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Summary

Neural networks have been studied for many years in hope of emulating some

aspects of human brain functions, which have great potentials in areas that require

a large amount of parallel computations, such as pattern recognition, optimiza-

tion and sensory information processing, etc. Neural networks are proven to be a

wealthy resource for developing various intelligent computation techniques which

require multidisciplinary efforts in biology, mathematics, computer science and so

forth.

The goal of this thesis is to exploit new aspects of theories of neural networks,

in an attempt to provide new methods for intelligent computation. This thesis

comprises several parts with emphasizes on learning theory, dynamics analysis and

applications of feed-forward neural networks, recurrent networks with saturating

transfer functions and with nonsaturating transfer functions.

Firstly, to overcome sensitivity and slow learning speed of conventional back-

propagation algorithm, a new training algorithm for multilayer feed-forward neural

networks is put forward by assuming that the transfer function always plays in its

linear region. The new algorithm is able to determine the optimal learning rate

dynamically along with the training procedure.

A discrete-time recurrent network of Hopfield type is proposed which has its ad-

vantages in simple implementation for solving constrained quadratic optimization

problems. Presented conditions on the global exponential stability extend the ex-

isting results on the discrete-time system. To improve the solution quality when

solving combinatorial optimization problems, as another important application of

Hopfield network, a new principle of parameter settings is set up based on the dy-

namical stability analysis of an enhanced energy function. With the new parameter

settings, improved performance both with regard to less spurious solution and to

shorter tour lengths can be obtained.

vii



The competitive model incorporating winner-take-all mechanism is presented

which is capable of eliminating tedious process of parameter settings and increasing

computation efficiency significantly. Different algorithms underlying the competi-

tive model are developed with applications to combinatorial optimization and image

segmentation, respectively. Such competitive networks deal with constraints in an

intrinsical manner by the competitive updating rule.

In the last part of this thesis, an important focus is placed on the linear thresh-

old (LT) network, which is a prominent biologically motivated model that involves

nonsaturating neural activities. Various dynamical properties are clarified in terms

of geometrical properties of equilibria, boundedness and stability. New theoretical

results will facilitate to develop the applications, such as associative memory and

feature binding. Especially, the theory of cyclic dynamics of two-cell LT networks

is established, and its implication to an important winner-take-all network of large

scale is illustrated. Finally, the analog associative memory of LT networks is ad-

dressed, which shows the capability of storing and retrieving complicated gray-scale

images.
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Chapter 1

Introduction

Artificial neural networks, or simply called neural networks, refer to various math-

ematical models of human brain functions such as perception, computation and

memory. It is a fascinating scientific challenge of our time to understand how the

human brain works. Modeling neural networks facilitates us to investigate the in-

formation processing occurred in brain in a mathematical manner. On this side, the

complexity and capability of modeled neural networks rely on our present under-

standing of biological neural systems. On the other hand, neural networks provide

efficient computation methods in making intelligent machines in multidisciplinary

fields, e.g., computational intelligence, robotics and computer vision.

In the past two decades, the research on neural networks has witnessed a great

deal of accomplishments in both theory and engineering application. In this thesis,

significant efforts are devoted to analyzing dynamic properties of neural networks

and exploiting their applications in their dynamics regime.

1.1 Background and Motivations

Typically, the models of neural networks are divided into two categories in terms

of signal transmission manner: feed-forward neural networks and recurrent neural

1



Chapter 1. Introduction

networks. They are built up in different frameworks, which give rise to different

application fields.

1.1.1 Feed-forward Neural Networks

Feed-forward neural network (FNN), also referred to as multilayer perception, has

drawn great interests in the last two decades for its distinction as a universal func-

tion approximator (Funahashi, 1989; Scalero and Tepedelenlioglu, 1992; Ergezinger

and Thomsen, 1995; Yu et al., 2002). As an important intelligent computation

method, FNN has been applied to a wide range of applications, including curve fit-

ting, pattern classification and nonlinear system identification and so on (Vemuri,

1995).

FNN features a supervised training with a highly popular algorithm known as

the error back-propagation algorithm. In the standard back-propagation (SBP)

algorithm, the learning of FNN is composed of two passes: in the forward pass,

the input signal propagates through the network in a forward direction, on a layer-

by-layer basis with the weights fixed; in the backward pass, the error signal is

propagated in a backward manner. The weights are adjusted based on an error-

correction rule. Although it is successfully used in many real world applications,

SBP suffers from two infamous shortcomings, i.e., slow learning speed and sensi-

tivity to parameters. Many iterations are required to train small networks, even

for a simple problem. The sensitivity to learning parameters, initial states and

perturbations was analyzed in (Yeung and Sun, 2002). Behind such drawbacks the

learning rate plays a key role in affecting the learning performance and it has to

be chosen carefully. If the learning rate is huge, the network may exhibit chaotic

behavior so that the learning will not succeed, while a very small learning rate will

result in too slow convergence, which is also not desired. The chaotic phenomena

was studied from a dynamical system point of view (Bertels et al., 2001) which

reported that when the learning rate falls in some unsuitable range, it may result

2



Chapter 1. Introduction

in chaotic behaviors in the network learning, and for non-chaotic learning rates the

network converges faster than for chaotic ones.

Since the shortcomings of SBP algorithm limit the practical use of FNN, a signif-

icant amount of research has been carried out to improve the training performance

and to better select the training parameters. A modified back-propagation al-

gorithm was derived by minimizing the mean-squared error with respect to the

inputs summation, instead of minimizing with respect to weights like SBP, but

its convergence heavily depended on the magnitude of the initial weights. An ac-

celerated learning algorithm OLL (Ergezinger and Thomsen, 1995) was presented

based on a linearization of the nonlinear processing nodes and optimizing cost func-

tions layer by layer. Slow learning was attributed to the effect of unlearning and

a localizing learning algorithm was developed to reduce unlearning (Weaver and

Polycarpou, 2001). Bearing in mind that the derivative of the activation has a large

value when the outputs of the neurons in the active region, a method to determine

optimal initial weights was put forward in (Yam and Chow, 2001). This method

was able to prevent the network from getting stuck in the beginning training stage,

thus the training speed was increased.

The existing approaches have improved the learning performance in terms of

the reduction of iteration numbers, however, none of them dealt with dynamical

adaption of learning rate for different parameters and training phases, which cer-

tainly contribute to the sensitivity of such algorithms. An optimal learning rate

for a given two layers’ neural network was derived in the work (Wang et al., 2001),

but the two-layer neural network has very limited generalization ability. Finding

a suitable learning rate is a very experimental technique conventionally since for

the multilayer FNN with squashing sigmoid functions, it is difficult to deduce an

optimal learning rate and even impossible to pre-determine the value of such a pa-

rameter for different problems and different initial parameters. Indeed, the optimal

learning rate keeps changing along with the training iterations. Finding a dynam-

3



Chapter 1. Introduction

ical optimal learning algorithm being able to reduce the sensitivity and improve

learning motivate developing a new and efficient learning algorithm for multilayer

FNN.

1.1.2 Recurrent Networks with Saturating Transfer Func-

tions

Unlike feed-forward neural networks, recurrent neural network (RNN) is described

by a system of differential equations that define the exact evolution of the model as

a function of time. The system is characterized by a large number of coupling con-

stants represented by the strengths of individual junctions, and it is believed that

the computational power is the result of the collective dynamics of the system. Two

prominent computation model with saturating transfer functions, Hopfield network

and cellular neural network, have stimulated a great deal of research efforts over

the past two decades because of their great potentials in applications in associative

memory, optimization and intelligent computation (Hopfield, 1984; Hopfield and

Tank, 1985; Tank and Hopfield, 1986; Bouzerdoum and Pattison, 1993; Maa and

Shanblatt, 1992; Zak et al., 1995; Tan et al., 2004; Yi et al., 2004).

As a nonlinear dynamical system, intrinsically, the stability is of primary interest

in the analysis and applications of recurrent networks, where the Lyapunov stabil-

ity theory is a fundamental tool and widely used for analyzing nonlinear systems

(Grossberg, 1988; Vidyasagar, 1992; Yi et al., 1999; Qiao et al., 2003). Based on the

Lyapunov method, the conditions of global exponential stability of a continuous-

time RNN were established and applied to bound-constrained nonlinear differen-

tiable optimization problems (Liang and Wang, 2000). A discrete-time recurrent

network solving strictly convex quadratic optimization problems with bound con-

straints was analyzed and stability conditions were presented (Pérez-Ilzarbe, 1998).

Compared with its continuous-time counterpart, the discrete-time model has its ad-
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vantages in digital implementation. However, there is lack of more general stability

conditions for the discrete-time network in the previous work (Pérez-Ilzarbe, 1998),

which deserves further investigation.

Solving NP-hard optimization problems, especially the traveling salesman prob-

lem (TSP) using recurrent networks has become an active topic since the seminal

work (Hopfield and Tank, 1985) showed that the Hopfield network could give near

optimal solutions of TSP. In the Hopfield network, the combinatorial optimiza-

tion problem is converted into a continuous optimization problem that minimizes

an energy function calculated by a weighted sum of constraints and an objective

function. The method, nevertheless, faces a number of disadvantages. Firstly, the

nature of the energy function causes infeasible solutions to occur most of the time.

Secondly, several penalty parameters need to be fixed before running the network,

while it is nontrivial to optimally set these parameters. Besides, low computational

efficiency, especially for large scale problems, is also a restriction.

It has been a continuing research effort to improve the performance of Hopfield

network (Aiyer et al., 1990; Abe, 1993; Peng et al., 1993; Papageorgiou et al.,

1998; Talaván and Yáñez, 2002). The authors in (Aiyer et al., 1990) analyzed

the dynamic behavior of Hopfield network based on the eigenvalues of connection

matrix and discussed the parameter settings for TSP. By assuming a piecewise

linear activation function and by virtue of studying the energy of the vertex at

a unit hypercube, a set of convergence and suppression conditions were obtained

(Abe, 1993). A local minima escape (LME) algorithm was presented to improve

the local minima by combining the network disturbing technique with the Hopfield

network’s local minima searching property (Peng et al., 1993).

Most recently, a parameter setting rule was presented by analyzing the dynamical

stability conditions of the energy function (Talaván and Yáñez, 2002), which shows

promising results compared with previous work, though much effort has to be paid

to suppress the invalid solutions and increase convergence speed. To achieve such
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objectives, incorporating the winner-take-all (WTA) learning mechanism (Cheng

et al., 1996; Yi et al., 2000) is one of the most promising approaches.

1.1.3 Recurrent Networks with Nonsaturating Transfer Func-

tions

In recent years, the linear threshold (LT) network which underlines the behavior of

visual cortical neurons has attracted extensive interests of scientists as the growing

literature illustrates (Hartline and Ratliff, 1958; von der Malsburg, 1973; Douglas

et al., 1995; Ben-Yishai et al., 1995; Salinas and Abbott, 1996; Adorjan et al.,

1999; Bauer et al., 1999; Hahnloser, 1998; Hahnloser et al., 2000; Wersing et al.,

2001a; Yi et al., 2003). Differing from the Hopfield type network, the LT network

possess nonsaturating transfer functions of neurons, which is believed to be more

biologically plausible and has more profound implications in the neurodynamics.

For example, the network may exhibit multistability and chaotic phenomena, which

will probably give birth to new discoveries and insights in associative memory and

sensory information processing (Xie et al., 2002).

The LT networks have been observed to exhibit one important property, i.e.,

multistability, which allows the networks to possess multiple steady states coexist-

ing under certain synaptic weights and external inputs. The multistability endows

the LT networks with distinguished application potentials in decision, digital se-

lection and analogue amplification (Hahnloser et al., 2000). It was proved that

local inhibition is sufficient to achieve nondivergence of LT networks (Wersing et

al., 2001b). Most recently, several aspects of the LT dynamics were studied and

the conditions were established for boundedness, global attractivity and complete

convergence (Yi et al., 2003). Nearly all the previous research efforts were devoted

to stability analysis, thus the cyclic dynamics has yet been elucidated in a system-

atic manner. In the work (Hahnloser, 1998), the periodic oscillations were observed
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in a multistable WTA network when slowing down the global inhibition. He re-

ported that the epileptic network switches endlessly between stable and unstable

partitions and eventually the state trajectory approaches a limit cycle (periodic

oscillation) which was shown by computer simulations. It was suggested that the

appearance of periodic orbits in linear threshold networks was related to the ex-

istence of complex conjugate eigenvalues with positive real parts. However, there

was lack of theoretical proof about the existence of limit cycles. It also remains

unclear what factors will affect the amplitude of the oscillations.

Studying the recurrent dynamics is also of crucial concern in the realm of mod-

eling visual cortex, since the recurrent neural dynamics is a basic computational

substrate for cortical processing. Physiological and psychophysical data suggest

that the visual cortex implements preattentive computations such as contour en-

chancement, texture segmentation and figure-ground segregation (Kapadia et al.,

1995; Gallant et al., 1995; Knierim and van Essen, 1992). Various models have

addressed particular components of the cortical computation (Grossberg and Min-

golla, 1985; Zucker et al., 1989; Yen and Finkel, 1998). A fully functional and

dynamically well-behaved model has been proposed to achieve the designed cor-

tical computations (Li and Dayan, 1999; Li, 2001). The LEGION model uses

the mechanism of oscillation to perform figure-ground segmentation (Wang and

Terman, 1995; Wang and Terman, 1997; Wang, 1999; Chen and Wang, 2002).

The CLM model, formulated by the LT network, realizes an energy-based ap-

proach to feature binding and texture segmentation and has been successfully ap-

plied to segmentation of real-world images (Ontrup and Ritter, 1998; Wersing et

al., 1997; Wersing and Ritter, 1999). Dynamic binding in a neural network is of

great interest for the vision research, a variety of models have been addressed using

different binding approaches, such as temporal coding and spatial coding (Hummel

and Biederman, 1992; Feldman and Ballard, 1982; Williamson, 1996). Understand-

ing the complex, recurrent and nonlinear dynamics underlying the computation is
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essential to marshal its power as well as to make computational design.

These facts have provided substantial motivations for the extensive investigations

of neural networks, both in dynamics analysis and applications.

1.2 Scope and Contributions

One focus of the thesis lies on the improvement of the training algorithm of feed-

forward neural networks by analyzing the mean-squared error function from the

view point of dynamic stability. The dynamical learning method is able to adap-

tively and optimally set the value of learning rate, hence the elimination of sensi-

tivity of FNN networks with a fixed learning rate can be expected, as well as the

reduction of convergence iterations and time.

Another emphasis is on the neurodynamics. The dynamics of the recurrent net-

works with saturating and nonsaturating transfer functions are analyzed exten-

sively. New theoretical results on the nondivergence, stability and cyclic dynamics

are established, which facilitate the applications of the recurrent networks in opti-

mizations and sensory information segmentation. As an important application of

the attractor networks, the analog associative memory of the LT network is also

investigated. It shows that the LT network can successfully retrieve gray level

images.

A special focus is on the developing competitive network incorporating winner-

take-all mechanism. The competitive network deals with the constraints in op-

timization problems in an elegant way, so it has attractive advantages both in

suppressing invalid solutions and in increasing convergence speed. The latter is a

great concern when solving large scale problems. Probabilistic optimization meth-

ods, such as simulated annealing and local minima escape, are also applicable to

the competitive network, which can further improve the solution quality.

The significance of this thesis falls into two basic grounds. Above all, the thesis
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will serve the purpose of promoting our understanding of the brain functions such

as computation, perception and memory. Secondly, the results in this thesis can

provide meaningful techniques for developing real-world applications.

1.3 Plan of the Thesis

The first chapter motivates the issue of dynamics analysis as one crucial step to

understand the collective computation property of neural systems and describes

the scope and contributions of the thesis.

The second chapter presents a new dynamical optimal training algorithm for

feed-forward neural networks. The new training method aims to avoid the serious

drawback of the standard feed-forward neural network’s training algorithm, i.e.,

sensitivity to initial parameters and different problems.

Chapter 3 discusses a class of discrete-time recurrent neural networks with non-

saturating transfer functions and their important application to constrained quadratic

optimization. The global exponential stability condition is established which en-

sures the network globally convergent to the unique optimum.

Chapter 4 presents a new principle for the parameter settings of Hopfield network

applied to traveling salesman problems by virtue of dynamical stability analysis.

The dynamics investigation establishes the parameter ranges where convergence of

valid solutions is ensured, while that of invalid solutions is eliminated.

In Chapter 5 a competitive computation model is presented to solve combinato-

rial optimization problems. The competitive model, incorporating winner-take-all

mechanism which elegantly realizes the embedded constraints, performs much more

efficiently than the networks without competition computation.

In Chapter 6 image segmentation is formulated as an optimization problems and

mapped to a competitive network. Two stochastic optimization techniques such as

simulated annealing and local minima escape are incorporated to the algorithm of
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competitive network based image segmentation.

The next consecutive chapters are devoted to a prominent biologically motived

model, i.e., the recurrent network with linear threshold (LT) neurons. In Chapter

7 qualitative analysis is given regarding the geometrical properties of equilibria and

the global attractivity.

Chapter 8 analyzes one of important dynamic behaviors of the LT networks,

periodic oscillation. Conditions for the existence of periodic orbits are established.

Chapter 9 presents new conditions which ensure roundedness and stability for

nonsymmetric and symmetric LT networks. As an important application, the ana-

log associative memory is exploited in terms of storing gray images. The stability

results are used to design such an associative memory network.

The concluding Chapter 10 summarizes the main results and proposes future

research directions.
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Chapter 2

New Dynamical Optimal Learning

for Linear Multilayer FNN

2.1 Introduction

Generalization ability and learning stability are fundamental issues for multilayer

feedforward neural networks (FNN) (Haykin, 1999). There are many research works

that explore the learning of multilayer FNN with squashing activation function as

well as the applications of FNN to function approximation and pattern recognition

(Lippmann, 1987; Duda et al., 2001). However, there are very few studies on the

learning issue of FNN with linear activation function in the hidden layer. On the

other hand, network learning parameters, i.e., the learning rate, is a key factor in

the training of FNN. The use of error back propagation algorithm is not always

successful because of its sensitivity to learning parameters, initial state, and per-

turbations (Yeung and Sun, 2002; Bertels et al., 2001). When the learning rate

falls within an unsuitable range, it will result in chaotic behaviors in the network

learning, and for non-chaotic learning rates the network converges faster than for

the chaotic ones (Bertels et al., 2001). Many research works are concerned with the

improvement of training performance and the better selection of training parame-
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ters (Wang et al., 2001; Abid et al., 2001). Evolutionary algorithms have also been

used to train neural networks (Yao and Liu, 1997; Yao, 1999). The optimal learn-

ing rate for a given two-layer neural network was derived in (Wang et al., 2001),

but there is limited learning capability for the two-layer neural network. For con-

ventional multilayer FNN with squashing sigmoid functions (Zurada, 1995), it is

neither easy to deduce an optimal learning rate nor to practically determine the

learning rate in a priori. In fact, the optimal learning rate always changes during

the training process which makes it very difficult to be set optimally.

In this chapter, a new dynamical optimal learning algorithm for three-layer linear

neural networks is presented and it is proved that this learning is stable in the sense

of Lyapunov. The proposed learning scheme reduces the sensitivity to perturbation

of initial learning parameters or unsuccessful learning associated with standard

back propagation (SBP) algorithm. The proposed learning algorithm is validated

upon the problems of function mapping and pattern recognition, and the results

are compared with the SBP algorithm.

2.2 Preliminaries

Definition 2.1. φ(x) is a sigmoid function if it is a bounded, continuous and

increasing function.

It follows directly from the above definition, for u1, u2 > 0, the ramp function

φ(x) =





−u1, if x ∈ (−∞, −u1]

x, if x ∈ (−u1, u2)

u2, if x ∈ [u2, ∞)

is a sigmoid function. If u1 and u2 are assumed to be large enough, i.e., φ(x)

does not go beyond its linear region, the sigmoid type function can be treated as

a linear function. This assumption is reasonable since the inputs to the neural
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network in our model are bounded. Herein the networks with such ramp-type

transfer functions are called as linear neural networks.

Lemma 2.1. (Funahashi, 1989) Let φ(x) be a sigmoid function and Ω be a compact

set in Rn. Given any continuous function f : Rn → R on Ω, and for an arbitrary

ε > 0, there exists an integer N and real constants ci, θi, wij, i = 1, · · ·, N ,

j = 1, · · ·n, such that

f̄(x1, · · ·, xn) =

N∑

i=1

ciφ(

n∑

j=1

wijxj − θi) (2.1)

satisfies max
x∈Ω

‖f(x1, · · ·, xn) − f̄(x1, · · ·, xn)‖2 < ε.

Based on this Lemma, a three-layer FNN can be formulated where the hidden

layer’s transfer functions employ φ(x) and the transfer functions for the input and

output layers are linear.

Notations: All vectors are column vectors. A superscript such as in dk
p refers

to a specific output vector’s component. The network input, hidden-layer output,

output-layer output and desired output is represented by matrix notations X =

[x1 x2 · · · xP ] ∈ RL×P , Y = [y1 y2 · · · yP ] ∈ RH×P , O = [o1 o2 · · · oP ] ∈ RK×P , D =

[d1 d2 · · · dP ] ∈ RK×P , respectively. L, K, P denotes the number of input-layer

neurons, output-layer neurons and patterns, respectively. W and V represents the

hidden-output layer and input-hidden layer weights matrix, respectively. Subscript

t denotes the index of the iterative learning epochs.

The objective of the network training is to minimize an error function J ,

J =
1

2PK

P∑

p=1

K∑

k=1

(ok
p − dk

p)
2

(2.2)

In the steepest (gradient) descent algorithm (Zurada, 1995), the updates of weights

are computed by Wt+1 = Wt − β ∂J
∂Wt

and Vt+1 = Vt − β ∂J
∂Vt

.
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Figure 2.1. A general FNN model

2.3 The Dynamical Optimal Learning

Consider a three-layer (one hidden layer) FNN as shown in Figure 2.1, the network

error matrix is defined by the error between actual outputs and desired outputs,

Et = Ot − D = WtYt − D = WtVtX −D. (2.3)

It follows from (2.2) that

Jt =
1

2PK
Tr(EtE

T
t ) (2.4)

where Tr is the matrix trace operator. So Wt+1 and Vt+1 are updated by,

Wt+1 = Wt − βt
∂J

∂Wt
= Wt − βt

1

PK
EtY

T
t (2.5)

Vt+1 = Vt − βt
∂J

∂Vt
= Vt − βt

1

PK
W T

t EtX
T (2.6)
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Derived from equations (2.3)-(2.6), it holds that

Et+1E
T
t+1

= (Wt+1Yt+1 − D)(Wt+1Yt+1 − D)T

= [(Wt −
βt

PK
EtY

T
t )(Vt −

βt

PK
W T

t EtX
T )X − D]

[(Wt −
βt

PK
EtY

T
t )(Vt −

βt

PK
W T

t EtX
T )X − D]T

= [Et −
βt

PK
(WtW

T
t EtX

T X + EtY
T
t VtX) +

β2
t

(PK)2
EtY

T
t W T

t EtX
T X]

[Et −
βt

PK
(WtW

T
t EtX

T X + EtY
T
t VtX) +

β2
t

(PK)2
EtY

T
t W T

t EtX
T X]T

= EtE
T
t − βt

PK
[Et(WtW

T
t EtX

T X)
T

+ Et(EtY
T
t VtX)

T
+ WtW

T
t EtX

TXET
t

+EtY
T
t VtXET

t ] +
β2

t

(PK)2 [Et(EtY
T
t W T

t EtX
T X)

T
+ EtY

T
t W T

t EtX
T XET

t

+EtY
T
t VtX(WtW

T
t EtX

T X)
T

+ WtW
T
t EtX

T X(EtY
T
t VtX)

T

+EtY
T
t VtX(EtY

T
t VtX)

T
+ WtW

T
t EtX

T X(WtW
T
t EtX

T X)
T
]

− β3
t

(PK)
3 [WtW

T
t EtX

T X(EtY
T
t W T

t EtX
T X)

T
+ EtY

T
t VtX(EtY

T
t W T

t EtX
T X)

T

+EtY
T
t W T

t EtX
T X(WtW

T
t EtX

T X)
T

+ EtY
T
t W T

t EtX
T X(EtY

T
t VtX)

T
]

+
β4

t

(PK)4EtY
T

t W T
t EtX

T X(EtY
T
t W T

t EtX
T X)

T
(2.7)

To omit subscript t for simplicity, it is derived that

Jt+1 − Jt =
1

2PK
(Aβ4 + Bβ3 + Cβ2 + Mβ) ≡ 1

2PK
g(β), (2.8)
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where

A =
1

(PK)4Tr[EY T W TEXT X(EY TW T EXT X)
T
]

B = − 1

(PK)3Tr[WW TEXT X(EY TW TEXT X)
T

+ EY TV X(EY TW T EXT X)
T

+EY T W TEXT X(WW T EXTX)
T

+ EY TW TEXT X(EY TV X)
T
]

C =
1

(PK)2Tr[E(EY T W TEXT X)
T

+ WW TEXT X(EY TV X)
T

+EY T V X(WW TEXT X)
T

+ EY TV X(EY TV X)
T

+WW TEXT X(WW T EXT X)
T

+ EY TW T EXT XET ]

M = − 1

PK
Tr[E(WW TEXT X)

T
+ E(EY TV X)

T
+ WW TEXT XET + EY TV XET ]

Remark 2.1. It can be observed that A > 0 is always assured. According to

the algebra theorem (Scherk, 2000), g(β) has two or four real roots including one

constant zero root, and there exist one or two intervals in β coordinate satisfying

g(β) < 0. It needs to find the minimum value of g(β) resulting in the largest

reduction of J at each epoch by solving the derivative of g(β).

Differentiating g(β) with respect to β yields

∂g

∂β
= 4Aβ3 + 3Bβ2 + 2Cβ + M

= 4A(β3 + aβ2 + bβ + c) ≡ 4A · h(β), (2.9)

where a = 3B
4A

, b = 2C
4A

, c = M
4A

. Therefore the problem of finding the optimal

learning rates is reduced to solving a real cubic equation. Below the results obtained

from the general algebra theorem (Chapters 15 and 16 in (Scherk, 2000)) were

introduced.

Lemma 2.2. (Scherk, 2000) For a general real cubic equation, h(x) = x3 + ax2 +

bx+c, let D = discrim(h, x) = −27c2+18cab+a2b2−4a3c−4b3, where discrim(h, x)

denotes the discriminant of h(x). Then

1. if D < 0, h(x) has one real root;
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2. if D ≥ 0, h(x) has three real roots;

(a) D > 0, h(x) has three different real roots;

(b) D = 0, 6b − 2a2 6= 0, h(x) has one single root and one multiple root;

(c) D = 0, 6b − 2a2 = 0, h(x) has one root of three multiplicities.

It needs to compute the roots of h(β) (two of which are conjugated),

β1 = −1

3
a +

1

6
(36ab − 108c − 8a3 + 12ω1)

1
3 − 6ω2

(36ab − 108c − 8a3 + 12ω1)
1
3

,

β2,3 = −1

3
a− 1

12
(36ab − 108c − 8a3 + 12ω1)

1
3 +

3ω2

(36ab − 108c − 8a3 + 12ω1)
1
3

±1

2
I
√

3{1

6
(36ab − 108c − 8a3 + 12ω1)

1
3 +

6ω2

(36ab − 108c − 8a3 + 12ω1)
1
3

},

where

ω1 =
√

81c2 − 54cab − 3a2b2 + 12a3c + 12b3,

ω2 =
1

3
b − 1

9
a2.

Theorem 2.1. For a given polynomial g(β), if

βopt = {βi|g(βi) = min (g(β1), g(β2), g(β3)) , i ∈ {1, 2, 3}} (2.10)

where βi are the real roots of ∂g/∂β, then βopt is the optimal learning rate and this

learning process is stable in the sense of Lyapunov.

Proof. Firstly it needs to find the stable learning range of βt. To do so, the Lya-

punov function is constructed as Vt = J2
t and the difference of Vt is ∆Vt = J2

t+1−J2
t .

It is known that if ∆Vt < 0, the dynamical system is guaranteed to be stable

(Vidyasagar, 1992). For ∆Vt < 0, it can be derived that Jt+1 − Jt < 0. Here the

batch mode training is considered where the input matrix X remains the same

during the whole training process. According to (2.8), it only needs to know the

range of β satisfying Aβ4+Bβ3+Cβ2+Mβ < 0. Since β1, β2, β3 are the zero roots

of the derivative of g(β), one of these roots (i.e., βopt) must result in the minimum
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of g(β) according to the algebra theorem. Obviously, the minimum value of g(β)

is less than zero which results in the largest reduction of Jt at each step of the

learning process.

Remark 2.2. If the discriminant D of h(β) is less than zero, then the optimal

learning rate is equal to the only one real root of h(β). If D > 0, the optimal

learning rate is given by equation (2.10).

The dynamical optimal learning (DOL) algorithm is described below,

Algorithm 2.1. Dynamical Optimal Learning Algorithm

1. Set initial weights Wt and Vt, which are random values usually in the range

of [−1, 1];

2. Compute error function Et. If Et < ε (a desired accuracy) then the training

stops, else go to the next step;

3. Compute A, B, C, M , and β1, β2, β3, D;

4. If D < 0, then βopt is the real root; if D > 0, then compute βopt by equation

(2.10);

5. Update the weights Wt and Vt by equations (2.5) and (2.6), respectively; then

go to step 2.

2.4 Simulation Results

In this section, the proposed DOL algorithm is validated upon both benchmark and

classical problems. Furthermore, its performance is compared with SBP training

algorithm without adding momentum term, considering that both the SBP and

DOL algorithms are originally derived from the steepest descent method.
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2.4.1 Function Mapping

Due to the multilayer FNN’s good generalization and nonlinear mapping abilities,

it has been widely used as a general function approximator or time series predictor

(Yam and Chow, 2001), (Ergezinger and Thomsen, 1995). In this section, a one-

hidden layer FNN with linear activation functions is designed and the proposed

dynamical optimal learning algorithm is employed to train the network so as to

fulfill a class of high dimensional nonlinear function approximation. In this prob-

lem, eight dimensional input vectors xk are mapped into three dimensional output

vectors dk by the following function: f : R8 → R3; dk = f(xk), xk ∈ R8; dk ∈ R3

with

d1 =
x1x2 + x3x4 + x5x6 + x7x8

4

d2 =
x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8

8

d3 =
1

2

√
4 − x1x2 + x3x4 + x5x6 + x7x8

These training sets contain 50 and 100 input-output vectors [xk, dk], respectively.

The components of the input vectors are random numbers equally distributed over

the interval of [0, 1]. A bias −1 was added to the input layer as a dummy neuron.

The hidden layer consists of 14 neurons and results in a 9− 14− 3 neural network.

For the network with SBP, its transfer functions of hidden layer and output layer

are based on bipolar sigmoid function. Since it is hard to determine the optimal

value of SBP learning rate, many experiments over a wide range of different initial

conditions were performed. It was observed that the network obtains the fastest

convergence on average by setting the learning rate lr = 0.5, and beyond which its

learning becomes unstable, while lr < 0.1 leads to a very slow convergence. The

results also show that when the range of initial weights were increased to [−50, 50],

the SBP learning could easily become unstable. In contrast, the proposed DOL

algorithm was found to be robust to different initial states. For different initial

weights randomly located in the range of [−1, 1], the network with SBP and DOL
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was run for 10 times respectively, and the improvement ratios of DOL over SBP

are given in Table 2.1.

Table 2.1. Improvement ratio of DOL over SBP for 100 inputs with mse = 0.001

Index 1 2 3 4 5 6 7 8 9

SBP(lr = 0.5),

Iterations 1780 2629 4180 2951 2692 2226 3838 2396 3261

cpu time(sec) 19.69 28.58 43.36 31.14 28.5 23.83 39.09 24.64 33.42

DOL, Iterations 78 72 108 111 141 110 121 113 116

cpu time(sec) 0.50 0.47 0.58 0.59 0.69 0.61 0.63 0.61 0.63

Average improvement ratio: iteration ratio = 25.9, time ratio = 49.3.

It was observed that the learning epochs of SBP increase significantly as the

number of input patterns was increased from 50 to 100. However, the learning

epochs of the proposed DOL algorithm were not increased apparently, which show

that the DOL algorithm is less sensitive to different inputs. The typical learning

procedures of DOL and SBP are depicted in Figure 2.2 and Figure 2.3, respectively.
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Figure 2.2. DOL error performance for function mapping with 100 inputs: 85

epochs
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Figure 2.3. SBP error performance for function mapping with 100 inputs: 3303

epochs

2.4.2 Pattern Recognition

In this section, the proposed dynamical optimal learning algorithm is applied to

recognize different characters presented to the inputs of a neural network (Scalero

and Tepedelenlioglu, 1992). The characters’ pixels are set to a level of 0.1 or 0.9,

which represent the analog values rather than digital binary values. The output is

likewise treated as analog. The 7× 7 pixel patterns in Figure 2.4 are the inputs to

a three-layer feedforward network with 10 nodes in the hidden layer. The desired

output vector is in accordance with a 2, 3, or 4 binary string, which depends on

the number of patterns presented to train the network. In this experiment, the

network’s output layer is composed of 4 nodes. For example, the 4−bit binary

string of desired output vector 1000 is used to identify the 9th character I.

Figures 2.5 and 2.6 show the mean-squared error versus the iteration number for

both algorithms during the training of the 7 × 7 patterns. The learning rate was

set as lr = 0.2, which leads to the best learning in the sense that it holds a smooth

learning curve with the fastest convergence speed. The transfer functions of the

hidden and output layers were set as bipolar sigmoid function, which demonstrates
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Figure 2.4. The character patterns for the pattern recognition problem

a better learning performance than unipolar sigmoid function and linear function

for this problem. As can be seen from Figures 2.5 and 2.6, the SBP algorithm tends

to reach a certain mean-squared error and remains there for quite a while with little

or no improvement. In contrast, the proposed DOL algorithm continues to make

steady progress towards improving the mse performance throughout the training

process. The experiment results with different initial weights chosen randomly in

the range of [−1, 1] are shown in Table 2.2.
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Figure 2.5. DOL error performance for the characters recognition: 523 epochs

Remark 2.3. From the simulation results, it is clear that the DOL algorithm has

a stable and fast convergence, which is less sensitive to different initial weights and

inputs as compared to the SBP algorithm. As shown in Table 2.1 and Table 2.2,

although there exist complex expressions to compute the dynamical optimal learning
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Figure 2.6. SBP error performance for the characters recognition: 2875 epochs

rate in DOL, the improvement ratios of DOL over SBP with respect to both iteration

numbers and cpu time are significant.

Table 2.2. Improvement ratio of DOL over SBP for 9 patterns with mse = 0.001

Index 1 2 3 4 5 6 7 8 9

SBP(lr = 0.2),

Iterations 1056 1254 1559 1784 1284 1628 1723 1068 2212

cpu time(sec) 8.26 7.89 10.00 11.33 8.63 10.52 11.09 7.50 14.08

DOL, Iterations 599 523 371 599 599 563 599 599 599

cpu time(sec) 1.13 1.18 0.78 1.13 1.13 1.05 1.11 1.11 1.13

Average improvement ratio: iteration ratio = 2.64, time ratio = 9.02.

2.5 Discussions

In the Preliminary Section, it is assumed that u1 and u2 are large enough in contrast

to the input to the neuron such that the activation function can be represented by

a linear function. Therefore the saturated regions are neglected in our derivations.

This is reasonable since in most cases the inputs to the network fall within a

limited bound. In fact, when u1 and u2 are set to be large enough, the learning
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performance using the ramp function will be the same as that using the linear

function (φ(x) = x).

Figure 2.7 illustrates the dynamical optimal learning rate along the iterations for

the function mapping problem. It can be seen that the optimal learning rate (βopt)

keeps varying between the range of [0.5, 1.2], which is in correspondence with the

fact that lr = 0.5 is the maximum and stable learning rate of SBP for this function

mapping problem. A similar DOL learning pattern has also been observed for the

pattern recognition problem.
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Figure 2.7. The dynamical optimal learning rate for the function mapping problem

FNN with ramp activation function in the hidden layer may have limited ca-

pacity in some applications when compared to FNN with differentiable sigmoid

function. More discussions were presented in (Shah and Poon, 1999). On the other

hand, FNN together with the back propagation learning is not so biologically plau-

sible, though it has universal approximation capability. In (Poon and Shah, 1998)

a tree-like perceptron with Hebbian learning was proposed and it was shown to

be more computational advantageous and biologically plausible. Nevertheless, de-

tailed analysis is beyond this scope.
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2.6 Conclusion

In this chapter, a new dynamical optimal learning (DOL) algorithm for three-layer

linear FNN is presented and its generalization ability is investigated. The proposed

training algorithm has been proved to be stable and less sensitive to the setting

of initial parameters or learning rates. The validation results upon the function

mapping and pattern recognition problems show that the DOL algorithm provides

better generalization performance and faster convergence as compared to the SBP

algorithm.
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Chapter 3

Discrete-Time Recurrent

Networks for Constrained

Optimization

3.1 Introduction

Constrained nonlinear differentiable optimization (NDO), especially the quadratic

optimization, is an important problem in mathematical programming which has

numerous applications in many fields of science and engineering. Since the early

work (Tank and Hopfield, 1986; Kennedy and Chua, 1988), the construction of

recurrent neural network (RNN) for solving linear and nonlinear programming has

been an active topic in the field of neural networks (Bouzerdoum and Pattison,

1993; Xia and Wang, 2000; Liang and Wang, 2000). Since there is a two-way

bridge connecting the nonlinear optimization and variational inequality problem

(VIP) (Eaves, 1971; Harker and Pang, 1990), solving nonlinear optimization is also

valuable in the sense that it allows one to apply the results from NDO to VIP.

Thus, finding solutions of NDO has importance not only in theory but also in
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applications. The optimization problem over a convex subset can be described by

minimize E(x) subject to x ∈ Ω. (3.1)

The convex subset Ω is defined by Ω = {x ∈ <n| xi ∈ [ci, di], i = 1, · · · , n}, where

ci and di are constants such that ci ≤ di(i = 1, · · · , n).

In the recent neural network literature, there exist a few RNN models for solv-

ing nonlinear optimization and linear variational inequality problem over convex

constraints (Pérez-Ilzarbe, 1998; Liang and Wang, 2000; He and Yang, 2000). A

discrete-time RNN model was proposed to solve strictly convex quadratic programs

with bound constraints (Pérez-Ilzarbe, 1998). Sufficient conditions for the global

exponential convergence of the RNN model and several corresponding neuron up-

dating rules was resented (Pérez-Ilzarbe, 1998). In (Liang and Wang, 2000), a

continuous time RNN was presented for solving bound-constrained nonlinear opti-

mization. In (He and Yang, 2000) a continuous time neural network model based

on projection-contraction (PC) method to solve monotone linear asymmetric vari-

ational inequality problem (LVIP) is presented.

In this chapter, a discrete-time RNN model for solving nonlinear optimization

with any continuously differentiable objective function is proposed. The proposed

RNN model can be used to solve quadratic optimization problem, the special cases

of nonlinear optimization and LVIP. The RNN model is regular in the sense that

any constrained optimum of the objective function is also an equilibrium point

of the RNN. Furthermore, if the minimized function is convex, then the RNN is

complete in the sense that the set of optima of the objective function with bound

constraints is equal to the set of equilibria of the RNN.

On the other hand, it has the quasiconvergence and attractivity property that all

trajectories starting from the <n, including the feasible region will converge to the

set of equilibria of the RNN. For strictly convex quadratic optimization problems

with bound constraints, the RNN model is global exponential stable which does
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not require additional conditions against the matrix. The most attracting advan-

tages of the proposed RNN model lie in its simplicity and its efficiency to handle

large scale optimization problems. In addition, the discrete-time RNN model has

some advantages over the continuous-time counterpart in numerical simulation and

digital implementation.

The organization of this chapter is as follows: Section 3.2 gives some preliminaries

and the problem formulation. Section 3.3 describes the discrete time RNN model

for solving nonlinear differentiable optimization problems. Global exponential sta-

bility (GES) analysis of the strictly convex quadratic optimization problem is given

in Section 3.4. In Section 3.5 the performances of the network are illustrated by

two illustrative simulations. Conclusions are drawn in Section 3.6.

3.2 Preliminaries and Problem Formulation

For each vector x = (x1, · · · , xn)T ∈ <n, define ‖x‖ =
√

xTx.

Definition 3.1. Let Ω be a nonempty, closed and convex subset of <n, the pro-

jection of a point y ∈ <n onto the set Ω, denoted by ProjΩ(y), is defined as the

unique solution to the mathematical program: min ‖y − x‖, where x is a vector in

Ω.

Property 3.1. The projector operator Proj(·) has the following properties:

(1)ProjΩ(x) = x ⇔ x ∈ Ω.

(2)(ProjΩ(y) − y)T (ProjΩ(y) − x) ≤ 0 ∀y ∈ <n,∀x ∈ Ω.

(3)‖ProjΩ(y) − ProjΩ(x)‖ ≤ ‖y − x‖, ∀y, x ∈ <n, i.e., it is nonexpansive in <n.

Definition 3.2. Let Ω be a nonempty, closed and convex subset of <n, the distance

from the point y to the set Ω is defined by dist(y,Ω) = min
x∈Ω

‖y−x‖ = ‖y−ProjΩ(y)‖.

And it is said that a sequence {y(k)} converges to Ω if dist(y(k),Ω) → 0 as k → ∞.

Lemma 3.1. Let F (x) : <n → <n be a continuous mapping. If there exist a
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bounded sequence x(k) ∈ <n for k ≥ 0 such that F (x(k)) → 0 as k → ∞, then

Ω0 = {x ∈ <n|F (x) = 0} is a closed and nonempty set and dist(x(k),Ω0) → 0 as

k → ∞.

Proof. The boundedness of x(k) implies that it has a convergent subsequence

whose limit is obviously in Ω0 from the continuity of F (x) and the assumption

that F (x(k)) → 0 as k → ∞, i.e., the set Ω0 is nonempty. In the following, it will

be shown dist(x(k),Ω0) → 0 as k → ∞ by the contradiction method. It is assumed

that there exists a positive constant ε ≥ 0 such that for any positive number K0

there exists a corresponding positive number K ≥ K0 satisfying dist(x(K),Ω0) ≥ ε.

Let x(k) has a convergent subsequence x(kj) such that

dist(x(kj),Ω0) ≥ ε > 0 ∀j ≥ 1 (3.2)

where K0 ≤ k1 < k2 < · · · < kj−1 < kj < · · · < ∞ and kj → ∞ as j → ∞. Let

the vector x̄ be the limit of x(kj), i.e., lim
j→∞

(x(kj)) = x̄, which satisfies F (x̄) = 0,

i.e., x̄ ∈ Ω0. Therefore dist(x(kj),Ω0) ≤ ‖x(kj) − x̄‖ for all j ≥ 1. The right side

of this inequality approaches to zero if taking the limit as j → ∞. Therefore it is

obtained dist(x(kj),Ω0) → 0 as j → ∞, which contradicts the initial assumption.

Thus the lemma is proved.

3.3 The Discrete-Time RNN Model for Nonlin-

ear Differentiable Optimization

In this section, the qualitative property of the proposed discrete time RNN model

will be analyzed to solve the nonlinear differentiable minimization problems over

convex constraints. The discrete time neural network model is described as

xi(k + 1) = f
(
xi(k) − αi

∂E(x)

∂xi(k)

)
(3.3)

for all k ≥ 0, i = 1, 2, · · · , n, where αi is any positive constant. The activa-

tion function f is a projection operator as defined by Definition 3.1 and f(x) =
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(f1(x1), f2(x2), · · · , fn(xn))
T . The projection operator is assumed to be easily im-

plemented.

For bounded constraint set, Ω = [c, d] = {x ∈ <n|ci ≤ xi ≤ di, i = 1, 2, · · · , n}, it

takes the form of, in component wise, fi(θ) = max(ci,min(θ, di)). If Ω = [0,∞) =

{x ∈ <n|xi ≥ 0, i = 1, 2, · · · , n}, then fi(θ) = max(0, θ).

If define a positive diagonal matrix Λ = diag(α1, α2, · · · , αn), then the RNN

model can be represented by the following compact matrix form:

(N) x(k + 1) = f(x(k) − Λ∇E(x(k))). (3.4)

Define the solution set Ω∗ = {x∗ ∈ Ω|E(x) ≥ E(x∗),∀x ∈ Ω} for the minimiza-

tion problem (3.1) and the equilibrium set Ωe = {x ∈ <n|x = f(x−Λ∇E(x))} for

the RNN model (N). It is assumed Ω∗ 6= ∅. It can be seen that Ω∗ and Ωe are both

closed.

Theorem 3.1. The discrete time RNN model (N) is regular, i.e., Ω∗ ⊆ Ωe. Fur-

thermore, if the objective function E(x) is convex on Rn, then the RNN model is

complete, i.e., Ω∗ = Ωe.

Proof. Let x∗ ∈ <n be a minimizer of the minimization problem (3.1), if and only

if it satisfies the first-order necessary optimum condition

∇E(x∗)T (y − x∗) ≥ 0,∀y ∈ Ω. (3.5)

This inequality coincides with the variational inequality problem. By the funda-

mental results in (Eaves, 1971) (see also (Harker and Pang, 1990)), any solution to

variational inequality problem is equivalent to be an equilibrium of the recurrent

system (N). This proves that Ω∗ ⊆ Ωe.

In order to prove that the RNN model is complete, it remains to show that

Ωe ⊆ Ω∗. Let xe be an equilibrium of the system (N), i.e.,

xe = f(xe − Λ∇E(xe)),
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which is equivalent to

(x− xe)T Λ∇E(xe) ≥ 0,∀x ∈ Ω.

Since Λ > 0, it is obtained the first-order optimum condition as (3.5). Thus xe ∈ Ωe.

The proof is completed.

Remark 3.1. For the case of LVIP(Ω,M, q), the objective function E(x) is not

known a-priori, in order to employ the network (N), an equivalent differentiable

function should be constructed. Let F (x) = Mx + q, then the objective function is

given as

E(x) = −F (x)T (f(x) − x) − 1

2
(f(x) − x)T (f(x) − x).

Clearly, E(x) is continuously differentiable and its gradient is given by

∇E(x) = F (x)− (F (x)− I)(f(x) − x),

where I is an identify matrix, referred to Theorem 3.2 of (Fukushima, 1992).

In contrast to the continuous-time dynamical systems (Liang and Wang, 2000),

the solution trajectory of the discrete-time system (N) starting from any initial

point in <n will be mapped into the constraint set after the first iteration, and it

will remain in this set, i.e., dist(x(k + 1),Ω) = 0,∀k ≥ 0. Clearly, Ω is a positive

invariant and attracting set (Hale, 1969) of the system (N).

Theorem 3.2. Any solution trajectory of the discrete-time system (N) starting

from the inside of Ω converges to Ωe.

Proof. Without loss of generality, the proof is established by showing each compo-

nent of any solution trajectory of the discrete-time system (N) from the inside of

Ω converges to Ωe.

Let hi(k) = αiE(x(k)) and yi(k) = xi(k) − αiE(x(k)), where αi > 0, i =

1, 2, · · · , n, ∀k ≥ 0.
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It is derived that

∆hi(k) = hi(k + 1) − hi(k)

= (αi∇E(xi(k)))T (xi(k + 1) − xi(k))

= [(xi(k) − fi(yi(k))) + (fi(yi(k)) − yi(k))]T [fi(yi(k))) − xi(k)]

[use Property 3.1]

≤ −‖xi(k) − fi(xi(k) − αi∇E(xi(k)))‖2

= −‖ei(k)‖2

≤ 0

‖e‖ =
√∑n

i=1 ‖ei‖2 is called an error bound (He and Yang, 2000) which measures

how much x(k) fails to be in Ωe. Since

hi(k + 1) = ∆hi(k) + hi(k)

Repeatedly, it holds

hi(k + 1) =
k∑

j=0

∆hi(j) + hi(0)

≤ −
k∑

j=0

‖ei(j)‖2 + hi(0). (3.6)

Consider the boundedness of hi(k), ‖ei(k)‖ → 0 as k → ∞, i.e.,

xi(k) − fi[xi(k) − αi∇E(xi(k))] → 0 as k → ∞.

Therefore, from Lemma 3.1, it is obtained dist(xi(k),Ωe) → 0 as k → ∞, i =

1, 2, · · · , n, in other words, every component of any solution trajectory converges

to Ωe. This completes the proof.
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3.4 GES Analysis for Strictly Convex Quadratic

Optimization Over Bound Constraints

Quadratic optimization is an important case of nonlinear optimization problem. In

this section, the strictly convex quadratic optimization over bound constraints is

considered. This class of optimization problem can be described by

min

{
1

2
xTAx + xTb

∣∣∣∣x ∈ Ω

}
, (3.7)

where A is positive definite.

In the realm of recurrent networks, stability analysis is an important topic which

has attracted numerous efforts (Yi et al., 1999; Yi et al., 2001; Yi et al., 2002;

Yi and Tan, 2002; Liang and Wang, 2000; Liang and Si, 2001). The author in

(Pérez-Ilzarbe, 1998) proposed a model of discrete time recurrent neural networks

to perform quadratic real optimization with bound constraints. She proved that

the network is globally exponentially convergent if some conditions of the matrix

A are fulfilled. If these conditions are not satisfied, she proved that the network

is globally convergent by choosing some parameters of the network. In (Liang and

Wang, 2000) a continuous RNN model was presented and the authors proved that

the network is GES on the condition that I − ΛA is nonsingular, where I is an

identity matrix and Λ a positive diagonal matrix (Liang and Wang, 2000).

In the above problem, if A is not symmetric, then it can be decomposed by

its symmetric and antisymmetric components as A = A+AT

2
+ A−AT

2
. Since ∀x,

xTAx = 0 for any antisymmetric (skew-symmetric) matrix, i.e., the antisymmet-

ric component contributes zero to the quadratic form, the quadratic optimization

problem can be simply reformulated by replacing A with its symmetric component

as stated in (Bouzerdoum and Pattison, 1993). Without loss of generality, it is

assumed that A is symmetric in later discussion.

In the following, it will be shown that the proposed discrete time network is
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always globally exponentially converge without any additional requirements against

the matrix A as long as the network parameter is located in some interval. A clear

lower bound of global exponential convergence rate is also given.

The following neural network will be used to solve this problem:

(NQ) x(k + 1) = f
(
x(k) − α(Ax(k) + b)

)
, (3.8)

where α > 0 is some constant.

Definition 3.3. The neural network (NQ) is said to be globally exponentially con-

verge, if the network exists a unique equilibrium xe and there exist constants η > 0

and µ ≥ 1 such that

‖x(k + 1) − xe‖ ≤ µ‖x(0) − xe‖ exp (−ηk)

for all k ≥ 0. The constant η is called a lower bound of the convergence rate of the

network (NQ).

Since A is a positive definite matrix, then all of its eigenvalues are positive. Let

λi > 0(i = 1, · · · , n) be all the eigenvalues of A. Denote λmin and λmax the smallest

and largest eigenvalues of A, respectively.

Define a continuous function

r(α) = max
1≤i≤n

|1 − αλi|

for α > 0. Obviously, r(α) > 0 for all α > 0. This function plays an important

role in the estimation of the convergence rate of the network. Let us first get some

insight into this function.

Denote

α∗ =
2

λmax + λmin

obviously, α∗ > 0.
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Property 3.2. The function r(α) has the following features

(1)

r(α) =





1 − λminα, 0 < α ≤ α∗

λmaxα − 1, α∗ ≤ α < +∞.

(2) r(α) < 1 if and only if

α ∈
(

0,
2

λmax

)
.

(3)

λmax − λmin

λmax + λmin
= r (α∗) ≤ r(α) ∀α > 0.

Proof. By the definition of r(α), it is easy to see that

r(α) = max {|1 − αλmin| , |1 − αλmax|} .

Since

|1 − α∗λmin| =
λmax − λmin

λmax + λmin
= |1 − α∗λmax|

then by a simple calculation it follows that

r(α) =





1 − λminα, 0 < α ≤ α∗

λmaxα − 1, α∗ ≤ α < ∞.

Using this expression, it is easy to derive the results of the property. Details are

omitted.

Figure 3.1 shows an intuitive explanation about the above property. It is easy

to see that α∗ is the minimum point of r(α), and r(α) < 1 if and only if 0 < α <

2/λmax.

Since the constraint region is a convex set, the strict convex quadratic optimiza-

tion problem has a unique minimizer x∗ ∈ Ω and Ω∗ = Ωe = {x∗}. The following

lemma about the existence and uniqueness of the equilibrium point was proved

in (Pérez-Ilzarbe, 1998), which can also be derived from the completeness of the

network (NQ) (Theorem 3.1 in the last section).
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Figure 3.1. The function of r(α).

Lemma 3.2. For each α > 0, the network (NQ) has a unique equilibrium point

and this equilibrium point is the minimizer of the quadratic optimization problem

(3.7).

Theorem 3.3. For each α, if

0 < α <
2

λmax

then the network (NQ) is globally exponentially converge with a lower bound of

convergence rate

η(α) = − ln r(α) > 0.

Proof. Since λi(i = 1, · · · , n) are all the eigenvalues of A. Then, it is easy to see

that (1 − αλi)
2(i = 1, 2, · · · , n) are all the eigenvalues of the matrix (I − αA)2.

For any x(0) ∈ Rn, let x(k) be the solution trajectory of (NQ) starting from x(0).

Since α > 0, then by Lemma 3.2, the network converges to the unique minimizer
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x∗. Using Property 3.1, ∀k ≥ 0, it is obtained that

‖x(k + 1) − x∗‖2 =
∥∥∥f
(
x(k)− α (Ax(k) + b)

)
− f

(
x∗ − α (Ax∗ + b)

)∥∥∥
2

≤ ‖(I − αA) (x(k) − x∗)‖2

= [x(k) − x∗]T (I − αA)2 [x(k)− x∗]

≤ max
1≤i≤n

[
(1 − αλi)

2
]
‖x(k)− x∗‖2

= r(α)2‖x(k) − x∗‖2

That is

‖x(k + 1) − x∗‖ ≤ r(α)‖x(k) − x∗‖

= r(α)k‖x(0) − x∗‖

≤ exp(−η(α)k)‖x(0) − x∗‖

where

η(α) = − ln r(α).

Since 0 < α < 2/λmax, by Theorem 2 it holds that η(α) > 0 for each α. The above

shows that the network is global exponentially convergent and η(α) > 0 is a lower

bound of global exponential convergence rate. This completes the proof.

In order to guarantee the network has a large convergence rate, one needs to

choose the parameter α in the network (4) so that r(α) is as small as possible.

From Property 3.2 and Theorem 3.3, α∗ can be chosen as the parameter α in the

network (NQ) to get a large lower bound of global exponential convergence rate.

In this way, however, it needs to calculate the largest and smallest eigenvalues of

the matrix of A in advance. This will introduce additional computations especially

when the dimension of the matrix A is very high. On the other hand, from the

implementation point of view, the network would be difficult to be implemented if

it contains some eigenvalues in the network. However, since

tra(A) =
n∑

i=1

aii > λmax
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when n ≥ 2, it is obtained

2

tra(A)
∈
(

0,
2

λmax

)

As n = 1 is a trivial and very special case, it only needs to consider the situation

of n ≥ 2. Then, choose the parameter α in the network (NQ) by

α = tra(A) =

n∑

i=1

aii

Hence, the network (NQ) becomes

(NQ1) x(k + 1) = f

(
x(k) − 2

tra(A)
(Ax(k) + b)

)
, ∀k ≥ 0 (3.9)

Obviously, the network has a lower bound convergence rate

η = − ln r

(
2

tra(A)

)
> 0.

The network (NQ1) is quite easy to be implemented. The network (NQ1) is rec-

ommended when solving the quadratic optimization problem of (3.7) in which A is

positive definite.

Remark 3.2. To further improve the numerical stability and convergence speed

of the network, the preconditioning technique in (Bouzerdoum and Pattison, 1993)

can be used to reduce the conditioner number of the matrix A. First define a

diagonal matrix P with the diagonal elements pii = 1/
√

|aii|(i = 1, · · · , n), then

some transformations are performed such that

Ã = PAP, b̃ = Pb, c̃ = P−1c, d̃ = P−1d.

Since tra(Ã) = n, the network (NQ1) becomes

(NQ2)





x̃(k + 1) = f
(
x̃(k) − 2

n
(Ãx̃(k) + b̃)

)

x(k + 1) = P x̃(k + 1)

(3.10)

for k ≥ 0.
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3.5 Discussions and Illustrative Examples

In this section, the proposed discrete time RNN model is applied to a quadratic

optimization problem and a classical linear complementarity problem. In the fol-

lowing two simulations, the stopping criterion is ‖e‖∞ ≤ 10−6.

Example 1: Consider a strictly convex quadratic optimization problem with

bound constraints described by

min{E(x) =
1

2
xT Ax + xTb : −20 ≤ xi ≤ 20,∀i}

with the positive definite matrix

A =




0.180 0.648 0.288

0.648 2.880 0.720

0.288 0.720 0.720




, and b =




0.4

0.2

0.3




This example was studied in (Pérez-Ilzarbe, 1998) by a discrete-time recurrent

neural network, in which the globally exponential convergence cannot be assured

a-priori since the matrix A does not fulfill the conditions proposed in (Pérez-Ilzarbe,

1998) for exponential convergence.

The discrete-time RNN model (NQ) is used to find the unique constrained mini-

mizer of the above optimization problem with the scaling constant α = 1
3

and it is

GES according to Theorem 3.3. The initial point is set to be x0 = (15, 10,−10)T . It

is found that the network globally converges to the unique minimizer of the above

bound-constrained optimization problem x∗ = (−20.0000, 3.3796, 4.2037)T . The

convergence behavior is depicted in Figure 3.2. The simulation is then performed

by randomly selecting 30 points in <3 as the initial points of the network (N3).

As can be seen from Figure 3.3, all the trajectories have globally exponentially

converged to the minimum x∗, as desired.

Example 2: Consider a classical linear complementarity problem LCP(Ω,M, q),
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Figure 3.2. The convergence trace for each component of the trajectory starting

from x(0).

Figure 3.3. The global exponential convergence for various trajectories in <3 space.

where q = (−1, · · · ,−1)T ∈ <n and M is an n × n upper triangular matrix

M =




1 2 2 · · · 2

0 1 2 · · · 2

0 0 1 · · · 2

...
...

...
. . .

...

0 0 0 · · · 1
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which is positive definite but asymmetric. This problem has a unique solution

x∗ = (0, · · · , 0, 1)T for any n.

This example is the same as the second example in (He and Yang, 2000) where

a continuous time neural network model based on projection-contraction (PC)

method is employed to handle this problem. The network based on PC method,

which involves several steps to calculate a descent direction of a distance function,

demonstrates its advantages in faster convergence speed in a linear programming

example compared with three classes of neural network models investigated in (Zak

et al., 1995) and in the above asymmetric LCP compared with Damped-Newton

method.

Since M is positive definite, the LCP can be solved by the discrete time RNN

model (N) for general nonlinear differential objective functions presented in Section

III. The problem of dimensions from n = 8 up to n = 4000 is simulated, although

it still works well for larger dimensions for this problem. Let the scaling constants

αi = 1.2, i = 1, 2, · · · , n. All elements of the starting vectors are randomly uni-

formly distributed in the range (0, 1). Table 3.1 gives the iteration numbers of

the solution trajectories converging to the unique solution with respect to different

dimensions.

Table 3.1. Results by the proposed RNN model

n 8 16 32 64 128 256 512 1000 2000 4000

k 11 11 11 11 10 11 11 11 11 10

n=Dimension of the problem, k=Iteration number.

The last five components of the trajectory starting from a randomly initial point

in <n for the problem of 4000 dimensions are depicted in Figure 3.4. It is found that

the network converges to the unique solution after 11 iterations. This simulation

example illustrates that the proposed network has a very fast convergence behavior

when compared to that of (He and Yang, 2000).
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Figure 3.4. The trajectories of the last five components of x of 4000 dimensions.

The searching trajectories are significantly different for the proposed network be-

havior and the gradient projection method. For example, when the current point

lies within the constraint region, the gradient projection searches along the minus

gradient direction in the next iteration; while this behavior only happens to the

network when all the αi take the same value (Pérez-Ilzarbe, 1998). Such behaviors

imply that parallel implementation for the proposed discrete-time network is di-

rect. In addition, from the programming point of view, the implementation of the

presented network model is simpler than that of neural network based on gradient

projection method which involves several steps to compute a descent direction, i.e.,

it needs to calculate the descent direction of the cost function 1
2
‖x−x∗‖2, involving

two matrix-vector products and two projection operations. The simulation results

demonstrate that the proposed discrete RNN model (N) provides a highly efficient

and easily implemented neural-network solver for the large dimensional problem,

since it requires only a few more than 10 iterations. For problems with the same

structure, it is not sensitive to different dimensions.
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3.6 Conclusion

In this chapter a general discrete-time recurrent neural network model for nonlinear

differentiable constrained optimization was presented and the qualitative analysis

results about the regularity, completeness, and attractivity of the RNN model were

obtained. All the solution trajectories starting from any point in <n converge to

the equilibrium set of the network. The network is globally exponentially conver-

gent for strictly convex quadratic optimization problem and it does not impose

additional requirements over the matrix. Simple and practical conditions are de-

rived to guarantee this property. The network demonstrates fast convergence for

a quadratic optimization and a classical LCP and great insensitivity to different

dimensions of the latter hard problem. Its technical simplicity suggests it to be

suitable for digital implementation and a good choice for real-time solver.
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Chapter 4

On Parameter Settings of

Hopfield Networks Applied to

Traveling Salesman Problems

4.1 Introduction

Since the seminal work of using neural networks to solve traveling salesman problem

(TSP) by Hopfield (Hopfield and Tank, 1985), there has been an increased inter-

est in applying the Hopfield neural networks to solve the classical combinatorial

problem (Aiyer et al., 1990)-(Peng et al., 1993). However, the difficulty in setting

the network parameters often leads to the convergence of network to invalid states,

let alone the optimal ones, which makes it a nontrivial work to find the optimal

regions for the network parameters.

Several methods for convergence of the network to valid states have been pro-

posed. Aiyer, et al. (Aiyer et al., 1990) analyzed the behavior of continuous

Hopfield network (CHN) based on the eigenvalues of the connection matrix and

derived the parameter settings for TSP. Abe (Abe, 1993) obtained the conver-

gence and suppression conditions assuming a piecewise-linear activation function
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by comparing the values of the energy at vertices of a unit hypercube. Peng et al

(Peng et al., 1993) suggested the local minimum escape (LME) algorithm, which

intends to improve the local minimal of CHN by combining the network disturbing

technique with the Hopfield network’s local minima searching property. Chaotic

neural network provides another promising approach to solve TSP due to its global

search ability and remarkable improvements with less local minima have been re-

ported (Chen and Aihara, 1995; Hasegawa et al., 2002; Nozawa, 1992; Wang and

Smith, 1998; Wang and Tian, 2000). Cooper (Cooper, 2002) developed the higher-

order neural networks (HONN) for mapping TSP and studied the stability condi-

tions of valid solutions.

It has been widely recognized that the H-T formulation (Hopfield and Tank, 1985)

of the energy function is not ideal for TSP, since the nature of the formulation

causes infeasible solutions to occur most of the time (Wilson and Pawley, 1988).

The inter-relationships among the parameters indicate that the H-T formulation for

TSP does not have good scaling properties and only a very narrow range of param-

eter combinations that result in valid and stable solutions to TSP, which explains

the disappointing percentage of valid tours generated by approaches using the H-

T formulation of the TSP (Kamgar-Parsi and Kamgar-Parsi, 1992), (Brandt et

al., 1988). Therefore, it is believed that finding a better representation of mapping

TSP onto CHN and searching for effective ways to optimally select the penalty pa-

rameters for the network are two important approaches, which have attracted many

efforts in both areas with some useful results being reported (see (Smith, 1999) and

the references therein). However, the valid solutions of the network obtained by

these improvements often cannot be guaranteed. Most recently, Talaván et al

(Talaván and Yáñez, 2002) presented a parameter setting procedure based on the

stability conditions of CHN energy function and hence the analytical conditions

which guaranteed the equilibrium points to be valid solutions, and the parameter

settings developed illustrated a more promising performance.
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In order to avoid the poor scaling properties of the H-T formulation and to find an

efficient method for selecting the optimal parameters, it is ideal to combine the two

approaches and obtain a systematic way to set the parameters optimally. Inspired

by the idea, this work employs an enhanced formulation of mapping TSP onto CHN.

A systematic method is then developed to ensure the convergence of valid solutions

and the suppression of spurious steady states of the network by investigating the

dynamical stability of the network on a unit hypercube. Consequently, a theoretical

method for selecting the penalty parameters is obtained.

A brief description of TSP and CHN is given in Section 4.2. The enhanced

formulation of mapping TSP is described in Section 4.3. The dynamical stability

analysis of the network to represent valid solutions is analyzed in Section 4.4 and

the suppression of spurious states is discussed in Section 4.5. A set of parameter

setting criterion for various size of TSP is presented in Section 4.6. The simulations

are given in Section 4.7 to illustrate the theoretical findings. Finally, conclusions

are drawn in Section 4.8.

4.2 TSP Mapping and CHN Model

The traveling salesman problem, a classical combinatorial optimization problem

widely studied by mathematicians and artificial intelligence specialists, can be for-

mulated as follows: Given a set of N cities, find the shortest path linking all the

cities such that all cities are visited exactly once. This problem is known as NP

(Nondeterministic Polynomial, a terminology of computational complexity) hard

problem (Zhang, 2000), which is difficult to deal with or even intractable when the

number of cities becomes large.

For N cities, TSP can be mapped into a fully connected neural network consisting

of N ×N neurons, which are grouped into N groups of N neurons, and each group

of the N neurons represents the position in the tour of a particular city. The
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network’s output is a vector of the form, for example, v = (0 1 0 1 0 0 0 0 1)t or

in a 2-D form of

v =




0 1 0

1 0 0

0 0 1




which represents a tour of three cities. Let ux,i and vx,i denotes the current state

and the activity (output) of the neuron (x, i) respectively, where x, i ∈ 1, . . . , N is

the city index and the visit order, respectively. Each neuron is also subjected to a

bias of ibx,i. The strength of connection between neuron (x, i) and neuron (y, j) is

denoted by Txy,ij . Let u,v, ib be the vectors of neuron states, outputs and biases,

the dynamics of CHN can be described by a system of differential equations,

du

dt
= −u

τ
+ Tv + ib, (4.1)

where T = T t ∈ <N2×N2
is a constant matrix and τ is a time constant. The

activation function is a hyperbolic tangent

vx,i = φ(ux,i) =
1

2
(1 + tanh(

ux,i

u0
)), u0 > 0. (4.2)

An energy function exists such that

E = −1

2
vtTv − (ib)tv (4.3)

and the existence of equilibrium states for the CHN can be ensured.

The Hopfield-Tank (H-T) formulation of the energy function mapping the TSP

is described by

E =
A0

2

∑

x

∑

i

∑

j 6=i

vx,ivx,j +
B0

2

∑

i

∑

x

∑

y 6=x

vx,ivy,i

+
C0

2
(
∑

x

∑

i

vx,i − N)2 +
D0

2

∑

x

∑

y 6=x

∑

i

dxyvx,i(vy,i+1 + vy,i−1), (4.4)

where dxy is the distance from City x to City y, and the scaling parameters a, b, c, d

are positive constants. The first and the second terms represent the constraints
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that at most one neuron of the array v on fire at each row and column, respectively.

The third term represents the constraint that the total number of neurons on fire is

exactly N . The fourth term measures the tour length corresponding to a given tour

v, where the two terms inside the parenthesis stand for two neighboring visiting

cities of vx,i implying the tour length is calculated twice (it is for the convenience of

mapping between (4.3) and (4.4), since a scaling constant 1
2

appears in the energy

functions). The energy function reaches a local minimum when the network is at

a valid tour state.

With this formulation, the Hopfield network has the connection strengths and

the external input given by

Txi,yj = −{A0δx,y(1 − δi,j) + B0(1 − δx,y)δi,j + C0

+D0(δi,j−1 + δi,j+1)dx,y}, (4.5)

ibx,i = C0N, (4.6)

where δi,j is Kronecker’s delta.

However, the H-T formulation does not work well and has produced some disap-

pointing results when it was applied to TSP, since most of the time the network

converges to infeasible solutions. To stabilize valid solutions, the formulation (4.4)

was modified slightly in (Hopfield and Tank, 1985) and the works thereafter by

replacing the bias ib = C0N with an effective bias ĩb = C0Ñ , where Ñ is larger

enough than N . However, replacing N with Ñ forces the network to violate the

constraints, which implies that the potential of this modification is very limited.

In fact, only a few percentage of trials yield valid tours and the percentage of valid

solutions reaches a maximum for some value of Ñ and drops to zero when Ñ is

further increased (Kamgar-Parsi and Kamgar-Parsi, 1992).
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4.3 The Enhanced Lyapunov Function for Map-

ping TSP

From the mathematical programming view, the TSP can be described as a quadratic

0-1 programming problem with linear constraints,

minimize Eobj (v) (4.7)

subject to Si =
N∑

x=1

vxi = 1 ∀i ∈ {1, · · · , N}, (4.8)

Sx =
N∑

i=1

vxi = 1 ∀x ∈ {1, · · · , N}, (4.9)

and a redundant constraint S =
∑

x

∑

i

vx,i = N ; vxi ∈ {0, 1} and Eobj is the tour

length described by a valid 0-1 solution v.

Bearing this in mind, to map the TSP onto the Hopfield network, the Lyapunov

function is set such that

E lyap(v) = Eobj(v) + Ecns(v). (4.10)

The modified penalty function is given as

Ecns(v) =
A

2

∑

x

(
∑

i

vx,i − 1)2 +
B

2

∑

i

(
∑

x

vx,i − 1)2. (4.11)

where the first term represents the constraint that each row has exactly one neuron

on fire, and the second term represents the constraint that each column has exactly

one neuron on fire. The scaling parameters A and B play the role of balancing the

constraints.

In order to force trajectories toward the vertices of the hypercube, it is necessary

to add to E lyap an additional penalty function of the form

Edrv(v) =
C

2

N∑

x=1

N∑

i=1

(1 − vx,i)vx,i =
C

2
(
N2

4
−

N∑

x=1

N∑

i=1

(
vx,i −

1

2
)2
)
, (4.12)

which induces a gradient component to drive the output states of the network

outward from 1
2
, thus the trajectories will tend toward the vertices of the hypercube.
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Finally, the enhanced Lyapunov function for TSP is formulated as

E lyap(v) =
A

2

∑

x

(
∑

i

vx,i − 1)2 +
B

2

∑

i

(
∑

x

vx,i − 1)2

+
C

2

∑

x

∑

i

(1 − vx,i)vx,i

+
D

2

∑

x

∑

y 6=x

∑

i

dxyvx,i(vy,i+1 + vy,i−1). (4.13)

With this new formulation, the connection matrix and the external input of the

Hopfield network are computed as follows,

Txi,yj = −{Aδx,y + Bδi,j − Cδx,yδi,j + D(δi,j−1 + δi,j+1)dx,y}, (4.14)

ibx,i = A + B − C

2
. (4.15)

Though a similar energy formulation was firstly proposed in (Brandt et al., 1988)

and then (Tachibana et al., 1995), where A and B were simply set to 1 and only two

parameters (C and D) were allowed to change, there was a lack of a systematic way

on setting the parameters. Some advantages of the modified Lyapunov function

have been confirmed by Brandt et al (Brandt et al., 1988). As stated in their

work, the new formulation has relatively sparse connections as contrast to the H-T

formulation with (4N − 3)N2 and N4 connections, respectively. It is clear that

the reduction of the connection weights will become more significant as the size

of the TSP is increased. By a simple analysis method of dynamical stability, B.

Kamgar-Parsi et al (Kamgar-Parsi and Kamgar-Parsi, 1992) showed that the H-

T formulation is not stable, which explained the reason that Hopfield and Tank

had to choose a larger value Ñ in their formulation instead of the city number N

itself. Following the same analysis approach, it is easy to show that the modified

formulation is stable. Given the above preliminary investigations, it is preferable

to choose the modified Lyapunov function for solving the TSP.

In the following sections, by investigating the dynamical stability of the network,

the theoretical results which give an analytic method to optimally set the scaling
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parameters A,B,C and D are presented. As a consequence, the convergence to

valid solutions can be assured at high percentages. Additionally, the new parameter

setting scheme avoids the drawback that the connection weights depend on the

distances between inter cities (Kamgar-Parsi and Kamgar-Parsi, 1992; Brandt et

al., 1988), hence it is easy to apply the obtained results to various size of TSPs.

4.4 Stability Based Analysis for Network’s Ac-

tivities

In this section, the conditions are derived so that all neurons’ activities are either

firing at state 1 or off at state 0, i.e., the network output vector v = (vx,i) converges

to the vertices satisfying the constraints. There are three main approaches on how

to determine the convergence states of the Hopfield network, i.e., relying on the

analysis of the eigenvalue of the connection matrix (Aiyer et al., 1990), comparing

the values of the energy at vertices of the unit hypercube (Abe, 1993) and the

first derivatives of the Lyapunov function for the stability analysis (Talaván and

Yáñez, 2002; Matsuda, 1998; Cooper, 2002).

The Lyapunov function of CHN mapping of TSP is a quadratic function of the

neuron’s activity vx,i defined on the vertices of a unit hypercube in <N2
, therefore

the stability of the equilibria of the network is determined by their derivatives.

As the continuous variables of the Lyapunov function, the activity of the neuron

v = (vx,i) is an equilibrium of the network if and only if ∂E lyap

∂vx,i
≥ 0(∀vx,i = 0),

∂E lyap

∂vx,i
= 0(∀vx,i ∈ (0, 1)) and ∂E lyap

∂vx,i
≤ 0(∀vx,i = 1).

Lemma 4.1. (Matsuda, 1998) The activity which converges to a vertex of the

hypercube is asymptotically stable if it is verified

∂E lyap

∂vx,i
=





> 0(vx,i = 0)

< 0(vx,i = 1)
(4.16)
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for all the components (x, i). As a contrary, it is unstable if

∂E lyap

∂vx,i
=





< 0(vx,i = 0)

> 0(vx,i = 1)
(4.17)

holds for all the components (x, i).

Hence, the properties of the equilibria of the network can be investigated by the

first partial derivative of the Lyapunov function with respect to vx,i. Let Ex,i(v) =

∂E lyap

∂vx,i
and from (4.13), it is obtained,

Ex,i(v) = A(Sx − 1) + B(Si − 1) +
C

2
(1− 2vx,i) + D

∑

y 6=x

dx,y(vy,i−1 + vy,i+1). (4.18)

Define the lower bound and the upper bound of the derivative components of the

neurons at fire state and off state, E0(v) = min
vx,i=0

Ex,i(v) and Ē1(v) = max
vx,i=1

Ex,i(v),

respectively. Consequently, the inequalities of (4.16) is reformulated by a more

compact form which gives stronger conditions for the stability,




E0(v) > 0,

Ē1(v) < 0.
(4.19)

Let dL = min
x,y

dx,y and dU = max
x,y

dx,y be the lower bound and the upper bound of

the Euclidean distance between any two cities.

4.5 Suppression of Spurious States

To represent a valid tour, there must be one and only one neuron firing in each

row x and each column i of v. In other words, the network activities representing

a valid tour exist on the vertices of a unit hypercube. Define the hypercube by

H =
{
vx,i ∈ [0, 1]N×N

}
, its vertex set HC =

{
vx,i ∈ {0, 1}N×N

}
, then the valid tour

set is HT = {vx,i ∈ HC |Sx = 1, Si = 1}. Obviously, HT ⊂ HC ⊂ H.

To ensure the network for not converging to invalid solutions (i.e., spurious steady

states), all the spurious states have to be suppressed for both cases of v ∈ HC −HT

and v ∈ H − HC .
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Definition 4.1. Given a vertex point v ∈ HC , its adjacent vertex point Ax,i is

defined by changing only one element vx,i by its complementary 1 − vx,i.

Hence, the adjacent vertices set of v can be defined by A = A+ ∪ A−, where

A+ = {Ax,i ∈ HC |vx,i = 0,∀x, i ∈ {1, . . . , N}},

A− = {Ax,i ∈ HC |vx,i = 1,∀x, i ∈ {1, . . . , N}}.

Definition 4.2. Any point v ∈ H of the hypercube <N is an interior point v ∈

H−HC if and only if a component vx,i ∈ (0, 1) exists. An interior point v ∈ H−HC

becomes an edge point if

|{(x, i) ∈ {1, 2, · · · , N}2|vx,i ∈ (0, 1)}| = 1,

where | · | denotes the cardinal operation.

Definition 4.3. Let v ∈ H −HC be an edge point with vx0,i0 ∈ (0, 1), its adjacent

vertex point v′ = (v′
x,i) ∈ HC is defined by increasing or decreasing the nonintegral

component vx0,i0, i.e.,

v′
x,i =





1 or 0, if (x, i) = (x0, i0),

vx,i, otherwise.

Figure 4.1 gives an illustration of the vertex point, edge point and interior point.

Figure 4.1. Vertex point, edge point and interior point.

53



Chapter 4. On Parameter Settings of Hopfield Networks Applied to Traveling
Salesman Problems

As pointed out by (Park, 1989), an interior point that is not an edge point has

a null probability of being the convergence point of the continuous Hopfield neural

networks. Therefore it needs to suppress the states of the network output being an

edge point.

Lemma 4.2. The vertex v ∈ HC−HT is unstable if the derivatives of the Lyapunov

function satisfy

max
S=N−1

E0(v) < 0 < min
S=N

Ē1(v) (4.20)

or

max
S=N

E0(v) < 0 < min
S=N+1

Ē1(v) (4.21)

Proof. Since the energy always increases if more than N neurons fire, the spu-

rious states (invalid tours) only occur when N neurons or less fire. Let k ∈

{0, 1, 2, · · · , N}, given an invalid tour vk ∈ HC −HT such that S =
∑

x

∑

i

vk
x,i = k

and suppose

E0(vk) = max
S=k

E0(v), (4.22)

there exit a row x′ and a column i′ such that vk
x′,i′ = 0, thus another invalid tour

can be chosen from its neighborhood set A+, i.e., v+ = Ax′,i′(v
k). Obviously,

S =
∑

x

∑

i

v+
x,i = k + 1 and

max
S=k+1

E0(v) ≥ E0(v+). (4.23)

To show the derivation, 3 exhaustive cases are considered in the following.

Case 1 : vx,i = 1, and vx′,i′ changes from 0 to 1, for x′ 6= x, i′ 6= i.

For example,
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vx,i 0 0 0

0 0 1 0

0 0 0 1

0 0 0 0




−→




vx,i ∗ a ∗

? ◦ ♦ ◦

b d c d

? ◦ ♦ ◦




.

The above matrix can be divided into 4 non-overlapped regions a, b, c and

d according to their relationships with vx,i. For example, region a represents

the row (∗, a, ∗). Region d indicate either of its two consecutive columns of

vx,i, while region c denotes a column that is not next to vx,i. Observed from

equation (4.18), the value of Ex,i can only be changed by the elements in

regions a, b and d. Thus, by applying equation (4.18), it can be determined

how the energy derivative Ex,i changes. If vx′,i′ is in region a, then the first

term in equation (4.18) will increase, due to the increment of Sx. If vx′,i′ is

in region b, then the second term in equation (4.18) will increase, due to the

increment of Si. If vx′,i′ is in region c, then Ex,i remains the same. If vx′,i′ is

in region d, then the fourth term in equation (4.18) will increase, due to the

increment of either vy,i−1 or vy,i+1. As such,

Ex,i(v
+) ≥ Ex,i(v

k), ∀(x, i) ∈ {1, 2, · · · , N}2.

Case 2 : vx,i = 0, and vx′,i′ changes from 0 to 1, for x′ 6= x, i′ 6= i.

Again, the energy derivative will increase due to parameter A,B,D, if vx′,i′

is in Region a, b and d respectively. It stays the same if vx′,i′ is in Region c.

Thus,

Ex,i(v
+) ≥ Ex,i(v

k), ∀(x, i) ∈ {1, 2, · · · , N}2.

Case 3 : vx,i itself changes from 0 to 1.

In this case, by applying the energy derivative formulation (4.18), it can be
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obtained that

Ex,i(v
k) = −A− B +

C

2
+ D(dxy + dyz),

Ex,i(v
+) = −C

2
+ D(dxy + dyz).

To satisfy Ex,i(v
+) ≥ Ex,i(v

k), it holds A + B ≥ C. This criterion will be

necessary for the non-convergence of valid solutions and must be considered

when setting the parameters A,B,C.

Therefore, from the above three cases, it is obtained that

E0(v+) ≥ E0(vk). (4.24)

Applying (4.22) and (4.23), for large enough A,B, it is obtained that

max
S=k+1

E0(v) ≥ E0(vk) = max
S=k

E0(v), ∀v ∈ HC − HT . (4.25)

It can be proven analogously that,

min
S=k+1

Ē1(v) ≤ min
S=k

Ē1(v), ∀v ∈ HC − HT . (4.26)

From the conditions (4.17) for instability, any spurious steady state, v ∈ HC−HT is

unstable if the conditions (4.20) or (4.21) are satisfied. It completes the proof.

Theorem 4.1. Any invalid tour v ∈ HC −HT is not a stable equilibrium point for

CHN if the following criteria are satisfied,

min {B,A + DdL, (N − 1)A} − C

2
> 0, (4.27)

−A− B +
C

2
+ 3DdU < 0, (4.28)

A + B ≥ C (4.29)

Proof. It is already obtained that A+B ≥ C from the proof of Lemma 4.2. Then by

applying Lemma 4.2 and Propositions 1 and 2 in the Appendix, the rest conditions

can be obtained.
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Lemma 4.3. Suppose the edge point v ∈ H − HC with vx0,i0 ∈ (0, 1) be an equi-

librium of the CHN with Txi,xi < 0 ∀(x, i) ∈ {1, . . . , N}2, then it is unstable if the

following condition is satisfied,

Ex,i /∈ (0, A + B − C), ∀(x, i)|vx,i = 1 (4.30)

or

Ex,i /∈ (−A− B + C, 0), ∀(x, i)|vx,i = 0. (4.31)

Proof. According to the result in (Talaván and Yáñez, 2002), the stability of any

edge point will be avoided if

Ex,i(v
′) /∈ (0,−Txi,xi), ∀(x, i)|v′

x,i = 1,∀v′ ∈ HC (4.32)

or

Ex,i(v
′) /∈ (Txi,xi, 0), ∀(x, i)|v′

x,i = 0,∀v′ ∈ HC . (4.33)

Derived from (4.14), it is obtained

Txi,xi = −A− B + C. (4.34)

Hence, for Txi,xi < 0, the following condition should be met

A + B > C. (4.35)

The proof is straightforward.

Therefore, the conditions for nonconvergence of edge point v ∈ H −HC are easy

to be obtained.

Theorem 4.2. Any invalid solution v ∈ H −HC is not a stable equilibrium point

if

min{B,A + DdL, (N − 1)A} − C

2
> A + B − C, (4.36)

3DdU − C

2
< 0, (4.37)

A + B > C. (4.38)
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Proof. According to Lemma 4.3 and Propositions 1 and 2 in the Appendix, it is

easy to derive the conditions.

Remark 4.1. By making all spurious states unstable, the valid states would nec-

essarily be stable since the Hopfield network is convergent by design. This explains

why the convergence condition of valid solutions can be omitted. Considering the

valid state, it gives that

Ex,i(v) =
C

2
+ Ddx,y ≥ C

2
+ DdL,

for vx,i = 0 and

Ex,i(v) = −C

2
+ D(dx,y + dyz) ≤ −C

2
+ 2DdU ,

for vx,i = 1. Recall the condition (4.19), any valid state v ∈ HT is stable if

−C
2

+ 2DdU < 0. Not surprisingly, it can be omitted since it is implied by the

condition (4.37) in the above theorem.

4.6 Setting of Parameters

Actually, observed from Theorem 4.1 and Theorem 4.2, the conditions in Theorem

4.1 can be omitted since they are implied by those in the latter one. Thus, the

following conditions ensure nonconvergence of all spurious states v ∈ H − HT .

3DdU − C

2
< 0, (4.39)

A + B > C, (4.40)

min{B,A + DdL, (N − 1)A} − C

2
> A + B − C. (4.41)

The following approach is proposed for setting the numerical values of the pa-

rameters, based on the above 3 criteria. However, there is no need to adhere to this

proposal, as any other values satisfying the above criteria are equally valid. Note

that A cannot be set to be equal to B, as this will violate either condition (4.40)
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or (4.41). This can be shown by a simple calculation: It holds that A = B > C/2

from equation (4.40), while it contradicts that B − C/2 > 2B − C given by equa-

tion (4.41). Another contradiction also occurs when derived from equation (4.41).

Consequently, the parameter setting is suggested as the following.

D = C/(10dU ),

A = C/2 −DdL/10,

B = A + DdL,

C = any desired value.

This allows C to be set at any arbitrary value while ensuring the criteria (4.39)-

(4.41) are satisfied.

4.7 Simulation Results and Discussions

In this section, the criteria (4.39)-(4.41) will be validated by simulations and com-

pare the performance with that obtained by the parameter settings of Talaván et

al (Talaván and Yáñez, 2002). Here the algorithm introduced by them is adopted.

The continuous Hopfield network may encounter stability problems when it is im-

plemented by discretization. Interested readers are suggested to refer to the work

of Wang (Wang, 1998; Wang, 1997a) for detailed analysis.

Ten-city TSP: A 10-city example is designed to illustrate the performance of

both the energy functions. In each case, parameter C was varied and 1000 trials

were carried out. The initial states were randomly generated by vx,i = 0.5 +

αu,∀(x, i) ∈ {1, 2, · · · , N}2 where α is a small value and u is a uniform random

value in [−0.5, 0.5].

The simulation results are shown in Tables 4.1 and 4.2 in terms of the number of

good and invalid solutions as well as the minimum and average tour length. The

cases of optimum state and near-optimum state including the 10-city configura-

59



Chapter 4. On Parameter Settings of Hopfield Networks Applied to Traveling
Salesman Problems

tions are shown in Figure 5.1 and Figure 5.2, respectively. The number of good

solutions includes the optimum and near-optimum states (within 25% more than

the optimum length).

Table 4.1. Performance of the parameter settings obtained from Talaván

C Good Invalid Min length Ave length

100K 16 411 18.1421 25.2547

10K 44 405 19.0618 25.6066

1K 13 394 19.0618 25.5345

100 16 351 17.3137 25.3033

10 52 55 18.8089 24.1888

1 135 14 17.3137 22.8208

0.1 195 0 22.0837 23.4533

0.01 192 14 16.4853 22.1017

0.001 267 29 16.4853 21.6479

1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

3.5

4

x−coord of cities

y−
co

or
d 

of
 c

iti
es

15.3137

Figure 4.2. Optimum tour state

Remark 4.2. Ideally, it is fair to have all neurons starting from the same initial

state. However, this cannot be implemented in practice. All neurons with the same
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Table 4.2. Performance of the new parameter settings

C Good Invalid Min length Ave length

100K 220 22 16.4853 22.1737

10K 226 27 16.4853 22.1040

1K 227 3 15.3137 21.9492

100 233 2 15.3137 21.7767

10 232 2 15.3137 21.93333

1 215 1 15.3137 22.0452

0.1 223 0 16.4853 21.7484

0.01 208 5 16.4853 22.0157

0.001 204 11 16.4853 22.1432

1 1.5 2 2.5 3 3.5 4 4.5 5
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1.5
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3.5

4

x−coord of cities
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16.4853

Figure 4.3. Near-Optimum tour state

initial state will lead to non-convergence of the network, as all neurons on each

row will always have the same potential. Therefore, a small random value α ∈

[−10−3, 10−3] is added to break the symmetry. The value of α is chosen to be small

so that the randomness introduced does not play a significant role in determining

the final state.
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Remark 4.3. The performance is compared with that obtained from the work

(Talaván and Yáñez, 2002) where the H-T formulation of the Lyapunov function

was employed. The new parameter settings of the network can successfully suppress

the number of invalid states generated by the parameter settings of (Talaván and

Yáñez, 2002) to a minimal level. Beyond that, the performance of the network

with H-T formulation deteriorates greatly. As shown in Table I, the results of the

parameter settings with H-T formulation depend greatly on the value of C. As a

compromise, the network associated with H-T formulation can be said to perform

well when C ranges from 0.1 to 1. On the contrary, as can be seen from Table II,

the new parameter settings give consistently good results for a wide range of values

of C, ranging from 0.1 to 105. It can be observed that the average tour length is

always approximately 22, the minimum tour length is approximately 16, and the

percentage of good solutions is about 22%, regardless of the values of C.

Thirty-city TSP: The 30-city TSP was used in the work (Hopfield and Tank,

1985; Abe, 1993), where the cities were generated randomly from [0, 1]. The new

formulation and H-T formulation were validated on different values of parameter

C (0.1, 1, 10, 100, 1000). For every value 50 valid tours were found and each

time the 30-city was generated. Figure 4.4 and Figure 4.5 show the comparison

of average tour length and minimal tour length, respectively. The results again

confirm the advantages of the modified energy function employed. It is shown that

good results can only be obtained using parameters limited to a small range for the

H-T formulation. The modified energy function with the new parameter setting,

however, is able to produce good results from a wide range of parameter values.

4.8 Conclusion

In order to guarantee the feasibility of CHN for solving TSP, the dynamical stability

conditions of CHN defined on a unit hypercube have been proved in this work. The
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Figure 4.4. Comparison of average tour length between the modified formulation

(new setting) and H-T formulation (old setting).
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Figure 4.5. Comparison of minimal tour length between the modified formulation

(new setting) and H-T formulation (old setting).

features of an enhanced Lyapunov function mapping TSP onto CHN have been

investigated, which confirm its advantages over the H-T formulation. The results

revealed the relationships between the network parameters and solution feasibility,

under which a systematic method for parameter settings in solving the TSP has

been obtained.
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With this new parameter settings, the quality of the solutions has been improved

in the sense that the network gives consistently good performance for a wide range

of parameter values as compared to the most recent work of (Talaván and Yáñez,

2002). The proposed criteria also ensure the convergence of valid solutions and the

suppression of spurious states, which facilitate the procedure of parameter settings

and can be easily applied to various size of TSPs.
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Chapter 5

Competitive Model for

Combinatorial Optimization

Problems

5.1 Introduction

In Chapter 4, the method of applying Hopfield network to solve traveling salesman

problem (TSP) has been analyzed. From the view of mathematical programming,

the TSP can be described as a quadratic 0-1 programming problem with linear

constraints,

minimize Eobj(v) (5.1)

subject to Si =
n∑

x=1

vxi = 1 ∀i ∈ {1, · · · , n}, (5.2)

Sx =
n∑

i=1

vxi = 1 ∀x ∈ {1, · · · , n}, (5.3)

and a redundant constraint S =
∑

x

∑

i

vx,i = n, where vxi ∈ {0, 1} and Eobj is the

total tour length described by a valid 0-1 solution v. The energy function to be

minimized in the network is

E(v) = Eobj(v) + Ecns(v), (5.4)
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where Ecns is the constraints described by (5.2) and (5.3).

In the seminal work (Hopfield and Tank, 1985), the optimization problem was

solved using a highly-interconnected network of nonlinear analog neurons. How-

ever, the convergence of network to valid states and preferably quality ones depends

heavily on the values of penalty terms in the energy function. It requires careful

setting of these parameters in order to obtain valid quality solutions, which is often

a difficult and trial-and-error procedure.

It has been a continuing research effort to improve the performance of Hopfield

network since its origination (Smith, 1999). The behavior of Hopfield network was

analyzed based on the eigenvalues of connection matrix (Aiyer et al., 1990) and the

parameter settings for TSP was derived. The local minimum escape (LME) algo-

rithm (Peng et al., 1993) was proposed to improve the local minimum by combining

the network disturbing technique with the Hopfield network’s local minima search

property. Most recently, a parameter setting procedure based on the stability con-

ditions of the energy function was presented (Talaván and Yáñez, 2002). Although

these methods have been successful to some extent for improving the quality and

validity of solutions, spurious states were often generated. Moreover, the existing

methods require a large volume of computational resources, which restricts their

practical applications.

5.2 Columnar Competitive Model

The dynamics of Hopfield networks can be described by a system of differential

equations and the activation function is a hyperbolic tangent. Let v, ib be the

vectors of neuron activities and biases, and W be the connection matrix, then the

energy function of the Hopfield network for the high-gain limit expression exists

such that

E = −1

2
vTWv − (ib)Tv. (5.5)
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Hopfield has shown that the network will converge to local minima of energy func-

tion (5.5) if W is symmetric (Hopfield and Tank, 1985).

In this section, the columnar competitive model (CCM) which is constructed by

incorporating WTA into the network in column-wise is introduced. Competitive

learning by winner-takes-all (WTA) has been recognized to play an important role

in many areas of computational neural networks, such as feature discovery and

pattern classification (Rumelhart and Zipser, 1985; Wang, 1997b; Sum et al., 1999;

Yi et al., 2000). Nevertheless, the potential of WTA as a means of eliminating all

spurious states is seen due to its intrinsic competitive nature that can elegantly

reduce the number of penalty terms, and hence the constraints of the network for

optimization. The WTA mechanism can be described as: given a set of n neurons,

the input to each neuron is calculated and the neuron with the maximum input

value is declared the winner. The winner’s output is set to ‘1’ while the remaining

neurons will have their values set to ‘0’.

The neurons of the CCM are evolved based on the WTA learning rule. The

competitive model handles the columnar constraints (5.2) elegantly, due to its

competitive property of ensuring one ‘1’ per column. As in two dimensional forms,

v = {vx,i}, ib = {ibx,i}, where the subscript x, i ∈ {1, . . . , n} denotes the city index

and the visit order, respectively. The strength of connection between neuron (x, i)

and neuron (y, j) is denoted by Wxy,ij . Hence, the associated energy function can

be written as

E(v) =
K

2

∑

x

∑

i

(vx,i

∑

j 6=i

vx,j) +
1

2

∑

x

∑

y 6=x

∑

i

dxyvx,i(vy,i+1 + vy,i−1), (5.6)

where K > 0 is a scaling parameter and dxy is the distance between cities x and

y. Comparing (5.5) and (5.6), the connection matrix and the external input of the

network are computed as follows,

Wxi,yj = −{Kδxy(1 − δij) + dxy(δi,j+1 + δi,j−1)}, (5.7)

ib = 0, (5.8)
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where δi,j is the Kronecker’s delta.

The input to a neuron (x, i) is calculated as

Netx,i =
∑

y

∑

j

(Wxi,yjvyj) + ib

= −
∑

y

dxy(vy,i−1 + vy,i+1) − K
∑

j 6=i

vx,j. (5.9)

The WTA is applied based on a column-by-column basis, with the winner being

the neuron with the largest input. The WTA updating rule is thus defined as

vx,i =





1, if Netx,i = max{Net1,i, Net2,i, · · · , Netn,i}

0, otherwise
(5.10)

Hereafter, vx,i is evaluated by the above WTA rule. The algorithm of implement-

ing the competitive model is summarized as follows:

Algorithm 5.1. Competitive Model Algorithm

1. Initialize the network, with each neuron having a small initial value vx,i. A

small random noise is added to break the initial network symmetry. Compute

the W matrix using (5.7).

2. Select a column (e.g., the first column). Compute the input Netx,i of each

neuron in that column.

3. Apply WTA using (5.10), and update the output state of the neurons in that

column.

4. Go to the next column, preferably the one immediately on the right for the

convenience of computation. Repeat step 3 until the last column in the net-

work is done. This constitutes the first epoch.

5. Go to step 2 until the network converges (i.e., the states of the network stop

changes).

68



Chapter 5. Competitive Model for Combinatorial Optimization Problems

5.3 Convergence of Competitive Model and Full

Valid Solutions

For the energy function (5.6) of CCM, the critical value of the penalty-term scaling

parameter K plays a predominant role in ensuring its convergence and driving the

network to converge to valid states. Meanwhile, it is known that the stability of

the original Hopfield networks is guaranteed by the well-known Lyapunov energy

function. However, the dynamics of the CCM is so different from the Hopfield

network, thus the stability of the CCM needs to be investigated.

In this section, our efforts are devoted to such two objectives, i.e., determining the

critical value of K that ensures the convergence of full valid solutions and proving

the convergence of the competitive networks under the WTA updating rule. The

following theorem is drawn.

Theorem 5.1. Let K > 2dmax − dmin, where dmax and dmin is the maximum and

the minimum distance, respectively. Then the competitive model defined by (5.6)–

(5.10) is always convergent to valid states.

Proof. The proof is composed of two parts based on the two objectives respectively.

(i) While the WTA ensures that there can only be one ’1’ per column, it does not

guarantee the same for each row. The responsibility lies in the parameter K of the

penalty term. Without loss of generality, it is assumed that after some updating

the network reaches the following state, which is given by

Let the first row be an all-zero row. The input to each neuron in the i-th column
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is computed by

Net1,i = −(d12 + d13),

Net2,i = −(K + d23),

Net3,i = −(K + d23),

Netn,i = −(K + d2n + d3n).

For valid state, v1,i occupying the all-zero row will have to be the winner, i.e.,

Net1,i = max
x=1,...,n

{Netx,i}. Therefore, it is verified that

d12 + d13 < K + d23,

d12 + d13 < K + d2n + d3n.

To satisfy both conditions, it is sufficient for K to satisfy

K > d12 + d13 − d23, (5.11)

since d2n + d3n > d23 straightforwardly.

Let dmax = max{dxy}, dmin = min{dxy}. Firstly, assume the ‘worst’ scenario for

deriving (5.11), i.e., d12 = d13 = dmax, d23 = dmin, it holds

K > 2dmax − dmin. (5.12)

Secondly, assume the ‘best’ scenario, i.e., d12 = d13 = dmin, d23 = dmax, the

following is obtained

K > 2dmin − dmax. (5.13)

Obviously, condition (5.12) is the sufficient condition for guaranteed convergence

to fully valid solutions, while (5.13) is the necessary condition for convergence

to some valid solutions. Although a specific case has been assumed, the results

obtained are regardless of the specific case.

(ii) To investigate the dynamical stability of the CCM, a n × n network (for

n cities) is considered. After the n-th WTA updating, the network would have
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reached the state with only one ‘1’ per column, but may have more than one ‘1’

per row.

Suppose vt and vt+1 are two states before and after WTA updating respectively.

Consider p-th column, and let neuron (a, p) be the only active neuron before up-

dating, i.e., vt
a,p = 1 and vt

i,p = 0,∀i 6= a. After updating, let neuron (b, p) be the

winning neuron, i.e., vt+1
b,p = 1, vt+1

i,p = 0,∀i 6= b.

The energy function (5.6) can be further broken into two terms Ep and Eo, i.e.,

E = Ep + Eo, where Ep stands for the energy of the consecutive columns p − 1, p

and p + 1 and of the rows a and b. Eo stands for the energy of the rest columns

and rows.

Ep is calculated by

Ep =
K

2

(∑

i

va,i

∑

j 6=i

va,j +
∑

i

vb,i

∑

j 6=i

vb,j

)
+
∑

x

∑

y

dxyvx,p(vy,p+1 + vy,p−1).(5.14)

Accordingly, Eo is computed by

Eo =
K

2

∑

x 6=a,b

∑

i

(vx,i

∑

j 6=i

vx,j) +
1

2

∑

x

∑

y

∑

i 6=p−1,p,p+1

dxyvx,i(vy,i+1 + vy,i−1)

+
1

2

∑

x

∑

y

dxyvx,p−1vx,p−2 +
1

2

∑

x

∑

y

dxyvx,p+1vx,p+2. (5.15)

Thus, it can be seen that only Ep will be affected by the states of the column p.

It is assumed that the neuron (a, p) is the only active neuron in the p-th column

before updating, i.e., vt
a,p = 1 and vt

i,p = 0 for all i 6= a, and the neuron (b, p)

wins the competition after updating, i.e., vt+1
b,p = 1 and vt+1

i,p = 0 for all i 6= b. Let

Et and Et+1 be the energy before updating and after updating, respectively. To

investigate how E changes under the WTA learning rule, the following two cases

are considered.

Case 1 : Row a contains m ‘1’ (m > 1), row b is an all-zero row.

According to equation (6.3), the input to neuron (a, p) and (b, p) is computed

71



Chapter 5. Competitive Model for Combinatorial Optimization Problems

by (5.16) and (5.17), respectively.

Neta,p = −K
∑

j 6=p

va,j −
∑

y

day(vy,p−1 + vy,p+1). (5.16)

Netb,p = −K
∑

j 6=p

vb,j −
∑

y

dby(vy,p−1 + vy,p+1). (5.17)

Considering the WTA learning rule (5.10), it leads to Netb,p = max
i

{Neti,p}.

It implies that

K
∑

j 6=p

vb,j +
∑

y

dby(vy,p−1 + vy,p+1) < K
∑

j 6=p

va,j +
∑

y

day(vy,p−1 + vy,p+1).

(5.18)

Obviously,
∑

j 6=p vb,j = 0,
∑

j 6=p va,j = m − 1. Therefore, it is derived from

(5.18) that

∑

y

dby(vy,p−1 + vy,p+1) −
∑

y

day(vy,p−1 + vy,p+1) < K(m− 1). (5.19)

Now considering the energy function (5.14), Et
p and Et+1

p is computed by

(5.20) and (5.21), respectively.

Et
p =

K

2
m(m − 1) +

∑

y

dayva,p(vy,p+1 + vy,p−1). (5.20)

Et+1
p =

K

2
(m− 1)(m − 2) +

∑

y

dbyvb,p(vy,p+1 + vy,p−1). (5.21)

Thus, it is clear that

Et+1
p −Et

p = −K(m − 1) +
∑

y

dbyvb,p(vy,p+1 + vy,p−1)

−
∑

y

dayva,p(vy,p+1 + vy,p−1). (5.22)

Recall equation (5.19), it is obtained Et+1
p −Et

p < 0. It implies that

Et+1 − Et < 0. (5.23)

Case 2 : Row a contains only one ‘1’, row b is an all-zero row.
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According to the WTA updating rule, again it holds that Netb,p = max
i

{Neti,p}.

Similar to case 1, it is obtained

K
∑

j 6=p

vb,j +
∑

y

dby(vy,p−1 + vy,p+1) < K
∑

j 6=p

va,j +
∑

y

day(vy,p−1 + vy,p+1).

(5.24)

Obviously,
∑

j 6=p vb,j = 0,
∑

j 6=p va,j = 0. Therefore, it is obtained that

∑

y

dby(vy,p−1 + vy,p+1) −
∑

y

day(vy,p−1 + vy,p+1) < 0. (5.25)

On the other hand, Et
p and Et+1

p are now computed as follows,

Et
p =

∑

y

dayva,p(vy,p+1 + vy,p−1). (5.26)

Et+1
p =

∑

y

dbyvb,p(vy,p+1 + vy,p−1). (5.27)

Again, it is obtained

Et+1 − Et < 0. (5.28)

Based on the above two cases, the CCM is always convergent under the WTA

updating rule. This completes the proof.

It is noted that the WTA tends to drive the rows with more than one active

neurons to reduce the number of active neurons, and drive one of the neurons in

all-zero rows to become active. Once there is no row that contains more than one

active neurons (equivalently there is no all-zero row), then a valid state is reached

and the state of the network stops the transition (in this case Et+1 − Et = 0).

5.4 Simulated Annealing Applied to Competitive

Model

Simulated Annealing (SA), a stochastic process, is known to improve the quality

of solutions when solving combinatorial optimization problems (Papageorgiou et
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al., 1998). It derives its name from the analogy of thermodynamics and metallurgy.

Metal is first heated to a high temperature T0, thus causing the metal atoms to

vibrate vigorously, resulting in a highly disordered structure. The metal is then

cooled slowly, allowing the atoms to rearrange themselves in an orderly fashion,

which corresponds to a structure of minimum energy.

Optimum or near optimum results can usually be obtained, but at the expense

of long computational time, due to SA’s slow convergence. WTA, on the other

hand, offers fast convergence, but produces solutions that are of lower quality. It is

ideally to combine these 2 techniques, so that a fully valid solution set, preferably

one with mostly optimum or near optimum tour distances, can be obtained in a

reasonably short time.

When K is at least 2dmax − dmin, all states are valid, but the solutions are of

average quality (fewer states with optimum tour distance). As K decreases, it

becomes more probable for the network to converge to states of optimum tour

distance, but there is also a corresponding increase in the number of spurious

states. When K is less than 2dmin − dmax, the network never converges to valid

states, regardless of the initial network states. Therefore, by having a small K

and slowly increasing it, the quality of solutions can be increased, while preserving

the validity of all states at the same time. The algorithm in conjunction with

the simulated annealing schedule for the parameter K can be implemented in the

following way:

Algorithm 5.2. Competitive Model with SA

1. Initialized the network, with vx,i having a small initial value, added with small

random noise. Initialize K = dmax and ε > 0 that determines how fast K

reaches 2dmax − dmin.

2. Do N times: Select a column i to compute the input Netx,i for each neuron

in that column, then apply WTA and update the output of the neurons. This
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constitutes a whole epoch.

3. Increase K by

K = dmax + (0.5 · tanh(t− ε) + 0.5)(dmax − dmin),

where t is the current epoch number. Go to step 2 until convergence.

5.5 Simulation Results

It is known that the solutions of double-circle problem are very hard to obtain by

the original Hopfield network (Tachibana et al., 1995). In this section, the 24-city

example that was analyzed in (Tachibana et al., 1995) is employed to verify the

theoretical results. There are 12 cities uniformly distributed in the outer circle,

while the rest are allocated in the inner circle, with the radius equals to 2 and

1.9, respectively. In this work, 500 simulations have been performed for each case

of Hopfield network and CCM. The simulation results are given in Tables 5.1 and

5.2. The item good indicates the number of tours with distance within 150% of

the optimum distance. Figures 5.1 and 5.2 depict the optimum tour and the near-

optimum tour generated by the CCM.

Table 5.1. The performance of original Hopfield model for the 24-city example

C Valid Invalid Good Minimum length Average length

10 302 198 111 35.2769 50.9725

1 285 215 108 26.2441 37.3273

0.1 366 134 168 25.2030 36.3042

0.01 360 140 159 27.5906 36.9118

0.001 372 128 153 21.6254 32.5432

As can be seen from the simulation results, the original Hopfield network gen-

erated a large number of invalid solutions w.r.t various weighting factor C. Its
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Table 5.2. The performance of CCM for the 24-city example

K Valid Invalid Good Minimum length Average length

dmax 438 62 248 13.3220 18.1172

dmax + dmin 453 47 256 13.3220 17.9778

2dmax − dmin 500 0 18 15.1856 24.1177
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Figure 5.1. Optimum tour generated by CCM
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Figure 5.2. Near-optimum tour generated by CCM

minimum and average distances are also far away from the optimum solution of

13.322. Comparatively, the new competitive model generated less spurious states
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and produced better quality solutions in terms of the minimum and average tour

lengths. In addition, the CCM has a rapid convergence rate of less than 5 epochs

on the average. It can be seen that when K was set to a small value (e.g., dmax),

with a small portion of invalid solutions, the CCM can easily reach the optimum

solution. When K was increased to 2dmax −dmin, all the spurious states were elim-

inated, which was achieved at minor expense of the solution quality. Obviously,

these findings are in agreement with the theoretical results obtained.

With SA applied to the new WTA model, its performance increases significantly

5.3. All the states generated are valid, and has approximately 65% good solutions

(optimum or near optimum states) for all cases. The average tour distance is about

18, which is much better than the Hopfield model and of the WTA model (without

SA). Its convergence rate is slightly slower than the WTA model (without SA)

and requires 9 epoches on the average. It is nevertheless much faster that of the

Hopfield model.

Table 5.3. The performance of CCM with SA for the 24-city example

ε Valid Invalid Good Minimum length Average length

0 500 0 18 15.1856 24.1177

1 500 0 203 13.3404 22.2688

2 500 0 218 13.3220 19.9771

3 500 0 259 13.3220 18.7153

5 500 0 256 13.3220 18.6785

10 500 0 301 13.3220 18.4080

15 500 0 307 13.3220 18.3352

20 500 0 289 13.3220 18.4643

The theoretical results are also validated upon the 48-city example which has a

similar coordinates configuration as the 24-city one. 100 experiments are performed

for each case and the results are given in Table 5.4. It can be seen that when K
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was increased from dmax to 2dmax −dmin, all invalid solutions were suppressed with

the minimum and average lengths increased, which is consistent with the findings

observed in Table 5.4.

Table 5.4. The performance of CCM for the 48-city example

K Valid Invalid Good Minimum length Average length

dmax 90 10 0 24.6860 32.7950

dmax + dmin 92 8 0 24.9202 33.8892

2dmax − dmin 100 0 0 35.9438 42.4797

Remark 5.1. Since for non-proper values of K (e.g., dmax and dmax + dmin), the

convergence of the CCM is not guaranteed, thus for the sake of comparing the

performance of the CCM with different parameter settings, only the results of the

convergent cases in the experiments recorded are recorded. It is also noted that

when the coordinates configuration becomes more complex, good solutions become

more difficult to be achieved as well.

The WTA with SA model is now applied to TSP of various city sizes, with their

city topology similar to that of 24 cities, i.e., their coordinates evenly distributed

around 2 circles of radius 1.9 and 2.0. The ε is set to 5 for the simulations. The

results are shown in Table 5.5.

WTA with SA model is seen to perform satisfactory, with an average performance

ratio of 0.85. Less computing resources are used, thereby allowing city size of up

to 3000 be successfully solved. This is quite remarkable, as none of the existing

algorithms proposed in literature worldwide has been able to solve such a large

city size in practice, perhaps due to the extensive amount of time and resources

required.
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Table 5.5. The performance of CCM with SA for various city sizes

City size Simulations Valid Invalid Minimum length Average length Perf. ratio

30 250 250 0 13.6922 22.3159 0.6136

100 250 250 0 28.2552 35.6920 0.7916

500 100 100 0 257.1380 283.2810 0.9060

1000 50 50 0 454.3827 490.6963 0.9260

3000 5 5 0 1395.5 1454.2 0.9455
Perf. ratio=Minimum length/Average length

5.6 Conclusion

A new columnar competitive model (CCM) incorporating the WTA learning rule

has been proposed for solving the combinatorial optimization problems, which has

guaranteed convergence to valid states and total suppression of spurious states in

the network. Consistently good results, more superior than that of the Hopfield

network in terms of both the number and quality of valid solutions were obtained

using computer simulations. It also has the additional advantage of fast conver-

gence, and utilizing comparatively lower computing resources, thereby allowing it

to solve large scale combinatorial problems. The dynamics analysis of the CCM im-

plied that the CCM is incapable of hill-climbing transitions and thus being trapped

at local minima is still a problem. With the full validity of solutions ensured by

competitive learning, probabilistic optimization techniques such as LME (Peng et

al., 1993) and simulated annealing (Papageorgiou et al., 1998) can be incorporated

into the competitive model to further improve the solution quality.

In addition, with some modification to the energy function, the competitive model

can also be extended to solve other combinatorial optimization problems, such as

the 4-color map.
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Chapter 6

Competitive Neural Network for

Image Segmentation

6.1 Introduction

Image segmentation is an important task in image processing. It involves parti-

tioning the image into meaningful sub-regions or grouping objects with the same

attribution. This has important applications in a wide variety of areas, such as the

biomedical, metrological and even the military, as distinctive features in the raw

images may appear unclear to the human eyes.

Image segmentation is however, a difficult process, as it depends on a wide variety

of factors such as the complexity of the image, the objects of interest or the number

of classes required. While one mode of grouping may successfully segment the

image into meaningful sub-regions, the same mode of grouping may not work for

another image. Even if the image remains the same, there are many different

ways of segmenting the image, all of which can be considered good segmentations,

depending on the image’s objects of interest, and to a large extent, the user’s own

subjectivity. The image segmentation process is made worse when noise is present,

which unfortunately, is often the case.
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A number of algorithms based on histogram analysis, region growing, edge detec-

tion or pixel classification, have been proposed (Pavlidis and Liow, 1990; Gonzalez

and Woods, 2002). Neural networks with applications to various stages of image

processing was addressed in a review (Egmont-Pertersen et al., 2002). Especially,

neural networks have been used to solve the image segmentation problem (Cheng et

al., 1996; Wu et al., 2001; Gopal et al., 1997; Phoha and Oldham, 1996). Generally,

the method involves mapping the problem into a neural network by means of an

energy function, and allowing the network to converge so as to minimize the en-

ergy function. The final state should ideally correspond to the optimum solution,

with the (local) minimum energy. More often than not, the network converges

to invalid states, despite the presence of penalty terms. Researchers (Cheng et

al., 1996; Wersing et al., 2001a) have incorporated the Winner-Takes-All (WTA)

algorithm to avoid the need for penalty terms, while ensuring the validity of solu-

tions.

This chapter introduces a new design method of competitive neural networks for

performing image segmentation. The previous design method (Cheng et al., 1996)

is also studied for comparison purposes. The comparison study shows that the new

model of network has high computational efficiency and better performance of noise

suppression and image segmentation. Two stochastic optimization techniques to

improve the quality of solutions, simulated annealing (SA) and local minima escape

(LME) (Peng et al., 1993), are introduced to the competitive network.

This chapter is organized as follows: A brief introduction of image segmentation

and its mapping to neural network is given in Section 6.2. The competitive model

is addressed in Section 6.3 and its proof for convergence is proposed in Section

6.4. SA algorithm and LME algorithm are described in detail in Section 6.5 and

6.6, respectively. Computer simulation results are presented in Section 6.7, and

conclusions drawn in Section 6.8.
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6.2 Neural Networks Based Image Segmentation

The image segmentation problem can be mapped onto a neural network, with

the cost function as the Lyapunov energy function of the network. The iterative

updating of the neuron states will eventually force the network to converge to a

stable state, preferable a valid one with the lowest energy. Hence, this can be seen

as an optimization problem, and the best segmentation will be one with the lowest

energy.

The neural network model (Lin et al., 1992) for the image segmentation problem

consists of L×L×C neurons, with L×L being the image size, and C the number

of classes. The network uses spatial information and is thus image size dependent.

This would not be desirable in terms of the computational time and resources when

the Image size or the number of classes required is large. A similar constraint sat-

isfaction network was addressed for segmentation based on perceptual organization

method (Mohan and Nevatia, 1992).

Another segmentation method employs the gray level distribution (Cheng et al.,

1996) instead of spatial information, and thus has the advantages of being image

size independent, using fewer neurons and requiring lesser computational time and

resources. In addition, the number of segmentation classes is stated in advance.

For an image with N gray levels and C classes of sub-objects, it can be mapped

to a network consisting of N × C neurons, with each row representing one gray

level of the image and each column a particular class, subjected to the following

constraints:

c∑

i

vx,i = 1, x = 1, . . . , N, (6.1)

c∑

i

N∑

x

vx,i = N. (6.2)

Each row should consist of only one ’1’, and the column which this ’1’ falls under

will indicate this particular gray level’s class. The strength of connection between
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neuron (x, i) and neuron (y, j) is denoted as Wxi,yj. A neuron in this network would

receive inputs from all other neurons weighted by Wxi,yj and also an additional bias,

ib. Mathematically, the total input to the neuron (x,i) is given as

Netxi =
N∑

y

c∑

j

Wxi,yjvyj + ib. (6.3)

With a symmetrical W , the energy like function exists, thereby implying the exis-

tence of equilibrium points. The image segmentation can hence be expressed as a

minimization of an energy function of the form:

E = −1

2
vtWv − (ib)tv. (6.4)

The energy function proposed in (Cheng et al., 1996) is as

E =

n∑

x=1

n∑

y=1

c∑

i=1

1∑n
y=1 hyvy,i

vx,idx,yhyvy,i, (6.5)

and the connection weights and external input are given by

wxi,yj = − 1∑n
y=1 hyvy,i

dx,yhy, (6.6)

ib = 0. (6.7)

6.3 Competitive Model of Neural Networks

The competitive network is now minimizing the following energy function

E =
n∑

x

c∑

i

n∑

y

vxivyjhxhydxy. (6.8)

The network incorporates the competitive learning rule, winner-takes-all (WTA),

into its dynamics. The neuron with the largest net-input in the same row is declared

as the winner, and the updating of all neurons in the same row is as follows:

vx,i =





1, if Netx,i = max{Netx},

0, otherwise.
(6.9)
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WTA automatically satisfies the two constraints, (6.1)-(6.2), specified earlier.

This relieves the need for penalty terms in the energy function, and hence avoids

the hassle of setting their parametric values. All network states upon convergence

will be valid states, i.e., no gray levels will be classified into two or more different

classes, and each gray level will be assigned a class.

The architecture of the competitive model is similar to that suggested by (Cheng

et al., 1996). The difference lies in the treatment of connection weights and the

energy function. The connection weights are formulated by

Wxi,yj = δij(1 − δxy)hxhydxy. (6.10)

The external input ib is set to zero. Recall equation (6.3), the net-input to neuron

(x, i) is computed by

Netxi = −
n∑

y

hxhydxyvyi. (6.11)

The implementation of the competitive network can be described in the following

way:

Algorithm 6.1. Competitive Model Based Image Segmentation

1. Input gray levels N of image and its associated histogram, as well as number

of classes C. Compute distance matrix, according to the following equation,

for all gray levels

dxy = (gx − gy)
2.

2. Initialized the neural network by randomly assigning one ’1’ per row, and

setting the rest of neurons in the same row to ’0’. Do the same for all other

rows, while ensuring that there is at least one ’1’ per column.

3. Do N times: Choose one row randomly and calculate Netx,i to all neurons

in the same row, according to equation (6.11). Then apply WTA mechanism

(6.9) to update all the neuron states within the same row. This constitutes 1

epoch
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4. Go to step 2 until convergence, i.e. the network state, V = (vx,i), for previous

epoch is the same as current epoch.

6.4 Dynamical Stability Analysis

The proposed energy function of the CHN, is always convergent during the network

evolutions. The proof is given as follows.

Let the proposed energy function be re-written as

E =
c∑

i

Ei, (6.12)

where Ei =
∑n

x

∑n
y vxivyihxhydxy, which represents the energy of all neurons in

each column.

Consider row r and let neuron (r, i) be the winning neuron before WTA updating.

Upon updating, let neuron (r, j) be the winning neuron. Without loss of generality,

let r be the first row. Suppose V (k) and V (k + 1) be the network states before

WTA updating and after WTA updating, respectively:

V (k) =




0 1 · · · 0 0

v21 v2i · · · v2j v2c

v31 v3i · · · v3j v3c

...
...

...
...

...

vn1 vni · · · vnj vnc




,

V (k + 1) =




0 0 · · · 1 0

v21 v2i · · · v2j v2c

v31 v3i · · · v3j v3c

...
...

...
...

...

vn1 vni · · · vnj vnc




.

For any time k, the energy of the network can be broken into three terms as
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below,

E(k) = Ei(k) + Ej(k) + Eo

=
n∑

x

n∑

y

vxi(k)vyi(k)hxhydxy

+

n∑

x

n∑

y

vxj(k)vyj(k)hxhydxy

+ Eo, (6.13)

where Eo is the energy of all other neurons, not in column i or j. Note that Eo

remains unchanged after updating. It is derived that

E(k + 1) − E(k)

= 2
n∑

x=2

h1hxd1xvxj(k + 1) − 2
n∑

x=2

h1hxd1xvxi(k)

= 2
n∑

x=2

h1hxd1xvxj(k) − 2
n∑

x=2

h1hxd1xvxi(k).

Since neuron (r, j) is the winning neuron, Netrj > Netri. It implies that

−
n∑

x

hrhxdrxvxj(k) > −
n∑

x

hrhxdrxvxi(k), (6.14)

that is
n∑

x

hrhxdrxvxj(k) <
n∑

x

hrhxdrxvxi(k). (6.15)

Hence it is derived that

E(k + 1) − E(k) < 0. (6.16)

This shows that the energy of the network is decreasing. The convergence is thus

proven.

6.5 Simulated Annealing Applied to Competitive

Model

Simulated Annealing (SA) can be applied to the new WTA model to improve the

quality of solutions. SA is a stochastic relaxation algorithm which has been applied
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and used to solve optimization problems. It derives its name from the analogy of

the physical process of thermodynamics and metallurgy. Metal is first heated to a

high temperature T , thus causing the metal atoms to vibrate vigorously, resulting

in a disorderly structure. The metal is then cooled slowly, to allow the atoms

rearrange themselves in an orderly fashion, which corresponds to a structure of

minimum energy.

The network starts with a high initial temperature T = 1 and evolves to a

new state after each WTA update. The network energy is calculated for each

WTA update and if it is less than that before the update, the new state is readily

accepted. If not, the new state is not rejected outright, but there is a certain

probability e−δE/T of accepting it. After each epoch, the network temperature

decreases according to T = 0.999T , and so does the probability of accepting a new

state of higher energy. Eventually, the temperature decreases to a small value, and

the network converges, thereby terminating the SA algorithm.

The algorithm of competitive model incorporating SA can be summarized as

follows:

Algorithm 6.2. Completive Model with SA

1. Input Gray levels N of image, and its associated histogram, as well as number

of classes C. Compute distance matrix, according to the following equation,

for all gray levels

dxy = (gx − gy)
2.

2. Initialized the neural network by randomly assigning one ’1’ per row, and

setting the rest of neurons in the same row to ’0’. Do the same for all other

rows, while ensuring that there is at least one ’1’ per column.

3. Choose one row randomly and calculate the total input Netx,i to all neurons in

that row. Then apply WTA algorithm to update neurons states and calculate

the new network energy E.
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4. If the energy, Ecurrent, is less than its previous energy, Eprevious, accept the

new state. If not, compute the probability of acceptance,

Pr = e−(Ecurrent−Eprevious)/T ,

and generate a random number α between 0 and 1. Accept the new state if

α < Pr, else reject the new state. This constitutes 1 epoch.

5. Decrease temperature T by T = ηT , with 0 < η < 1. Go to step 2 until

convergence, such that both (a) and (b) are satisfied

(a). T reaches below a small value (e.g., 0.1).

(b). Network state v for previous epoch is the same as current epoch.

6.6 Local Minima Escape Algorithm Applied to

Competitive Model

The local minima escape, like the SA, can also be used to improve the quality

of solutions. It is essentially a combination of the network disturbing technique

and CHN’s local minima searching property, and was first proposed in (Peng et al.,

1993) to improve the quality of solutions of combinatorial optimization problems, in

particular the traveling salesman problem (TSP). While the TSP results obtained

in (Peng et al., 1993) were promising, it is however, not widely applied to other

combinatorial problems, probably because it is still a relatively new technique.

Believed to be a novelty, this section now investigates the application of LME to

the image processing realm, in particular the segmentation process.

The LME technique first disturbs its network parameters (W and ib), using
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standard white Gaussian noise of varying weights, to obtain a new network Ĥ.

ŵxi,yj = (1 + αwηw
xi,yj)wxi,yj + βwηw

xi,yj , x, i ≤ y, j (6.17a)

ŵxi,yj = wyj,xi, (6.17b)

îbx,i = (1 + αiηi
xi)i

b
x,i + βiηi

x,i, (6.17c)

where ηw
xi,yj , η

i
x,i are standard Gaussian noises, and αw, βw, αi, βi are positive con-

stants which control the strength of disturbance. Note that connection matrix W

is still symmetric after disturbance.

Although having different network parameters, the two networks, H and Ĥ, have

the same architecture. As such, the neurons in these two networks are one-one

related and can be mapped from one to the other easily. The network is initialized

as before, and converges eventually under the WTA dynamics. This converged

state corresponds to either its global minimum, or one of its local minima (which

is often the case).

Assuming the network H is at its local minimum state. Set this local minimum

state as the initial state of Ĥ , and apply the WTA dynamics to Ĥ. Upon conver-

gence, this minimum state of Ĥ is mapped back to the original network H as its

current initial state. Allow this new state to converge in H network now. Upon

convergence, compute the network energy, and check if this new local minimum

state has a lower energy than its former local minimum state. If so, accept the new

state, else reject it and retrieve its former local minimum state. This completes

one epoch. Repeat the entire procedure until the total number of epochs reaches

some pre-set number, or when no new states have been obtained after a certain

number of consecutive epochs.

Since the model proposed in this chapter has zero bias, noise is only added to

the inter-connection strengths, W . As Wxi,yj = δij(1 − δxy)hxhydxy, adding noise

to d has the same effect as noise to W . A standard Gaussian noise, with mean 0,

standard deviation 1 and variance 1 is added to the distance matrix d of the image,
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so as to disturb the network.

The LME algorithm, applied to the WTA (proposed Energy) algorithm can be

summarized as follows:

Algorithm 6.3. Competitive Model with LME

1. Input gray levels N of image, and its associated histogram, as well as number

of class C. Compute distance matrix, according to the following equation, for

all gray levels.

2. Initialized the neural network by randomly assigning one ’1’ per row, and

setting the rest of neurons in the same row to ’0’. Do the same for all other

rows, while ensuring that there is at least one ’1’ per column.

3. Do N times: Choose randomly one row and calculate the total input Netx,i

to all neurons in the same row, according to

Netxi = −
n∑

y

hxhydxyvyi.

Then apply WTA algorithm.

4. Go to step 3 until convergence. This convergent state V , is stored temporary

and set as the initial state for the disturbed network Ĥ. Calculate the energy

Eprevious of the H network.

5. Compute the disturbed distance matrix Ĥ, using

d̂xy = (gx − gy)
2 + G(0, 1),

where G denotes a Gaussian noise with mean 0, variance 1. Process the

competitive dynamics of Ĥ as H until convergence. Let this local minima be

V̂ .

6. This new local minima V̂ is now mapped back to H, as its new initial state.

Perform the dynamics of H until convergence. Let this new state be Vcurrent,
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and calculate the current energy Ecurrent of the H network. If Ecurrent <

Eprevious, accept the new state. Else retrieve its previous minimum state,

Vprevious. This constitutes 1 LME epoch.

7. Repeat above procedure until LME terminates, ie. (a) OR (b) is satisfied:

(a). The total number of LME epochs reaches some preset number.

(b). Vcurrent = Vprevious, for some consecutive LME epochs.

6.7 Simulation Results

6.7.1 Error-Correcting

The competitive model demonstrates the high performance of suppressing noise of

images. An image with only 4 distinct gray levels (50, 100, 150, 200) is corrupted

with a Gaussian noise, thereby resulting in a noisy image with about 40 gray levels,

shown as Figure 6.1. A good algorithm will classify the pixels accordingly such that

the corrupted pixels with gray levels in the vicinity of each of the 4 distinct levels

(50, 100, 150, 200) will be grouped together, thus giving an output image free from

noise. For example, the corrupted gray levels 47-53 is likely to be in the same group,

while 96-103 will be classified in another group. Hence, the algorithm that performs

better will be the one that gave the most number of correctly classified/segmented

images.

Images with different number of pixels (200, 2000, 20k), each with varying degrees

of white Gaussian noise (Variance = 1, 2, 3, 4, 5, 6) were input to the network. A

total of 100 simulations were done for each case. Tables 6.1 and 6.2 compare the

results with that of the modeling method used in (Cheng et al., 1996). An example

of a corrupted image, a wrongly classified image and the clear, correctly restored

image are shown in Figures 6.1, 6.2 and 6.3, respectively.

As observed, the WTA (proposed energy) algorithm performs better in terms of
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Figure 6.3. Correct classifications for different variances
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Table 6.1. The performance of the segmentation model (Cheng et al, 1996)

Pixels Noise

Variance

Number of completely

correct classifications

% error (gray levels) % error (pixels)

200 1 33/100 40.6208 41.0787

2 15/100 50.8457 51.2937

3 13/100 53.0667 53.5505

4 4/100 58.3102 59.1288

5 3/100 56.8309 58.7903

6 15/100 45.1973 47.2101

2000 1 26/100 42.2615 42.8450

2 9/100 55.6250 55.0735

3 5/100 58.0546 59.0965

4 1/100 58.0443 60.9020

5 3/100 54.6299 58.6025

6 0/100 51.3346 55.5435

20K 1 26/100 44.7853 44.7154

2 9/100 55.2891 54.4492

3 7/100 55.1063 57.3599

4 4/100 54.5662 59.1239

5 2/100 54.0060 59.3431

6 0/100 50.3886 57.2611

the number correctly segmented images, as well as the percentage error of gray

levels and pixels. It is able to give 100% error free image restoration when the

pixels are below 2000. When the number of pixels is increased by another factor

of 10 to 20k, it is still able to give satisfactory results, with approximately 80%

correctly segmented images. The reduction in accuracy is due to the presence of

more gray levels generated by the Gaussian noise as the number of pixels increases.

With a high variance (variance = 6) and a large number of pixels, it becomes rather
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Table 6.2. The performance of the proposed model

Pixels Noise

variance

Number of completely

correct classifications

% error (gray levels) % error (pixels)

200 1 100/100 0 0

2 100/100 0 0

3 100/100 0 0

4 100/100 0 0

5 100/100 0 0

6 100/100 0 0

2000 1 100/100 0 0

2 100/100 0 0

3 100/100 0 0

4 100/100 0 0

5 100/100 0 0

6 98/100 0.0151 0.0010

20k 1 100/100 0 0

2 100/100 0 0

3 100/100 0 0

4 100/100 0 0

5 100/100 0 0

6 78/100 0.1399 0.0013
% error (gray levels) = Number (of wrongly classified gray levels) / number (of all gray

levels), % error (pixels) = Number (of wrongly classified pixels) / number (of all pixels)

probable for pixels to be corrupted with noise of deviation up to 25 gray levels.

This makes it difficult to correctly classify/segment the image.

The percentage error of gray levels as well as pixels remains at zero, with the

exception of high noise variance (variance = 6). The percentage error nevertheless

hovers close to zero (0.1%), which implies that the number of wrongly classified
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pixels or gray levels is very small. Hence, most wrongly segmented images have

only a few wrongly classified pixels, which is rather insignificant or noticeable, given

the large number of pixels (20k).

The WTA model (Cheng et al., 1996), on the other hand, gives at best 30%

correctly segmented images, which occurs only when the noise variance is small

(variance=1). Its performance deteriorates rapidly as the noise variance increases,

and is unable to restore the original image in most cases when the noise variance is

large. As the number of pixels increases, there is a higher probability of generating

more gray levels, which thus increases the difficulty of correctly segmenting the

image.

6.7.2 Image Segmentation

The neural network is applied to perform the image segmentation task, where the

lena image is employed. The definition of a good segmentation is rather subjective.

In an attempt to maintain experimental objectivity, the energy values are used as

a means of comparison. In other words, for C classes, the lower energy value, the

better the segmentation. Since the energy functions are different, the same network

state V , will give different energy values. Thus, both energy values are calculated

for all the simulations, so as to make a better comparison.

Both energy functions were first tested using only WTA algorithm, before in-

corporating SA and LME. Different number of classes C (6, 8, 10, 12) were used

to segment the image. A total of 20 simulations were done for each case, and the

results shown in Table 6.3. The original Lena image is shown in Figure 6.4. The

segmentation results for 3 and 6 classes using only WTA are shown in Figures 6.5

and 6.6, respectively.

The results show that the segmentation quality is improved when the number of

classes increases , and the energies decrease as well.

From Table 6.3, the proposed model gives more satisfactory results. Using the
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Figure 6.4. Original Lena image
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Figure 6.5. Lena image segmented with 3 classes
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Figure 6.6. Lena image segmented with 6 classes
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Figure 6.7. Energies of the network for different classes

Table 6.3. Image Segmentation using only WTA

Class Original energy (×104) Equivalent energy (×1011) Proposed energy (×1011)

Min Ave Min Ave Min Ave

6 8.2207 8.2207 36.486 36.486 32.558 32.869

8 4.4871 4.4871 14.676 14.676 13.711 13.864

10 3.0999 3.0999 8.3994 8.3994 6.8463 6.8869

12 2.3082 2.3322 5.6013 5.7445 4.0353 4.0891

WTA (proposed energy) algorithm, the energy of the network calculated using

the proposed energy function is smaller than that of the WTA (original energy)

algorithm, for all classes under simulation.

Using the SA algorithm, the energy of the network is reduced by 2.0 × 109 on

the average, or about 0.4% as shown by Table 6.4. Though a large absolute value,

this is however, a small reduction percentage, thus implying that SA does not

have a significant effect on the WTA algorithm. This also indicates that the WTA

(proposed energy) algorithm is by itself quite efficient, and can give near optimum

solutions in most instances. LME is able to reduce the network energy for all

cases simulated. It has a percentage energy reduction of about 0.75% for the
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Table 6.4. Image Segmentation with SA or LME

Method Class Energy value

Min Ave

WTA with SA 6 3.2524 e+12 3.2821 e+12

8 1.3582 e+12 1.3695 e+12

10 6.8129 e+11 6.8658 e+11

12 4.0269 e+11 4.0774 e+11

WTA with LME 6 3.2538 e+12 3.2591 e+12

8 1.3655 e+12 1.3723 e+12

10 6.7925 e+11 6.8252 e+11

12 4.0389 e+11 4.0584 e+11

WTA (proposed energy) algorithm While still a small percentage, it nevertheless

shows that it is a more effective technique than SA algorithm. As seen from the

simulations, SA and LME are able to reduce the energy of the network. LME

performs better than SA in terms of the reduction percentage. In addition, it

much converges faster than SA. This savings in time is especially important in

image processing, as a short processing time would mean that it is possible to

extend the algorithm to real-time image processing.

6.8 Conclusion

In this chapter, a new modeling method of competitive neural network based on

winner-takes-all mechanism was presented and its application to image restoration

and segmentation were explored. The segmentation task is treated as constrained

optimization problem and is based upon global information of the gray levels distri-

bution. The new modeling has higher computation efficiency and illustrates better

performance of noise suppression as well as image segmentation, as compared to
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the existing approach.

Two techniques for improving the quality of solutions, simulated annealing (SA)

and local escape minima (LME), were incorporated into the WTA algorithm. While

these techniques require longer computation time, the results obtained are rather

satisfactory. The incorporation of either SA or LME in WTA algorithm would have

significant meaning in color image segmentation, where good segmentation will be

more difficult, given the 16 million distinct colors involved in an image.
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Chapter 7

Qualitative Analysis for Neural

Networks with LT Transfer

Functions

7.1 Introduction

Dynamical properties of recurrent neural networks are of crucial importance in

their applications. Stability analysis of recurrent neural networks has attracted

extensive interests in recent years as the growing literatures illustrate (Cohen and

Grossberg, 1983; Forti, 1994; Tang et al., 2002; Yi et al., 1999; Yi et al., 2003). So

far one of the major results is focused on behavior of the monostable networks, i.e.,

the networks is forced to possess a unique stationary states under some conditions.

However, these monostable networks are computational restrictive in applications

as well as in modeling biological behaviors.

The activation functions play an important role in binding the neural dynamics

of recurrent neural networks. Various activation functions have been employed in

neural networks, see e.g., the sigmoid function and limiter function, which formu-

late the Hopfield-Tank model (Hopfield and Tank, 1985), cellular neural networks
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(CNN) (Chua and Yang, 1988) and Linsker’s model (Feng et al., 1996). Both

the transfer functions confine any inputs to bounded outputs. The linear threshold

(LT) transfer function permits the networks to have unbounded outputs, thus more

complex dynamics arise in the networks, e.g. limit cycles or chaos. Most recently,

the LT neural networks which model the cortical neurons have attracted growing

interest in both theoretical analysis and applications (Hahnloser, 1998; Hahnloser

et al., 2000; Wersing et al., 2001a; Wersing et al., 2001b). The LT networks have

been observed to exhibit one important property, i.e., multistability, which allows

the networks to possess multiple equilibria (or say “steady states”) coexisting un-

der certain synaptic weights and external inputs. Multistability endows the LT

networks with distinguished application potentials in decision making, digital se-

lection and analogy amplification (Hahnloser, 1998; Hahnloser et al., 2000). There-

fore, qualitative analysis for the LT networks deserves more efforts and attention

for both theoretical investigations and applications.

In this chapter, the recurrent neural networks described by the following system

of nonlinear differential equations are studied:

ẋi(t) = −xi(t) +
n∑

j=1

wijσ(xj(t)) + hi, i = 1, · · · , n, (7.1)

or its equivalent form

ẋ(t) = −x(t) + Wσ(x(t)) + h, (7.2)

where each xi denotes the activity of neuron i, x = (x1, · · · , xn)
T ∈ <n and h ∈

<n denotes external inputs. W = (wij)n×n is a constant real matrix, each entry

of which denotes the synaptic weight representing the strength of the synaptic

connection from neuron j to neuron i. σ(x) is the LT transfer function, i.e., σ(x) =

max(0, x). A vector that satisfies

−x∗ + Wσ(x∗) + h ≡ 0

is called a stationary state or an equilibrium of the network.
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In the recent paper (Yi et al., 2003), the authors studied three basic properties

of the multistable networks and obtained corresponding conditions: boundedness,

global attractivity and complete convergence. This chapter is focused on the analy-

sis of global attractivity and equilibria properties for the LT networks and propose

new results for boundedness and global attractivity. As compared with the con-

dition that ensures global attractivity in (Yi et al., 2003), the condition obtained

here can be seen as a weak one.

The rest of this chapter is organized as follows. The equilibria properties and

distributions of two-dimensional networks are addressed in Section 7.2. Sufficient

and necessary conditions for multiple equilibria coexisting are derived in Section

7.3. In Section 7.4 it is given the boundedness and global attractivity analysis

for the network (7.2). Conditions will be derived to ensure the boundedness and

global attractivity of the network. Under such conditions, the network possesses

certain compact set which attracts all the trajectories of the network. Simulation

examples illustrate the theory developed in Section 7.5. Finally the conclusion is

drawn in Section 7.6.

7.2 Equilibria and Their Properties

The LT network is one of the three typical and classical models of neural network

and no references are found to show qualitative properties of its 2-coupled system.

In this section, the equilibria and their properties for two-dimensional networks

are going to be studied. Analysis for dynamics of the planar systems will provide

us a fundamental but nontrivial investigation into the neurodynamics of the LT

networks. Generally, a degenerate system of differential equations will have an

infinite number of equilibria. It is assumed that the system of the networks is

nondegenerate, i.e., its Jacobian matrix is invertible.

Since at any time t, each LT neuron is either firing (active) or silent (inactive), the
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whole ensemble of the LT neurons can be divided into a partition P+(t) of neurons

with positive states xi(t) ≥ 0 for i ∈ P+(t), and a partition P−(t) of neurons with

negative states xi(t) < 0 for i ∈ P−(t). Clearly P+(t) ∪ P−(t) = [1, · · · , N ] and

there are in total 2N different possible partitions for x. The qualitative properties

of the LT network’s equilibria can be investigated in each corresponding partition.

Define a matrix W e such that

W ex(t) = Wσ(t). (7.3)

The matrix W e is called the effective recurrence matrix (Hahnloser, 1998), which

describes the connectivity of the operating network, where only active neurons are

dynamically relevant. The matrix W e is simply constructed out of W such that

we
ij = wij for j ∈ P+ and we

ij = 0 for j ∈ P−.

Define a matrix Φ = diag(φ1, · · · , φN), where φi = 1 for i ∈ P+ and φi = 0 for

i ∈ P−. The matrix Φ carries the digital information about which neurons are

active. According to the definition of Φ, it holds

W e = WΦ. (7.4)

This relation holds for any particular partition of x.

Consequently, the nonlinear dynamics of the LT neural network is linearized as

ẋ(t) = (W e − I)x(t) + h, (7.5)

where I denotes the identity matrix. It implies that for any partition, the LT

network is accurately described by a linear system, but nonlinearities arise when

the partitions are switching to each other. This explains the observations that

digital selection and analogy amplification coexist in a LT type of silicon circuit

(Hahnloser et al., 2000).

Let J denote the Jacobian matrix of the LT network, then J = (W e − I). Define

δ =det J , τ =trace A and ∆ = τ 2 − 4δ. The dynamical properties of the network
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are determined by the relations among δ, τ and ∆: a) If δ < 0 then x∗ is a saddle.

b) If δ > 0 and ∆ ≥ 0 then x∗ is a node; it is stable if τ < 0 and unstable if τ > 0.

c) If δ > 0, ∆ < 0 and τ 6= 0, then x∗ is a focus; it is stable if τ < 0 and unstable

if τ > 0. d) If δ > 0 and τ = 0 then x∗ is a center (Perko, 2001).

Now the equilibrium is computed by

x∗ = −J−1h. (7.6)

It is a true equilibrium provided that x∗ lies in the partition dictated by its recur-

rence matrix W e, i.e., xi ≥ 0 for i ∈ P+ and xi < 0 for i ∈ P−. The equilibrium is

unique for a given partition P .

In the following, a fundamental theory about the two-dimensional LT networks

is proposed.

Theorem 7.1. Suppose the plane is divided into four quadrants, i.e., <2 = D1 ∪

D2 ∪ D3 ∪ D4, where

D1 = {(x1, x2) ∈ <2 : x1 ≥ 0, x2 ≥ 0},

D2 = {(x1, x2) ∈ <2 : x1 < 0, x2 ≥ 0},

D3 = {(x1, x2) ∈ <2 : x1 < 0, x2 < 0},

D4 = {(x1, x2) ∈ <2 : x1 ≥ 0, x2 < 0}.

The qualitative properties and distributions of the planar LT network equilibria and

their corresponding parameter conditions are described in Table 7.1.

Proof. Let the neuron states x ∈ <2 be divided into the four partitions D1,D2,D3

and D4. Thus four exhaustive cases are considered in what follows.

Case 1: x∗ = (x∗
1, x

∗
2) ∈ D1 .

The digital information about this equilibrium is Φ = diag(1, 1), then the
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Table 7.1. Properties and distributions of the equilibria

D1 (w11 − 1)(w22 − 1) < w12w21 saddle I(1)

(w22 − 1)h1 ≥ w12h2

(w11 − 1)h2 ≥ w21h1

(w11 − 1)(w22 − 1) > w12w21 (w11 − w22)2 ≥ −4w12w21 w11 + w22 < 2 s-node I(2)

(w22 − 1)h1 ≤ w12h2 w11 + w22 > 2 uns-

node

I(3)

(w11 − 1)h2 ≤ w21h1 (w11 − w22)2 < −4w12w21 w11 + w22 < 2 s-

focus

I(4)

w11 + w22 > 2 uns-

focus

I(5)

w11 + w22 − 2 = 0 center I(6)

D2 w22 < 1, h1 < w12h2
w22−1 , h2 ≥ 0 s-node II(1)

w22 > 1, h1 < w12h2
w22−1

, h2 ≤ 0 saddle II(2)

D3 h1 < 0, h2 < 0 s-node III

D4 w11 < 1, h1 ≥ 0, h2 < w21h1
w11−1 s-node IV(1)

w11 > 1, h1 ≤ 0, h2 < w21h1
w11−1 saddle IV(2)

s: stable, uns: unstable

effective recurrence matrix W e is equal to W . Hence J = W − I. Obviously,

δ = det(W − I) = (w11 − 1)(w22 − 1) −w12w21,

τ = w11 + w22 − 2,

∆ = (w11 −w22)
2 + 4w12w21.

The equilibrium is computed by

x∗ = −J−1h =
1

w12w21 − (w11 − 1)(w22 − 1)




(w22 − 1)h1 − w12h2

−w21h1 + (w11 − 1)h2


 .

It is a true equilibrium provided that

(1a)





(w22 − 1)h1 −w12h2 ≥ 0

(w11 − 1)h2 −w21h1 ≥ 0

w12w21 − (w11 − 1)(w22 − 1) > 0
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or

(1b)





(w22 − 1)h1 − w12h2 ≤ 0

(w11 − 1)h2 − w21h1 ≤ 0

w12w21 − (w11 − 1)(w22 − 1) < 0.

In Case (1a), the equilibrium is a saddle since δ < 0. In Case (1b), δ > 0,

and therefore three exhaustive subcases are needed to be considered.

Subcase i : ∆ ≥ 0. It is known that the equilibrium is a node for δ > 0 and ∆ ≥ 0.

Thus the following conditions are obtained.




(w11 − 1)(w22 − 1) > w12w21

(w22 − 1)h1 ≤ w12h2

(w11 − 1)h2 ≤ w21h1

(w11 − w22)
2 + 4w12w21 ≥ 0.

Furthermore, the node is ensured stable or unstable by w11+w22−2 < 0

or w11 + w22 − 2 > 0, respectively.

Subcase ii : ∆ < 0, τ 6= 0. It is known that the equilibrium is a focus under these

conditions, which can be expressed equivalently as




(w11 − 1)(w22 − 1) > w12w21

(w22 − 1)h1 ≤ w12h2

(w11 − 1)h2 ≤ w21h1

(w11 −w22)
2 + 4w12w21 < 0.

Furthermore, a stable focus is ensured by w11 +w22−2 < 0, an unstable

focus by w11 + w22 − 2 > 0.

Subcase iii : τ = 0. It is known that the equilibrium is a center. The conditions

are obtained as follows:



(w11 − 1)(w22 − 1) > w12w21

(w22 − 1)h1 ≤ w12h2

(w11 − 1)h2 ≤ w21h1

w11 + w22 − 2 = 0.
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Case 2: x∗ = (x∗
1, x

∗
2) ∈ D2 .

Since Φ = diag(0, 1), it leads to

J = W+ − I = WΦ − I =




−1 w12

0 w22 − 1


 .

Then

δ = −(w22 − 1),

τ = w22 − 2,

∆ = (w22 − 2)2 + 4(w22 − 1) = w2
22 ≥ 0.

The equilibrium is computed by

x∗ = −J−1h =
1

1 − w22




w12h2 + (1 − w22)h1

h2


 .

It is a true equilibrium provided that

(2a)





w22 < 1

h1 < w12h2

w22−1

h2 ≥ 0

or

(2b)





w22 > 1

h1 < w12h2

w22−1

h2 ≤ 0.

Analogously as in Case 1, it is proven that in Case (2a) the equilibrium x∗ is

a stable node because δ > 0, τ < 0 and ∆ ≥ 0 are always satisfied. In Case

(2b), x∗ is a saddle because δ < 0.

Case 3: x∗ = (x∗
1, x

∗
2) ∈ D3 .

Obviously Φ becomes a zero matrix and the equilibrium x∗ = h. Then

x∗ ∈ D2 exists if and only if h1 < 0 and h2 < 0. This equilibrium is always a

stable node.
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Case 4: x∗ = (x∗
1, x

∗
2) ∈ D4 .

Since Φ = diag(1, 0), the Jacobi matrix becomes

J = WΦ − I =




w11 − 1 0

w21 −1


 .

Then

δ = 1 − w11,

τ = w11 − 2,

∆ = T 2 − 4 ∗ δ = (w11 − 2)2 + 4(w11 − 1) = w2
11 ≥ 0.

The equilibrium is computed by

x∗ = −J−1h =
1

1 − w11




h1

w21h1 + (1 − w11)h2


 .

It is a true equilibrium provided that

(4a)





w11 < 1

h1 ≥ 0

h2 < w21h1

w11−1

or

(4b)





w11 > 1

h1 ≤ 0

h2 < w21h1

w11−1
.

In Case (4a), x∗ is a stable node since δ > 0, τ < 0 and ∆ ≥ 0 are always

satisfied. In Case (4b), x∗ is a saddle because δ < 0.

The proof is completed.

7.3 Coexistence of Multiple Equilibria

As discussed above, Table 7.1 reveals the relations between the parameters (synap-

tic weights wij’s and external inputs h1, h2) and the features of equilibria of the
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network. The equilibria can coexist when the parameters satisfy some conditions.

Therefore, the results of Table 7.1 allow us to derive the sufficient and necessary

conditions for the coexistence of 2, 3 or 4 equilibria by solving the intersections of

the parameter space defined by the inequalities. At the same time the properties

of the equilibria are obtained in this way.

Though the work of solving the intersections (more than 30 groups) is somewhat

tedious, it is exhaustive and explicit to describe the distributions and properties of

the equilibria of the system in different parameter spaces.

Let Di denote the set formulated by the parameter space which is corresponding

to the class index i in the last column of Table 7.1. The following theorems are

derived.

Theorem 7.2. The planar system has exactly 4 equilibria, i.e., unstable node or

unstable focus (I), saddle (II), stable node (III) and saddle (IV), coexisting in four

quadrants if and only if the parameters belong to the intersection DI(3) ∩ DII(2) ∩

DIII ∩ DIV (2) or DI(5) ∩ DII(2) ∩ DIII ∩ DIV (2).

Proof. It is noted that the conditions are sufficient and necessary for the coexisting

of 4 equilibria of the planar system. It is equivalent to solve the intersections

among any four groups of conditions from I(1) − IV (2). To satisfy DI(3), it is

required −1
4
(w11 − w22)

2 ≤ w12w21 < (w11 − 1)(w22 − 1). To ensure its validity,

an additional inequality is necessary, i.e., (w11 − 1)(w22 − 1) > −1
4
(w11 − w22)

2.

According to II(2) and IV (2), w11 > 1, w22 > 1 and h1 < min{ w12h2

w22−1
, 0}, h2 <

min{ w21h1

w11−1
, 0}. After a sequence of simple inequality computations, finally the
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conditions of DI(3) ∩ DII(2) ∩ DIII ∩ DIV (2) are acquired:





(w11 − 1)(w22 − 1) > −1
4
(w11 − w22)

2

−1
4
(w11 − w22)

2 ≤ w12w21 < (w11 − 1)(w22 − 1)

w11 > 1, w22 > 1

h1 < min{ w12h2

w22−1
, 0}

h2 < min{ w21h1

w11−1
, 0}.

It is analogous to derive the conditions of DI(5) ∩ DII(2) ∩ DIII ∩ DIV (2):





w12w21 < min{(w11 − 1)(w22 − 1),−1
4
(w11 − w22)

2}

w11 > 1, w22 > 1

h1 < min{ w12h2

w22−1
, 0}

h2 < min{ w21h1

w11−1
, 0}.

Any other intersections of 4 groups of conditions are empty. This completes the

proof.

In the next, the analysis is restricted to discuss an important case where only

nonnegative external inputs are fed in. Analogously, the following two theorems

are obtained with ignoring the proofs for space limit.

Theorem 7.3. The nondegenerate network has at least 3 equilibria if the network

parameters belong to any of the intersection: DI(1) ∩ DII(1) ∩ DIV (1).

The above intersection is given by

DI(1) ∩ DII(1) ∩ DIV (1) :





1 + w12w21/(w22 − 1) < w11 < 1,

w22 < 1, w12 < 0, w21 < 0,

0 ≤ h1 < w12h2/(w22 − 1),

0 ≤ h2 < w21h1/(w11 − 1).

Theorem 7.4. The nondegenerate network has at least 2 equilibria if the network

parameters fall into any of the intersections: DI(1) ∩DII(1),DI(1) ∩DIV (1),DII(1) ∩

DIV (1).
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The above intersections are given by, respectively:

DI(1) ∩ DII(1) :





(w11 − 1)(w22 − 1) < w12w21,

(w22 − 1)h1 > w12h2,

(w11 − 1)h2 ≥ w21h1,

w22 < 1, h2 ≥ 0.

DI(1) ∩ DIV (1) :





(w22 − 1)h1 ≥ w12h2,

w11 < 1, w22 > 1 + w12w21/(w11 − 1),

h1 ≥ 0, h2 < w21h1/(w11 − 1),

DII(1) ∩ DIV (1) :





w11 < 1, w22 < 1,

w12 < 0, w21 < 0,

0 ≤ h1 < w12h2/(w22 − 1),

0 ≤ h2 < w21h1/(w11 − 1).

The following corollary illustrates the multistability conditions for the two-dimensional

networks.

Corollary 7.1. The nondegenerate planar system has at most 2 stable equilibria.

The sufficient and necessary conditions for coexistence of 2 stable equilibria are that

the parameters fall in any of the intersections DI(2)∩DIII ,DI(4)∩DIII ,DI(6)∩DIII

and DII(1) ∩ DIV (1).

For a straightforward illustration of the relations between the coexistence of

equilibria with the network parameters, Figure 7.1 is drawn in the parameter plane

of w11 − w22 according to Table 1. This plane is divided by the lines w11 = 1 and

w22 = 1 and the lines L1: w22 = w11+2
√

|w12w21|, L2: w22 = w11−2
√

|w12w21| and

L3: w11 + w22 = 2. Regarding the equilibrium of I(3), for example, the two arrows

above L3 and L1 indicate that both w11 + w22 > 2 and (w11 − w22)
2 ≥ −4w12w21

should be met. It is shown that the equilibrium (III) always exists regardless of
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Figure 7.1. Equilibria distribution in w11, w22 plane

the weights since there are no such inequality constraints, as long as the external

inputs are negative.

It should be noted that if w12w21 ≥ 0 then L1 and L2 will coalesce and the regions

for I(4) and I(5) will disappear.

7.4 Boundedness and Global Attractivity

In this section, the conditions which ensure the boundedness of the networks are

derived. Moreover, a compact set which globally attracts all the trajectories of the

network is obtained in an explicit expression.

Let the matrix norm and the vector norm be computed by ‖A‖ = (

m∑

i=1

n∑

j=1

a2
ij)

1
2 =

(tr(ATA))
1
2 , and ‖x‖ = (

n∑

i=1

x2
i )

1
2 = (xTx)

1
2 for all A ∈ <n×n and x ∈ <n. Obvi-

ously, ‖Ax‖ ≤ ‖A‖‖x‖.

Definition 7.1. Consider the recurrent neural network described by a system of

differential equations ẋ = f(t, x), where f(t, x) ∈ C(I × <n,<n), the network is

ultimately bounded for bound B, if there exists a B > 0 and a T (t0) > 0 such that
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for every trajectory of the system, ‖x(t, t0, x0)‖ < B for all t ≥ t0 + T , where B is

independent of the particular trajectory.

Definition 7.2. Let S be a compact subset of <n. Let Sε denote the ε−neighborhood

set of S, ∀ε > 0. The compact set S is said to globally attract the network if all

trajectories of the network ultimately enter and remain in Sε.

For any matrix A = (aij)n×n, define A+ = (a+
ij) such that

a+
ij =





aii, i = j,

max(0, aij), i 6= j,

and define A− = (a−
ij) such that

a−
ij =





aii, i = j,

min(0, aij), i 6= j.

Let V and Ω denote the effective recurrence matrices of W+ and W− for the net-

work (7.2) respectively, i.e., V = (W+)e,Ω = (W−)e. Let ‖M‖ = max (‖V ‖, ‖Ω‖).

Theorem 7.5. Suppose that ‖M‖ < 1. Then the network (7.2) is ultimately

bounded. Furthermore, the compact set

S =

{
x | ‖x‖ ≤ ‖h‖

1 − ‖M‖

}

globally attracts the network (7.2).

Proof. The trajectory x(t) of network (7.2) satisfies

x(t) = x(t0)e
−(t−t0) +

∫ t

t0

e−(t−s)[Wσ(x(s)) + h]ds, (7.7)

where t0 ∈ <1. Since σ(·) ≥ 0, from the above equation, it is obtained that

x(t) ≤ x(t0)e
−(t−t0) +

∫ t

t0

e−(t−s)[W+σ(x(s)) + h]ds. (7.8)

Since V = (W+)e, it follows from equation (7.3) that W+σ(x) = V x. Therefore,

x(t) ≤ x(t0)e
−(t−t0) +

∫ t

t0

e−(t−s)[V x(s) + h]ds. (7.9)
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On the other hand, W−σ(x) = Ωx. It follows from equation (9.13) that

x(t) ≥ x(t0)e
−(t−t0) +

∫ t

t0

e−(t−s)[W−σ(x(s)) + h]ds

= x(t0)e
−(t−t0) +

∫ t

t0

e−(t−s)[Ωx(s) + h]ds. (7.10)

From equations (7.9) and (7.10), it is derived that

‖x(t)‖ ≤ ‖x(t0)‖e−(t−t0) +

∫ t

t0

e−(t−s)‖h‖ds

+max

(∫ t

t0

e−(t−s)‖V ‖‖x(s)‖ds,

∫ t

t0

e−(t−s)‖Ω‖‖x(s)‖ds

)
. (7.11)

Let ‖M‖ = max (‖V ‖, ‖Ω‖). Then

‖x(t)‖ ≤ ‖x(t0)‖e−(t−t0) +

∫ t

t0

e−(t−s)‖h‖ds +

∫ t

t0

e−(t−s)‖M‖‖(x(s))‖ds

= e−(t−t0)‖x(t0)‖ + (1 − e−(t−t0))‖h‖ +

∫ t

t0

e−(t−s)‖M‖‖x(s)‖ds,

that is,

et‖x(t)‖ ≤ et0‖x(t0)‖ + (et − et0)‖h‖ +

∫ t

t0

‖M‖es‖x(s)‖ds. (7.12)

Let y(t) = et‖x(t)‖. Thus

y(t) ≤ y(t0) + (et − et0)‖h‖ +

∫ t

t0

‖M‖y(s)ds. (7.13)

By Gronwall’s inequality it is obtained

y(t) ≤ y(t0) + (et − et0)‖h‖ +

∫ t

t0

(
y(t0) + (es − et0)‖h‖

)
‖M‖e‖M‖(t−s)ds

= y(t0) + (et − et0)‖h‖ +

∫ t

t0

(
y(t0) − et0‖h‖

)
‖M‖e‖M‖(t−s)ds

+

∫ t

t0

‖h‖‖M‖e‖M‖te(1−‖M‖)s)ds

= y(t0) + (et − et0)‖h‖ +
(
y(t0) − et0‖h‖

)
(e‖M‖(t−t0) − 1)

+
‖h‖‖M‖e‖M‖t

1 − ‖M‖
(
e(1−‖M‖)t − e(1−‖M‖)t0

)

= et‖h‖ +
(
y(t0) − et0‖h‖

)
e‖M‖(t−t0)

+
‖h‖‖M‖
1 − ‖M‖

(et − e‖M‖t+(1−‖M‖)t0). (7.14)
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Thus

e−ty(t) ≤ ‖h‖ +
(
y(t0) − et0‖h‖

)
e−‖M‖t0e−(1−‖M‖)t

+
‖h‖‖M‖
1 − ‖M‖(1 − e−(1−‖M‖)(t−t0)), (7.15)

that is,

‖x(t)‖ ≤ ‖h‖ +
(
e−t0y(t0) − ‖h‖

)
e−(1−‖M‖)(t−t0) +

‖h‖‖M‖
1 − ‖M‖

(1 − e−(1−‖M‖)(t−t0))

= ‖h‖ +
‖h‖‖M‖
1 − ‖M‖ +

(
x(t0) − ‖h‖ − ‖h‖‖M‖

1 − ‖M‖

)
e−(1−‖M‖)(t−t0)

=
‖h‖

1 − ‖M‖ +

(
x(t0) −

‖h‖
1 − ‖M‖

)
e−(1−‖M‖)(t−t0). (7.16)

Since ‖M‖ < 1,

lim
t→+∞

‖x(t)‖ ≤ ‖h‖
1 − ‖M‖ .

It implies that the network is ultimately bounded and the compact set S globally

attracts any trajectory of the network (7.2). This completes the proof.

Notice that V = (W+)e, Ω = (W−)e. Recalling equation (7.4),

V = W+Φ, (7.17)

Ω = W−Φ, (7.18)

where Φ is the digital information matrix as defined in Section II.

Consider an extreme case where all neurons are active, Φ becomes the identity

matrix I. It always holds that

‖V ‖ = ‖W+Φ‖ ≤ ‖W+I‖ = ‖W+‖,

‖Ω‖ = ‖W−Φ‖ ≤ ‖W+I‖ = ‖W−‖.

It implies that the all firing states of neurons leads to the maximal norms of V and

Ω.
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Let ‖M̄‖ = max(‖W+‖, ‖W−‖). Obviously, ‖M‖ ≤ ‖M̄‖. Furthermore,

‖h‖
1 − ‖M‖

≤ ‖h‖
1 − ‖M̄‖

.

Then the following corollary is obtained, which avoids the computation of effective

recurrence matrix in Theorem 7.5.

Corollary 7.2. Suppose ‖M̄‖ < 1. Then the network (7.2) is ultimately bounded.

Furthermore, the compact set

S =

{
x | ‖x‖ ≤ ‖h‖

1 − ‖M̄‖

}

globally attracts the network (7.2).

Remarks: A multistable dynamical system is one in which multiple attractors

coexist. Although multistability is not exclusive to the system with nonsaturating

transfer functions, it appears that only the multistability analysis of LT networks

has found significant meaning in neural network areas (Hahnloser, 1998; Wersing

et al., 2001b; Yi et al., 2003). In contrast to saturating transfer functions e.g., the

sigmoid function and limiter function, the distinction of the LT transfer function

lies in that in the actual computations of the recurrent network, the upper satura-

tion may not be involved, since the activation is dynamically bounded due to the

effective net interactions. In addition, the LT networks can perform both digital

selection and analog amplification (Hahnloser et al., 2000). Another important

characteristics of LT transfer functions is that the lack of an upper saturation can

be used to exclude spurious ambiguous states (Wersing et al., 2001b).

7.5 Simulation Examples

In this section, some simulation examples are presented to illustrate the theorems

obtained in this work.
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Example 1 : Consider the following two-dimensional neural network,



ẋ1(t)

ẋ2(t)


 = −




x1(t)

x2(t)


+




2 −2

2 0







σ(x1(t))

σ(x2(t))


+




−1

−4


 (7.19)

for t ≥ 0. Obviously,

W =




2 −2

2 0


 , h =




−1

−4


 .

It is verified that the network parameters belong to the intersection DI(6) ∩

DIII . By Corollary 7.1, the network possess exactly two stable stationary

states: one center in quadrant I and one stable node in quadrant III. Figure

7.2 illustrates the simulation results for two stable equilibria coexisting in the

planar system.

−6 −4 −2 0 2 4 6 8
−5

−4

−3

−2

−1

0

1

2

3

4

5

Figure 7.2. Center and stable node coexisting in quadrants I and III of network

(7.19)

Example 2 : Suppose the network in Example 1 is now constructed by the fol-

lowing parameters:

W =




0.2 −2

−1 0.6


 , h =




4

3


 .
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The connection weights and external inputs fall in the intersection DI(1) ∩

DII(1) ∩ DIV (1), which meet Theorem 7.3 but not Theorem 7.2. It implies

that the planar system has exactly three equilibria: one saddle in quadrant I

and two stable nodes in quadrants II and IV, respectively. See figure 7.3 for

an illustration.

−12 −10 −8 −6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

8

Figure 7.3. Three equilibria coexisting in quadrants I, II and IV

Example 3 : Consider the network (7.19) with the network parameters as follows:

W =




2 1

−1 3


 , h =




−2

−1


 .

The parameters fall into the intersection DI(5) ∩ DII(2) ∩ DIII ∩ DIV (2). Ac-

cording to Theorem 7.2, the network possesses exactly 4 equilibria, that is,

unstable focus (I), saddle (II), stable node (III) and saddle (IV). Figure 7.4

illustrates the simulation results.

Example 4 : Consider a three-dimensional neural network

ẋ(t) = −x(t) + Wσ(x(t)) + h, (7.20)
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−60 −40 −20 0 20 40 60

−30

−20

−10

0

10

20

30

40

Figure 7.4. Four equilibria coexisting in four quadrants

where

W =




0.4 0.6 −0.5

0.5 0 0

−0.6 0 0.3




, h =




1

1

1




.

It is easy to see that ‖W‖ > 1 but ‖W+‖ = ‖W−‖ = 0.9274 < 1. By

Theorem 7.5, the network is bounded and all the trajectories of the network

are globally attracted into a compact set

S = {x : ‖x‖ ≤ 23.8574}.

Figure 7.5 shows the trajectories of the network starting from randomly 50

initial points in the three-dimensional space. Figures 7.6-7.8 show the projec-

tions of the trajectories onto the phase planes (x1, x2), (x2, x3) and (x1, x3),

respectively.

7.6 Conclusion

In this chapter, the dynamical properties of recurrent neural networks with LT

transfer functions have been analyzed, such as geometrical properties of equilibria,
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Figure 7.5. Global attractivity of the network (7.20)
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Figure 7.6. Projection on (x1, x2) phase plane

global attractivitity and multistability. Firstly, the qualitative properties and dis-

tributions of the equilibria of general two-dimensional networks were investigated.

The relations between the dynamical properties and the network parameters are

revealed clearly and conditions for coexistence of multiple equilibria are therefore

established. Consequently, multistability were explained in a clear manner, though

it was based on a two-dimensional system. Secondly, the condition for global attrac-

tivity was derived, which is an important result in ensuring the bounded dynamics
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Figure 7.7. Projection on (x2, x3) phase plane
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Figure 7.8. Projection on (x1, x3) phase plane

of LT networks. The theories developed herein are applicable to both symmet-

ric and asymmetric connection weights, and thus they can have more implications

in practice. In addition, our theoretical analysis confirmed the results obtained in

(Hahnloser et al., 2000) that both digital selection and analog amplification coexist.

The LT network is actually nonlinear because the LT transfer function σ(x) is

nonlinear (although it is piecewise linear). The different shape of σ(x) in different

interval melts simple dynamical behaviors into a complicated one, so its qualitative
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analysis is technical. Nonlinearity may cause periodic oscillation and chaotic oscil-

lation, and various types of nonlinear oscillators have been studied (Guckenheimer

and Holmes, 1983; Haken, 2002; Amari and Ksabov, 1997). The 2-coupled LT

network is a special nonlinear system and might undergo those complicated phe-

nomena, but its qualitative analysis at equilibria and global stability are rather

basic and uneasy work before proceeding further. Our work not only clarifies the

situation of equilibria and stability but also gives a foundation for further investi-

gation to its periodic oscillation and chaotic oscillation.

The main purpose of this chapter is theoretical analysis of LT network dynamics,

of which the stability result has significant meaning in developing practical appli-

cations of such networks, for example, in feature binding and sensory segmentation

(Wersing et al., 2001a). It is still a difficult task to give a design method or learn-

ing algorithm of a LT network for a target behavior, and therefore it would be a

meaningful topic in the future research.
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Analysis of Cyclic Dynamics for

LT Networks

8.1 Introduction

Networks of linear threshold (LT) neurons with nonsaturating transfer functions

have attracted growing interest in recent literatures (Ben-Yishai et al., 1995; Hahn-

loser, 1998; Wersing et al., 2001b; Xie et al., 2002; Yi et al., 2003). The prominent

properties of an LT network are at least embodied in two categories. Firstly, it is

believed to be more biological plausible, e.g., in modeling cortical neurons which

rarely operate close to saturation (Douglas et al., 1995). Secondly, the LT network

is readily for performing multistability analysis. A multistable network is not so

computationally restrictive as compared to a monostable network, such as in deci-

sion making. Its computational abilities have been explored in a wide range of ap-

plications. A class of multistable WTA networks was presented in (Hahnloser, 1998)

and an LT network composed of competitive layers was employed to accomplish

perceptual grouping (Wersing et al., 2001a). An LT network was designed in micro-

electronic circuits, which demonstrated both computation of analog amplification

and digital selection (Hahnloser et al., 2000).
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The transfer function plays an important factor in bounding the network dy-

namics. Unlike the sigmoid function in Hopfield networks (Hopfield, 1984) and

the piecewise linear sigmoid function in cellular networks (Chua and Yang, 1988),

both of which ensure bounded dynamics and at least one equilibrium, nonsaturat-

ing transfer function may give rise to unbounded dynamics and even nonexistence

of equilibrium (Forti and Tesi, 1995). The existence and uniqueness of equilib-

rium of LT networks have been investigated (Hadeler and Kuhn, 1987; Feng and

Hadeler, 1996). A stability condition such that local inhibition is sufficient to

achieve nondivergence of LT networks was established (Wersing et al., 2001b). A

wide scope of dynamics analysis, including boundedness, global attractivity and

complete convergence was conducted in (Yi et al., 2003).

However, in analysis of the dynamics of the LT networks, little attention has been

paid to theoretically analyze geometrical properties of equilibria and periodic oscil-

lations. It is often difficult to perform theoretical analysis for the cyclic dynamics

of a two-dimensional system, and is even impossible to study that of high dimen-

sional systems. It was reported that slowing down the global inhibition produced

periodic oscillations in a WTA network and the epileptic network approached a

limit cycle by computer simulations (Hahnloser, 1998). Nevertheless, there was

a lack of theoretical proof about the existence of periodic orbits. It also remains

unclear what factors affect the amplitude and period of the oscillations. This chap-

ter gives an in-depth analysis on these issues based upon parameterized networks

with two linear threshold neurons. Generally, the analytical result is only appli-

cable to two-cell networks, however, it can be extended to a special class of high

dimensional networks, such as generalized WTA network using local excitation and

global inhibition. The principle analysis of the planar system would provide a useful

framework to study the dynamical behaviors and gives an insightful understanding

for such LT networks.
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8.2 Preliminaries

The network with n linear threshold neurons is described by the additive recurrent

model,

ẋ(t) = −x(t) + Wσ(x(t)) + h, (8.1)

where x, h ∈ Rn are the neural states and external inputs, W = (wij)n×n the

synaptic connection strengths. σ(x) = (σ(xi)) is called the linear threshold function

defined by σ(xi) = max{0, xi}, i = 1, · · · , n.

Due to the simple nonlinearity of threshold, network (8.1) can be divided into

pieces of linear systems and there are 2n in total such partitions for n neurons. In

each partition, it is possible to study the qualitative behavior of the dynamics in

details. In general, equation (8.1) can be linearized as

ẋ(t) = −x(t) + W+x(t) + h, (8.2)

and it must be made corresponding to each partition. For a given partition, W+ is

simply computed by w+
ij = wij for xj ≥ 0 and w+

ij = 0 for xj < 0, for all i, j. Then

it is easy to compute the equilibria of (8.2) by solving linear equation Jx∗ +h = 0,

where J = (W+ − I) is the Jacobian, and I is the identity matrix. If J is singular,

the network may possess infinite equilibria, for example, a line attractor (necessary

conditions for line attractors have been studied in (Hahnloser et al., 2003)). If J is

nonsingular, a unique equilibrium exists, which is explicitly given by x∗ = −J−1h.

It should be noted that if x∗ lies in this region, it is called a true equilibrium,

otherwise it is called a virtual equilibrium. On the other hand, the periodic orbits

and limit cycles imply the periodic oscillations in the LT networks.
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8.3 Geometrical Properties of Equilibria Revis-

ited

For a planar system, the phase plane is divided into four quadrants, i.e., R2 =

D1 ∪ D2 ∪ D3 ∪ D4, where D1 = {(x1, x2) : x1 ≥ 0, x2 ≥ 0},D2 = {(x1, x2) : x1 <

0, x2 ≥ 0},D3 = {(x1, x2) : x1 < 0, x2 < 0},D4 = {(x1, x2) : x1 ≥ 0, x2 < 0}.

Obviously, D1 is a linear region which is unsaturated. D2 and D4 are partially

saturated but D3 is saturated. The Jacobians of the two-cell network in each

region are formulated explicitly,




w11 − 1 w12

w21 w22 − 1


 ,




−1 w12

0 w22 − 1


 ,




−1 0

0 −1


 ,




w11 − 1 0

w21 −1


 ,

adding the subscript 1, · · · , 4 when it is necessary to indicate their corresponding

regions.

Define δ =det J , µ =trace J and ∆ = µ2 − 4δ. The dynamical properties of the

network are determined by the relations among δ, µ and ∆ according to the linear

system theory in R2 (Perko, 2001): (i) If δ < 0 then x∗ is a saddle, (ii) If δ > 0

and ∆ ≥ 0 then x∗ is a node which is stable if µ < 0 and unstable if µ > 0, (iii) If

δ > 0, ∆ < 0 and µ 6= 0, then x∗ is a focus which is stable if µ < 0 and unstable

if µ > 0, (iv) If δ > 0 and µ = 0 then x∗ is a center. Based on the theory, for the

sake of concision, the following theory is presented without detailed analysis.

Theorem 8.1. A distribution of equilibria of the two-cell LT network (8.1) and

their geometrical properties are given for various cases of connection strengths and

external inputs in Table 8.1.

Now it is applied to an example to show from geometrical interpretations that

strong local inhibitions result in nondivergence and stable modes coexist with an
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Table 8.1. Properties and distributions of the equilibria revisited

dist. conditions propt.

D1 (w11 − 1)(w22 − 1) < w12w21 saddle

(w22 − 1)h1 ≥ w12h2

(w11 − 1)h2 ≥ w21h1

(w11 − 1)(w22 − 1) > w12w21 (w11 − w22)
2 ≥ −4w12w21 d < 2 s-node

(w22 − 1)h1 ≤ w12h2 d > 2 u-node

(w11 − 1)h2 ≤ w21h1 d < 2 s-focus

(w11 − w22)
2 < −4w12w21 d > 2 u-focus

d = 2 center

D2 w22 < 1, h1 < w12h2/(w22 − 1), h2 ≥ 0 s-node

w22 > 1, h1 < w12h2/(w22 − 1), h2 ≤ 0 saddle

D3 h1 < 0, h2 < 0 s-node

D4 w11 < 1, h1 ≥ 0, h2 < w21h1/(w11 − 1) s-node

w11 > 1, h1 ≤ 0, h2 < w21h1/(w11 − 1) saddle

d = w11 + w22, s: stable, u: unstable.

unstable mode. The connection matrix and external input are given by

W =




0.2 −2

−1 0.6


 , h =




4

3


 .

The two-cell network has exactly three equilibria, one saddle in D1 and two stable

nodes in D2 and D4, respectively. The result of computer simulations is illustrated

in Figure 8.1. It is observed that although an unstable equilibrium exists, each

trajectory of neural states converges to either of the stable equilibria. It shows

that nondivergence of network (8.1) permits stable modes coexisting with unstable

modes by strong local inhibitions.
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Figure 8.1. Three equilibria coexisting in D1,D2 and D4, saddle and stable nodes,

respectively.

8.4 Rotational Vector Fields

Since within each region, system (8.1) is linear and the properties of its equilibria

are determined by the eigenvalues of the Jacobian matrix in each region. Thus

the linear system cannot exhibit a limit cycle in each region, but it must cross

boundaries of regions if it exists. Therefore switching between different regions

must happen on the limit cycle. A necessary condition for the existence of periodic

orbits is that there exists a rotational vector field in the dynamics (8.1).

It is observed that the most complex and interesting phenomena occurs in the un-

saturated region D1. In the sequel, it is assumed excitatory inputs (h = (h1, h2) >

0) in network (8.1).

According to the results in the last section, the two-cell LT network has only one
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nonzero equilibrium that is a focus or a center in D1, if it satisfies that





(w11 − 1)(w22 − 1) > w12w21,

(w22 − 1)h1 < w12h2,

(w11 − 1)h2 < w21h1,

(w11 − w22)
2 + 4w12w21 < 0.

(8.3)

Thus the network has a rotational vector field prescribed by (8.3) in the linear

region.

Recall its corresponding Jacobian matrix J1, it is noted that τ = w11 + w22 − 2,

δ = (w11 − 1)(w22 − 1) − w12w21 > 0, and ∆ = τ 2 − 4δ < 0. Define ω = 1
2

√
|∆|,

then the eigenvalues of the linear system are given as

λ =
τ

2
± ωi. (8.4)

If τ 6= 0, the equilibrium is a topological focus. If τ = 0, then ω =
√

δ, λ = ±ωi,

and the equilibrium is a topological center.

Let L1 and L2 be the two lines that satisfy ẋ1 = 0 and ẋ2 = 0, respectively, i.e.,





L1 : (w11 − 1)x1 + w12x2 + h1 = 0,

L2 : w21x1 + (w22 − 1)x2 + h2 = 0.

Let k1 and k2 denote their corresponding slopes, k1 = 1−w11

w12
and k2 = w21

1−w22
. L1

and L2 cross at the equilibrium x∗ and suppose L1 and L2 intersect x2-axis at

points s(0, s) and p(0, p), respectively, where s = − h1

w12
and p = h2

1−w22
. Note that

it always holds that p < s derived from the conditions in (8.3). Consequently,

the vector field of the network prescribed by (8.3) has one of the forms shown in

Figure 8.2. The left sub-figure corresponds to w12 < 0, 0 < k1 < k2 and the right

w12 < 0, k1 < 0 < k2. If w12 > 0, the arrows from L1 and L2 are reversed and

p < s < 0.
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Figure 8.2. Rotational vector fields prescribed by equations (8.3).

8.5 Existence and Boundary of Periodic Orbits

According to the results in Theorem 8.1, the equilibrium x∗ is an unstable focus or

a center, if it satisfies that





w12w21 < −1
4
(w11 − w22)

2,

(w22 − 1)h1 < w12h2,

(w11 − 1)h2 < w21h1,

w11 + w22 > 2(unstable focus), w11 + w22 = 2(center).

(8.5)

If network (8.1) has a topological center in D1, then it always exhibits oscillations

around the equilibrium in D1. However, the outmost of the periodic orbits needs

further study. When x∗ is an unstable focus, the network may tend to be unstable

and it is nontrivial to determine if the periodic orbits exist.

Remark 1: Poincaré-Bendixson Theorem (Zhang et al., 1992) tells that if there

exists an annular region Ω ⊂ R2, containing no equilibrium, such that both orbits

from its outer boundary γ2 and from its inner boundary γ1 enter into Ω, then there

exists a (may not be unique) periodic orbit γ in Ω. If the vector field is analytic (can

be expanded as a convergent power series), then the periodic orbits in Ω are limit

cycles. Since σ is not analytic, our attention is devoted to the existence of periodic

orbits, instead of making more endeavors to assert that of limit cycles. Actually,
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they do not make significant difference in the oscillatory behavior, though they are

different in geometrical meaning.

Let L1 and L2 be the two lines that satisfy ẋ1 = 0 and ẋ2 = 0, respectively, i.e.,




L1 : (w11 − 1)x1 + w12x2 + h1 = 0,

L2 : w21x1 + (w22 − 1)x2 + h2 = 0.

When w12 < 0, w11 > 1, w22 < 1, w21 > 0, (8.5) describes a vector field as shown in

Figure 8.3. The trajectories that evolve in D1 and D2 are also intuitively illustrated.

ΓR is the right trajectory in D1 that starts from the point p and ends at the point

q(0, q). ΓL is the left trajectory in D2 that starts from the point q and ends at the

point r(0, r). The arrows indicate the directions of the vector fields. It can be seen

that there exists a rotational vector field around the equilibrium.

Figure 8.3. The vector fields described by the oscillation prerequisites. The tra-

jectories in D1 and D2 (ΓR and ΓL, respectively) forced by the vector fields are

intuitively illustrated.

Theorem 8.2. The two-cell LT network (8.1) must have one periodic orbit, if it

satisfies that w12 < 0, w22 < 1 and (8.5).
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Proof. The equilibrium in D2 is computed by

x∗ =
1

1 − w22




w12h2 + (1 − w22)h1

h2


 .

It is noted that x∗
1 > 0, x∗

2 > 0, hence it is a virtual equilibrium lying in D1.

Although it does not practically exist, it still has the trend that drives the trajectory

to approach it or diverge from it along its invariant eigenspace.

When w22 6= 0, the Jacobian matrix in D2 has two distinct eigenvalues, λ1 = −1,

λ2 = w22 − 1 as well as two linear independent eigenvectors, e1 = (1, 0)T , e2 =

(w12

w22
, 1)T . Firstly, consider the two cases for w22 < 1, where the subspaces spanned

by e1 and e2 are both stable.

(i) 0 < w22 < 1. In this case λ1 < λ2 and let Ess = Span{e1} and Ews =

Span{e1} denote the strong stable subspace and weakly stable subspace, respec-

tively. Figure 8.4 shows the phase portrait. Each trajectory except the invari-

ant line Ess approaches the equilibrium along the well-defined tangent line, Ews.

Since (0, p) lies in Ess, each trajectory must intersect x2-axis at some point (0, r)

where r > p. Therefore, a simple closed curve Γ can be constructed such that

Γ = ΓR ∪ ΓL ∪ rp, which can be used as an outer boundary of an annular region.

(ii) w22 < 0. In this case λ2 < λ1 and let Ess = Span{e2} and Ews = Span{e1}

denote the strong stable subspace and weakly stable subspace, respectively. The

phase portrait is shown in Figure 8.5. Each trajectory except the invariant line Ess

approaches the equilibrium along the well-defined tangent line, Ews. Since (0, p)

lies in Ess, each trajectory that starts from (0, q) must intersect x2-axis at some

point (0, r) where r > p. Thus, a simple closed curve Γ can be constructed such

that Γ = ΓR ∪ ΓL ∪ rp.

(iii) w22 = 0. In this case there is only a single eigenvector e1 which corresponds

to the negative eigenvalue of −1. Figure 8.6 shows there is only a single invariant

subspace. Each trajectory approaches the equilibrium along a well-defined tangent

line determined by e1. Thus the left trajectory intersects x2-axis at a point which
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Figure 8.4. Phase portrait for 0 < w22 < 1.

Figure 8.5. Phase portrait for w22 < 0.
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is above (0, p).

Figure 8.6. Phase portrait for w22 = 0.

To summarize the results of above cases, an outer boundary Γ of an annular

region can be constructed such that Γ = ΓR ∪ ΓL ∪ rp. According to Poincaré-

Bendixson Theorem, there must be a periodic orbit in the interior of the domain

enclosed by Γ. This completes the proof of the theorem.

Remark 2: It can be shown that the two-cell network (8.1) can have no

periodic orbit, if w22 > 1 and w12 < 0. As analyzed in Theorem 3, x∗
1 < 0, x∗

2 < 0,

the equilibrium is a virtual equilibrium lying in D3. Notice that the system has

two linear independent eigenvectors, e1 = (1, 0)T , e2 = (w12

w22
, 1)T , thus it has a

stable subspace Es = Span{e1} and an unstable subspace Eu = Span{e2}. All the

trajectories in D2 leave away from x∗ along the invariant space Eu. Therefore, in

this case no periodic orbit exits.

The periodic orbits resulting from a center type equilibrium are investigated

below. The proof can be found in the Appendix.
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Theorem 8.3. If τ = 0, w12 < 0, w22 < 1 and (8.5) holds for network (8.1), then

the network produces periodic orbits of center type. The amplitude of its outermost

periodic orbit is confined in the closed curve Γ = ΓR ∪ ΓL ∪ rp, as shown in Figure

8.3, where

p =
h2

1 − w22

, and q = −w22
w12h2 + (1 − w22)h1

(1 − w22)w12

+
(w11 − 1)h2 − w21h1

w12w21 − (w11 − 1)(w22 − 1)
.

Proof. Based on the vector field analysis for D1 and D2, it is known that the

trajectory starting from a point (0, q) with q > s will intersect x2-axis again at

a point (0, r) above (0, p). The trajectory starting from (0, r) must approach a

periodic orbit at t → ∞. Thus the right trajectory ΓR which starts from (0, p) and

ends at (0, q) and its continued left trajectory ΓL prescribes an outermost boundary

such that every periodic orbit lies in the interior of the closed curve Γ.

Define x̃1(t) = x1(t) − x∗
1, x̃2(t) = x2(t) − x∗

2 for t ≥ 0. Applying the trajectory

equation in D1, it is obtained that

w2
12

ω2
x̃2(t)

2 +
2(w11 − 1)w12

ω2
x̃1(t)x̃2(t) + (1 +

(w11 − 1)2

ω2
)x̃1(t)

2

−(
w11 − 1

ω
x̃1(0) +

w12

ω
x̃2(0))

2 − x̃1(0)
2 = 0. (8.6)

Suppose the trajectory intersects the x2-axis again at (0, q) where it exists after

time tR. Let x̃1(tR) = x̃1(0) = 0 − x∗
1 = −x∗

1, then

w2
12

ω2
x̃2(tR)2 +

2(w11 − 1)w12

ω2
x̃1(0)x̃2(tR) + (1 +

(w11 − 1)2

ω2
)x̃1(0)

2 − (w11 − 1)2

ω2
x̃1(0)

2

−w2
12

ω2
x̃2(0)

2 − 2w12(w11 − 1)

ω2
x̃1(0)x̃2(0) − x̃1(0)

2 = 0,

that is

w2
12x̃2(tR)2 + 2(w11 − 1)w12x̃1(0)x̃2(tR)−w2

12x̃2(0)
2 − 2w12(w11 − 1)x̃1(0)x̃2(0) = 0.

(8.7)
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To solve the above equation, let

φ = 4(w11 − 1)2w2
12x̃1(0)

2 + 4w2
12(w

2
12x̃2(0)

2 + 2w12(w11 − 1)x̃1(0)x̃2(0))

= 4w2
12((w11 − 1)x̃1(0) + w12x̃2(0))

2,

and it is obtained that

x̃2(tR) =
−(w11 − 1)x̃1(0) ∓ |(w11 − 1)x̃1(0) + w12x̃2(0)|

w12
. (8.8)

Since

(w11−1)x̃1(0)+w12x̃2(0) = (w11−1)x1(0)+w12x2(0)−((w11−1)x∗
1+w12x

∗
2), (8.9)

and x1(0) = 0, x2(0) = p = − h2

w22−1
, (w11 − 1)x∗

1 + w12x
∗
2 + h1 = 0, it holds that

(w11 − 1)x̃1(0) + w12x̃2(0) = 0 + w12(−
h2

w22 − 1
) − (−h1) > 0. (8.10)

Therefore,

x̃2(tR) =
−(w11 − 1)x̃1(0) ∓ ((w11 − 1)x̃1(0) + w12x̃2(0))

w12
, (8.11)

It is noted that one of the roots is x̃2(tR) = x̃2(0) when tR = 0, and as tR > 0,

x̃2(tR) =
−(w11 − 1)(0 − x∗

1) −
w12h2+(1−w22)h1

1−w22

w12

= − w22h2

1 − w22
− w22h1

w12

= −w22
w12h2 + (1 − w22)h1

(1 − w22)w12
. (8.12)

Hence

q = x̃2(tR) + x∗
2 = −w22

w12h2 + (1 − w22)h1

(1 − w22)w12
+

(w11 − 1)h2 − w21h1

w12w21 − (w11 − 1)(w22 − 1)
.

(8.13)

The proof is completed.

From the geometrical view as discussed, it reveals that the trajectory can only

switch between a stable mode and an unstable mode, i.e., switching between two

unstable modes or two stable modes is not permitted.
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It is a difficult task to calculate the amplitude and period of a periodic orbit.

Fortunately, by virtue of the analytical results for center-type periodic orbits in

Theorem 8.3 and the trajectory equations in temporal domain (referred to the

Appendix), it is possible to estimate their variation trends, i.e., how they change

with respect to θi, τ and hi. An approximate relationship describing the amplitude,

period and external inputs can be stated as: (a) q ∝ hi, q ∝ τ 2, q indicating the

amplitude; (b) the period increases as τ increases, while analysis procedures are

omitted.

8.6 Winner-take-all Network

A winner-take-all network is an interesting and meaningful application of LT net-

work. The study of its dynamics, fixed points and stability is of great merit. A

biologically motivated WTA model with local excitation and global inhibition was

established and studied by (Hahnloser, 1998). A generalized model of such a WTA

network is formulated as the following differential equations:

ẋi(t) = −xi(t) + θiσ(xi(t)) − L + hi, (8.14a)

τ L̇(t) = −L(t) +

n∑

j=1

θjσ(xj(t)), (8.14b)

where θi > 0 denotes local excitation, i = 1, ..., n, and L is a global inhibitory

neuron, τ a time constant reflecting the delay of inhibition. It is noted that the

dynamics of L has a property of nonnegativity: if L(0) ≥ 0 then L(t) ≥ 0 and

if L(0) < 0 then L(t1) ≥ 0 after some transient time t1 > 0. In an explicit and

compact form for x = (x1, ..., xn)
T , the WTA model can be re-written as




ẋ(t)

L̇(t)


 = −




x(t)

L(t)


+




Θ −1

v 1 − 1
τ






σ(x(t))

L(t)


+



h

0


 , (8.15)

where Θ = diag(θ1, ..., θn), v= 1
τ
(θ1, ..., θn), and 1 a columnar vector of ones.
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Unlike in (Hahnloser, 1998), the generalized WTA model (8.14) allows each neu-

ron to have an individual self-excitation θi, which can be different from each other.

Hence, it is believed to be more biologically plausible than requiring the same ex-

citation for all neurons. By generalizing the analysis (Hahnloser, 1998), it can be

concluded that if θi > 1 and τ < 1
θi−1

for all i, the network performs the WTA

computation:

xk = hk, (8.16a)

xi = hi − θkhk, i 6= k, (8.16b)

L = θkhk, (8.16c)

where k indicates the winning neuron, nevertheless, it may not be the neuron

having the largest external input. And all θi = 1 will produce an absolute WTA

network, in the sense that the winner xk is the neuron which receives the largest

external input hk.

It was claimed (Hahnloser, 1998) that a periodic orbit may occur by slowing

down the global inhibition but not too slow. However, its occurrence is not known

a priori. Consider a single excitatory-inhibitory pair of the dynamic system (8.14),

that is 


ẋ(t)

L̇(t)


 = −




x(t)

L(t)


+




θ −1

θ
τ

1 − 1
τ






σ(x(t))

L(t)


+



h

0


 . (8.17)

Since each neuron is only coupled with a global inhibitory neuron (though such

global inhibitory neuron reflects collective activities of all the excitatory neurons),

it does not interact directly with other neurons. Therefore, the dynamics of n-

dimensional WTA network is possible to be clarified in light of studying a two-cell

network with a single excitatory neuron. The established results for any two-

dimensional network in Theorem 8.2 allow us to put forward the theorem on the

existence of periodic orbits for the two-cell WTA model.

Theorem 8.4. The single excitatory-inhibitory WTA network (8.17) must have a
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periodic orbit if its local excitation and global inhibition satisfy θ > 1 and 1
θ−1

<

τ < (
√

θ+1)2

(θ−1)2
.

Proof. The connection matrix and external inputs are respectively,

W =




θ −1

θ
τ

1 − 1
τ


 , and ĥ =




h

0


 .

Obviously, the first two conditions of Theorem 8.2 are met since −1 < 0, 1− 1
τ

< 1.

Now it remains to prove that condition (8.5) is also met by synaptic weights and

external inputs. From 1
θ−1

< τ , it is easy to show that θ +1− 1
τ

> 2, which verifies

the last inequality of (8.5). On the other hand, its first inequality is equivalent to

−θ

τ
< −1

4
(θ − 1 +

1

τ
)2, (8.18)

then it yields immediately that

(
√

θ − 1)2

(θ − 1)2
< τ <

(
√

θ + 1)2

(θ − 1)2
. (8.19)

Apparently, (
√

θ−1)2

(θ−1)2
< 1

θ−1
. Recall τ > 1

θ−1
, it is obtained that

1

θ − 1
< τ <

(
√

θ + 1)2

(θ − 1)2
. (8.20)

The next two inequalities of (8.5) are easy to be verified by considering that ĥ1 >

0, ĥ2 = 0. Therefore, according to Theorem 8.2, the WTA network must have a

periodic orbit. This completes the proof.

The above analysis indicates that the parameters (θ and τ ), i.e., the synaptic

connections between excitatory and inhibitory neurons are the dominating factors

on the stability and oscillation behavior. On the other hand, adding a new excita-

tory neuron to (8.17) only increases the strength of the global inhibition L, which

would resemble adding a new excitatory-inhibitory pair (x2, L) to the existing one

(x1, L). As a consequence, the stability of the existing pair would not change if the

new pair is stable, hence the whole network (x1, x2, L) retains stable. Otherwise,
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the existing pair would lose stability if the new pair is oscillating, and so the whole

network oscillates.

Based on the heuristic discussion above, the following conditions are conjectured

which lead to oscillation behaviors of n-dimensional WTA networks (8.14). Rigor-

ous proof of them is formidable. Nevertheless, extensive simulation studies support

our observations.

Proposition 8.1. The WTA network (8.14) loses stability and the periodical os-

cillation occurs if its local excitation and global inhibition satisfy θi > 1 and

1
θi−1

< τ < (
√

θi+1)2

(θi−1)2
for any i = 1, ..., n.

As aforementioned, the strengths of local excitation and global inhibition (θi and

τ ) play a determining role on the dynamical properties of the recurrent model. A

complete description of the dynamics of the WTA model now can be concluded as:

i = 1, ..., n,

i. θi ≤ 1 for all i results in a global stability;

ii. θi > 1 and τ < 1
θi−1

for all i give rise to a WTA computation; it is absolute

if all θi = 1;

iii. θi > 1 and 1
θi−1

< τ < (
√

θi+1)2

(θi−1)2
for any i lead to periodic oscillations;

iv. θi > 1 and τ > (
√

θi+1)2

(θi−1)2
for any i, implying a too slow global inhibition, result

in unstable dynamics due to a very strong unstable mode (in two dimensions,

it is exactly an unstable focus) that gives birth to divergent activities.

The study on cyclic dynamics of winner-take-all networks is of special interests

for cortical processing and short term memory and appreciated efforts have been

paid (Ellias and Grossberg, 1975; Ermentrout, 1992). A different WTA model

using global inhibition was analyzed (Ermentrout, 1992) and conditions on the

existence of periodic orbits were proven for a single excitatory-inhibitory pair by
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virtue of the famous Poincaré-Bendixson Theorem. Unlike the model (8.17), the

neuronal activities were saturated, thus the outer boundary of an annular region is

straightforward to be given. In contrast, it is nontrivial to construct such an outer

boundary for the network (8.17) since nonsaturating transfer functions may give

rise to unbounded activities. Different treatment of applying Poincaré-Bendixson

Theorem is also required by the fact that the WTA network of LT neurons differs

from various models studied in (Ermentrout, 1992) due to the non-differentiability

of LT transfer functions, which imposes another difficulty on the cyclic dynamics

analysis. Most interestingly, however, similar observations as our analysis were

made: the topology of the connections is the main determining factor for such

WTA dynamics and oscillatory behavior begins when the inhibition slows down.

8.7 Examples and Discussions

In this section, examples of computer simulations are provided to illustrate and

verify the theories developed. Consider an example of WTA network (8.14) with 6

neurons. When τ = 2, θi = 2 for all i, the network becomes periodically oscillating

(Figures 8.7 and 8.8). It is verified by Proposition 8.1, since τ is in the region

1 < τ < (
√

2 + 1)2 where periodic orbit (undamped oscillation) occurs. As τ < 1,

the network is asymptotically stable and performs the winner-take-all computation,

whereas it becomes unstable when τ > (
√

2 + 1)2.

To show the periodic orbits of center type, a simple network is taken as an

example:

dx

dt
= −x +




2 −1

2 0







σ(x1(t))

σ(x2(t))


+




2

1


 .

Figure 8.9 gives an illustration for the trajectories starting from three different

points, (0, 0.5), (0, 1) and (0, 1.2). As can be seen, each approaches a periodic orbit

finally, where the inner closed curve shows a center. It is verified by Theorem 8.3,
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Figure 8.7. Cyclic dynamics of the WTA network with 6 excitatory neurons. τ =

2, θi = 2 for all i, h = (1, 1.5, 2, 2.5, 3, 3.5)T . The trajectory of each neural state is

illustrated in 50 seconds. The dashed curve shows the state of the global inhibitory

neuron L.

as a computer illustration of Figure 8.3, where p = 1 and q = 3. The value of q

can also be determined by solving the temporal equations of neural states (see the

Appendix). Further evaluating the temporal equations (B.19–B.21) shows exactly

1 < r < 2.

The established analytical results imply that slowing down the global inhibition

in the multistable WTA network (Hahnloser, 1998) is equivalent to give rise to

an unstable focus, which would result in occurrence of periodic orbits. Another

important issue about LT networks is on continuous attractors, for example, line

attractors as discussed in (Seung, 1998; Hahnloser et al., 2003). On the other

hand, as shown in this chapter, a stable periodic orbit is another type of continuous

attractors, which encircles an unstable stationary state.
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Figure 8.8. A periodic orbit constructed in x6 − L plane. It shows the trajectories

starting from five random points approach the periodic orbit eventually.

8.8 Conclusion

By concentrating on the analysis of a general parameterized two-cell network, the

geometrical properties of equilibria and oscillation behaviors of the LT networks

were studied. The conditions for the existence of periodic orbits were established,

and the factors affecting its amplitude and period were also revealed. Generally,

the theoretical results are only applicable to a two-cell network, however, they can

be extended to a special class of biologically motivated networks of more than two

neurons, i.e., a WTA network using local excitation and global inhibition. The

theory for the cyclic dynamics of such a WTA network was presented. Finally,

simulation results illustrated the theory developed.
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Figure 8.9. Periodic orbits of center type. The trajectories with three different

initial points (0, 0.5), (0, 1) and (0, 1.2) approach a periodic orbit that crosses the

boundary of D1. The trajectory starting from (0, 1) constructs an outer boundary

Γ = p̂qr ∪ rp such that all periodic orbits lie in its interior.
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Chapter 9

LT Network Dynamics and

Analog Associative Memory

9.1 Introduction

Although the recurrent networks with linear threshold (LT) neurons were first

examined in 1958 in a study of the limulus in the anatomical make-up of the eye

(Hartline and Ratliff, 1958), only in recent years has interest in the biologically

based models been growing (Douglas et al., 1995; Ben-Yishai et al., 1995; Salinas

and Abbott, 1996; Bauer et al., 1999). The lack of an upper saturating state in

neurons has been supported by experiments of cortical neurons that rarely operate

close to saturation (Douglas et al., 1995), which suggests that the upper saturation

may not be involved in actual computations of the recurrent network with LT

neurons. However, this non-saturating characteristic of a neuron increases the

likelihood that the network dynamics may be unbounded, as well as the possibility

that no equilibrium point might exist (Forti and Tesi, 1995). Therefore, it is worthy

of investigating and establishing conditions of boundedness and convergence of LT

dynamics to design or exploit the recurrent networks.

Hahnloser (1998) analyzed the computational abilities and dynamics of linear
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threshold networks, particularly in explaining winner-take-all (WTA) multistabil-

ity of the network with self-excitation and global inhibition, as well as oscillating

behavior of the dynamics when the inhibition delay of the network is increased in

an asymmetrical network. Of more recent interest, a functional silicon-based cir-

cuit design for a linear threshold network (Hahnloser et al., 2000) has demonstrated

to be able to verify the theory of digital selection (groups of active and inactive

neurons) and analog amplification (active neurons are amplified in magnitude, as

represented by the gain in neuronal activity). A convergence condition was given

by constructing a Lyapunov function for asynchronous neural networks with non-

differentiable input-output characteristics (Feng, 1997). Conditions for generalized

networks of linear threshold neurons that ensure boundedness and complete conver-

gence, for symmetrical and asymmetrical weight matrices were established (Wersing

et al., 2001b; Yi et al., 2003). Meanwhile, the studies (Xie et al., 2002; Hahn-

loser, 1998) put forward the underlying framework for analyzing networks of linear

threshold neurons by examining the system eigenvalues and classifying neurons

according to permitted and forbidden sets, where subsets of permitted groups of

neurons are likewise permitted, and supersets of forbidden groups of neurons are

likewise forbidden. This is a consequence of the digital selection abilities of the

network. This chapter places an emphasis on the dynamics analysis for the LT

networks, to extend existing results by providing some new and milder conditions

for boundedness and asymptotical stability.

It has been shown that complex perceptual grouping tasks, such as feature bind-

ing and sensory segmentation, can be accomplished in an LT network composed of

competitive layers (Wersing et al., 2001a). Yet the computational ability of asso-

ciative memory (also called content-addressable memory) has not been made clear.

Recurrent neural network architectures have long been the focus of dynamical as-

sociative memory studies since Hopfield’s seminal work (Hopfield, 1982). However,

while the majority of efforts made since then have centered about the use of binary
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associative memory with discrete-state and saturating neural activities, few in the

literature have generalized the original idea to the non-binary case, and even less so

to the continuous case. Another focus of this chapter is on the associative memory

(especially analog, real-valued auto-associative memory of gray-level images). A

design method for the LT network’s analog associative memory is proposed and

discussed extensively.

9.2 Linear Threshold Neurons

The analog of the firing-rates of actual biological neurons in an artificial neuron

is represented by an activation function. Various types of activation functions

have been used in modeling the behavior of artificial neurons, and it is from these

(nonlinear) activation functions that a network of neurons is able to derive its

computational abilities. In recent years, a class of neurons which behaves in a

linear manner above a threshold, known as linear threshold (LT) or threshold linear

neurons, have received increased attention in the realm of neural computation.

Previously, saturation points were modeled in activation functions to account for

the refractory period of biological neurons when it ’recharges’, and hence cannot

be activated.

Computational neuroscientists believe that artificial neurons based on an LT acti-

vation function are more appropriate for modeling actual biological neurons. This

is quite a radical departure from the traditional line of thought which assumed

that biological neurons operate close to their saturating points, as conventional

approaches to neural networks were usually based on saturating neurons with up-

per and lower bounded activities. Studies have demonstrated that cortical neurons

rarely operate close to their saturating points, even in the presence of strong re-

current excitation (Douglas et al., 1995). This suggests that although saturation

is present, most (stable) neural activities will seldom reach these levels.
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It is believed that there are three generations of artificial neuron models. First-

generation artificial neurons were discrete and binary-valued (digital representa-

tion), such as the classical binary threshold McCulloch-Pitts neuron. Second-

generation models were based on neurons with continuous activation functions

(analog representation), with sigmoidal neurons being archetypical. A third-generation

neuron model is the spiking neuron model, which is represented by an LT neuron

– a non-differentiable, unbounded activation function that behaves linearly above

a certain threshold, similar in functionality to (half-wave) rectification in circuit

theory. The general form of the LT activation function is defined as

σ(x) = [x]+ = k × max(θ, x), (9.1)

where k and θ respectively denotes the gain (usually 1) and threshold (usually 0),

of the activation function (Figure 9.1). This form of nonlinearity is also known as

threshold, or rectification nonlinearity.

Figure 9.1. LT activation function with gain k = 1, threshold θ = 0, relating the

neural activity output to the induced local field.
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9.3 LT Network Dynamics (Revisited)

The network with n linear threshold neurons is described by the additive recurrent

model,

ẋ(t) = −x(t) + Wσ(x(t)) + h, (9.2)

where x, h ∈ <n are the neural states and external inputs, W = (wij)n×n the

synaptic connection strengths. σ(x) = (σ(xi)) where σ(xi) = max{0, xi}, i =

1, · · · , n.

There is another equivalent model which is described by

ẏ(t) = −y(t) + σ(Wy(t) + h). (9.3)

The former one is more dynamically plausible than the latter one as suggested in

(Yi et al., 2003), because system (9.3) can be transformed to system (9.2) by a

simple linear transformation while it is not this case when transforming (9.2) to

(9.3).

The nonlinearity of an LT network is a consequence of (i) the rectification non-

linearity of the LT neurons on an individual level, and (ii) the switching between

active and inactive partitions of neurons on a collective level. Although (i) is ap-

parent from the structure of the activation function, (ii) is a more subtle effect,

yet contributes significantly to the computational abilities of the network. Specif-

ically, the latter arises from the fact that an inactive partition of LT neurons do

not contribute to the feedback within the recurrent neural network.

Such a network is said to exhibit hybrid analog-digital properties; while most

digital circuits display some form of multistability (recall that feedback in digital

flip-flops promotes some form of inherent differential instability), analog circuits

in contrast, demonstrates linear amplification. Together, both characteristics co-

exist in an LT network, and have been shown to manifest in an actual silicon

circuit (Hahnloser et al., 2000), and is suggested as an underlying mechanism of

the neocortex in response to sensory stimulation.
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Since at any time t, each LT neuron is either firing (active) or silent (inactive), the

whole ensemble of the LT neurons can be divided into a partition P+ of neurons

with positive states xi(t) ≥ 0 for i ∈ P+, and a partition P− of neurons with

negative states xi(t) < 0 for i ∈ P−. Clearly P+ ∪ P− = {1, · · · , n}.

Define a matrix Φ = diag(φ1, · · · , φn), where φi = 1 for i ∈ P+ and φi = 0 for

i ∈ P−. The matrix Φ carries the digital information about which neurons are

active. It is obviously

Wσ(x) = WΦx. (9.4)

Let W e = WΦ, called the effective recurrence matrix (Hahnloser, 1998), which

describes the connectivity of the operating network, where only active neurons are

dynamically relevant.

Theorem 9.1. Let Φ define a digital carry matrix. If there exists a matrix Ŵ ≥ W

satisfying one of the conditions

wii +
∑

j

|ŵij|φj − 1 < 0, (9.5a)

Re{λmax{ŴΦ − I}} < 0, (9.5b)

Re{λmax{ŴΦ}} < 1. (9.5c)

for all i, then the LT dynamics (9.2) is bounded in the partitions defined by Φ.

Proof. It holds that

ẋ = −x + Wσ(x(s)) + h

≤ −x + Ŵσ(x(s)) + h

= −(I− ŴΦ)x(s) + h. (9.6)

Let y(t) = x(t)− h, then

ẏ ≤ −(I− ŴΦ)y(t). (9.7)

Define ż(t) = −(I − ŴΦ)z(t). Let λi and vi, i = 1, ..., n be the eigenvalues and

n linearly independent eigenvectors of −(I − ŴΦ), respectively. According to the
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linear system theory (Bay, 1999), then z(t) can be decomposed as z(t) =
∑

i ξi(t)vi,

where ξi(t), i = 1, ...n are functions of time. Therefore

z(t) =
n∑

i=1

eλi(t−t0)viξi(0). (9.8)

Obviously z(t) has an upper bound m > 0 if λi < 0. According to the comparison

principle, y(t) ≤ z(t) ≤ m. Thus

x(t) ≤ m + h

for all t ≥ 0. This shows that xi(t) is upper bounded. Furthermore, the trajectory

x(t) of network (9.2) satisfies

xi(t) = xi(t0)e
−(t−t0) +

∫ t

t0

e−(t−s)

(
n∑

j=1

wijσ(xj(s)) + hi

)
ds, (9.9)

for all t ≥ t0. Then

|xi(t)| ≤ |xi(t0)|e−(t−t0) + (m + h)
n∑

j=1

|wij| + |hi|, i = 1, ..., n. (9.10)

This proves that the LT dynamics is bounded in the partition defined by Φ if (9.5b)

holds. It is obviously to derive (9.5c). Furthermore, by applying Gerschgorin’s

theorem (Goldberg, 1992), (9.5a) is easily obtained from (9.5b). The proof is

completed.

A set of active neurons is called a permitted set if they can be coactivated at a

stable steady state by some input; otherwise, it is termed a forbidden set. Permitted

set and forbidden set were firstly studied in (Hahnloser et al., 2000), then further

discussed in (Xie et al., 2002) and (Hahnloser et al., 2003). The assertion given for

the superset of a forbidden set and the subset of a permitted set, nevertheless, was

addressed in a more likely intuitive manner. Herein, from the above established

theorem, such results is proven in a mathematical manner in the next.

Corollary 9.1. Any subset of a permitted set is also permitted; any superset of a

forbidden set is also forbidden.
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Proof. Let Γ = {γi} denote a set of m active neurons, γi ∈ {1, ..., n}, i = 1, ...,m.

Firstly, suppose Γ is a forbidden set. Since φj = 1 if j ∈ Γ and φj = 0 otherwise,

according to Theorem 1, the following condition is met,

wii +
∑

j∈Γ

|ŵij|φj > 1.

Then its superset Γ̂, with more active neurons, obviously results in

wii +
∑

j∈Γ̂

|ŵij|φj > wii +
∑

j∈Γ

|ŵij|φj > 1.

Thus Γ̂ is also forbidden. It is similarly to prove for permitted set.

Next, the conditions which ensure that the LT dynamics is bounded regardless

of partitions are presented. The following lemma is firstly introduced.

Lemma 9.1. Let y(t) denote the solution of the following equation

ẏ(t) = −y(t) + σ
(
Wy(t) + h + (x(0) −Wy(0) − h)e−t

)
.

Then for any x(0) ∈ <n, the solution x(t) of network (9.2) starting from x(0) can

be represented by

x(t) = Wy(t) + h + (x(0) − Wy(0)− h) e−t.

This proof can be referred to (Yi et al., 2003).

Theorem 9.2. If there exists a matrix Ŵ ≥ W satisfying one of the following:

wii +
∑

j

|ŵij| − 1 < 0, (9.11a)

Re{λmax{Ŵ − I}} < 0, (9.11b)

Re{λmax{Ŵ}} < 1, (9.11c)

for all i, then the LT dynamics (9.2) is bounded.
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Proof. Consider the following dynamical system

ẏ(t) = −y(t) + σ(Wy(t) + h), t ≥ 0, (9.12)

of which the solution is calculated as

y(t) = e−ty(0) +

∫ t

0

e−(t−s)σ(Wy(s) + h)ds. (9.13)

By taking x(0) = Wy(0)+h, recall Lemma 1, the dynamics (9.2) can be associated

with (9.12) as

x(t) = Wy(t) + h. (9.14)

It means that any trajectory y(t) starting from y(0) can be transformed to the

trajectory x(t) starting from Wy(0)+h. Consider the trajectory formulation (9.13),

the dynamics (9.12) possess a property of nonnegativity: if y(0) ≥ 0 then y(t) ≥ 0

and if y(0) < 0 then y(t1) ≥ 0 after some transient time t1 > 0. Consequently, in

(9.12) it is assumed that yi(t) ≥ 0 for all i. Now it holds either ẏ(t) = −y(t) ≤ 0

or

ẏ(t) = −y + Wy + h

≤ −y + Ŵy + h

= −(I− Ŵ )y + h. (9.15)

Thus if Re{λmax{I− Ŵ}} > 0, following the method in the proof of Theorem 9.1

y(t) is bounded for all t ≥ 0. Therefore, in light of (9.14), x(t) is also bounded.

The rest conditions are easily derived.

In contrast to that of Theorem 9.1, the condition of Theorem 9.2 implies that the

dynamics (9.2) is bounded in any of partitions, thus it results in global boundedness.

Note that the components of Ŵ need not be positive. Define a matrix W+ =

(w+
ij), where

wij =





wii, i = j,

max(0, wij), i 6= j.
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Clearly, W+ provides a straightforward choice of Ŵ with nonnegative off-diagonal

elements. As a consequence, all the analytical results for Ŵ are applicable to

W+, which give rise to equivalent conditions as those of (Wersing et al., 2001b)

for nonsymmetric networks. Unlike their argument that required W and Ŵ to be

symmetric, furthermore, note that Theorem 2 where Ŵ need not be symmetric is

applicable to both symmetric and nonsymmetric networks. Hence it gives a wider

rule.

Lemma 9.2. For any x, y ∈ <n, the linear threshold transfer function σ(·) has the

following properties:

i). ‖σ(x)− σ(y)‖2 ≤ (x− y)T [σ(x)− σ(y)],

ii). [σ(y)− y]T [σ(y)− u] ≤ 0, ui ≥ 0(i = 1, ...n),

iii). xT [σ(u− x)− u] ≤ −‖σ(u− x)− u‖2, ui ≥ 0(i = 1, ...n).

Proof. (i) can be concluded from Lemma 2 of (Yi et al., 2003). To prove (ii), it is

derived

[σ(x)− x]T [σ(x)− u] = [σ(x)− x]T [σ(x)− σ(u)]

= [σ(x)− σ(u)]T [σ(x)− σ(u)] + [σ(u)− x]T [σ(x)− σ(u)]

= ‖σ(x)− σ(u)‖2 − [x − u]T [σ(x)− σ(u)]

≤ 0.

The last inequality is resulted from (i). Let y = u − x and substitute into (ii), it

follows

[σ(u− x) − u + x]T [σ(u− x) − u] ≤ 0,

which is equivalent to

[σ(u− x)− u]T [σ(u− x)− u] + xT [σ(u− x) − u] ≤ 0.

Thus

xT [σ(u− x) − u] ≤ −‖σ(u− x) − u‖2.
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This completes the proof.

Theorem 9.3. If W is symmetric and there exists a Ŵ ≥ W satisfying one of

conditions (9.11), then the LT dynamics (9.2) is Lyapunov asymptotically stable.

Proof. The LT dynamics (9.3) admits an energy-like function

E(t) =
1

2
yT (t)(I− W )y(t)− hTy(t) (9.16)

for all t ≥ 0. Obviously, E(0) = 0. According to Theorem 9.2, y(t) is bounded. It

is easy to show that E(t) is also bounded. It is derived from Lemma 1 that

Ė(t) = [y(t)(I− W ) − h]T ẏ(t)

= [y(t)− (Wy(t) + h)]T (−y(t) + σ(Wy(t) + h))

= −[y(t)− (Wy(t) + h)]T [σ(y(t))− σ(Wy(t) + h)]

≤ −‖y(t)− σ(Wy(t) + h)‖2

= −‖ẏ(t)‖2. (9.17)

Hence E(t) is monodecreasing. Since it is bounded below, E(t) must approach a

limit as t → ∞ and thus Ė(t) = 0 as t → ∞. So ẏ(t) → 0 as t → ∞. It follows

that

lim
t→∞

ẋ(t) = W lim
t→∞

ẏ(t) = 0.

Eventually, based on an analogous analysis as (Yi et al., 2003), it is concluded that

any trajectory of the network approaches one of its equilibria, that is to say the

dynamics is Lyapunov asymptotically stable.

In contrast to global asymptotical stability that admits exactly one equilibrium,

the above theorem does not obey such restriction and thus allows for multistable

dynamics stated in (Hahnloser, 1998; Wersing et al., 2001b).

While the synaptic weight matrix W determines the stability of the dynamics,

the input vector h determines the analog responses of the active neurons at steady
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state. By replacing the rectification function σ(x) with Φ (only when the identities

of the active neurons are known a priori), the steady state is computed by

(I −WΦ)x = h.

Thus x = (I− WΦ)−1h. Using a power series expansion, it gives

(I − WΦ)−1h = (I + WΦ + (WΦ)2 + ...)h. (9.18)

This can be interpreted as the signal flowing through the partition of active neurons

in a first synapse pass, a second synapse pass, and so on. Mathematically, the

power series expansion allows the determination of the analog responses of the

active neurons without explicitly computing the inverse of (I-W), which may not

be possible in large networks.

Together, W and h determines the identity and response of the active neurons

at steady state, thus the LT network can perform computations involving both

digital selection and analog amplification, as realized in a silicon circuit (Hahnloser

et al., 2000).

9.4 Analog Associative Memory

9.4.1 Methodology

From a physiological or biological viewpoint, memory can be divided into two main

categories, short-term and long-term memory. Short-term memory, it is believed,

arises from persistent activity of neurons, where the time-frame involved is in the

order of seconds to minutes. On the other hand, long-term memory involves storage

of memory patterns through actual physical/neuronal modifications of synaptic

strengths. Such changes, which usually persist for period from tens of minutes or

longer (Dayan and Abbott, 2001) are generally known as long-term potentiation

(LTP) and long-term depression (LTD), and of these types, the longest lasting forms
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of LTP and LTD require some kind of protein synthesis to modify the synaptic

connections.

Another categorical measure of associative memory is the input stimulus used

(Kohonen, 1989). Auto-associative memory refers to the presentation of a partial

or noisy version of the desired memory state which is to be recalled. An example

would be presentation of a noisy version of A, say A′ to recall A. Hetero-associative

memory, in contrast, is said to occur when an input stimulus that is different from

the memory to be recalled is presented to the network. An example would be

presentation of an input stimulus B to recall A. The focus of this work is centered

on long-term auto-associative memory. Various encoding methods for associative

memory were proposed (Costantini et al., 2003; Zurada et al., 1996; Jankowski et

al., 1996; Müezzinoǧlu et al., 2003; Wang and Liu, 2002).

The dynamics of early associative memory models involved the use of input pat-

terns (in a partial or approximate form) h as the starting conditions for the network

dynamics. The most recognizable type of network based upon such a principle is

the Hopfield network (Hopfield, 1982). In such networks, the stored patterns (the

desired or intended patterns to be recalled) are encoded as fixed-points of the net-

work with the ’noisy’ or corrupted versions as the basin of attraction (or also known

as the probe) - these initial conditions that are started of with then ’flow’ into a

state-space trajectory that will (hopefully) converge to their equilibrium points.

Error correction or pattern retrieval is achieved by these initial states or probes

being attracted to the stored fixed-points.

However, to which of these fixed equilibrium points are arrived at are largely

dependent on where these initial conditions begin: only if these starting points lie

within the basin of attraction of the desired pattern (hence the use of the Hamming

distance measure of the difference between the initial and the desired pattern) will

these starting points converge to an intended pattern. Useful pattern matching

will in turn require each fixed-point to have a sufficiently large basin of attraction.
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9.4.2 Design Method

Essentially, the key proposition of the Hebbian rule is that, during the learning

phase, pre-synaptic signals and post-synaptic activity that fire at the same time

or within a short time period of each other are more closely correlated, which

is reflected in the synaptic weight connection between these two neurons. There

should then be a greater (excitatory) connection between neurons i and j. Such

adaptation method is described as follows (η > 0 denotes the learning rate)

∆ wij ∝ ξiξj (9.19a)

∆ wij = ηξiξj (9.19b)

During the training phase, the network learns by potentiating the synapse be-

tween two neurons if both neurons are active (or inactive), and depressing the

synapse if one neuron is active (inactive) and the other is inactive (active). The

inclusion of depressive action in reducing the synaptic strength is a more general

form of the Hebb’s original postulate. Other, more general form of this rule is

that synapses should change according to, and proportionally to the degree of cor-

relation or covariance of the activities of both the pre-synaptic and post-synaptic

neurons (Dayan and Abbott, 2001).

For gray-level image storage of an N -dimensional pattern/memory vector, the

synaptic weight matrix is set-up using the following design approach (which is not

unlike a generalized Hebbian rule for learning)

W = {α{ δ

m

m∑

µ=1

{ν(µ)
√

ξµξµT − κI}} − β11T} − ωI (9.20a)

W = {αWc − β11T} − ωI (9.20b)

The proposed approach uses small, positive (excitatory) synaptic weights me-

diated by inhibition for non-divergence of the linear threshold network dynamics.

Inhibitive self-coupling further allows the fine-tuning of the stability margin of the

system. Because self-couplings are denoted as the diagonal entries in the synaptic
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weight matrix W, control of the eigenvalues can be done directly (however, with-

out knowledge of the actual values). Suppose λi, i = 1, ..., n, are eigenvalues of

W. By introducing an exogenous variable ω that only shifts the diagonals of W,

the eigenvalues of the system are shifted uniformly by (λi + ω). In a further step,

after scaling by a factor α, i.e., applying a transformation to W as αW + ωI, the

eigenvalues are now changed to αλi + ω for all i, where ω can be either positive or

negative.

The three parameters (termed as ’external’ parameters, as opposed to the ’inter-

nal’ parameters as those found within the correlation matrix Wc) are α, β and ω.

These three parameters are considered to be ’external’ by virtue that they are not

dependent on the input patterns (images).

Table 9.1. Nomenclature

m no. of patterns

δ normalization term

ν(µ) contribution of each pattern, µ = 1, ..., m.

κ removal of self-correlation term

ξµ µth pattern vector ξ

I identity matrix

11T matrix of ones

α > 1 :global excitation; < 1 : divisive inhibition

β global inhibition

ω self-coupling for eigenvalue ’placement’

Wc analog correlation matrix

The nomenclature for the terms used in the proposed design approach is listed

in Table 9.1. The primary difficulties with using the Hebbian rule for storing

analog patterns, are (i) the possibility of instability, and (ii) excessive, unbalanced

inhibition. (i) arises because the possibility of instability is caused by the method

used to set up the synaptic weights (as correlations between pixel gray levels). If
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saturating neurons were used instead of LT neurons, neural activities would be

driven to their saturation values. On the other hand, (ii) occurs because of the

large range of possible gray level values: leaving darker pixels inhibited and brighter

pixels excited, in effect, a partitioning occurs between active (very large activities)

neurons and silent neurons (at threshold).

To further elucidate, consider the following: for gray scale images, possible gray-

level values reside in the range [0,255]. The idea that is being put forward here

is that neurons corresponding to higher gray-level values should have, accordingly

greater excitatory connections with other neurons. However, the problem with

the preceding approach is that neurons corresponding to lower gray level values

have less excitatory connections with other neurons. Thus some of these neurons

are inhibitive (negative connective weights) after introducing inhibition. This in

turn leads to the (perpetual) state at which the group of neurons with lower gray

level values will always be inhibited by those more active neurons (because of the

inhibitive connections), and hence are subsequently silent at steady state.

In view of the aforementioned problem, the key idea in the proposed design

method to be used in a network of LT neurons for continuous, real-valued associa-

tive memory is to limit the degree of inhibition introduced, such that most synaptic

connections are excitatory (wij > 0) only to a small extent. Divisive inhibition is

preferably used (α < 1), as opposed to subtractive inhibition (β). However, the

self-couplings of the neurons in the network are usually made inhibitive to prevent

runaway excitation in the dynamics of the network (in simpler terms, this means

that the diagonals of the network matrix are negative), though this condition is not

always necessary; small, finitely positive values can also be used for self-excitation,

and yet retain stability. Moreover, the off-diagonals are also small but finite values,

which can either be excitatory or inhibitory.

A modulating term (δ) that is introduced to the weight matrix W assists in

normalizing the synaptic weights that connects a neuron i to all other neurons and
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vice-versa. It is a global parameter, as it is applied to all synaptic connections in

the weight matrix W. Suppose there be N neurons and the maximum gray level

value in the stored image/pattern be Imax. In the worst case scenario, all N neurons

would consist of the maximum gray level value (Imax). To approximate the value

of δ to be used,

δNImax < 1 ⇒ δ <
1

NImax
(9.21)

9.4.3 Strategies of Measures and Interpretation

A measure of the difference between two analog patterns, can be quantified by

comparing the absolute differences in the original pattern and the distorted pattern,

to the difference in the original pattern and the corrected/retrieved pattern, namely,

the signal-to-noise ratio (SNR) computed as

SNR =

∑N
i

∑N
j (Ioriginal(i, j)− Inoise(i, j))

2

∑N
i

∑N
j (Ioriginal(i, j)− Iretrieval(i, j))2

. (9.22)

The greater the SNR value, the better the correction (retrieval) process is, as

performed by the associative memory network. An SNR value larger than unity

indicates that error-correction has occurred - however, the tasks that are performed

by an image filter and that of an associative memory system are, at a conceptual

level, quite different. While a filter is expected to remove noise from any signal, the

associative memory system is designed to only filter the noise on prototype/probe

vectors only (Müezzinoǧlu et al., 2003)

The SNR value measures the absolute differences in gray-level values by quanti-

fying the degree to which error correction has been made. However, this measure

may not be particularly good for measuring the difference in content, or structure

of the retrieved image with the original stored image (where relative difference is

more important).

Interpretation of the neural activities at steady-state is not possible unless some

form of quantization is imposed on the final neural activities. The final image that
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is obtained from simulating the network dynamics can be interpreted by linearly

scaling these neural activities according to the minimum and maximum gray level

value (Imin and Imax respectively)

x̄ = Imin + x × Imax − Imin

xmax − xmin
(9.23)

This process if less of a biological mechanism, but is useful in simulations to better

visualize the readout process of the final neural activities because of the large range

of their values.

9.5 Simulation Results

The dynamics of an LT network is capable of amplifying arbitrarily small differences

in the inputs – the explicit presence of the input (hi) in the state update equation

also introduces some interesting behavior into the dynamics of the network, and

as (Wersing et al., 2001b) has illustrated, multistability allows a system to exhibit

symmetry-breaking, where the dynamics allows for nonlinear amplification of small

input differences. Moreover, assuming that the state (x∗) is a fixed-point in the

network (or a memory state), (ρx∗) is also a fixed-point (memory state) of the

network, so that uniform scaling of active neurons is possible while leaving all

inactive neurons unchanged. Care, however, has to be taken in ensuring that the

input vector hi is approximately of the same order as
∑N

j wijxj to prevent either

term from dominating.

The update of neuron states can be achieved either synchronously (all neurons

in parallel at once), or asynchronously (one neuron at a time in a serial manner

and at any time step, each neuron has a uniform probability of being selected for

updating). From the previous analysis for the dynamics, the energy function of an

LT network assumes the form

E(x) =
1

2
x(I− W)xT − hT x (9.24)
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A system which is stable and convergent would tend to a certain energy limit

after some transient time or a number of iterations. In the case of an unstable

system, the energy would increase exponentially as the individual neural activities

of neurons experience runaway excitation. An oscillatory system is characterized

by fluctuations (which may be upper and lower bounded) without tending to a fixed

energy value. The trend of the energy function is more important than the final

value, unless the problem is that of optimization, such as quadratic optimization

(Tan et al., 2004).

9.5.1 Small-Scale Example

In this example, a smaller network of N=9 neurons was used. Smaller networks are

easier to analyze in terms of its eigen-structure. A 2-dimensional analog pattern was

stored in the network, and subsequently recalled using a noisy input. The network

parameters are: α = 4.5, β = 0.6, ω = −0.2 and max(wii +
∑N

j 6=i w
+
ij) = 0.9365.

The N eigenvalues of the system matrix W are

−3.8805,−1.7750,−1.7750,−1.7750,−1.7750,−1.7750,−1.7750,−1.7750, 1.2638,

of which the largest eigenvalue is above unity. Since max(wii +
∑N

j 6=i w
+
ij) < 1 and

W is symmetric, according to Theorem 3, the network is asymptotically stable.

The original pattern and the noisy input (probe vector) are respectively,



7 7 3

1 5 9

0 4 2




and




6.9158 7.9138 3.8590

0.0871 5.2176 8.8599

−0.8009 3.4935 1.0980




.

After convergence, the final neural activities x and the retrieved pattern vector

(after linear scaling) are respectively,



27.9295 27.9600 7.7582

0 18.5496 35.5272

0 13.7720 1.1145




and




8 8 2

1 5 9

0 4 1




.
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Figure 9.2. Original and retrieved patterns with stable dynamics.
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Figure 9.3. Illustration of convergent individual neuron activity.
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Fig. 9.2 shows the retrieval process and the convergence of energy function (for

the sake of illustration, the energy function takes its reverse sign herefrom). Fig.

9.3 depicts the convergence of individual neuron activity. Note that if ω = −0.1

was to be shifted to ω = 0.1, the eigenvalues would all be shifted by +0.2, making

the largest eigenvalue of W+ to be larger than unity (also max(wii +
∑N

j 6=i w
+
ij) =

1.2365 > 1) and hence create an unstable system. On the contrary, if ω to be shifted

to a more negative value, it would result in a faster convergence. Self-coupling can

therefore be used to tune the stability margins of the system.

9.5.2 Single Stored Images

Four different gray scale images of resolution 32 × 32 with 256 gray-levels were

stored in the network independently of each other (Figure 9.4).
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Figure 9.4. Collage of the 4, 32 × 32, 256 gray-level images.

The scaling parameter α proves to be an interesting parameter for consideration

because its role is two-fold: if α > 1, it controls the excitation; if α < 1, it controls
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the amount of (divisive) inhibition in the network. Because excitation is inversely

related to divisive inhibition, increasing α is similar to increasing the instability

(excitation) while decreasing the amount of (divisive) inhibition. The input (probe)

vectors were noisy versions of the original gray scale images (Gaussian noise with

mean 0 and variance of 10% or 50% salt-&-pepper noise). Because of the input

dependency of the LT dynamics, certain types of noise will not result in reliable

retrieval because neurons with zero inputs will remain inactive at steady-state.

Unless otherwise specified, the network parameters used in the simulations are,

ν = 1, κ = 0.35; m and σ are pattern-dependent. As to the other parameters, α

was varied such that the excitation measured by wii +
∑N

j 6=i w
+
ij, i = 1, ..., N was

increased; β and ω were kept at zero and the resulting SNR value calculated.

Figures 9.5–9.6 illustrate the variation in the quality of recall measured by the

SNR value in the retrieval process of the four gray scale images as the excitation is

increased (correspondingly, divisive inhibition is decreased), where the excitation

strength, denoted by MaxW+, is calculated as maxi{wii +
∑N

j 6=i w
+
ij}.
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Figure 9.5. Lena: SNR and MaxW+ with α in increment of 0.0025.

From the resulting plots, it is interesting to note the range of values of α that
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Figure 9.6. Brain: SNR (solid line) and MaxW+ with α in increment of 0.005.

would result in the best recalled image, as measured by the SNR. These fig-

ures gives a general trend of how the SNR measure varies: as α increases up to

a certain point (competition/instability likewise becomes greater), the SNR will

correspondingly increase. After this peak, greater competition will result in overall

instability in the network; consequently, divergence of individual neural activity

will occur resulting in a marked decrease in the SNR. The optimal α value is

image-dependent, closely related to the overall composition and contrast of the

image. More precise tuning of the network parameters (α, β, and ω) will result in

better quality memory retrieval as shown in Figures 9.7–9.9.

9.5.3 Multiple Stored Images

Now the four images (Fig. 9.4) were stored together in the same network (not

independently, as in the previous approach). Expectedly, the quality of recall

decreased, yet the retrieved image was still quite apparent (see Fig. 9.10). 50% Salt-

&-Pepper noise was used (Gaussian noise was also used with similar results). The

network parameters were set as α = 0.24, β = 0.0045, ω = 0.6, with SNR = 1.8689.
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Figure 9.7. Lena: α = 0.32, β = 0.0045, ω = −0.6, SNR = 5.6306; zero mean

Gaussian noise with 10% variance.

9.6 Discussion

9.6.1 Performance Metrics

Typical performance metrics of associate memory includes (i) the ability of the

network to recall noisy or partial memory vectors presented at the inputs. This

ability is in turn, dependent on the sparsity of the stored memory vectors (Hopfield,

1982). This requirement of sparsity places restrictive constraints on the types of

images that are stored in an associative memory network, which is even more severe

when dealing with gray scale images because large regions of gray scale images

have positive gray-levels. Likewise, the information capacity per neuron for an LT

neuron is difficult to quantify because of its unbounded, continuous characteristic
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Figure 9.8. Brain: α = 0.43, β = 0.0045, ω = −0.6, SNR = 113.8802; zero mean

Gaussian noise with 10% variance.

(unlike discrete-valued binary neurons).

9.6.2 Competition and Stability

Competition is a corollary of instability, which promotes separation of neural activ-

ities in a recurrent neural network. It can be observed from Figs. 9.5–9.6 that the

SNR increases as wii+
∑N

j 6=i w
+
ij (regarded as a measure of competition/instability)

increases, until it results in divergent neural activities and hence a decrease in the

SNR. The use of a saturating neuron in competitive dynamics would result in

activities that are close to the saturation points of the activation function, the

LT neuron, in a stable LT network, however, allows its neural activities to run to

arbitrarily high value, until convergence.

Multistability is a manifestation of instability in an LT network that arises from

the existence of unstable differential-mode eigenvalues (Hahnloser et al., 2000).
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Figure 9.9. Strawberry: α = 0.24, β = 0.0045, ω = 0.6, SNR = 1.8689; 50%

Salt-&-Pepper noise.

The LT dynamics results in nonlinear switching between active and inactive parti-

tions of neurons until neurons corresponding to unstable eigenvalues are eventually

inactivated. Convergence then occurs after the nonlinear switching selects a per-

mitted set of neurons and the linear dynamics of the LT network then takes over

to provide for the analog responses of these active sets of neurons.

9.6.3 Sparsity and Nonlinear Dynamics

The computational abilities of any neural network is a result of the degree of

nonlinearity present in the network. Because the nonlinear dynamics of the LT

network is a consequence of the switching between active and inactive partitions

of neurons (inactive neurons do not contribute to the strength of feedback in the

network). This form of dynamic feedback depends on the ratio of inactive neurons

to active neurons, which is a measure of the sparsity of the memory vectors that
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Figure 9.10. Men: α = 0.24, β = 0.0045, ω = 0.6, SNR = 1.8689; 50% Salt-&-

Pepper noise.

are stored. Recall that an LT neuron behaves linearly above threshold, hence if the

pattern vector that is stored in the associative memory is dense (less sparse), the

network can be expected to behave more like a linear system, and in a way, lose

its computational abilities derived from its nonlinear switching activities.

A pioneer work about optimal sparsity for random patterns was made (Xie et

al., 2002). In determining the maximum storage capacity of an associative memory

network, it is necessary to know the optimal sparsity of the memory vectors to be

stored. The reason for this is mostly related to information theory; the network

has a upper limit on the amount of information that it will be able to store. If each

pattern was to contain more information (low sparsity), the number of patterns

that can be stored and retrieved reliably decreases. In effect, a network would be

able to store more sparse patterns than dense patterns. However, the difficulty in

analyzing the storage capacity using conventional methods is the continuous and
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unbounded nature of an LT neuron. It might be interesting to derive the optimal

sparsity of pattern vectors for an associative memory network of LT neurons, much

like the classical Hopfield network, where it was calculated that p = 0.138N (Hertz

et al., 1991). Evidently, such a task is quite challenging because of the continuous

and unbounded nature of LT neurons.

9.7 Conclusion

This chapter has extensively analyzed the LT dynamics, presenting new and milder

conditions for its boundedness and stability, which extended the existing results in

the literature such that symmetric and nonnegative conditions for a deterministic

matrix are not required to assert the bounded dynamics. Based on a fully-connected

single-layered recurrent network of linear threshold neurons, this chapter also pro-

posed a design method for analog associative memory. In the design framework,

with the established analytical results and the matrix theory that underly LT net-

works, fine-tuning of network stability margins was realized in a simple and explicit

way. The simulation results illustrated that the LT network can be successful to

retrieve both single stored and multiple stored real-valued images.

Measures to quantify the performance of associative memory were also suggested,

and its relationship with network competition and instability was also discussed.

Because the computational abilities of the LT network is a consequence of its switch-

ing between active and inactive partitions, dense patterns result in low storage ca-

pacity. Although the performance of the associative memory capacity was largely

limited to a few stored patterns of high density (low sparsity), LT networks have

shown to exhibit interesting dynamics that can be further analyzed and addressed.
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Chapter 10

Conclusions and Outlook

In this chapter the main results of this thesis are summarized and possible future

research directions are discussed.

10.1 Conclusions

A new dynamical optimal learning (DOL) algorithm for feed-forward neural net-

works by virtue of the dynamical stability analysis was presented in Chapter 2.

The new training method aims to avoid the serious drawback of the standard feed-

forward neural network’s training algorithm, the sensitivity to initial parameters

and problems. The learning performance was also improved in terms of the re-

duction of convergence time. Chapter 3 studied a class of discrete time recurrent

neural networks with nonsaturating transfer functions and the new conditions for

global exponential stability were presented. Under such conditions the network

can globally converge to the unique optimum of constrained quadratic optimiza-

tion problems.

Based on the dynamical stability analysis of the Hopfield network applied to trav-

eling salesman problems, Chapter 4 presented a new principle for the parameter

settings. The dynamics investigation confines the parameter ranges where conver-
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gence of valid solutions can be ensured, while that of invalid solutions can be fully

eliminated. It shows that the winner-take-all rule can increase the computation

efficiency of neural networks. In Chapter 5 a competitive computation model was

constructed to solve combinatorial optimization problems. The competitive model

has the same structure as Hopfield network in terms of synaptic connections, while

the manners of updating neuronal states are quite different. The competitive model

can elegantly realizes the embedded constraints, and perform much more efficiently

than the networks without competition computation. In Chapter 6 image segmen-

tation was formulated as an optimization problems and mapped to a competitive

network. Two stochastic optimization techniques such as simulated annealing and

local minima escape which can further improve the solution quality and segmenta-

tion were successfully combined with the algorithm of competitive network.

The linear threshold (LT) networks are studied extensively in the last part of

this thesis. The analysis of the geometrical properties of equilibria and the global

attractivity was given in Chapter 7. Chapter 8 theoretically elucidated one impor-

tant dynamic behavior of the LT networks, periodic oscillations in two dimensions,

and established the conditions for the existence of limit cycles. Generally, the the-

oretical results are only applicable to two-cell networks, however, they provide a

deep investigation into the neurodynamics of LT networks. More importantly, they

are applicable to some specific LT networks of high dimensions, e.g., the winner-

take-all network using local excitation and global inhibition. In Chapter 9, some

new conditions which ensure boundedness and stability for nonsymmetric and sym-

metric LT networks were put forward. The stability results can be used to design

an analog associative memory network. Experimental results illustrated that the

LT network was able to retrieve gray-scale images.
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10.2 Suggestions for Future Research

The results presented in this thesis suggest a number of interesting future research

directions.

Previous methods in solving combinatorial optimization problems such as TSPs

often involved the use of a network with saturating transfer functions such as sig-

moid and limiter functions, of which the dynamic trajectory is ensured to converge

to a local minimum (attractor) of an energy function. Unfortunately, the nature

of the energy function that the methods utilize causes spurious states (infeasi-

ble solutions) to occur most of the time. It is believed that the use of a class

of continuous-valued, neurons without a upper saturation state is able to exclude

the problem of spurious ambiguous states. Thus it is of great interest to consider

the linear threshold network as an alternative method for solving combinatorial

optimization problems.

Feature binding or segmentation is another interesting topic to be investigated.

It is shown that a competitive network incorporating winner-take-all can be ap-

plied to complex image segmentation. On the other hand, a network with synaptic

cooperation and competition is capable of perception grouping in a parallel process-

ing, which is more biological plausible. One possibility is to refine the competitive

model by combining synaptic cooperation and competition with recurrent neuro-

dynamics. Of course the main task is to investigate the stability conditions that

confine the strengths of excitative and inhibitive synaptic connections. Feature

binding by a recurrent network is an important step towards a successful applica-

tion of visual perception modeling in real-world image processing problems, which

is a major field of computer vision and machine intelligence.

It would have more meanings in elevating our ability to emulate the brain func-

tions, that is, developing computational approach to visual perception, such as

feature extraction, feature binding and segmentation, object recognition. The re-
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current dynamics plays an important role. In particular, it is also related to such

problems: how to characterize the dynamics of neural networks with recurrent

connections? How do the time-varying activities of neurons represent things? On

the other hand, the existing models were designed to realize one of the computa-

tions, but it is not well studied how to connect other computations. It would be

more challenging but meaningful to design a hierarchical model to perform two or

more consecutive computations. Indeed, it will be very intriguing with experience

gained through this research to envision a unified framework to incorporate all

these different functions in a much higher level.
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Appendix A

Relating the Derivative Bounds to

Network Parameters

Proposition 4.1: Any invalid tour v ∈ HC − HT , S =
∑

x

∑

i

vx,i = N − 1, the

following bound is obtained

max
S=N−1

E0(v) ≤ −A− B +
C

2
+ 3DdU .

Proof. For any point v ∈ HC , let I0 denote the index set of its columns whose

elements are equal to 0, i.e., I0 = {i ∈ {1, 2, · · · , N} : Si = 0} and N0 = |I0|

denotes the cardinal. Now consider S = N − 1, I0 6= ∅ and N0 ≥ 1, then x′ and i′

exist such that vx′,i′ = 0 and Sx′ = 0, e.g.,

v =




0 0 0 0

1 0 0 1

0 vx′,i′ 0 0

0 0 0 1




.

Therefore, from (4.18),

Ex′,i′(v) = −A − B +
C

2
+ D

∑

y 6=x

dx,y(vy,i′−1 + vy,i′+1)

≤ −A − B +
C

2
+ DdU (Si′−1 + Si′+1).
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Taking minimum over all i ∈ I0, it is obtained that

E0(v) ≤ −A− B +
C

2
+ DdU min

i∈I0
(Si−1 + Si+1).

Applying the technical result (Lemma A. 2, (Talaván and Yáñez, 2002)),

min
i∈I0

(Si−1 + Si+1) ≤ 4 − 2(N − S)

N0
. (A.1)

and taking into account that Si−1 + Si+1 ∈ N , the following is obtained,

min
i∈I0

(Si−1 + Si+1) ≤ [4 − 2(N − S)

N0

] ≤ 3.

Hence it proves that

E0(v) ≤ −A− B +
C

2
+ 3DdU .

Proposition 4.2: Any invalid tour v ∈ HC − HT , S =
∑

x

∑

i

vx,i = N , the

following bound is obtained

min
S=N

Ē1(v) ≥ min {B,A + DdL, (N − 1)A} − C

2
.

Proof. To prove min
S=N

E1(v) ≥ min{B,A + DdL, (N − 1)A} − C

2
, the following 3

exhaustive cases for vx,i = 1 are considered.

Case 1 : ∃vx′,i′ = 1 : Sx′ ≥ 1, Si′ ≥ 2, e.g.,

v =




0 0 0 0

0 1 0 0

0 0 0 1

1 0 0 1




.

From equation (4.18), it is derived

Ex′,i′ = A(Sx′ − 1) + B(Si′ − 1) − C

2
+ D

∑

y 6=x

dx,y(vy,i′−1 + vy,i′+1)

≥ B − C

2
. (A.2)
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Case 2 : ∃vx′,i′ = 1 : Sx′ ≥ 2, Si′ = 1, e.g.,

v =




0 0 0 0

0 0 1 0

1 1 0 0

0 0 0 1




.

Then

Ex′,i′ = A(Sx′ − 1) − C

2
+ Ddx,y

≥ A − C

2
+ DdL. (A.3)

Case 3 : ∃vx′,i′ = 1 : Sx′ = N,Si′ = 1, e.g.,

v =




0 0 0 0

0 0 0 0

1 1 1 1

0 0 0 0




.

It follows that

Ex′,i′(v) ≥ A(N − 1) − C

2
. (A.4)

Considering (A.2)-(A.4), it holds

min
S=N

E1(v) ≥ min{B,A + DdL, A(N − 1)} − C

2
.

This completes the proof.
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Appendix B

Neuronal Trajectories in D1 and

D2

B.1 Phase Analysis for Center Type Equilibrium

in D1

In D1, the Jacobian matrix

J =




w11 − 1 w12

w22 w22 − 1


 ,

its eigenvalues are λ1,2 = ±ωi. By defining x̃1(t) = x1(t) − x∗
1, x̃2(t) = x2(t) − x∗

2

for t ≥ 0, the linear system (8.1) becomes ˙̃x = J ˙̃x. Note that w12w21 6= 0. The

linear system has a pair of complex eigenvectors corresponding to λ1,2,

e1,2 =




1

−w11+1
w12


± i




0

ω
w12


 ,

or

e1,2 =




w11−1
w21

1


± i




ω
w21

0


 .

Denote u = Re(e) and v = Im(e), according to the linear system theory (Perko,

2001), J can be reduced to the Jordan canonical form by defining a invertible
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matrix P = (v, u). We choose the first pair of eigenvectors for our derivation.

Adopting the second pair of eigenvectors will reach the same results.

Therefore, we can define a linear transformation y(t) = P−1x̃(t) for all t ≥ 0,

where

P =




0 1

ω
w12

−w11+1
w12


 ,

such that

P−1JP =




0 −ω

ω 0


 ,

then we have

ẏ =




0 −ω

ω 0


 y. (B.1)

It follows that

y(t) =




cos ωt − sinωt

sinωt cos ωt


 y(0). (B.2)

Hence,

y1(t)
2 + y2(t)

2 = y1(0)
2 + y2(0)

2. (B.3)

Recall that y(t) = P−1x̃(t), i.e.,





y1(t) = w11−1
ω

x̃1(t) + w12

ω
x̃2(t),

y2(t) = x̃1(t),
(B.4)

substitute it back into (B.3), thus we obtain the trajectory equation in D1,

(
w11 − 1

ω
x̃1(t)+

w12

ω
x̃2(t))

2 + x̃1(t)
2 = (

w11 − 1

ω
x̃1(0)+

w12

ω
x̃2(0))

2 + x̃1(0)
2, (B.5)

that is,

(1 +
(w11 − 1)2

ω2
)x̃1(t)

2 +
2(w11 − 1)w12

ω2
x̃1(t)x̃2(t) +

w2
12

ω2
x̃2(t)

2 = x̃1(0)
2

+ (
w11 − 1

ω
x̃1(0) +

w12

ω
x̃2(0))

2. (B.6)
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B.2 Phase Analysis in D2

In D2, the Jacobian matrix is given as

J =




−1 w12

0 w22 − 1


 .

By defining x̃1(t) = x1(t)− x∗
1, x̃2(t) = x2(t)− x∗

2 for t ≥ 0, the linear system (8.1)

becomes ˙̃x = J ˙̃x. Since J may have one or two distinct eigenvalues when w22 takes

different values, thus two different cases need to be considered.

Case 1: w22 6= 0. In this case the Jacobian matrix has two distinct eigenvalues,

λ1 = −1, λ2 = w22 − 1. The corresponding linear-independent eigenvectors are

given below,

e1 =




1

0


 , e2 =




w12

w22

1


 .

According to the linear system theory, J can be reduced to the Jordan canonical

form by defining an invertible matrix P = (e1, e2). Therefore, we can define a linear

transformation y(t) = P−1x̃(t) for all t ≥ 0, where

P =




1 w12

w22

0 1


 .

Then

y = P−1x̃ =




1 −w12

w22

0 1


 x̃ =




x̃1 − w12

w22
x̃2

x̃2


 . (B.7)

It follows that

ẏ = P−1JPy =




−1 0

0 w22 − 1


 y.

It is solved as 



y1(t) = exp(−t)y1(0),

y2(t) = exp((w22 − 1)t)y2(0).
(B.8)

Thus we have

y1(t)
(w22−1)y2(t) = y1(0)

(w22−1)y2(0). (B.9)
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Substitute (B.7) into (B.9), we get

(x̃1(t)−
w12

w22

x̃2(t))
(w22−1)x̃2(t) = (x̃1(0) −

w12

w22

x̃2(0))
(w22−1)x̃2(0). (B.10)

Case 2: w22 = 0.

The eigenvalues are λ1,2 = −1. The Jacobian matrix has only one linear indepen-

dent vector e1 = (1, 0)T . A generalized eigenvector e2 = (0, 1
w12

)T is obtained such

that Je2 = (−1)e2 + e1. Then we can define a similarity transformation y = P−1x̃,

where

P =




1 0

0 1
w12


 . (B.11)

Then we have

y = P−1x̃ =




1 0

0 w12


 x̃ =




x̃1

w12x̃2


 , (B.12)

and

ẏ = P−1JPy =




−1 1

0 −1


 y. (B.13)

Its solutions are given by

y(t) = e−t




1 t

0 1


 y(0). (B.14)

Substitute (B.12) into (B.14), it is obtained that





x̃1(t) = e−t(x̃1(0) + tw12x̃2(0)),

x̃2(t) = e−tx̃2(0),
(B.15)

or equivalently,

x̃1(t)

x̃2(t)
=

x̃1(0)

x̃2(0)
+ tw12. (B.16)

From the above equation, it is derived that

t =
1

w12
(
x̃1(t)

x̃2(t)
− x̃1(0)

x̃2(0)
), (B.17)
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substitute it back into (B.15), we get

ln x̃2(t) +
1

w12

x̃1(t)

x̃2(t)
= ln x̃2(0) +

1

w12

x̃1(0)

x̃2(0)
, (B.18)

for x̃2(0) > 0.

B.3 Neural States Computed in Temporal Do-

main

The orbit of the system in D1 is computed by

(x(t)−xe) = exp(
τ

2
t)




w11−w22

2ω
sinωt + cos ωt w12

ω
sinωt

w21

ω
sin ωt w22−w11

2ω
sinωt + cosωt


 (x(0)−xe).

(B.19)

The orbit of the system in D2 is computed by

(x(t)−xe) =




exp(−t) w12

w22
(exp((w22 − 1)t) − exp(−t))

0 exp((w22 − 1)t)


 (x(0)−xe), (w22 6= 0)

(B.20)

or else

(x(t)−xe) =




exp(−t) w12t exp(−t)

0 w22t exp(−t) + exp(−t)


 (x(0)−xe), (w22 = 0). (B.21)
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