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Abstract— This paper applies a particle filter (PF) state
estimator to urban traffic networks. The traffic network consists
of signalized intersections, the roads that link these intersections,
and sensors that detect the passage time of vehicles. The traffic
state X(t) specifies at each time time t the state of the traffic
lights, the queue sizes at the intersections, and the location
and size of all the platoons of vehicles inside the system. The
basic entity of our model is a platoon of vehicles that travel
close together at approximately the same speed. This leads to
a discrete event simulation model that is much faster than
microscopic models representing individual vehicles. Hence it
is possible to execute many random simulation runs in parallel.
A particle filter (PF) assigns weights to each of these simulation
runs, according to how well they explain the observed sensor
signals. The PF thus generates estimates at each time t of the
location of the platoons, and more importantly the queue size
at each intersection. These estimates can be used for controlling
the optimal switching times of the traffic light.

Index Terms— Bayesian estimation, particle filtering, urban
traffic, platoon based model, stochastic systems.

I. INTRODUCTION

Estimation and prediction of the traffic state in an urban
network is an important component of the feedback loop
used in on-line road traffic management. Both PF and the
distributed model predictive controllers (MPC) that we use for
adapting the switching times, require a fast and simple model
describing the location of vehicles in the network. Many
different models for both freeway traffic and for urban traffic
have been developed. Urban traffic, the topic of this paper, can
be described by macroscopic models [4], [5] representing the
average traffic behavior in terms of the aggregated variables
density and flow, as measured at different locations, or by
microscopic models that represent the behavior of each vehicle
individually. Microscopic models are suitable for very low
density traffic, where no feedback control is necessary, while
macroscopic models are suitable for oversaturated traffic
where control actions select cycle times, red/green split, and
offset.

Our work deals with the intermediate traffic load case, and
we aim at selecting the actual switching times of the individual
traffic lights using local feedback, but trying to maintain as
much as possible the green wave, so as to postpone the onset
of saturation as much as possible. This requires PF traffic
state estimators and MPC controllers that depend on a fast
simulations models that can approximately locate all vehicles.

In order to efficiently achieve this goal our model groups
vehicles into platoons. A platoon consists of vehicles that
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travel at approximately the same speed, closely following
each other. The state X(t) of the traffic network at time t
in such a platoon based model represents the status of each
traffic light, the queue sizes at each approach lane of each
intersection, and the location of the head, and the size, of
each platoon inside the network. At various locations in the
network (e.g. just upstream and just downstream of each
intersection) sensors detect the successive passage times of
vehicles. These measurements, together with information on
the red/green switching times of all the traffic lights, are used
to recursively estimate the size of the queues, and the location
and size of the platoons.

Note that the problem we are posing is simpler than the
problem dealt with in [19] where the sensors provide data only
on the fraction of time a loop detector is covered by a vehicle.
Vigos et al. in [19] must transform their time-occupancy data
into space-occupancy data. This problem becomes difficult
for urban traffic because the intersections, and especially the
traffic lights, cause very strong inhomogeneity in the traffic
flow. The platoon based model used in this paper represents
this inhomogeneity explicitly, thus simplifying the estimation
problem.

We assume that a link has at least one sensor at its upstream
and at its downstream edge, and that these sensors detect,
with some noise, the passage times of vehicles. It seems in
principle trivial to estimate the current number of vehicles in
this link (vehicles that are either part of a platoon moving
through the link, or that are stopped in a queue if the outflow
of the link is blocked), simply by subtracting outflow count
from inflow count. This is impossible not only because the
initial number of vehicles in the link is unknown, but also
because the sensors are very unreliable (for some sensors we
believe the rate of missed detections can be up to 30%). The
error of such a naive estimate would be a random walk with
linearly increasing variance, due to the noise in the sensors.
Fortunately combining the sensor data with the dynamical
model (e.g. the conservation laws relating flows at successive
sensors along a link) allows reduction of the errors in the
estimated states. For example the model allows the estimator
to deduce that the queue size is 0 at an intersection if the
outflow sensor for a flow that has green light sees no traffic.
The first platoon leaving an intersection after a traffic light
switches from red to green gives information on the size of
the queue just before this red/green switch.

In [19] recursive state estimation is achieved via a Kalman
filter combining sensor data with the dynamical traffic
model, esp. the conservation equations. For the macroscopic
METANET freeway model [7] an extended Kalman filter has
been used by e.g.[6] [12], but this requires a linearization
something that is not feasible for our discrete event platoon
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based model, expressing the traffic inhomogeneity. We
need general Bayesian recursive filtering algorithms, but
unfortunately their computational complexity is prohibitive
for large systems. The recursive calculation of conditional
densities of the current state given the measurements requires
integration over the state space, which is too large for the
platoon based model.

Recently particle filtering (PF) has been proposed as a
method for approximating the conditional density by an
empirical histogram obtained via Monte Carlo simulation.
There is already a rich literature about PF for traffic estimation
for freeway traffic [1], [2], [15] and [3], but little about state
estimation for urban traffic. In this paper we show that this
PF approach can also be used for estimating the state of a
platoon based model of the urban traffic. This requires the
generation of N random simulation runs of the platoon based
model of the urban traffic. The platoon based model used in
this paper can indeed be implemented by an efficient discrete
event system (DES) simulator, because it needs to keep track
only in its event list of the arrival times and size of the
successive platoons at a few locations (e.g. upstream of an
intersection, sensor locations). Since the number of events to
be executed by the simulator is proportional to the number
of platoons, much smaller than the number of vehicles, this
significantly reduces the simulation time.

Our choice for a platoon based model is motivated by the
fact that it leads to fast simulation, and by the fact that platoon
arrival times at intersections are used in our feedback control
algorithm for selecting the switching times of traffic lights.
Moreover the traffic data that we have available, covering
measurements over more than 40 days in a network with
5 signalized intersections, 2 roundabouts, and a number of
unsignalized intersections, indicate that vehicles travel most
of the time in platoons. Moreover the data show that (for
the day time traffic that we want to control) the number of
platoons per time unit is fairly constant: the expected size
of the platoons grows with the traffic intensity while the
arrival rate of the platoons remains approximately constant.
Figure 1 shows the variation in the number of platoons (for
each working day during 1 week) at a location on a road
sufficiently far from the exit of a roundabout and 250[m]
upstream from an intersection, as obtained from the data set.
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Fig. 1. Number of platoons (defined with inter-vehicle time 5 sec) for 5
different working days.

The platoon based model is presented in Section II-A.
The stochastic simulation set-up of the particles is tackled in
Section II-B. Section III explains the PF implementation

for a platoon based model and some ideas about the
distributed implementation of the algorithm for large networks.
Section IV demonstrates the feasibility and the robustness of
our estimators on some simple scenarios, while Section V
provides some conclusions, and discusses some further
improvements.

II. THE MODEL

A. Discrete event systems model

This section briefly describes a discrete event model of
the dynamic behavior of urban traffic, also introduced in
[18]. Vehicles that are closer to each other than a certain
inter-platoon distance ∆(= 6[sec] in this paper) are assumed
to be part of one single platoon of vehicles. The time distance
Iinterveh,k between vehicles k and k+1 in the same platoon is
a random variable taking values in an interval [dmin,6[sec]).
The vehicles in these platoons move, as time t evolves,
from their origin, where they are generated by a source
component, to their destination, as they pass through the
successive link and intersection components of the urban
traffic network U . Platoons slow down, merge, and split
up by their interaction with each other and with the traffic
lights at signalized intersections. Looking at this space-time
description of platoons at a given time t defines the state Xt
of the model:
• location and size of all the platoons in each link of U ,

and size of the queues at each intersections, at time t;
• red/green/yellow mode of all traffic lights, at time t.

This state can be defined compositionally as a stack X(t) =
(Xc(t),c ∈L

⋃
I ,Mi(t))T of substates. Here L is the set

of all links in U , while I is the set of all intersections. For
Link` ∈L the substate X`(t) represents the position and size
of each platoon in Link`, while for intersection Inti ∈I ,Xi(t)
represents the queue sizes at all its pre-selection lanes; Mi(t)
represents the state of a timed automaton expressing the
behavior of the traffic lights (current phase of the traffic light,
but also values of clocks that restrict future switching times)
at Inti.

Figure 2 represents a small part of an urban traffic network,
with a Linki of length Li that is connected at its upstream
access point to the intersection C1. The downstream exit
point of Linki is connected to the 3 pre-selection lanes (traffic
going straight, turning right, or turning left) of intersection
C2. The nodes of a general urban traffic network U connect
the exit point of one component to the access point of another
component. A sensor is installed at each node in U detecting
the passage of platoons by measuring the time at which
the lead vehicle of the successive platoons pass the sensor
location, and by also measuring the size of the platoon. In
other words the state X(t) represents a vertical cut at time t
through the space-time diagram [20] of the platoon evolution,
while a sensor measures a horizontal cut, at the sensor location,
through this space-time diagram.

Remark: Our definition of a platoon is a gross
simplification of real system behavior. Indeed the appropriate
inter-platoon distance ∆ depends on the speed of the vehicles.
However the data we have available only show the times at



which vehicles pass a sensor location, not their speed. We can
hence not distinguish whether a large time delay between 2
successive vehicles implies they belong to different platoons,
or whether they belong to the same platoon driving so
slowly that their time distance is large. For urban traffic it is
reasonable to assume that most of the time the vehicle speed
is either normal (between 80% and 100% of the maximal
speed), or else is very low (even equal to 0), which of
course makes our definition of a platoon meaningless at
an intersection with a red light. Therefore we extend the
definition of a platoon by designating a queue of stopped
vehicles as a (stationary) platoon. These queues behind a red
light can be recognized as the first platoon that passes the
sensor at the access point of the downstream link, as soon as
the traffic light turns green. Our approximations agree with
the data we have available, and moreover provide us with
the variables that we will use later on in feedback control
laws of traffic lights.
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Fig. 2. The road topology and the sensors

Our platoon based model defines how the platoons evolve
inside each component, and how they are moving from
an upstream component to a downstream component. We
define below the different types of components of an urban
traffic network, specifying how the state of the platoons
evolves inside the component (in particular how the events
are defined that describe the evolution as a D.E.S.), and how
one component is connected to another component:
• Traffic Sourcer ∈ R,r = 1, . . . ,R = ]R generates at
successive times Tr,n,head ,n = 1, . . . platoons of size Kr,n
entering the upstream access point of Link` (at the edge
of the traffic network). The size Kr,n is a random variable
with time dependent (empirically determined) probability
distribution ℘(Kr,n = k) = Pr(k, t),k = 1,2, . . . ,Kmax(t).
The duration Dr,n = Tr,n,tail − Tr,n,head of this n-th platoon,
that is the difference between the arrival time Tr,n,tail
at the source of the last vehicle of the platoon and the
arrival time Tr,n,head of its first vehicle, is the sum of
Kr,n random variables Interveh,k with mean EInterveh. The
time gap Dr,n = Tr,n+1,head − Tr,n,tail between successive
platoons is random, defined by Dr,n = 6[sec] +Gr,n, where
Gr,n are independent random variables with exponential
distribution, and mean value EGr. This results in a time
varying arrival rate of λ (r, t) = EKr(t)

6+EGr+EKr(t).EIinterveh
[veh/sec].

The parameters of this model must be determined based on
historical measurements at the location of Sourcer.

• The head of a platoon that enters Link`, `= 1, . . . ,L = ]L
at its access point at time Tn,` (= Tr,n,head if this access point
is connected to Sourcer) reaches the exit point of Link` at
time Tn,`+L`/vn,` with a random delay, depending on the
length L` of Link` and on the random speed vn,` = p.Vmax
where p = 1,0.9, or 0.8 with probabilities 0.8,0.15,0.05 in
our current implementation (accidents can be modeled by
large random increase in this random delay). Link` has a
predefined storage capacity (in order to model spill-backs).
The size of the platoon that enters the Link` is inherited from
the upstream component, e.g. if the upstream component is
Sourcer generating a platoon of size Kr,n then the size of
this platoon remains Kr,n. In our current implementation we
consider merging of platoons only at the end of Link`, if the
head of the faster platoon n catches up with the tail of the
slower platoon n−1, (including the case where a queue is
formed at the blocked exit of the link). In order to limit the
size of the paper we omit details on randomly splitting up
platoons in a link.
• An intersection Inti, i = 1, . . . , I has as many access points
as there are pre-selection lanes for traffic arriving at its
approach roads, and has as many exit points as there are
downstream exit roads. If a platoon of size Kr,n reaches
the exit point of a link, that is connected to the entrance
point of the intersection Int, then the vehicles are assigned
to the q pre-selection lanes according to a multinomial
distribution with parameters Kr,n,Pq(t) where the parameters
Pq(t) are determined on the basis of historical data at Inti.
Provided the priority and safety rules (mode of traffic lights,
and additional right of way rules for left turning traffic)
are satisfied a platoon in a pre-selection lane moves to
the appropriate exit point that is the entrance point of a
downstream link. Queues form behind a traffic light during
its red phase. As soon as the traffic light turns green the
queue starts moving and leaves as one newly formed platoon
until the queue has become empty. When the queue is empty,
during a green phase, platoons move from access point of
the intersection to the exit point, with a random delay.
• At least one Sensors ∈S ,s = 1, . . . ,S = ]S is installed
at each node in U , but more sensor locations along a link
can be included. One purpose of sensors is to provide the
measurement data to be used by the particle filter. However
we can also introduce virtual sensors, in order to simplify
the modeling. These sensors do not generate measurement
data, but they allow a more accurate model. Indeed in the
description of a link we assumed that platoons do not split
up nor merge inside a link. This is valid as an approximation
of real traffic behavior only if the length of the links is
sufficiently small. In particular this assumption guarantees
that our traffic model is a pure discrete event model, where
the evolution of the traffic behavior is completely determined
by the event times, when the head or the tail of a platoon
arrives at a sensor location (and by the red-green switching
times).



B. Discrete event simulation tool

The platoon based model introduced in Section II.A is a
DES model specifying the progress of platoons of vehicles
traveling through the components of the network. The set
of platoons Pp, p ∈ PI(t) that are present in the network at
time t is defined by the index set PI(t)⊂ N0. The location
and the size of platoon Pp at time t can be calculated from
the arrival time of the first vehicle of platoon Pp at the
sensor location just upstream of the current position of Pp,
and from its size. Since platoons do not change speed nor
size in between sensors this information is sufficient for
uniquely determining the substate Xc(t),c ∈ L

⋃
I . This

information is also sufficient to implement the model in a
discrete event simulation tool using an agenda that keeps
track of all the future events: platoon-entering intersection;
platoon-entering link; platoon-leaving intersection; platoon-
leaving link; next-green; platoon-generated-by-source. This
agenda provides the following information for each event:
e= {time,action type, place,size} where place represents the
set of sensors where the platoons are detected at the nodes
of U (and possibly at other places where the sensors are
deployed on a link). The action type represents the type of
the event that has to take place at time time. The size variable
is used for different purposes depending on the action type
(number of cars that have to move, duration of next green
period).

The model of section II.A indeed allows the simulation
tool to update the agenda each time an event is executed,
since platoons only change speed nor size at the boundary of
different components. Knowing the current state X(Tk) just
before the time Tk when the k-th event occurs it is possible to
calculate the time of the next events to be added to the event
list. Arrival times of first and last vehicles of platoon Pp at a
any sensor location are determined by the arrival time of first
vehicle and size of Pp at the upstream sensor location, and by
the time delay along the component in between the 2 sensors
(along a link this depends on the randomly selected speed, in
an intersection on the random delay at the intersection and for
left turning traffic also on higher priority traffic). Switching
times for the phase of a traffic light are determined by the
feedback control law for the intersection, which is beyond
the scope of this paper, but which is easy to implement in
the simulator.

III. TECHNICAL DESCRIPTION OF PARTICLE FILTER

The measurements provided by the active sensors
sensor j, j ∈ J ⊆S can be used to estimate the current state
X(t) (or to predict future state evolution X(τ),τ ≥ t, so that
MPC controllers can be implemented). The output at an
active sensor j, j ∈ J is generated as follows. Each time a
vehicle passes the location of sensor j this generates, with
probability Pdetect, j, independently of the other pulses that
are generated, a pulse in the output of sensor j. The sensor
output thus fails to detect (1−Pdetect, j).100% of the vehicles.
The sensor also makes random errors by registering some
false detection pulses at times when no vehicle is passing
the sensor location.
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Fig. 3. Sensor S j detecting a platoon during ∆t

The output of sensor j, j ∈ J ⊆S is sampled per interval
of length ∆sample, i.e. at the end of the k-th sampling period
[tk, tk+1) = [k.∆sample,(k + 1).∆sample) sensor j generates a
random signal Ysensor j(k) that depends on the system state
X(τ),τ ∈ [tk, tk+1) (the location and size of the platoons
in the components upstream and downstream of sensor j at
time tk), and on the random noise due to missed vehicles
and false detections. The number of vehicles that pass
the sensor location is determined as shown in Figure 3.
For each platoon Pp let ρp be the fraction of the interval
[Tn, j,head ,Tn, j,tail) that overlaps (and intersects) the sampling
interval [tk, tk+1). If the sensor worked perfectly it would
output Z j,k = ∑p∈PI(t) ρp.Kn, j (usually ∆sample is smaller than
the gap D j,n between platoons so that only one platoon
must be considered in this sum). The noisy output Yj,k =
Z̃ j,k +Vj,k of sensor j is then the sum of Z̃ j,k, a binomial
random variable with parameters Z j,k and probability Pdetect, j,
and the random number Vj,k of false detections (which in
the current implementation has a probability distribution
P(Vj,k = n) = pn with p0 = 0.95, p1 = 0.04, p2 = 0.01).
Further analysis of experimental data is needed in order to
obtain a more accurate distribution of the false detections.

This clearly relates the sensor output signals to the evolution
of the state of the D.E.S., since it specifies P(Yj,k = m |
X(tk)) (in fact only the substates of X(tk) that describe the
components upstream and downstream of sensor j appear in
the conditioning). Let Yk denote the vector of all observations
Yj,k, j ∈ J then the assumption that the noises at different
sensors are independent makes it easy to write P(Yk | X(tk))
as a product of the local conditional probabilities. Hence it
is in principle possible to carry out the measurement update
step of a recursive Bayesian estimation algorithm by applying
Bayes’ rule: the multiplication P(X(tk) | Zk−1.P(Yj,k =
m | X(tk)), where Zk = {Y1,Y2, . . . ,Yk−1,Yk} = {Zk−1,Yk},
followed by a normalization defines the conditional probability
distribution (PDF) P(X(tk) | Zk) of the current state given
all the measurements available up to time tk. The random
D.E.S. model of Section II.A implicitly defines the transition
probability P(X(tk) | X(tk−1)). Applying the law of total



probability

P
(

X(tk)|Zk−1
)
=
∫

P (X(tk)|u )P
(

u|Zk−1
)
.du (1)

(for u ranging over the space of possible values of X(tk−1))
implements the state update step of the recursive Bayesian
estimator.

The integration necessary to evaluate the denominator in
the measurement update step - necessary in order to normalize
the PDF - is computationally too expensive when the state
space is too large, as is the case for the platoon based
model of traffic network U . The PF makes the problem
scalable by replacing this integration by the average over a
fixed number N of random samples of the traffic behavior.
These sample paths Partn,`,0 ≤ ` ≤ k, called particles, can
be generated using N independent Monte Carlo simulations
running in parallel on a computer, each simulations run
i = 1, . . . ,N generating a state trajectory xi

`, ` = 1, . . . ,k,
implementing the dynamical model of the plant as explained
in Section II-B. Generating the particles by random simulation
also avoids the problem that while the explicit formula for
the transition probability distribution P(X(tk) | X(tk−1)) is
very complicated, generating independent random samples of
the state evolution in the interval [k.∆sample,(k+1).∆sample)is
easy by using the D.E.S. simulation tool of Section II.B.

A weight wn
k ,n = 1, . . . ,N is associated to each of the

N particles Partn,`,0≤ `≤ k. The PF method approximates
P(X(tk)|Zk) by the empirical histogram corresponding to the
current state Xpart,n(tk)) of the n-th particle Partn,`,0≤ `≤ k,
and by its weight wn

k [13] [14]. This interpretation is valid
provided that the weight wn

k expresses reasoably accurately
at time tk how well the particle Partn,`,0 ≤ ` ≤ k. explains
the observations Zk, that are available at moment tk. The
weight wn

k should thus be multiplied, at each time tk when
an observation is obtained by the likelihood P(Yj,k = m |
Xpart,n(tk)), imitating the Bayesian measurement update step
in the recursive Bayesian estimator (note that when using a PF
estimator it is easy to consider the case where the observed
output Yj,k depends not just on the most recent state of the
system, but also on past behavior, as might be the case in
practical implementations for road traffic). In the practical
implementation, the sum of the weights must be normalized
to 1 for numerical reasons, but this only requires summing
N terms, not an integration over a very large state space.

In the case study used in this paper to validate the approach
we apply PF in order to estimate the queue size upstream
from sensor Sout at intersection C2, and the location of the
platoons in link Li, as shown in Figure 2. Note that these
are the variables that should be used in order to adapt the
traffic lights at C2 to the arrival stream of traffic coming from
intersection C1. In order to appreciate the difficulty of the
presented estimation problem consider also the fact that we
only measure traffic flow, which may be 0 either because
there are few vehicles (tra f f ic density ≈ 0) or because their
speed is very low (≈ 0). The queue size essentially integrates
the difference in observed inflow, at Smid , and the observed
outflow at Sout , but the error in this integration behaves like

a random walk. The estimate can be improved by taking into
account the phase of the traffic light, by observing that very
low outflow rates at Sout indicate an empty queue, and that
immediately after the traffic light turned green one can expect
to see a platoon at Sout equal in size to the queue at the end
of the red phase. The PF estimator efficiently combines all
this information.

Algorithm 1 Particle filter algorithm
Ensure: → Initialization of the particles k = 0

1: for i = 1 to N do
2: generate the ith sample

{
xi

0
}

3: initialize ith weight with wi
0 = 1/N

4: end for
5: for all k such that k ≥ 1 do

Ensure: → Prediction step
6: for i = 1 to N do
7: update the ith sample

{
xi

k

}
according to

p
(
xk|xi

k−1

)
8: end for

Ensure: → Measurement step
9: for i = 1 to N do

10: update the weight of the ith sample wi
k = wi

k−1 ·
p
(
zk|xi

k

)
11: end for
Ensure: → Normalization
12: for i = 1 to N do
13: normalize the weight of the ith sample ŵi

k =
wi

k/∑
N
i=1 wi

k

14: end for
Ensure: → Output
15: order particles by the size of the weight.
16: x̂s⇐ particle with the highest weight.
Ensure: → Resampling
17: for i = 1 to N/2 do
18: for pair

(
Pi

k,P
N−i+1
k

)
19: replace the state of the particlePN−i+1

k with the
state of the particle Pi

k
20: winew

k = (wi
k+wN−i+1

k )/2

21: wi
k = winew

k and wN−i+1
k = winew

k
22: end for
Ensure: → Time step update
23: k⇐ k+1
24: end for

The PF algorithm is described in algorithm 1. Initially N
random selections of sizes and locations of platoons Partn,0
are generated, each with weight 1/N. From then on one
implements for k = 0,1, . . . , the following recursion. Generate
for each particle Partn,`, `≤ k the state evolution in the interval
[tk, tk+1) according to the model of Section II.B (see line 7 in
algorithm 1). At time tk, when the information Zk is received,
the algorithm updates the weight wn

k of the n-th particle by
multiplying it with P

(
Yk|xn

k

)
(see line 10 in algorithm 1). For

large N the particles Partn,`, `≤ k,n = 1, . . . ,N will generate
an empirical histogram that approximates the true conditional
PDF P(X(tk) | Zk) sufficiently accurately.



Because the parallel simulation of the N particles in Matlab
- which we used in this case study - cannot be performed
in a true parallel manner, we had to run each particle for
∆t = ∆sample time units in a single thread of execution. The
condition to be able to run the PF in real time is that the
computation time for running N particles over an interval of
length ∆sample is considerably smaller than the update time
∆sample between successive measurement updates.

There is a practical problem that can appear after a few
time steps of the PF algorithm. The set of particles with
significant weight may no longer be sufficiently diverse to
properly approximate an empirical histogram. Only a few
particles have significant weights, others have become so
unlikely that their weight approaches 0, which means that
these particles do no longer carry useful information. Using
a resampling procedure we can reintroduce diversity in the
particles, by eliminating the particles with small weights, and
by replicating particles with larger weights. There are many
resampling techniques described in the literature [8], [9] that
try to find a good compromise between keeping all the useful
information (an unlikely particle may become likely after
future observations) and avoiding time consuming calculations
with very unlikely particles. The simple resampling method
used in this paper is described on lines 17-22 of algorithm 1:
it duplicates the N/2 most likely particles, and throws away
the N/2 least likely particles.

IV. VALIDATION OF PLATOON BASED FILTER

The real traffic measurements used in our experiments
allow thus to estimate model parameters like arrival rate and
size distribution of platoons at the sources, turning ratios, and
approximate values for time delays along links, and switching
times of traffic lights. However no measurements on queue
size evolution were available. Therefore we validated the
particle filter by comparing the estimates obtained from the
PF with synthetic data. Below we describe 2 such validation
experiments. Some experiments were carried out by using
as ground truth the platoon based model of Section II.B
to generate a state trajectory, while the sensor model was
used to generate the observations used as input for the PF.
Robustness against modelling errors was tested by simulating
the effect of an accident that according to the ground truth has
a very low probability. To validate the platoon based model
and to prove that it represents urban traffic with sufficient
accuracy to allow particle filtering we also used as ground
truth synthetic data produced by a third party microsimulator
called SUMO [16].

While showing histograms would be too difficult to
interpret easily, the time averages over all particles smooth out
some interesting details. Therefore we represent the results
by showing in each case and for all sampling times, how the
queue size of the most likely particle, that is the particle with
the highest weight, compares to the ground truth queue size.
In order to allow easy interpretation of the figures the blocks
at the bottom indicate when the traffic light is red for the
direction in which the queue size is estimated.
• The first example presents how the PF is able to cope with

an accident that has as effect a sudden drop of the speed, for
the platoons that enter on the link: at t = 360[sec] an accident
blocks one lane, reducing the maximal speed along the link
from 60[km/h] to 25[km/h]. In order to deal with this kind of
”accident” we admit that, after each ∆t, the PF has a random
number of particles that will embed a random drop in speed
and the associated weights will be changed accordingly by
assuming that an accident can take place with a probability of
10−5 in reality and with 10−2 in particles. This implements an
importance sampling algorithm for dealing with the rare event
of an accident. The traffic light is set to switch at each 30[sec].
Figure 4 shows in red lines the evolution of the real queue size,
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Fig. 4. Real queues (red line) vs. estimated queues (blue line) with
importance sampling

and in blue lines the evolution of the estimated queue size.
It can be easily observed that the PF is converging relatively
fast starting around 48[sec] and it is able to estimate the real
queue until around moment 360[sec] when the accident takes
place. While the PF is under-estimating the real queue just
after the accident the estimation is recovering after some time.
The computation time was 2.2[min] using 202 particles, in
order to analyze 12.10[min] of real time. The particle filter
thus works about 6 times faster than real time, even with a
very naive, non-optimized computer implementation.
• In the second example we have used synthetic

measurements based on the induction loops sensors simulated
in SUMO, for a cross-shaped network with 5 intersections
interconnected by 4 links (with sensors located as in Figure 2).
Model parameters (e.g. vehicle length 5[m], vmax = 50[km/h]
where taken from the thesis of S. Krauss [17]. The routes and
the traffic were generated by using the random tool offered
by SUMO. The model parameters (maximum speed, turning
ratios etc.) used in the platoon based model implemented in
the PF were changed accordingly (which does not invalidate
our robustness claim, since these parameters can in practice
be estimated on-line). The prediction errors of the queue size
presented in Figure 5, using 300 particles in the PF, are still
acceptable. The convergence is slower than in the first case,
generally giving an overestimation of the real queue. One
of the reasons can be that there is not enough noise in the
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Fig. 5. Real queues generated with SUMO (red line) vs. estimated queues
(blue line)

SUMO model. A computation time was 2.7[min], using 300
particles, was needed for a real time of 20.05[min].

V. CONCLUSIONS AND FUTURE WORK

We introduced a discrete event system model for urban
traffic based on platoons of vehicles. Validation and parameter
tuning of this platoon based model uses a large set of
data (collected along the N47 in Belgium). This platoon
based model has been applied in a PF for estimating queue
sizes and platoon location. The PF copes well with different
uncertainties (sensor noise as well as model uncertainty) and
allows fusion of information from different sources.

We have shown that the PF is fast enough for small
networks but it is not suitable for large networks. This problem
can be solved by using a distributed implementation similar
to what has been presented in [10] and [11] for freeway
traffic. Since the measurement update as explained in Section
III only depends on the relationship between the substates
in the component upstream and downstream of a sensor,
a distributed implementation will only require exchanging
infomration of traffic flow at boundaries. Future work will
also investigate MPC controllers where the switching times
of the traffic lights are selected so as to guarantee acceptable
performance for all the ”likely” particles (e.g. for all those
particles whose weight is above an appropriately selected
threshold).
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