991. 

[38] C. S. Leung, "Robust Learning Rule for Bidirectional Associative Memory," in 

Proc. IJCNN 93 Nagoya, Vol. 3 pp. 2686-2689, 1993. 

[39] C. S. Leung, “The Performance of Dummy Augmentation Encoding," in Proc. 

IJCNN 93 Nagoya, Vol. 3 pp. 2674-2677, 1993. 

[40] V. Srinivasan and C. S. Chia, "Improving Bidirectional Associative Memory Per-

formance by Unlearning," Proc. IJCNN 91，Singapore, pp. 2472-2477. 

[41] Y.F. Wang, J.B. Cruz, Jr., and J. H. Mulligan, Jr., "Two Coding Strategies 

for Bidirectional Associative Memory," IEEE Trans. Neural Networks, Vol. 1, 

pp.81-92, 1990. 

‘ 239 



[42] Y.F. Wang, J.B. Cruz, Jr., and J. H. Mulligan, Jr., "Guaranteed recall of all 

training pairs for Bidirectional Associative Memory,” IEEE Trans. Neural Net-

works, V o l 1, pp.559-567, 1991. 

[43] T. Wang, X. Zhunag, and X. Xing, "Designing Bidirectional Associative Memo-

ries with Optimal Stability," IEEE Trans. Syst Man, and Cybern.，Vol 24, No. 

5, pp.778-790, 1994. 

[44] K. Shanmukh, and Y. V. Venkatesli，“ On an Optimal Learning Scheme for Bidi-

rectional Associative Memories'' , Proc. IJCNN 93 Nagoya, Vol. 3 pp. 2670-2673, 

1993. 

[45] P. K. Simpson, "Higher-Ordered and Intraconnected Bidirectional Associative 

Memories" , IEEE Trans. System, Man, and Cybern., Vol. 20, pp. 637-653, 1990. 

[46] H. M. Tai, C. H. Wu, and T. L. Jong，“High-Order Bidirectional Associative 

Memory," Electronics Letters, Vol. 25, pp. 1424-1423, 1989. 

[47] Y. J. Jeng and C. C. Yeh, “ Modified Intraconnected Bidirectional Associative 

Memory," Electronics Letters, Vol.27, no.20 pl818-1819, 1991. 

[48] Seong-Sik Min and Soo-Young Lee, "Multi-layer Bidirectional Associative Mem-

ory," in Proc. ICFLNN-90, pp.251—254. 1990. 

[49] Seong-Sik Min and Soo-Young Lee," Supervised Learning with Multi-layer Bidi-

rectional Associative Memory," in Proc, ICANN-91, 1991. 

[50] B. L. Zhang, B. Z. Xu, and C. P. Kwong,"Performance Analysis of Bidirectional 

Associative Memory and an Improved Model from the Matched-Filtering View-

point；' IEEE Trans. Neural Networks, Vol. 4，September, pp.864-872, 1993. 

[51] G. Q. Hu, C. P. Kwong, and Z. B. Xu, "Two Iterative Encoding Schemes for 

Bidirectional Associative Memory," In Proceeding ISSIPNN'94, pp. 93—96. 

• 240 



[52] H. Oh and S. C. Kothari, “A Pseudo-relaxation Learning Algorithm for Bidirec-

tional Associative Memory," in Proc. IJCNN-Baltimore-92, VoL 2, pp.208-213, 

1992. 

[53] Y. J. Jeng and C. C. Yeh, “ Exponential Bidirectional Associative Memories," 

Electronics Letters, Vol.26, no . l l pp.717-718,1990. 

[54] Mohamad H. Hassoun, “ Dynamic Heteroassociative Neural Memories，，，,iVe以m/ 

Networks, V O L 2., pp.275-289,1989. 

[55] B. Maundy and E.l. Masry, a A Switched Capacitor Bidirectional Associative 

Memory , " IEEE Trans, Circuits and Systems, Vol.37, pp. 1568-72,1990. 

[56] Demetri Psaltis, Cheol Hoon Park，and John Hong,a Higher Order Associative 

Memories and Their Optical Implementations,” Neural Networks, Vol. 1, pp. 

149-163, 1988. 

[57] J. M. Kinser, H. J. Caulfield, and J. Shamir, “ Design for a massive all-optical 

Bidirectional Associative: the big BAM," Applied Optics, VoL27, no.16 pp.3442-

4,1988. 

[58] H. Lui, “Perceptron learning on Hopfield nets," Neural Networks Supple-

ment:INNS Abstract, Vol. 1, pp. 198, 1988. 

[59] Charles M. Newman, "Memory Capacity in Neural Models: Rigorous Lower 

Bounds；', Neural Networks, Vol. 1，pp. 223-238, 1988. 

[60] Janos Komlos and Ramamohan Patnri, “Convergence Results in an Associative 

Memory Model，5，Neural Networks, VoL 1, pp. 229-250，1988. 

[61] R. J. McEliece，E. C. Posner, E. R. Rodemich, and S. S. Venkatesh, "The Ca-

pacity of the Hopfield Associative Memory," IEEE Trans. Inform. Theory, Vol. 

33, pp.461-482,1987. 

• 241 



[62] S. S. Venkatesh, and D. Psaltis, “ Linear and Logarithmic Capacities in Asso-

ciative Neural Networks," IEEE Trans. Inform. Theory, Vol. 35, pp.558-568, 

1989. 

[63] A. Dembo/ 'On the Capacity of Associative Memories with Linear Threshold 

Functions," IEEE Trans. Inform. Theory, Vol. 35, pp.709-720,1989. 

[64] S. Amari, “Mathematical Foundations of Neurocomputing," Proceedings of IEEE, 

Vol. 78, pp.1443-1463, 1990. 

[65] S. Amari and K. Maginu, “Statistical Neurodynamics of Associative Memory, ” 

Neural Networks, Vol. 1, pp. 63-73 , 1988. 

[66] S. Amari, “ Statistical Neurodynamics of various versions of correlation associa-

tive memory , " In Proc’ IEEE ICNN，1988, pp.633—640. 

[67] H. Yanai and Y . Sawada, “ Associative Memory Network Composed of Neurons 

with Hysteretic Property," Neural Networks, Vol. 3, pp. 223-228, 1990. 

[68] S. S. Venkatesh and P. B a l d , Programmed Interactions in Higher-order Neural 

Networks: The Outer-Product Algorithm," Journal of Complexity, Vol 7, pp.443-

479, 1991. 

[69] Althanasios Papoulis, Probability，Random Variables, and Stochastic Process, 

McGraw-Hill, 1985. 

[70] A. O. Steinhardt, "Householder Transforms in Signal Processing," IEEE ASSP 

Magazine, July, pp.4-12,1988. 

[71] K . E. Atkinson，An Introduction to Numerical Analysis, Wiley, 1989. 

[72] D. C. Youla and H. Webb."Image restoration by the method of convex projection: 

Part 1 - Theory." IEEE Trans. Med Imaging. Vol MI—1. pp. 81-94, 1982. 

[73] H. Stark, Image Recovery. New York :Academic 1987. 

" 242 



[74] Mohamad H. Hassoun, and Jing Song, "Adaptive Ho-Kashyap Rules for Percep-

tron Training’” IEEE Trans, Neural Networks” VOL 3., pp.51—61,1992. 

[75] S. Agmon, "The Relaxation Method for Linear Inequalities," Canadian J. Math.， 

VOL. 6, No. 3, 1954. 

[76] G. Yen, and A. N. Michel, “A Learning and Forgetting Algorithm in Associa-

tive Memories: results involving pseudo-inverse,” IEEE Trans, on Circuits and 

Systems, VOL 38，pp. 1193—1205,1991. 

[77] A. Bruce Carlson，Communication Systems, McGraw-Hill, 1986. 

[78] K. Fujimura, H. Tokutaka, and Y. Ohshima, “ The Traveling Salesman Problem 

Applied to the Self-Organizing Feature Map,”，accepted for publication in Proc. 

ICONIP’94, Seoul. 

[79] M. W. Marcellin and T. R. Fischer, “Trellis coded quantization of memoryless 

and Gauss-Markov s o u r c e s I E E E Trans, Commun., vol. 38, pp. 82-93, 1990. 

[80] E. Biglieri, D.Divsalar, P. J. Mclane, and Marvin K. Simon, Introduction to 

trellis-coded modulation with application，Maxwell Macmillan，1991. 

[81] H. S. Wang and N. Moayeri, “ Trellis coded vector quantization,，，IEEE Trans. 

Commun., vol. 40, pp. 1273-1276, 1992. 

[82] Herbert Edelsbrunner, Algorithms in Combinatorial Geometry, Berlin: Springer-

Verlag, 1987. 

[83] D. Avis, and B. K. Bhattacharya, "Algorithms for Computing (f-Dimensional 

Voronoi Diagram and their Duals", Advances in Computing Researchesn Vol. 1, 

pp. 159-180, JAI Press Inc., 1983. 

[84] N. Farvardin, “A study of Vector Quantization for Noisy Channel," IEEE Trans. 

Information Theory, Vol. 36, pp. 799-809, 1990. 

" 243 



[85] V. A. Vaishampayan and N. Farvardin, "Joint Design of Block Source Codeds 

and Modulat ion Signal Sets," IEEE Trans. Information Theory, Vol. 38, pp. 

1230-1248, 1992. ' 

[86] , H. Skinnemoen, “ Modulation Organized Vector Quantization," in Proc ISIT91 
pp. 238, 1994. 

[87] , T.R. Fischer,"Joint trellis coded quantization/modulation," IEEE Trans. 

Comm., Vol. 39, pp.172-176, 1991. 

244 





CUHK Libraries 

000ET4D4S 


