7,466 research outputs found

    Convergence of Bayesian Histogram Filters for Location Estimation

    Get PDF
    We prove convergence of an approximate Bayesian estimator for the (scalar) location estimation problem by recourse to a histogram approximant. We exploit its tractability to present a simple strategy for managing the tradeoff between accuracy and complexity through the cardinality of the underlying partition. Our theoretical results provide explicit (conservative) sufficient conditions under which convergence is guaranteed. Numerical simulations reveal certain extreme cases in which the conditions may be tight, and suggest that this procedure has performance and computational efficiency favorably comparable to particle filters, while affording the aforementioned analytical benefits. We posit that more sophisticated algorithms can make such piecewise-constant representations similarly feasible for very high-dimensional problems. For more information: Kod*La

    Robust Inference for State-Space Models with Skewed Measurement Noise

    Get PDF
    Filtering and smoothing algorithms for linear discrete-time state-space models with skewed and heavy-tailed measurement noise are presented. The algorithms use a variational Bayes approximation of the posterior distribution of models that have normal prior and skew-t-distributed measurement noise. The proposed filter and smoother are compared with conventional low-complexity alternatives in a simulated pseudorange positioning scenario. In the simulations the proposed methods achieve better accuracy than the alternative methods, the computational complexity of the filter being roughly 5 to 10 times that of the Kalman filter.Comment: 5 pages, 7 figures. Accepted for publication in IEEE Signal Processing Letter

    Extracting the Italian output gap: a Bayesian approach

    Full text link
    During the last decades particular effort has been directed towards understanding and predicting the relevant state of the business cycle with the objective of decomposing permanent shocks from those having only a transitory impact on real output. This trend--cycle decomposition has a relevant impact on several economic and fiscal variables and constitutes by itself an important indicator for policy purposes. This paper deals with trend--cycle decomposition for the Italian economy having some interesting peculiarities which makes it attractive to analyse from both a statistic and an historical perspective. We propose an univariate model for the quarterly real GDP, subsequently extended to include the price dynamics through a Phillips curve. This study considers a series of the Italian quarterly real GDP recently released by OECD which includes both the 1960s and the recent global financial crisis of 2007--2008. Parameters estimate as well as the signal extraction are performed within the Bayesian paradigm which effectively handles complex models where the parameters enter the log--likelihood function in a strongly nonlinear way. A new Adaptive Independent Metropolis--within--Gibbs sampler is then developed to efficiently simulate the parameters of the unobserved cycle. Our results suggest that inflation influences the Output Gap estimate, making the extracted Italian OG an important indicator of inflation pressures on the real side of the economy, as stated by the Phillips theory. Moreover, our estimate of the sequence of peaks and troughs of the Output Gap is in line with the OECD official dating of the Italian business cycle

    A bank of unscented Kalman filters for multimodal human perception with mobile service robots

    Get PDF
    A new generation of mobile service robots could be ready soon to operate in human environments if they can robustly estimate position and identity of surrounding people. Researchers in this field face a number of challenging problems, among which sensor uncertainties and real-time constraints. In this paper, we propose a novel and efficient solution for simultaneous tracking and recognition of people within the observation range of a mobile robot. Multisensor techniques for legs and face detection are fused in a robust probabilistic framework to height, clothes and face recognition algorithms. The system is based on an efficient bank of Unscented Kalman Filters that keeps a multi-hypothesis estimate of the person being tracked, including the case where the latter is unknown to the robot. Several experiments with real mobile robots are presented to validate the proposed approach. They show that our solutions can improve the robot's perception and recognition of humans, providing a useful contribution for the future application of service robotics

    The equivalence of information-theoretic and likelihood-based methods for neural dimensionality reduction

    Get PDF
    Stimulus dimensionality-reduction methods in neuroscience seek to identify a low-dimensional space of stimulus features that affect a neuron's probability of spiking. One popular method, known as maximally informative dimensions (MID), uses an information-theoretic quantity known as "single-spike information" to identify this space. Here we examine MID from a model-based perspective. We show that MID is a maximum-likelihood estimator for the parameters of a linear-nonlinear-Poisson (LNP) model, and that the empirical single-spike information corresponds to the normalized log-likelihood under a Poisson model. This equivalence implies that MID does not necessarily find maximally informative stimulus dimensions when spiking is not well described as Poisson. We provide several examples to illustrate this shortcoming, and derive a lower bound on the information lost when spiking is Bernoulli in discrete time bins. To overcome this limitation, we introduce model-based dimensionality reduction methods for neurons with non-Poisson firing statistics, and show that they can be framed equivalently in likelihood-based or information-theoretic terms. Finally, we show how to overcome practical limitations on the number of stimulus dimensions that MID can estimate by constraining the form of the non-parametric nonlinearity in an LNP model. We illustrate these methods with simulations and data from primate visual cortex

    Particle filter state estimator for large urban networks

    Get PDF
    This paper applies a particle filter (PF) state estimator to urban traffic networks. The traffic network consists of signalized intersections, the roads that link these intersections, and sensors that detect the passage time of vehicles. The traffic state X(t) specifies at each time time t the state of the traffic lights, the queue sizes at the intersections, and the location and size of all the platoons of vehicles inside the system. The basic entity of our model is a platoon of vehicles that travel close together at approximately the same speed. This leads to a discrete event simulation model that is much faster than microscopic models representing individual vehicles. Hence it is possible to execute many random simulation runs in parallel. A particle filter (PF) assigns weights to each of these simulation runs, according to how well they explain the observed sensor signals. The PF thus generates estimates at each time t of the location of the platoons, and more importantly the queue size at each intersection. These estimates can be used for controlling the optimal switching times of the traffic light

    Discovering Neuronal Cell Types and Their Gene Expression Profiles Using a Spatial Point Process Mixture Model

    Full text link
    Cataloging the neuronal cell types that comprise circuitry of individual brain regions is a major goal of modern neuroscience and the BRAIN initiative. Single-cell RNA sequencing can now be used to measure the gene expression profiles of individual neurons and to categorize neurons based on their gene expression profiles. While the single-cell techniques are extremely powerful and hold great promise, they are currently still labor intensive, have a high cost per cell, and, most importantly, do not provide information on spatial distribution of cell types in specific regions of the brain. We propose a complementary approach that uses computational methods to infer the cell types and their gene expression profiles through analysis of brain-wide single-cell resolution in situ hybridization (ISH) imagery contained in the Allen Brain Atlas (ABA). We measure the spatial distribution of neurons labeled in the ISH image for each gene and model it as a spatial point process mixture, whose mixture weights are given by the cell types which express that gene. By fitting a point process mixture model jointly to the ISH images, we infer both the spatial point process distribution for each cell type and their gene expression profile. We validate our predictions of cell type-specific gene expression profiles using single cell RNA sequencing data, recently published for the mouse somatosensory cortex. Jointly with the gene expression profiles, cell features such as cell size, orientation, intensity and local density level are inferred per cell type

    Dynamic Denoising of Tracking Sequences

    Get PDF
    ©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/TIP.2008.920795In this paper, we describe an approach to the problem of simultaneously enhancing image sequences and tracking the objects of interest represented by the latter. The enhancement part of the algorithm is based on Bayesian wavelet denoising, which has been chosen due to its exceptional ability to incorporate diverse a priori information into the process of image recovery. In particular, we demonstrate that, in dynamic settings, useful statistical priors can come both from some reasonable assumptions on the properties of the image to be enhanced as well as from the images that have already been observed before the current scene. Using such priors forms the main contribution of the present paper which is the proposal of the dynamic denoising as a tool for simultaneously enhancing and tracking image sequences.Within the proposed framework, the previous observations of a dynamic scene are employed to enhance its present observation. The mechanism that allows the fusion of the information within successive image frames is Bayesian estimation, while transferring the useful information between the images is governed by a Kalman filter that is used for both prediction and estimation of the dynamics of tracked objects. Therefore, in this methodology, the processes of target tracking and image enhancement "collaborate" in an interlacing manner, rather than being applied separately. The dynamic denoising is demonstrated on several examples of SAR imagery. The results demonstrated in this paper indicate a number of advantages of the proposed dynamic denoising over "static" approaches, in which the tracking images are enhanced independently of each other

    Generalized Kernel-based Visual Tracking

    Full text link
    In this work we generalize the plain MS trackers and attempt to overcome standard mean shift trackers' two limitations. It is well known that modeling and maintaining a representation of a target object is an important component of a successful visual tracker. However, little work has been done on building a robust template model for kernel-based MS tracking. In contrast to building a template from a single frame, we train a robust object representation model from a large amount of data. Tracking is viewed as a binary classification problem, and a discriminative classification rule is learned to distinguish between the object and background. We adopt a support vector machine (SVM) for training. The tracker is then implemented by maximizing the classification score. An iterative optimization scheme very similar to MS is derived for this purpose.Comment: 12 page
    corecore