386 research outputs found

    From the social learning theory to a social learning algorithm for global optimization

    Get PDF
    Traditionally, the Evolutionary Computation (EC) paradigm is inspired by Darwinian evolution or the swarm intelligence of animals. Bandura's Social Learning Theory pointed out that the social learning behavior of humans indicates a high level of intelligence in nature. We found that such intelligence of human society can be implemented by numerical computing and be utilized in computational algorithms for solving optimization problems. In this paper, we design a novel and generic optimization approach that mimics the social learning process of humans. Emulating the observational learning and reinforcement behaviors, a virtual society deployed in the algorithm seeks the strongest behavioral patterns with the best outcome. This corresponds to searching for the best solution in solving optimization problems. Experimental studies in this paper showed the appealing search behavior of this human intelligence-inspired approach, which can reach the global optimum even in ill conditions. The effectiveness and high efficiency of the proposed algorithm has further been verified by comparing to some representative EC algorithms and variants on a set of benchmarks

    Artificial intelligence in the cyber domain: Offense and defense

    Get PDF
    Artificial intelligence techniques have grown rapidly in recent years, and their applications in practice can be seen in many fields, ranging from facial recognition to image analysis. In the cybersecurity domain, AI-based techniques can provide better cyber defense tools and help adversaries improve methods of attack. However, malicious actors are aware of the new prospects too and will probably attempt to use them for nefarious purposes. This survey paper aims at providing an overview of how artificial intelligence can be used in the context of cybersecurity in both offense and defense.Web of Science123art. no. 41

    Computational Chemotaxis in Ants and Bacteria over Dynamic Environments

    Full text link
    Chemotaxis can be defined as an innate behavioural response by an organism to a directional stimulus, in which bacteria, and other single-cell or multicellular organisms direct their movements according to certain chemicals in their environment. This is important for bacteria to find food (e.g., glucose) by swimming towards the highest concentration of food molecules, or to flee from poisons. Based on self-organized computational approaches and similar stigmergic concepts we derive a novel swarm intelligent algorithm. What strikes from these observations is that both eusocial insects as ant colonies and bacteria have similar natural mechanisms based on stigmergy in order to emerge coherent and sophisticated patterns of global collective behaviour. Keeping in mind the above characteristics we will present a simple model to tackle the collective adaptation of a social swarm based on real ant colony behaviors (SSA algorithm) for tracking extrema in dynamic environments and highly multimodal complex functions described in the well-know De Jong test suite. Later, for the purpose of comparison, a recent model of artificial bacterial foraging (BFOA algorithm) based on similar stigmergic features is described and analyzed. Final results indicate that the SSA collective intelligence is able to cope and quickly adapt to unforeseen situations even when over the same cooperative foraging period, the community is requested to deal with two different and contradictory purposes, while outperforming BFOA in adaptive speed. Results indicate that the present approach deals well in severe Dynamic Optimization problems.Comment: 8 pages, 6 figures, in CEC 07 - IEEE Congress on Evolutionary Computation, ISBN 1-4244-1340-0, pp. 1009-1017, Sep. 200

    06061 Abstracts Collection -- Theory of Evolutionary Algorithms

    Get PDF
    From 05.02.06 to 10.02.06, the Dagstuhl Seminar 06061 ``Theory of Evolutionary Algorithms\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Novelty grammar swarms

    Get PDF
    Tese de mestrado, Engenharia Informática (Sistemas de Informação), Universidade de Lisboa, Faculdade de Ciências, 2015Particle Swarm Optimization (PSO) é um dos métodos de optimização populacionais mais conhecido. Normalmente é aplicado na otimização funções de fitness, que indicam o quão perto o algoritmo está de atingir o objectivo da pesquisa, fazendo com que esta se foque em áreas de fitness mais elevado. Em problemas com muitos ótimos locais, regularmente a pesquisa fica presa em locais com fitness elevado mas que não são o verdadeiro objetivo. Com vista a solucionar este problema em certos domínios, nesta tese é introduzido o Novelty-driven Particle Swarm Optimization (NdPSO). Este algoritmo é inspirado na pesquisa pela novidade (novelty search), um método relativamente recente que guia a pesquisa de forma a encontrar instâncias significativamente diferentes das anteriores. Desta forma, o NdPSO ignora por completo o objetivo perseguindo apenas a novidade, isto torna-o menos susceptivel a ser enganado em problemas com muitos optimos locais. Uma vez que o novelty search mostrou potencial a resolver tarefas no âmbito da programação genética, em particular na evolução gramatical, neste projeto o NdPSO é usado como uma extensão do método de Grammatical Swarm que é uma combinação do PSO com a programação genética. A implementação do NdPSO é testada em três domínios diferentes, representativos daqueles para o qual este algoritmo poderá ser mais vantajoso que os algoritmos guiados pelo objectivo. Isto é, domínios enganadores nos quais seja relativamente intuitivo descrever um comportamento. Em cada um dos domínios testados, o NdPSO supera o aloritmo standard do PSO, uma das suas variantes mais conhecidas (Barebones PSO) e a pesquisa aleatória, mostrando ser uma ferramenta promissora para resolver problemas enganadores. Uma vez que esta é a primeira aplicação da pesquisa por novidade fora do paradigma evolucionário, neste projecto é também efectuado um estudo comparativo do novo algoritmo com a forma mais comum de usar a pesquisa pela novidade (na forma de algoritmo evolucionário).Particle Swarm Optimization (PSO) is a well-known population-based optimization algorithm. Most often it is applied to optimize fitness functions that specify the goal of reaching a desired objective or behavior. As a result, search focuses on higher-fitness areas. In problems with many local optima, search often becomes stuck, and thus can fail to find the intended objective. To remedy this problem in certain kinds of domains, this thesis introduces Novelty-driven Particle Swarm Optimization (NdPSO). Taking motivation from the novelty search algorithm in evolutionary computation, in this method search is driven only towards finding instances significantly different from those found before. In this way, NdPSO completely ignores the objective in its pursuit of novelty, making it less susceptible to deception and local optima. Because novelty search has previously shown potential for solving tasks in Genetic Programming, particularly, in Grammatical Evolution, this paper implements NdPSO as an extension of the Grammatical Swarm method which in effect is a combination of PSO and Genetic Programming.The resulting NdPSO implementation was tested in three different domains representative of those in which it might provide advantage over objective-driven PSO, in particular, those which are deceptive and in which a meaningful high-level description of novel behavior is easy to derive. In each of the tested domains NdPSO outperforms both objective-based PSO and random-search, demonstrating its promise as a tool for solving deceptive problems. Since this is the first application of the search for novelty outside the evolutionary paradigm an empirical comparative study of the new algorithm to a standard novelty search Evolutionary Algorithm is performed

    The Use of Persistent Explorer Artificial Ants to Solve the Car Sequencing Problem

    Get PDF
    Ant Colony Optimisation is a widely researched meta-heuristic which uses the behaviour and pheromone laying activities of foraging ants to find paths through graphs. Since the early 1990’s this approach has been applied to problems such as the Travelling Salesman Problem, Quadratic Assignment Problem and Car Sequencing Problem to name a few. The ACO is not without its problems it tends to find good local optima and not good global optima. To solve this problem modifications have been made to the original ACO such as the Max Min ant system. Other solutions involve combining it with Evolutionary Algorithms to improve results. These improvements focused on the pheromone structures. Inspired by other swarm intelligence algorithms this work attempts to develop a new type of ant to explore different problem paths and thus improve the algorithm. The exploring ant would persist throughout the running time of the algorithm and explore unused paths. The Car Sequencing problem was chosen as a method to test the Exploring Ants. An existing algorithm was modified to implement the explorers. The results show that for the car sequencing problem the exploring ants did not have any positive impact, as the paths they chose were always sub-optimal
    corecore