
UNIVERSIDADE DE LISBOA
Faculdade de Ciências

Departamento de Informática

NOVELTY GRAMMAR SWARMS

Diana Filipa Guerreiro Galvão

DISSERTAÇÃO

MESTRADO EM ENGENHARIA INFORMÁTICA
Especialização em Sistemas de Informação

Dissertação orientada pelo Prof. Doutor Paulo Jorge Cunha Vaz Dias Urbano
e co-orientada pelo Prof. Doutor Joel Lehman

2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade de Lisboa: Repositório.UL

https://core.ac.uk/display/32335908?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgments

First I would like to thank my supervisor, Professor Paulo Urbano, for guiding my
work through the year and always being available to help and providing me with new ideas
to improve my work. I would like to thank my co-supervisor Joel Lehman for, despite the
distance and tight schedule, always being able to help in every way possible when needed.
Also, I would like to thank Fundação para a Ciência e Tecnologia for making my work
possible by providing the financial support. Thanks to my parents for their unconditional
support even in difficult times and even if they did not quite understood what I was doing.
I would also like to thank my aunt Paula and cousin Sofia which are always fun to be
around. Finally, I would like to thank to André Lamúrias for all the help, motivation and
inspiration needed to accomplish my goals.

iii

To my parents.

Resumo

Particle Swarm Optimization (PSO) é um dos métodos de optimização populacionais
mais conhecido. Normalmente é aplicado na otimização funções de fitness, que indicam
o quão perto o algoritmo está de atingir o objectivo da pesquisa, fazendo com que esta
se foque em áreas de fitness mais elevado. Em problemas com muitos ótimos locais,
regularmente a pesquisa fica presa em locais com fitness elevado mas que não são o ver-
dadeiro objetivo. Com vista a solucionar este problema em certos domı́nios, nesta tese
é introduzido o Novelty-driven Particle Swarm Optimization (NdPSO). Este algoritmo é
inspirado na pesquisa pela novidade (novelty search), um método relativamente recente
que guia a pesquisa de forma a encontrar instâncias significativamente diferentes das an-
teriores. Desta forma, o NdPSO ignora por completo o objetivo perseguindo apenas a
novidade, isto torna-o menos susceptivel a ser enganado em problemas com muitos opti-
mos locais. Uma vez que o novelty search mostrou potencial a resolver tarefas no âmbito
da programação genética, em particular na evolução gramatical, neste projeto o NdPSO é
usado como uma extensão do metodo de Grammatical Swarm que é uma combinação do
PSO com a programação genética.

A implementação do NdPSO é testada em três domı́nios diferentes, representativos
daqueles para o qual este algoritmo poderá ser mais vantajoso que os algoritmos guia-
dos pelo objectivo. Isto é, domı́nios enganadores nos quais seja relativamente intuitivo
descrever um comportamento. Em cada um dos domı́nios testados, o NdPSO supera o
aloritmo standard do PSO, uma das suas variantes mais conhecidas (Barebones PSO) e
a pesquisa aleatória, mostrando ser uma ferramenta promissora para resolver problemas
enganadores.

Uma vez que esta é a primeira aplicação da pesquisa por novidade fora do paradigma
evolucionário, neste projecto é também efectuado um estudo comparativo do novo algo-
ritmo com a forma mais comum de usar a pesquisa pela novidade (na forma de algoritmo
evolucionário).

Palavras-chave: Otimização por Enxames de Particulas, Pesquisa pela novidade,
Paorgramação Genética, Evolução grammatical, Enxames Gramaticais, Problemas
enganadores

vii

Abstract

Particle Swarm Optimization (PSO) is a well-known population-based optimization
algorithm. Most often it is applied to optimize fitness functions that specify the goal of
reaching a desired objective or behavior. As a result, search focuses on higher-fitness ar-
eas. In problems with many local optima, search often becomes stuck, and thus can fail to
find the intended objective. To remedy this problem in certain kinds of domains, this the-
sis introduces Novelty-driven Particle Swarm Optimization (NdPSO). Taking motivation
from the novelty search algorithm in evolutionary computation, in this method search is
driven only towards finding instances significantly different from those found before. In
this way, NdPSO completely ignores the objective in its pursuit of novelty, making it less
susceptible to deception and local optima. Because novelty search has previously shown
potential for solving tasks in Genetic Programming, particularly, in Grammatical Evolu-
tion, this paper implements NdPSO as an extension of the Grammatical Swarm method
which in effect is a combination of PSO and Genetic Programming.

The resulting NdPSO implementation was tested in three different domains represen-
tative of those in which it might provide advantage over objective-driven PSO, in par-
ticular, those which are deceptive and in which a meaningful high-level description of
novel behavior is easy to derive. In each of the tested domains NdPSO outperforms both
objective-based PSO and random-search, demonstrating its promise as a tool for solving
deceptive problems.

Since this is the first application of the search for novelty outside the evolutionary
paradigm an empirical comparative study of the new algorithm to a standard novelty
search Evolutionary Algorithm is performed.

Keywords: Particle Swarm Optimization, Novelty Search, Genetic Programming,
Grammatical Evolution, Grammatical Swarm, Deceptive problems

ix

Resumo Alargado

Particle Swarm Optimization (PSO), introduzido em 1995 por Kennedy e Eberhard
[1], é, até há data, um dos metodos de optimização de funções baseado em populações de
indivı́duos mais usado. No ı́nicio dos anos 90, a forma como certas espécies de animais se
comportam entre si, por vezes chamado comportamento social, era alvo de muitos estudos
nas mais diversas áreas. Estes estudos, principalmente aqueles que se focavam no movi-
mento em bando dos pássaros, foram a inspiração dos autores do PSO. Na sua essência, o
PSO é um conceito simples inspirado em eventos biológicos. A sua simplicidade torna-o
um dos metodos computacionais mais simples de compreender.

No algoritmo do PSO, a população, ou exame, é composta por partı́culas que se mo-
vem no espaço multi-dimensional com a finalidade de optimizar uma função de fitness.
Esta função indica o quão perto a pesquisa está do seu objetivo final. A cada partı́cula está
associado um vetor de posição e outro com a sua velocidade, ambos atribuidos de forma
aleatória no ı́nicio do processo de otimização. Para além destes vetores, cada partı́cula
tem também um valor de fitness que depende da sua posição e corresponde ao resultado
da função de fitness.

Adicionalmente, as partı́culas têm também uma componente de memória que guarda
a sua experiência passada. Em particular, cada partı́cula armazena a posição onde obteve
melhor fitness, personal-best ou pbest. As partı́culas também partilham informação en-
tre si, armazenando a posição que gerou o melhor fitness de todo o exame, chamada de
global-best ou gbest. Estas componentes ajudam a manter o balanço entre uma exploração
mais grosseira de todo o espaço de resultados e uma exploração mais detalhada de algu-
mas áreas mais especı́ficas do mesmo [2]. Na prática, a comunicação entre partı́culas
pode ser condicionada usando diferentes topologias de vizinhança, neste caso, o gbest
será local a cada vizinhaça.

Ainda que bastante popular e eficiente em muitos casos, como muitos outros métodos
baseados em populações de partı́culas, em problemas mais complexos e enganadores,
o PSO é muito suscetivel a convergência permatura para ótimos locais [3, 4]. Como
foi mencionado anteriormente, maioria das aplicações do PSO otimizam uma função de
fitness que estima o progresso em relação ao objetivo pretendido. Guiar a pesquisa em
função do objetivo, faz com que a mesma se foque em áreas de maior fitness, ignorando
áreas de fitness menor, e, como consequência, algumas partes do espaço de resultados não

xi

serão exploradas. Em problemas mais simples este processo é bastante eficiente, mas em
problemas enganadores pode tornar-se problemático. Isto é, em certos problemas pode
acontecer que o objetivo se encontre para lá de uma área com fitness mais baixo. A não
exploração dessas áreas pode fazer com que o algoritmo nunca chegue a atingir o objetivo
pretendido.

A convergência prematura para ótimos locais no PSO é um problema bem conhecido
entre os investigadores. Ao longo dos anos muitas variações com vista a combater este
problema têm vindo a ser propostas [5, 6]. Mesmo que algumas consigam superar a per-
formance do algoritmo standard do PSO em domı́nios pouco enganadores, umas vez que
estas continuam a ser guiadas pela distância ao objetivo, continuam a ser suscetiveis a
convergência prematura se a função for suficientemente enganadora. Desta forma, existe
uma relação clara entre pesquisa guiada pelo objectivo e convergência prematura. As-
sim, para evitar que a pesquisa convirja prematuramente em problemas enganadores, é
necessário que não se considere, de todo, o objetivo.

A pesquisa pela novidade, ou Novelty Search, é um Algoritmo Evolucionário (EA)
que dá este passo radical [7] e, apesar de relativamente recente, já foi aplicado com su-
cesso em diferentes áreas, como a neuroevolução [7, 8] e a Programação Genética (GP)
[9, 10]. A principal motivação deste método é de que a novidade (neste caso, diferenças
relevantes entre o comportamento de um individuo em relação aos outros) é uma fonte de
informação valiosa. Assim, em vez de guiar a pesquisa estimando a distância ao objetivo,
a pesquisa pela novidade é guiada para as instâncias significativamente diferentes daque-
las encontradas anteriormente. Por outras palavras, em vez de se medir o quão perto cada
individuo está do objetivo, é aplicada uma medida de novidade que mede o quão diferente
é o comportamento de cada individuo em relação outros encontrados até então.

Na área evolucionária têm sido propostas outras técnicas que promovem diversidade
genética com o objetivo de prevenir a convergência prematura em algoritmos guiados
pelo objetivo [11, 12, 13]. Contudo, manter a novidade entre comportamentos, como
na pesquisa pela novidade, tem provado proporcionar melhores resultados a superar a
convergência prematura [14]. Note-se que na pesquisa pela novidade apenas se procura
por comportamentos diferentes, ignorando o objetivo por completo. Desta forma, para se
poder aplicar a pesquisa pela novidade a um determinado domı́nio, é necessário a criacão
de um descritor de comportamentos significante para esse domı́nio. Por exemplo, numa
simulação num labirinto, o descritor do comportamento pode ser as coordenadas [x,y]
finais do indivı́duo depois de esgotar o limite de passos ou de chegar ao objetivo. Na
mesma simulação, outro descritor de comportamento poderia ser as coordenadas [x,y] ao
longo do tempo, considerando um intervalo de amostragem.

O metodo proposto nesta tese combina, pela primeira vez, o PSO com a pesquisa
pela novidade, de forma a combater o problema da convêrgencia prematura para ótimos
locais no PSO. Este método foi batizado de Novelty-driven Particle Swarm Optimiza-

xii

tion (Novelty-driven PSO ou NdPSO). Em trabalhos anteriores a pesquisa pela novidade
demostrou proporcionar bons resultados quando aplicada juntamente com Programação
Genética, mais própriamente, Evolução Gramatical (GE) [15]. Com base nestes resul-
tados, aqui, o NdPSO é aplicado como uma extensão do Grammatical Swarm (GS), ou
Enxames de Gramáticas [16], esta implementação foi chamada de Novelty-driven Gram-
matical Swarm (NdGS). GS é um método que junta o PSO com a Evolução Gramati-
cal. Por sua vez, esta última, aplica o processo de mapeamento usado em Programação
Genética com o uso de gramáticas de forma a conseguir produzir programas compiláveis
em qualquer linguagem de programação.

O metodo proposto foi testado em três domı́nios respresentativos daqueles para os
quais o NdPSO possa ser mais apropriado. Estes domı́nios, devem ser enganadores (caso
contrário a pesquisa baseada em objectivo é mais eficiente) e proporcionar uma forma
intuitiva de caracterizar um espaço de comportamentos relevantes para o domı́nio (caso
contrário é dificil aplicar a pesquisa pela novidade). Primeiro o NdPSO foi aplicado no
problema do Mastermind, tal como no jogo no qual é inspirado, neste domı́nio o algoritmo
tenta descobrir uma sequencia de pins escondida. A forma como a função de fitness foi
definida torna este problema bastante enganador e desafiante para o PSO. Os outros dois
domı́nios (o Trilho de Santa Fe e o Problema de Navegação num Labitinto) são bench-
marks de aprendizagem por reforço usados em Programação Genética por serem bastante
enganadores. Estas experiências comparam a performance do NdPSO com a pesquisa
aleatória e o PSO guiado pelo objectivo (incluido uma das variantes mais conhecidas
do algoritmo standard - Barebones PSO). Em todos os domı́nios testados o NdPSO tem
uma performance bastante melhor que os metodos guiados por objectivo e que a pesquisa
aleatória, revelando o seu potencial para a resolução de problemas enganadores.

Para além de comparar o metodo desenvolvido com o PSO orientado por objectivo
é tambem importante verificar se aquele é competitivo com a implementação standard
da pesquisa pela novidade, isto é, aplicado em Algoritmos Genéticos. Assim, nesta tese
tambem é efectuado um estudo empı́rico entre o NdPSO e a pesquisa pela novidade stan-
dard. Uma vez que o NdPSO foi implementado usando a Evolução Gramatical, de forma
a fazer uma comparação justa, também a pesquisa pela novidade é implementada com o
algoritmo GE e nos mesmos domı́nios de bechmark usados anteriormente (Mastermind,
Santa Fe Ant Trail e o Problema de Navegação num Labirinto).

Quando comparado com a implementação evolucionaria da pesquisa pela novidade, o
NdPSO foi capaz de a superar num dos três problemas testados, o Mastermind. Apesar
de ficar abaixo da performance nos outros dois, o NdPSO tem bastante espaço para ser
melhorado no futuro. Com menos parâmetros que os algoritmos genéticos, sendo mais
intuitivo e fácil de implementar, o NdPSO mostra ter bastante potencial.

xiii

Contents

List of Figures xix

List of Tables xxii

1 Introduction 1
1.1 Motivation . 2

1.2 Objectives . 3

1.3 Contributions . 4

1.4 Structure of the document . 4

2 Related Work 7
2.1 Particle Swarm Optimization . 7

2.1.1 The Standard Particle Swarm Optimization Algorithm 8

2.1.2 Parameter Selection . 10

2.1.3 Swarm Topology . 11

2.1.4 Premature Convergence in Particle Swarm Optimization 14

2.1.5 Variations of Particle Swarm Optimization 14

2.2 Evolutionary Computation . 15

2.2.1 Evolutionary algorithms . 16

2.2.2 Genetic Programming . 19

2.3 Grammatical Evolution . 20

2.3.1 Backus Naur Form . 20

2.3.2 GE Algorithm and Mapping Process 21

2.4 Grammatical Swarm . 24

2.4.1 Additional constraints . 25

2.5 Novelty Search . 26

2.5.1 Deception . 26

2.5.2 The Novelty Search Approach 27

2.5.3 Novelty Search Algorithm . 28

xv

3 Novelty-driven Particle Swarm Optimization 31
3.1 Introduction . 31

3.1.1 The Novelty-driven PSO Algorithm 32
3.2 Proof of Concept . 34

3.2.1 Experimental Settings . 35
3.2.2 Mastermind . 37
3.2.3 Santa Fe Ant Trail . 39
3.2.4 Maze Navigation Problem . 43
3.2.5 Main Results . 46
3.2.6 Discussion . 46

3.3 Conclusion . 48

4 Novelty-driven PSO and Novelty Search Comparative Study 49
4.1 Introduction . 49
4.2 Genetic Algorithm and Particle Swarm Optimization Comparison 50
4.3 Novelty Search applied to Grammatical Evolution 51
4.4 Experiments . 51

4.4.1 Experimental Settings . 52
4.4.2 Results . 53

4.5 Discussion . 53
4.6 Conclusion . 54

5 Conclusion 55
5.1 Future Work . 56

A Results of the objective-driven and novelty-driven PSO comparison 57
A.1 Results of the Mastermind tests . 57
A.2 Results of the Santa Fe Ant Trail tests 60
A.3 Results of the Maze Navigation Problem tests 65

B Results of the novelty-driven PSO and evolutionary novelty search compari-
son 69
B.1 Results of Objective-driven GE . 69
B.2 Results of Novelty-driven GE . 69

References 79

xvi

xviii

List of Figures

2.1 Graphical visualization of the velocity update of a particle (xi). 10
2.2 Graph examples of topologies used in PSO: (A) Fully-connected; (B)

Ring; (C) Von Neumann; (D) Star. 13
2.3 Example of the program - x (+ y x). 19
2.4 Comparison of the GE mapping process with the biological protein syn-

thesis process. Figure from [16]. 22
2.5 GE and GS mapping process. This example is based on [16]. 23

3.1 BNF-Koza grammar definition for the Mastermind problem. 37
3.2 The probability for objective-based PSO, Barebones and novelty-driven

PSO and random-search to discover solutions in the Mastermind problem. 38
3.3 Bloat comparison in the Mastermind domain. 39
3.4 The Santa Fe Ant Trail graphical representation. 40
3.5 BNF-O’neill grammar definition for the Santa Fe Ant trail. 40
3.6 The probability for objective-based PSO, Barebones and novelty-driven

PSO and random-search to discover solutions in the Stanta Fe Ant Trail. . 42
3.7 Bloat comparison in the Santa Fe Ant Trail domain. 43
3.8 Medium map used for the Maze navigation problem. 44
3.9 Grammar definition for the Medium Maze problem. 44
3.10 The probability for objective-based PSO, Barebones and novelty-driven

PSO and random-search to discover solutions in the Maze Navigation
Problem. 45

3.11 Bloat comparison in the Maze navigation domain. 45

xix

List of Tables

3.1 Fixed parameters used throughout the comparison of PSO and NdPSO . . 36
3.2 Comparison of the results obtained for PSO, NdPSO and random-search

averaged over 100 runs. 46

4.1 Fixed parameters used on the GE novelty search implementation for its
comparison to NdPSO. 52

4.2 Comparison of the results obtained for GE, novelty-driven GE and NdPSO
over 100 runs. 53

A.1 Results for the Mastermind problem using Standard PSO, Barebones PSO
and random-search algorithms. 57

A.2 Results for the Mastermind problem using the Novelty-driven PSO, par-
ticularly, the simpler behavior behaviorMm1. 58

A.3 Results for the Mastermind problem using the Novelty-driven PSO, par-
ticularly, the more complex behavior behaviorMm2. 59

A.4 Results for the Santa Fe Ant Trail using Standard PSO, Barebones PSO
and random-search algorithms. 60

A.5 Results for the Santa Fe Ant Trail using the Novelty-driven PSO, particu-
larly, the simpler behavior behaviorSF1, not archiving past behaviors. . . 61

A.6 Results for the Santa Fe Ant Trail using the Novelty-driven PSO, particu-
larly, the simpler behavior behaviorSF1, archiving past behaviors. 62

A.7 Results for the Santa Fe Ant Trail using the Novelty-driven PSO, particu-
larly, the behavior behaviorSF2, not archiving past behaviors. 63

A.8 Results for the Santa Fe Trail using the Novelty-driven PSO, particularly,
the behavior behaviorSF2, archiving past behaviors. 64

A.9 Results for the Maze Navigation Problem using Standard PSO, Barebones
PSO and random-search algorithms. 65

A.10 Results for the Maze Navigation Problem using the Novelty-driven PSO,
particularly, the behavior behaviorMP1, not archiving past behaviors. . . 66

A.11 Results for the Maze Navigation Problem using the Novelty-driven PSO,
particularly, the behavior behaviorMP1, archiving past behaviors. 67

B.1 Results of the objective-driven GE. 69

xxi

B.2 Results of the novelty-driven GE applied to the Mastermind benchmark
domain. 69

B.3 Results of the novelty-driven GE applied to the Santa Fe Ant Trail bench-
mark domain. 70

B.4 Results of the novelty-driven GE applied to the Maze Navigation problem. 70

xxii

xxiv

Chapter 1

Introduction

Particle Swarm Optimization (PSO) is an effective, general, and popular population-based
optimization method [1]. Its creators, James Kennedy and Russell Eberhard, were in-
spired by animal social behavior, and more specially, by the flocking behavior of birds. In
essence, PSO is conceptually simple to understand based on its biological inspiration, in
particular on the swarming behavior of insects and specially on the flocking behavior of
birds. In nature it is common to observe many species of animals that aggregate together
coordinating their actions to perform tasks. By profiting from discoveries and previous
experience of other members, this type of behavior allows those animals to accomplish
tasks and solve problems beyond the capabilities of a single individual [17]. As those
animals move for many different reasons such as to avoid predators, in modeling animal
social behavior the concept of changing positions is relatively simple. That is, in the sim-
ulation, one agent, or particle (as it is often called in the PSO context) changes its position
and evaluates it. Then, its next step is based on this evaluation.

Although PSO is a popular and effective algorithm, like other population-based meth-
ods it is susceptible to converge prematurely to local optima when applied to complex or
deceptive problems [3, 4]. Most applications of PSO optimize an objective-based fitness
function that estimates progress towards the desired outcome, e.g. minimizing squared
error or maximizing similarity to a goal behavior. Attempting to guide the search directly
towards its ultimate goal increases focus on higher-fitness areas at the expense of lower-
fitness ones, reducing overall exploration of the search space. In simple problems this
focus aids efficiency, but in deceptive problems it is problematic. That is, the pervasive-
ness of local optima may render the objective reachable only by traveling across areas
with low objective-based fitness. By pruning away such low-fitness areas, an algorithm
may paradoxically preclude itself from reaching its objective.

Because local optima are a general and well-known issue in search (and therefore
in PSO), many researchers have proposed variations of PSO to circumvent premature
convergence [5, 6]. While such variations may outperform the standard PSO algorithm in
domains with limited deception, because they remain guided by the objective, they are still

1

Chapter 1. Introduction 2

vulnerable to premature convergence if the objective function is sufficiently deceptive.
In this way, there is a clear relationship between objective-based search, deception, and
premature convergence. Thus to avoid premature convergence in very deceptive domains
it may be necessary to guide search without considering the ultimate objective at all.

Novelty search (NS) is an Evolutionary Algorithm (EA) which takes this radical step
[7], and has been successfully applied in neuroevolution [7, 8] and Genetic Programming
(GP) [9, 10], but not yet to PSO, which is a main contribution of this thesis. The core
insight motivating novelty search is that novelty, i.e. demonstrating qualitative difference
from previously encountered individuals, is a valuable source of information. Thus, in-
stead of guiding search by estimated distance to the search’s objective, novelty search is
instead driven towards instances significantly different from those found before. In other
words, instead of measuring how close an individual is to the objective(i.e. an objective-
based fitness function), a quantitative measure of novelty is applied to measure how differ-
ent an individual’s behavior is from others that have been found so far. Note that there is a
distinction between the genome search space, which is usually high-dimensional, and the
behavior space, which is where the Novelty Search algorithm searches. Behavior Space is
usually low-dimensional by design and it is a user-defined description of behaviors. For
example, a behavioral description of a maze navigation robot might ignore the actions and
trajectory of the robot and characterize it just by its final location. In this way, to apply
novelty search to a new domain requires the experimenter to devise a characterization of
behavior in that domain. While other successful techniques have been proposed aiming to
prevent premature convergence by promoting genotypic diversity [11, 12, 13], promoting
behavioral diversity (as novelty search does), often provides better results [14] because
many different genotypes can map to the same underlying behavior.

Motivated by the effectiveness of both novelty search and PSO, this thesis introduces
Novelty-driven PSO (NdPSO), as a way to combat premature convergence when applying
PSO to deceptive problems. Because novelty search has shown prior promise in combi-
nation with GP [15], here NdPSO is implemented as an extension of the Grammatical
Swarm (GS) method [16], a PSO-based version of a popular GP algorithm. This particu-
lar implementation is thus called Novelty-driven Grammatical Swarm (NdGS).

1.1 Motivation

Since its inception in 1995, Particle Swarm Optimization has become one of the most
well-known population-based optimization algorithms. Although in many problems it
can provide good and fast results, in others the search prematurely converges, preclud-
ing finding the objective of search; this problem is known as premature convergence.
Most applications of PSO optimize an objective-based fitness function which estimates
the progress to the desired outcome. However, guiding the search directly towards the ul-

Chapter 1. Introduction 3

timate goal causes it to focus on higher-fitness areas at the expense of lower-fitness ones,
reducing the overall exploration of the search space.

Because premature convergence is a well-known issue in PSO, many researchers have
proposed variations to the standard algorithm to circumvent this problem. The majority
of these variations remain guided by heuristic distance to the objective, making them still
vulnerable to premature convergence if the objective function is sufficiently deceptive.
Because the relationship between objective-based search and premature convergence is
clear, to avoid it, especially in very deceptive domains, it may be necessary to guide the
search without considering the ultimate objective at all.

Inspired by the success of novelty search, this thesis presets a new method that cou-
ples novelty search with PSO. Novelty search is an Evolutionary Algorithm that guides
search only towards instances significantly different from those found before. However,
to this date, NS has only been applied to an evolutionary optimization context. In this
new method the core PSO algorithm is maintained, but instead of measuring how close a
particle is to the objective (the standard approach), a novelty metric is applied to measure
how different a particle’s behavior is from others that have been found so far, and search
attempts to maximize such novelty.
By taking the radical step of ignoring the objective completely, this method circumvents
the problem of deception inherent in objective-based algorithms such as PSO.

1.2 Objectives

The following represents the thesis hypothesis.

Hypothesis: By ignoring the objective and guiding the search only towards novel be-
haviors the issue of premature convergence in Particle Swarm Optimization can be
avoided.

In order to fulfill the thesis hypothesis, the following objectives were outlined:

• To develop a new method - Novelty-driven Particle Swarm Optimization (NdPSO),
which combats the challenge of premature convergence to local optima in PSO.
Building on previous successes of novelty search in evolutionary algorithms, this
new method applies novelty search to PSO.

• To evaluate the performance of the new method by comparing it to the standard
PSO algorithm and a PSO variation (Barebones PSO) in domains representative of
those for which the algorithm is most appropriate. In particular, such domains are
deceptive (otherwise an objective-based search method is likely to be more effec-
tive) and provide an intuitive way to characterize a space of behaviors capturing
important aspects of the domain (otherwise it is difficult to apply novelty search).

Chapter 1. Introduction 4

• To verify if the search for novelty can be successfully transferred to population-
based optimization algorithms outside the evolutionary paradigm. Therefore, an
empirical study is performed comparing the new algorithm to a standard novelty
search Evolutionary Algorithm in the same domain.

1.3 Contributions

The following are the main contributions of this thesis:

• The introduction of Novelty-driven Particle Swarm Optimization (Novelty-driven
PSO or NdPSO), a new method to combat the challenge of premature convergence
in PSO. In NdPSO instead of measuring and minimizing how close a particle is to
the objective, a novelty metric is applied and maximized, to measure and encourage
how different an particle’s behavior is from others that have been found so far. To
the author’s knowledge, this is the first application of novelty search outside of
evolutionary algorithms.

• A particular implementation of Novelty-driven PSO using Grammatical Swarm,
called Novelty-driven Grammatical Swarm (NdGS). GS is a generalization of the
classical PSO which searches through a space of programs (in an arbitrary program-
ming language) using a context-free grammar.

• The choice of Barebones PSO as the variation of PSO that aims at preventing pre-
mature convergence and the implementation of a grammatical adaptation of Bare-
bones PSO.

• Application of this method to the Mastermind problem, the Santa Fe Ant Trail, and
Maze Navigation. The aim is to compare the performance of this algorithm to the
traditional objective-driven GS.

• Verification of the competiveness of this PSO-based algorithm with the standard
evolutionary novelty-search alogirthm. Therefore I have performed a study com-
paring NdGS with standard novelty search combined with Grammatical Evolution
over the same three benchmarks.

This work motivated a paper that was submitted and accepted for the Biennial Inter-
national Conference on Artificial Evolution (EA-2015) that will take place from 26 to 28
October 2015 in Lyon, France.

1.4 Structure of the document

This document is organised as follows:

Chapter 1. Introduction 5

• Chapter 2: ”Related Work” - Provides a review of the backround literature related
to this thesis. First, Particle Swarm Optimization is reviewed, followed by the key
concepts of Evolutionary Computation and then Grammatical Evolution (GE). Then
the Grammatical Swarm (GS) method is presented, and the chapter concludes with
a review of Novelty Search.

• Chapter 3: ”Novelty-driven Particle Swarm Optimization” - A description of Novelty-
driven Particle Swarm Optimization, the method proposed in this thesis, is provided.
NdPSO builds from the background provided in the previous chapter to overcome
deception in PSO. Then this method is applied to three well-known problem do-
mains and compared to objective-driven Standard PSO, Barebones PSO and to ran-
dom search. The results are presented and then discussed in the end of this chapter.

• Chapter 4: ”Novelty-driven PSO and Novelty Search Comparative Study” - An
empirical comparative study of the developed method NdPSO and the standard im-
plementation of novelty search (as an Evolutionary Algorithm) is presented in this
chapter. After an introduction about the goals of this study, a theoretical compari-
son between Particle Swarm optimization and a generic Genetic Algorithm is made.
The chapter ends with a discussion about the results obtained in the experiments de-
veloped followed by the conclusion.

• Chapter 5: ”Conclusion” The main conclusions of this work are discussed and
some directions for future work are indicated.

Chapter 1. Introduction 6

Chapter 2

Related Work

This chapter presents the background work that this thesis extends upon. It provides con-
text to the Novelty-driven Particle Swarm Optimization algorithm presented in the follow-
ing chapter. First, Particle Swarm Optimization is reviewed, including popular variations
of the standard algorithm. Next, the key concepts of Evolutionary Computation (EC) in-
cluding Genetic Programming are introduced followed by a review of Grammatical Evo-
lution and its mapping process. Afterwords, Grammatical Swarm, a fairly recent method
that combines PSO and the GE mapping process is presented. This chapter concludes
with a review of Novelty Search, a recent method originally introduced in Evolutionary
Computation, that aims to overcome premature convergence in deceptive problems.

2.1 Particle Swarm Optimization

The term swarm intelligence, introduced by Gerardo Beni and Jing Wang, characterizes
the distributed intelligence of agents who aggregate and coordinate their actions in order
to perform certain tasks [18]. From finding food more efficiently or protecting themselves
from predators, this type of behavior is common in many species of animals. Through en-
abling agents to profit from the discoveries and previous experiences of their neighbors,
social behavior facilitates accomplishing tasks beyond the capabilities of any single indi-
vidual [17].

For example, ants acting together can find the shortest path to a food source, defend
their colony from neighbors, and even efficiently allocate different types of workers to per-
form different tasks. Birds provide another example of animals that benefit from swarm
intelligence. They flock together for many different reasons, one of which is protection.
That is, a larger group of birds has a better chance of spotting and evading a predator
through mobbing or agile flight. Another reason is efficient transportation, as birds of-
ten arrange themselves in flocks with specific shapes to take advantage of changing wind
patterns, allowing them to travel in an energy efficient way.

Sharing information gives some animals an evolutionary advantage. That is one rea-

7

Chapter 2. Related Work 8

son why scientists create computer simulations of their interpretation of social behavior.
Their goal is to discover the underlying rules behind this type of behavior and replicate
swarms and flocks as close as they can. The bird flocking models of Reynolds [19] and
Heppner and Grenander [20] are canonical examples. They relate the synchrony of flock-
ing with birds’ efforts to maintain an optimal distance from their neighbors. This way,
each bird’s behaviors affects the that of other birds, pulling them to the right position in
the flock.

Based on these previous experiments Kennedy and Eberhard developed a new op-
timization algorithm model called Particle Swarm Optimization [1]. PSO is a simple
algorithm and is easy to comprehend from analogy with its biological inspiration. To
date PSO still is one of the most popular population-based methods for solving optimiza-
tion problems. It has proven to provide good and fast results in many problems, often
comparable in performance with more traditional Genetic Algorithms (GA).

This section reviews the main concepts of PSO, a population-based optimization al-
gorithm.

2.1.1 The Standard Particle Swarm Optimization Algorithm

In PSO, the population (or swarm) is composed of particles that move through a Rd search
space, optimizing a fitness function with the following domain f : Rd → R, with d repre-
senting the dimensionality of the search space. Each particle i ∈(1, 2, 3, ..., N) is associ-
ated with two d-dimensional vectors, one recording its position xi = (xi1, xi2, xi3, ..., xid)
and the other its velocity vi = (vi1, vi2, vi3, ..., vid), both randomly initialized when the al-
gorithm begins. Each particle has a fitness value, which is the outcome of the fitness func-
tion evaluated at the particle’s current position. Note that the particle’s current position
reflects a possible setting of the parameters of the optimization problem, i.e. a potential
solution to the problem.

Additionally, particles have a simple memory component to store previous experience.
In particular, each particle records the position where it has so far encountered the highest
fitness score, which is called its personal-best or pbest. Particles also can share infor-
mation with each other, and also record the point in the search space where the overall
best fitness has been obtained among the collective of particles, which is called its global-
best gbest. These components help balance exploiting promising areas with exploring
more broadly [2]. In practice, communication between particles is often restricted by use
of a neighborhood topology, meaning that a particle’s gbest may be calculated from the
best search locations recorded by its neighboring particles [21]. Common neighborhood
topologies in PSO are discussed later in section 2.1.3.

The PSO algorithm starts by creating the initial population. In this step, N particles
are created with random initial positions and velocities. Later studies suggest that some
methods which control the initial population can increase the performance of the algo-

Chapter 2. Related Work 9

rithm [22, 23]. However, this section will focus on the standard version of PSO (from
now on in this document this version will be referred to as Standard PSO). Next, at every
time-step each particle updates its velocity and calculates its new position. The veloc-
ity update is affected by the particle’s previous velocity, the pbest position, the gbest
position, the inertia ω and other random parameters described later. Consequently, the
particle’s new position depends on its own past and on other particles in the swarm.

The Algorithm 1 shows the pseudo-code containing the steps in the standard PSO
algorithm.

Algorithm 1 Stanndard PSO algorithm
1: procedure PSO–PROCEDURE

2: % Create population with random positions and velocities:
3: cratePopulation . % Assign random positions and velocities
4: for each Particle do
5: evaluatePopulation . % Assign particle’s fitness
6: updatePbest . % Set particle’s pbest its current position
7: end for
8: updateGbest
9: % Optimization Process:

10: while CriteriaAreNotMet do
11: for each Particle do
12: updateV elocity
13: setNewPosition
14: evaluatePopulation . % Assign particle’s fitness
15: updatePbest
16: end for
17: updateGbest
18: end while
19: end procedure

Velocity Update Equation

The ith particle’s updated velocity is calculated as follows:

vi(t+ 1) = ω.vi(t) + ϕ1.r1(pbesti(t)− xi(t)) + ϕ2.r2(gbest(t)− xi(t)) , (2.1)

where ω is a parameter specifying the particle’s inertia, which determines how strongly
the particle maintains its previous velocity (i.e. the higher the inertia the slower velocity
changes). The real numbers r1 and r2 are chosen randomly within an interval (typically
between 0 and 1), and ϕ1 and ϕ2 are the acceleration coefficients. The effects of these
parameters are explained in detail latter in section 2.1.2.

Chapter 2. Related Work 10

Figure 2.1: Graphical visualization of the velocity update of a particle (xi).

Figure 2.1 shows a graphical visualization of how the particle’s velocity is updated. In
that figure, the new velocity (vi(t + 1)) is affected by its previous velocity and the gbest
and pbest components.

It is also common to restrict the maximum velocity (vmax ∈ [−vmax, vmax]) to pre-
vent instability. Note that the particle’s maximum velocity may be static, or calculated
dynamically [24].

New Position Equation

After updating its velocity (Equation 2.1), the particle’s new position is calculated accord-
ing to Equation 2.2.

xi(t+ 1) = xi(t) + vi(t+ 1) . (2.2)

This way, the particles drift through the space naturally, finding locally optimal points.
Because they are attracted both to their own best position and the overall best position,
over time a consensus may emerge as knowledge of the most promising point point in
the search space spreads through all neighborhoods. This process will often result in
convergence.

2.1.2 Parameter Selection

Inertia Weight (ω)

The inertia weight (ω) was not part of the Standard PSO algorithm when it was first
introduced, but was added to the velocity equation in a later paper [25]. Its motivation
is to balance exploration and exploitation in the search space. The inertia weight can be
either a positive value, or a positive linear or non-linear function of time. Currently, the

Chapter 2. Related Work 11

most common choice is an inertia weight that linearly decreases from ωmax to ωmin as the
simulation runs, as specified by Equation 2.3.

ω = ωmax −
ωmax − ωmin

maximumIterations
.currentIteration . (2.3)

In practice, the inertia weight determines the influence of each particle’s previous
velocity upon its velocity in the next time-step. That is, the higher the inertia weight is,
the higher will be the influence of the particle’s previous velocity and, the smaller will be
the step size.

Being a factor that is multiplied to the velocity update equation (Equation 2.1), ω is
often a problem-independent parameter. Thus in practice performance often benefits from
tuning the values of ωmax and ωmin.

Aceleration coefficients (ϕ1 and ϕ2)

The acceleration coefficients, ϕ1 and ϕ2, determine the intensity of the particles’ attrac-
tion to pbest and gbest, respectively. The ϕ1 acceleration coefficient is also called the
cognitive acceleration coefficient because it is related with the particle’s self awareness,
i.e. it attracts it to its own best position found thus far. On the other hand, the ϕ2 coef-
ficient is known as the social acceleration coefficient, because it pulls the particle to the
best position found by the whole swarm. Together ϕ1, ϕ2 and ω balance exploration and
exploitation in standard PSO.

If ϕ1 is much higher than ϕ2 the particle will tend to wander narrowly around its best
position, and will not explore areas of the search space far from that position. However,
if the opposite happens (if ϕ2 is much higher than ϕ1) that can lead all particles to prema-
turely converge to the best value found so far, which often will not be the global optimum.

In most experiments the same value is used for both ϕ1 and ϕ2. However, in some
experiments, where the search space has many local optima, it is common to take the
same approach as is done for the inertia weight. That is, these values can also be changed
linearly with increasing iterations [4]. r1 and r2 are two random values, commonly in the
range [0, 1] that introduce some chaos.

2.1.3 Swarm Topology

Prior to Particle Swarm Optimization, many scientists developed a number of simulations
about their interpretation of the movement of birds and fish. Reynolds’s models [19] were
motivated by his interest in the aesthetics of bird flocking choreography, while the goal
of Heppener and Grenander simulations [20] was to discover the underlying rules that
enabled large numbers of birds to flock synchronously. Hence, it is clear that, although
the main goal of PSO was not to study biological events, being influenced by simulations

Chapter 2. Related Work 12

developed for the study of species social behavior makes the interaction between particles
one of the core aspects of the algorithm.

It is very common to organize the particles in specific structures called neighborhood
topologies. When a neighborhood topology is used, each particle belongs to a subset
of the population and can only communicate with particles in the same subset i.e. its
neighbors.

Although the terms neighborhood and neighbors suggest some kind of spatial prox-
imity, most commonly such proximity is not guaranteed. In the most commonly used
neighborhood topologies, the neighbors of each particle are defined and fixed in the be-
ginning of the simulation. As the simulation proceeds and the particles’ locations diverge,
each particle’s neighbors remain fixed, even if their locations are distant from one another
in the search space.

The most common way to represent the neighborhood topologies is through a graph,
where vertices represent the particles, and edges represent that the two linked particles
are neighbors. As the relations between the neighbors are almost always symmetrical
i.e. each particle offers its information to its neighbors and also receives from the same
set of neighbors, the graphs are usually not directed. It is also important to notice that
the neighborhood graph is connected. That is, every two particles are linked by a path
of adjacent edges, causing each particle to be somewhat influenced by all other particles
within the swarm.

Note that introducing a different neighborhood topology does not change the PSO
algorithm or any of its equations. The main difference relies in the concept of gbest. When
using a neighborhood topology, the particles do not have direct access to the information
of swarm as a whole, only to the information relayed through its immediate neighbors.
In such cases, in the velocity update equation (Equation 2.1) gbest is substituted by lbest
(local best), meaning the best solution among a particle’s neighbors.

The goal of introducing different neighborhood topologies is to shape how information
flows in the swarm. Because each particle communicates only with its neighbors, it is
intuitive that in denser topologies, where each particle has a larger number of neighbors,
information will flow more quickly, and thus the knowledge of better positions will be
shared more rapidly. The flow of information has direct influence on the performance of
PSO.

Next, the most used neighborhood topologies and its influence on the swarm dynamics
are explained in detail.

Neighborhood topologies

There are three main factors that affect the flow of information through the swarm [26].
The first factor is the degree of connectivity among particles in the swarm, i.e. the number
of neighbors k. The second factor is the amount of clustering [26], meaning the propor-

Chapter 2. Related Work 13

(A) (B)

(C) (D)

Figure 2.2: Graph examples of topologies used in PSO: (A) Fully-connected; (B) Ring;
(C) Von Neumann; (D) Star.

tion of common neighbors shared common between each particle and its neighbors. The
final factor is the average shortest distance from one node to the others in the topology’s
graph. Varying these parameters changes the way that particles interact with others and,
consequently, the results of the optimization.

In the Fully-connected topology (Figure 2.2 A), also known as the gbest version of
PSO, each particle is directly connected to all other particles in the swarm, making the
neighborhood of each particle inclusive of the whole swarm. Thus, information about
promising search points propagates immediately. Even though this topology is the most
common one, its structure causes information to flow very quickly, which often results
in fast convergence [21]. When optimizing multimodal functions, fast convergence can
undermine successful optimization [27]. In such cases, topologies that slow the spread of
information are often used.

Another common topology is the Ring topology, also known as the lbest version of
PSO (Figure 2.2 B). In this topology, particles can communicate their best-encountered
search points only with their immediate neighbors in a ring structure (i.e. each particle
is arbitrarily assigned an order in a circular list and is connected only to the particles
immediately in front and behind it in the list). As a result, information flows much more
slowly than in the Fully-connected topology. In this way, one group of particles can
converge around one point in the search space, while other groups can converge to other
points or maintain divergence.

Another common topology is the Von Neumann topology (Figure 2.2 C). In this topol-
ogy, each particle is assigned a location in a two-dimensional grid and is directly con-

Chapter 2. Related Work 14

nected to its four immediate neighbors. In other words, a visual representation of this
topology is a grid in which each particle is connected to particles above, below, right and
left of it. This topology can be seen as a compromise between the Fully-connected and
the Ring topologies, because information flows faster than in the Ring, but not as fast as
in the Fully-connected topology.

The last common topology is the Star topology (Figure 2.2D). It is a centralized topol-
ogy, where all information passes through a single central individual. This way, all par-
ticles ”follow” the central particle, where the central particle serves as a buffer slightly
slowing the speed of information transmission.

2.1.4 Premature Convergence in Particle Swarm Optimization

In itself, convergence can be a good feature in search algorithms. Particularly in PSO,
this property enables particles to search more thoroughly in areas of the search space
near high-fitness solutions, potentially allowing PSO to more efficiently reach an optimal
solution. However, while PSO is often an effective optimization method, convergence can
cause it to fail when dealing with problems with many local optima.

One of the key aspects in many search methods, including PSO, is managing the trade-
off between exploration and exploitation. In the exploration phase the swarm will spread
through the space while following the gradient of increasing fitness, which will enable
uncovering promising areas. Meanwhile, in the exploitation phase, the search will tend to
converge. All particles will approach the same high-fitness area, and search that particular
area in more detail.

In cases where the problem has many local optima, following the gradients of increas-
ing fitness can lead the search away from the global optimum. In these problems, particles
may converge to the best solution found thus far. However, this may not be a desirable
solution (i.e. not near the global optimum), causing the swarm to become trapped and
unable to explore other areas of the search space.

2.1.5 Variations of Particle Swarm Optimization

The challenge of premature convergence in PSO is well-known [3, 4]. For that reason,
since its inception in 1995, many researchers have presented variations to the standard
algorithm. The changes range from minor parameters adjustments to complete overhauls
of the PSO algorithm. Some examples of the proposed techniques involve, adding chaos
[28], adaptive inertia and velocity weights [24], implementing different variables to mea-
sure the diversity and promote its increase or decrease at each point [29]. Most variations
share the same intuitive motivation: Through actively maintaining a diverse population the
search will converge more slowly, resulting in more thorough exploration of the search
space.

Chapter 2. Related Work 15

Next, Barebones PSO, one of the most popular and effective variations to the algo-
rithm will be presented.

Barebones PSO

In 2003, after noticing that the plot of a particle’s position moving in one dimension
appeared to be normally distributed, Kennedy proposed Barebones PSO, a variation of
the standard PSO algorithm [6].

Kennedy’s first motivation was to minimize the dependence of PSO’s performance
upon well-tuned settings of parameters such as ω, ϕ1 and ϕ2, which are otherwise re-
quired for high performance with the standard PSO algorithm. While other PSO varia-
tions have similar motivation, Barebones PSO is more radical and completely eliminates
these parameters from the algorithm. In this variation, the particles move accordingly to
a probability distribution instead of through the addition of velocity as before. Thus, the
main difference from the standard PSO algorithm is the calculation of the velocity adjust-
ment (Equation 2.4) where σ = |pbestij(t) − gbestj(t)| is the deviation, and the update
of the new position (Equation 2.5).

vij(t+ 1) ∼ N

(
pbestij(t) + gbestj(t)

2
, σ

)
, (2.4)

xij(t+ 1) = vij(t+ 1) , (2.5)

The velocity of each particle is thus sampled from the Gaussian distribution as shown
above (Equation 2.4). Then this velocity no longer serves as a step size as in standard PSO
algorithm, but as the new position (Equation 2.5). Barebones PSO favors exploration
in the earlier stages of the simulation because initially, the personal best positions will
be further from the gbest one, leading to higher deviations. In practice, particles will
make bigger steps leading to more space being searched. As the simulation proceeds,
the deviation will tend to approach zero, meaning that particles will make smaller steps,
making the search focus on exploitation.

Even though it has considerably fewer parameters than standard PSO, making it sim-
pler and easier to apply, it is still able to outperform the standard PSO algorithm in various
types of problems [6, 30, 31].

2.2 Evolutionary Computation

Using computational models, Evolutionary Computation (EC) applies the principles of
Darwinian evolution to solve problems. In 1859 Charles Darwin presented the modern
theory of evolution [32]. In his book Darwin describes diversification in nature as a result

Chapter 2. Related Work 16

of natural selection, that through this biological process species evolve and over genera-
tions adapt to the environment.

Although this is not universally accepted [33] in EC the main principle taken from bi-
ology is that evolution optimizes fitness. That is, by natural selection, the most fit organ-
isms will produce more offspring and over time, the less fit organisms will be displaced.
The main concept in EC is that the idea of fitness in nature can be abstracted as a fitness
function, and an evolutionary algorithm can be treated as another black-box optimization
algorithm. Because typically they search for a particular objective when optimizing a
fitness function, Evolutionary Computation simulations, called Evolutionary Algorithms
(EAs) can be called objective-based algorithms.

EAs are a very popular, efficient and adaptive search mechanisms. They have been
applied with success to practical problems such as numerical optimization [34], classifi-
cation and machine learning [35] or automatic design [36].

In the following section a description of a generic EA is provided.

2.2.1 Evolutionary algorithms

EAs are population-based search algorithms that simulate the biological processes of se-
lection, reproduction and variation to evolve a population. There are three primal variants
of EAs: Evolution Strategies (ES) [37], Evolutionary Programming (EP) [38] and Ge-
netic Algorithms (GA) [39]. Genetic Programming (GP) [40] has been developed more
recently and because of its success in evolving computer programs to solve computational
tasks, has been adopted as a major class of EA. A more detailed review of GP is provided
in section 2.2.2.

Their strong inspiration from biology greatly influenced the terminology of EC. Given
a particular problem, a candidate solution is called an individual (xi), and a population
(P) characterizes the entire set of current potential solutions. Each individual has a fitness
value which is the result when it is applied to a fitness function (f(x)). This value serves
as a grade indicating the quality of that candidate solution in relation to a specific problem.
In EAs an individual is represented by a genome or chromosome which is the sequence
of genes that describes it. Throughout the simulation the individual’s genome changes
producing a new candidate solution, this process is called breeding, and the new candidate
solution is a child or offspring. A new generation is a population of offspring which
replaces the previous population.

In the Algorithm 2 is a representation of a general EA.
In the initialization phase, the population of individuals is created. The number of

individuals (the population size) is a parameter set by the experimenter and usually the
population is initialized randomly. Then, the population is evaluated and each individual
is assigned a fitness value.

Next, the most fit individuals (i.e. the individuals with the highest fitness values)

Chapter 2. Related Work 17

Algorithm 2 General Evolutionary Algorithm
1: procedure EA–PROCEDURE

2: % Create and evaluate initial population:
3: initialize
4: evaluate . % assign fitness
5: % Population’s evolution:
6: while CriteriaAreNotMet do
7: selectParents . % select individuals to be parents
8: applyV ariation . % apply variation techniques
9: createNewPopulation . % replace some/all individuals with the new

generation
10: evaluate . % assign fitness
11: end while
12: end procedure

are selected and an offspring population is generated through variation operators. The
most commonly used variation operators are sexual recombination (most often called
crossover) and/or mutation. Finally, this new population is evaluated. The process contin-
ues until a sufficient solution is found or the allotted budget of evaluations is exhausted.

Selection

The selection mechanism in an EA is inspired by the process of natural selection in bi-
ology. The majority of evolutionary algorithms are objective-based, which in this case
means that the objective-based fitness value of each individual is what determines if it
will be selected or not. This means that individuals that perform ”better” at the task are
more likely to continue in the population and produce more offspring. The idea is to
remove less fit individuals from the population and only choose the successful ones to
reproduce and propagate their genetic material to the new generations.

Besides roulette wheel selection [41] which is used later in the evolutionary exper-
iments, many other selection techniques have been proposed, including linear ranking
[42], fitness-proportional [39] and tournament selection [43].

In the roulette selection the probability (p) of an individual (i) to be selected in a
population of N individuals is associated with its fitness (fi). The relation between the
probability and the fitness value of the individuals is expressed by the Equation 2.6.

pi =
fi∑N
j=1 fj

. (2.6)

The analogy to a roulette wheel is that each individual represents a section of the wheel
proportional in size to its fitness. Thus the probability that individual will be selected
increases as its fitness increase relative to other members of the population. This way,
while individuals with higher fitness are more likely to be selected, less-fit individuals

Chapter 2. Related Work 18

still sometimes reproduce.
The most typical implementation of an Evolutionary Algorithm is to have each iter-

ation correspond to a separate generation. At each iteration all (or at least most) of the
population is replaced by a new generation of individuals. In respect to the selection
technique this means that the fitter individuals are selected, according to the selection
technique used, and then reproduce offspring. This generational approach is the one used
later in the evolutionary experiments in chapter 4.4. Note that a steady state approach can
also be used, where only some individuals are replaced at each time. More specifically,
the selection technique picks the best individuals to produce a number of new individuals.
Then, the same number of individuals are selected from the population, and replaced by
the offspring. The individuals to be replaced can be the most unfit ones, but because this
can compromise the population diversity, they are often selected at random. With this
technique, each individual is evaluated only once in the whole simulation, but because the
majority of the population is not replaced as in the typical EA implementation, the overall
number of evaluations is smaller making it a faster and simpler approach.

Crossover

The sexual recombination or crossover is a variation technique that operates in multiple
individuals (normally two). It performs by taking parts of each parent’s solutions and
combining them to produce a new offspring. Consequently, the new individual will con-
tain some characteristics from each of its parents. Even though single-point crossover
is the most common, other techniques of crossover can be used, including, two-point,
uniform or flat crossover [44].

The crossover technique is very accepted and many researchers have proven the im-
portance of this in evolutionary algorithms [45]. It is based on the idea that by exchanging
information between fitter individuals it will produce an even better offspring. This way,
the population will converge faster to the solution. However, if all members of the popu-
lation are near the same area of the search space, if the algorithm can not ensure a certain
degree of diversity in the population, premature convergence to a non-optimal solution
can occur.

Mutation

In biology, an individual’s genetic material can randomly change (mutate) due to many
different reasons (e.g. mutations induced by chemicals or radiation, errors in the synthesis
of DNA chains, etc). This mutations introduce some chaos to the evolution process.

As mention earlier, crossover ensures that the information of fitter individuals will
be propagated throw-out generations. Consequently, these solutions will be increasingly
similar among the population and some important characteristics may get loss. In EAs,

Chapter 2. Related Work 19

the mutation operator randomly alters some small proportion of the solutions, this way
diversity between generations is maintained [46].

2.2.2 Genetic Programming

Genetic Programming (GP) was introduced in the early 90’s by J.Koza [40]. Since then
GP has become one of the most popular EAs. It evolves populations of computer pro-
grams stochastically by transforming them into new populations, choosing high-fitness
individuals to reproduce, aiming to create increasingly fit populations.

In GP each individual is represented as a variable-sized parse tree instead of a fixed-
length linear genome as in the algorithms described previously. The programs are ex-
pressed as these trees and, once compiled and executed, represent a potential solution to a
specific problem. The fitness value is used to quantify how close is this solution from the
ideal one. Then the fitter solutions are selected and the same reproduction operators as in
EAs are employed (i.e. crossover and mutation) to produce the next generation. Although
these operators have to be applied differently once they operate in trees instead of strings.
Take the crossover, for example, this is applied to sub-trees. This means that whole sub-
trees can be switched from two parent trees. Thus, the way that GP creates and evolves a
population is by manipulating the parsed trees that represent individuals.

Figure 2.3 shows an example of the tree representation of the program x - y + x. In
GP the leaves of the trees contain the terminal symbols which in this example are (x, y).
The arithmetic operations (+, -), in the internal nodes, are called functions.

In the GP literature often a prefix notation is used in order to make it easier to see the
relationship between the expression and the tree representation. In the example shown in
Figure 2.3, the expression x - y + x becomes - x (+ y x) according to the prefix notation.

Figure 2.3: Example of the program - x (+ y x).

The GP implementation depends a very much on the programming language that is
being used. Programming languages that provide dynamic lists as a data type are easier
to implement GP in. Others will require the researcher to implement lists or trees or use
some already implemented library that provides them. Also, the tree representation can

Chapter 2. Related Work 20

be, in some cases, inefficient, once it requires management and storage of pointers in
order to create an manage the trees. In this cases other EAs with linear representation
may be preferred.

2.3 Grammatical Evolution

Grammatical Evolution (GE) is an Evolutionary Algorithm introduced in 1998 able to
generate and evolve computer problems in an arbitrary language [47]. Since its invention,
GE has been applied with success to many problems in various domains (e.g. financial
and biology modeling [48, 49] and designing tools [50]).

Grammatical Evolution can be seen as a variant of Genetic Programming, but in addi-
tion to changing how an individual is represented, GE also differs in applying a genotype-
to-phenotype mapping based on context-free grammars. Recall that GP uses parse trees to
represent the programs (or solutions). Then the evolutionary process is performed on the
actual programs. Thus, to meet their needs on a specific problem, many researchers end
up developing their own programming language, usually a complex and time consuming
process.

In GE, instead of a parse tree, the individuals are represented by a variable-length
binary string genome. Each group of bits in the genome (commonly 8) represents an
integer. These integer values, applied to a mapping function, dictate the selection of the
appropriate rules from the grammar. By performing the evolutionary process in simple
binary strings, GE is able to produce code in any language, when given an appropriate
grammar.

In the following topic the Backus Naur Form grammar notation is described. Next
an overview of the GE mapping process and its resemblance to the biological process of
protein synthesis is reviewed. In order to clarify same aspects of the GE mapping process,
a practical example is also provided.

2.3.1 Backus Naur Form

The Backus Naur Form (BFN) was introduced firstly by John Backus but it was not until
Peter Naur’s improvements that it became popular. BNF is a notation capable to express
grammars without context needed. It decomposes the grammar in fragments often called
derivation rules or production rules. These allow the composition of a syntactically cor-
rect program in a given language.

A BNF grammar is represented by:

• Sets of non-terminal (NT) symbols typically represented inside angle brackets (′′ <>′′);

• Sets of terminal (T) symbols;

Chapter 2. Related Work 21

• A start symbol (S) which is a member of NT;

• The production rules (P) which are used to map the non-terminal symbols into
terminal symbols.

A non-terminal symbol can be mapped into a non-terminal symbol, a terminal symbol
or a composed expression of terminals and/or non-terminals symbols. It can also have
various alternatives and be mapped in different symbols according to the decoder value.
In this case, the different alternatives are separated by vertical bars ′′|′′.

2.3.2 GE Algorithm and Mapping Process

GE is set up in two independent parts: the search mechanism and the mapping process.
In the first an Evolutionary Algorithm or other population-based algorithm is used as
a search mechanism, i.e. it creates and evolves the population. In the (genotype-to-
phenotype) mapping process the individual’s binary string (genome) is used to determine
which production rules from a BNF grammar definition are used to generate the program.

The GE mapping process is inspired by the biological process of protein synthesis
from an organism’s genetic material (DNA). Ultimately, these are responsible for the
manifestation of some traits (e.g. fur or petals color, size of a stem [51], etc), and in
conjunction with environmental factors constitute the phenotype. In GE the phenotype is
the resulting program.

Figure 2.4 compares the GE and the biological organism’s mapping process. The
individual’s genotype (binary string) in GE corresponds to the living organism’s DNA
(double helix). Through transcription the genotype becomes a integer string mimicking
the RNA (single helix) in biology. This step is not mandatory in GE since machines easily
compute binary digits, it is mostly done because integers are more intuitive to humans to
understand. In GE, the program (phenotype) results via application of production rules
and, in the biological case, the protein results of the order and type of aminoacids that are
joined together.

The following steps take place before evaluating each individual and correspond to the
GE mapping process.

1. The algorithm reads the codons of typically 8 bits and transforms them into integers;

2. Each integer corresponding to the codon bit sequence determines which production
rule from the BNF grammar is chosen according to:
Alternative = CodonV alue%Num.ofAlternatives;

3. When the genotype has fewer codons than non-terminal symbols, the genome is
wrapped, i.e. the algorithm continues reading again from the beginning of the geno-
type;

Chapter 2. Related Work 22

Figure 2.4: Comparison of the GE mapping process with the biological protein synthesis
process. Figure from [16].

4. The last points repeat each if non-terminal symbols exist;

Next, a concrete example of a mapping process is provided, demonstrating in detail
how a program is generated.

Mapping Example

In the GE mapping process (i.e. the process by which it decodes a genome into a pro-
gram), an individual’s genotype is used to construct a program (which can then be evalu-
ated in the domain).

An example of the mapping process in GE is shown in Fig. 2.5. The BNF gram-
mar showed in that figure represents a set of rules to construct a simple mathematical
expression. This grammar is composed by a set of three non-terminal symbols: NT =
{< O >,< E >,< V >}; a set of four terminal symbols: T = {+,−, x, y} and finally,
a start symbol: S = {< E >}. It is trivial that any program resulting from this grammar

Chapter 2. Related Work 23

Figure 2.5: GE and GS mapping process. This example is based on [16].

will only have the symbols contained in it. This grammar have three production rules and,
in this case, all of them have two alternatives that can be selected.

The algorithm reads the chromosome sequentially from left-to-right and always chooses
the left-most non-terminal symbol to be derived. In this example, the first codon - 00001110
- is converted to its decimal value - 14 (integer representation is used for the remainder of
this example for ease of understanding). From the underlying grammar, the start symbol
<E> has two possible alternatives that can be applied. The mapping function in Equation
2.7 is used to determine which alternative is selected. Thus, the modulus of the value of
the codon with the number of alternatives determines which alternative is selected.

Alternative = CodonV alue%Num.ofAlternatives. (2.7)

For this example, 14 % 2 equals 0, meaning that the rule <O><E><E> is selected.
The expansion of this rule results in three non-terminal symbols. Note that the mapping
process continues until only terminal symbols remain. Next, the leftmost symbol -<O> -
and the second codon - 00001000 - which represents the decimal value - 8 -are processed
in the same way. Meaning 8 % 2 = 0 selecting the symbol ”+” which is a terminal. At this

Chapter 2. Related Work 24

point the algorithm returns to the next left-most non-terminal and the nest codon, in this
case the <E> symbol and the codon 27. Because 27%2 = 1, the selected alternative is the
<V> non-terminal symbol. The next codon - 254 - will select the alternative to decode
<V> which is ”x” (254 % 2 = 0). Recall that, it still remains a non-terminal symbol to be
decoded - <E>. Using the next codon - 5 - the symbol <V> will be selected (5 % 2 = 1).
Finally, 17 % 2 = 1 meaning that the last symbol is ”y”. The resulting expression, which
results from applying the grammar in Fig. 2.5 to a individual with the genotype present
in the same figure is: ” + x y ”.

In this example the genotype has enough codons to decode all non-terminals, but that
is not always the case. When the genotype has fewer codons than non-terminals, the
genome is “wrapped”, i.e. the algorithm continues reading again from the beginning of
the genotype. The number of times the genotype wraps is limited in practice to mitigate
infinite cycles. In this case, sometimes non-terminal symbols may remain without ele-
ments of the genotype to resolve them and the respective individual is marked as invalid.

2.4 Grammatical Swarm

Grammatical Swarm (GS) is an Evolutionary Algorithm introduced by O’Neill and Brabazon
in 2004 [16]. Because it is a biologically-inspired algorithm that involves swarms, GS is
also a form of social learning, or, more commonly called Swarm Programming. The
Grammatical Swarm algorithm combines the Particle Swarm Optimization search algo-
rithm (reviewed in section 2.1.1) with the genotype-to-phenotype mapping of Grammati-
cal Evolution (section 2.3.2).

When reviewing Grammatical Evolution in section 2.3, it was mentioned that its algo-
rithm can be divided in to two different and independent parts: the search mechanism and
the mapping process. The GS implementation is similar to the one in GE as it also uses
a search mechanism and a mapping mechanism to produce program solutions. The most
common GE applications use a Genetic Algorithm as the search mechanism. That way,
the population of individuals is evolved based on the metaphor of natural selection, and
the reproduction operators such as mutation and crossover are used in order to produce
fitter individuals. Then, a BNF grammar is used to develop compilable programs which
are, ultimately, potential solutions to the problem.

In GS, instead of a GA the PSO algorithm serves as the search mechanism to create
and evolve the population. The main difference is that no reproduction operators are
used. In this case, instead of a population of individuals (as in an EA), the population
is composed of particles, and instead of a binary string representation, each particle is
associated with two d-dimensional vectors, one recording its position and the other its
velocity, as in PSO. The real-valued elements of each particle position must be rounded
and only then we have a vector composed of integer codons that can be transcribed into a

Chapter 2. Related Work 25

program using a grammar.
Even though it is a recent method, GS shows significant potential [16]. Its fixed-length

vector representations and few parameters make GS faster and easier to implement and
understand than other Evolutionary Algorithms, while providing, in some cases, equiva-
lent or better results.

2.4.1 Additional constraints

Even though coupling the PSO algorithm with the GE mapping process is trivial, in GS
some parameters have added constraints which are reviewed in the following topics.

Fixed Length Particles

In a tree-based GP, the length of an individual’s genotype is not fixed, meaning that it can
adjust along the simulation, by increasing or decreasing in size, between the maximum
and minimum values set. In GS, the size of the position and velocity vectors (usually
called problem-dimensionality), stays fixed during the simulation.

Real Valued Position Vector

Note that the PSO equation of the velocity update (Equation 2.1) have parameters that can
have floating point numbers, such as r1 and r2. This means that because the new position
is calculating by adding the velocity update to the current position (Equation 2.2) the
particle’s position vector is always composed by real-valued numbers. Because the GE
mapping process only accepts integer codons, this means that values on each dimension
of the position vector have to be rounded, up or down, into the nearest integers. This way
the mapping process can remain the same as it is in GE, i.e. after rounding, the particle’s
position corresponds to a program, much like the genotype in GE.

Position and Velocity Restriction

The position vector is restricted so that each dimension only contains values in the range
[Cmin, Cmax]. As shown in Algorithm 3, when the new particle’s position is calculated
(Equation 2.2) if any dimension is lower than Cmin or higher than Cmax, it assumes the
values of Cmin and Cmax, respectively.

Algorithm 3 Domain coherence
1: if [dimension i] of position-char < (Cmin) then
2: set [dimension i] of position-char Cmin

3: end if
4: if [dimension i] of position-char > (Cmax) then
5: set [dimension i] of position-char Cmax

6: end if

Chapter 2. Related Work 26

A maximum velocity is imposed so that the maximum distance a particle can move in
a single step is controlled. This way, each particle can only make steps smaller than vmax

in any direction: (vmax ∈ [−vmax, vmax]). The motivation is that excessively large step
sizes can destabilize the algorithm.

2.5 Novelty Search

The Novelty Search (NS) approach was introduced by Lehman and Stanley in 2008 as an
alternative to objective-based optimization in Evolutionary Computation [7]. The main
goal was to overcome deception and create a practical open-ended evolutionary algorithm.

The key idea behind novelty search is that it ignores the objective of the search, and
instead rewards individuals that demonstrate novelty relative to individuals previously
encountered in the search. Although ignoring the desired objective may seem counter-
productive, in deceptive domains novelty search has often outperformed objective-driven
algorithms [52, 53]. The insight is that by not optimizing a measure of progress towards
the objective, novelty search is not susceptible to premature convergence to local optima.
Of course, the significant trade-off is that the search as a whole becomes less explicitly
controlled.

In the following section the background of Novelty Search is reviewed illustrating the
struggle of objective-based search to overcome deception. Then the principles of the NS
approach are described in detail, and finally the novelty search algorithm is presented.

2.5.1 Deception

Many researchers in EC are interested in why Evolutionary Algorithms fail on certain
problems, and how can that failure be avoided. One such branch of research studies of
deceptive fitness landscapes. There is no overall consensus on the definition of a deceptive
problem, which various researchers have described in different ways [54, 55, 56]. A
simple way to define a deceptive problem is one in which following the gradient of the
objective function does not lead to the ultimate goal but toa local optimum [9].

Many approaches to mitigate deception and prevent premature convergence have been
proposed over the years. One class of approaches are diversity maintenance techniques
[57, 58, 59], which are inspired by actively encouraging a diverse population. Many of
these techniques operate by dividing individuals into subsets, often called niches (nich-
ing), wherein each individual only competes with others in the same niche. The hier-
archical fair competition technique [57] for example, implements competition between
individuals with similar fitness scores. Likewise, in the age-layered population structure
approach [58] individuals with different genetic ages compete with each other. Moreover,
fitness sharing [59] promotes competition among similar solutions resulting in a constant

Chapter 2. Related Work 27

pressure to find different ones. The Fitness Uniform Selection Scheme [60] is an interest-
ing method that rewards individuals with different fitness values, ignoring the pressure to
increase the fitness. In a way, this method resembles novelty search but instead of reward-
ing novel behaviors, it rewards novel fitness. Even though they apply different techniques,
these methods have the same underlining idea that by increasing the exploration, promis-
ing areas of the search space will be found. The idea is to then exploit these areas to find a
desirable solution. But because they rely on the objective fitness function, if local optima
are pervasive or if differences in genotype do not correlate with behavioral differences,
these methods may still be deceieved.

Another class of techniques, known as Estimation of Distribution Algorithms (EDA)
[61, 55], try to model the fitness function to smooth the landscape in order to make it
less deceptive. Still, if the objective fitness function is sufficiently uninformative, such
modelling fails to reveal a successful individual.

Yet another popular approach is to successively apply different objective functions
specifically crafted to avoid local optima [62, 63]. This involves a prior study that con-
flicts with the vision of learning to act without being programmed. Also, some problems
have ambiguous objectives that can be very difficult or impossible to identify prior to the
simulation.

2.5.2 The Novelty Search Approach

Novelty search is a relatively new approach to overcome deception. It differs from the
previous approaches because it takes the radical step of ignoring the final objective, in-
stead it searches only for instances with significantly different behaviors than those found
earlier in search. For that, instead of the traditional objective function, NS uses a novelty
metric which measures the novelty of an individual in comparison to other individuals in
the search, according to its behavior. This enables rewarding individuals with novel be-
haviors, which can lead then to an exploration of the space of behaviors. This exploration
can often lead to discovering the desired behavior as a side effect.

Even though NS explores the whole behavioral search space without any final ob-
jective rather than finding novelty, this approach is far from being similar to exhaustive
search. In most practical domains the number of possible behaviors is not exaggerated
and it is also limited. Recall that NS optimizes towards novel behaviors, these are related
with a specific task that, on its own, usually provides enough constraints to the number of
possible significant behaviors.

To better understand the difference between NS and exhaustive search consider the
following problem: Make a three-dimensional biped robot to walk as far as it can in a
specific amount of time. In this case, the only significant behaviors are the ones regarding
the robot’s locomotion. These are limited by the morphology of the robot and by physics.
Thus, while the search space may be infinite (i.e. if there is no limit to the number of

Chapter 2. Related Work 28

codons in a individual’s genotype, the EA can add new codons indefinitely and the number
of codon combinations are infinite), the behavior space is limited. Suppose that the robot’s
behavior is characterized by its ending location after exhausting the time limit. In this
case, the robot may arrive to a specific point many times through different paths, but
because the final position is the same, all will be characterized as the same behavior.
Ultimately, in this case, the number of possible behaviors is the number of different points
where the robot may end up when the simulation ends.

Of course, without any pressure to optimize towards the objective, intuitively it seems
unlikely that a raw search for novelty will be an effective algorithm for solving problems.
Yet if measures of novelty are constructed in ways that capture important dimensions of
behavior in the domain, the surprising result is a practical algorithm for solving deceptive
problems [7, 9, 15].

2.5.3 Novelty Search Algorithm

Novelty search was proposed with Evolutionary Algorithms in mind. Changing a EA to
become novelty-driven instead of objective-driven does not require many changes besides
replacing the fitness function with a novelty metric.

Novelty search requires that each individual be assigned a behavior descriptor, which
is a vector summarizing the individual’s behavior. Thus to apply novelty search to a
new domain requires the experimenter to devise a characterization of behavior in that
domain. For example, in the biped robot simulation, mentioned above (section 2.5.2), the
individual’s behavior descriptor can be its [x,y] coordinates after exhausting the time limit.
Because it biases the search, different behavior descriptors produce different results. Thus
effective application of novelty search may depend upon a characterization of behavior
that succinctly captures important aspects of behavior in a domain.

Problems with large behavior spaces can benefit from maintaining an archive of past
behaviors. The idea is to prevent search from repeatedly cycling through a series of
behaviors, reflecting a fleeting sense of novelty. By archiving past behaviors, novelty
can be measured relative to where search has been and where it currently is, thus guiding
towards behaviors that are genuinely novel. Two common archiving strategies are to
add behaviors with novelty that is higher than a threshold value, or to select individuals
randomly to archive.

To calculate the novelty of an individual it is necessary to first define the distance be-
tween its behavior descriptor and that of others in the population and in the archive. This
distance is calculated using, most commonly, the euclidean distance, but the hamming
distance or Fourier coefficients are also used [64].

A novelty metric measures how different is an individual’s behavior from the others.
Given the behavior descriptor and the distance metric between such descriptors, the nov-
elty score is calculated as shown in Equation 2.8, where µi is the ith nearest neighbor of

Chapter 2. Related Work 29

x.

ρ(x) =
1

k

k∑
i=0

dist(x, µi) . (2.8)

The novelty of each individual is the average distance of its behavior to its k-nearest-
neighbors. This way, individuals in a less dense area of the behavior space are given
higher novelty scores, thus creating pressure in the search towards further novelty.

Chapter 2. Related Work 30

Chapter 3

Novelty-driven Particle Swarm
Optimization

This chapter presents a new method for combating the challenge of premature conver-
gence in Particle Swarm Optimization, by coupling it with Novelty search. The next
sections introduce this method and formalize its algorithm. Its performance is then com-
pared with control algorithms in three benchmark domains: the Mastermind Problem, the
Santa Fe Ant Trail and the Maze Navigation Problem.

3.1 Introduction

The novelty search approach has been successfully applied in many fields of Artificial
Intelligence and to many problems. In maze navigation, the Santa Fe Ant Trail and the Los
Altos Hills Ant Trail, Lehman and Stanley [9] demonstrated that novelty search applied
to Genetic Programming outperforms objective-based fitness by solving problems more
frequently given the same budget of evaluations. Furthermore, novelty search is able to
avoid the problem of bloat, evolving smaller programs than objective-based search.

Also in the field of GP, using the Santa Fe Ant Trail, Doucette and Heywood [65] stud-
ied the performance of novelty search and its capability to generalize. In their study, even
though novelty search was less successful than objective-driven search, novelty search
showed that it can evolve programs that generalize better. More recently, in 2013, novelty
search with GP was applied to difficult classification problems and provided better results
than the original objective-driven GP algorithm [66].

The first application of novelty search using Grammatical Evolution, by Urbano and
Georgiou [15], compared the success rate and the quality of solutions in the Santa Fe
Ant Trail. Novelty search significantly outperformed objective-driven GE in both these
measures. Building upon the success of that work, an analogous method that drives
PSO through novelty instead of the search for the final objective is proposed here, called
Novelty-driven Particle Swarm Optimization (Novelty-driven PSO or NdPSO).

31

Chapter 3. Novelty-driven Particle Swarm Optimization 32

The key idea in NdPSO is that instead of particles being drawn towards high-fitness
areas, they are drawn towards positions that represent novel behaviors. That is, the Equa-
tion 2.1 remains unchanged but the concept of “best position” changes. This way, in
Novelty-driven PSO, the pbest position is not the position where the particle obtained
best fitness but the position where it was most novel. Similarly, the overall best position
(gbest) is the position where the maximum value of novelty was obtained. For this reason,
these quantities are referred to as pnovel and gnovel, respectively.

Even though novelty is being maximized similarly to how objective-based fitness was,
NdPSO does not simply replace one objective function with another. Objective-driven
search is conceptually different from novelty-driven search. The first creates a gradient
towards the objective with the purpose of bringing the search towards it. The second
creates a gradient of behavioral difference that diverges from the past towards new dis-
coveries. In this way, novelty is maximized without any concept of where the search
should terminate or even what general direction it should take within the search space.

Thus the novelty of each particle, as well as the novelty of its pnovel and the nov-
elty of gnovel will decrease as other particles approach similar behaviors, lowering the
threshold for new behaviors to displace them. In addition, as in the novelty search algo-
rithm described previously, often-encountered behaviors of particles are accumulated in a
global archive that also is taken into account when calculating novelty. The overall effect
is that particles are repelled from areas of the behavior space where search currently is and
has previously been, thus encouraging particles to continually discover genuinely novel
behaviors.

3.1.1 The Novelty-driven PSO Algorithm

Algorithm 4, shows the pseudo-code for novelty-driven PSO algorithm. Because merging
novelty search with PSO does not require much change beyond replacing the objective-
based fitness function with a novelty metric, the core of the algorithm does not signifi-
cantly differ from the standard PSO algorithm.

One important aspect of novelty is that it is both relative and dynamic. That is, each
particle calculates its novelty with respect to other particles’ current behaviors and past
archived behaviors. In this way, a highly novel behavior may become less novel over
time as other particles become drawn to it and it is added to the archive. For this reason,
the tracking of the pnovel and gnovel positions should take this dynamism into account.
In particular, the novelty of each particle’s pnovel and gnovel behaviors must be recal-
culated each iteration. At each time-step, after calculating the novelty of each particle,
the novelty of the particle’s pnovel behavior is recalculated using the current population
and the archive. Then, the particle’s pnovel behavior is updated, corresponding to the
updatePnovel procedure in the Algorithm 4. In this step the pnovel changes if the parti-
cle’s current behavior corresponds to a higher novelty than the current pnovel after being

Chapter 3. Novelty-driven Particle Swarm Optimization 33

Algorithm 4 Novelty-driven PSO algorithm
1: procedure NSPSOPROCEDURE

2: createPopulation: foreachParticle
3: setRandomPosition
4: setRandomV elocity
5: evaluatePopulation
6: setPbestCurrent
7: executeNovelty
8: setPnovelCurrent
9: end foreach

10: updateGbest
11: loop:
12: if NotDone then foreachParticle
13: calculateV elocity
14: calculateNewPosition
15: evaluatePopulation
16: updatePbest
17: executeNovelty
18: updatePnovel
19: end foreach
20: updateGbest
21: updateGnovel
22: end if
23: end procedure

updated (Algorithm 5).

Algorithm 5 updatePnovel procedure
1: procedure UPDATEPNOVELPROCEDURE

2: askParticle(i) [
3: calculateNovelty of pnovel
4: if (novelty-score of pnovel) < (novelty-score) then
5: set pnovel Particle-behavior
6: enf if
7:]
8: end procedure

After, the gnovel is also updated so that it will correspond always to the pnovel with
highest score (Algorithm 6).

Algorithm 6 updateGnovel procedure
1: procedure UPDATEGNOVELPROCEDURE

2: set gnovel behavior of (max pnovel)
3: end procedure

Chapter 3. Novelty-driven Particle Swarm Optimization 34

Such recalculation is not computationally expensive because no additional domain
evaluations are required. Instead, the behavior vectors of each pnovel, gnovel, and their
positions are cached, and the nearest-neighbor calculation is performed on those cached
vectors as described above.

3.2 Proof of Concept

In this section NdPSO is tested in three deceptive benchmark domains: the Mastermind
Problem, the Santa Fe Ant Trail and the Maze Navigation Problem. Recall that nov-
elty search pursues novel behaviors, which makes it best-suited for deceptive problems in
which it is possible and intuitive to characterize an individual’s behavior. For this reason
novelty-driven algorithms are unlikely to perform well in black-box optimization prob-
lems, because there is little information to base novelty upon beyond the output of the
function itself. Thus the choice of test domains reflects the type of problem for which the
approach is likely to be appropriate.

The aim of these experiments is to compare the performance of the objective-driven
PSO method with the performance of the NdPSO algorithm proposed in this thesis. In the
topics below (3.2.2, 3.2.3 and 3.2.4), the probability of finding an optimal solution (i.e.
probability of success) during the simulations is compared between NdPSO, Standard
PSO, Barebones PSO and random search, in three different domains. In those experi-
ments a GP like encoding is being used because the programs are generated using the GP
mapping process. Because bloat is a harmful dynamic in GP wherein the average size
of the programs in a population grows rapidly without increasing performance, and this
can potentially occur in NdPSO, a program bloat analysis is also presented in the same
domains as before. This phenomenon is problematic because larger programs are more
computationally expensive to evaluate, and also they are harder to interpret and may gen-
eralize poorly. In their experiments, Lehman and Stanley [9], suggest that novelty search
is less susceptible to program bloat than objective-based search.

Based on previous success of NS applied to GE, in these experiments NdPSO was
implemented as an extension of the Grammatical Swarm (GS), which is a grammatical
implementation of PSO (Section 2.4), thus, this implementation is called novelty-driven
Grammatical Swarm (NdGS). Therefore, this implementation takes advantage from the
grammatical approach (see section 2.3), This way, instead of searching in a space of
positions as traditional PSO, NdGS searches in a space of programs.

All experiments have been performed in Netlogo [67], an open-source agent-based
simulator. Netlogo provides a programmable modeling environment for simulating natu-
ral and social phenomena, making it well suited for modeling complex systems that evolve
over time. A Java implementation of the GE algorithm [68] was used - the jGE library -
and the respective Netlogo extension [69] - jGE.

Chapter 3. Novelty-driven Particle Swarm Optimization 35

3.2.1 Experimental Settings

A succinct description of important parameters is presented next.

Maximum-iterations Represents the stopping criteria for the simulation, and the number
of times that each particle is evaluated. If a particle reaches the goal before finishing
the maximum iterations the simulation stops. In these experiments the particles are
evaluated one additional time when they are created in order to have assigned fitness
and novelty when the actual simulation starts.

Max-steps Used in the Santa Fe Ant Trail and in the Maze Navigation Navigation Prob-
lem, this parameter represents the maximum number of time-steps that an agent can
make in the benchmark domain in each run.

Sample-frequency When an agent is running a solution in a benchmark domain, its be-
havior keeps changing. Take the biped robot example provided in section 2.5.2, if
we consider as a behavior the robots’s [x,y] coordinates, this means that every time
the robot changes its coordinates, its behavior changes. The Sample-frequency is
the frequency in which the current-behavior of the agent is sampled. That is, in
the same example, if the sample-frequency is the same as the max-steps, the final
behavior will be the robot’s final coordinates. But if the sample-frequency is 15 and
if the simulation has a max-steps of 615, this means that every 15 steps the robot’s
coordinates will be recorded in its behavior. In this case, its final behavior will be
composed by 41 pairs of [x,y] coordinates.

As the previous parameter, this is only used in the Santa Fe Ant Trail and in the
Maze Navigation Navigation Problem.

Dimensionality Is equivalent to the number of codons in a particle’s genotype in a GA.
In PSO, this value depends on the optimization problem, for example, consider-
ing the following function to optimize: 2x + 3y + z = 0; in this case the problem-
dimensionality is 3, which correspond to the number of variables to calculate in
order to optimize the function. In GS and the NdGS implementation, the dimen-
tionality corresponds to the number of codons of the particle’s position vector.

Particle-inertia In these experiments the equation 2.3 in Chapter 2 is used to calculate
the inertia. For the values of ωmin and ωmax it was used 0.4 and 0.9, respectively.

Always Valid As suggested by O’Neill in [16] we also experimented just considering
positions that translate in valid programs. In this case, all individuals in the initial
population are forced to be a valid program. This is achieved by generating ran-
dom initial positions and evaluating them, if a position corresponds to an invalid
individual, it is discarded and another position is generated.

Chapter 3. Novelty-driven Particle Swarm Optimization 36

During the run, if a particle updates its position and it results in an invalid program
being produced, it recalculates its velocity update using equation 2.1 as normal,
then it updates its position again. This means that each particle updates its velocity
and position until a valid program is generated.

In the novelty-driven case to an invalid particle it is assigned a ”dummy” behavior
descriptor so that other can calculate the behavioral distance in the regular way.

Neighborhood Topologies Three different neighborhood topologies are tested: Fully-
connected, Ring and Von Neumann.

As in O’Neill’s original GS experiments [16], some parameters were adopted in all
experiments. Maintaining these parameters allow us to fairly compare the method’s per-
formance. Table 3.1 presents the values of all fixed parameters used throughout these
experiments. These were adopted according to [16].

Table 3.1: Fixed parameters used throughout the comparison of PSO and NdPSO
Parameter Value
Initial population random
Population-size 30
Dimensionality 100
Max-iterations 1000
Codon-size 8
Max-wraps 10
Maximum velocity 255
Attraction to pbest / pnovel 1
Attraction to gbest / gnovel 1
Inertia weight dynamic
Minimum inertia 0.4
Maximum inertia 0.9

Random Search was implemented in a way that on each step, the particle’s new posi-
tion was randomly calculated using the random function in NetLogo as shown in 7.

Algorithm 7 updateRandom Procedure
1: procedure UPDATERANDOMPROCEDURE

2: set i 0
3: while i < dimentionality do
4: set particlePosition i random(0 Cmax)
5: set i i+1
6: end while
7: end procedure

Chapter 3. Novelty-driven Particle Swarm Optimization 37

3.2.2 Mastermind

In its original conception, mastermind is a code-breaking game where one player (the
codemaker) chooses a configuration of four colored pins, while the other (the code-
breaker) attempts to deduce the configuration given a limited number of attempts. The
computational version considered here is similar, i.e. the task is finished if the correct
sequence is found or the maximum number of attempts exhausted. As in O’Neill’s for-
mulation [16], four possible colors are considered, represented by the numbers 0, 1, 2 and
3. The correct code has eight pins and the solution was fixed to 3 2 1 3 1 3 2 0. NdGS and
GS both use the same grammar as in the original GS experiment - Fig 3.1.

Figure 3.1: BNF-Koza grammar definition for the Mastermind problem.

The objective-based search requires an objective-based fitness function. In this do-
main, fitness is scored by the following function:

• One point is awarded for each correct colored pin regardless of its position.

• The number of points awarded is limited by the number of pins in the target se-
quence with that color.

• If all pins are in the correct position, an additional point is awarded.

• The fitness score is normalized by dividing the score by the maximum score possi-
ble (Equation 3.1). Note that maxScore in this experiment is 9.

If the particle corresponds to an invalid program, the fitness value is -1. If the resulting
sequence has more than eight pins, it is cut and the fitness is calculated the same as before.
By design, this problem is very deceptive, with strong local optima corresponding to all
sets of correct colors in wrong positions.

fitness =
score

maxScore
. (3.1)

In contrast to objective-based search, novelty search requires a characterization of be-
havior. In this problem two distinct characterizations were considered:

• behaviorMm1 - the fitness value.

• behaviorMm2 - a tuple of two integers consisting of the number of correct colors
and the number of correct positions.

Chapter 3. Novelty-driven Particle Swarm Optimization 38

If the particle generates an invalid program, its behavior descriptor is [0] if behav-
iorMm1 is being used and [0 0] if behaviorMm2.

Two things are important to note. First, searching for novel values of objective fitness
is different than simple objective-based search. That is, novelty search will be driven to
accumulate all possible fitness values, not only the most promising ones. So the perfor-
mance of objective-driven GS and novelty-driven GS may diverge even though they are
given the same underlying behavior (i.e. in the objective-based case the search will try to
follow space points that maximize the fitness function, where in the novelty-driven case,
it will search for positions that translate in novel behaviors). Second, behaviorMm2 pro-
vides an ideal decomposition of the domain which is obscured by the objective fitness
function (i.e. both colors and placements are important). Thus this characterization high-
lights the potential for injecting experimenter knowledge into the search process, which is
otherwise complicated in objective-driven search due to the need to reduce performance
information to a single number.

Figure 3.2: The probability for objective-based PSO, Barebones and novelty-driven PSO
and random-search to discover solutions in the Mastermind problem.

Chapter 3. Novelty-driven Particle Swarm Optimization 39

Figure 3.3: Bloat comparison in the Mastermind domain. Comparison of the average
program size (number of characters without spaces) of the best solutions obtained.

Figure 3.2 shows a plot of the probability of each algorithm to find the solution
in the Mastermind problem within 1000 runs. As can be seen, the final performance
of objective-driven Barebones and random-search do not differ significantly; regarding
NdPSO, even though behaviorMm2 performs much better than behaviorMm1, they both
outperform all the objective-driven algorithms tested and the random-search algorithm.

A comparison of the average size of the best programs obtained with the different
algorithms tested is presented in graph form in Figure 3.3. In this domain, the behav-
iorMm1 of NdPSO produces significantly larger programs than the objective-driven tested
and random-search using a significance level of 0.05 in a t-Student test. Even though, be-
haviorMm2 of NdPSO produces significantly larger programs than the Barebones PSO
and random-search using the same significance level and statistical test, the difference
between it and Standard PSO is not significant.

3.2.3 Santa Fe Ant Trail

The Santa Fe trail is a difficult and popular benchmark in both GP [70] and GE [47]. It
is considered a standard benchmark in both fields mainly because it is a very deceptive
problem. The goal is to evolve a computer program that can efficiently guide an artificial
ant to eat all pieces of food placed in the trail. Figure 3.4 shows its graphical representa-
tion. In this figure, the colored cells represent the actual trail, where the lighter ones are
the food and the darker the gaps.

Chapter 3. Novelty-driven Particle Swarm Optimization 40

Figure 3.4: The Santa Fe Ant Trail graphical representation.

This trail is placed within an 32x32 toroidal grid (i.e. it does not contain any bound-
aries, meaning that the top is connected to the bottom and the left connected to the right)
and contains 144 cells with 89 pieces of food distributed non-continuously, including 55
gaps and 21 turns. Starting at the upper left corner facing right, the artificial ant can
move forward in the direction it is currently facing or turn 90 degrees to the right or left.
Each action takes one discrete unit of time to perform. The ant can also perceive if the
cell in front of it contains food, an operator that executes instantaneously (i.e. it does not
consume any time).

In order to construct the (potential) solutions a program that allows the ant to move
and seek for food has to be constructed. Fig.3.5 shows the grammar used in this domain
which corresponds to the standard grammar for the Santa Fe Ant Trail in [16].

Figure 3.5: BNF-O’neill grammar definition for the Santa Fe Ant trail.

Each particle repeats its program until all 89 pieces of food are encountered or the
maximum number of time-steps is exhausted. Because this number is omitted in O’Neill’s
experiments in [16], the standard maximum number of steps in GE i.e. 615 was used. For
objective-driven search, the traditional fitness function simply counts the units of food
eaten by the agent after all time has been exhausted. If the agent eats all foods before time
runs out, the problem is considered solved and the ant receives the maximum possible
fitness value, which is 89.

Chapter 3. Novelty-driven Particle Swarm Optimization 41

For novelty-driven search, two behavior descriptors are applied:

• behaviorSF1 - A simpler descriptor that adopts the fitness function as the charac-
terization of behavior, as in the Mastermind domain.

• behaviorSF2 - A more informative characterization which considers the amount of
food eaten, with the constraint that the eaten units must not be disconnected from
other eaten units along the length of the trail.

In these experiments invalid particles have the fitness of -1 and a ”dummy” behavior
descriptor filled with zeros.

For example, in behaviorSF2, if the ant first eats 3 food units that follow the trail, then
leaves the trail and eats one more unit in another area of the trail, its behavior descriptor
is appended with a 3 (although the ant ate in total 4 units of food), because the last unit is
not connected to any other eaten units along the true path of the trail. However, if the ant
eats 3 food units at the beginning of the trail, goes off the trail, and collects three more
units along a later part of the trail, the score will then be 6. Additionally, this second
characterization is sampled over time to provide temporal information about the ant’s
behavior. In particular, it is sampled every 41 timesteps, resulting in a vector of length 15
by the completion of an ant’s evaluation.

Note that novelty search coupled with either of these behavior characterizations will
not directly search for behaviors that eat more units of food; instead, it will search for
novel ways to eat different amounts of food, or in the case of the second characterization,
novel time sequences of food eating subject to the continuity constraint.

Chapter 3. Novelty-driven Particle Swarm Optimization 42

Figure 3.6: The probability for objective-based PSO, Barebones and novelty-driven PSO
and random-search to discover solutions in the Stanta Fe Ant Trail.

A plot of the probability of each algorithm to find the solution in the Santa Fe Ant Trail
is shown within the 1000 runs in Figure 3.6. The overall performance of objective-driven
algorithms is very similar. Both behaviors tested in the NdPSO algorithm outperform
Standard PSO and Barebones PSO as well as random-search, this last provides the worse
performance of all tested algorithms.

Figure 3.7 compares the average size of the programs obtained with the different algo-
rithms tested. In this domain, NdPSO (behaviorSF1 and behavior SF2) produces signif-
icantly smaller programs than Barebones PSO (p < 0.01; Student’s t-test) and random-
search (p < 0.05; Student’s t-test),. Having smaller programs is important since bloat is
a significant problem in GP. However, even though the difference between the length of
the problems produced by NdPSO and Standard PSO is not significant, it still has a better
performance.

Chapter 3. Novelty-driven Particle Swarm Optimization 43

Figure 3.7: Bloat comparison in the Santa Fe Ant Trail domain. Comparison of the
average program size (number of characters without spaces) of the best solutions obtained.

3.2.4 Maze Navigation Problem

The Medium map domain is a deceptive and discrete maze navigation task introduced by
Lehman and Stanley [9]. The goal in this domain is to find a program that guides an agent
in a grid-world domain to the goal location before exhausting the time limit. In these
experiments the time limit was set to 500 steps. This maze is suitable for testing GS and
NdGS because the placement of the walls create deception. That is, in the Medium map
(Figure 3.8), the shortest path to the goal is blocked, such that solving the task requires
exploring areas that superficially appear further from the goal.

Chapter 3. Novelty-driven Particle Swarm Optimization 44

Figure 3.8: Medium map used for the Maze navigation problem.

The possible actions for each agent are: turn-left, turn-right, move and the boolean
operators wall-ahead, wall-left and wall-right. In this problem the grammar shown in
Fig.3.9 is applied. This was used by Loukas in [71] and Urbano and Loukas in [15].

Figure 3.9: Grammar definition for the Medium Maze problem.

Defining dist as the distance from the robot’s final position to the goal location, the
fitness function for objective-based search is calculated from Equation 3.2.

fitness =
1

1 + dist
. (3.2)

For novelty search, the behavior descriptor was adopted such that the objective-based
search is looking for ways to get closer to the goal, while novelty search instead explores
how to reach a diversity of places in the maze:

• behaviorMP1 - the coordinates of the agent’s ending position.

To a particle that generates an invalid program is given a fitness of -1 and a behavior
descriptor of a dummy behavior [-100, -100].

Figure 3.10 plots the probability of the solution to be found by the search algorithm
during the simulations. NdPSO algorithm outperforms Barebones PSO, Standard PSO
and random search.

Chapter 3. Novelty-driven Particle Swarm Optimization 45

Figure 3.10: The probability for objective-based PSO, Barebones and novelty-driven PSO
and random-search to discover solutions in the Maze Navigation Problem.

Figure 3.11: Bloat comparison in the Maze navigation domain. Comparison of the aver-
age program size (number of characters without spaces) of the best solutions obtained.

Chapter 3. Novelty-driven Particle Swarm Optimization 46

The average program length is presented in Figure 3.11. A Student’s t-test statistical
test with a significance level of 0.05 shows that in this domain NdPSO produces signifi-
cantly larger programs that the other tested algorithms.

3.2.5 Main Results

To tune the performance of the algorithms, many combinations of topologies and other
non-fixed parameters were tested in all the domains. Namely, the imposition of only valid
programs throughout the experiments and, in the specific case of the NdPSO, the best
value for k-nearest-distances and the existence or not of an archive of past behaviors.
Due to its volume, those tests and its results for the Mastermind, Santa Fe Ant Trail and
the Maze Navigation Problem are presented in sections A.1, A.2 and A.3 of Appendix A,
respectively. Table B.4 provides a summary of the best results obtained for each algorithm
in the considered domain.

Table 3.2: Comparison of the results obtained for PSO, NdPSO and random-search aver-
aged over 100 runs.

Topology Mean best fitness Std Deviation Median Successful runs
Mastermind
PSO Fully-connected 0.90 0.04 0.89 14
Barebones PSO Ring 0.87 0.04 0.89 2
NdGS-behaviorMm1 Ring 0.92 0.05 0.89 25
NdPSO-behaviorMm2 Ring 1.00 0.00 1.00 100
Random N/A 0.86 0.05 0.89 0

Santa Fe Trail
PSO Fully-connected 78.31 15.65 89.0 52
Barebones PSO Fully-connected 74.25 16.95 88.0 49
NdPSO-behaviorSF1 Ring 85.46 8.54 89.0 75
NdPSO-behaviorSF2 Ring 87.89 6.52 89.0 78
Random N/A 75.81 15.74 88.0 40

Maze problem
PSO Von Neumann 0.50 0.37 0.31 35
Barebones PSO Fully-connected 0.52 0.39 0.31 39
NdPSO-behaviorMP1 Ring 0.68 0.38 1.00 58
Random N/A 0.47 0.38 0.24 33

3.2.6 Discussion

Contradicting previous work that revealed best performance when using Barebones PSO
instead of Standard PSO [6, 30, 31], in these experiments almost the exact opposite oc-
curred. Applying Barebones PSO to GS did not improve the results. This method per-
formed poorly in all domains, and even provided significantly worse results than Standard
PSO in Mastermind and the Santa Fe Ant Trail.

Chapter 3. Novelty-driven Particle Swarm Optimization 47

It is also important to note that there is not a singular best topology over all for all
experimental setups. In general, the best results obtained in objective-driven PSO (with
and without Barebones PSO) used the Fully-connected topology, where in NdPSO the
Ring topology provided substantially improved results when compared with the others
tested.

Generally, if particles are forced to generate valid programs, the algorithms’ perfor-
mance improves considerably.

Regarding Mastermind in the NdPSO implementation, the archive considerably de-
grades the performance of the algorithm, because the algorithm had very few success in
the 100 tests for all the combinations tested. The reason is that in this domain the num-
ber of possible behaviors is relatively small and thus many particles will have the same
behavior. A similar outcome resulted in the Santa Fe Trail when using behaviorSF1 as a
behavior descriptor, because in this case only 89 unique behaviors exist. Because of the
way that novelty is calculated (Equation 2.8), if the number of particles with the same
behavior is equal or bigger than the k-nearest-distances considered, which in this case ap-
pears many times, the novelty of all those particles will be 0 (the distance between equal
behaviors is 0). Consequently, many particles will have the same behavior and the most
novel has no meaning, in this case the algorithm will degrade into random search. How-
ever, when using behaviorSF2 in Santa Fe Trail and in the Maze Navigation problem, an
archive of past behaviors produced better results.

Relatedly, testing different behavior descriptors when applying novelty search is often
helpful. In these experiments, choosing a more complex descriptor, in particular a descrip-
tor other than the fitness score, helped improve performance. In the Mastermind problem,
considered a difficult problem for GP algorithms, when using a more complex behavior
descriptor NdPSO managed to succeed in all runs, a considerable improvement compar-
ing to the more simpler descriptor provided 25% of successes, and objective-driven GS
achieved success in only 14% of runs.

In the Santa Fe Ant Problem domain, NdPSO produces significantly smaller programs
than the other algorithms, still outperforming them. This is an important result because
it means that, comparatively to the others, NdPSO is more effective computationally and
smaller programs are more generalizable and more intuitive to one to comprehend. In the
other domains, on average, NdPSO creates larger programs, but using a Pearson’s Corre-
lations Test it is evident that a correlation exists between the average size of a program
and its probability of success. With 95% of confidence, the Pearson’s Correlations Test
calculates a correlation coefficient of 0.50 for the Mastermind problem and 0.92 for the
Maze navigation problem, implying that it is unlikely to obtain with smaller programs
a higher percentage of success than the one obtained by NdPSO. However more testing
is necessary to determine if there is still some bloat with NdPSO and smaller programs
could obtain equal performance.

Chapter 3. Novelty-driven Particle Swarm Optimization 48

In all problems NdPSO outperforms the objective-based algorithms tested, both in
number of solutions found and in the best fitnesses discovered averaged over all runs.

3.3 Conclusion

This chapter introduced Novelty-driven PSO (NdPSO), a method that aims to overcome
the significant challenge of premature convergence in traditional objective-driven PSO.
NdPSO was coupled to the Grammatical Evolution (GE) mapping process, to generate
and evolve problems in an arbitrary language. This method was tested in three domains,
where in all it outperformed the objective-based PSO, Barebones PSO and the random-
search. In this way, NdPSO shows promise for solving deceptive PSO problems and
encourages further follow-up investigation. Next, NdPSO will be compared to NdGE (i.e.
Novelty driven GE), the evolutionary method nearest to it in approach.

Chapter 4

Novelty-driven PSO and Novelty Search
Comparative Study

An empirical study comparing the algorithm developed - NdPSO - to the novelty search
standard implementation as a Evolutionary Algorithm is presented in this chapter. The
following section introduces the aim of this chapter followed by a theoretical comparison
of a typical Genetic Algorithm (GA) to Particle Swarm Optimization (PSO). Next, the
necessary alterations to Grammatical Evolution (GE) in order to make it novelty-driven
are listed and explained. Section 4.4 covers the experiments that have been made with
novelty-driven GE: the experimental parameters and the results of the experiments are
presented. The chapter ends with a discussion about the obtained results and a conclusion.

4.1 Introduction

Novelty search was first introduced in Evolutionary Computation as a method to miti-
gate deception for Evolutionary Algorithms. In the previous chapter, novelty search was
extended to PSO, and the performance of objective-driven PSO and the novelty-driven
one was compared in three different benchmarks. In all of the benchmarks, NdPSO was
able to outperform the Standard PSO, the Barebones PSO, both objective-driven, and
the random-search. By outperforming the objective-driven version, the previous results
proved that NS is a technique that can be successfully transferred to population-based
optimization algorithms outside the evolutionary paradigm.

This chapter’s main objective is to compare the novelty search implemented with PSO
(NdPSO) to the canonical evolutionary novelty-search algorithm. This study is impor-
tant because it analyses the competitiveness of the developed algorithm across search
paradigms.

49

Chapter 4. Novelty-driven PSO and Novelty Search Comparative Study 50

4.2 Genetic Algorithm and Particle Swarm Optimization
Comparison

In the following sections, a comparison of the results obtained with NS, which is ulti-
mately a GA, and NdPSO will be made. For this reason the theoretical differences and
similarities between these two methods will now be described.

PSO is similar to the Genetic Algorithm approach in the sense that it also is a population-
based method and it relies on information-sharing among their population members. As
mentioned earlier, a PSO particle, characterized by its position and velocity, is compara-
ble to an individual or chromosome in a GA. They both represent candidate solutions to
the designated problem.

The main difference between PSO and a GA is in how population members evolve
towards a goal. In PSO the particles update their positions in order to optimize a fitness
function. In contrast, in a GA a new generation of individuals is generated from the
previous one through genetic operators, like selection, crossover and mutation (a review
of these operators is provided in section 2.2.1). Even though PSO does not use such
operators, analogies between genetic operators and other processes in PSO exist.

For example, the use of crossover in a GA exchanges genetic material between indi-
viduals. This helps propagate good features between generations so that future genera-
tions will be more fit and overall the simulation will converge more quickly. While PSO
does not apply crossover, an analog of this concept is realized through how particles ex-
ert influence on the trajectories of other particles. That is, by being attracted by its own
best position and the best position found by the whole swarm (or best position found by
its neighborhood when using neighborhood topologies) the particles will move to higher
fitness areas and eventually converge.

The mutation operator in a GA introduces randomness in the population, making it
theoretically possible for an individual to reach any place in the search space if the mu-
tation rates are high enough. However this is unlikely to happen in practice, because as
the generation’s average fitness becomes higher, applying mutation will increasingly re-
sult in lower-fitness individuals that have low probability of persisting through selection.
In PSO, each particle can reach any point in space using only one step but only in the
beginning of the simulation, and only if vmax is sufficiently large. However, particles can
technically reach any place in the search space over a number of iterations, because they
are not replaced.

A GA uses selection to pick fitter individuals and guarantee fitness survival. Hence,
individuals with worse fitness will have higher probability to be removed from the pop-
ulation in order to, hopefully, generate a fitter offspring. PSO does not incorporate a
selection technique, also, in PSO there is no concept of generations because the initial
particles are not overwritten during optimization: only their position changes over time.

Chapter 4. Novelty-driven PSO and Novelty Search Comparative Study 51

Therefore, there is not a direct analogy between the selection process in EAs and PSO,
leaving a loose end where this method can be improved. Hence many hybrid algorithms
of PSO that couple GA and PSO have been proposed [72, 73].

4.3 Novelty Search applied to Grammatical Evolution

In the previous section a comparison between a GA and PSO was made, but recall that
the goal is to compare the evolutionary NS to NdPSO. But to fairly make this comparison
a grammatical approach will also be implemented to the standard NS algorithm. In this
section this implementation will be described.

Tracking novelty requires small changes to GE besides replacing the fitness function
by a novelty metric and adding an archive. As before, in this study the Euclidean distance
between the behavior descriptors is used as a novelty metric, the behavior descriptors
depend on the benchmark domain.

Most commonly, GE is implemented with some kind of objective-based search mech-
anism. This way, the most fitter individuals will have higher chances of being present
in the nest generations propagating their genetic material. When implementing GE with
NS the selection process is novelty dependent. Meaning that instead of individuals with
better fitness, the selection process will pick individuals with higher novelty score.

4.4 Experiments

As the previous ones, all of the experiments bellow have been performed in Netlogo [67],
using a Java implementation of the GE algorithm [68] - the jGE library - and the respective
Netlogo extension [69] - jGE.

The aim of these experiments is to compare the performance of NdPSO proposed
in this thesis, with the performance of novelty search inside the Evolutionary Computa-
tion paradigm, where it was implemented originally. The algorithms were tested in three
benchmark domains (the same as in the previous chapter’s experiments): the Mastermind
problem (Section 3.2.2), the Santa Fe Ant Trail (Section 3.2.3) and a Maze Navigation
problem (Section 3.2.4).

Note that because NdPSO was implemented as an extension of Grammatical Evolu-
tion, in this study, the evolutionary novelty search is also implemented combined with GE.
Although it is not part of this chapter’s objective, objective-driven GE was also tested.

Both objective-driven and novelty-driven GE where tested without the always valid
parameter, this way, in order to make a fair comparison, the results of novelty-driven PSO
to which the latter are compared are not the best results obtained but the ones from the
experiments also without always valid.

Chapter 4. Novelty-driven PSO and Novelty Search Comparative Study 52

4.4.1 Experimental Settings

Over these experiments, some parameters were fixed in order to study the impact of oth-
ers. For the NdPSO the same set of experiments is used in these comparison, this way, the
parameters used are presented in the Table3.1. For the evolutionary GE implementation
of novelty search, the parameters used by O’Neill for GE in his first GS experiments [16]
are used. As he explained, these parameters are chosen in order to achieve a relatively fair
comparison between the different approaches. To that, the same number of evaluations
was maintained and the most common population sizes in the literature for GE and PSO
were adopted. Table 4.1 presents the values of all fixed parameters used for the evolution-
ary novelty search implementation throughout these experiments. A succinct description
of some less-intuitive parameters is presented next.

Table 4.1: Fixed parameters used on the GE novelty search implementation for its com-
parison to NdPSO.

Parameter Value
Initial population random
Population-size 500
Chromosome length 100
Max-Generations 60
Codon-size 8
Max-wraps 10
Generation gap 90%
Crossover 90%
Codon mutation 1%

Generation gap It is very common in EAs to have some type of elitism where fitter
individuals are preserved in the following generation. This parameter determines
the percentage of the population that is replaced in the next generation.

Chromosome length As a consequence of the crossover process, most often, the length
of the chromosomes can increase or decrease during the experiments. In order to
fairly compare the evolutionary implementation of NS to NdPSO, since this last
uses fixed length position vectors, in this implementation the chromosome length
is also fixed. Thus, if the length of the chromosome exceeds the set value, the
resulting integer vector is then cut in order to have the desired length.

Selection method Evolutionary algorithms use a selection algorithm in order to pick the
fitter individuals and place them into a mating pool. As did O’Neill [16], in these
experiments the roulette wheel selection method was used. This way, individuals
with better fitnesses will have higher probability of being picked. Although less
fitted individuals will be, most likely, eliminated from the next generation, there is
still a chance they might not be.

Chapter 4. Novelty-driven PSO and Novelty Search Comparative Study 53

Crossover method A One-Point Crossover technique was used. This means that the
”parents” chromosome is cut in only one place, and then combined to create the
children.

4.4.2 Results

In novelty-driven GE many combinations of k-nearest-distances were tested as well as
the inclusion or not of an archive of past behaviors in all domains. These tests allowed
to perform some tuning on the algorithm’s performance the same way it was done in the
previous experiments. The results of all experiments can be observed in Appendix B.2.
Regarding objective-driven GE, these experiments were not performed since there is no
notion of k-nearest-distances or archive.

Table 4.2: Comparison of the results obtained for GE, novelty-driven GE and NdPSO
over 100 runs.

Archived behaviors Mean best fitness Std Deviation Median Successful runs
Mastermind
GE NA 0.90 0.04 0.89 14
Novelty-driven GE FALSE 0.90 0.04 0.89 20
Novelty-driven PSO FALSE 0.91 0.05 0.89 22

Santa Fe Trail
GE NA 79.61 14.60 89 64
Novelty-driven GE TRUE 87.64 4.75 89 90
Novelty-driven PSO TRUE 82.82 11.03 89.0 62

Maze problem
GE NA 0.87 0.30 1.00 83
Novelty-driven GE FALSE 1.00 0.00 1.00 100
Novelty-driven PSO FALSE 0.35 0.34 0.17 20

4.5 Discussion

Unlike in NdPSO, where the inclusion of an archive of past behaviors in the Mastermind
benchmark domain resulted in poor results, in novelty-driven GE, although it did not
improve the performance of the algorithm when compared with its version without the
archive, it did not degrade the performance as dramatically. The reason is likely because
NdPSO is implemented in such a way that, when the novelty of gnovel does not improve,
gnovel will remain the same. So when using an archive of past behaviors, early on the
simulation all particles will have minimum novelty, and will keep approaching the same
behavior. As particles proceed to follow the most novel, and because it will move very
little, since it will follow itself, it will be progressively unlikely that one particle moves to

Chapter 4. Novelty-driven PSO and Novelty Search Comparative Study 54

a position that will be mapped into a successful program. However, in GE (and novelty-
driven GE), even though individuals will soon all have minimum novelty, because of
the intrinsic randomness of the crossover process there is still a considerable chance of
creating a genotype that will be mapped into a successful program.

The Medium map seems to be a fairly easy problem for the Evolutionary Algorithms
(note that, even objective-driven GE had a much higher performance than novelty-driven
PSO). In the future, it would be interesting to test both Novelty-driven PSO and novelty-
driven GE in a different maze in order to infer if the performance’s discrepancy will
remain proportional.

Regarding the performance comparison between novelty-driven GE and Novelty-driven
PSO, NdPSO was able to outperform the evolutionary implementation of novelty search in
one out of three benchmark domains. Even though NdPSO performance is not outstand-
ing when compared with novelty-driven GE, it still shows potential because the number
of particles (30) in NdPSO is much smaller than the number of individuals used in the
evolutionary experiments (500). Recall that the number of individuals in GE and novelty-
driven GE was chosen in order to be concordant to the ones often reported in the state of
the art.

4.6 Conclusion

This chapter compared Novelty-driven PSO to canonical novelty search (implemented as
a Genetic Algorithm). In both cases, a grammatical approach was used: NdPSO was
coupled to the Grammatical Evolution mapping process and novelty search was imple-
mented on top of GE, resulting in a novelty-driven GE. This comparative study was made
in three domains, where in one of them (the Mastermind problem) NdPSO outperformed
novelty-driven GE. Although it did not outperform novelty-driven GE in two out of three
problems, there still exists room for improvement. Because NdPSO has a considerable
less amount of parameters than the Evolutionary Algorithms, making it more intuitive,
easier to implement and tune, NdPSO proves again to be a promising algorithm.

Chapter 5

Conclusion

The hypothesis of this dissertation was to developed a model that can avoid premature
convergence to local optima in Particle Swarm Optimization by guiding the search to-
wards novel behaviors instead of the objective. I accomplished this by combining novelty
search (a fairly recent technique) to the PSO algorithm and create a new method called
Novelty-driven Particle Swarm Optimization (Novelty-driven PSO or NdPSO). I imple-
mented NdPSO as an extension of the Grammatical Swarm which is PSO-based version
of Grammatical Evolution that is used to evolve programs in arbitrary languages.

After implementing the algorithm, I tested NdPSO and compared it to objective-driven
PSO and the random-search in three different difficult and deceptive domains. The fist
domain, the Mastermind problem, is a code breaker game where discovering a hidden pin
sequence is the objective. This is a very deceptive problem because of the way in which
the fitness function was defined. The other two domains (the Santa Fe Ant Trail and the
Maze Navigation Problem) are deceptive reinforcement learning benchmarks commonly
used in Genetic Programming.

Novelty search is commonly implemented in Evolutionary Algorithms which differs
from PSO because it use techniques like selection, crossover and mutation to mimic the
biological evolution. So, after demonstrating that Novelty-driven PSO can outperform
objective-driven PSO, I compared the former to a more common evolutionary implemen-
tation of novelty search in the same three benchmarks used before. The goal was to infer
if NdPSO is a competitive search algorithm compared with evolutionary novelty search.

The results showed that in all the benchmarks NdPSO greatly outperformed the best
performance achieved by objective-based standard PSO, Barebones PSO and the random-
search, improving the number of times the Mastermind was successfully completed by 86
percentage points (p.p.) from standard objective-driven PSO, 98p.p. from Barebones PSO
and 100p.p. from random search; in the Santa Fe Ant Trail NdPSO concluded successfully
within the limit of time-steps more 26p.p. than standard PSO, 29p.p. and 38p.p. than
Barebones PSO and random-search respectively; in the Maze Navigation problem NdPSO
also improved by 23, 19 and 25p.p. compared to standard PSO, Barebones PSO and

55

Chapter 5. Conclusion 56

random-search, respectively. Based on these results, a paper was submitted and accepted
for the Biennial International Conference on Artificial Evolution (EA-2015) that will take
place from 26 to 28 October 2015 in Lyon, France.

When compared to the evolutionary novelty search, NdPSO was able to outperform
it in the Mastermind problem, staying behind in the other two. This can be due to the
fact that the number of particles used in NdPSO is much smaller than the number of in-
dividuals used in the evolutionary experiments. However, the fact that NdPSO inherited
from PSO one of its advantages, the reduced number of parameters, makes it more intu-
itive than Evolutionary Algorithms and easier to implement and tune. Overall, NdPSO
shows promise for solving deceptive PSO problems and it has room for improvement
encouraging further follow-up investigation.

5.1 Future Work

The work developed in this dissertation showed that the proposed method is very promis-
ing for solving deceptive problems in PSO. However, the scope of this project and the
time constraints was limited to developing the method and proving its viability. This
way, some phenomena was registered to which many explanations or no explanation can
be provided. For example, one open question is why the results do not improve in the
objective-based search with the Ring and Von Neumann topologies but do when the search
is novelty-driven. Theoretically, these neighborhood topologies should delay premature
convergence, but this intuition does not hold up. Further investigation would help to better
understand the method’s functioning.

Although NdPSO performed better than objective-driven PSO, the proposed algorithm
can still be improved specially when compared with the EA version of Novelty Search.
Recently, some issues related with GE were pointed out by some authors, such as low
locality and high levels of redundancy [74, 75]. A possible solution to low locality, which
is when small modifications in the genotype have a huge effect in phenotype, has been
proposed. This method, Structured Grammatical Evolution (SGE) [76], is an adaptation of
GE, where the linear genotype is replaced by a structured one, where each gene is a list of
integers that represent the possible derivation choices of non-terminals, thereby increasing
locality. One possible improvement to NdPSO could be using a different implementation
where SGE is coupled with PSO, similar to what was done with GS, and then adding the
novelty paradigm.

Appendix A

Results of the objective-driven and
novelty-driven PSO comparison

The following sections present the results of the experiments carried out for the com-
parison of objective-driven PSO, objective-driven Barebones PSO, random-search and
novelty-driven PSO.

A.1 Results of the Mastermind tests

Table A.1: Results for the Mastermind problem using Standard PSO, Barebones PSO
and random-search algorithms. Each result represents a different experiment composed
by 100 runs. x̄, σ, x̃ represents, respectively, the average, standard deviation and median
of the best fitnesses of each run. % success - represents the number of success runs on
100 possible.

Method Always valid Topology x̄ σ x̃ % success

Standard PSO

FALSE
Fully-connected 0.90 0.04 0.89 14
Von Neumann 0.90 0.03 0.89 8
Ring 0.89 0.02 0.89 4

TRUE
Fully-connected 0.90 0.04 0.89 14
Von Neumann 0.90 0.03 0.89 11
Ring 0.90 0.03 0.89 10

Barebones PSO

FALSE
Fully-connected 0.89 0.02 0.89 0
Von Neumann 0.88 0.04 0.89 1
Ring 0.88 0.04 0.89 1

TRUE
Fully-connected 0.88 0.03 0.89 1
Von Neumann 0.87 0.04 0.89 0
Ring 0.87 0.04 0.89 2

random-search
FALSE N/A 0.86 0.05 0.89 0
TRUE N/A 0.86 0.05 0.89 0

57

Appendix A. Results of the objective-driven and novelty-driven PSO comparison 58

Table A.2: Results for the Mastermind problem using the Novelty-driven PSO, particu-
larly, the simpler behavior behaviorMm1. Each result represents a different experiment
composed by 100 runs. x̄, σ, x̃ represents, respectively, the average, standard deviation
and median of the best fitnesses of each run. % success - represents the number of success
runs on 100 possible.

Always valid Topology x̄ σ x̃ % success

k-distances = 3

FALSE
Fully-connected 0.91 0.04 0.89 15
Von Neumann 0.91 0.04 0.89 17
Ring 0.91 0.04 0.89 15

TRUE
Fully-connected 0.90 0.03 0.89 10
Von Neumann 0.91 0.04 0.89 19
Ring 0.10 0.04 0.89 16

k-distances = 10

FALSE
Fully-connected 0.91 0.04 0.89 15
Von Neumann 0.91 0.05 0.89 22
Ring 0.91 0.04 0.89 19

TRUE
Fully-connected 0.90 0.03 0.89 9
Von Neumann 0.91 0.05 0.89 21
Ring 0.91 0.05 0.89 23

k-distances = 15

FALSE
Fully-connected 0.91 0.05 0.89 21
Von Neumann 0.90 0.04 0.89 15
Ring 0.91 0.05 0.89 23

TRUE
Fully-connected 0.90 0.04 0.89 13
Von Neumann 0.91 0.05 0.89 21
Ring 0.92 0.05 0.89 25

k-distances = 25

FALSE
Fully-connected 0.90 0.04 0.89 14
Von Neumann 0.91 0.04 0.89 15
Ring 0.89 0.05 0.91 22

TRUE
Fully-connected 0.91 0.04 0.89 17
Von Neumann 0.91 0.05 0.89 22
Ring 0.91 0.04 0.89 16

Appendix A. Results of the objective-driven and novelty-driven PSO comparison 59

Table A.3: Results for the Mastermind problem using the Novelty-driven PSO, par-
ticularly, the more complex behavior behaviorMm2. Each result represents a different
experiment composed by 100 runs. x̄, σ, x̃ represents, respectively, the average, standard
deviation and median of the best fitnesses of each run. % success - represents the number
of success runs on 100 possible.

Always valid Topology x̄ σ x̃ % success

k-distances = 3

FALSE
Fully-connected 0.96 0.05 1.00 60
Von Neumann 0.99 0.03 1.00 94
Ring 1.00 0.02 1.00 97

TRUE
Fully-connected 0.96 0.05 1.00 65
Von Neumann 1.00 0.02 1.00 98
Ring 1.00 0.02 1.00 96

k-distances = 10

FALSE
Fully-connected 0.94 0.06 0.94 50
Von Neumann 1.00 0.02 1.00 98
Ring 1.00 0.02 1.00 98

TRUE
Fully-connected 0.96 0.05 1.00 62
Von Neumann 1.00 0.01 1.00 99
Ring 1.00 0.01 1.00 99

k-distances = 15

FALSE
Fully-connected 0.95 0.06 1.00 56
Von Neumann 1.00 0.01 1.00 99
Ring 1.00 0.00 1.00 100

TRUE
Fully-connected 0.95 0.05 1.00 59
Von Neumann 1.00 0.01 1.00 99
Ring 1.00 0.01 1.00 99

k-distances = 25

FALSE
Fully-connected 0.94 0.06 0.89 49
Von Neumann 1.00 0.02 1.00 99
Ring 1.00 0.01 1.00 99

TRUE
Fully-connected 0.95 0.06 1.00 58
Von Neumann 1.00 0.00 1.00 100
Ring 1.00 0.00 1.00 100

Appendix A. Results of the objective-driven and novelty-driven PSO comparison 60

A.2 Results of the Santa Fe Ant Trail tests

Table A.4: Results for the Santa Fe Ant Trail using Standard PSO, Barebones PSO and
random-search algorithms. Each result represents a different experiment composed by
100 runs. x̄, σ, x̃ represents, respectively, the average, standard deviation and median of
the best fitnesses of each run. % success - represents the number of success runs on 100
possible.

Method Always valid Topology x̄ σ x̃ % success

Standard PSO

FALSE
Fully-connected 71.30 17.37 71.0 31
Von Neumann 77.03 16.19 88.0 44
Ring 73.34 16.80 76.0 34

TRUE
Fully-connected 78.31 15.66 89.0 52
Von Neumann 75.01 16.01 88.0 40
Ring 76.94 15.71 88.0 46

Barebones PSO

FALSE
Fully-connected 71.77 15.79 71.0 34
Von Neumann 69.34 17.38 66.0 30
Ring 68.33 17.25 66.0 26

TRUE
Fully-connected 74.25 16.95 88.0 49
Von Neumann 71.98 16.05 71.0 31
Ring 71.23 15.86 71.0 29

random-search FALSE N/A 73.00 16.68 80.5 31
TRUE N/A 75.81 15.74 88.0 40

Appendix A. Results of the objective-driven and novelty-driven PSO comparison 61

Table A.5: Results for the Santa Fe Ant Trail using the Novelty-driven PSO, particularly,
the simpler behavior behaviorSF1, not archiving past behaviors. Each result represents a
different experiment composed by 100 runs. x̄, σ, x̃ represents, respectively, the average,
standard deviation and median of the best fitnesses of each run. % success - represents
the number of success runs on 100 possible.

Always valid Topology x̄ σ x̃ % success

k-distances = 3

FALSE
Fully-connected 78.99 14.19 88.0 47
Von Neumann 77.66 14.91 88.5 50
Ring 82.13 12.10 89.0 58

TRUE
Fully-connected 81.10 14.14 89.0 65
Von Neumann 82.96 11.84 89.0 66
Ring 85.46 8.54 89.0 75

k-distances = 10

FALSE
Fully-connected 77.37 15.18 88.0 41
Von Neumann 72.34 16.25 71.0 37
Ring 78.56 13.95 88.0 42

TRUE
Fully-connected 78.8 14.11 88.0 48
Von Neumann 79.08 14.70 88 43
Ring 79.36 14.65 89.0 57

k-distances = 15

FALSE
Fully-connected 73.43 16.71 76.0 35
Von Neumann 72.93 16.26 73.0 35
Ring 75.95 16.88 88.0 48

TRUE
Fully-connected 77.41 16.09 88.0 48
Von Neumann 77.54 15.11 88.0 44
Ring 79.09 14.19 88.0 49

k-distances = 25

FALSE
Fully-connected 71.38 17.66 71.0 38
Von Neumann 73.79 16.83 88.0 38
Ring 74.42 16.46 85.0 38

TRUE
Fully-connected 74.44 16.18 85.0 40
Von Neumann 78.49 14.40 88.0 47
Ring 75.26 16.46 88.0 39

Appendix A. Results of the objective-driven and novelty-driven PSO comparison 62

Table A.6: Results for the Santa Fe Ant Trail using the Novelty-driven PSO, particularly,
the simpler behavior behaviorSF1, archiving past behaviors. Each result represents a
different experiment composed by 100 runs. x̄, σ, x̃ represents, respectively, the average,
standard deviation and median of the best fitnesses of each run. % success - represents
the number of success runs on 100 possible.

Always valid Topology x̄ σ x̃ % success

k-distances = 3

FALSE
Fully-connected 77.15 16.58 89.0 53
Von Neumann 78.14 14.51 89.0 51
Ring 83.00 11.32 89.0 58

TRUE
Fully-connected 75.1 16.67 88.5 50
Von Neumann 82.68 11.48 89.0 61
Ring 83.83 10.76 89.0 66

k-distances = 10

FALSE
Fully-connected 72.83 16.67 73.5 39
Von Neumann 76.62 15.36 89.0 51
Ring 82.82 11.03 89.0 62

TRUE
Fully-connected 77.9 15.16 89.0 51
Von Neumann 81.99 12.14 89 55
Ring 83.48 10.82 89.0 65

k-distances = 15

FALSE
Fully-connected 76.32 16.37 88.0 43
Von Neumann 78.49 14.40 88.0 47
Ring 77.70 15.27 88.0 49

TRUE
Fully-connected 75.83 16.20 88.0 49
Von Neumann 82.91 11.78 89.0 59
Ring 82.12 11.43 89.0 60

k-distances = 25

FALSE
Fully-connected 74.80 16.41 88.0 43
Von Neumann 80.12 14.33 89.0 57
Ring 80.33 12.98 89.0 53

TRUE
Fully-connected 79.71 13.23 88.0 49
Von Neumann 81.07 13.23 89.0 58
Ring 84.55 10.25 89.0 71

Appendix A. Results of the objective-driven and novelty-driven PSO comparison 63

Table A.7: Results for the Santa Fe Ant Trail using the Novelty-driven PSO, particularly,
the behavior behaviorSF2, not archiving past behaviors. Each result represents a different
experiment composed by 100 runs. x̄, σ, x̃ represents, respectively, the average, standard
deviation and median of the best fitnesses of each run. % success - represents the number
of success runs on 100 possible.

Always valid Topology x̄ σ x̃ % success

k-distances = 3

FALSE
Fully-connected 79.72 14.52 89.0 54
Von Neumann 78.42 15.69 89.0 55
Ring 80.95 14.05 89.0 57

TRUE
Fully-connected 81.92 13.35 89.0 62
Von Neumann 81.59 12.71 89.0 55
Ring 83.34 11.94 89.0 69

k-distances = 10

FALSE
Fully-connected 73.14 15.96 74.5 31
Von Neumann 73.70 16.88 86.5 41
Ring 76.06 16.61 88.0 48

TRUE
Fully-connected 73.86 16.55 80.5 37
Von Neumann 74.26 15.83 80.5 33
Ring 76.18 15.94 88.0 44

k-distances = 15

FALSE
Fully-connected 73.87 16.97 88.0 38
Von Neumann 73.21 16.93 85.0 40
Ring 74.05 16.66 85.0 40

TRUE
Fully-connected 76.99 14.98 88.0 47
Von Neumann 75.85 15.55 86.5 38
Ring 75.53 15.08 88.0 35

k-distances = 25

FALSE
Fully-connected 74.57 16.53 88.0 41
Von Neumann 75.21 16.80 88.0 39
Ring 70.34 18.08 71.0 34

TRUE
Fully-connected 77.33 15.67 89.0 51
Von Neumann 76.34 15.95 88.0 46
Ring 70.37 16.52 71.0 30

Appendix A. Results of the objective-driven and novelty-driven PSO comparison 64

Table A.8: Results for the Santa Fe Ant Trail using the Novelty-driven PSO, particularly,
the behavior behaviorSF2, archiving past behaviors. Each result represents a different
experiment composed by 100 runs. x̄, σ, x̃ represents, respectively, the average, standard
deviation and median of the best fitnesses of each run. % success - represents the number
of success runs on 100 possible.

Always valid Topology x̄ σ x̃ % success

k-distances = 3

FALSE
Fully-connected 73.97 17.15 85.0 35
Von Neumann 78 15.03 89.0 51
Ring 80.21 13.58 89.0 58

TRUE
Fully-connected 81.07 12.84 89.0 54
Von Neumann 83.15 10.67 89.0 62
Ring 87.09 6.52 89.0 78

k-distances = 10

FALSE
Fully-connected 76.90 15.83 88.0 46
Von Neumann 79.29 14.73 88.0 46
Ring 81.61 12.37 89.0 57

TRUE
Fully-connected 78.45 14.66 89.0 52
Von Neumann 82.68 12.37 89.0 60
Ring 83.43 11.29 89.0 65

k-distances = 15

FALSE
Fully-connected 78.60 14.14 88.0 48
Von Neumann 77.27 15.15 88.0 45
Ring 80.01 13.58 89.0 51

TRUE
Fully-connected 77.28 15.62 88.0 46
Von Neumann 80.56 13.10 89.0 56
Ring 83.25 11.14 89.0 66

k-distances = 25

FALSE
Fully-connected 77.72 15.64 88.5 50
Von Neumann 78.25 15.34 88.0 49
Ring 76.42 15.16 88.0 43

TRUE
Fully-connected 79.63 14.13 89.0 51
Von Neumann 83.23 11.71 89.0 62
Ring 80.36 13.25 88.5 50

Appendix A. Results of the objective-driven and novelty-driven PSO comparison 65

A.3 Results of the Maze Navigation Problem tests

Table A.9: Results for the Maze Navigation Problem using Standard PSO, Barebones
PSO and random-search algorithms. Each result represents a different experiment com-
posed by 100 runs. x̄, σ, x̃ represents, respectively, the average, standard deviation and
median of the best fitnesses of each run. % success - represents the number of success
runs on 100 possible.

Method Always valid Topology x̄ σ x̃ % success

Standard PSO

FALSE
Fully-connected 0.37 0.35 0.18 23
Von Neumann 0.24 0.23 0.16 8
Ring 0.29 0.29 0.16 14

TRUE
Fully-connected 0.43 0.36 0.24 27
Von Neumann 0.50 0.37 0.31 35
Ring 0.42 0.34 0.25 25

Barebones PSO

FALSE
Fully-connected 0.31 0.30 0.17 15
Von Neumann 0.26 0.27 0.16 11
Ring 0.27 0.29 0.15 13

TRUE
Fully-connected 0.52 0.39 0.31 39
Von Neumann 0.47 0.38 0.26 33
Ring 0.40 0.34 0.22 24

random-search
FALSE N/A 0.30 0.30 0.17 15
TRUE N/A 0.47 0.38 0.24 33

Appendix A. Results of the objective-driven and novelty-driven PSO comparison 66

Table A.10: Results for the Maze Navigation Problem using the Novelty-driven PSO,
particularly, the behavior behaviorMP1, not archiving past behaviors. Each result rep-
resents a different experiment composed by 100 runs. x̄, σ, x̃ represents, respectively,
the average, standard deviation and median of the best fitnesses of each run. % success -
represents the number of success runs on 100 possible.

Always valid Topology x̄ σ x̃ % success

k-distances = 3

FALSE
Fully-connected 0.32 0.32 0.16 18
Von Neumann 0.27 0.28 0.16 12
Ring 0.28 0.27 0.17 12

TRUE
Fully-connected 0.50 0.37 0.31 36
Von Neumann 0.47 0.36 0.26 31
Ring 0.52 0.37 0.31 37

k-distances = 10

FALSE
Fully-connected 0.27 0.27 0.16 11
Von Neumann 0.28 0.26 0.17 11
Ring 0.35 0.34 0.17 20

TRUE
Fully-connected 0.47 0.37 0.26 31
Von Neumann 0.51 0.38 0.31 36
Ring 0.58 0.38 0.33 45

k-distances = 15

FALSE
Fully-connected 0.27 0.29 0.15 13
Von Neumann 0.30 0.30 0.17 15
Ring 0.30 0.30 0.17 15

TRUE
Fully-connected 0.45 0.36 0.26 30
Von Neumann 0.49 0.37 0.28 34
Ring 0.54 0.38 0.31 40

k-distances = 25

FALSE
Fully-connected 0.22 0.24 0.15 8
Von Neumann 0.27 0.28 0.16 12
Ring 0.22 0.22 0.15 7

TRUE
Fully-connected 0.39 0.33 0.24 22
Von Neumann 0.45 0.35 0.26 29
Ring 0.56 0.39 0.33 43

Appendix A. Results of the objective-driven and novelty-driven PSO comparison 67

Table A.11: Results for the Maze Navigation Problem using the Novelty-driven PSO,
particularly, the behavior behaviorMP1, archiving past behaviors. Each result represents
a different experiment composed by 100 runs. x̄, σ, x̃ represents, respectively, the average,
standard deviation and median of the best fitnesses of each run. % success - represents
the number of success runs on 100 possible.

Always valid Topology x̄ σ x̃ % success

k-distances = 3

FALSE
Fully-connected 0.29 0.28 0.16 18
Von Neumann 0.34 0.33 1.17 20
Ring 0.29 0.28 0.17 13

TRUE
Fully-connected 0.41 0.34 0.25 24
Von Neumann 0.52 0.38 0.29 38
Ring 0.68 0.38 1.00 58

k-distances = 10

FALSE
Fully-connected 0.27 0.26 0.17 11
Von Neumann 0.28 0.28 0.17 13
Ring 0.34 0.32 0.20 18

TRUE
Fully-connected 0.44 0.36 0.23 29
Von Neumann 0.58 0.39 0.33 46
Ring 0.68 0.38 1.00 58

k-distances = 15

FALSE
Fully-connected 0.30 0.30 0.17 15
Von Neumann 0.31 0.31 0.18 16
Ring 0.32 0.31 0.18 17

TRUE
Fully-connected 0.51 0.38 0.31 36
Von Neumann 0.55 0.39 0.31 42
Ring 0.59 0.38 0.32 46

k-distances = 25

FALSE
Fully-connected 0.33 0.33 0.17 19
Von Neumann 0.32 0.31 0.17 17
Ring 0.32 0.31 0.18 17

TRUE
Fully-connected 0.49 0.38 0.26 36
Von Neumann 0.50 0.38 0.31 36
Ring 0.60 0.39 0.33 48

Appendix A. Results of the objective-driven and novelty-driven PSO comparison 68

Appendix B

Results of the novelty-driven PSO and
evolutionary novelty search comparison

B.1 Results of Objective-driven GE

Table B.1: Results of the objective-driven GE. Each result represents a different ex-
periment composed by 100 runs. x̄, σ, x̃ represents, respectively, the average, standard
deviation and median of the best fitnesses of each run. % success - represents the number
of success runs on 100 possible.

Domain Mean best fitness Std Deviation Median Successful runs
Mastermind 0.90 0.04 0.88 12
Santa Fe Trail 79.61 14.60 89.0 64
Maze problem 0.87 0.30 1.00 83

B.2 Results of Novelty-driven GE

Table B.2: Results of the novelty-driven GE applied to the Mastermind benchmark do-
main. Each result represents a different experiment composed by 100 runs. x̄, σ, x̃
represents, respectively, the average, standard deviation and median of the best fitnesses
of each run. % success - represents the number of success runs on 100 possible.

Archived behaviors Mean best fitness Std Deviation Median Successful runs

k-distances = 3
FALSE 0.91 0.04 0.89 15
TRUE 0.91 0.04 0.89 16

k-distances = 10
FALSE 0.91 0.04 0.89 18
TRUE 0.91 0.04 0.89 16

k-distances = 15
FALSE 0.90 0.03 0.89 11
TRUE 0.91 0.04 0.89 14

k-distances = 25
FALSE 0.90 0.04 0.89 12
TRUE 0.90 0.04 0.89 20

69

Appendix B. Results of the novelty-driven PSO and evolutionary novelty search
comparison 70

Table B.3: Results of the novelty-driven GE applied to the Santa Fe Ant Trail benchmark
domain. Each result represents a different experiment composed by 100 runs. x̄, σ, x̃
represents, respectively, the average, standard deviation and median of the best fitnesses
of each run. % success - represents the number of success runs on 100 possible.

Archived behaviors Mean best fitness Std Deviation Median Successful runs

k-distances = 3
FALSE 85.89 6.39 89.0 73
TRUE 85.33 7.75 89.0 75

k-distances = 10
FALSE 86.14 7.25 89.0 81
TRUE 89.63 6.54 89.0 82

k-distances = 15
FALSE 87.65 4.75 89.0 88
TRUE 87.64 4.75 89.0 90

k-distances = 25
FALSE 87.53 5.03 89.0 89
TRUE 86.79 6.00 89.0 82

Table B.4: Results of the novelty-driven GE applied to the Maze Navigation problem.
Each result represents a different experiment composed by 100 runs. x̄, σ, x̃ represents,
respectively, the average, standard deviation and median of the best fitnesses of each run.
% success - represents the number of success runs on 100 possible.

Archived behaviors Mean best fitness Std Deviation Median Successful runs

k-distances = 3
FALSE 1.00 0.00 1.00 100
TRUE 1.00 0.00 1.00 100

k-distances = 10
FALSE 1.00 0.00 1.00 100
TRUE 1.00 0.00 1.00 100

k-distances = 15
FALSE 1.00 0.00 1.00 100
TRUE 1.00 0.00 1.00 100

k-distances = 25
FALSE 0.98 0.12 1.00 97
TRUE 1.00 0.00 1.00 100

Abbreviations

BFN Backus Naur Form

DNA Deoxyribonucleic acid

EA Evolutionary Algorithm

EC Evolutionary Computation

EDA Estimation of Distribution Algorithms

EP Evolutionary Programming

ES Evolutionary Strategies

GA Genetic Algorithm

GP Genetic Programming

GS Grammatical Swarm

NdGS Novelty-driven Grammatical Swarm

NdPSO Novelty-driven Particle Swarm Optimization

NS Novelty Search

NT Non Terminal symbol

P Production rules

PSO Particle Swarm Optimization

RNA Ribonucleic acid

S Start symbol

T Terminal symbol

Nomenclature

gbest

N Total number of particles in a population.

Bibliography

[1] J Kennedy and R Eberhart. Particle swarm optimization. Proceedings of IEEE
International Conference on Neural Networks, 4, 1995.

[2] Ender Ozcan and Chilukuri K Mohan. Analysis of a simple particle swarm opti-
mization system. Intelligent engineering systems through artificial neural networks,
8:253–258, 1998.

[3] ES Peer, F Van den Bergh, and AP Engelbrecht. Using neighbourhoods with the
guaranteed convergence pso. In Swarm Intelligence Symposium, 2003. SIS’03. Pro-
ceedings of the 2003 IEEE, pages 235–242. IEEE, 2003.

[4] Asanga Ratnaweera, Saman Halgamuge, and Harry C Watson. Self-organizing hier-
archical particle swarm optimizer with time-varying acceleration coefficients. Evo-
lutionary Computation, IEEE Transactions on, 8(3):240–255, 2004.

[5] Jakob Vesterstrom and Rene Thomsen. A comparative study of differential evolu-
tion, particle swarm optimization, and evolutionary algorithms on numerical bench-
mark problems. In Evolutionary Computation, 2004. CEC2004. Congress on, vol-
ume 2, pages 1980–1987. IEEE, 2004.

[6] James Kennedy. Bare bones particle swarms. In Swarm Intelligence Symposium,
2003. SIS’03. Proceedings of the 2003 IEEE, pages 80–87. IEEE, 2003.

[7] Joel Lehman and Kenneth O Stanley. Exploiting open-endedness to solve problems
through the search for novelty. In ALIFE, pages 329–336, 2008.

[8] Joel Lehman, Kenneth O Stanley, and Risto Miikkulainen. Effective diversity main-
tenance in deceptive domains. In Proceedings of the 15th annual conference on
Genetic and evolutionary computation, pages 215–222. ACM, 2013.

[9] Joel Lehman and Kenneth O Stanley. Efficiently evolving programs through the
search for novelty. In Proceedings of the 12th annual conference on Genetic and
evolutionary computation, pages 837–844. ACM, 2010.

73

Bibliography 74

[10] Joel Lehman and Kenneth O Stanley. Novelty search and the problem with ob-
jectives. In Genetic Programming Theory and Practice IX, pages 37–56. Springer,
2011.

[11] Dario Floreano and Claudio Mattiussi. Bio-inspired artificial intelligence: theories,
methods, and technologies. MIT press, 2008.

[12] Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through aug-
menting topologies. Evolutionary computation, 10(2):99–127, 2002.

[13] Elena Simona Nicoară. Mechanisms to avoid the premature convergence of genetic
algorithms. Petroleum–Gas University of Ploieşti Bulletin, Math.–Info.–Phys. Se-
ries, 61:87–96, 2009.

[14] Faustino J Gomez. Sustaining diversity using behavioral information distance. In
Proceedings of the 11th Annual conference on Genetic and evolutionary computa-
tion, pages 113–120. ACM, 2009.

[15] Paulo Urbano and Loukas Georgiou. Improving grammatical evolution in santa fe
trail using novelty search. In Advances in Artificial Life, ECAL, volume 12, pages
917–924, 2013.

[16] Michael O’Neill and Anthony Brabazon. Grammatical swarm: The generation of
programs by social programming. Natural Computing, 5(4):443–462, 2006.

[17] Edward O Wilson. Sociobiology: The new synthesis. Harvard University Press,
2000.

[18] Gerardo Beni and Jing Wang. Swarm intelligence in cellular robotic systems. In
Robots and Biological Systems: Towards a New Bionics?, pages 703–712. Springer,
1993.

[19] Craig W Reynolds. Flocks, herds and schools: A distributed behavioral model. ACM
SIGGRAPH Computer Graphics, 21(4):25–34, 1987.

[20] Frank Heppner and Ulf Grenander. A stochastic nonlinear model for coordinated
bird flocks. AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCI-
ENCE, WASHINGTON, DC(USA). 1990., 1990.

[21] Angelina Jane Reyes Medina, Gregorio Toscano Pulido, and José Gabriel Ramı́rez-
Torres. A comparative study of neighborhood topologies for particle swarm opti-
mizers. In IJCCI, pages 152–159, 2009.

Bibliography 75

[22] Dakuo He, Hongrui Chang, Qing Chang, and Yang Liu. Particle swarm optimization
based on the initial population of clustering. In Natural Computation (ICNC), 2010
Sixth International Conference on, volume 5, pages 2664–2667. IEEE, 2010.

[23] Emilio F Campana, Giovanni Fasano, and Antonio Pinto. Dynamic analysis for
the selection of parameters and initial population, in particle swarm optimization.
Journal of Global Optimization, 48(3):347–397, 2010.

[24] MM Ali and P Kaelo. Improved particle swarm algorithms for global optimization.
Applied mathematics and computation, 196(2):578–593, 2008.

[25] Yuhui Shi and Russell Eberhart. A modified particle swarm optimizer. In Evolution-
ary Computation Proceedings, 1998. IEEE World Congress on Computational In-
telligence., The 1998 IEEE International Conference on, pages 69–73. IEEE, 1998.

[26] Duncan J Watts. Small worlds: the dynamics of networks between order and ran-
domness. Princeton university press, 1999.

[27] James Kennedy and Rui Mendes. Population structure and particle swarm perfor-
mance. 2002.

[28] Bo Liu, Ling Wang, Yi-Hui Jin, Fang Tang, and De-Xian Huang. Improved particle
swarm optimization combined with chaos. Chaos, Solitons & Fractals, 25(5):1261–
1271, 2005.

[29] Jakob Vesterstrom and Rene Thomsen. A comparative study of differential evolu-
tion, particle swarm optimization, and evolutionary algorithms on numerical bench-
mark problems. In Evolutionary Computation, 2004. CEC2004. Congress on, vol-
ume 2, pages 1980–1987. IEEE, 2004.

[30] Jingzheng Yao and Duanfeng Han. Improved barebones particle swarm optimiza-
tion with neighborhood search and its application on ship design. Mathematical
Problems in Engineering, 2013, 2013.

[31] M Omran and S Al-Sharhan. Barebones particle swarm methods for unsuper-
vised image classification. In Evolutionary Computation, 2007. CEC 2007. IEEE
Congress on, pages 3247–3252. IEEE, 2007.

[32] Charles Darwin. On the origins of species by means of natural selection. London:
Murray, 1859.

[33] Michael Lynch. The frailty of adaptive hypotheses for the origins of organismal
complexity. Proceedings of the National Academy of Sciences, 104(suppl 1):8597–
8604, 2007.

Bibliography 76

[34] Daniel S Weile and Eric Michielssen. Genetic algorithm optimization applied to
electromagnetics: A review. Antennas and Propagation, IEEE Transactions on,
45(3):343–353, 1997.

[35] Uday Kamath, Amarda Shehu, and K De Jong. Using evolutionary computation
to improve svm classification. In Evolutionary Computation (CEC), 2010 IEEE
Congress on, pages 1–8. IEEE, 2010.

[36] Gregory Hornby, J Lohn, and D Linden. Computer-automated evolution of an x-
band antenna for nasa’s space technology 5 mission. Evolutionary computation,
19(1):1–23, 2011.

[37] Hans-Paul Schwefel. Kybernetische evolution als strategie der experimentellen
forschung in der strömungstechnik. Master’s thesis, Hermann Föttinger Institute
for Hydrodynamics, Technical University of Berlin, 1965.

[38] Lawrence J Fogel, Alvin J Owens, and Michael J Walsh. Artificial intelligence
through simulated evolution. 1966.

[39] John H Holland. Adaptation in natural and artificial systems: an introductory anal-
ysis with applications to biology, control, and artificial intelligence. U Michigan
Press, 1975.

[40] John R Koza. Genetic programming: on the programming of computers by means
of natural selection, volume 1. MIT press, 1992.

[41] Adam Lipowski and Dorota Lipowska. Roulette-wheel selection via stochastic ac-
ceptance. Physica A: Statistical Mechanics and its Applications, 391(6):2193–2196,
2012.

[42] L Darrell Whitley et al. The genitor algorithm and selection pressure: Why rank-
based allocation of reproductive trials is best. In ICGA, volume 89, pages 116–123,
1989.

[43] Brad L Miller and David E Goldberg. Genetic algorithms, tournament selection, and
the effects of noise. Complex Systems, 9(3):193–212, 1995.

[44] JORGE Magalhães-Mendes. A comparative study of crossover operators for ge-
netic algorithms to solve the job shop scheduling problem. WSEAS transactions on
computers, 12(4), 2013.

[45] Thomas Jansen and Ingo Wegener. The analysis of evolutionary algorithms-a proof
that crossover really can help. Algorithmica, 34(1):47–66, 2002.

Bibliography 77

[46] Zbigniew Michalewicz. Genetic algorithms+ data structures= evolution programs.
Springer Science & Business Media, 1996.

[47] Conor Ryan, JJ Collins, and Michael O Neill. Grammatical evolution: Evolving pro-
grams for an arbitrary language. In Genetic Programming, pages 83–96. Springer,
1998.

[48] Anthony Brabazon and Michael O’Neill. Biologically inspired algorithms for finan-
cial modelling. Springer Science & Business Media, 2006.

[49] Jason H Moore and Lance W Hahn. Systems biology modeling in human ge-
netics using petri nets and grammatical evolution. In Genetic and Evolutionary
Computation–GECCO 2004, pages 392–401. Springer, 2004.

[50] Martin Hemberg and Una-May O’Reilly. Genr8-using grammatical evolution in a
surface design tool. In GECCO, pages 120–123, 2002.

[51] Gregor Mendel. Versuche über pflanzenhybriden. Verhandlungen des natur-
forschenden Vereines in Brunn 4: 3, 44, 1866.

[52] Joel Lehman and Kenneth O Stanley. Abandoning objectives: Evolution through the
search for novelty alone. Evolutionary computation, 19(2):189–223, 2011.

[53] Jorge Gomes, Paulo Urbano, and Anders Lyhne Christensen. Introducing nov-
elty search in evolutionary swarm robotics. In Swarm Intelligence, pages 85–96.
Springer, 2012.

[54] David E Goldberg. Simple genetic algorithms and the minimal, deceptive problem.
Genetic algorithms and simulated annealing, 74:88, 1987.

[55] Martin Pelikan and David E Goldberg. Escaping hierarchical traps with competent
genetic algorithms. In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-2001), pages 511–518, 2001.

[56] Gunar E Liepins Michael D Vose. Deceptiveness and genetic algorithm dynamics’.
Foundations of Genetic Algorithms 1991 (FOGA 1), 1:36, 2014.

[57] Jianjun Hu, Erik Goodman, Kisung Seo, Zhun Fan, and Rondal Rosenberg. The hi-
erarchical fair competition (hfc) framework for sustainable evolutionary algorithms.
Evolutionary Computation, 13(2):241–277, 2005.

[58] Gregory S Hornby. Alps: the age-layered population structure for reducing the
problem of premature convergence. In Proceedings of the 8th annual conference on
Genetic and evolutionary computation, pages 815–822. ACM, 2006.

Bibliography 78

[59] David E Goldberg and Jon Richardson. Genetic algorithms with sharing for mul-
timodal function optimization. In Genetic algorithms and their applications: Pro-
ceedings of the Second International Conference on Genetic Algorithms, pages 41–
49. Hillsdale, NJ: Lawrence Erlbaum, 1987.

[60] Marcus Hutter. Fitness uniform selection to preserve genetic diversity. In Evolution-
ary Computation, 2002. CEC’02. Proceedings of the 2002 Congress on, volume 1,
pages 783–788. IEEE, 2002.

[61] David E Goldberg, Bradley Korb, and Kalyanmoy Deb. Messy genetic algorithms:
Motivation, analysis, and first results. Complex systems, 3(5):493–530, 1989.

[62] Jeffrey L Elman. Incremental learning, or the importance of starting small. Univer-
sity of California, San Diego, 1991.

[63] Faustino Gomez and Risto Miikkulainen. Incremental evolution of complex general
behavior. Adaptive Behavior, 5(3-4):317–342, 1997.

[64] Stéphane Doncieux and J-B Mouret. Behavioral diversity measures for evolutionary
robotics. In Evolutionary Computation (CEC), 2010 IEEE Congress on, pages 1–8.
IEEE, 2010.

[65] John Doucette and Malcolm I Heywood. Novelty-based fitness: An evaluation under
the santa fe trail. In Genetic Programming, pages 50–61. Springer, 2010.

[66] Enrique Naredo, Leonardo Trujillo, and Yuliana Martı́nez. Searching for novel clas-
sifiers. Springer, 2013.

[67] Uri Wilensky et al. Netlogo. evanston, il. Center for Connected Learning
and Computer Based Modeling, Northwestern University. http://ccl. northwestern.
edu/netlogo, 1999.

[68] Loukas Georgiou and William J Teahan. jge-a java implementation of grammatical
evolution. In Proceedings of the 10th WSEAS International Conference on SYS-
TEMS, Vouliagmeni. Athens: WSEAS, pages 406–411, 2006.

[69] Loukas Georgiou and William J Teahan. Grammatical evolution and the santa fe
trail problem. Evolutionary Computation (ICEC 2010), 2010.

[70] John R Koza. Genetic evolution and co-evolution of computer programs. Artificial
life II, 10:603–629, 1991.

[71] Loukas Georgiou. Constituent grammatical evolution. PhD thesis, Bangor Univer-
sity, 2012.

Bibliography 79

[72] XH Shi, YC Liang, HP Lee, C Lu, and LM Wang. An improved ga and a novel pso-
ga-based hybrid algorithm. Information Processing Letters, 93(5):255–261, 2005.

[73] K Premalatha and AM Natarajan. Hybrid pso and ga for global maximization. Int.
J. Open Problems Compt. Math, 2(4):597–608, 2009.

[74] Maarten Keijzer, Michael O’Neill, Conor Ryan, and Mike Cattolico. Grammatical
evolution rules: The mod and the bucket rule. In Genetic Programming, pages 123–
130. Springer, 2002.

[75] Ann Thorhauer and Franz Rothlauf. On the locality of standard search operators in
grammatical evolution. In Parallel Problem Solving from Nature–PPSN XIII, pages
465–475. Springer, 2014.

[76] Nuno Lourenço, Francisco B Pereira, and Ernesto Costa. Studying the properties of
structured grammatical evolution. 2015.

Index

accelaration coefficients, 9
acceleration coefficients, 11
automatic design, 16

Backus Naur Form, 20
Backus Naur Form grammar, 20
Barebones PSO, 4, 14, 15
behavior, 2, 4
BNF, 20–22
breeding, 16

chromosome, 16
classification problems, 16
codons, 22
cognitive acceleration, 11
crossover, 18, 19
crossover technique, 18

Darwinian evolution, 15
deception, 1–3
deceptive problems, ix, 1–4, 7
DNA, 18, 21

EA, 2, 15–18
EAs, 16, 18, 19
EC, 7, 15, 16
EP, 16
ES, 16
evolution process, 18
Evolutionary Algorithm, 2–4, 18, 19, 21
Evolutionary Algorithms, 15, 18
Evolutionary Computation, 7, 15
evolutionary process, 20
Evolutionary Programming, 16
Evolutionary Strategies, 16

exploitation, 11, 14, 15
exploration, 11, 14, 15

fast convergence, 13
fitness function, 1, 3, 8, 15, 16
fitness functions, ix
fitness-proportional selection, 17
flat crossover, 18
flow of information, 12
Fully-connected, 13

GA, 8, 16
Gaussian distribution, 15
gbest, 8, 9, 11, 12
gbest version of PSO, 13
GE, 2, 7, 19–22
genes, 16
Genetic Algorithms, 8, 16
genetic material, 18
Genetic Programming, ix, 2, 7, 16, 18, 20
genome, 16, 20, 21
genotype, 22
genotype-to-phenotype mapping, 20, 21
global best, 15
global optima, 14
global-best, 8
GP, 2, 7, 16, 18–20
Grammatical Evolution, ix, 2, 4, 7, 19, 20
Grammatical Swarm, ix, 2, 4, 7
GS, 2, 4, 7

inertia, 9
inertia weight, 11

lbest, 12

81

Index 82

lbest version of PSO, 13
linear genome, 19
linear ranking selection, 17
linear representation, 19
local best, 12
local optima, ix, 1–3, 14

machine learning, 16
mapping function, 20
mapping process, 20–22
maximum velocity, 10
multimodal functions, 13
mutation, 18
mutations, 18

natural selection, 15, 17
NdGS, 2, 4
NdPSO, ix, 2–4, 7
neighborhood, 12
neighborhood graph, 12
neighborhood topologies, 12
neighborhood topology, 8, 12
non-terminal symbol, 20
novel behaviors, 2, 4
novelty metric, 2–4
novelty search, ix, 2–4, 7
novelty-driven, 4
Novelty-driven Grammatical Swarm, 2, 4
Novelty-driven Particle Swarm Optimization,

ix, 3, 4, 7
Novelty-driven PSO, 2, 4
numerical optimization, 16

objective-based, 1, 2, 17
objective-based algorithm, 3
objective-based algorithms, 15
objective-based search, 3, 4
objective-driven, ix, 1, 2, 4
offspring, 16–18
optimization algorithm, 3
optimization problems, 1

parse tree, 20
parse trees, 20
parsed tree, 19
particle inertia, 9
Particle Swarm Optimization, ix, 1, 3, 7, 8,

11
pbest, 8, 9, 11
personal best, 15
personal-best, 8
phenotype, 21, 22
population-based, ix, 1, 3, 4, 8, 16, 21
premature convergence, 1–4, 7, 14, 18
production rules, 20–22
programming language, 19
PSO, ix, 1, 3, 4, 7–9, 11, 12, 14, 15

random-search, ix, 2
reproduction, 16
Ring topology, 13
RNA, 22
roulette wheel, 17
roulette wheel selection, 17

search algorithms, 16
search for novelty, 4
search mechanism, 21
search mechanisms, 16
selection, 16
selection mechanism, 17
selection technique, 18
sexual recombination, 18
single-point crossover, 18
social acceleration, 11
social behavior, 1, 7, 8
standard PSO, 15
standard PSO algorithm, 1, 3, 4, 9, 15
Star topology, 14
swarm dynamics, 12
swarm intelligence, 7, 8

terminal symbol, 20

Index 83

terminal symbols, 19
tournament selection, 17
tree representation, 19
two-point crossover, 18

uniform crossover, 18

variation, 16
velocity adjustment, 15
velocity update, 9, 11
Von Newman topology, 13

	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives
	Contributions
	Structure of the document

	Related Work
	Particle Swarm Optimization
	The Standard Particle Swarm Optimization Algorithm
	Parameter Selection
	Swarm Topology
	Premature Convergence in Particle Swarm Optimization
	Variations of Particle Swarm Optimization

	Evolutionary Computation
	Evolutionary algorithms
	Genetic Programming

	Grammatical Evolution
	Backus Naur Form
	GE Algorithm and Mapping Process

	Grammatical Swarm
	Additional constraints

	Novelty Search
	Deception
	The Novelty Search Approach
	Novelty Search Algorithm

	Novelty-driven Particle Swarm Optimization
	Introduction
	The Novelty-driven PSO Algorithm

	Proof of Concept
	Experimental Settings
	Mastermind
	Santa Fe Ant Trail
	Maze Navigation Problem
	Main Results
	Discussion

	Conclusion

	Novelty-driven PSO and Novelty Search Comparative Study
	Introduction
	Genetic Algorithm and Particle Swarm Optimization Comparison
	Novelty Search applied to Grammatical Evolution
	Experiments
	Experimental Settings
	Results

	Discussion
	Conclusion

	Conclusion
	Future Work

	Results of the objective-driven and novelty-driven PSO comparison
	Results of the Mastermind tests
	Results of the Santa Fe Ant Trail tests
	Results of the Maze Navigation Problem tests

	Results of the novelty-driven PSO and evolutionary novelty search comparison
	Results of Objective-driven GE
	Results of Novelty-driven GE

	References

